ggml.c 734 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #endif
  258. // floating point type used to accumulate sums
  259. typedef double ggml_float;
  260. #undef MIN
  261. #undef MAX
  262. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  263. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  269. // precomputed quick gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  284. return GGML_FP16_TO_FP32(x);
  285. }
  286. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  287. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  291. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  292. return GGML_BF16_TO_FP32(x); // it just left shifts
  293. }
  294. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  295. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  296. return GGML_FP32_TO_BF16(x);
  297. }
  298. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  299. for (int64_t i = 0; i < n; i++) {
  300. y[i] = GGML_FP16_TO_FP32(x[i]);
  301. }
  302. }
  303. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  304. int64_t i = 0;
  305. #if defined(__F16C__)
  306. for (; i + 7 < n; i += 8) {
  307. __m256 x_vec = _mm256_loadu_ps(x + i);
  308. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  309. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  310. }
  311. for(; i + 3 < n; i += 4) {
  312. __m128 x_vec = _mm_loadu_ps(x + i);
  313. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  315. }
  316. #endif
  317. for (; i < n; i++) {
  318. y[i] = GGML_FP32_TO_FP16(x[i]);
  319. }
  320. }
  321. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  322. int64_t i = 0;
  323. #if defined(__AVX512F__)
  324. for (; i + 16 <= n; i += 16) {
  325. _mm512_storeu_ps(y + i,
  326. _mm512_castsi512_ps(
  327. _mm512_slli_epi32(
  328. _mm512_cvtepu16_epi32(
  329. _mm256_loadu_si256(
  330. (const __m256i *)(x + i))),
  331. 16)));
  332. }
  333. #elif defined(__AVX2__)
  334. for (; i + 8 <= n; i += 8) {
  335. _mm256_storeu_ps(y + i,
  336. _mm256_castsi256_ps(
  337. _mm256_slli_epi32(
  338. _mm256_cvtepu16_epi32(
  339. _mm_loadu_si128(
  340. (const __m128i *)(x + i))),
  341. 16)));
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_BF16_TO_FP32(x[i]);
  346. }
  347. }
  348. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  349. int i = 0;
  350. #if defined(__AVX512BF16__)
  351. for (; i + 32 <= n; i += 32) {
  352. _mm512_storeu_si512(
  353. (__m512i *)(y + i),
  354. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  355. _mm512_loadu_ps(x + i))));
  356. }
  357. #endif
  358. for (; i < n; i++) {
  359. y[i] = GGML_FP32_TO_BF16(x[i]);
  360. }
  361. }
  362. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  363. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  364. }
  365. //
  366. // timing
  367. //
  368. #if defined(_MSC_VER) || defined(__MINGW32__)
  369. static int64_t timer_freq, timer_start;
  370. void ggml_time_init(void) {
  371. LARGE_INTEGER t;
  372. QueryPerformanceFrequency(&t);
  373. timer_freq = t.QuadPart;
  374. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  375. // and the uptime is high enough.
  376. // We subtract the program start time to reduce the likelihood of that happening.
  377. QueryPerformanceCounter(&t);
  378. timer_start = t.QuadPart;
  379. }
  380. int64_t ggml_time_ms(void) {
  381. LARGE_INTEGER t;
  382. QueryPerformanceCounter(&t);
  383. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  384. }
  385. int64_t ggml_time_us(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  389. }
  390. #else
  391. void ggml_time_init(void) {}
  392. int64_t ggml_time_ms(void) {
  393. struct timespec ts;
  394. clock_gettime(CLOCK_MONOTONIC, &ts);
  395. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  396. }
  397. int64_t ggml_time_us(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  401. }
  402. #endif
  403. int64_t ggml_cycles(void) {
  404. return clock();
  405. }
  406. int64_t ggml_cycles_per_ms(void) {
  407. return CLOCKS_PER_SEC/1000;
  408. }
  409. #ifdef GGML_PERF
  410. #define ggml_perf_time_ms() ggml_time_ms()
  411. #define ggml_perf_time_us() ggml_time_us()
  412. #define ggml_perf_cycles() ggml_cycles()
  413. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  414. #else
  415. #define ggml_perf_time_ms() 0
  416. #define ggml_perf_time_us() 0
  417. #define ggml_perf_cycles() 0
  418. #define ggml_perf_cycles_per_ms() 0
  419. #endif
  420. //
  421. // cross-platform UTF-8 file paths
  422. //
  423. #ifdef _WIN32
  424. static wchar_t * ggml_mbstowcs(const char * mbs) {
  425. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  426. if (!wlen) {
  427. errno = EINVAL;
  428. return NULL;
  429. }
  430. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  431. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  432. if (!wlen) {
  433. GGML_FREE(wbuf);
  434. errno = EINVAL;
  435. return NULL;
  436. }
  437. return wbuf;
  438. }
  439. #endif
  440. FILE * ggml_fopen(const char * fname, const char * mode) {
  441. #ifdef _WIN32
  442. FILE * file = NULL;
  443. // convert fname (UTF-8)
  444. wchar_t * wfname = ggml_mbstowcs(fname);
  445. if (wfname) {
  446. // convert mode (ANSI)
  447. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  448. wchar_t * wmode_p = wmode;
  449. do {
  450. *wmode_p++ = (wchar_t)*mode;
  451. } while (*mode++);
  452. // open file
  453. file = _wfopen(wfname, wmode);
  454. GGML_FREE(wfname);
  455. GGML_FREE(wmode);
  456. }
  457. return file;
  458. #else
  459. return fopen(fname, mode);
  460. #endif
  461. }
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  478. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  479. [GGML_TYPE_I8] = {
  480. .type_name = "i8",
  481. .blck_size = 1,
  482. .type_size = sizeof(int8_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I16] = {
  486. .type_name = "i16",
  487. .blck_size = 1,
  488. .type_size = sizeof(int16_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I32] = {
  492. .type_name = "i32",
  493. .blck_size = 1,
  494. .type_size = sizeof(int32_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_I64] = {
  498. .type_name = "i64",
  499. .blck_size = 1,
  500. .type_size = sizeof(int64_t),
  501. .is_quantized = false,
  502. },
  503. [GGML_TYPE_F64] = {
  504. .type_name = "f64",
  505. .blck_size = 1,
  506. .type_size = sizeof(double),
  507. .is_quantized = false,
  508. .nrows = 1,
  509. },
  510. [GGML_TYPE_F32] = {
  511. .type_name = "f32",
  512. .blck_size = 1,
  513. .type_size = sizeof(float),
  514. .is_quantized = false,
  515. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  516. .vec_dot_type = GGML_TYPE_F32,
  517. .nrows = 1,
  518. },
  519. [GGML_TYPE_F16] = {
  520. .type_name = "f16",
  521. .blck_size = 1,
  522. .type_size = sizeof(ggml_fp16_t),
  523. .is_quantized = false,
  524. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  525. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  526. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  528. .vec_dot_type = GGML_TYPE_F16,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q4_0] = {
  532. .type_name = "q4_0",
  533. .blck_size = QK4_0,
  534. .type_size = sizeof(block_q4_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  537. .from_float = quantize_row_q4_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  539. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. #if defined (__ARM_FEATURE_MATMUL_INT8)
  542. .nrows = 2,
  543. #else
  544. .nrows = 1,
  545. #endif
  546. },
  547. [GGML_TYPE_Q4_1] = {
  548. .type_name = "q4_1",
  549. .blck_size = QK4_1,
  550. .type_size = sizeof(block_q4_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  553. .from_float = quantize_row_q4_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  555. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. #if defined (__ARM_FEATURE_MATMUL_INT8)
  558. .nrows = 2,
  559. #else
  560. .nrows = 1,
  561. #endif
  562. },
  563. [4] = { // GGML_TYPE_Q4_2
  564. .type_name = "DEPRECATED",
  565. .blck_size = 0,
  566. .type_size = 0,
  567. .is_quantized = false,
  568. .to_float = NULL,
  569. .from_float = NULL,
  570. .from_float_reference = NULL,
  571. .vec_dot = NULL,
  572. .vec_dot_type = GGML_TYPE_COUNT,
  573. .nrows = 1,
  574. },
  575. [5] = { // GGML_TYPE_Q4_3
  576. .type_name = "DEPRECATED",
  577. .blck_size = 0,
  578. .type_size = 0,
  579. .is_quantized = false,
  580. .to_float = NULL,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = NULL,
  584. .vec_dot_type = GGML_TYPE_COUNT,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q5_0] = {
  588. .type_name = "q5_0",
  589. .blck_size = QK5_0,
  590. .type_size = sizeof(block_q5_0),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  593. .from_float = quantize_row_q5_0,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  595. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  596. .vec_dot_type = GGML_TYPE_Q8_0,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q5_1] = {
  600. .type_name = "q5_1",
  601. .blck_size = QK5_1,
  602. .type_size = sizeof(block_q5_1),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  605. .from_float = quantize_row_q5_1,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  607. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  608. .vec_dot_type = GGML_TYPE_Q8_1,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q8_0] = {
  612. .type_name = "q8_0",
  613. .blck_size = QK8_0,
  614. .type_size = sizeof(block_q8_0),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  617. .from_float = quantize_row_q8_0,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  619. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  620. .vec_dot_type = GGML_TYPE_Q8_0,
  621. #if defined (__ARM_FEATURE_MATMUL_INT8)
  622. .nrows = 2,
  623. #else
  624. .nrows = 1,
  625. #endif
  626. },
  627. [GGML_TYPE_Q8_1] = {
  628. .type_name = "q8_1",
  629. .blck_size = QK8_1,
  630. .type_size = sizeof(block_q8_1),
  631. .is_quantized = true,
  632. .from_float = quantize_row_q8_1,
  633. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  634. .vec_dot_type = GGML_TYPE_Q8_1,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q2_K] = {
  638. .type_name = "q2_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q2_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  643. .from_float = quantize_row_q2_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  645. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q3_K] = {
  650. .type_name = "q3_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q3_K),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  655. .from_float = quantize_row_q3_K,
  656. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  657. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q4_K] = {
  662. .type_name = "q4_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q4_K),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  667. .from_float = quantize_row_q4_K,
  668. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  669. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q5_K] = {
  674. .type_name = "q5_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q5_K),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  679. .from_float = quantize_row_q5_K,
  680. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  681. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_Q6_K] = {
  686. .type_name = "q6_K",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_q6_K),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  691. .from_float = quantize_row_q6_K,
  692. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  693. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_XXS] = {
  698. .type_name = "iq2_xxs",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_xxs),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  703. .from_float = NULL,
  704. .from_float_reference = NULL,
  705. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ2_XS] = {
  710. .type_name = "iq2_xs",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq2_xs),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ3_XXS] = {
  722. .type_name = "iq3_xxs",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq3_xxs),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  727. .from_float = quantize_row_iq3_xxs,
  728. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  729. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ3_S] = {
  734. .type_name = "iq3_s",
  735. .blck_size = QK_K,
  736. .type_size = sizeof(block_iq3_s),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  739. .from_float = quantize_row_iq3_s,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  741. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  742. .vec_dot_type = GGML_TYPE_Q8_K,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ2_S] = {
  746. .type_name = "iq2_s",
  747. .blck_size = QK_K,
  748. .type_size = sizeof(block_iq2_s),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  751. .from_float = quantize_row_iq2_s,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  753. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  754. .vec_dot_type = GGML_TYPE_Q8_K,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_IQ1_S] = {
  758. .type_name = "iq1_s",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_iq1_s),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  763. .from_float = NULL,
  764. .from_float_reference = NULL,
  765. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  766. .vec_dot_type = GGML_TYPE_Q8_K,
  767. .nrows = 1,
  768. },
  769. [GGML_TYPE_IQ1_M] = {
  770. .type_name = "iq1_m",
  771. .blck_size = QK_K,
  772. .type_size = sizeof(block_iq1_m),
  773. .is_quantized = true,
  774. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  775. .from_float = NULL,
  776. .from_float_reference = NULL,
  777. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  778. .vec_dot_type = GGML_TYPE_Q8_K,
  779. .nrows = 1,
  780. },
  781. [GGML_TYPE_IQ4_NL] = {
  782. .type_name = "iq4_nl",
  783. .blck_size = QK4_NL,
  784. .type_size = sizeof(block_iq4_nl),
  785. .is_quantized = true,
  786. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  787. .from_float = quantize_row_iq4_nl,
  788. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  789. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  790. .vec_dot_type = GGML_TYPE_Q8_0,
  791. .nrows = 1,
  792. },
  793. [GGML_TYPE_IQ4_XS] = {
  794. .type_name = "iq4_xs",
  795. .blck_size = QK_K,
  796. .type_size = sizeof(block_iq4_xs),
  797. .is_quantized = true,
  798. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  799. .from_float = quantize_row_iq4_xs,
  800. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  801. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  802. .vec_dot_type = GGML_TYPE_Q8_K,
  803. .nrows = 1,
  804. },
  805. [GGML_TYPE_Q8_K] = {
  806. .type_name = "q8_K",
  807. .blck_size = QK_K,
  808. .type_size = sizeof(block_q8_K),
  809. .is_quantized = true,
  810. .from_float = quantize_row_q8_K,
  811. },
  812. [GGML_TYPE_BF16] = {
  813. .type_name = "bf16",
  814. .blck_size = 1,
  815. .type_size = sizeof(ggml_bf16_t),
  816. .is_quantized = false,
  817. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  818. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  819. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  820. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  821. .vec_dot_type = GGML_TYPE_BF16,
  822. .nrows = 1,
  823. }
  824. };
  825. // For internal test use
  826. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  827. GGML_ASSERT(type < GGML_TYPE_COUNT);
  828. return type_traits[type];
  829. }
  830. //
  831. // simd mappings
  832. //
  833. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  834. // we then implement the fundamental computation operations below using only these macros
  835. // adding support for new architectures requires to define the corresponding SIMD macros
  836. //
  837. // GGML_F32_STEP / GGML_F16_STEP
  838. // number of elements to process in a single step
  839. //
  840. // GGML_F32_EPR / GGML_F16_EPR
  841. // number of elements to fit in a single register
  842. //
  843. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  844. #define GGML_SIMD
  845. // F32 NEON
  846. #define GGML_F32_STEP 16
  847. #define GGML_F32_EPR 4
  848. #define GGML_F32x4 float32x4_t
  849. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  850. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  851. #define GGML_F32x4_LOAD vld1q_f32
  852. #define GGML_F32x4_STORE vst1q_f32
  853. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  854. #define GGML_F32x4_ADD vaddq_f32
  855. #define GGML_F32x4_MUL vmulq_f32
  856. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  857. #define GGML_F32x4_REDUCE(res, x) \
  858. { \
  859. int offset = GGML_F32_ARR >> 1; \
  860. for (int i = 0; i < offset; ++i) { \
  861. x[i] = vaddq_f32(x[i], x[offset+i]); \
  862. } \
  863. offset >>= 1; \
  864. for (int i = 0; i < offset; ++i) { \
  865. x[i] = vaddq_f32(x[i], x[offset+i]); \
  866. } \
  867. offset >>= 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vaddq_f32(x[i], x[offset+i]); \
  870. } \
  871. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  872. }
  873. #define GGML_F32_VEC GGML_F32x4
  874. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  875. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  876. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  877. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  878. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  880. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  881. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  882. // F16 NEON
  883. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  884. #define GGML_F16_STEP 32
  885. #define GGML_F16_EPR 8
  886. #define GGML_F16x8 float16x8_t
  887. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  888. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  889. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  890. #define GGML_F16x8_STORE vst1q_f16
  891. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  892. #define GGML_F16x8_ADD vaddq_f16
  893. #define GGML_F16x8_MUL vmulq_f16
  894. #define GGML_F16x8_REDUCE(res, x) \
  895. do { \
  896. int offset = GGML_F16_ARR >> 1; \
  897. for (int i = 0; i < offset; ++i) { \
  898. x[i] = vaddq_f16(x[i], x[offset+i]); \
  899. } \
  900. offset >>= 1; \
  901. for (int i = 0; i < offset; ++i) { \
  902. x[i] = vaddq_f16(x[i], x[offset+i]); \
  903. } \
  904. offset >>= 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = vaddq_f16(x[i], x[offset+i]); \
  907. } \
  908. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  909. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  910. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  911. } while (0)
  912. #define GGML_F16_VEC GGML_F16x8
  913. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  914. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  915. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  916. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  917. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  918. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  919. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  920. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  921. #else
  922. // if FP16 vector arithmetic is not supported, we use FP32 instead
  923. // and take advantage of the vcvt_ functions to convert to/from FP16
  924. #define GGML_F16_STEP 16
  925. #define GGML_F16_EPR 4
  926. #define GGML_F32Cx4 float32x4_t
  927. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  928. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  929. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  930. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  931. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  932. #define GGML_F32Cx4_ADD vaddq_f32
  933. #define GGML_F32Cx4_MUL vmulq_f32
  934. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  935. #define GGML_F16_VEC GGML_F32Cx4
  936. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  937. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  938. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  939. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  940. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  941. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  942. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  943. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  944. #endif
  945. #elif defined(__AVX512F__)
  946. #define GGML_SIMD
  947. // F32 AVX512
  948. #define GGML_F32_STEP 64
  949. #define GGML_F32_EPR 16
  950. #define GGML_F32x16 __m512
  951. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  952. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  953. #define GGML_F32x16_LOAD _mm512_loadu_ps
  954. #define GGML_F32x16_STORE _mm512_storeu_ps
  955. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  956. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  957. #define GGML_F32x16_ADD _mm512_add_ps
  958. #define GGML_F32x16_MUL _mm512_mul_ps
  959. #define GGML_F32x16_REDUCE(res, x) \
  960. do { \
  961. int offset = GGML_F32_ARR >> 1; \
  962. for (int i = 0; i < offset; ++i) { \
  963. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  964. } \
  965. offset >>= 1; \
  966. for (int i = 0; i < offset; ++i) { \
  967. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  968. } \
  969. offset >>= 1; \
  970. for (int i = 0; i < offset; ++i) { \
  971. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  972. } \
  973. res = _mm512_reduce_add_ps(x[0]); \
  974. } while (0)
  975. // TODO: is this optimal ?
  976. #define GGML_F32_VEC GGML_F32x16
  977. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  978. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  979. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  980. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  981. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  982. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  983. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  984. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  985. // F16 AVX512
  986. // F16 AVX
  987. #define GGML_F16_STEP 64
  988. #define GGML_F16_EPR 16
  989. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  990. #define GGML_F32Cx16 __m512
  991. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  992. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  993. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  994. // so F16C guard isn't required
  995. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  996. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  997. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  998. #define GGML_F32Cx16_ADD _mm512_add_ps
  999. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1000. #define GGML_F32Cx16_REDUCE(res, x) \
  1001. do { \
  1002. int offset = GGML_F32_ARR >> 1; \
  1003. for (int i = 0; i < offset; ++i) { \
  1004. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1005. } \
  1006. offset >>= 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. res = _mm512_reduce_add_ps(x[0]); \
  1015. } while (0)
  1016. #define GGML_F16_VEC GGML_F32Cx16
  1017. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1018. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1019. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1020. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1021. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1022. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1023. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1024. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1025. #elif defined(__AVX__)
  1026. #define GGML_SIMD
  1027. // F32 AVX
  1028. #define GGML_F32_STEP 32
  1029. #define GGML_F32_EPR 8
  1030. #define GGML_F32x8 __m256
  1031. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1032. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1033. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1034. #define GGML_F32x8_STORE _mm256_storeu_ps
  1035. #if defined(__FMA__)
  1036. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1037. #else
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1039. #endif
  1040. #define GGML_F32x8_ADD _mm256_add_ps
  1041. #define GGML_F32x8_MUL _mm256_mul_ps
  1042. #define GGML_F32x8_REDUCE(res, x) \
  1043. do { \
  1044. int offset = GGML_F32_ARR >> 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1047. } \
  1048. offset >>= 1; \
  1049. for (int i = 0; i < offset; ++i) { \
  1050. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1051. } \
  1052. offset >>= 1; \
  1053. for (int i = 0; i < offset; ++i) { \
  1054. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1055. } \
  1056. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1057. _mm256_extractf128_ps(x[0], 1)); \
  1058. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1059. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1060. } while (0)
  1061. // TODO: is this optimal ?
  1062. #define GGML_F32_VEC GGML_F32x8
  1063. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1064. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1065. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1066. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1067. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1068. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1069. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1070. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1071. // F16 AVX
  1072. #define GGML_F16_STEP 32
  1073. #define GGML_F16_EPR 8
  1074. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1075. #define GGML_F32Cx8 __m256
  1076. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1077. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1078. #if defined(__F16C__)
  1079. // the _mm256_cvt intrinsics require F16C
  1080. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1081. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1082. #else
  1083. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1084. float tmp[8];
  1085. for (int i = 0; i < 8; i++) {
  1086. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1087. }
  1088. return _mm256_loadu_ps(tmp);
  1089. }
  1090. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1091. float arr[8];
  1092. _mm256_storeu_ps(arr, y);
  1093. for (int i = 0; i < 8; i++)
  1094. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1095. }
  1096. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1097. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1098. #endif
  1099. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1100. #define GGML_F32Cx8_ADD _mm256_add_ps
  1101. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1102. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1103. #define GGML_F16_VEC GGML_F32Cx8
  1104. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1105. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1106. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1107. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1108. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1109. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1110. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1111. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1112. #elif defined(__POWER9_VECTOR__)
  1113. #define GGML_SIMD
  1114. // F32 POWER9
  1115. #define GGML_F32_STEP 32
  1116. #define GGML_F32_EPR 4
  1117. #define GGML_F32x4 vector float
  1118. #define GGML_F32x4_ZERO 0.0f
  1119. #define GGML_F32x4_SET1 vec_splats
  1120. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1121. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1122. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1123. #define GGML_F32x4_ADD vec_add
  1124. #define GGML_F32x4_MUL vec_mul
  1125. #define GGML_F32x4_REDUCE(res, x) \
  1126. { \
  1127. int offset = GGML_F32_ARR >> 1; \
  1128. for (int i = 0; i < offset; ++i) { \
  1129. x[i] = vec_add(x[i], x[offset+i]); \
  1130. } \
  1131. offset >>= 1; \
  1132. for (int i = 0; i < offset; ++i) { \
  1133. x[i] = vec_add(x[i], x[offset+i]); \
  1134. } \
  1135. offset >>= 1; \
  1136. for (int i = 0; i < offset; ++i) { \
  1137. x[i] = vec_add(x[i], x[offset+i]); \
  1138. } \
  1139. res = vec_extract(x[0], 0) + \
  1140. vec_extract(x[0], 1) + \
  1141. vec_extract(x[0], 2) + \
  1142. vec_extract(x[0], 3); \
  1143. }
  1144. #define GGML_F32_VEC GGML_F32x4
  1145. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1146. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1147. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1148. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1149. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1150. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1151. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1152. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1153. // F16 POWER9
  1154. #define GGML_F16_STEP GGML_F32_STEP
  1155. #define GGML_F16_EPR GGML_F32_EPR
  1156. #define GGML_F16_VEC GGML_F32x4
  1157. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1159. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1160. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1161. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1162. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1163. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1164. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1165. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1166. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1167. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1168. #define GGML_F16_VEC_STORE(p, r, i) \
  1169. if (i & 0x1) \
  1170. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1171. r[i - GGML_ENDIAN_BYTE(0)]), \
  1172. 0, p - GGML_F16_EPR)
  1173. #elif defined(__wasm_simd128__)
  1174. #define GGML_SIMD
  1175. // F32 WASM
  1176. #define GGML_F32_STEP 16
  1177. #define GGML_F32_EPR 4
  1178. #define GGML_F32x4 v128_t
  1179. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1180. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1181. #define GGML_F32x4_LOAD wasm_v128_load
  1182. #define GGML_F32x4_STORE wasm_v128_store
  1183. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1184. #define GGML_F32x4_ADD wasm_f32x4_add
  1185. #define GGML_F32x4_MUL wasm_f32x4_mul
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. int offset = GGML_F32_ARR >> 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1191. } \
  1192. offset >>= 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1201. wasm_f32x4_extract_lane(x[0], 1) + \
  1202. wasm_f32x4_extract_lane(x[0], 2) + \
  1203. wasm_f32x4_extract_lane(x[0], 3); \
  1204. }
  1205. #define GGML_F32_VEC GGML_F32x4
  1206. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1207. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1208. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1209. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1210. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1211. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1212. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1213. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1214. // F16 WASM
  1215. #define GGML_F16_STEP 16
  1216. #define GGML_F16_EPR 4
  1217. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1218. float tmp[4];
  1219. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1220. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1221. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1222. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1223. return wasm_v128_load(tmp);
  1224. }
  1225. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1226. float tmp[4];
  1227. wasm_v128_store(tmp, x);
  1228. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1229. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1230. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1231. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1232. }
  1233. #define GGML_F16x4 v128_t
  1234. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1235. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1236. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1237. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1238. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1239. #define GGML_F16x4_ADD wasm_f32x4_add
  1240. #define GGML_F16x4_MUL wasm_f32x4_mul
  1241. #define GGML_F16x4_REDUCE(res, x) \
  1242. { \
  1243. int offset = GGML_F16_ARR >> 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1256. wasm_f32x4_extract_lane(x[0], 1) + \
  1257. wasm_f32x4_extract_lane(x[0], 2) + \
  1258. wasm_f32x4_extract_lane(x[0], 3); \
  1259. }
  1260. #define GGML_F16_VEC GGML_F16x4
  1261. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1262. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1263. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1264. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1265. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1266. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1267. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1268. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1269. #elif defined(__SSE3__)
  1270. #define GGML_SIMD
  1271. // F32 SSE
  1272. #define GGML_F32_STEP 32
  1273. #define GGML_F32_EPR 4
  1274. #define GGML_F32x4 __m128
  1275. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1276. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1277. #define GGML_F32x4_LOAD _mm_loadu_ps
  1278. #define GGML_F32x4_STORE _mm_storeu_ps
  1279. #if defined(__FMA__)
  1280. // TODO: Does this work?
  1281. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1282. #else
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1284. #endif
  1285. #define GGML_F32x4_ADD _mm_add_ps
  1286. #define GGML_F32x4_MUL _mm_mul_ps
  1287. #define GGML_F32x4_REDUCE(res, x) \
  1288. { \
  1289. int offset = GGML_F32_ARR >> 1; \
  1290. for (int i = 0; i < offset; ++i) { \
  1291. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1292. } \
  1293. offset >>= 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1302. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1303. }
  1304. // TODO: is this optimal ?
  1305. #define GGML_F32_VEC GGML_F32x4
  1306. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1307. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1308. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1309. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1310. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1311. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1312. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1313. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1314. // F16 SSE
  1315. #define GGML_F16_STEP 32
  1316. #define GGML_F16_EPR 4
  1317. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1318. float tmp[4];
  1319. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1320. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1321. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1322. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1323. return _mm_loadu_ps(tmp);
  1324. }
  1325. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1326. float arr[4];
  1327. _mm_storeu_ps(arr, y);
  1328. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1329. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1330. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1331. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1332. }
  1333. #define GGML_F32Cx4 __m128
  1334. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1335. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1336. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1337. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1338. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1339. #define GGML_F32Cx4_ADD _mm_add_ps
  1340. #define GGML_F32Cx4_MUL _mm_mul_ps
  1341. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx4
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1351. #elif defined(__loongarch_asx)
  1352. #define GGML_SIMD
  1353. // F32 LASX
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 8
  1356. #define GGML_F32x8 __m256
  1357. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1358. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1359. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1360. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1361. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1362. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1363. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1364. #define GGML_F32x8_REDUCE(res, x) \
  1365. do { \
  1366. int offset = GGML_F32_ARR >> 1; \
  1367. for (int i = 0; i < offset; ++i) { \
  1368. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1369. } \
  1370. offset >>= 1; \
  1371. for (int i = 0; i < offset; ++i) { \
  1372. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1373. } \
  1374. offset >>= 1; \
  1375. for (int i = 0; i < offset; ++i) { \
  1376. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1377. } \
  1378. float *tmp_p = (float *)&x[0]; \
  1379. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1380. } while (0)
  1381. // TODO: is this optimal ?
  1382. #define GGML_F32_VEC GGML_F32x8
  1383. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1384. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1385. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1386. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1387. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1388. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1389. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1390. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1391. // F16 LASX
  1392. #define GGML_F16_STEP 32
  1393. #define GGML_F16_EPR 8
  1394. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1395. #define GGML_F32Cx8 __m256
  1396. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1397. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1398. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1399. float tmp[8];
  1400. for (int i = 0; i < 8; i++) {
  1401. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1402. }
  1403. return (__m256)__lasx_xvld(tmp, 0);
  1404. }
  1405. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1406. float arr[8];
  1407. __lasx_xvst(y, arr, 0);
  1408. for (int i = 0; i < 8; i++) {
  1409. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1410. }
  1411. }
  1412. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1413. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1414. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1415. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1416. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1417. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1418. #define GGML_F16_VEC GGML_F32Cx8
  1419. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1420. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1421. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1422. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1423. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1424. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1425. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1426. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1427. #elif defined(__loongarch_sx)
  1428. #define GGML_SIMD
  1429. // F32 LSX
  1430. #define GGML_F32_STEP 32
  1431. #define GGML_F32_EPR 4
  1432. #define GGML_F32x4 __m128
  1433. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1434. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1435. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1436. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1437. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1438. #define GGML_F32x4_ADD __lsx_vfadd_s
  1439. #define GGML_F32x4_MUL __lsx_vfmul_s
  1440. #define GGML_F32x4_REDUCE(res, x) \
  1441. { \
  1442. int offset = GGML_F32_ARR >> 1; \
  1443. for (int i = 0; i < offset; ++i) { \
  1444. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1445. } \
  1446. offset >>= 1; \
  1447. for (int i = 0; i < offset; ++i) { \
  1448. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1449. } \
  1450. offset >>= 1; \
  1451. for (int i = 0; i < offset; ++i) { \
  1452. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1453. } \
  1454. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1455. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1456. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1457. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1458. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1459. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1460. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1461. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1462. }
  1463. #define GGML_F32_VEC GGML_F32x4
  1464. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1465. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1466. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1467. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1468. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1469. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1470. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1471. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1472. // F16 LSX
  1473. #define GGML_F16_STEP 32
  1474. #define GGML_F16_EPR 4
  1475. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1476. float tmp[4];
  1477. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1478. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1479. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1480. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1481. return __lsx_vld(tmp, 0);
  1482. }
  1483. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1484. float arr[4];
  1485. __lsx_vst(y, arr, 0);
  1486. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1487. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1488. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1489. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1490. }
  1491. #define GGML_F32Cx4 __m128
  1492. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1493. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1494. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1495. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1496. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1497. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1498. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1499. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1500. #define GGML_F16_VEC GGML_F32Cx4
  1501. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1502. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1503. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1504. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1505. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1506. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1507. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1508. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1509. #endif
  1510. // GGML_F32_ARR / GGML_F16_ARR
  1511. // number of registers to use per step
  1512. #ifdef GGML_SIMD
  1513. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1514. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1515. #endif
  1516. //
  1517. // ggml context
  1518. //
  1519. struct ggml_context {
  1520. size_t mem_size;
  1521. void* mem_buffer;
  1522. bool mem_buffer_owned;
  1523. bool no_alloc;
  1524. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1525. int n_objects;
  1526. struct ggml_object* objects_begin;
  1527. struct ggml_object* objects_end;
  1528. struct ggml_scratch scratch;
  1529. struct ggml_scratch scratch_save;
  1530. };
  1531. struct ggml_context_container {
  1532. bool used;
  1533. struct ggml_context context;
  1534. };
  1535. struct ggml_compute_state_shared {
  1536. const struct ggml_cgraph* cgraph;
  1537. const struct ggml_cplan* cplan;
  1538. int64_t perf_node_start_cycles;
  1539. int64_t perf_node_start_time_us;
  1540. int n_threads;
  1541. // synchronization primitives
  1542. atomic_int n_active; // num active threads
  1543. atomic_int node_n; // active graph node
  1544. atomic_int node_task; // active graph node task phase
  1545. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1546. void* abort_callback_data;
  1547. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1548. };
  1549. struct ggml_compute_state {
  1550. ggml_thread_t thrd;
  1551. int ith;
  1552. struct ggml_compute_state_shared* shared;
  1553. enum ggml_status ec;
  1554. };
  1555. //
  1556. // fundamental operations
  1557. //
  1558. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1559. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1564. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1565. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1566. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1567. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1568. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1569. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1570. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1571. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1572. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1573. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1574. assert(nrc == 1);
  1575. UNUSED(nrc);
  1576. UNUSED(bx);
  1577. UNUSED(by);
  1578. UNUSED(bs);
  1579. #if defined(GGML_SIMD)
  1580. float sumf = 0.0f;
  1581. const int np = (n & ~(GGML_F32_STEP - 1));
  1582. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1583. GGML_F32_VEC ax[GGML_F32_ARR];
  1584. GGML_F32_VEC ay[GGML_F32_ARR];
  1585. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1586. for (int j = 0; j < GGML_F32_ARR; j++) {
  1587. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1588. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1589. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1590. }
  1591. }
  1592. // reduce sum0..sum3 to sum0
  1593. GGML_F32_VEC_REDUCE(sumf, sum);
  1594. // leftovers
  1595. for (int i = np; i < n; ++i) {
  1596. sumf += x[i]*y[i];
  1597. }
  1598. #else
  1599. // scalar
  1600. ggml_float sumf = 0.0;
  1601. for (int i = 0; i < n; ++i) {
  1602. sumf += (ggml_float)(x[i]*y[i]);
  1603. }
  1604. #endif
  1605. *s = sumf;
  1606. }
  1607. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1608. assert(nrc == 1);
  1609. UNUSED(nrc);
  1610. UNUSED(bx);
  1611. UNUSED(by);
  1612. UNUSED(bs);
  1613. int i = 0;
  1614. ggml_float sumf = 0;
  1615. #if defined(__AVX512BF16__)
  1616. __m512 c1 = _mm512_setzero_ps();
  1617. __m512 c2 = _mm512_setzero_ps();
  1618. for (; i + 64 <= n; i += 64) {
  1619. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1620. m512bh(_mm512_loadu_si512((y + i))));
  1621. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1622. m512bh(_mm512_loadu_si512((y + i + 32))));
  1623. }
  1624. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1626. #elif defined(__AVX512F__)
  1627. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1628. __m512 c1 = _mm512_setzero_ps();
  1629. __m512 c2 = _mm512_setzero_ps();
  1630. for (; i + 32 <= n; i += 32) {
  1631. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1632. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1633. }
  1634. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1636. #undef LOAD
  1637. #elif defined(__AVX2__)
  1638. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1639. __m256 c1 = _mm256_setzero_ps();
  1640. __m256 c2 = _mm256_setzero_ps();
  1641. __m256 c3 = _mm256_setzero_ps();
  1642. __m256 c4 = _mm256_setzero_ps();
  1643. for (; i + 32 <= n; i += 32) {
  1644. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1645. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1646. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1647. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1648. }
  1649. __m128 g;
  1650. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1651. _mm256_add_ps(c2, c4));
  1652. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1653. _mm256_castps256_ps128(c1));
  1654. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1655. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1656. sumf += (ggml_float)_mm_cvtss_f32(g);
  1657. #undef LOAD
  1658. #endif
  1659. for (; i < n; ++i) {
  1660. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1661. GGML_BF16_TO_FP32(y[i]));
  1662. }
  1663. *s = sumf;
  1664. }
  1665. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1666. assert(nrc == 1);
  1667. UNUSED(nrc);
  1668. UNUSED(bx);
  1669. UNUSED(by);
  1670. UNUSED(bs);
  1671. ggml_float sumf = 0.0;
  1672. #if defined(GGML_SIMD)
  1673. const int np = (n & ~(GGML_F16_STEP - 1));
  1674. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1675. GGML_F16_VEC ax[GGML_F16_ARR];
  1676. GGML_F16_VEC ay[GGML_F16_ARR];
  1677. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1678. for (int j = 0; j < GGML_F16_ARR; j++) {
  1679. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1680. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1681. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1682. }
  1683. }
  1684. // reduce sum0..sum3 to sum0
  1685. GGML_F16_VEC_REDUCE(sumf, sum);
  1686. // leftovers
  1687. for (int i = np; i < n; ++i) {
  1688. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1689. }
  1690. #else
  1691. for (int i = 0; i < n; ++i) {
  1692. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1693. }
  1694. #endif
  1695. *s = sumf;
  1696. }
  1697. // compute GGML_VEC_DOT_UNROLL dot products at once
  1698. // xs - x row stride in bytes
  1699. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1700. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1701. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1702. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1703. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1704. }
  1705. #if defined(GGML_SIMD)
  1706. const int np = (n & ~(GGML_F16_STEP - 1));
  1707. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1708. GGML_F16_VEC ax[GGML_F16_ARR];
  1709. GGML_F16_VEC ay[GGML_F16_ARR];
  1710. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1711. for (int j = 0; j < GGML_F16_ARR; j++) {
  1712. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1715. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1716. }
  1717. }
  1718. }
  1719. // reduce sum0..sum3 to sum0
  1720. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1721. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1722. }
  1723. // leftovers
  1724. for (int i = np; i < n; ++i) {
  1725. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1726. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1727. }
  1728. }
  1729. #else
  1730. for (int i = 0; i < n; ++i) {
  1731. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1732. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1733. }
  1734. }
  1735. #endif
  1736. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1737. s[i] = sumf[i];
  1738. }
  1739. }
  1740. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1741. #if defined(GGML_SIMD)
  1742. const int np = (n & ~(GGML_F32_STEP - 1));
  1743. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1744. GGML_F32_VEC ax[GGML_F32_ARR];
  1745. GGML_F32_VEC ay[GGML_F32_ARR];
  1746. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1747. for (int j = 0; j < GGML_F32_ARR; j++) {
  1748. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1749. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1751. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1752. }
  1753. }
  1754. // leftovers
  1755. for (int i = np; i < n; ++i) {
  1756. y[i] += x[i]*v;
  1757. }
  1758. #else
  1759. // scalar
  1760. for (int i = 0; i < n; ++i) {
  1761. y[i] += x[i]*v;
  1762. }
  1763. #endif
  1764. }
  1765. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1766. #if defined(GGML_SIMD)
  1767. const int np = (n & ~(GGML_F16_STEP - 1));
  1768. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1769. GGML_F16_VEC ax[GGML_F16_ARR];
  1770. GGML_F16_VEC ay[GGML_F16_ARR];
  1771. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1772. for (int j = 0; j < GGML_F16_ARR; j++) {
  1773. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1774. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1776. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1777. }
  1778. }
  1779. // leftovers
  1780. for (int i = np; i < n; ++i) {
  1781. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1782. }
  1783. #else
  1784. // scalar
  1785. for (int i = 0; i < n; ++i) {
  1786. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1787. }
  1788. #endif
  1789. }
  1790. // xs and vs are byte strides of x and v
  1791. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1792. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1793. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1794. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1795. x[i] = (const float *) ((const char *) xv + i*xs);
  1796. v[i] = (const float *) ((const char *) vv + i*vs);
  1797. }
  1798. #if defined(GGML_SIMD)
  1799. const int np = (n & ~(GGML_F32_STEP - 1));
  1800. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1801. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1802. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1803. }
  1804. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1805. GGML_F32_VEC ay[GGML_F32_ARR];
  1806. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1807. for (int j = 0; j < GGML_F32_ARR; j++) {
  1808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1809. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1810. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1811. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1812. }
  1813. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1814. }
  1815. }
  1816. // leftovers
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = np; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #else
  1823. // scalar
  1824. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1825. for (int i = 0; i < n; ++i) {
  1826. y[i] += x[k][i]*v[k][0];
  1827. }
  1828. }
  1829. #endif
  1830. }
  1831. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1832. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1833. #if defined(GGML_USE_ACCELERATE)
  1834. vDSP_vsmul(y, 1, &v, y, 1, n);
  1835. #elif defined(GGML_SIMD)
  1836. const int np = (n & ~(GGML_F32_STEP - 1));
  1837. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1838. GGML_F32_VEC ay[GGML_F32_ARR];
  1839. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1840. for (int j = 0; j < GGML_F32_ARR; j++) {
  1841. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1842. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1843. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1844. }
  1845. }
  1846. // leftovers
  1847. for (int i = np; i < n; ++i) {
  1848. y[i] *= v;
  1849. }
  1850. #else
  1851. // scalar
  1852. for (int i = 0; i < n; ++i) {
  1853. y[i] *= v;
  1854. }
  1855. #endif
  1856. }
  1857. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1858. #if defined(GGML_SIMD)
  1859. const int np = (n & ~(GGML_F16_STEP - 1));
  1860. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1861. GGML_F16_VEC ay[GGML_F16_ARR];
  1862. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1863. for (int j = 0; j < GGML_F16_ARR; j++) {
  1864. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1865. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1866. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1867. }
  1868. }
  1869. // leftovers
  1870. for (int i = np; i < n; ++i) {
  1871. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1872. }
  1873. #else
  1874. // scalar
  1875. for (int i = 0; i < n; ++i) {
  1876. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1877. }
  1878. #endif
  1879. }
  1880. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1881. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1882. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1883. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1884. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1885. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1886. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1887. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1888. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1889. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1890. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1891. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1892. // TODO: optimize performance
  1893. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1894. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. static const float GELU_COEF_A = 0.044715f;
  1896. static const float GELU_QUICK_COEF = -1.702f;
  1897. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1898. inline static float ggml_gelu_f32(float x) {
  1899. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1900. }
  1901. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1902. const uint16_t * i16 = (const uint16_t *) x;
  1903. for (int i = 0; i < n; ++i) {
  1904. y[i] = ggml_table_gelu_f16[i16[i]];
  1905. }
  1906. }
  1907. #ifdef GGML_GELU_FP16
  1908. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1909. uint16_t t;
  1910. for (int i = 0; i < n; ++i) {
  1911. if (x[i] <= -10.0f) {
  1912. y[i] = 0.0f;
  1913. } else if (x[i] >= 10.0f) {
  1914. y[i] = x[i];
  1915. } else {
  1916. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1917. memcpy(&t, &fp16, sizeof(uint16_t));
  1918. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1919. }
  1920. }
  1921. }
  1922. #else
  1923. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1924. for (int i = 0; i < n; ++i) {
  1925. y[i] = ggml_gelu_f32(x[i]);
  1926. }
  1927. }
  1928. #endif
  1929. inline static float ggml_gelu_quick_f32(float x) {
  1930. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1931. }
  1932. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1933. // const uint16_t * i16 = (const uint16_t *) x;
  1934. // for (int i = 0; i < n; ++i) {
  1935. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1936. // }
  1937. //}
  1938. #ifdef GGML_GELU_QUICK_FP16
  1939. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1940. uint16_t t;
  1941. for (int i = 0; i < n; ++i) {
  1942. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1943. memcpy(&t, &fp16, sizeof(uint16_t));
  1944. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1945. }
  1946. }
  1947. #else
  1948. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1949. for (int i = 0; i < n; ++i) {
  1950. y[i] = ggml_gelu_quick_f32(x[i]);
  1951. }
  1952. }
  1953. #endif
  1954. // Sigmoid Linear Unit (SiLU) function
  1955. inline static float ggml_silu_f32(float x) {
  1956. return x/(1.0f + expf(-x));
  1957. }
  1958. #if __FINITE_MATH_ONLY__
  1959. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1960. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1961. #endif
  1962. #if defined(__ARM_NEON) && defined(__aarch64__)
  1963. // adapted from arm limited optimized routine
  1964. // the maximum error is 1.45358 plus 0.5 ulps
  1965. // numbers above 88.38 will flush to infinity
  1966. // numbers beneath -103.97 will flush to zero
  1967. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1968. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1969. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1970. const float32x4_t n = vsubq_f32(z, r);
  1971. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1972. vdupq_n_f32(0x1.7f7d1cp-20f));
  1973. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1974. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1975. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1976. const float32x4_t u = vmulq_f32(b, b);
  1977. const float32x4_t j = vfmaq_f32(
  1978. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1979. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1980. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1981. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1982. return vfmaq_f32(k, j, k);
  1983. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1984. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1985. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1986. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1987. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1988. }
  1989. // computes silu x/(1+exp(-x)) in single precision vector
  1990. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1991. const float32x4_t one = vdupq_n_f32(1.0f);
  1992. const float32x4_t zero = vdupq_n_f32(0.0f);
  1993. const float32x4_t neg_x = vsubq_f32(zero, x);
  1994. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1995. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1996. return vdivq_f32(x, one_plus_exp_neg_x);
  1997. }
  1998. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1999. // adapted from arm limited optimized routine
  2000. // the maximum error is 1.45358 plus 0.5 ulps
  2001. // numbers above 88.38 will flush to infinity
  2002. // numbers beneath -103.97 will flush to zero
  2003. inline static __m512 ggml_v_expf(__m512 x) {
  2004. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2005. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2006. const __m512 n = _mm512_sub_ps(z, r);
  2007. const __m512 b =
  2008. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2009. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2010. const __mmask16 d =
  2011. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2012. const __m512 u = _mm512_mul_ps(b, b);
  2013. const __m512 j = _mm512_fmadd_ps(
  2014. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2015. _mm512_set1_ps(0x1.573e2ep-5f)),
  2016. u,
  2017. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2018. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2019. u,
  2020. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2021. const __m512 res = _mm512_scalef_ps(j, n);
  2022. if (_mm512_kortestz(d, d))
  2023. return res;
  2024. const __m512 zero = _mm512_setzero_ps();
  2025. const __m512 alt = _mm512_mask_blend_ps(
  2026. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2027. return _mm512_mask_blend_ps(d, res, alt);
  2028. }
  2029. // computes silu x/(1+exp(-x)) in single precision vector
  2030. inline static __m512 ggml_v_silu(__m512 x) {
  2031. const __m512 one = _mm512_set1_ps(1);
  2032. const __m512 zero = _mm512_setzero_ps();
  2033. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2034. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2035. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2036. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2037. }
  2038. #elif defined(__AVX2__) && defined(__FMA__)
  2039. // adapted from arm limited optimized routine
  2040. // the maximum error is 1.45358 plus 0.5 ulps
  2041. // numbers above 88.38 will flush to infinity
  2042. // numbers beneath -103.97 will flush to zero
  2043. inline static __m256 ggml_v_expf(__m256 x) {
  2044. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2045. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2046. const __m256 n = _mm256_sub_ps(z, r);
  2047. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2048. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2049. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2050. const __m256 k = _mm256_castsi256_ps(
  2051. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2052. const __m256i c = _mm256_castps_si256(
  2053. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2054. _mm256_set1_ps(126), _CMP_GT_OQ));
  2055. const __m256 u = _mm256_mul_ps(b, b);
  2056. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2057. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2058. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2059. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2060. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2061. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2062. return _mm256_fmadd_ps(j, k, k);
  2063. const __m256i g = _mm256_and_si256(
  2064. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2065. _mm256_set1_epi32(0x82000000u));
  2066. const __m256 s1 =
  2067. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2068. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2069. const __m256i d = _mm256_castps_si256(
  2070. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2071. _mm256_set1_ps(192), _CMP_GT_OQ));
  2072. return _mm256_or_ps(
  2073. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2074. _mm256_andnot_ps(
  2075. _mm256_castsi256_ps(d),
  2076. _mm256_or_ps(
  2077. _mm256_and_ps(_mm256_castsi256_ps(c),
  2078. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2079. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2080. }
  2081. // computes silu x/(1+exp(-x)) in single precision vector
  2082. inline static __m256 ggml_v_silu(__m256 x) {
  2083. const __m256 one = _mm256_set1_ps(1);
  2084. const __m256 zero = _mm256_setzero_ps();
  2085. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2086. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2087. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2088. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2089. }
  2090. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2091. #if defined(__FMA__)
  2092. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2093. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2094. #else
  2095. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2096. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2097. #endif
  2098. // adapted from arm limited optimized routine
  2099. // the maximum error is 1.45358 plus 0.5 ulps
  2100. // numbers above 88.38 will flush to infinity
  2101. // numbers beneath -103.97 will flush to zero
  2102. inline static __m128 ggml_v_expf(__m128 x) {
  2103. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2104. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2105. const __m128 n = _mm_sub_ps(z, r);
  2106. const __m128 b =
  2107. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2108. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2109. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2110. const __m128i c =
  2111. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2112. const __m128 u = _mm_mul_ps(b, b);
  2113. const __m128 j =
  2114. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2115. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2116. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2117. if (!_mm_movemask_epi8(c))
  2118. return MADD128(j, k, k);
  2119. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2120. _mm_set1_epi32(0x82000000u));
  2121. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2122. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2123. const __m128i d =
  2124. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2125. return _mm_or_ps(
  2126. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2127. _mm_andnot_ps(_mm_castsi128_ps(d),
  2128. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2130. }
  2131. // computes silu x/(1+exp(-x)) in single precision vector
  2132. inline static __m128 ggml_v_silu(__m128 x) {
  2133. const __m128 one = _mm_set1_ps(1);
  2134. const __m128 zero = _mm_setzero_ps();
  2135. const __m128 neg_x = _mm_sub_ps(zero, x);
  2136. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2137. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2138. return _mm_div_ps(x, one_plus_exp_neg_x);
  2139. }
  2140. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2141. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2142. int i = 0;
  2143. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2144. for (; i + 15 < n; i += 16) {
  2145. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2146. }
  2147. #elif defined(__AVX2__) && defined(__FMA__)
  2148. for (; i + 7 < n; i += 8) {
  2149. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2150. }
  2151. #elif defined(__SSE2__)
  2152. for (; i + 3 < n; i += 4) {
  2153. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2154. }
  2155. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2156. for (; i + 3 < n; i += 4) {
  2157. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2158. }
  2159. #endif
  2160. for (; i < n; ++i) {
  2161. y[i] = ggml_silu_f32(x[i]);
  2162. }
  2163. }
  2164. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2165. int i = 0;
  2166. ggml_float sum = 0;
  2167. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2168. for (; i + 15 < n; i += 16) {
  2169. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2170. _mm512_set1_ps(max)));
  2171. _mm512_storeu_ps(y + i, val);
  2172. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2173. }
  2174. #elif defined(__AVX2__) && defined(__FMA__)
  2175. for (; i + 7 < n; i += 8) {
  2176. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2177. _mm256_set1_ps(max)));
  2178. _mm256_storeu_ps(y + i, val);
  2179. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2180. _mm256_castps256_ps128(val));
  2181. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2182. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2183. sum += (ggml_float)_mm_cvtss_f32(val2);
  2184. }
  2185. #elif defined(__SSE2__)
  2186. for (; i + 3 < n; i += 4) {
  2187. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2188. _mm_set1_ps(max)));
  2189. _mm_storeu_ps(y + i, val);
  2190. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2191. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2192. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2193. #else
  2194. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2195. val = _mm_add_ps(val, tmp);
  2196. tmp = _mm_movehl_ps(tmp, val);
  2197. val = _mm_add_ss(val, tmp);
  2198. #endif
  2199. sum += (ggml_float)_mm_cvtss_f32(val);
  2200. }
  2201. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2202. for (; i + 3 < n; i += 4) {
  2203. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2204. vdupq_n_f32(max)));
  2205. vst1q_f32(y + i, val);
  2206. sum += (ggml_float)vaddvq_f32(val);
  2207. }
  2208. #endif
  2209. for (; i < n; ++i) {
  2210. float val = expf(x[i] - max);
  2211. sum += (ggml_float)val;
  2212. y[i] = val;
  2213. }
  2214. return sum;
  2215. }
  2216. inline static float ggml_silu_backward_f32(float x, float dy) {
  2217. const float s = 1.0f/(1.0f + expf(-x));
  2218. return dy*s*(1.0f + x*(1.0f - s));
  2219. }
  2220. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2221. for (int i = 0; i < n; ++i) {
  2222. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2223. }
  2224. }
  2225. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2226. #ifndef GGML_USE_ACCELERATE
  2227. ggml_float sum = 0.0;
  2228. for (int i = 0; i < n; ++i) {
  2229. sum += (ggml_float)x[i];
  2230. }
  2231. *s = sum;
  2232. #else
  2233. vDSP_sve(x, 1, s, n);
  2234. #endif
  2235. }
  2236. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2237. ggml_float sum = 0.0;
  2238. for (int i = 0; i < n; ++i) {
  2239. sum += (ggml_float)x[i];
  2240. }
  2241. *s = sum;
  2242. }
  2243. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2244. float sum = 0.0f;
  2245. for (int i = 0; i < n; ++i) {
  2246. sum += GGML_FP16_TO_FP32(x[i]);
  2247. }
  2248. *s = sum;
  2249. }
  2250. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2251. float sum = 0.0f;
  2252. for (int i = 0; i < n; ++i) {
  2253. sum += GGML_BF16_TO_FP32(x[i]);
  2254. }
  2255. *s = sum;
  2256. }
  2257. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2258. #ifndef GGML_USE_ACCELERATE
  2259. float max = -INFINITY;
  2260. for (int i = 0; i < n; ++i) {
  2261. max = MAX(max, x[i]);
  2262. }
  2263. *s = max;
  2264. #else
  2265. vDSP_maxv(x, 1, s, n);
  2266. #endif
  2267. }
  2268. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2269. ggml_vec_norm_f32(n, s, x);
  2270. *s = 1.f/(*s);
  2271. }
  2272. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2273. float max = -INFINITY;
  2274. int idx = 0;
  2275. for (int i = 0; i < n; ++i) {
  2276. max = MAX(max, x[i]);
  2277. if (max == x[i]) { idx = i; }
  2278. }
  2279. *s = idx;
  2280. }
  2281. //
  2282. // data types
  2283. //
  2284. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2285. "NONE",
  2286. "DUP",
  2287. "ADD",
  2288. "ADD1",
  2289. "ACC",
  2290. "SUB",
  2291. "MUL",
  2292. "DIV",
  2293. "SQR",
  2294. "SQRT",
  2295. "LOG",
  2296. "SUM",
  2297. "SUM_ROWS",
  2298. "MEAN",
  2299. "ARGMAX",
  2300. "REPEAT",
  2301. "REPEAT_BACK",
  2302. "CONCAT",
  2303. "SILU_BACK",
  2304. "NORM",
  2305. "RMS_NORM",
  2306. "RMS_NORM_BACK",
  2307. "GROUP_NORM",
  2308. "MUL_MAT",
  2309. "MUL_MAT_ID",
  2310. "OUT_PROD",
  2311. "SCALE",
  2312. "SET",
  2313. "CPY",
  2314. "CONT",
  2315. "RESHAPE",
  2316. "VIEW",
  2317. "PERMUTE",
  2318. "TRANSPOSE",
  2319. "GET_ROWS",
  2320. "GET_ROWS_BACK",
  2321. "DIAG",
  2322. "DIAG_MASK_INF",
  2323. "DIAG_MASK_ZERO",
  2324. "SOFT_MAX",
  2325. "SOFT_MAX_BACK",
  2326. "ROPE",
  2327. "ROPE_BACK",
  2328. "CLAMP",
  2329. "CONV_TRANSPOSE_1D",
  2330. "IM2COL",
  2331. "CONV_TRANSPOSE_2D",
  2332. "POOL_1D",
  2333. "POOL_2D",
  2334. "UPSCALE",
  2335. "PAD",
  2336. "ARANGE",
  2337. "TIMESTEP_EMBEDDING",
  2338. "ARGSORT",
  2339. "LEAKY_RELU",
  2340. "FLASH_ATTN_EXT",
  2341. "FLASH_ATTN_BACK",
  2342. "SSM_CONV",
  2343. "SSM_SCAN",
  2344. "WIN_PART",
  2345. "WIN_UNPART",
  2346. "GET_REL_POS",
  2347. "ADD_REL_POS",
  2348. "UNARY",
  2349. "MAP_UNARY",
  2350. "MAP_BINARY",
  2351. "MAP_CUSTOM1_F32",
  2352. "MAP_CUSTOM2_F32",
  2353. "MAP_CUSTOM3_F32",
  2354. "MAP_CUSTOM1",
  2355. "MAP_CUSTOM2",
  2356. "MAP_CUSTOM3",
  2357. "CROSS_ENTROPY_LOSS",
  2358. "CROSS_ENTROPY_LOSS_BACK",
  2359. };
  2360. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2361. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2362. "none",
  2363. "x",
  2364. "x+y",
  2365. "x+y",
  2366. "view(x,nb,offset)+=y->x",
  2367. "x-y",
  2368. "x*y",
  2369. "x/y",
  2370. "x^2",
  2371. "√x",
  2372. "log(x)",
  2373. "Σx",
  2374. "Σx_k",
  2375. "Σx/n",
  2376. "argmax(x)",
  2377. "repeat(x)",
  2378. "repeat_back(x)",
  2379. "concat(x, y)",
  2380. "silu_back(x)",
  2381. "norm(x)",
  2382. "rms_norm(x)",
  2383. "rms_norm_back(x)",
  2384. "group_norm(x)",
  2385. "X*Y",
  2386. "X[i]*Y",
  2387. "X*Y",
  2388. "x*v",
  2389. "y-\\>view(x)",
  2390. "x-\\>y",
  2391. "cont(x)",
  2392. "reshape(x)",
  2393. "view(x)",
  2394. "permute(x)",
  2395. "transpose(x)",
  2396. "get_rows(x)",
  2397. "get_rows_back(x)",
  2398. "diag(x)",
  2399. "diag_mask_inf(x)",
  2400. "diag_mask_zero(x)",
  2401. "soft_max(x)",
  2402. "soft_max_back(x)",
  2403. "rope(x)",
  2404. "rope_back(x)",
  2405. "clamp(x)",
  2406. "conv_transpose_1d(x)",
  2407. "im2col(x)",
  2408. "conv_transpose_2d(x)",
  2409. "pool_1d(x)",
  2410. "pool_2d(x)",
  2411. "upscale(x)",
  2412. "pad(x)",
  2413. "arange(start, stop, step)",
  2414. "timestep_embedding(timesteps, dim, max_period)",
  2415. "argsort(x)",
  2416. "leaky_relu(x)",
  2417. "flash_attn_ext(x)",
  2418. "flash_attn_back(x)",
  2419. "ssm_conv(x)",
  2420. "ssm_scan(x)",
  2421. "win_part(x)",
  2422. "win_unpart(x)",
  2423. "get_rel_pos(x)",
  2424. "add_rel_pos(x)",
  2425. "unary(x)",
  2426. "f(x)",
  2427. "f(x,y)",
  2428. "custom_f32(x)",
  2429. "custom_f32(x,y)",
  2430. "custom_f32(x,y,z)",
  2431. "custom(x)",
  2432. "custom(x,y)",
  2433. "custom(x,y,z)",
  2434. "cross_entropy_loss(x,y)",
  2435. "cross_entropy_loss_back(x,y)",
  2436. };
  2437. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2438. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2439. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2440. "ABS",
  2441. "SGN",
  2442. "NEG",
  2443. "STEP",
  2444. "TANH",
  2445. "ELU",
  2446. "RELU",
  2447. "SIGMOID",
  2448. "GELU",
  2449. "GELU_QUICK",
  2450. "SILU",
  2451. "HARDSWISH",
  2452. "HARDSIGMOID",
  2453. };
  2454. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2455. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2456. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2457. // WARN:
  2458. // Mis-configuration can lead to problem that's hard to reason about:
  2459. // * At best it crash or talks nosense.
  2460. // * At worst it talks slightly difference but hard to perceive.
  2461. //
  2462. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2463. // Take care about compile options (e.g., GGML_USE_xxx).
  2464. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2465. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2466. static void ggml_setup_op_has_task_pass(void) {
  2467. { // INIT
  2468. bool * p = GGML_OP_HAS_INIT;
  2469. p[GGML_OP_ACC ] = true;
  2470. p[GGML_OP_MUL_MAT ] = true;
  2471. p[GGML_OP_MUL_MAT_ID ] = true;
  2472. p[GGML_OP_OUT_PROD ] = true;
  2473. p[GGML_OP_SET ] = true;
  2474. p[GGML_OP_GET_ROWS_BACK ] = true;
  2475. p[GGML_OP_DIAG_MASK_INF ] = true;
  2476. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2477. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2478. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2479. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2480. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2481. p[GGML_OP_ADD_REL_POS ] = true;
  2482. }
  2483. { // FINALIZE
  2484. bool * p = GGML_OP_HAS_FINALIZE;
  2485. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2486. }
  2487. }
  2488. //
  2489. // NUMA support
  2490. //
  2491. #define GGML_NUMA_MAX_NODES 8
  2492. #define GGML_NUMA_MAX_CPUS 512
  2493. struct ggml_numa_node {
  2494. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2495. uint32_t n_cpus;
  2496. };
  2497. struct ggml_numa_nodes {
  2498. enum ggml_numa_strategy numa_strategy;
  2499. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2500. uint32_t n_nodes;
  2501. uint32_t total_cpus; // hardware threads on system
  2502. uint32_t current_node; // node on which main process is execting
  2503. #if defined(__gnu_linux__)
  2504. cpu_set_t cpuset; // cpuset from numactl
  2505. #else
  2506. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2507. #endif
  2508. };
  2509. //
  2510. // ggml state
  2511. //
  2512. struct ggml_state {
  2513. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2514. struct ggml_numa_nodes numa;
  2515. };
  2516. // global state
  2517. static struct ggml_state g_state;
  2518. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2519. // barrier via spin lock
  2520. inline static void ggml_critical_section_start(void) {
  2521. while (atomic_flag_test_and_set(&g_state_critical)) {
  2522. // spin
  2523. sched_yield();
  2524. }
  2525. }
  2526. // TODO: make this somehow automatically executed
  2527. // some sort of "sentry" mechanism
  2528. inline static void ggml_critical_section_end(void) {
  2529. atomic_flag_clear(&g_state_critical);
  2530. }
  2531. #if defined(__gnu_linux__)
  2532. static cpu_set_t ggml_get_numa_affinity(void) {
  2533. cpu_set_t cpuset;
  2534. pthread_t thread;
  2535. thread = pthread_self();
  2536. CPU_ZERO(&cpuset);
  2537. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2538. return cpuset;
  2539. }
  2540. #else
  2541. static uint32_t ggml_get_numa_affinity(void) {
  2542. return 0; // no NUMA support
  2543. }
  2544. #endif
  2545. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2546. if (g_state.numa.n_nodes > 0) {
  2547. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2548. return;
  2549. }
  2550. #if defined(__gnu_linux__)
  2551. struct stat st;
  2552. char path[256];
  2553. int rv;
  2554. // set numa scheme
  2555. g_state.numa.numa_strategy = numa_flag;
  2556. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2557. g_state.numa.cpuset = ggml_get_numa_affinity();
  2558. // enumerate nodes
  2559. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2560. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2561. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2562. if (stat(path, &st) != 0) { break; }
  2563. ++g_state.numa.n_nodes;
  2564. }
  2565. // enumerate CPUs
  2566. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2567. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2568. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2569. if (stat(path, &st) != 0) { break; }
  2570. ++g_state.numa.total_cpus;
  2571. }
  2572. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2573. // figure out which node we're on
  2574. uint current_cpu;
  2575. int getcpu_ret = 0;
  2576. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2577. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2578. #else
  2579. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2580. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2581. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2582. # endif
  2583. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2584. #endif
  2585. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2586. g_state.numa.n_nodes = 0;
  2587. return;
  2588. }
  2589. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2590. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2591. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2592. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2593. node->n_cpus = 0;
  2594. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2595. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2596. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2597. if (stat(path, &st) == 0) {
  2598. node->cpus[node->n_cpus++] = c;
  2599. GGML_PRINT_DEBUG(" %u", c);
  2600. }
  2601. }
  2602. GGML_PRINT_DEBUG("\n");
  2603. }
  2604. if (ggml_is_numa()) {
  2605. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2606. if (fptr != NULL) {
  2607. char buf[42];
  2608. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2609. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2610. }
  2611. fclose(fptr);
  2612. }
  2613. }
  2614. #else
  2615. GGML_UNUSED(numa_flag);
  2616. // TODO
  2617. #endif
  2618. }
  2619. bool ggml_is_numa(void) {
  2620. return g_state.numa.n_nodes > 1;
  2621. }
  2622. ////////////////////////////////////////////////////////////////////////////////
  2623. void ggml_print_object(const struct ggml_object * obj) {
  2624. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2625. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2626. }
  2627. void ggml_print_objects(const struct ggml_context * ctx) {
  2628. struct ggml_object * obj = ctx->objects_begin;
  2629. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2630. while (obj != NULL) {
  2631. ggml_print_object(obj);
  2632. obj = obj->next;
  2633. }
  2634. GGML_PRINT("%s: --- end ---\n", __func__);
  2635. }
  2636. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2637. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2638. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2639. }
  2640. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2641. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2642. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2643. }
  2644. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2645. size_t nbytes;
  2646. size_t blck_size = ggml_blck_size(tensor->type);
  2647. if (blck_size == 1) {
  2648. nbytes = ggml_type_size(tensor->type);
  2649. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2650. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2651. }
  2652. }
  2653. else {
  2654. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2655. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2656. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2657. }
  2658. }
  2659. return nbytes;
  2660. }
  2661. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2662. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2663. }
  2664. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2665. return type_traits[type].blck_size;
  2666. }
  2667. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2668. return type_traits[type].type_size;
  2669. }
  2670. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2671. assert(ne % ggml_blck_size(type) == 0);
  2672. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2673. }
  2674. double ggml_type_sizef(enum ggml_type type) {
  2675. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2676. }
  2677. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2678. return type_traits[type].type_name;
  2679. }
  2680. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2681. return type_traits[type].is_quantized;
  2682. }
  2683. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2684. return GGML_OP_NAME[op];
  2685. }
  2686. const char * ggml_op_symbol(enum ggml_op op) {
  2687. return GGML_OP_SYMBOL[op];
  2688. }
  2689. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2690. return GGML_UNARY_OP_NAME[op];
  2691. }
  2692. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2693. if (t->op == GGML_OP_UNARY) {
  2694. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2695. return ggml_unary_op_name(uop);
  2696. }
  2697. else {
  2698. return ggml_op_name(t->op);
  2699. }
  2700. }
  2701. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2702. return ggml_type_size(tensor->type);
  2703. }
  2704. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2706. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2707. }
  2708. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2710. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2711. }
  2712. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2713. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2714. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2715. }
  2716. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2717. return tensor->ne[3] == 1;
  2718. }
  2719. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2720. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2721. if (tensor->ne[i] > 1) {
  2722. return i + 1;
  2723. }
  2724. }
  2725. return 1;
  2726. }
  2727. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2729. return (t0->ne[0] == t1->ne[0]) &&
  2730. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2731. (t1->ne[3]%t0->ne[3] == 0);
  2732. }
  2733. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2734. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2735. return (t0->ne[1] == t1->ne[1]) &&
  2736. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2737. (t1->ne[3]%t0->ne[3] == 0);
  2738. }
  2739. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2740. enum ggml_type wtype = GGML_TYPE_COUNT;
  2741. switch (ftype) {
  2742. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2743. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2744. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2745. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2747. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2749. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2750. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2755. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2757. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2759. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2760. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2761. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2762. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2763. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2764. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2765. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2766. }
  2767. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2768. return wtype;
  2769. }
  2770. size_t ggml_tensor_overhead(void) {
  2771. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2772. }
  2773. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2774. return tensor->nb[0] > tensor->nb[1];
  2775. }
  2776. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2778. return
  2779. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2780. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2781. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2782. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2783. }
  2784. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2785. return ggml_is_contiguous(tensor);
  2786. }
  2787. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2788. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2789. return
  2790. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2791. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2792. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2793. }
  2794. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2795. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2796. return
  2797. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2798. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2799. }
  2800. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2802. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2803. }
  2804. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return
  2807. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2808. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2809. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2810. }
  2811. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2812. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2813. if (tensor->ne[i] == 0) {
  2814. // empty if any dimension has no elements
  2815. return true;
  2816. }
  2817. }
  2818. return false;
  2819. }
  2820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->ne[0] == t1->ne[0] ) &&
  2824. (t0->ne[1] == t1->ne[1] ) &&
  2825. (t0->ne[2] == t1->ne[2] ) &&
  2826. (t0->ne[3] == t1->ne[3] );
  2827. }
  2828. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return
  2831. (t0->nb[0] == t1->nb[0] ) &&
  2832. (t0->nb[1] == t1->nb[1] ) &&
  2833. (t0->nb[2] == t1->nb[2] ) &&
  2834. (t0->nb[3] == t1->nb[3] );
  2835. }
  2836. // check if t1 can be represented as a repeatition of t0
  2837. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2840. (t1->ne[0]%t0->ne[0] == 0) &&
  2841. (t1->ne[1]%t0->ne[1] == 0) &&
  2842. (t1->ne[2]%t0->ne[2] == 0) &&
  2843. (t1->ne[3]%t0->ne[3] == 0);
  2844. }
  2845. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2848. }
  2849. static inline int ggml_up32(int n) {
  2850. return (n + 31) & ~31;
  2851. }
  2852. //static inline int ggml_up64(int n) {
  2853. // return (n + 63) & ~63;
  2854. //}
  2855. static inline int ggml_up(int n, int m) {
  2856. // assert m is a power of 2
  2857. GGML_ASSERT((m & (m - 1)) == 0);
  2858. return (n + m - 1) & ~(m - 1);
  2859. }
  2860. // assert that pointer is aligned to GGML_MEM_ALIGN
  2861. #define ggml_assert_aligned(ptr) \
  2862. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2863. ////////////////////////////////////////////////////////////////////////////////
  2864. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2865. // make this function thread safe
  2866. ggml_critical_section_start();
  2867. static bool is_first_call = true;
  2868. if (is_first_call) {
  2869. // initialize time system (required on Windows)
  2870. ggml_time_init();
  2871. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2872. {
  2873. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2874. for (int i = 0; i < (1 << 16); ++i) {
  2875. union {
  2876. uint16_t u16;
  2877. ggml_fp16_t fp16;
  2878. } u = {i};
  2879. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2880. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2881. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2882. }
  2883. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2884. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2885. }
  2886. // initialize g_state
  2887. {
  2888. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2889. g_state = (struct ggml_state) {
  2890. /*.contexts =*/ { { 0 } },
  2891. /*.numa =*/ {
  2892. .n_nodes = 0,
  2893. .total_cpus = 0,
  2894. },
  2895. };
  2896. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2897. g_state.contexts[i].used = false;
  2898. }
  2899. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2900. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2901. }
  2902. ggml_setup_op_has_task_pass();
  2903. is_first_call = false;
  2904. }
  2905. // find non-used context in g_state
  2906. struct ggml_context * ctx = NULL;
  2907. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2908. if (!g_state.contexts[i].used) {
  2909. g_state.contexts[i].used = true;
  2910. ctx = &g_state.contexts[i].context;
  2911. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2912. break;
  2913. }
  2914. }
  2915. if (ctx == NULL) {
  2916. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2917. ggml_critical_section_end();
  2918. return NULL;
  2919. }
  2920. // allow to call ggml_init with 0 size
  2921. if (params.mem_size == 0) {
  2922. params.mem_size = GGML_MEM_ALIGN;
  2923. }
  2924. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2925. *ctx = (struct ggml_context) {
  2926. /*.mem_size =*/ mem_size,
  2927. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2928. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2929. /*.no_alloc =*/ params.no_alloc,
  2930. /*.no_alloc_save =*/ params.no_alloc,
  2931. /*.n_objects =*/ 0,
  2932. /*.objects_begin =*/ NULL,
  2933. /*.objects_end =*/ NULL,
  2934. /*.scratch =*/ { 0, 0, NULL, },
  2935. /*.scratch_save =*/ { 0, 0, NULL, },
  2936. };
  2937. GGML_ASSERT(ctx->mem_buffer != NULL);
  2938. ggml_assert_aligned(ctx->mem_buffer);
  2939. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2940. ggml_critical_section_end();
  2941. return ctx;
  2942. }
  2943. void ggml_free(struct ggml_context * ctx) {
  2944. if (ctx == NULL) {
  2945. return;
  2946. }
  2947. // make this function thread safe
  2948. ggml_critical_section_start();
  2949. bool found = false;
  2950. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2951. if (&g_state.contexts[i].context == ctx) {
  2952. g_state.contexts[i].used = false;
  2953. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2954. __func__, i, ggml_used_mem(ctx));
  2955. if (ctx->mem_buffer_owned) {
  2956. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2957. }
  2958. found = true;
  2959. break;
  2960. }
  2961. }
  2962. if (!found) {
  2963. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2964. }
  2965. ggml_critical_section_end();
  2966. }
  2967. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2968. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2969. }
  2970. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2971. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2972. ctx->scratch = scratch;
  2973. return result;
  2974. }
  2975. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2976. return ctx->no_alloc;
  2977. }
  2978. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2979. ctx->no_alloc = no_alloc;
  2980. }
  2981. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2982. return ctx->mem_buffer;
  2983. }
  2984. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2985. return ctx->mem_size;
  2986. }
  2987. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2988. size_t max_size = 0;
  2989. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2990. size_t bytes = ggml_nbytes(tensor);
  2991. max_size = MAX(max_size, bytes);
  2992. }
  2993. return max_size;
  2994. }
  2995. // IMPORTANT:
  2996. // when creating "opt" tensors, always save and load the scratch buffer
  2997. // this is an error prone process, but it is necessary to support inplace
  2998. // operators when using scratch buffers
  2999. // TODO: implement a better way
  3000. static void ggml_scratch_save(struct ggml_context * ctx) {
  3001. // this is needed to allow opt tensors to store their data
  3002. // TODO: again, need to find a better way
  3003. ctx->no_alloc_save = ctx->no_alloc;
  3004. ctx->no_alloc = false;
  3005. ctx->scratch_save = ctx->scratch;
  3006. ctx->scratch.data = NULL;
  3007. }
  3008. static void ggml_scratch_load(struct ggml_context * ctx) {
  3009. ctx->no_alloc = ctx->no_alloc_save;
  3010. ctx->scratch = ctx->scratch_save;
  3011. }
  3012. ////////////////////////////////////////////////////////////////////////////////
  3013. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3014. // always insert objects at the end of the context's memory pool
  3015. struct ggml_object * obj_cur = ctx->objects_end;
  3016. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3017. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3018. const size_t cur_end = cur_offs + cur_size;
  3019. // align to GGML_MEM_ALIGN
  3020. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3021. char * const mem_buffer = ctx->mem_buffer;
  3022. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3023. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3024. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3025. __func__, cur_end + size_needed, ctx->mem_size);
  3026. assert(false);
  3027. return NULL;
  3028. }
  3029. *obj_new = (struct ggml_object) {
  3030. .offs = cur_end + GGML_OBJECT_SIZE,
  3031. .size = size_needed,
  3032. .next = NULL,
  3033. .type = type,
  3034. };
  3035. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3036. if (obj_cur != NULL) {
  3037. obj_cur->next = obj_new;
  3038. } else {
  3039. // this is the first object in this context
  3040. ctx->objects_begin = obj_new;
  3041. }
  3042. ctx->objects_end = obj_new;
  3043. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3044. return obj_new;
  3045. }
  3046. static struct ggml_tensor * ggml_new_tensor_impl(
  3047. struct ggml_context * ctx,
  3048. enum ggml_type type,
  3049. int n_dims,
  3050. const int64_t * ne,
  3051. struct ggml_tensor * view_src,
  3052. size_t view_offs) {
  3053. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3054. // find the base tensor and absolute offset
  3055. if (view_src != NULL && view_src->view_src != NULL) {
  3056. view_offs += view_src->view_offs;
  3057. view_src = view_src->view_src;
  3058. }
  3059. size_t data_size = ggml_row_size(type, ne[0]);
  3060. for (int i = 1; i < n_dims; i++) {
  3061. data_size *= ne[i];
  3062. }
  3063. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3064. void * data = view_src != NULL ? view_src->data : NULL;
  3065. if (data != NULL) {
  3066. data = (char *) data + view_offs;
  3067. }
  3068. size_t obj_alloc_size = 0;
  3069. if (view_src == NULL && !ctx->no_alloc) {
  3070. if (ctx->scratch.data != NULL) {
  3071. // allocate tensor data in the scratch buffer
  3072. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3073. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3074. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3075. assert(false);
  3076. return NULL;
  3077. }
  3078. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3079. ctx->scratch.offs += data_size;
  3080. } else {
  3081. // allocate tensor data in the context's memory pool
  3082. obj_alloc_size = data_size;
  3083. }
  3084. }
  3085. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3086. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3087. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3088. #ifdef __clang__
  3089. // temporary until ggml_tensor::backend is removed
  3090. #pragma clang diagnostic push
  3091. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3092. #endif
  3093. *result = (struct ggml_tensor) {
  3094. /*.type =*/ type,
  3095. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3096. /*.buffer =*/ NULL,
  3097. /*.ne =*/ { 1, 1, 1, 1 },
  3098. /*.nb =*/ { 0, 0, 0, 0 },
  3099. /*.op =*/ GGML_OP_NONE,
  3100. /*.op_params =*/ { 0 },
  3101. /*.flags =*/ 0,
  3102. /*.grad =*/ NULL,
  3103. /*.src =*/ { NULL },
  3104. /*.perf_runs =*/ 0,
  3105. /*.perf_cycles =*/ 0,
  3106. /*.perf_time_us =*/ 0,
  3107. /*.view_src =*/ view_src,
  3108. /*.view_offs =*/ view_offs,
  3109. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3110. /*.name =*/ { 0 },
  3111. /*.extra =*/ NULL,
  3112. /*.padding =*/ { 0 },
  3113. };
  3114. #ifdef __clang__
  3115. #pragma clang diagnostic pop
  3116. #endif
  3117. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3118. //ggml_assert_aligned(result->data);
  3119. for (int i = 0; i < n_dims; i++) {
  3120. result->ne[i] = ne[i];
  3121. }
  3122. result->nb[0] = ggml_type_size(type);
  3123. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3124. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3125. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3126. }
  3127. ctx->n_objects++;
  3128. return result;
  3129. }
  3130. struct ggml_tensor * ggml_new_tensor(
  3131. struct ggml_context * ctx,
  3132. enum ggml_type type,
  3133. int n_dims,
  3134. const int64_t * ne) {
  3135. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3136. }
  3137. struct ggml_tensor * ggml_new_tensor_1d(
  3138. struct ggml_context * ctx,
  3139. enum ggml_type type,
  3140. int64_t ne0) {
  3141. return ggml_new_tensor(ctx, type, 1, &ne0);
  3142. }
  3143. struct ggml_tensor * ggml_new_tensor_2d(
  3144. struct ggml_context * ctx,
  3145. enum ggml_type type,
  3146. int64_t ne0,
  3147. int64_t ne1) {
  3148. const int64_t ne[2] = { ne0, ne1 };
  3149. return ggml_new_tensor(ctx, type, 2, ne);
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor_3d(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int64_t ne0,
  3155. int64_t ne1,
  3156. int64_t ne2) {
  3157. const int64_t ne[3] = { ne0, ne1, ne2 };
  3158. return ggml_new_tensor(ctx, type, 3, ne);
  3159. }
  3160. struct ggml_tensor * ggml_new_tensor_4d(
  3161. struct ggml_context * ctx,
  3162. enum ggml_type type,
  3163. int64_t ne0,
  3164. int64_t ne1,
  3165. int64_t ne2,
  3166. int64_t ne3) {
  3167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3168. return ggml_new_tensor(ctx, type, 4, ne);
  3169. }
  3170. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3171. ggml_scratch_save(ctx);
  3172. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3173. ggml_scratch_load(ctx);
  3174. ggml_set_i32(result, value);
  3175. return result;
  3176. }
  3177. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3178. ggml_scratch_save(ctx);
  3179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3180. ggml_scratch_load(ctx);
  3181. ggml_set_f32(result, value);
  3182. return result;
  3183. }
  3184. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3185. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3186. }
  3187. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3188. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3189. assert(params_size <= GGML_MAX_OP_PARAMS);
  3190. memcpy(tensor->op_params, params, params_size);
  3191. }
  3192. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3193. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3194. return ((const int32_t *)(tensor->op_params))[i];
  3195. }
  3196. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3197. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3198. return ((const float *)(tensor->op_params))[i];
  3199. }
  3200. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3202. ((int32_t *)(tensor->op_params))[i] = value;
  3203. }
  3204. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3205. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3206. ((float *)(tensor->op_params))[i] = value;
  3207. }
  3208. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3209. memset(tensor->data, 0, ggml_nbytes(tensor));
  3210. return tensor;
  3211. }
  3212. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3213. const int n = ggml_nrows(tensor);
  3214. const int nc = tensor->ne[0];
  3215. const size_t n1 = tensor->nb[1];
  3216. char * const data = tensor->data;
  3217. switch (tensor->type) {
  3218. case GGML_TYPE_I8:
  3219. {
  3220. assert(tensor->nb[0] == sizeof(int8_t));
  3221. for (int i = 0; i < n; i++) {
  3222. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3223. }
  3224. } break;
  3225. case GGML_TYPE_I16:
  3226. {
  3227. assert(tensor->nb[0] == sizeof(int16_t));
  3228. for (int i = 0; i < n; i++) {
  3229. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3230. }
  3231. } break;
  3232. case GGML_TYPE_I32:
  3233. {
  3234. assert(tensor->nb[0] == sizeof(int32_t));
  3235. for (int i = 0; i < n; i++) {
  3236. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3237. }
  3238. } break;
  3239. case GGML_TYPE_F16:
  3240. {
  3241. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3242. for (int i = 0; i < n; i++) {
  3243. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3244. }
  3245. } break;
  3246. case GGML_TYPE_BF16:
  3247. {
  3248. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3249. for (int i = 0; i < n; i++) {
  3250. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3251. }
  3252. } break;
  3253. case GGML_TYPE_F32:
  3254. {
  3255. assert(tensor->nb[0] == sizeof(float));
  3256. for (int i = 0; i < n; i++) {
  3257. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3258. }
  3259. } break;
  3260. default:
  3261. {
  3262. GGML_ASSERT(false);
  3263. } break;
  3264. }
  3265. return tensor;
  3266. }
  3267. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3268. const int n = ggml_nrows(tensor);
  3269. const int nc = tensor->ne[0];
  3270. const size_t n1 = tensor->nb[1];
  3271. char * const data = tensor->data;
  3272. switch (tensor->type) {
  3273. case GGML_TYPE_I8:
  3274. {
  3275. assert(tensor->nb[0] == sizeof(int8_t));
  3276. for (int i = 0; i < n; i++) {
  3277. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3278. }
  3279. } break;
  3280. case GGML_TYPE_I16:
  3281. {
  3282. assert(tensor->nb[0] == sizeof(int16_t));
  3283. for (int i = 0; i < n; i++) {
  3284. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3285. }
  3286. } break;
  3287. case GGML_TYPE_I32:
  3288. {
  3289. assert(tensor->nb[0] == sizeof(int32_t));
  3290. for (int i = 0; i < n; i++) {
  3291. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3292. }
  3293. } break;
  3294. case GGML_TYPE_F16:
  3295. {
  3296. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3297. for (int i = 0; i < n; i++) {
  3298. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3299. }
  3300. } break;
  3301. case GGML_TYPE_BF16:
  3302. {
  3303. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3304. for (int i = 0; i < n; i++) {
  3305. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3306. }
  3307. } break;
  3308. case GGML_TYPE_F32:
  3309. {
  3310. assert(tensor->nb[0] == sizeof(float));
  3311. for (int i = 0; i < n; i++) {
  3312. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3313. }
  3314. } break;
  3315. default:
  3316. {
  3317. GGML_ASSERT(false);
  3318. } break;
  3319. }
  3320. return tensor;
  3321. }
  3322. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3323. const int64_t ne2 = tensor->ne[2];
  3324. const int64_t ne1 = tensor->ne[1];
  3325. const int64_t ne0 = tensor->ne[0];
  3326. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3327. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3328. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3329. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3330. if (i0) {
  3331. * i0 = i0_;
  3332. }
  3333. if (i1) {
  3334. * i1 = i1_;
  3335. }
  3336. if (i2) {
  3337. * i2 = i2_;
  3338. }
  3339. if (i3) {
  3340. * i3 = i3_;
  3341. }
  3342. }
  3343. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3344. if (!ggml_is_contiguous(tensor)) {
  3345. int64_t id[4] = { 0, 0, 0, 0 };
  3346. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3347. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3348. }
  3349. switch (tensor->type) {
  3350. case GGML_TYPE_I8:
  3351. {
  3352. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3353. return ((int8_t *)(tensor->data))[i];
  3354. }
  3355. case GGML_TYPE_I16:
  3356. {
  3357. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3358. return ((int16_t *)(tensor->data))[i];
  3359. }
  3360. case GGML_TYPE_I32:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3363. return ((int32_t *)(tensor->data))[i];
  3364. }
  3365. case GGML_TYPE_F16:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3368. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3369. }
  3370. case GGML_TYPE_BF16:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3373. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3374. }
  3375. case GGML_TYPE_F32:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3378. return ((float *)(tensor->data))[i];
  3379. }
  3380. default:
  3381. {
  3382. GGML_ASSERT(false);
  3383. }
  3384. }
  3385. return 0.0f;
  3386. }
  3387. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3388. if (!ggml_is_contiguous(tensor)) {
  3389. int64_t id[4] = { 0, 0, 0, 0 };
  3390. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3391. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3392. return;
  3393. }
  3394. switch (tensor->type) {
  3395. case GGML_TYPE_I8:
  3396. {
  3397. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3398. ((int8_t *)(tensor->data))[i] = value;
  3399. } break;
  3400. case GGML_TYPE_I16:
  3401. {
  3402. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3403. ((int16_t *)(tensor->data))[i] = value;
  3404. } break;
  3405. case GGML_TYPE_I32:
  3406. {
  3407. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3408. ((int32_t *)(tensor->data))[i] = value;
  3409. } break;
  3410. case GGML_TYPE_F16:
  3411. {
  3412. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3413. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3414. } break;
  3415. case GGML_TYPE_BF16:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3418. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3419. } break;
  3420. case GGML_TYPE_F32:
  3421. {
  3422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3423. ((float *)(tensor->data))[i] = value;
  3424. } break;
  3425. default:
  3426. {
  3427. GGML_ASSERT(false);
  3428. } break;
  3429. }
  3430. }
  3431. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3432. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3433. switch (tensor->type) {
  3434. case GGML_TYPE_I8:
  3435. return ((int8_t *) data)[0];
  3436. case GGML_TYPE_I16:
  3437. return ((int16_t *) data)[0];
  3438. case GGML_TYPE_I32:
  3439. return ((int32_t *) data)[0];
  3440. case GGML_TYPE_F16:
  3441. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3442. case GGML_TYPE_BF16:
  3443. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3444. case GGML_TYPE_F32:
  3445. return ((float *) data)[0];
  3446. default:
  3447. GGML_ASSERT(false);
  3448. }
  3449. return 0.0f;
  3450. }
  3451. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3452. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3453. switch (tensor->type) {
  3454. case GGML_TYPE_I8:
  3455. {
  3456. ((int8_t *)(data))[0] = value;
  3457. } break;
  3458. case GGML_TYPE_I16:
  3459. {
  3460. ((int16_t *)(data))[0] = value;
  3461. } break;
  3462. case GGML_TYPE_I32:
  3463. {
  3464. ((int32_t *)(data))[0] = value;
  3465. } break;
  3466. case GGML_TYPE_F16:
  3467. {
  3468. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3469. } break;
  3470. case GGML_TYPE_BF16:
  3471. {
  3472. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3473. } break;
  3474. case GGML_TYPE_F32:
  3475. {
  3476. ((float *)(data))[0] = value;
  3477. } break;
  3478. default:
  3479. {
  3480. GGML_ASSERT(false);
  3481. } break;
  3482. }
  3483. }
  3484. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3485. if (!ggml_is_contiguous(tensor)) {
  3486. int64_t id[4] = { 0, 0, 0, 0 };
  3487. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3488. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3489. }
  3490. switch (tensor->type) {
  3491. case GGML_TYPE_I8:
  3492. {
  3493. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3494. return ((int8_t *)(tensor->data))[i];
  3495. }
  3496. case GGML_TYPE_I16:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3499. return ((int16_t *)(tensor->data))[i];
  3500. }
  3501. case GGML_TYPE_I32:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3504. return ((int32_t *)(tensor->data))[i];
  3505. }
  3506. case GGML_TYPE_F16:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3509. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3510. }
  3511. case GGML_TYPE_BF16:
  3512. {
  3513. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3514. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3515. }
  3516. case GGML_TYPE_F32:
  3517. {
  3518. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3519. return ((float *)(tensor->data))[i];
  3520. }
  3521. default:
  3522. {
  3523. GGML_ASSERT(false);
  3524. }
  3525. }
  3526. return 0.0f;
  3527. }
  3528. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3529. if (!ggml_is_contiguous(tensor)) {
  3530. int64_t id[4] = { 0, 0, 0, 0 };
  3531. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3532. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3533. return;
  3534. }
  3535. switch (tensor->type) {
  3536. case GGML_TYPE_I8:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3539. ((int8_t *)(tensor->data))[i] = value;
  3540. } break;
  3541. case GGML_TYPE_I16:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3544. ((int16_t *)(tensor->data))[i] = value;
  3545. } break;
  3546. case GGML_TYPE_I32:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3549. ((int32_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_F16:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3554. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3555. } break;
  3556. case GGML_TYPE_BF16:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3559. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3560. } break;
  3561. case GGML_TYPE_F32:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3564. ((float *)(tensor->data))[i] = value;
  3565. } break;
  3566. default:
  3567. {
  3568. GGML_ASSERT(false);
  3569. } break;
  3570. }
  3571. }
  3572. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3573. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3574. switch (tensor->type) {
  3575. case GGML_TYPE_I8:
  3576. return ((int8_t *) data)[0];
  3577. case GGML_TYPE_I16:
  3578. return ((int16_t *) data)[0];
  3579. case GGML_TYPE_I32:
  3580. return ((int32_t *) data)[0];
  3581. case GGML_TYPE_F16:
  3582. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3583. case GGML_TYPE_BF16:
  3584. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3585. case GGML_TYPE_F32:
  3586. return ((float *) data)[0];
  3587. default:
  3588. GGML_ASSERT(false);
  3589. }
  3590. return 0.0f;
  3591. }
  3592. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3593. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3594. switch (tensor->type) {
  3595. case GGML_TYPE_I8:
  3596. {
  3597. ((int8_t *)(data))[0] = value;
  3598. } break;
  3599. case GGML_TYPE_I16:
  3600. {
  3601. ((int16_t *)(data))[0] = value;
  3602. } break;
  3603. case GGML_TYPE_I32:
  3604. {
  3605. ((int32_t *)(data))[0] = value;
  3606. } break;
  3607. case GGML_TYPE_F16:
  3608. {
  3609. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3610. } break;
  3611. case GGML_TYPE_BF16:
  3612. {
  3613. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3614. } break;
  3615. case GGML_TYPE_F32:
  3616. {
  3617. ((float *)(data))[0] = value;
  3618. } break;
  3619. default:
  3620. {
  3621. GGML_ASSERT(false);
  3622. } break;
  3623. }
  3624. }
  3625. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3626. return tensor->data;
  3627. }
  3628. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3629. assert(tensor->type == GGML_TYPE_F32);
  3630. return (float *)(tensor->data);
  3631. }
  3632. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3633. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3634. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3635. }
  3636. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3637. return tensor->name;
  3638. }
  3639. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3640. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3641. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3642. return tensor;
  3643. }
  3644. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3645. va_list args;
  3646. va_start(args, fmt);
  3647. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3648. va_end(args);
  3649. return tensor;
  3650. }
  3651. struct ggml_tensor * ggml_view_tensor(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * src) {
  3654. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3655. ggml_format_name(result, "%s (view)", src->name);
  3656. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3657. result->nb[i] = src->nb[i];
  3658. }
  3659. return result;
  3660. }
  3661. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3662. struct ggml_object * obj = ctx->objects_begin;
  3663. char * const mem_buffer = ctx->mem_buffer;
  3664. while (obj != NULL) {
  3665. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3666. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3667. }
  3668. obj = obj->next;
  3669. }
  3670. return NULL;
  3671. }
  3672. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3673. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3674. obj = obj->next;
  3675. char * const mem_buffer = ctx->mem_buffer;
  3676. while (obj != NULL) {
  3677. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3678. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3679. }
  3680. obj = obj->next;
  3681. }
  3682. return NULL;
  3683. }
  3684. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3685. struct ggml_object * obj = ctx->objects_begin;
  3686. char * const mem_buffer = ctx->mem_buffer;
  3687. while (obj != NULL) {
  3688. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3689. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3690. if (strcmp(cur->name, name) == 0) {
  3691. return cur;
  3692. }
  3693. }
  3694. obj = obj->next;
  3695. }
  3696. return NULL;
  3697. }
  3698. ////////////////////////////////////////////////////////////////////////////////
  3699. // ggml_dup
  3700. static struct ggml_tensor * ggml_dup_impl(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. bool inplace) {
  3704. bool is_node = false;
  3705. if (!inplace && (a->grad)) {
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op = GGML_OP_DUP;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src[0] = a;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_dup(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. return ggml_dup_impl(ctx, a, false);
  3718. }
  3719. struct ggml_tensor * ggml_dup_inplace(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a) {
  3722. return ggml_dup_impl(ctx, a, true);
  3723. }
  3724. // ggml_add
  3725. static struct ggml_tensor * ggml_add_impl(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. struct ggml_tensor * b,
  3729. bool inplace) {
  3730. GGML_ASSERT(ggml_can_repeat(b, a));
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad || b->grad)) {
  3733. // TODO: support backward pass for broadcasting
  3734. GGML_ASSERT(ggml_are_same_shape(a, b));
  3735. is_node = true;
  3736. }
  3737. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. result->op = GGML_OP_ADD;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src[0] = a;
  3741. result->src[1] = b;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_add(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b) {
  3748. return ggml_add_impl(ctx, a, b, false);
  3749. }
  3750. struct ggml_tensor * ggml_add_inplace(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. struct ggml_tensor * b) {
  3754. return ggml_add_impl(ctx, a, b, true);
  3755. }
  3756. // ggml_add_cast
  3757. static struct ggml_tensor * ggml_add_cast_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. struct ggml_tensor * b,
  3761. enum ggml_type type) {
  3762. // TODO: support less-strict constraint
  3763. // GGML_ASSERT(ggml_can_repeat(b, a));
  3764. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3765. // currently only supported for quantized input and f16
  3766. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3767. a->type == GGML_TYPE_F16 ||
  3768. a->type == GGML_TYPE_BF16);
  3769. bool is_node = false;
  3770. if (a->grad || b->grad) {
  3771. // TODO: support backward pass for broadcasting
  3772. GGML_ASSERT(ggml_are_same_shape(a, b));
  3773. is_node = true;
  3774. }
  3775. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3776. result->op = GGML_OP_ADD;
  3777. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3778. result->src[0] = a;
  3779. result->src[1] = b;
  3780. return result;
  3781. }
  3782. struct ggml_tensor * ggml_add_cast(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b,
  3786. enum ggml_type type) {
  3787. return ggml_add_cast_impl(ctx, a, b, type);
  3788. }
  3789. // ggml_add1
  3790. static struct ggml_tensor * ggml_add1_impl(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. struct ggml_tensor * b,
  3794. bool inplace) {
  3795. GGML_ASSERT(ggml_is_scalar(b));
  3796. GGML_ASSERT(ggml_is_padded_1d(a));
  3797. bool is_node = false;
  3798. if (a->grad || b->grad) {
  3799. is_node = true;
  3800. }
  3801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3802. result->op = GGML_OP_ADD1;
  3803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3804. result->src[0] = a;
  3805. result->src[1] = b;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_add1(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. struct ggml_tensor * b) {
  3812. return ggml_add1_impl(ctx, a, b, false);
  3813. }
  3814. struct ggml_tensor * ggml_add1_inplace(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. struct ggml_tensor * b) {
  3818. return ggml_add1_impl(ctx, a, b, true);
  3819. }
  3820. // ggml_acc
  3821. static struct ggml_tensor * ggml_acc_impl(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a,
  3824. struct ggml_tensor * b,
  3825. size_t nb1,
  3826. size_t nb2,
  3827. size_t nb3,
  3828. size_t offset,
  3829. bool inplace) {
  3830. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3831. GGML_ASSERT(ggml_is_contiguous(a));
  3832. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3833. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3834. bool is_node = false;
  3835. if (!inplace && (a->grad || b->grad)) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3840. ggml_set_op_params(result, params, sizeof(params));
  3841. result->op = GGML_OP_ACC;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src[0] = a;
  3844. result->src[1] = b;
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_acc(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b,
  3851. size_t nb1,
  3852. size_t nb2,
  3853. size_t nb3,
  3854. size_t offset) {
  3855. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3856. }
  3857. struct ggml_tensor * ggml_acc_inplace(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. struct ggml_tensor * b,
  3861. size_t nb1,
  3862. size_t nb2,
  3863. size_t nb3,
  3864. size_t offset) {
  3865. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3866. }
  3867. // ggml_sub
  3868. static struct ggml_tensor * ggml_sub_impl(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. struct ggml_tensor * b,
  3872. bool inplace) {
  3873. GGML_ASSERT(ggml_are_same_shape(a, b));
  3874. bool is_node = false;
  3875. if (!inplace && (a->grad || b->grad)) {
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. result->op = GGML_OP_SUB;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src[0] = a;
  3882. result->src[1] = b;
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_sub(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. struct ggml_tensor * b) {
  3889. return ggml_sub_impl(ctx, a, b, false);
  3890. }
  3891. struct ggml_tensor * ggml_sub_inplace(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b) {
  3895. return ggml_sub_impl(ctx, a, b, true);
  3896. }
  3897. // ggml_mul
  3898. static struct ggml_tensor * ggml_mul_impl(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b,
  3902. bool inplace) {
  3903. GGML_ASSERT(ggml_can_repeat(b, a));
  3904. bool is_node = false;
  3905. if (!inplace && (a->grad || b->grad)) {
  3906. // TODO: support backward pass for broadcasting
  3907. GGML_ASSERT(ggml_are_same_shape(a, b));
  3908. is_node = true;
  3909. }
  3910. if (inplace) {
  3911. GGML_ASSERT(!is_node);
  3912. }
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. result->op = GGML_OP_MUL;
  3915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3916. result->src[0] = a;
  3917. result->src[1] = b;
  3918. return result;
  3919. }
  3920. struct ggml_tensor * ggml_mul(
  3921. struct ggml_context * ctx,
  3922. struct ggml_tensor * a,
  3923. struct ggml_tensor * b) {
  3924. return ggml_mul_impl(ctx, a, b, false);
  3925. }
  3926. struct ggml_tensor * ggml_mul_inplace(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a,
  3929. struct ggml_tensor * b) {
  3930. return ggml_mul_impl(ctx, a, b, true);
  3931. }
  3932. // ggml_div
  3933. static struct ggml_tensor * ggml_div_impl(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. struct ggml_tensor * b,
  3937. bool inplace) {
  3938. GGML_ASSERT(ggml_can_repeat(b, a));
  3939. bool is_node = false;
  3940. if (!inplace && (a->grad || b->grad)) {
  3941. is_node = true;
  3942. }
  3943. if (inplace) {
  3944. GGML_ASSERT(!is_node);
  3945. }
  3946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3947. result->op = GGML_OP_DIV;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src[0] = a;
  3950. result->src[1] = b;
  3951. return result;
  3952. }
  3953. struct ggml_tensor * ggml_div(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b) {
  3957. return ggml_div_impl(ctx, a, b, false);
  3958. }
  3959. struct ggml_tensor * ggml_div_inplace(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b) {
  3963. return ggml_div_impl(ctx, a, b, true);
  3964. }
  3965. // ggml_sqr
  3966. static struct ggml_tensor * ggml_sqr_impl(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. bool inplace) {
  3970. bool is_node = false;
  3971. if (!inplace && (a->grad)) {
  3972. is_node = true;
  3973. }
  3974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3975. result->op = GGML_OP_SQR;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_sqr(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_sqr_impl(ctx, a, false);
  3984. }
  3985. struct ggml_tensor * ggml_sqr_inplace(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_sqr_impl(ctx, a, true);
  3989. }
  3990. // ggml_sqrt
  3991. static struct ggml_tensor * ggml_sqrt_impl(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. bool inplace) {
  3995. bool is_node = false;
  3996. if (!inplace && (a->grad)) {
  3997. is_node = true;
  3998. }
  3999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4000. result->op = GGML_OP_SQRT;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_sqrt(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a) {
  4008. return ggml_sqrt_impl(ctx, a, false);
  4009. }
  4010. struct ggml_tensor * ggml_sqrt_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a) {
  4013. return ggml_sqrt_impl(ctx, a, true);
  4014. }
  4015. // ggml_log
  4016. static struct ggml_tensor * ggml_log_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. bool inplace) {
  4020. bool is_node = false;
  4021. if (!inplace && (a->grad)) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4025. result->op = GGML_OP_LOG;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src[0] = a;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_log(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_log_impl(ctx, a, false);
  4034. }
  4035. struct ggml_tensor * ggml_log_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. return ggml_log_impl(ctx, a, true);
  4039. }
  4040. // ggml_sum
  4041. struct ggml_tensor * ggml_sum(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. bool is_node = false;
  4045. if (a->grad) {
  4046. is_node = true;
  4047. }
  4048. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4049. result->op = GGML_OP_SUM;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src[0] = a;
  4052. return result;
  4053. }
  4054. // ggml_sum_rows
  4055. struct ggml_tensor * ggml_sum_rows(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a) {
  4058. bool is_node = false;
  4059. if (a->grad) {
  4060. is_node = true;
  4061. }
  4062. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4063. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4064. ne[i] = a->ne[i];
  4065. }
  4066. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4067. result->op = GGML_OP_SUM_ROWS;
  4068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4069. result->src[0] = a;
  4070. return result;
  4071. }
  4072. // ggml_mean
  4073. struct ggml_tensor * ggml_mean(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a) {
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. GGML_ASSERT(false); // TODO: implement
  4079. is_node = true;
  4080. }
  4081. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4082. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4083. result->op = GGML_OP_MEAN;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. return result;
  4087. }
  4088. // ggml_argmax
  4089. struct ggml_tensor * ggml_argmax(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. GGML_ASSERT(ggml_is_matrix(a));
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. GGML_ASSERT(false);
  4096. is_node = true;
  4097. }
  4098. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4099. result->op = GGML_OP_ARGMAX;
  4100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4101. result->src[0] = a;
  4102. return result;
  4103. }
  4104. // ggml_repeat
  4105. struct ggml_tensor * ggml_repeat(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b) {
  4109. GGML_ASSERT(ggml_can_repeat(a, b));
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4115. result->op = GGML_OP_REPEAT;
  4116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4117. result->src[0] = a;
  4118. return result;
  4119. }
  4120. // ggml_repeat_back
  4121. struct ggml_tensor * ggml_repeat_back(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b) {
  4125. GGML_ASSERT(ggml_can_repeat(b, a));
  4126. bool is_node = false;
  4127. if (a->grad) {
  4128. is_node = true;
  4129. }
  4130. if (ggml_are_same_shape(a, b) && !is_node) {
  4131. return a;
  4132. }
  4133. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4134. result->op = GGML_OP_REPEAT_BACK;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. return result;
  4138. }
  4139. // ggml_concat
  4140. struct ggml_tensor * ggml_concat(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. struct ggml_tensor * b,
  4144. int dim) {
  4145. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4146. int64_t ne[GGML_MAX_DIMS];
  4147. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4148. if (d == dim) {
  4149. ne[d] = a->ne[d] + b->ne[d];
  4150. continue;
  4151. }
  4152. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4153. ne[d] = a->ne[d];
  4154. }
  4155. bool is_node = false;
  4156. if (a->grad || b->grad) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4160. ggml_set_op_params_i32(result, 0, dim);
  4161. result->op = GGML_OP_CONCAT;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src[0] = a;
  4164. result->src[1] = b;
  4165. return result;
  4166. }
  4167. // ggml_abs
  4168. struct ggml_tensor * ggml_abs(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4172. }
  4173. struct ggml_tensor * ggml_abs_inplace(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a) {
  4176. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4177. }
  4178. // ggml_sgn
  4179. struct ggml_tensor * ggml_sgn(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4183. }
  4184. struct ggml_tensor * ggml_sgn_inplace(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a) {
  4187. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4188. }
  4189. // ggml_neg
  4190. struct ggml_tensor * ggml_neg(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a) {
  4193. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4194. }
  4195. struct ggml_tensor * ggml_neg_inplace(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a) {
  4198. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4199. }
  4200. // ggml_step
  4201. struct ggml_tensor * ggml_step(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4205. }
  4206. struct ggml_tensor * ggml_step_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4210. }
  4211. // ggml_tanh
  4212. struct ggml_tensor * ggml_tanh(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4216. }
  4217. struct ggml_tensor * ggml_tanh_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4221. }
  4222. // ggml_elu
  4223. struct ggml_tensor * ggml_elu(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4227. }
  4228. struct ggml_tensor * ggml_elu_inplace(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4232. }
  4233. // ggml_relu
  4234. struct ggml_tensor * ggml_relu(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a) {
  4237. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4238. }
  4239. struct ggml_tensor * ggml_relu_inplace(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4243. }
  4244. // ggml_leaky_relu
  4245. struct ggml_tensor * ggml_leaky_relu(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4248. bool is_node = false;
  4249. if (!inplace && (a->grad)) {
  4250. is_node = true;
  4251. }
  4252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4253. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4254. result->op = GGML_OP_LEAKY_RELU;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src[0] = a;
  4257. return result;
  4258. }
  4259. // ggml_sigmoid
  4260. struct ggml_tensor * ggml_sigmoid(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4264. }
  4265. struct ggml_tensor * ggml_sigmoid_inplace(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4269. }
  4270. // ggml_gelu
  4271. struct ggml_tensor * ggml_gelu(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4275. }
  4276. struct ggml_tensor * ggml_gelu_inplace(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4280. }
  4281. // ggml_gelu_quick
  4282. struct ggml_tensor * ggml_gelu_quick(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4286. }
  4287. struct ggml_tensor * ggml_gelu_quick_inplace(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4291. }
  4292. // ggml_silu
  4293. struct ggml_tensor * ggml_silu(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4297. }
  4298. struct ggml_tensor * ggml_silu_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4302. }
  4303. // ggml_silu_back
  4304. struct ggml_tensor * ggml_silu_back(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. bool is_node = false;
  4309. if (a->grad || b->grad) {
  4310. // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4314. result->op = GGML_OP_SILU_BACK;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src[0] = a;
  4317. result->src[1] = b;
  4318. return result;
  4319. }
  4320. // ggml hardswish
  4321. struct ggml_tensor * ggml_hardswish(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a) {
  4324. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4325. }
  4326. // ggml hardsigmoid
  4327. struct ggml_tensor * ggml_hardsigmoid(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a) {
  4330. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4331. }
  4332. // ggml_norm
  4333. static struct ggml_tensor * ggml_norm_impl(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. float eps,
  4337. bool inplace) {
  4338. bool is_node = false;
  4339. if (!inplace && (a->grad)) {
  4340. GGML_ASSERT(false); // TODO: implement backward
  4341. is_node = true;
  4342. }
  4343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4344. ggml_set_op_params(result, &eps, sizeof(eps));
  4345. result->op = GGML_OP_NORM;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src[0] = a;
  4348. return result;
  4349. }
  4350. struct ggml_tensor * ggml_norm(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. float eps) {
  4354. return ggml_norm_impl(ctx, a, eps, false);
  4355. }
  4356. struct ggml_tensor * ggml_norm_inplace(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a,
  4359. float eps) {
  4360. return ggml_norm_impl(ctx, a, eps, true);
  4361. }
  4362. // ggml_rms_norm
  4363. static struct ggml_tensor * ggml_rms_norm_impl(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. float eps,
  4367. bool inplace) {
  4368. bool is_node = false;
  4369. if (!inplace && (a->grad)) {
  4370. is_node = true;
  4371. }
  4372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4373. ggml_set_op_params(result, &eps, sizeof(eps));
  4374. result->op = GGML_OP_RMS_NORM;
  4375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4376. result->src[0] = a;
  4377. return result;
  4378. }
  4379. struct ggml_tensor * ggml_rms_norm(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. float eps) {
  4383. return ggml_rms_norm_impl(ctx, a, eps, false);
  4384. }
  4385. struct ggml_tensor * ggml_rms_norm_inplace(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. float eps) {
  4389. return ggml_rms_norm_impl(ctx, a, eps, true);
  4390. }
  4391. // ggml_rms_norm_back
  4392. struct ggml_tensor * ggml_rms_norm_back(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. float eps) {
  4397. bool is_node = false;
  4398. if (a->grad) {
  4399. // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4403. ggml_set_op_params(result, &eps, sizeof(eps));
  4404. result->op = GGML_OP_RMS_NORM_BACK;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src[0] = a;
  4407. result->src[1] = b;
  4408. return result;
  4409. }
  4410. // ggml_group_norm
  4411. static struct ggml_tensor * ggml_group_norm_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. int n_groups,
  4415. bool inplace) {
  4416. bool is_node = false;
  4417. if (!inplace && (a->grad)) {
  4418. GGML_ASSERT(false); // TODO: implement backward
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op_params[0] = n_groups;
  4423. result->op = GGML_OP_GROUP_NORM;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src[0] = a;
  4426. return result;
  4427. }
  4428. struct ggml_tensor * ggml_group_norm(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. int n_groups) {
  4432. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4433. }
  4434. struct ggml_tensor * ggml_group_norm_inplace(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. int n_groups) {
  4438. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4439. }
  4440. // ggml_mul_mat
  4441. struct ggml_tensor * ggml_mul_mat(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. struct ggml_tensor * b) {
  4445. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4446. GGML_ASSERT(!ggml_is_transposed(a));
  4447. bool is_node = false;
  4448. if (a->grad || b->grad) {
  4449. is_node = true;
  4450. }
  4451. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4452. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4453. result->op = GGML_OP_MUL_MAT;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src[0] = a;
  4456. result->src[1] = b;
  4457. return result;
  4458. }
  4459. void ggml_mul_mat_set_prec(
  4460. struct ggml_tensor * a,
  4461. enum ggml_prec prec) {
  4462. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4463. const int32_t prec_i32 = (int32_t) prec;
  4464. ggml_set_op_params_i32(a, 0, prec_i32);
  4465. }
  4466. // ggml_mul_mat_id
  4467. /*
  4468. c = ggml_mul_mat_id(ctx, as, b, ids);
  4469. as -> [cols, rows, n_expert]
  4470. ids -> [n_experts_used, n_tokens] (i32)
  4471. b -> [cols, n_expert_used, n_tokens]
  4472. c -> [cols, n_expert_used, n_tokens]
  4473. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4474. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4475. */
  4476. struct ggml_tensor * ggml_mul_mat_id(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * as,
  4479. struct ggml_tensor * b,
  4480. struct ggml_tensor * ids) {
  4481. GGML_ASSERT(!ggml_is_transposed(as));
  4482. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4483. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4484. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4485. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4486. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4487. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4488. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4489. bool is_node = false;
  4490. if (as->grad || b->grad) {
  4491. is_node = true;
  4492. }
  4493. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4494. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4495. result->op = GGML_OP_MUL_MAT_ID;
  4496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4497. result->src[0] = as;
  4498. result->src[1] = b;
  4499. result->src[2] = ids;
  4500. return result;
  4501. }
  4502. // ggml_out_prod
  4503. struct ggml_tensor * ggml_out_prod(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. GGML_ASSERT(ggml_can_out_prod(a, b));
  4508. GGML_ASSERT(!ggml_is_transposed(a));
  4509. bool is_node = false;
  4510. if (a->grad || b->grad) {
  4511. is_node = true;
  4512. }
  4513. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4514. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4516. result->op = GGML_OP_OUT_PROD;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src[0] = a;
  4519. result->src[1] = b;
  4520. return result;
  4521. }
  4522. // ggml_scale
  4523. static struct ggml_tensor * ggml_scale_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. float s,
  4527. bool inplace) {
  4528. GGML_ASSERT(ggml_is_padded_1d(a));
  4529. bool is_node = false;
  4530. if (a->grad) {
  4531. is_node = true;
  4532. }
  4533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4534. ggml_set_op_params(result, &s, sizeof(s));
  4535. result->op = GGML_OP_SCALE;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src[0] = a;
  4538. return result;
  4539. }
  4540. struct ggml_tensor * ggml_scale(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. float s) {
  4544. return ggml_scale_impl(ctx, a, s, false);
  4545. }
  4546. struct ggml_tensor * ggml_scale_inplace(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. float s) {
  4550. return ggml_scale_impl(ctx, a, s, true);
  4551. }
  4552. // ggml_set
  4553. static struct ggml_tensor * ggml_set_impl(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. struct ggml_tensor * b,
  4557. size_t nb1,
  4558. size_t nb2,
  4559. size_t nb3,
  4560. size_t offset,
  4561. bool inplace) {
  4562. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4563. bool is_node = false;
  4564. if (a->grad || b->grad) {
  4565. is_node = true;
  4566. }
  4567. // make a view of the destination
  4568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4569. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4570. ggml_set_op_params(result, params, sizeof(params));
  4571. result->op = GGML_OP_SET;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src[0] = a;
  4574. result->src[1] = b;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_set(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. struct ggml_tensor * b,
  4581. size_t nb1,
  4582. size_t nb2,
  4583. size_t nb3,
  4584. size_t offset) {
  4585. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4586. }
  4587. struct ggml_tensor * ggml_set_inplace(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. size_t nb1,
  4592. size_t nb2,
  4593. size_t nb3,
  4594. size_t offset) {
  4595. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4596. }
  4597. struct ggml_tensor * ggml_set_1d(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a,
  4600. struct ggml_tensor * b,
  4601. size_t offset) {
  4602. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4603. }
  4604. struct ggml_tensor * ggml_set_1d_inplace(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4610. }
  4611. struct ggml_tensor * ggml_set_2d(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. struct ggml_tensor * b,
  4615. size_t nb1,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4618. }
  4619. struct ggml_tensor * ggml_set_2d_inplace(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b,
  4623. size_t nb1,
  4624. size_t offset) {
  4625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4626. }
  4627. // ggml_cpy
  4628. static struct ggml_tensor * ggml_cpy_impl(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b) {
  4632. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4633. bool is_node = false;
  4634. if (a->grad || b->grad) {
  4635. // inplace is false and either one have a grad
  4636. is_node = true;
  4637. }
  4638. // make a view of the destination
  4639. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4640. if (strlen(b->name) > 0) {
  4641. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4642. } else {
  4643. ggml_format_name(result, "%s (copy)", a->name);
  4644. }
  4645. result->op = GGML_OP_CPY;
  4646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4647. result->src[0] = a;
  4648. result->src[1] = b;
  4649. return result;
  4650. }
  4651. struct ggml_tensor * ggml_cpy(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a,
  4654. struct ggml_tensor * b) {
  4655. return ggml_cpy_impl(ctx, a, b);
  4656. }
  4657. struct ggml_tensor * ggml_cast(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. enum ggml_type type) {
  4661. bool is_node = false;
  4662. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4663. ggml_format_name(result, "%s (copy)", a->name);
  4664. result->op = GGML_OP_CPY;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. result->src[1] = result;
  4668. return result;
  4669. }
  4670. // ggml_cont
  4671. static struct ggml_tensor * ggml_cont_impl(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a) {
  4674. bool is_node = false;
  4675. if (a->grad) {
  4676. is_node = true;
  4677. }
  4678. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4679. ggml_format_name(result, "%s (cont)", a->name);
  4680. result->op = GGML_OP_CONT;
  4681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4682. result->src[0] = a;
  4683. return result;
  4684. }
  4685. struct ggml_tensor * ggml_cont(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a) {
  4688. return ggml_cont_impl(ctx, a);
  4689. }
  4690. // make contiguous, with new shape
  4691. GGML_API struct ggml_tensor * ggml_cont_1d(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. int64_t ne0) {
  4695. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4696. }
  4697. GGML_API struct ggml_tensor * ggml_cont_2d(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. int64_t ne0,
  4701. int64_t ne1) {
  4702. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4703. }
  4704. GGML_API struct ggml_tensor * ggml_cont_3d(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. int64_t ne0,
  4708. int64_t ne1,
  4709. int64_t ne2) {
  4710. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4711. }
  4712. struct ggml_tensor * ggml_cont_4d(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. int64_t ne0,
  4716. int64_t ne1,
  4717. int64_t ne2,
  4718. int64_t ne3) {
  4719. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4720. bool is_node = false;
  4721. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4722. ggml_format_name(result, "%s (cont)", a->name);
  4723. result->op = GGML_OP_CONT;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src[0] = a;
  4726. return result;
  4727. }
  4728. // ggml_reshape
  4729. struct ggml_tensor * ggml_reshape(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. struct ggml_tensor * b) {
  4733. GGML_ASSERT(ggml_is_contiguous(a));
  4734. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4735. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4736. bool is_node = false;
  4737. if (a->grad) {
  4738. is_node = true;
  4739. }
  4740. if (b->grad) {
  4741. // gradient propagation is not supported
  4742. //GGML_ASSERT(false);
  4743. }
  4744. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4745. ggml_format_name(result, "%s (reshaped)", a->name);
  4746. result->op = GGML_OP_RESHAPE;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src[0] = a;
  4749. return result;
  4750. }
  4751. struct ggml_tensor * ggml_reshape_1d(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. int64_t ne0) {
  4755. GGML_ASSERT(ggml_is_contiguous(a));
  4756. GGML_ASSERT(ggml_nelements(a) == ne0);
  4757. bool is_node = false;
  4758. if (a->grad) {
  4759. is_node = true;
  4760. }
  4761. const int64_t ne[1] = { ne0 };
  4762. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4763. ggml_format_name(result, "%s (reshaped)", a->name);
  4764. result->op = GGML_OP_RESHAPE;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. return result;
  4768. }
  4769. struct ggml_tensor * ggml_reshape_2d(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int64_t ne0,
  4773. int64_t ne1) {
  4774. GGML_ASSERT(ggml_is_contiguous(a));
  4775. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4776. bool is_node = false;
  4777. if (a->grad) {
  4778. is_node = true;
  4779. }
  4780. const int64_t ne[2] = { ne0, ne1 };
  4781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4782. ggml_format_name(result, "%s (reshaped)", a->name);
  4783. result->op = GGML_OP_RESHAPE;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. return result;
  4787. }
  4788. struct ggml_tensor * ggml_reshape_3d(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. int64_t ne0,
  4792. int64_t ne1,
  4793. int64_t ne2) {
  4794. GGML_ASSERT(ggml_is_contiguous(a));
  4795. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4796. bool is_node = false;
  4797. if (a->grad) {
  4798. is_node = true;
  4799. }
  4800. const int64_t ne[3] = { ne0, ne1, ne2 };
  4801. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4802. ggml_format_name(result, "%s (reshaped)", a->name);
  4803. result->op = GGML_OP_RESHAPE;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. return result;
  4807. }
  4808. struct ggml_tensor * ggml_reshape_4d(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int64_t ne0,
  4812. int64_t ne1,
  4813. int64_t ne2,
  4814. int64_t ne3) {
  4815. GGML_ASSERT(ggml_is_contiguous(a));
  4816. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4817. bool is_node = false;
  4818. if (a->grad) {
  4819. is_node = true;
  4820. }
  4821. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4822. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4823. ggml_format_name(result, "%s (reshaped)", a->name);
  4824. result->op = GGML_OP_RESHAPE;
  4825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4826. result->src[0] = a;
  4827. return result;
  4828. }
  4829. static struct ggml_tensor * ggml_view_impl(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. int n_dims,
  4833. const int64_t * ne,
  4834. size_t offset) {
  4835. bool is_node = false;
  4836. if (a->grad) {
  4837. is_node = true;
  4838. }
  4839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4840. ggml_format_name(result, "%s (view)", a->name);
  4841. ggml_set_op_params(result, &offset, sizeof(offset));
  4842. result->op = GGML_OP_VIEW;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src[0] = a;
  4845. return result;
  4846. }
  4847. // ggml_view_1d
  4848. struct ggml_tensor * ggml_view_1d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int64_t ne0,
  4852. size_t offset) {
  4853. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4854. return result;
  4855. }
  4856. // ggml_view_2d
  4857. struct ggml_tensor * ggml_view_2d(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. int64_t ne0,
  4861. int64_t ne1,
  4862. size_t nb1,
  4863. size_t offset) {
  4864. const int64_t ne[2] = { ne0, ne1 };
  4865. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4866. result->nb[1] = nb1;
  4867. result->nb[2] = result->nb[1]*ne1;
  4868. result->nb[3] = result->nb[2];
  4869. return result;
  4870. }
  4871. // ggml_view_3d
  4872. struct ggml_tensor * ggml_view_3d(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. int64_t ne0,
  4876. int64_t ne1,
  4877. int64_t ne2,
  4878. size_t nb1,
  4879. size_t nb2,
  4880. size_t offset) {
  4881. const int64_t ne[3] = { ne0, ne1, ne2 };
  4882. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4883. result->nb[1] = nb1;
  4884. result->nb[2] = nb2;
  4885. result->nb[3] = result->nb[2]*ne2;
  4886. return result;
  4887. }
  4888. // ggml_view_4d
  4889. struct ggml_tensor * ggml_view_4d(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. int64_t ne0,
  4893. int64_t ne1,
  4894. int64_t ne2,
  4895. int64_t ne3,
  4896. size_t nb1,
  4897. size_t nb2,
  4898. size_t nb3,
  4899. size_t offset) {
  4900. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4901. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4902. result->nb[1] = nb1;
  4903. result->nb[2] = nb2;
  4904. result->nb[3] = nb3;
  4905. return result;
  4906. }
  4907. // ggml_permute
  4908. struct ggml_tensor * ggml_permute(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int axis0,
  4912. int axis1,
  4913. int axis2,
  4914. int axis3) {
  4915. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4916. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4917. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4918. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4919. GGML_ASSERT(axis0 != axis1);
  4920. GGML_ASSERT(axis0 != axis2);
  4921. GGML_ASSERT(axis0 != axis3);
  4922. GGML_ASSERT(axis1 != axis2);
  4923. GGML_ASSERT(axis1 != axis3);
  4924. GGML_ASSERT(axis2 != axis3);
  4925. bool is_node = false;
  4926. if (a->grad) {
  4927. is_node = true;
  4928. }
  4929. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4930. ggml_format_name(result, "%s (permuted)", a->name);
  4931. int ne[GGML_MAX_DIMS];
  4932. int nb[GGML_MAX_DIMS];
  4933. ne[axis0] = a->ne[0];
  4934. ne[axis1] = a->ne[1];
  4935. ne[axis2] = a->ne[2];
  4936. ne[axis3] = a->ne[3];
  4937. nb[axis0] = a->nb[0];
  4938. nb[axis1] = a->nb[1];
  4939. nb[axis2] = a->nb[2];
  4940. nb[axis3] = a->nb[3];
  4941. result->ne[0] = ne[0];
  4942. result->ne[1] = ne[1];
  4943. result->ne[2] = ne[2];
  4944. result->ne[3] = ne[3];
  4945. result->nb[0] = nb[0];
  4946. result->nb[1] = nb[1];
  4947. result->nb[2] = nb[2];
  4948. result->nb[3] = nb[3];
  4949. result->op = GGML_OP_PERMUTE;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4953. ggml_set_op_params(result, params, sizeof(params));
  4954. return result;
  4955. }
  4956. // ggml_transpose
  4957. struct ggml_tensor * ggml_transpose(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a) {
  4960. bool is_node = false;
  4961. if (a->grad) {
  4962. is_node = true;
  4963. }
  4964. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4965. ggml_format_name(result, "%s (transposed)", a->name);
  4966. result->ne[0] = a->ne[1];
  4967. result->ne[1] = a->ne[0];
  4968. result->nb[0] = a->nb[1];
  4969. result->nb[1] = a->nb[0];
  4970. result->op = GGML_OP_TRANSPOSE;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src[0] = a;
  4973. return result;
  4974. }
  4975. // ggml_get_rows
  4976. struct ggml_tensor * ggml_get_rows(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b) {
  4980. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4981. GGML_ASSERT(b->ne[3] == 1);
  4982. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4983. bool is_node = false;
  4984. if (a->grad || b->grad) {
  4985. is_node = true;
  4986. }
  4987. // TODO: implement non F32 return
  4988. enum ggml_type type = GGML_TYPE_F32;
  4989. if (a->type == GGML_TYPE_I32) {
  4990. type = a->type;
  4991. }
  4992. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4993. result->op = GGML_OP_GET_ROWS;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. result->src[1] = b;
  4997. return result;
  4998. }
  4999. // ggml_get_rows_back
  5000. struct ggml_tensor * ggml_get_rows_back(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * b,
  5004. struct ggml_tensor * c) {
  5005. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5006. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5007. bool is_node = false;
  5008. if (a->grad || b->grad) {
  5009. is_node = true;
  5010. }
  5011. // TODO: implement non F32 return
  5012. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5013. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5014. result->op = GGML_OP_GET_ROWS_BACK;
  5015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5016. result->src[0] = a;
  5017. result->src[1] = b;
  5018. return result;
  5019. }
  5020. // ggml_diag
  5021. struct ggml_tensor * ggml_diag(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a) {
  5024. GGML_ASSERT(a->ne[1] == 1);
  5025. bool is_node = false;
  5026. if (a->grad) {
  5027. is_node = true;
  5028. }
  5029. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5030. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5031. result->op = GGML_OP_DIAG;
  5032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5033. result->src[0] = a;
  5034. return result;
  5035. }
  5036. // ggml_diag_mask_inf
  5037. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. int n_past,
  5041. bool inplace) {
  5042. bool is_node = false;
  5043. if (a->grad) {
  5044. is_node = true;
  5045. }
  5046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5047. int32_t params[] = { n_past };
  5048. ggml_set_op_params(result, params, sizeof(params));
  5049. result->op = GGML_OP_DIAG_MASK_INF;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_diag_mask_inf(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. int n_past) {
  5058. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5059. }
  5060. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a,
  5063. int n_past) {
  5064. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5065. }
  5066. // ggml_diag_mask_zero
  5067. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int n_past,
  5071. bool inplace) {
  5072. bool is_node = false;
  5073. if (a->grad) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. int32_t params[] = { n_past };
  5078. ggml_set_op_params(result, params, sizeof(params));
  5079. result->op = GGML_OP_DIAG_MASK_ZERO;
  5080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5081. result->src[0] = a;
  5082. return result;
  5083. }
  5084. struct ggml_tensor * ggml_diag_mask_zero(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * a,
  5087. int n_past) {
  5088. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5089. }
  5090. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. int n_past) {
  5094. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5095. }
  5096. // ggml_soft_max
  5097. static struct ggml_tensor * ggml_soft_max_impl(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * mask,
  5101. float scale,
  5102. float max_bias,
  5103. bool inplace) {
  5104. GGML_ASSERT(ggml_is_contiguous(a));
  5105. if (mask) {
  5106. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5107. GGML_ASSERT(ggml_is_contiguous(mask));
  5108. GGML_ASSERT(ggml_is_matrix(mask));
  5109. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5110. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5111. }
  5112. if (max_bias > 0.0f) {
  5113. GGML_ASSERT(mask);
  5114. }
  5115. bool is_node = false;
  5116. if (a->grad) {
  5117. is_node = true;
  5118. }
  5119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5120. float params[] = { scale, max_bias };
  5121. ggml_set_op_params(result, params, sizeof(params));
  5122. result->op = GGML_OP_SOFT_MAX;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = mask;
  5126. return result;
  5127. }
  5128. struct ggml_tensor * ggml_soft_max(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a) {
  5131. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5132. }
  5133. struct ggml_tensor * ggml_soft_max_inplace(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a) {
  5136. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5137. }
  5138. struct ggml_tensor * ggml_soft_max_ext(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * mask,
  5142. float scale,
  5143. float max_bias) {
  5144. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5145. }
  5146. // ggml_soft_max_back
  5147. static struct ggml_tensor * ggml_soft_max_back_impl(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. bool inplace) {
  5152. bool is_node = false;
  5153. if (a->grad || b->grad) {
  5154. is_node = true; // TODO : implement backward pass
  5155. }
  5156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5157. result->op = GGML_OP_SOFT_MAX_BACK;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = a;
  5160. result->src[1] = b;
  5161. return result;
  5162. }
  5163. struct ggml_tensor * ggml_soft_max_back(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b) {
  5167. return ggml_soft_max_back_impl(ctx, a, b, false);
  5168. }
  5169. struct ggml_tensor * ggml_soft_max_back_inplace(
  5170. struct ggml_context * ctx,
  5171. struct ggml_tensor * a,
  5172. struct ggml_tensor * b) {
  5173. return ggml_soft_max_back_impl(ctx, a, b, true);
  5174. }
  5175. // ggml_rope
  5176. static struct ggml_tensor * ggml_rope_impl(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. struct ggml_tensor * b,
  5180. struct ggml_tensor * c,
  5181. int n_dims,
  5182. int mode,
  5183. int n_ctx_orig,
  5184. float freq_base,
  5185. float freq_scale,
  5186. float ext_factor,
  5187. float attn_factor,
  5188. float beta_fast,
  5189. float beta_slow,
  5190. bool inplace) {
  5191. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5192. GGML_ASSERT(ggml_is_vector(b));
  5193. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5194. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5195. if (c) {
  5196. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5197. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5198. }
  5199. bool is_node = false;
  5200. if (a->grad) {
  5201. is_node = true;
  5202. }
  5203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5204. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5205. memcpy(params + 5, &freq_base, sizeof(float));
  5206. memcpy(params + 6, &freq_scale, sizeof(float));
  5207. memcpy(params + 7, &ext_factor, sizeof(float));
  5208. memcpy(params + 8, &attn_factor, sizeof(float));
  5209. memcpy(params + 9, &beta_fast, sizeof(float));
  5210. memcpy(params + 10, &beta_slow, sizeof(float));
  5211. ggml_set_op_params(result, params, sizeof(params));
  5212. result->op = GGML_OP_ROPE;
  5213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5214. result->src[0] = a;
  5215. result->src[1] = b;
  5216. result->src[2] = c;
  5217. return result;
  5218. }
  5219. struct ggml_tensor * ggml_rope(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * b,
  5223. int n_dims,
  5224. int mode) {
  5225. return ggml_rope_impl(
  5226. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5227. );
  5228. }
  5229. struct ggml_tensor * ggml_rope_inplace(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * b,
  5233. int n_dims,
  5234. int mode) {
  5235. return ggml_rope_impl(
  5236. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5237. );
  5238. }
  5239. struct ggml_tensor * ggml_rope_ext(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. struct ggml_tensor * b,
  5243. struct ggml_tensor * c,
  5244. int n_dims,
  5245. int mode,
  5246. int n_ctx_orig,
  5247. float freq_base,
  5248. float freq_scale,
  5249. float ext_factor,
  5250. float attn_factor,
  5251. float beta_fast,
  5252. float beta_slow) {
  5253. return ggml_rope_impl(
  5254. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5255. ext_factor, attn_factor, beta_fast, beta_slow, false
  5256. );
  5257. }
  5258. struct ggml_tensor * ggml_rope_ext_inplace(
  5259. struct ggml_context * ctx,
  5260. struct ggml_tensor * a,
  5261. struct ggml_tensor * b,
  5262. struct ggml_tensor * c,
  5263. int n_dims,
  5264. int mode,
  5265. int n_ctx_orig,
  5266. float freq_base,
  5267. float freq_scale,
  5268. float ext_factor,
  5269. float attn_factor,
  5270. float beta_fast,
  5271. float beta_slow) {
  5272. return ggml_rope_impl(
  5273. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5274. ext_factor, attn_factor, beta_fast, beta_slow, true
  5275. );
  5276. }
  5277. struct ggml_tensor * ggml_rope_custom(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. struct ggml_tensor * b,
  5281. int n_dims,
  5282. int mode,
  5283. int n_ctx_orig,
  5284. float freq_base,
  5285. float freq_scale,
  5286. float ext_factor,
  5287. float attn_factor,
  5288. float beta_fast,
  5289. float beta_slow) {
  5290. return ggml_rope_impl(
  5291. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5292. ext_factor, attn_factor, beta_fast, beta_slow, false
  5293. );
  5294. }
  5295. struct ggml_tensor * ggml_rope_custom_inplace(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. struct ggml_tensor * b,
  5299. int n_dims,
  5300. int mode,
  5301. int n_ctx_orig,
  5302. float freq_base,
  5303. float freq_scale,
  5304. float ext_factor,
  5305. float attn_factor,
  5306. float beta_fast,
  5307. float beta_slow) {
  5308. return ggml_rope_impl(
  5309. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5310. ext_factor, attn_factor, beta_fast, beta_slow, true
  5311. );
  5312. }
  5313. // ggml_rope_back
  5314. struct ggml_tensor * ggml_rope_back(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. struct ggml_tensor * b,
  5318. struct ggml_tensor * c,
  5319. int n_dims,
  5320. int mode,
  5321. int n_ctx_orig,
  5322. float freq_base,
  5323. float freq_scale,
  5324. float ext_factor,
  5325. float attn_factor,
  5326. float beta_fast,
  5327. float beta_slow) {
  5328. GGML_ASSERT(ggml_is_vector(b));
  5329. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5330. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5331. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5332. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5333. bool is_node = false;
  5334. if (a->grad) {
  5335. is_node = false; // TODO: implement backward
  5336. }
  5337. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5338. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5339. memcpy(params + 5, &freq_base, sizeof(float));
  5340. memcpy(params + 6, &freq_scale, sizeof(float));
  5341. memcpy(params + 7, &ext_factor, sizeof(float));
  5342. memcpy(params + 8, &attn_factor, sizeof(float));
  5343. memcpy(params + 9, &beta_fast, sizeof(float));
  5344. memcpy(params + 10, &beta_slow, sizeof(float));
  5345. ggml_set_op_params(result, params, sizeof(params));
  5346. result->op = GGML_OP_ROPE_BACK;
  5347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5348. result->src[0] = a;
  5349. result->src[1] = b;
  5350. return result;
  5351. }
  5352. // ggml_clamp
  5353. struct ggml_tensor * ggml_clamp(
  5354. struct ggml_context * ctx,
  5355. struct ggml_tensor * a,
  5356. float min,
  5357. float max) {
  5358. bool is_node = false;
  5359. if (a->grad) {
  5360. GGML_ASSERT(false); // TODO: implement backward
  5361. is_node = true;
  5362. }
  5363. // TODO: when implement backward, fix this:
  5364. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5365. float params[] = { min, max };
  5366. ggml_set_op_params(result, params, sizeof(params));
  5367. result->op = GGML_OP_CLAMP;
  5368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5369. result->src[0] = a;
  5370. return result;
  5371. }
  5372. // ggml_conv_1d
  5373. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5374. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5375. }
  5376. GGML_API struct ggml_tensor * ggml_conv_1d(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b,
  5380. int s0,
  5381. int p0,
  5382. int d0) {
  5383. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5384. struct ggml_tensor * result =
  5385. ggml_mul_mat(ctx,
  5386. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5387. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5388. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5389. return result;
  5390. }
  5391. // ggml_conv_1d_ph
  5392. struct ggml_tensor* ggml_conv_1d_ph(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. struct ggml_tensor * b,
  5396. int s,
  5397. int d) {
  5398. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5399. }
  5400. // ggml_conv_transpose_1d
  5401. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5402. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5403. }
  5404. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. struct ggml_tensor * b,
  5408. int s0,
  5409. int p0,
  5410. int d0) {
  5411. GGML_ASSERT(ggml_is_matrix(b));
  5412. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5413. GGML_ASSERT(a->ne[3] == 1);
  5414. GGML_ASSERT(p0 == 0);
  5415. GGML_ASSERT(d0 == 1);
  5416. bool is_node = false;
  5417. if (a->grad || b->grad) {
  5418. GGML_ASSERT(false); // TODO: implement backward
  5419. is_node = true;
  5420. }
  5421. const int64_t ne[4] = {
  5422. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5423. a->ne[1], b->ne[2], 1,
  5424. };
  5425. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5426. int32_t params[] = { s0, p0, d0 };
  5427. ggml_set_op_params(result, params, sizeof(params));
  5428. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5430. result->src[0] = a;
  5431. result->src[1] = b;
  5432. return result;
  5433. }
  5434. // ggml_conv_depthwise
  5435. struct ggml_tensor * ggml_conv_depthwise_2d(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. struct ggml_tensor * b,
  5439. int s0,
  5440. int s1,
  5441. int p0,
  5442. int p1,
  5443. int d0,
  5444. int d1) {
  5445. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5446. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5447. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5448. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5449. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5450. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5451. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5452. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5453. return result;
  5454. }
  5455. // ggml_conv_2d
  5456. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5457. // a: [OC,IC, KH, KW]
  5458. // b: [N, IC, IH, IW]
  5459. // result: [N, OH, OW, IC*KH*KW]
  5460. struct ggml_tensor * ggml_im2col(
  5461. struct ggml_context * ctx,
  5462. struct ggml_tensor * a,
  5463. struct ggml_tensor * b,
  5464. int s0,
  5465. int s1,
  5466. int p0,
  5467. int p1,
  5468. int d0,
  5469. int d1,
  5470. bool is_2D,
  5471. enum ggml_type dst_type) {
  5472. if(is_2D) {
  5473. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5474. } else {
  5475. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5476. }
  5477. bool is_node = false;
  5478. if (a->grad || b->grad) {
  5479. GGML_ASSERT(false); // TODO: implement backward
  5480. is_node = true;
  5481. }
  5482. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5483. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5484. const int64_t ne[4] = {
  5485. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5486. OW,
  5487. is_2D ? OH : b->ne[2],
  5488. is_2D ? b->ne[3] : 1,
  5489. };
  5490. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5491. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5492. ggml_set_op_params(result, params, sizeof(params));
  5493. result->op = GGML_OP_IM2COL;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. result->src[1] = b;
  5497. return result;
  5498. }
  5499. // a: [OC,IC, KH, KW]
  5500. // b: [N, IC, IH, IW]
  5501. // result: [N, OC, OH, OW]
  5502. struct ggml_tensor * ggml_conv_2d(
  5503. struct ggml_context * ctx,
  5504. struct ggml_tensor * a,
  5505. struct ggml_tensor * b,
  5506. int s0,
  5507. int s1,
  5508. int p0,
  5509. int p1,
  5510. int d0,
  5511. int d1) {
  5512. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5513. struct ggml_tensor * result =
  5514. ggml_mul_mat(ctx,
  5515. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5516. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5517. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5518. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5519. return result;
  5520. }
  5521. // ggml_conv_2d_sk_p0
  5522. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5523. struct ggml_context * ctx,
  5524. struct ggml_tensor * a,
  5525. struct ggml_tensor * b) {
  5526. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5527. }
  5528. // ggml_conv_2d_s1_ph
  5529. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b) {
  5533. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5534. }
  5535. // ggml_conv_transpose_2d_p0
  5536. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5537. return (ins - 1) * s - 2 * p + ks;
  5538. }
  5539. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. int stride) {
  5544. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5545. bool is_node = false;
  5546. if (a->grad || b->grad) {
  5547. GGML_ASSERT(false); // TODO: implement backward
  5548. is_node = true;
  5549. }
  5550. const int64_t ne[4] = {
  5551. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5552. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5553. a->ne[2], b->ne[3],
  5554. };
  5555. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5556. ggml_set_op_params_i32(result, 0, stride);
  5557. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. result->src[1] = b;
  5561. return result;
  5562. }
  5563. // ggml_pool_*
  5564. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5565. return (ins + 2 * p - ks) / s + 1;
  5566. }
  5567. // ggml_pool_1d
  5568. struct ggml_tensor * ggml_pool_1d(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. enum ggml_op_pool op,
  5572. int k0,
  5573. int s0,
  5574. int p0) {
  5575. bool is_node = false;
  5576. if (a->grad) {
  5577. GGML_ASSERT(false); // TODO: implement backward
  5578. is_node = true;
  5579. }
  5580. const int64_t ne[4] = {
  5581. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5582. a->ne[1],
  5583. a->ne[2],
  5584. a->ne[3],
  5585. };
  5586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5587. int32_t params[] = { op, k0, s0, p0 };
  5588. ggml_set_op_params(result, params, sizeof(params));
  5589. result->op = GGML_OP_POOL_1D;
  5590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5591. result->src[0] = a;
  5592. return result;
  5593. }
  5594. // ggml_pool_2d
  5595. struct ggml_tensor * ggml_pool_2d(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. enum ggml_op_pool op,
  5599. int k0,
  5600. int k1,
  5601. int s0,
  5602. int s1,
  5603. float p0,
  5604. float p1) {
  5605. bool is_node = false;
  5606. if (a->grad) {
  5607. GGML_ASSERT(false); // TODO: implement backward
  5608. is_node = true;
  5609. }
  5610. struct ggml_tensor * result;
  5611. const int64_t ne[3] = {
  5612. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5613. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5614. a->ne[2],
  5615. };
  5616. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5617. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5618. ggml_set_op_params(result, params, sizeof(params));
  5619. result->op = GGML_OP_POOL_2D;
  5620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5621. result->src[0] = a;
  5622. return result;
  5623. }
  5624. // ggml_upscale
  5625. static struct ggml_tensor * ggml_upscale_impl(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. int ne0,
  5629. int ne1,
  5630. int ne2,
  5631. int ne3) {
  5632. bool is_node = false;
  5633. if (a->grad) {
  5634. GGML_ASSERT(false); // TODO: implement backward
  5635. is_node = true;
  5636. }
  5637. GGML_ASSERT(a->ne[0] <= ne0);
  5638. GGML_ASSERT(a->ne[1] <= ne1);
  5639. GGML_ASSERT(a->ne[2] <= ne2);
  5640. GGML_ASSERT(a->ne[3] <= ne3);
  5641. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5642. ne0,
  5643. ne1,
  5644. ne2,
  5645. ne3
  5646. );
  5647. result->op = GGML_OP_UPSCALE;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src[0] = a;
  5650. return result;
  5651. }
  5652. struct ggml_tensor * ggml_upscale(
  5653. struct ggml_context * ctx,
  5654. struct ggml_tensor * a,
  5655. int scale_factor) {
  5656. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5657. }
  5658. struct ggml_tensor * ggml_upscale_ext(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int ne0,
  5662. int ne1,
  5663. int ne2,
  5664. int ne3) {
  5665. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5666. }
  5667. // ggml_pad
  5668. struct ggml_tensor * ggml_pad(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. int p0, int p1, int p2, int p3) {
  5672. bool is_node = false;
  5673. if (a->grad) {
  5674. GGML_ASSERT(false); // TODO: implement backward
  5675. is_node = true;
  5676. }
  5677. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5678. a->ne[0] + p0,
  5679. a->ne[1] + p1,
  5680. a->ne[2] + p2,
  5681. a->ne[3] + p3);
  5682. result->op = GGML_OP_PAD;
  5683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5684. result->src[0] = a;
  5685. return result;
  5686. }
  5687. // ggml_arange
  5688. struct ggml_tensor * ggml_arange(
  5689. struct ggml_context * ctx,
  5690. float start,
  5691. float stop,
  5692. float step) {
  5693. GGML_ASSERT(stop > start);
  5694. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5695. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5696. result->op = GGML_OP_ARANGE;
  5697. ggml_set_op_params_f32(result, 0, start);
  5698. ggml_set_op_params_f32(result, 1, stop);
  5699. ggml_set_op_params_f32(result, 2, step);
  5700. return result;
  5701. }
  5702. // ggml_timestep_embedding
  5703. struct ggml_tensor * ggml_timestep_embedding(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * timesteps,
  5706. int dim,
  5707. int max_period) {
  5708. bool is_node = false;
  5709. if (timesteps->grad) {
  5710. GGML_ASSERT(false); // TODO: implement backward
  5711. is_node = true;
  5712. }
  5713. int actual_dim = dim;
  5714. if (dim % 2 != 0) {
  5715. actual_dim = dim + 1;
  5716. }
  5717. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5718. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5719. ggml_set_op_params_i32(result, 0, dim);
  5720. ggml_set_op_params_i32(result, 1, max_period);
  5721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5722. result->src[0] = timesteps;
  5723. return result;
  5724. }
  5725. // ggml_argsort
  5726. struct ggml_tensor * ggml_argsort(
  5727. struct ggml_context * ctx,
  5728. struct ggml_tensor * a,
  5729. enum ggml_sort_order order) {
  5730. bool is_node = false;
  5731. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5732. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5733. result->op = GGML_OP_ARGSORT;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src[0] = a;
  5736. return result;
  5737. }
  5738. // ggml_top_k
  5739. struct ggml_tensor * ggml_top_k(
  5740. struct ggml_context * ctx,
  5741. struct ggml_tensor * a,
  5742. int k) {
  5743. GGML_ASSERT(a->ne[0] >= k);
  5744. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5745. result = ggml_view_4d(ctx, result,
  5746. k, result->ne[1], result->ne[2], result->ne[3],
  5747. result->nb[1], result->nb[2], result->nb[3],
  5748. 0);
  5749. return result;
  5750. }
  5751. // ggml_flash_attn_ext
  5752. struct ggml_tensor * ggml_flash_attn_ext(
  5753. struct ggml_context * ctx,
  5754. struct ggml_tensor * q,
  5755. struct ggml_tensor * k,
  5756. struct ggml_tensor * v,
  5757. struct ggml_tensor * mask,
  5758. float scale,
  5759. float max_bias) {
  5760. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5761. // TODO: check if vT can be multiplied by (k*qT)
  5762. if (mask) {
  5763. GGML_ASSERT(ggml_is_contiguous(mask));
  5764. GGML_ASSERT(mask->ne[2] == 1);
  5765. GGML_ASSERT(mask->ne[3] == 1);
  5766. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5767. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5768. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5769. }
  5770. if (max_bias > 0.0f) {
  5771. GGML_ASSERT(mask);
  5772. }
  5773. bool is_node = false;
  5774. if (q->grad || k->grad || v->grad) {
  5775. is_node = true;
  5776. }
  5777. // permute(0, 2, 1, 3)
  5778. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5779. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5780. float params[] = { scale, max_bias };
  5781. ggml_set_op_params(result, params, sizeof(params));
  5782. result->op = GGML_OP_FLASH_ATTN_EXT;
  5783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5784. result->src[0] = q;
  5785. result->src[1] = k;
  5786. result->src[2] = v;
  5787. result->src[3] = mask;
  5788. return result;
  5789. }
  5790. void ggml_flash_attn_ext_set_prec(
  5791. struct ggml_tensor * a,
  5792. enum ggml_prec prec) {
  5793. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5794. const int32_t prec_i32 = (int32_t) prec;
  5795. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5796. }
  5797. // ggml_flash_attn_back
  5798. struct ggml_tensor * ggml_flash_attn_back(
  5799. struct ggml_context * ctx,
  5800. struct ggml_tensor * q,
  5801. struct ggml_tensor * k,
  5802. struct ggml_tensor * v,
  5803. struct ggml_tensor * d,
  5804. bool masked) {
  5805. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5806. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5807. // TODO: check if vT can be multiplied by (k*qT)
  5808. // d shape [D,N,ne2,ne3]
  5809. // q shape [D,N,ne2,ne3]
  5810. // k shape [D,M,kvne2,ne3]
  5811. // v shape [M,D,kvne2,ne3]
  5812. const int64_t D = q->ne[0];
  5813. const int64_t N = q->ne[1];
  5814. const int64_t M = k->ne[1];
  5815. const int64_t ne2 = q->ne[2];
  5816. const int64_t ne3 = q->ne[3];
  5817. const int64_t kvne2 = k->ne[2];
  5818. GGML_ASSERT(k->ne[0] == D);
  5819. GGML_ASSERT(v->ne[0] == M);
  5820. GGML_ASSERT(v->ne[1] == D);
  5821. GGML_ASSERT(d->ne[0] == D);
  5822. GGML_ASSERT(d->ne[1] == N);
  5823. GGML_ASSERT(k->ne[2] == kvne2);
  5824. GGML_ASSERT(k->ne[3] == ne3);
  5825. GGML_ASSERT(v->ne[2] == kvne2);
  5826. GGML_ASSERT(v->ne[3] == ne3);
  5827. GGML_ASSERT(d->ne[2] == ne2);
  5828. GGML_ASSERT(d->ne[3] == ne3);
  5829. GGML_ASSERT(ne2 % kvne2 == 0);
  5830. bool is_node = false;
  5831. if (q->grad || k->grad || v->grad) {
  5832. // when using this operation (in backwards pass) these grads are set.
  5833. // we don't want to create (big) grad of our result, so is_node is false.
  5834. is_node = false;
  5835. }
  5836. // store gradients of q, k and v as continuous tensors concatenated in result.
  5837. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5838. const int64_t elem_q = ggml_nelements(q);
  5839. const int64_t elem_k = ggml_nelements(k);
  5840. const int64_t elem_v = ggml_nelements(v);
  5841. enum ggml_type result_type = GGML_TYPE_F32;
  5842. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5843. const size_t tsize = ggml_type_size(result_type);
  5844. const size_t offs_q = 0;
  5845. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5846. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5847. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5848. const size_t nelements = (end + tsize - 1)/tsize;
  5849. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5850. int32_t masked_i = masked ? 1 : 0;
  5851. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5852. result->op = GGML_OP_FLASH_ATTN_BACK;
  5853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5854. result->src[0] = q;
  5855. result->src[1] = k;
  5856. result->src[2] = v;
  5857. result->src[3] = d;
  5858. return result;
  5859. }
  5860. // ggml_ssm_conv
  5861. struct ggml_tensor * ggml_ssm_conv(
  5862. struct ggml_context * ctx,
  5863. struct ggml_tensor * s,
  5864. struct ggml_tensor * x,
  5865. struct ggml_tensor * c,
  5866. struct ggml_tensor * sq) {
  5867. GGML_ASSERT(ggml_is_3d(s));
  5868. GGML_ASSERT(ggml_is_matrix(x));
  5869. GGML_ASSERT(ggml_is_matrix(c));
  5870. GGML_ASSERT(ggml_is_matrix(sq));
  5871. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5872. const int64_t d_conv = c->ne[0];
  5873. const int64_t d_inner = c->ne[1];
  5874. const int64_t n_tokens = x->ne[1];
  5875. const int64_t n_kv = s->ne[2];
  5876. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5877. GGML_ASSERT( s->ne[1] == d_inner);
  5878. GGML_ASSERT( x->ne[0] == d_inner);
  5879. GGML_ASSERT(sq->ne[0] == n_kv);
  5880. GGML_ASSERT(sq->ne[1] == n_tokens);
  5881. bool is_node = false;
  5882. if (s->grad || x->grad || c->grad || sq->grad) {
  5883. GGML_ASSERT(false); // TODO: implement
  5884. is_node = true;
  5885. }
  5886. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5887. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5888. result->op = GGML_OP_SSM_CONV;
  5889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5890. result->src[0] = s;
  5891. result->src[1] = x;
  5892. result->src[2] = c;
  5893. result->src[3] = sq;
  5894. return result;
  5895. }
  5896. // ggml_ssm_scan
  5897. struct ggml_tensor * ggml_ssm_scan(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * s,
  5900. struct ggml_tensor * x,
  5901. struct ggml_tensor * dt,
  5902. struct ggml_tensor * A,
  5903. struct ggml_tensor * B,
  5904. struct ggml_tensor * C,
  5905. struct ggml_tensor * sq) {
  5906. GGML_ASSERT(ggml_is_contiguous(s));
  5907. GGML_ASSERT(ggml_is_contiguous(x));
  5908. GGML_ASSERT(ggml_is_contiguous(dt));
  5909. GGML_ASSERT(ggml_is_contiguous(A));
  5910. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5911. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5912. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5913. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5914. {
  5915. const int64_t d_state = s->ne[0];
  5916. const int64_t d_inner = s->ne[1];
  5917. const int64_t n_tokens = x->ne[1];
  5918. GGML_ASSERT(x->ne[0] == d_inner);
  5919. GGML_ASSERT(A->ne[0] == d_state);
  5920. GGML_ASSERT(A->ne[1] == d_inner);
  5921. GGML_ASSERT(B->ne[0] == d_state);
  5922. GGML_ASSERT(B->ne[1] == n_tokens);
  5923. GGML_ASSERT(C->ne[0] == d_state);
  5924. GGML_ASSERT(C->ne[1] == n_tokens);
  5925. }
  5926. bool is_node = false;
  5927. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5928. GGML_ASSERT(false); // TODO: implement
  5929. is_node = true;
  5930. }
  5931. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5932. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5933. result->op = GGML_OP_SSM_SCAN;
  5934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5935. result->src[0] = s;
  5936. result->src[1] = x;
  5937. result->src[2] = dt;
  5938. result->src[3] = A;
  5939. result->src[4] = B;
  5940. result->src[5] = C;
  5941. result->src[6] = sq;
  5942. return result;
  5943. }
  5944. // ggml_win_part
  5945. struct ggml_tensor * ggml_win_part(
  5946. struct ggml_context * ctx,
  5947. struct ggml_tensor * a,
  5948. int w) {
  5949. GGML_ASSERT(a->ne[3] == 1);
  5950. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5951. bool is_node = false;
  5952. if (a->grad) {
  5953. GGML_ASSERT(false); // TODO: implement backward
  5954. is_node = true;
  5955. }
  5956. // padding
  5957. const int px = (w - a->ne[1]%w)%w;
  5958. const int py = (w - a->ne[2]%w)%w;
  5959. const int npx = (px + a->ne[1])/w;
  5960. const int npy = (py + a->ne[2])/w;
  5961. const int np = npx*npy;
  5962. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5963. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5964. int32_t params[] = { npx, npy, w };
  5965. ggml_set_op_params(result, params, sizeof(params));
  5966. result->op = GGML_OP_WIN_PART;
  5967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5968. result->src[0] = a;
  5969. return result;
  5970. }
  5971. // ggml_win_unpart
  5972. struct ggml_tensor * ggml_win_unpart(
  5973. struct ggml_context * ctx,
  5974. struct ggml_tensor * a,
  5975. int w0,
  5976. int h0,
  5977. int w) {
  5978. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5979. bool is_node = false;
  5980. if (a->grad) {
  5981. GGML_ASSERT(false); // TODO: implement backward
  5982. is_node = true;
  5983. }
  5984. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5986. int32_t params[] = { w };
  5987. ggml_set_op_params(result, params, sizeof(params));
  5988. result->op = GGML_OP_WIN_UNPART;
  5989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5990. result->src[0] = a;
  5991. return result;
  5992. }
  5993. // ggml_get_rel_pos
  5994. struct ggml_tensor * ggml_get_rel_pos(
  5995. struct ggml_context * ctx,
  5996. struct ggml_tensor * a,
  5997. int qh,
  5998. int kh) {
  5999. GGML_ASSERT(qh == kh);
  6000. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6001. bool is_node = false;
  6002. if (a->grad) {
  6003. GGML_ASSERT(false); // TODO: implement backward
  6004. is_node = true;
  6005. }
  6006. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6007. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6008. result->op = GGML_OP_GET_REL_POS;
  6009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6010. result->src[0] = a;
  6011. return result;
  6012. }
  6013. // ggml_add_rel_pos
  6014. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6015. struct ggml_context * ctx,
  6016. struct ggml_tensor * a,
  6017. struct ggml_tensor * pw,
  6018. struct ggml_tensor * ph,
  6019. bool inplace) {
  6020. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6021. GGML_ASSERT(ggml_is_contiguous(a));
  6022. GGML_ASSERT(ggml_is_contiguous(pw));
  6023. GGML_ASSERT(ggml_is_contiguous(ph));
  6024. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6025. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6026. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6027. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6028. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6029. bool is_node = false;
  6030. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6031. is_node = true;
  6032. }
  6033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6034. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6035. result->op = GGML_OP_ADD_REL_POS;
  6036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6037. result->src[0] = a;
  6038. result->src[1] = pw;
  6039. result->src[2] = ph;
  6040. return result;
  6041. }
  6042. struct ggml_tensor * ggml_add_rel_pos(
  6043. struct ggml_context * ctx,
  6044. struct ggml_tensor * a,
  6045. struct ggml_tensor * pw,
  6046. struct ggml_tensor * ph) {
  6047. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6048. }
  6049. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. struct ggml_tensor * pw,
  6053. struct ggml_tensor * ph) {
  6054. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6055. }
  6056. // gmml_unary
  6057. static struct ggml_tensor * ggml_unary_impl(
  6058. struct ggml_context * ctx,
  6059. struct ggml_tensor * a,
  6060. enum ggml_unary_op op,
  6061. bool inplace) {
  6062. bool is_node = false;
  6063. if (!inplace && (a->grad)) {
  6064. is_node = true;
  6065. }
  6066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6067. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6068. result->op = GGML_OP_UNARY;
  6069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6070. result->src[0] = a;
  6071. return result;
  6072. }
  6073. struct ggml_tensor * ggml_unary(
  6074. struct ggml_context * ctx,
  6075. struct ggml_tensor * a,
  6076. enum ggml_unary_op op) {
  6077. return ggml_unary_impl(ctx, a, op, false);
  6078. }
  6079. struct ggml_tensor * ggml_unary_inplace(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. enum ggml_unary_op op) {
  6083. return ggml_unary_impl(ctx, a, op, true);
  6084. }
  6085. // ggml_map_unary
  6086. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6087. struct ggml_context * ctx,
  6088. struct ggml_tensor * a,
  6089. const ggml_unary_op_f32_t fun,
  6090. bool inplace) {
  6091. bool is_node = false;
  6092. if (!inplace && a->grad) {
  6093. is_node = true;
  6094. }
  6095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6096. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6097. result->op = GGML_OP_MAP_UNARY;
  6098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6099. result->src[0] = a;
  6100. return result;
  6101. }
  6102. struct ggml_tensor * ggml_map_unary_f32(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * a,
  6105. const ggml_unary_op_f32_t fun) {
  6106. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6107. }
  6108. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6109. struct ggml_context * ctx,
  6110. struct ggml_tensor * a,
  6111. const ggml_unary_op_f32_t fun) {
  6112. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6113. }
  6114. // ggml_map_binary
  6115. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6116. struct ggml_context * ctx,
  6117. struct ggml_tensor * a,
  6118. struct ggml_tensor * b,
  6119. const ggml_binary_op_f32_t fun,
  6120. bool inplace) {
  6121. GGML_ASSERT(ggml_are_same_shape(a, b));
  6122. bool is_node = false;
  6123. if (!inplace && (a->grad || b->grad)) {
  6124. is_node = true;
  6125. }
  6126. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6127. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6128. result->op = GGML_OP_MAP_BINARY;
  6129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6130. result->src[0] = a;
  6131. result->src[1] = b;
  6132. return result;
  6133. }
  6134. struct ggml_tensor * ggml_map_binary_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. struct ggml_tensor * b,
  6138. const ggml_binary_op_f32_t fun) {
  6139. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6140. }
  6141. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. struct ggml_tensor * b,
  6145. const ggml_binary_op_f32_t fun) {
  6146. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6147. }
  6148. // ggml_map_custom1_f32
  6149. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6150. struct ggml_context * ctx,
  6151. struct ggml_tensor * a,
  6152. const ggml_custom1_op_f32_t fun,
  6153. bool inplace) {
  6154. bool is_node = false;
  6155. if (!inplace && a->grad) {
  6156. is_node = true;
  6157. }
  6158. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6159. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6160. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6162. result->src[0] = a;
  6163. return result;
  6164. }
  6165. struct ggml_tensor * ggml_map_custom1_f32(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. const ggml_custom1_op_f32_t fun) {
  6169. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6170. }
  6171. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6172. struct ggml_context * ctx,
  6173. struct ggml_tensor * a,
  6174. const ggml_custom1_op_f32_t fun) {
  6175. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6176. }
  6177. // ggml_map_custom2_f32
  6178. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6179. struct ggml_context * ctx,
  6180. struct ggml_tensor * a,
  6181. struct ggml_tensor * b,
  6182. const ggml_custom2_op_f32_t fun,
  6183. bool inplace) {
  6184. bool is_node = false;
  6185. if (!inplace && (a->grad || b->grad)) {
  6186. is_node = true;
  6187. }
  6188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6189. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6190. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6192. result->src[0] = a;
  6193. result->src[1] = b;
  6194. return result;
  6195. }
  6196. struct ggml_tensor * ggml_map_custom2_f32(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. struct ggml_tensor * b,
  6200. const ggml_custom2_op_f32_t fun) {
  6201. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6202. }
  6203. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. struct ggml_tensor * b,
  6207. const ggml_custom2_op_f32_t fun) {
  6208. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6209. }
  6210. // ggml_map_custom3_f32
  6211. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6212. struct ggml_context * ctx,
  6213. struct ggml_tensor * a,
  6214. struct ggml_tensor * b,
  6215. struct ggml_tensor * c,
  6216. const ggml_custom3_op_f32_t fun,
  6217. bool inplace) {
  6218. bool is_node = false;
  6219. if (!inplace && (a->grad || b->grad || c->grad)) {
  6220. is_node = true;
  6221. }
  6222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6223. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6224. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6226. result->src[0] = a;
  6227. result->src[1] = b;
  6228. result->src[2] = c;
  6229. return result;
  6230. }
  6231. struct ggml_tensor * ggml_map_custom3_f32(
  6232. struct ggml_context * ctx,
  6233. struct ggml_tensor * a,
  6234. struct ggml_tensor * b,
  6235. struct ggml_tensor * c,
  6236. const ggml_custom3_op_f32_t fun) {
  6237. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6238. }
  6239. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6240. struct ggml_context * ctx,
  6241. struct ggml_tensor * a,
  6242. struct ggml_tensor * b,
  6243. struct ggml_tensor * c,
  6244. const ggml_custom3_op_f32_t fun) {
  6245. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6246. }
  6247. // ggml_map_custom1
  6248. struct ggml_map_custom1_op_params {
  6249. ggml_custom1_op_t fun;
  6250. int n_tasks;
  6251. void * userdata;
  6252. };
  6253. static struct ggml_tensor * ggml_map_custom1_impl(
  6254. struct ggml_context * ctx,
  6255. struct ggml_tensor * a,
  6256. const ggml_custom1_op_t fun,
  6257. int n_tasks,
  6258. void * userdata,
  6259. bool inplace) {
  6260. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6261. bool is_node = false;
  6262. if (!inplace && a->grad) {
  6263. is_node = true;
  6264. }
  6265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6266. struct ggml_map_custom1_op_params params = {
  6267. /*.fun =*/ fun,
  6268. /*.n_tasks =*/ n_tasks,
  6269. /*.userdata =*/ userdata
  6270. };
  6271. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6272. result->op = GGML_OP_MAP_CUSTOM1;
  6273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6274. result->src[0] = a;
  6275. return result;
  6276. }
  6277. struct ggml_tensor * ggml_map_custom1(
  6278. struct ggml_context * ctx,
  6279. struct ggml_tensor * a,
  6280. const ggml_custom1_op_t fun,
  6281. int n_tasks,
  6282. void * userdata) {
  6283. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6284. }
  6285. struct ggml_tensor * ggml_map_custom1_inplace(
  6286. struct ggml_context * ctx,
  6287. struct ggml_tensor * a,
  6288. const ggml_custom1_op_t fun,
  6289. int n_tasks,
  6290. void * userdata) {
  6291. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6292. }
  6293. // ggml_map_custom2
  6294. struct ggml_map_custom2_op_params {
  6295. ggml_custom2_op_t fun;
  6296. int n_tasks;
  6297. void * userdata;
  6298. };
  6299. static struct ggml_tensor * ggml_map_custom2_impl(
  6300. struct ggml_context * ctx,
  6301. struct ggml_tensor * a,
  6302. struct ggml_tensor * b,
  6303. const ggml_custom2_op_t fun,
  6304. int n_tasks,
  6305. void * userdata,
  6306. bool inplace) {
  6307. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6308. bool is_node = false;
  6309. if (!inplace && (a->grad || b->grad)) {
  6310. is_node = true;
  6311. }
  6312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6313. struct ggml_map_custom2_op_params params = {
  6314. /*.fun =*/ fun,
  6315. /*.n_tasks =*/ n_tasks,
  6316. /*.userdata =*/ userdata
  6317. };
  6318. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6319. result->op = GGML_OP_MAP_CUSTOM2;
  6320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6321. result->src[0] = a;
  6322. result->src[1] = b;
  6323. return result;
  6324. }
  6325. struct ggml_tensor * ggml_map_custom2(
  6326. struct ggml_context * ctx,
  6327. struct ggml_tensor * a,
  6328. struct ggml_tensor * b,
  6329. const ggml_custom2_op_t fun,
  6330. int n_tasks,
  6331. void * userdata) {
  6332. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6333. }
  6334. struct ggml_tensor * ggml_map_custom2_inplace(
  6335. struct ggml_context * ctx,
  6336. struct ggml_tensor * a,
  6337. struct ggml_tensor * b,
  6338. const ggml_custom2_op_t fun,
  6339. int n_tasks,
  6340. void * userdata) {
  6341. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6342. }
  6343. // ggml_map_custom3
  6344. struct ggml_map_custom3_op_params {
  6345. ggml_custom3_op_t fun;
  6346. int n_tasks;
  6347. void * userdata;
  6348. };
  6349. static struct ggml_tensor * ggml_map_custom3_impl(
  6350. struct ggml_context * ctx,
  6351. struct ggml_tensor * a,
  6352. struct ggml_tensor * b,
  6353. struct ggml_tensor * c,
  6354. const ggml_custom3_op_t fun,
  6355. int n_tasks,
  6356. void * userdata,
  6357. bool inplace) {
  6358. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6359. bool is_node = false;
  6360. if (!inplace && (a->grad || b->grad || c->grad)) {
  6361. is_node = true;
  6362. }
  6363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6364. struct ggml_map_custom3_op_params params = {
  6365. /*.fun =*/ fun,
  6366. /*.n_tasks =*/ n_tasks,
  6367. /*.userdata =*/ userdata
  6368. };
  6369. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6370. result->op = GGML_OP_MAP_CUSTOM3;
  6371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6372. result->src[0] = a;
  6373. result->src[1] = b;
  6374. result->src[2] = c;
  6375. return result;
  6376. }
  6377. struct ggml_tensor * ggml_map_custom3(
  6378. struct ggml_context * ctx,
  6379. struct ggml_tensor * a,
  6380. struct ggml_tensor * b,
  6381. struct ggml_tensor * c,
  6382. const ggml_custom3_op_t fun,
  6383. int n_tasks,
  6384. void * userdata) {
  6385. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6386. }
  6387. struct ggml_tensor * ggml_map_custom3_inplace(
  6388. struct ggml_context * ctx,
  6389. struct ggml_tensor * a,
  6390. struct ggml_tensor * b,
  6391. struct ggml_tensor * c,
  6392. const ggml_custom3_op_t fun,
  6393. int n_tasks,
  6394. void * userdata) {
  6395. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6396. }
  6397. // ggml_cross_entropy_loss
  6398. struct ggml_tensor * ggml_cross_entropy_loss(
  6399. struct ggml_context * ctx,
  6400. struct ggml_tensor * a,
  6401. struct ggml_tensor * b) {
  6402. GGML_ASSERT(ggml_are_same_shape(a, b));
  6403. bool is_node = false;
  6404. if (a->grad || b->grad) {
  6405. is_node = true;
  6406. }
  6407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6408. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6410. result->src[0] = a;
  6411. result->src[1] = b;
  6412. return result;
  6413. }
  6414. // ggml_cross_entropy_loss_back
  6415. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6416. struct ggml_context * ctx,
  6417. struct ggml_tensor * a,
  6418. struct ggml_tensor * b,
  6419. struct ggml_tensor * c) {
  6420. GGML_ASSERT(ggml_are_same_shape(a, b));
  6421. GGML_ASSERT(ggml_is_scalar(c));
  6422. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6423. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6424. result->grad = NULL;
  6425. result->src[0] = a;
  6426. result->src[1] = b;
  6427. result->src[2] = c;
  6428. return result;
  6429. }
  6430. ////////////////////////////////////////////////////////////////////////////////
  6431. void ggml_set_param(
  6432. struct ggml_context * ctx,
  6433. struct ggml_tensor * tensor) {
  6434. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6435. GGML_ASSERT(tensor->grad == NULL);
  6436. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6437. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6438. }
  6439. // ggml_compute_forward_dup
  6440. static void ggml_compute_forward_dup_same_cont(
  6441. const struct ggml_compute_params * params,
  6442. struct ggml_tensor * dst) {
  6443. const struct ggml_tensor * src0 = dst->src[0];
  6444. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6445. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6446. GGML_ASSERT(src0->type == dst->type);
  6447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6448. return;
  6449. }
  6450. const size_t nb00 = src0->nb[0];
  6451. const size_t nb0 = dst->nb[0];
  6452. const int ith = params->ith; // thread index
  6453. const int nth = params->nth; // number of threads
  6454. // parallelize by elements
  6455. const int ne = ggml_nelements(dst);
  6456. const int dr = (ne + nth - 1) / nth;
  6457. const int ie0 = dr * ith;
  6458. const int ie1 = MIN(ie0 + dr, ne);
  6459. if (ie0 < ie1) {
  6460. memcpy(
  6461. ((char *) dst->data + ie0*nb0),
  6462. ((char *) src0->data + ie0*nb00),
  6463. (ie1 - ie0) * ggml_type_size(src0->type));
  6464. }
  6465. }
  6466. static void ggml_compute_forward_dup_f16(
  6467. const struct ggml_compute_params * params,
  6468. struct ggml_tensor * dst) {
  6469. const struct ggml_tensor * src0 = dst->src[0];
  6470. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6471. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6472. return;
  6473. }
  6474. GGML_TENSOR_UNARY_OP_LOCALS
  6475. const int ith = params->ith; // thread index
  6476. const int nth = params->nth; // number of threads
  6477. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6478. ggml_compute_forward_dup_same_cont(params, dst);
  6479. return;
  6480. }
  6481. // parallelize by rows
  6482. const int nr = ne01;
  6483. // number of rows per thread
  6484. const int dr = (nr + nth - 1) / nth;
  6485. // row range for this thread
  6486. const int ir0 = dr * ith;
  6487. const int ir1 = MIN(ir0 + dr, nr);
  6488. if (src0->type == dst->type &&
  6489. ne00 == ne0 &&
  6490. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6491. // copy by rows
  6492. const size_t rs = ne00*nb00;
  6493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6495. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6496. memcpy(
  6497. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6498. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6499. rs);
  6500. }
  6501. }
  6502. }
  6503. return;
  6504. }
  6505. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6506. if (ggml_is_contiguous(dst)) {
  6507. if (nb00 == sizeof(ggml_fp16_t)) {
  6508. if (dst->type == GGML_TYPE_F16) {
  6509. size_t id = 0;
  6510. const size_t rs = ne00 * nb00;
  6511. char * dst_ptr = (char *) dst->data;
  6512. for (int i03 = 0; i03 < ne03; i03++) {
  6513. for (int i02 = 0; i02 < ne02; i02++) {
  6514. id += rs * ir0;
  6515. for (int i01 = ir0; i01 < ir1; i01++) {
  6516. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6517. memcpy(dst_ptr + id, src0_ptr, rs);
  6518. id += rs;
  6519. }
  6520. id += rs * (ne01 - ir1);
  6521. }
  6522. }
  6523. } else if (dst->type == GGML_TYPE_F32) {
  6524. size_t id = 0;
  6525. float * dst_ptr = (float *) dst->data;
  6526. for (int i03 = 0; i03 < ne03; i03++) {
  6527. for (int i02 = 0; i02 < ne02; i02++) {
  6528. id += ne00 * ir0;
  6529. for (int i01 = ir0; i01 < ir1; i01++) {
  6530. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6531. for (int i00 = 0; i00 < ne00; i00++) {
  6532. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6533. id++;
  6534. }
  6535. }
  6536. id += ne00 * (ne01 - ir1);
  6537. }
  6538. }
  6539. } else if (type_traits[dst->type].from_float) {
  6540. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6541. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6542. size_t id = 0;
  6543. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6544. char * dst_ptr = (char *) dst->data;
  6545. for (int i03 = 0; i03 < ne03; i03++) {
  6546. for (int i02 = 0; i02 < ne02; i02++) {
  6547. id += rs * ir0;
  6548. for (int i01 = ir0; i01 < ir1; i01++) {
  6549. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6550. for (int i00 = 0; i00 < ne00; i00++) {
  6551. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6552. }
  6553. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6554. id += rs;
  6555. }
  6556. id += rs * (ne01 - ir1);
  6557. }
  6558. }
  6559. } else {
  6560. GGML_ASSERT(false); // TODO: implement
  6561. }
  6562. } else {
  6563. //printf("%s: this is not optimal - fix me\n", __func__);
  6564. if (dst->type == GGML_TYPE_F32) {
  6565. size_t id = 0;
  6566. float * dst_ptr = (float *) dst->data;
  6567. for (int i03 = 0; i03 < ne03; i03++) {
  6568. for (int i02 = 0; i02 < ne02; i02++) {
  6569. id += ne00 * ir0;
  6570. for (int i01 = ir0; i01 < ir1; i01++) {
  6571. for (int i00 = 0; i00 < ne00; i00++) {
  6572. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6573. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6574. id++;
  6575. }
  6576. }
  6577. id += ne00 * (ne01 - ir1);
  6578. }
  6579. }
  6580. } else if (dst->type == GGML_TYPE_F16) {
  6581. size_t id = 0;
  6582. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6583. for (int i03 = 0; i03 < ne03; i03++) {
  6584. for (int i02 = 0; i02 < ne02; i02++) {
  6585. id += ne00 * ir0;
  6586. for (int i01 = ir0; i01 < ir1; i01++) {
  6587. for (int i00 = 0; i00 < ne00; i00++) {
  6588. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6589. dst_ptr[id] = *src0_ptr;
  6590. id++;
  6591. }
  6592. }
  6593. id += ne00 * (ne01 - ir1);
  6594. }
  6595. }
  6596. } else {
  6597. GGML_ASSERT(false); // TODO: implement
  6598. }
  6599. }
  6600. return;
  6601. }
  6602. // dst counters
  6603. int64_t i10 = 0;
  6604. int64_t i11 = 0;
  6605. int64_t i12 = 0;
  6606. int64_t i13 = 0;
  6607. if (dst->type == GGML_TYPE_F16) {
  6608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6610. i10 += ne00 * ir0;
  6611. while (i10 >= ne0) {
  6612. i10 -= ne0;
  6613. if (++i11 == ne1) {
  6614. i11 = 0;
  6615. if (++i12 == ne2) {
  6616. i12 = 0;
  6617. if (++i13 == ne3) {
  6618. i13 = 0;
  6619. }
  6620. }
  6621. }
  6622. }
  6623. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6624. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6625. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6626. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6627. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6628. if (++i10 == ne00) {
  6629. i10 = 0;
  6630. if (++i11 == ne01) {
  6631. i11 = 0;
  6632. if (++i12 == ne02) {
  6633. i12 = 0;
  6634. if (++i13 == ne03) {
  6635. i13 = 0;
  6636. }
  6637. }
  6638. }
  6639. }
  6640. }
  6641. }
  6642. i10 += ne00 * (ne01 - ir1);
  6643. while (i10 >= ne0) {
  6644. i10 -= ne0;
  6645. if (++i11 == ne1) {
  6646. i11 = 0;
  6647. if (++i12 == ne2) {
  6648. i12 = 0;
  6649. if (++i13 == ne3) {
  6650. i13 = 0;
  6651. }
  6652. }
  6653. }
  6654. }
  6655. }
  6656. }
  6657. } else if (dst->type == GGML_TYPE_F32) {
  6658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6660. i10 += ne00 * ir0;
  6661. while (i10 >= ne0) {
  6662. i10 -= ne0;
  6663. if (++i11 == ne1) {
  6664. i11 = 0;
  6665. if (++i12 == ne2) {
  6666. i12 = 0;
  6667. if (++i13 == ne3) {
  6668. i13 = 0;
  6669. }
  6670. }
  6671. }
  6672. }
  6673. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6674. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6675. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6676. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6677. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6678. if (++i10 == ne0) {
  6679. i10 = 0;
  6680. if (++i11 == ne1) {
  6681. i11 = 0;
  6682. if (++i12 == ne2) {
  6683. i12 = 0;
  6684. if (++i13 == ne3) {
  6685. i13 = 0;
  6686. }
  6687. }
  6688. }
  6689. }
  6690. }
  6691. }
  6692. i10 += ne00 * (ne01 - ir1);
  6693. while (i10 >= ne0) {
  6694. i10 -= ne0;
  6695. if (++i11 == ne1) {
  6696. i11 = 0;
  6697. if (++i12 == ne2) {
  6698. i12 = 0;
  6699. if (++i13 == ne3) {
  6700. i13 = 0;
  6701. }
  6702. }
  6703. }
  6704. }
  6705. }
  6706. }
  6707. } else {
  6708. GGML_ASSERT(false); // TODO: implement
  6709. }
  6710. }
  6711. static void ggml_compute_forward_dup_bf16(
  6712. const struct ggml_compute_params * params,
  6713. struct ggml_tensor * dst) {
  6714. const struct ggml_tensor * src0 = dst->src[0];
  6715. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6717. return;
  6718. }
  6719. GGML_TENSOR_UNARY_OP_LOCALS
  6720. const int ith = params->ith; // thread index
  6721. const int nth = params->nth; // number of threads
  6722. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6723. ggml_compute_forward_dup_same_cont(params, dst);
  6724. return;
  6725. }
  6726. // parallelize by rows
  6727. const int nr = ne01;
  6728. // number of rows per thread
  6729. const int dr = (nr + nth - 1) / nth;
  6730. // row range for this thread
  6731. const int ir0 = dr * ith;
  6732. const int ir1 = MIN(ir0 + dr, nr);
  6733. if (src0->type == dst->type &&
  6734. ne00 == ne0 &&
  6735. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6736. // copy by rows
  6737. const size_t rs = ne00*nb00;
  6738. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6739. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6740. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6741. memcpy(
  6742. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6743. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6744. rs);
  6745. }
  6746. }
  6747. }
  6748. return;
  6749. }
  6750. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6751. if (ggml_is_contiguous(dst)) {
  6752. if (nb00 == sizeof(ggml_bf16_t)) {
  6753. if (dst->type == GGML_TYPE_BF16) {
  6754. size_t id = 0;
  6755. const size_t rs = ne00 * nb00;
  6756. char * dst_ptr = (char *) dst->data;
  6757. for (int i03 = 0; i03 < ne03; i03++) {
  6758. for (int i02 = 0; i02 < ne02; i02++) {
  6759. id += rs * ir0;
  6760. for (int i01 = ir0; i01 < ir1; i01++) {
  6761. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6762. memcpy(dst_ptr + id, src0_ptr, rs);
  6763. id += rs;
  6764. }
  6765. id += rs * (ne01 - ir1);
  6766. }
  6767. }
  6768. } else if (dst->type == GGML_TYPE_F16) {
  6769. size_t id = 0;
  6770. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6771. for (int i03 = 0; i03 < ne03; i03++) {
  6772. for (int i02 = 0; i02 < ne02; i02++) {
  6773. id += ne00 * ir0;
  6774. for (int i01 = ir0; i01 < ir1; i01++) {
  6775. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6776. for (int i00 = 0; i00 < ne00; i00++) {
  6777. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6778. id++;
  6779. }
  6780. }
  6781. id += ne00 * (ne01 - ir1);
  6782. }
  6783. }
  6784. } else if (dst->type == GGML_TYPE_F32) {
  6785. size_t id = 0;
  6786. float * dst_ptr = (float *) dst->data;
  6787. for (int i03 = 0; i03 < ne03; i03++) {
  6788. for (int i02 = 0; i02 < ne02; i02++) {
  6789. id += ne00 * ir0;
  6790. for (int i01 = ir0; i01 < ir1; i01++) {
  6791. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6792. for (int i00 = 0; i00 < ne00; i00++) {
  6793. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6794. id++;
  6795. }
  6796. }
  6797. id += ne00 * (ne01 - ir1);
  6798. }
  6799. }
  6800. } else if (type_traits[dst->type].from_float) {
  6801. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6802. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6803. size_t id = 0;
  6804. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6805. char * dst_ptr = (char *) dst->data;
  6806. for (int i03 = 0; i03 < ne03; i03++) {
  6807. for (int i02 = 0; i02 < ne02; i02++) {
  6808. id += rs * ir0;
  6809. for (int i01 = ir0; i01 < ir1; i01++) {
  6810. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6811. for (int i00 = 0; i00 < ne00; i00++) {
  6812. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6813. }
  6814. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6815. id += rs;
  6816. }
  6817. id += rs * (ne01 - ir1);
  6818. }
  6819. }
  6820. } else {
  6821. GGML_ASSERT(false); // TODO: implement
  6822. }
  6823. } else {
  6824. //printf("%s: this is not optimal - fix me\n", __func__);
  6825. if (dst->type == GGML_TYPE_F32) {
  6826. size_t id = 0;
  6827. float * dst_ptr = (float *) dst->data;
  6828. for (int i03 = 0; i03 < ne03; i03++) {
  6829. for (int i02 = 0; i02 < ne02; i02++) {
  6830. id += ne00 * ir0;
  6831. for (int i01 = ir0; i01 < ir1; i01++) {
  6832. for (int i00 = 0; i00 < ne00; i00++) {
  6833. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6834. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6835. id++;
  6836. }
  6837. }
  6838. id += ne00 * (ne01 - ir1);
  6839. }
  6840. }
  6841. } else if (dst->type == GGML_TYPE_BF16) {
  6842. size_t id = 0;
  6843. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6844. for (int i03 = 0; i03 < ne03; i03++) {
  6845. for (int i02 = 0; i02 < ne02; i02++) {
  6846. id += ne00 * ir0;
  6847. for (int i01 = ir0; i01 < ir1; i01++) {
  6848. for (int i00 = 0; i00 < ne00; i00++) {
  6849. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6850. dst_ptr[id] = *src0_ptr;
  6851. id++;
  6852. }
  6853. }
  6854. id += ne00 * (ne01 - ir1);
  6855. }
  6856. }
  6857. } else if (dst->type == GGML_TYPE_F16) {
  6858. size_t id = 0;
  6859. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6860. for (int i03 = 0; i03 < ne03; i03++) {
  6861. for (int i02 = 0; i02 < ne02; i02++) {
  6862. id += ne00 * ir0;
  6863. for (int i01 = ir0; i01 < ir1; i01++) {
  6864. for (int i00 = 0; i00 < ne00; i00++) {
  6865. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6866. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6867. id++;
  6868. }
  6869. }
  6870. id += ne00 * (ne01 - ir1);
  6871. }
  6872. }
  6873. } else {
  6874. GGML_ASSERT(false); // TODO: implement
  6875. }
  6876. }
  6877. return;
  6878. }
  6879. // dst counters
  6880. int64_t i10 = 0;
  6881. int64_t i11 = 0;
  6882. int64_t i12 = 0;
  6883. int64_t i13 = 0;
  6884. if (dst->type == GGML_TYPE_BF16) {
  6885. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6886. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6887. i10 += ne00 * ir0;
  6888. while (i10 >= ne0) {
  6889. i10 -= ne0;
  6890. if (++i11 == ne1) {
  6891. i11 = 0;
  6892. if (++i12 == ne2) {
  6893. i12 = 0;
  6894. if (++i13 == ne3) {
  6895. i13 = 0;
  6896. }
  6897. }
  6898. }
  6899. }
  6900. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6901. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6902. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6903. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6904. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6905. if (++i10 == ne00) {
  6906. i10 = 0;
  6907. if (++i11 == ne01) {
  6908. i11 = 0;
  6909. if (++i12 == ne02) {
  6910. i12 = 0;
  6911. if (++i13 == ne03) {
  6912. i13 = 0;
  6913. }
  6914. }
  6915. }
  6916. }
  6917. }
  6918. }
  6919. i10 += ne00 * (ne01 - ir1);
  6920. while (i10 >= ne0) {
  6921. i10 -= ne0;
  6922. if (++i11 == ne1) {
  6923. i11 = 0;
  6924. if (++i12 == ne2) {
  6925. i12 = 0;
  6926. if (++i13 == ne3) {
  6927. i13 = 0;
  6928. }
  6929. }
  6930. }
  6931. }
  6932. }
  6933. }
  6934. } else if (dst->type == GGML_TYPE_F16) {
  6935. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6936. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6937. i10 += ne00 * ir0;
  6938. while (i10 >= ne0) {
  6939. i10 -= ne0;
  6940. if (++i11 == ne1) {
  6941. i11 = 0;
  6942. if (++i12 == ne2) {
  6943. i12 = 0;
  6944. if (++i13 == ne3) {
  6945. i13 = 0;
  6946. }
  6947. }
  6948. }
  6949. }
  6950. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6951. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6952. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6953. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6954. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6955. if (++i10 == ne0) {
  6956. i10 = 0;
  6957. if (++i11 == ne1) {
  6958. i11 = 0;
  6959. if (++i12 == ne2) {
  6960. i12 = 0;
  6961. if (++i13 == ne3) {
  6962. i13 = 0;
  6963. }
  6964. }
  6965. }
  6966. }
  6967. }
  6968. }
  6969. i10 += ne00 * (ne01 - ir1);
  6970. while (i10 >= ne0) {
  6971. i10 -= ne0;
  6972. if (++i11 == ne1) {
  6973. i11 = 0;
  6974. if (++i12 == ne2) {
  6975. i12 = 0;
  6976. if (++i13 == ne3) {
  6977. i13 = 0;
  6978. }
  6979. }
  6980. }
  6981. }
  6982. }
  6983. }
  6984. } else if (dst->type == GGML_TYPE_F32) {
  6985. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6986. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6987. i10 += ne00 * ir0;
  6988. while (i10 >= ne0) {
  6989. i10 -= ne0;
  6990. if (++i11 == ne1) {
  6991. i11 = 0;
  6992. if (++i12 == ne2) {
  6993. i12 = 0;
  6994. if (++i13 == ne3) {
  6995. i13 = 0;
  6996. }
  6997. }
  6998. }
  6999. }
  7000. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7001. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7002. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7003. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7004. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7005. if (++i10 == ne0) {
  7006. i10 = 0;
  7007. if (++i11 == ne1) {
  7008. i11 = 0;
  7009. if (++i12 == ne2) {
  7010. i12 = 0;
  7011. if (++i13 == ne3) {
  7012. i13 = 0;
  7013. }
  7014. }
  7015. }
  7016. }
  7017. }
  7018. }
  7019. i10 += ne00 * (ne01 - ir1);
  7020. while (i10 >= ne0) {
  7021. i10 -= ne0;
  7022. if (++i11 == ne1) {
  7023. i11 = 0;
  7024. if (++i12 == ne2) {
  7025. i12 = 0;
  7026. if (++i13 == ne3) {
  7027. i13 = 0;
  7028. }
  7029. }
  7030. }
  7031. }
  7032. }
  7033. }
  7034. } else {
  7035. GGML_ASSERT(false); // TODO: implement
  7036. }
  7037. }
  7038. static void ggml_compute_forward_dup_f32(
  7039. const struct ggml_compute_params * params,
  7040. struct ggml_tensor * dst) {
  7041. const struct ggml_tensor * src0 = dst->src[0];
  7042. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7044. return;
  7045. }
  7046. GGML_TENSOR_UNARY_OP_LOCALS
  7047. const int ith = params->ith; // thread index
  7048. const int nth = params->nth; // number of threads
  7049. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7050. ggml_compute_forward_dup_same_cont(params, dst);
  7051. return;
  7052. }
  7053. // parallelize by rows
  7054. const int nr = ne01;
  7055. // number of rows per thread
  7056. const int dr = (nr + nth - 1) / nth;
  7057. // row range for this thread
  7058. const int ir0 = dr * ith;
  7059. const int ir1 = MIN(ir0 + dr, nr);
  7060. if (src0->type == dst->type &&
  7061. ne00 == ne0 &&
  7062. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7063. // copy by rows
  7064. const size_t rs = ne00*nb00;
  7065. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7066. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7067. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7068. memcpy(
  7069. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7070. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7071. rs);
  7072. }
  7073. }
  7074. }
  7075. return;
  7076. }
  7077. if (ggml_is_contiguous(dst)) {
  7078. // TODO: simplify
  7079. if (nb00 == sizeof(float)) {
  7080. if (dst->type == GGML_TYPE_F32) {
  7081. size_t id = 0;
  7082. const size_t rs = ne00 * nb00;
  7083. char * dst_ptr = (char *) dst->data;
  7084. for (int i03 = 0; i03 < ne03; i03++) {
  7085. for (int i02 = 0; i02 < ne02; i02++) {
  7086. id += rs * ir0;
  7087. for (int i01 = ir0; i01 < ir1; i01++) {
  7088. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7089. memcpy(dst_ptr + id, src0_ptr, rs);
  7090. id += rs;
  7091. }
  7092. id += rs * (ne01 - ir1);
  7093. }
  7094. }
  7095. } else if (type_traits[dst->type].from_float) {
  7096. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7097. size_t id = 0;
  7098. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7099. char * dst_ptr = (char *) dst->data;
  7100. for (int i03 = 0; i03 < ne03; i03++) {
  7101. for (int i02 = 0; i02 < ne02; i02++) {
  7102. id += rs * ir0;
  7103. for (int i01 = ir0; i01 < ir1; i01++) {
  7104. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7105. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7106. id += rs;
  7107. }
  7108. id += rs * (ne01 - ir1);
  7109. }
  7110. }
  7111. } else {
  7112. GGML_ASSERT(false); // TODO: implement
  7113. }
  7114. } else {
  7115. //printf("%s: this is not optimal - fix me\n", __func__);
  7116. if (dst->type == GGML_TYPE_F32) {
  7117. size_t id = 0;
  7118. float * dst_ptr = (float *) dst->data;
  7119. for (int i03 = 0; i03 < ne03; i03++) {
  7120. for (int i02 = 0; i02 < ne02; i02++) {
  7121. id += ne00 * ir0;
  7122. for (int i01 = ir0; i01 < ir1; i01++) {
  7123. for (int i00 = 0; i00 < ne00; i00++) {
  7124. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7125. dst_ptr[id] = *src0_ptr;
  7126. id++;
  7127. }
  7128. }
  7129. id += ne00 * (ne01 - ir1);
  7130. }
  7131. }
  7132. } else if (dst->type == GGML_TYPE_F16) {
  7133. size_t id = 0;
  7134. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7135. for (int i03 = 0; i03 < ne03; i03++) {
  7136. for (int i02 = 0; i02 < ne02; i02++) {
  7137. id += ne00 * ir0;
  7138. for (int i01 = ir0; i01 < ir1; i01++) {
  7139. for (int i00 = 0; i00 < ne00; i00++) {
  7140. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7141. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7142. id++;
  7143. }
  7144. }
  7145. id += ne00 * (ne01 - ir1);
  7146. }
  7147. }
  7148. } else if (dst->type == GGML_TYPE_BF16) {
  7149. size_t id = 0;
  7150. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7151. for (int i03 = 0; i03 < ne03; i03++) {
  7152. for (int i02 = 0; i02 < ne02; i02++) {
  7153. id += ne00 * ir0;
  7154. for (int i01 = ir0; i01 < ir1; i01++) {
  7155. for (int i00 = 0; i00 < ne00; i00++) {
  7156. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7157. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7158. id++;
  7159. }
  7160. }
  7161. id += ne00 * (ne01 - ir1);
  7162. }
  7163. }
  7164. } else {
  7165. GGML_ASSERT(false); // TODO: implement
  7166. }
  7167. }
  7168. return;
  7169. }
  7170. // dst counters
  7171. int64_t i10 = 0;
  7172. int64_t i11 = 0;
  7173. int64_t i12 = 0;
  7174. int64_t i13 = 0;
  7175. if (dst->type == GGML_TYPE_F32) {
  7176. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7177. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7178. i10 += ne00 * ir0;
  7179. while (i10 >= ne0) {
  7180. i10 -= ne0;
  7181. if (++i11 == ne1) {
  7182. i11 = 0;
  7183. if (++i12 == ne2) {
  7184. i12 = 0;
  7185. if (++i13 == ne3) {
  7186. i13 = 0;
  7187. }
  7188. }
  7189. }
  7190. }
  7191. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7192. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7193. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7194. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7195. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7196. if (++i10 == ne0) {
  7197. i10 = 0;
  7198. if (++i11 == ne1) {
  7199. i11 = 0;
  7200. if (++i12 == ne2) {
  7201. i12 = 0;
  7202. if (++i13 == ne3) {
  7203. i13 = 0;
  7204. }
  7205. }
  7206. }
  7207. }
  7208. }
  7209. }
  7210. i10 += ne00 * (ne01 - ir1);
  7211. while (i10 >= ne0) {
  7212. i10 -= ne0;
  7213. if (++i11 == ne1) {
  7214. i11 = 0;
  7215. if (++i12 == ne2) {
  7216. i12 = 0;
  7217. if (++i13 == ne3) {
  7218. i13 = 0;
  7219. }
  7220. }
  7221. }
  7222. }
  7223. }
  7224. }
  7225. } else if (dst->type == GGML_TYPE_F16) {
  7226. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7227. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7228. i10 += ne00 * ir0;
  7229. while (i10 >= ne0) {
  7230. i10 -= ne0;
  7231. if (++i11 == ne1) {
  7232. i11 = 0;
  7233. if (++i12 == ne2) {
  7234. i12 = 0;
  7235. if (++i13 == ne3) {
  7236. i13 = 0;
  7237. }
  7238. }
  7239. }
  7240. }
  7241. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7242. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7243. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7244. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7245. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7246. if (++i10 == ne0) {
  7247. i10 = 0;
  7248. if (++i11 == ne1) {
  7249. i11 = 0;
  7250. if (++i12 == ne2) {
  7251. i12 = 0;
  7252. if (++i13 == ne3) {
  7253. i13 = 0;
  7254. }
  7255. }
  7256. }
  7257. }
  7258. }
  7259. }
  7260. i10 += ne00 * (ne01 - ir1);
  7261. while (i10 >= ne0) {
  7262. i10 -= ne0;
  7263. if (++i11 == ne1) {
  7264. i11 = 0;
  7265. if (++i12 == ne2) {
  7266. i12 = 0;
  7267. if (++i13 == ne3) {
  7268. i13 = 0;
  7269. }
  7270. }
  7271. }
  7272. }
  7273. }
  7274. }
  7275. } else if (dst->type == GGML_TYPE_BF16) {
  7276. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7277. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7278. i10 += ne00 * ir0;
  7279. while (i10 >= ne0) {
  7280. i10 -= ne0;
  7281. if (++i11 == ne1) {
  7282. i11 = 0;
  7283. if (++i12 == ne2) {
  7284. i12 = 0;
  7285. if (++i13 == ne3) {
  7286. i13 = 0;
  7287. }
  7288. }
  7289. }
  7290. }
  7291. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7292. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7293. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7294. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7295. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7296. if (++i10 == ne0) {
  7297. i10 = 0;
  7298. if (++i11 == ne1) {
  7299. i11 = 0;
  7300. if (++i12 == ne2) {
  7301. i12 = 0;
  7302. if (++i13 == ne3) {
  7303. i13 = 0;
  7304. }
  7305. }
  7306. }
  7307. }
  7308. }
  7309. }
  7310. i10 += ne00 * (ne01 - ir1);
  7311. while (i10 >= ne0) {
  7312. i10 -= ne0;
  7313. if (++i11 == ne1) {
  7314. i11 = 0;
  7315. if (++i12 == ne2) {
  7316. i12 = 0;
  7317. if (++i13 == ne3) {
  7318. i13 = 0;
  7319. }
  7320. }
  7321. }
  7322. }
  7323. }
  7324. }
  7325. } else {
  7326. GGML_ASSERT(false); // TODO: implement
  7327. }
  7328. }
  7329. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7330. static void ggml_compute_forward_dup_bytes(
  7331. const struct ggml_compute_params * params,
  7332. struct ggml_tensor * dst) {
  7333. const struct ggml_tensor * src0 = dst->src[0];
  7334. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7335. GGML_ASSERT(src0->type == dst->type);
  7336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7337. return;
  7338. }
  7339. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7340. ggml_compute_forward_dup_same_cont(params, dst);
  7341. return;
  7342. }
  7343. GGML_TENSOR_UNARY_OP_LOCALS;
  7344. const size_t type_size = ggml_type_size(src0->type);
  7345. const int ith = params->ith; // thread index
  7346. const int nth = params->nth; // number of threads
  7347. // parallelize by rows
  7348. const int nr = ne01;
  7349. // number of rows per thread
  7350. const int dr = (nr + nth - 1) / nth;
  7351. // row range for this thread
  7352. const int ir0 = dr * ith;
  7353. const int ir1 = MIN(ir0 + dr, nr);
  7354. if (src0->type == dst->type &&
  7355. ne00 == ne0 &&
  7356. nb00 == type_size && nb0 == type_size) {
  7357. // copy by rows
  7358. const size_t rs = ne00 * type_size;
  7359. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7360. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7361. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7362. memcpy(
  7363. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7364. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7365. rs);
  7366. }
  7367. }
  7368. }
  7369. return;
  7370. }
  7371. if (ggml_is_contiguous(dst)) {
  7372. size_t id = 0;
  7373. char * dst_ptr = (char *) dst->data;
  7374. const size_t rs = ne00 * type_size;
  7375. if (nb00 == type_size) {
  7376. // src0 is contigous on first dimension, copy by rows
  7377. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7379. id += rs * ir0;
  7380. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7381. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7382. memcpy(dst_ptr + id, src0_ptr, rs);
  7383. id += rs;
  7384. }
  7385. id += rs * (ne01 - ir1);
  7386. }
  7387. }
  7388. } else {
  7389. //printf("%s: this is not optimal - fix me\n", __func__);
  7390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7392. id += rs * ir0;
  7393. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7395. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7396. memcpy(dst_ptr + id, src0_ptr, type_size);
  7397. id += type_size;
  7398. }
  7399. }
  7400. id += rs * (ne01 - ir1);
  7401. }
  7402. }
  7403. }
  7404. return;
  7405. }
  7406. // dst counters
  7407. int64_t i10 = 0;
  7408. int64_t i11 = 0;
  7409. int64_t i12 = 0;
  7410. int64_t i13 = 0;
  7411. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7412. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7413. i10 += ne00 * ir0;
  7414. while (i10 >= ne0) {
  7415. i10 -= ne0;
  7416. if (++i11 == ne1) {
  7417. i11 = 0;
  7418. if (++i12 == ne2) {
  7419. i12 = 0;
  7420. if (++i13 == ne3) {
  7421. i13 = 0;
  7422. }
  7423. }
  7424. }
  7425. }
  7426. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7428. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7429. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7430. memcpy(dst_ptr, src0_ptr, type_size);
  7431. if (++i10 == ne0) {
  7432. i10 = 0;
  7433. if (++i11 == ne1) {
  7434. i11 = 0;
  7435. if (++i12 == ne2) {
  7436. i12 = 0;
  7437. if (++i13 == ne3) {
  7438. i13 = 0;
  7439. }
  7440. }
  7441. }
  7442. }
  7443. }
  7444. }
  7445. i10 += ne00 * (ne01 - ir1);
  7446. while (i10 >= ne0) {
  7447. i10 -= ne0;
  7448. if (++i11 == ne1) {
  7449. i11 = 0;
  7450. if (++i12 == ne2) {
  7451. i12 = 0;
  7452. if (++i13 == ne3) {
  7453. i13 = 0;
  7454. }
  7455. }
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. static void ggml_compute_forward_dup(
  7462. const struct ggml_compute_params * params,
  7463. struct ggml_tensor * dst) {
  7464. const struct ggml_tensor * src0 = dst->src[0];
  7465. if (src0->type == dst->type) {
  7466. ggml_compute_forward_dup_bytes(params, dst);
  7467. return;
  7468. }
  7469. switch (src0->type) {
  7470. case GGML_TYPE_F16:
  7471. {
  7472. ggml_compute_forward_dup_f16(params, dst);
  7473. } break;
  7474. case GGML_TYPE_BF16:
  7475. {
  7476. ggml_compute_forward_dup_bf16(params, dst);
  7477. } break;
  7478. case GGML_TYPE_F32:
  7479. {
  7480. ggml_compute_forward_dup_f32(params, dst);
  7481. } break;
  7482. default:
  7483. {
  7484. GGML_ASSERT(false);
  7485. } break;
  7486. }
  7487. }
  7488. // ggml_compute_forward_add
  7489. static void ggml_compute_forward_add_f32(
  7490. const struct ggml_compute_params * params,
  7491. struct ggml_tensor * dst) {
  7492. const struct ggml_tensor * src0 = dst->src[0];
  7493. const struct ggml_tensor * src1 = dst->src[1];
  7494. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7496. return;
  7497. }
  7498. const int ith = params->ith;
  7499. const int nth = params->nth;
  7500. const int nr = ggml_nrows(src0);
  7501. GGML_TENSOR_BINARY_OP_LOCALS
  7502. GGML_ASSERT( nb0 == sizeof(float));
  7503. GGML_ASSERT(nb00 == sizeof(float));
  7504. // rows per thread
  7505. const int dr = (nr + nth - 1)/nth;
  7506. // row range for this thread
  7507. const int ir0 = dr*ith;
  7508. const int ir1 = MIN(ir0 + dr, nr);
  7509. if (nb10 == sizeof(float)) {
  7510. for (int ir = ir0; ir < ir1; ++ir) {
  7511. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7512. const int64_t i03 = ir/(ne02*ne01);
  7513. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7514. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7515. const int64_t i13 = i03 % ne13;
  7516. const int64_t i12 = i02 % ne12;
  7517. const int64_t i11 = i01 % ne11;
  7518. const int64_t nr0 = ne00 / ne10;
  7519. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7520. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7521. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7522. for (int64_t r = 0; r < nr0; ++r) {
  7523. #ifdef GGML_USE_ACCELERATE
  7524. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7525. #else
  7526. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7527. #endif
  7528. }
  7529. }
  7530. } else {
  7531. // src1 is not contiguous
  7532. for (int ir = ir0; ir < ir1; ++ir) {
  7533. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7534. const int64_t i03 = ir/(ne02*ne01);
  7535. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7536. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7537. const int64_t i13 = i03 % ne13;
  7538. const int64_t i12 = i02 % ne12;
  7539. const int64_t i11 = i01 % ne11;
  7540. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7541. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7542. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7543. const int64_t i10 = i0 % ne10;
  7544. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7545. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7546. }
  7547. }
  7548. }
  7549. }
  7550. static void ggml_compute_forward_add_f16_f32(
  7551. const struct ggml_compute_params * params,
  7552. struct ggml_tensor * dst) {
  7553. const struct ggml_tensor * src0 = dst->src[0];
  7554. const struct ggml_tensor * src1 = dst->src[1];
  7555. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7557. return;
  7558. }
  7559. const int ith = params->ith;
  7560. const int nth = params->nth;
  7561. const int nr = ggml_nrows(src0);
  7562. GGML_TENSOR_BINARY_OP_LOCALS
  7563. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7564. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7565. if (dst->type == GGML_TYPE_F32) {
  7566. GGML_ASSERT( nb0 == sizeof(float));
  7567. }
  7568. else {
  7569. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7570. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7571. }
  7572. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7573. // rows per thread
  7574. const int dr = (nr + nth - 1)/nth;
  7575. // row range for this thread
  7576. const int ir0 = dr*ith;
  7577. const int ir1 = MIN(ir0 + dr, nr);
  7578. if (nb10 == sizeof(float)) {
  7579. if (dst->type == GGML_TYPE_F16) {
  7580. for (int ir = ir0; ir < ir1; ++ir) {
  7581. // src0, src1 and dst are same shape => same indices
  7582. const int i3 = ir/(ne2*ne1);
  7583. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7584. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7585. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7586. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7587. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7588. for (int i = 0; i < ne0; i++) {
  7589. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7590. }
  7591. }
  7592. } else {
  7593. for (int ir = ir0; ir < ir1; ++ir) {
  7594. // src0, src1 and dst are same shape => same indices
  7595. const int i3 = ir/(ne2*ne1);
  7596. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7597. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7598. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7599. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7600. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7601. for (int i = 0; i < ne0; i++) {
  7602. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7603. }
  7604. }
  7605. }
  7606. }
  7607. else {
  7608. // src1 is not contiguous
  7609. GGML_ASSERT(false);
  7610. }
  7611. }
  7612. static void ggml_compute_forward_add_bf16_f32(
  7613. const struct ggml_compute_params * params,
  7614. struct ggml_tensor * dst) {
  7615. const struct ggml_tensor * src0 = dst->src[0];
  7616. const struct ggml_tensor * src1 = dst->src[1];
  7617. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7619. return;
  7620. }
  7621. const int ith = params->ith;
  7622. const int nth = params->nth;
  7623. const int nr = ggml_nrows(src0);
  7624. GGML_TENSOR_BINARY_OP_LOCALS
  7625. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7626. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7627. if (dst->type == GGML_TYPE_F32) {
  7628. GGML_ASSERT( nb0 == sizeof(float));
  7629. }
  7630. else {
  7631. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7632. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7633. }
  7634. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7635. // rows per thread
  7636. const int dr = (nr + nth - 1)/nth;
  7637. // row range for this thread
  7638. const int ir0 = dr*ith;
  7639. const int ir1 = MIN(ir0 + dr, nr);
  7640. if (nb10 == sizeof(float)) {
  7641. if (dst->type == GGML_TYPE_BF16) {
  7642. for (int ir = ir0; ir < ir1; ++ir) {
  7643. // src0, src1 and dst are same shape => same indices
  7644. const int i3 = ir/(ne2*ne1);
  7645. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7646. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7647. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7648. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7649. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7650. for (int i = 0; i < ne0; i++) {
  7651. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7652. }
  7653. }
  7654. } else {
  7655. for (int ir = ir0; ir < ir1; ++ir) {
  7656. // src0, src1 and dst are same shape => same indices
  7657. const int i3 = ir/(ne2*ne1);
  7658. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7659. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7660. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7661. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7662. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7663. for (int i = 0; i < ne0; i++) {
  7664. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7665. }
  7666. }
  7667. }
  7668. }
  7669. else {
  7670. // src1 is not contiguous
  7671. GGML_ASSERT(false);
  7672. }
  7673. }
  7674. static void ggml_compute_forward_add_f16_f16(
  7675. const struct ggml_compute_params * params,
  7676. struct ggml_tensor * dst) {
  7677. const struct ggml_tensor * src0 = dst->src[0];
  7678. const struct ggml_tensor * src1 = dst->src[1];
  7679. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7680. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7681. return;
  7682. }
  7683. const int ith = params->ith;
  7684. const int nth = params->nth;
  7685. const int nr = ggml_nrows(src0);
  7686. GGML_TENSOR_BINARY_OP_LOCALS
  7687. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7688. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7689. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7690. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7691. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7692. // rows per thread
  7693. const int dr = (nr + nth - 1)/nth;
  7694. // row range for this thread
  7695. const int ir0 = dr*ith;
  7696. const int ir1 = MIN(ir0 + dr, nr);
  7697. if (nb10 == sizeof(ggml_fp16_t)) {
  7698. for (int ir = ir0; ir < ir1; ++ir) {
  7699. // src0, src1 and dst are same shape => same indices
  7700. const int i3 = ir/(ne2*ne1);
  7701. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7702. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7703. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7704. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7705. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7706. for (int i = 0; i < ne0; i++) {
  7707. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7708. }
  7709. }
  7710. }
  7711. else {
  7712. // src1 is not contiguous
  7713. GGML_ASSERT(false);
  7714. }
  7715. }
  7716. static void ggml_compute_forward_add_bf16_bf16(
  7717. const struct ggml_compute_params * params,
  7718. struct ggml_tensor * dst) {
  7719. const struct ggml_tensor * src0 = dst->src[0];
  7720. const struct ggml_tensor * src1 = dst->src[1];
  7721. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7722. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7723. return;
  7724. }
  7725. const int ith = params->ith;
  7726. const int nth = params->nth;
  7727. const int nr = ggml_nrows(src0);
  7728. GGML_TENSOR_BINARY_OP_LOCALS
  7729. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7730. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7731. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7732. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7733. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7734. // rows per thread
  7735. const int dr = (nr + nth - 1)/nth;
  7736. // row range for this thread
  7737. const int ir0 = dr*ith;
  7738. const int ir1 = MIN(ir0 + dr, nr);
  7739. if (nb10 == sizeof(ggml_bf16_t)) {
  7740. for (int ir = ir0; ir < ir1; ++ir) {
  7741. // src0, src1 and dst are same shape => same indices
  7742. const int i3 = ir/(ne2*ne1);
  7743. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7744. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7745. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7746. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7747. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7748. for (int i = 0; i < ne0; i++) {
  7749. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7750. }
  7751. }
  7752. }
  7753. else {
  7754. // src1 is not contiguous
  7755. GGML_ASSERT(false);
  7756. }
  7757. }
  7758. static void ggml_compute_forward_add_q_f32(
  7759. const struct ggml_compute_params * params,
  7760. struct ggml_tensor * dst) {
  7761. const struct ggml_tensor * src0 = dst->src[0];
  7762. const struct ggml_tensor * src1 = dst->src[1];
  7763. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7765. return;
  7766. }
  7767. const int nr = ggml_nrows(src0);
  7768. GGML_TENSOR_BINARY_OP_LOCALS
  7769. const int ith = params->ith;
  7770. const int nth = params->nth;
  7771. const enum ggml_type type = src0->type;
  7772. const enum ggml_type dtype = dst->type;
  7773. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7774. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7775. // we don't support permuted src0 or src1
  7776. GGML_ASSERT(nb00 == ggml_type_size(type));
  7777. GGML_ASSERT(nb10 == sizeof(float));
  7778. // dst cannot be transposed or permuted
  7779. GGML_ASSERT(nb0 <= nb1);
  7780. GGML_ASSERT(nb1 <= nb2);
  7781. GGML_ASSERT(nb2 <= nb3);
  7782. GGML_ASSERT(ggml_is_quantized(src0->type));
  7783. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7784. // rows per thread
  7785. const int dr = (nr + nth - 1)/nth;
  7786. // row range for this thread
  7787. const int ir0 = dr*ith;
  7788. const int ir1 = MIN(ir0 + dr, nr);
  7789. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7790. for (int ir = ir0; ir < ir1; ++ir) {
  7791. // src0 indices
  7792. const int i03 = ir/(ne02*ne01);
  7793. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7794. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7795. // src1 and dst are same shape as src0 => same indices
  7796. const int i13 = i03;
  7797. const int i12 = i02;
  7798. const int i11 = i01;
  7799. const int i3 = i03;
  7800. const int i2 = i02;
  7801. const int i1 = i01;
  7802. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7803. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7804. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7805. assert(ne00 % 32 == 0);
  7806. // unquantize row from src0 to temp buffer
  7807. dequantize_row_q(src0_row, wdata, ne00);
  7808. // add src1
  7809. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7810. // quantize row to dst
  7811. if (quantize_row_q != NULL) {
  7812. quantize_row_q(wdata, dst_row, ne00);
  7813. } else {
  7814. memcpy(dst_row, wdata, ne0*nb0);
  7815. }
  7816. }
  7817. }
  7818. static void ggml_compute_forward_add(
  7819. const struct ggml_compute_params * params,
  7820. struct ggml_tensor * dst) {
  7821. const struct ggml_tensor * src0 = dst->src[0];
  7822. const struct ggml_tensor * src1 = dst->src[1];
  7823. switch (src0->type) {
  7824. case GGML_TYPE_F32:
  7825. {
  7826. if (src1->type == GGML_TYPE_F32) {
  7827. ggml_compute_forward_add_f32(params, dst);
  7828. }
  7829. else {
  7830. GGML_ASSERT(false);
  7831. }
  7832. } break;
  7833. case GGML_TYPE_F16:
  7834. {
  7835. if (src1->type == GGML_TYPE_F16) {
  7836. ggml_compute_forward_add_f16_f16(params, dst);
  7837. }
  7838. else if (src1->type == GGML_TYPE_F32) {
  7839. ggml_compute_forward_add_f16_f32(params, dst);
  7840. }
  7841. else {
  7842. GGML_ASSERT(false);
  7843. }
  7844. } break;
  7845. case GGML_TYPE_BF16:
  7846. {
  7847. if (src1->type == GGML_TYPE_BF16) {
  7848. ggml_compute_forward_add_bf16_bf16(params, dst);
  7849. }
  7850. else if (src1->type == GGML_TYPE_F32) {
  7851. ggml_compute_forward_add_bf16_f32(params, dst);
  7852. }
  7853. else {
  7854. GGML_ASSERT(false);
  7855. }
  7856. } break;
  7857. case GGML_TYPE_Q4_0:
  7858. case GGML_TYPE_Q4_1:
  7859. case GGML_TYPE_Q5_0:
  7860. case GGML_TYPE_Q5_1:
  7861. case GGML_TYPE_Q8_0:
  7862. case GGML_TYPE_Q2_K:
  7863. case GGML_TYPE_Q3_K:
  7864. case GGML_TYPE_Q4_K:
  7865. case GGML_TYPE_Q5_K:
  7866. case GGML_TYPE_Q6_K:
  7867. case GGML_TYPE_IQ2_XXS:
  7868. case GGML_TYPE_IQ2_XS:
  7869. case GGML_TYPE_IQ3_XXS:
  7870. case GGML_TYPE_IQ1_S:
  7871. case GGML_TYPE_IQ1_M:
  7872. case GGML_TYPE_IQ4_NL:
  7873. case GGML_TYPE_IQ4_XS:
  7874. case GGML_TYPE_IQ3_S:
  7875. case GGML_TYPE_IQ2_S:
  7876. {
  7877. ggml_compute_forward_add_q_f32(params, dst);
  7878. } break;
  7879. default:
  7880. {
  7881. GGML_ASSERT(false);
  7882. } break;
  7883. }
  7884. }
  7885. // ggml_compute_forward_add1
  7886. static void ggml_compute_forward_add1_f32(
  7887. const struct ggml_compute_params * params,
  7888. struct ggml_tensor * dst) {
  7889. const struct ggml_tensor * src0 = dst->src[0];
  7890. const struct ggml_tensor * src1 = dst->src[1];
  7891. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7892. GGML_ASSERT(ggml_is_scalar(src1));
  7893. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7894. return;
  7895. }
  7896. const int ith = params->ith;
  7897. const int nth = params->nth;
  7898. const int nr = ggml_nrows(src0);
  7899. GGML_TENSOR_UNARY_OP_LOCALS
  7900. GGML_ASSERT( nb0 == sizeof(float));
  7901. GGML_ASSERT(nb00 == sizeof(float));
  7902. // rows per thread
  7903. const int dr = (nr + nth - 1)/nth;
  7904. // row range for this thread
  7905. const int ir0 = dr*ith;
  7906. const int ir1 = MIN(ir0 + dr, nr);
  7907. for (int ir = ir0; ir < ir1; ++ir) {
  7908. // src0 and dst are same shape => same indices
  7909. const int i3 = ir/(ne2*ne1);
  7910. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7911. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7912. #ifdef GGML_USE_ACCELERATE
  7913. UNUSED(ggml_vec_add1_f32);
  7914. vDSP_vadd(
  7915. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7916. (float *) ((char *) src1->data), 0,
  7917. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7918. ne0);
  7919. #else
  7920. ggml_vec_add1_f32(ne0,
  7921. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7922. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7923. *(float *) src1->data);
  7924. #endif
  7925. }
  7926. }
  7927. static void ggml_compute_forward_add1_f16_f32(
  7928. const struct ggml_compute_params * params,
  7929. struct ggml_tensor * dst) {
  7930. const struct ggml_tensor * src0 = dst->src[0];
  7931. const struct ggml_tensor * src1 = dst->src[1];
  7932. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7933. GGML_ASSERT(ggml_is_scalar(src1));
  7934. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7935. return;
  7936. }
  7937. // scalar to add
  7938. const float v = *(float *) src1->data;
  7939. const int ith = params->ith;
  7940. const int nth = params->nth;
  7941. const int nr = ggml_nrows(src0);
  7942. GGML_TENSOR_UNARY_OP_LOCALS
  7943. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7944. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7945. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7946. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7947. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7948. // rows per thread
  7949. const int dr = (nr + nth - 1)/nth;
  7950. // row range for this thread
  7951. const int ir0 = dr*ith;
  7952. const int ir1 = MIN(ir0 + dr, nr);
  7953. for (int ir = ir0; ir < ir1; ++ir) {
  7954. // src0 and dst are same shape => same indices
  7955. const int i3 = ir/(ne2*ne1);
  7956. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7957. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7958. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7959. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7960. for (int i = 0; i < ne0; i++) {
  7961. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7962. }
  7963. }
  7964. }
  7965. static void ggml_compute_forward_add1_f16_f16(
  7966. const struct ggml_compute_params * params,
  7967. struct ggml_tensor * dst) {
  7968. const struct ggml_tensor * src0 = dst->src[0];
  7969. const struct ggml_tensor * src1 = dst->src[1];
  7970. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7971. GGML_ASSERT(ggml_is_scalar(src1));
  7972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7973. return;
  7974. }
  7975. // scalar to add
  7976. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7977. const int ith = params->ith;
  7978. const int nth = params->nth;
  7979. const int nr = ggml_nrows(src0);
  7980. GGML_TENSOR_UNARY_OP_LOCALS
  7981. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7982. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7983. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7984. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7985. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7986. // rows per thread
  7987. const int dr = (nr + nth - 1)/nth;
  7988. // row range for this thread
  7989. const int ir0 = dr*ith;
  7990. const int ir1 = MIN(ir0 + dr, nr);
  7991. for (int ir = ir0; ir < ir1; ++ir) {
  7992. // src0 and dst are same shape => same indices
  7993. const int i3 = ir/(ne2*ne1);
  7994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7996. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7997. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7998. for (int i = 0; i < ne0; i++) {
  7999. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8000. }
  8001. }
  8002. }
  8003. static void ggml_compute_forward_add1_q_f32(
  8004. const struct ggml_compute_params * params,
  8005. struct ggml_tensor * dst) {
  8006. const struct ggml_tensor * src0 = dst->src[0];
  8007. const struct ggml_tensor * src1 = dst->src[1];
  8008. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8009. GGML_ASSERT(ggml_is_scalar(src1));
  8010. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8011. return;
  8012. }
  8013. // scalar to add
  8014. const float v = *(float *) src1->data;
  8015. const int ith = params->ith;
  8016. const int nth = params->nth;
  8017. const int nr = ggml_nrows(src0);
  8018. GGML_TENSOR_UNARY_OP_LOCALS
  8019. const enum ggml_type type = src0->type;
  8020. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8021. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8022. // we don't support permuted src0
  8023. GGML_ASSERT(nb00 == ggml_type_size(type));
  8024. // dst cannot be transposed or permuted
  8025. GGML_ASSERT(nb0 <= nb1);
  8026. GGML_ASSERT(nb1 <= nb2);
  8027. GGML_ASSERT(nb2 <= nb3);
  8028. GGML_ASSERT(ggml_is_quantized(src0->type));
  8029. GGML_ASSERT(dst->type == src0->type);
  8030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8031. // rows per thread
  8032. const int dr = (nr + nth - 1)/nth;
  8033. // row range for this thread
  8034. const int ir0 = dr*ith;
  8035. const int ir1 = MIN(ir0 + dr, nr);
  8036. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8037. for (int ir = ir0; ir < ir1; ++ir) {
  8038. // src0 and dst are same shape => same indices
  8039. const int i3 = ir/(ne2*ne1);
  8040. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8041. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8042. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8043. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8044. assert(ne0 % 32 == 0);
  8045. // unquantize row from src0 to temp buffer
  8046. dequantize_row_q(src0_row, wdata, ne0);
  8047. // add src1
  8048. ggml_vec_acc1_f32(ne0, wdata, v);
  8049. // quantize row to dst
  8050. quantize_row_q(wdata, dst_row, ne0);
  8051. }
  8052. }
  8053. static void ggml_compute_forward_add1_bf16_f32(
  8054. const struct ggml_compute_params * params,
  8055. struct ggml_tensor * dst) {
  8056. const struct ggml_tensor * src0 = dst->src[0];
  8057. const struct ggml_tensor * src1 = dst->src[1];
  8058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8059. GGML_ASSERT(ggml_is_scalar(src1));
  8060. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8061. return;
  8062. }
  8063. // scalar to add
  8064. const float v = *(float *) src1->data;
  8065. const int ith = params->ith;
  8066. const int nth = params->nth;
  8067. const int nr = ggml_nrows(src0);
  8068. GGML_TENSOR_UNARY_OP_LOCALS
  8069. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8070. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8071. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8072. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8073. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8074. // rows per thread
  8075. const int dr = (nr + nth - 1)/nth;
  8076. // row range for this thread
  8077. const int ir0 = dr*ith;
  8078. const int ir1 = MIN(ir0 + dr, nr);
  8079. for (int ir = ir0; ir < ir1; ++ir) {
  8080. // src0 and dst are same shape => same indices
  8081. const int i3 = ir/(ne2*ne1);
  8082. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8083. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8084. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8085. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8086. for (int i = 0; i < ne0; i++) {
  8087. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8088. }
  8089. }
  8090. }
  8091. static void ggml_compute_forward_add1_bf16_bf16(
  8092. const struct ggml_compute_params * params,
  8093. struct ggml_tensor * dst) {
  8094. const struct ggml_tensor * src0 = dst->src[0];
  8095. const struct ggml_tensor * src1 = dst->src[1];
  8096. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8097. GGML_ASSERT(ggml_is_scalar(src1));
  8098. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8099. return;
  8100. }
  8101. // scalar to add
  8102. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8103. const int ith = params->ith;
  8104. const int nth = params->nth;
  8105. const int nr = ggml_nrows(src0);
  8106. GGML_TENSOR_UNARY_OP_LOCALS
  8107. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8108. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8109. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8110. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8111. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8112. // rows per thread
  8113. const int dr = (nr + nth - 1)/nth;
  8114. // row range for this thread
  8115. const int ir0 = dr*ith;
  8116. const int ir1 = MIN(ir0 + dr, nr);
  8117. for (int ir = ir0; ir < ir1; ++ir) {
  8118. // src0 and dst are same shape => same indices
  8119. const int i3 = ir/(ne2*ne1);
  8120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8122. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8123. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8124. for (int i = 0; i < ne0; i++) {
  8125. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8126. }
  8127. }
  8128. }
  8129. static void ggml_compute_forward_add1(
  8130. const struct ggml_compute_params * params,
  8131. struct ggml_tensor * dst) {
  8132. const struct ggml_tensor * src0 = dst->src[0];
  8133. const struct ggml_tensor * src1 = dst->src[1];
  8134. switch (src0->type) {
  8135. case GGML_TYPE_F32:
  8136. {
  8137. ggml_compute_forward_add1_f32(params, dst);
  8138. } break;
  8139. case GGML_TYPE_F16:
  8140. {
  8141. if (src1->type == GGML_TYPE_F16) {
  8142. ggml_compute_forward_add1_f16_f16(params, dst);
  8143. }
  8144. else if (src1->type == GGML_TYPE_F32) {
  8145. ggml_compute_forward_add1_f16_f32(params, dst);
  8146. }
  8147. else {
  8148. GGML_ASSERT(false);
  8149. }
  8150. } break;
  8151. case GGML_TYPE_BF16:
  8152. {
  8153. if (src1->type == GGML_TYPE_BF16) {
  8154. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8155. }
  8156. else if (src1->type == GGML_TYPE_F32) {
  8157. ggml_compute_forward_add1_bf16_f32(params, dst);
  8158. }
  8159. else {
  8160. GGML_ASSERT(false);
  8161. }
  8162. } break;
  8163. case GGML_TYPE_Q4_0:
  8164. case GGML_TYPE_Q4_1:
  8165. case GGML_TYPE_Q5_0:
  8166. case GGML_TYPE_Q5_1:
  8167. case GGML_TYPE_Q8_0:
  8168. case GGML_TYPE_Q8_1:
  8169. case GGML_TYPE_Q2_K:
  8170. case GGML_TYPE_Q3_K:
  8171. case GGML_TYPE_Q4_K:
  8172. case GGML_TYPE_Q5_K:
  8173. case GGML_TYPE_Q6_K:
  8174. case GGML_TYPE_IQ2_XXS:
  8175. case GGML_TYPE_IQ2_XS:
  8176. case GGML_TYPE_IQ3_XXS:
  8177. case GGML_TYPE_IQ1_S:
  8178. case GGML_TYPE_IQ1_M:
  8179. case GGML_TYPE_IQ4_NL:
  8180. case GGML_TYPE_IQ4_XS:
  8181. case GGML_TYPE_IQ3_S:
  8182. case GGML_TYPE_IQ2_S:
  8183. {
  8184. ggml_compute_forward_add1_q_f32(params, dst);
  8185. } break;
  8186. default:
  8187. {
  8188. GGML_ASSERT(false);
  8189. } break;
  8190. }
  8191. }
  8192. // ggml_compute_forward_acc
  8193. static void ggml_compute_forward_acc_f32(
  8194. const struct ggml_compute_params * params,
  8195. struct ggml_tensor * dst) {
  8196. const struct ggml_tensor * src0 = dst->src[0];
  8197. const struct ggml_tensor * src1 = dst->src[1];
  8198. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8199. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8200. // view src0 and dst with these strides and data offset inbytes during acc
  8201. // nb0 is implicitly element_size because src0 and dst are contiguous
  8202. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8203. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8204. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8205. size_t offset = ((int32_t *) dst->op_params)[3];
  8206. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8207. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8208. if (params->ith != 0) {
  8209. return;
  8210. }
  8211. // memcpy needs to be synchronized across threads to avoid race conditions.
  8212. // => do it in INIT phase
  8213. memcpy(
  8214. ((char *) dst->data),
  8215. ((char *) src0->data),
  8216. ggml_nbytes(dst));
  8217. }
  8218. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8219. return;
  8220. }
  8221. const int ith = params->ith;
  8222. const int nth = params->nth;
  8223. const int nr = ggml_nrows(src1);
  8224. const int nc = src1->ne[0];
  8225. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8226. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8227. // src0 and dst as viewed during acc
  8228. const size_t nb0 = ggml_element_size(src0);
  8229. const size_t nb00 = nb0;
  8230. const size_t nb01 = nb1;
  8231. const size_t nb02 = nb2;
  8232. const size_t nb03 = nb3;
  8233. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8234. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8235. GGML_ASSERT(nb10 == sizeof(float));
  8236. // rows per thread
  8237. const int dr = (nr + nth - 1)/nth;
  8238. // row range for this thread
  8239. const int ir0 = dr*ith;
  8240. const int ir1 = MIN(ir0 + dr, nr);
  8241. for (int ir = ir0; ir < ir1; ++ir) {
  8242. // src0 and dst are viewed with shape of src1 and offset
  8243. // => same indices
  8244. const int i3 = ir/(ne12*ne11);
  8245. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8246. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8247. #ifdef GGML_USE_ACCELERATE
  8248. vDSP_vadd(
  8249. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8250. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8251. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8252. #else
  8253. ggml_vec_add_f32(nc,
  8254. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8255. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8256. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8257. #endif
  8258. }
  8259. }
  8260. static void ggml_compute_forward_acc(
  8261. const struct ggml_compute_params * params,
  8262. struct ggml_tensor * dst) {
  8263. const struct ggml_tensor * src0 = dst->src[0];
  8264. switch (src0->type) {
  8265. case GGML_TYPE_F32:
  8266. {
  8267. ggml_compute_forward_acc_f32(params, dst);
  8268. } break;
  8269. case GGML_TYPE_F16:
  8270. case GGML_TYPE_BF16:
  8271. case GGML_TYPE_Q4_0:
  8272. case GGML_TYPE_Q4_1:
  8273. case GGML_TYPE_Q5_0:
  8274. case GGML_TYPE_Q5_1:
  8275. case GGML_TYPE_Q8_0:
  8276. case GGML_TYPE_Q8_1:
  8277. case GGML_TYPE_Q2_K:
  8278. case GGML_TYPE_Q3_K:
  8279. case GGML_TYPE_Q4_K:
  8280. case GGML_TYPE_Q5_K:
  8281. case GGML_TYPE_Q6_K:
  8282. case GGML_TYPE_IQ2_XXS:
  8283. case GGML_TYPE_IQ2_XS:
  8284. case GGML_TYPE_IQ3_XXS:
  8285. case GGML_TYPE_IQ1_S:
  8286. case GGML_TYPE_IQ1_M:
  8287. case GGML_TYPE_IQ4_NL:
  8288. case GGML_TYPE_IQ4_XS:
  8289. case GGML_TYPE_IQ3_S:
  8290. case GGML_TYPE_IQ2_S:
  8291. default:
  8292. {
  8293. GGML_ASSERT(false);
  8294. } break;
  8295. }
  8296. }
  8297. // ggml_compute_forward_sub
  8298. static void ggml_compute_forward_sub_f32(
  8299. const struct ggml_compute_params * params,
  8300. struct ggml_tensor * dst) {
  8301. const struct ggml_tensor * src0 = dst->src[0];
  8302. const struct ggml_tensor * src1 = dst->src[1];
  8303. assert(params->ith == 0);
  8304. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8306. return;
  8307. }
  8308. const int nr = ggml_nrows(src0);
  8309. GGML_TENSOR_BINARY_OP_LOCALS
  8310. GGML_ASSERT( nb0 == sizeof(float));
  8311. GGML_ASSERT(nb00 == sizeof(float));
  8312. if (nb10 == sizeof(float)) {
  8313. for (int ir = 0; ir < nr; ++ir) {
  8314. // src0, src1 and dst are same shape => same indices
  8315. const int i3 = ir/(ne2*ne1);
  8316. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8317. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8318. #ifdef GGML_USE_ACCELERATE
  8319. vDSP_vsub(
  8320. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8321. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8322. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8323. ne0);
  8324. #else
  8325. ggml_vec_sub_f32(ne0,
  8326. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8327. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8328. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8329. #endif
  8330. // }
  8331. // }
  8332. }
  8333. } else {
  8334. // src1 is not contiguous
  8335. for (int ir = 0; ir < nr; ++ir) {
  8336. // src0, src1 and dst are same shape => same indices
  8337. const int i3 = ir/(ne2*ne1);
  8338. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8339. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8340. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8341. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8342. for (int i0 = 0; i0 < ne0; i0++) {
  8343. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8344. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8345. }
  8346. }
  8347. }
  8348. }
  8349. static void ggml_compute_forward_sub(
  8350. const struct ggml_compute_params * params,
  8351. struct ggml_tensor * dst) {
  8352. const struct ggml_tensor * src0 = dst->src[0];
  8353. switch (src0->type) {
  8354. case GGML_TYPE_F32:
  8355. {
  8356. ggml_compute_forward_sub_f32(params, dst);
  8357. } break;
  8358. default:
  8359. {
  8360. GGML_ASSERT(false);
  8361. } break;
  8362. }
  8363. }
  8364. // ggml_compute_forward_mul
  8365. static void ggml_compute_forward_mul_f32(
  8366. const struct ggml_compute_params * params,
  8367. struct ggml_tensor * dst) {
  8368. const struct ggml_tensor * src0 = dst->src[0];
  8369. const struct ggml_tensor * src1 = dst->src[1];
  8370. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8371. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8372. return;
  8373. }
  8374. const int ith = params->ith;
  8375. const int nth = params->nth;
  8376. const int64_t nr = ggml_nrows(src0);
  8377. GGML_TENSOR_BINARY_OP_LOCALS
  8378. GGML_ASSERT( nb0 == sizeof(float));
  8379. GGML_ASSERT(nb00 == sizeof(float));
  8380. if (nb10 == sizeof(float)) {
  8381. for (int64_t ir = ith; ir < nr; ir += nth) {
  8382. // src0 and dst are same shape => same indices
  8383. const int64_t i03 = ir/(ne02*ne01);
  8384. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8385. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8386. const int64_t i13 = i03 % ne13;
  8387. const int64_t i12 = i02 % ne12;
  8388. const int64_t i11 = i01 % ne11;
  8389. const int64_t nr0 = ne00 / ne10;
  8390. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8391. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8392. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8393. for (int64_t r = 0 ; r < nr0; ++r) {
  8394. #ifdef GGML_USE_ACCELERATE
  8395. UNUSED(ggml_vec_mul_f32);
  8396. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8397. #else
  8398. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8399. #endif
  8400. }
  8401. }
  8402. } else {
  8403. // src1 is not contiguous
  8404. for (int64_t ir = ith; ir < nr; ir += nth) {
  8405. // src0 and dst are same shape => same indices
  8406. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8407. const int64_t i03 = ir/(ne02*ne01);
  8408. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8409. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8410. const int64_t i13 = i03 % ne13;
  8411. const int64_t i12 = i02 % ne12;
  8412. const int64_t i11 = i01 % ne11;
  8413. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8414. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8415. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8416. const int64_t i10 = i0 % ne10;
  8417. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8418. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8419. }
  8420. }
  8421. }
  8422. }
  8423. static void ggml_compute_forward_mul(
  8424. const struct ggml_compute_params * params,
  8425. struct ggml_tensor * dst) {
  8426. const struct ggml_tensor * src0 = dst->src[0];
  8427. const struct ggml_tensor * src1 = dst->src[1];
  8428. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8429. switch (src0->type) {
  8430. case GGML_TYPE_F32:
  8431. {
  8432. ggml_compute_forward_mul_f32(params, dst);
  8433. } break;
  8434. default:
  8435. {
  8436. GGML_ASSERT(false);
  8437. } break;
  8438. }
  8439. }
  8440. // ggml_compute_forward_div
  8441. static void ggml_compute_forward_div_f32(
  8442. const struct ggml_compute_params * params,
  8443. struct ggml_tensor * dst) {
  8444. const struct ggml_tensor * src0 = dst->src[0];
  8445. const struct ggml_tensor * src1 = dst->src[1];
  8446. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8448. return;
  8449. }
  8450. const int ith = params->ith;
  8451. const int nth = params->nth;
  8452. const int64_t nr = ggml_nrows(src0);
  8453. GGML_TENSOR_BINARY_OP_LOCALS
  8454. GGML_ASSERT( nb0 == sizeof(float));
  8455. GGML_ASSERT(nb00 == sizeof(float));
  8456. if (nb10 == sizeof(float)) {
  8457. for (int64_t ir = ith; ir < nr; ir += nth) {
  8458. // src0 and dst are same shape => same indices
  8459. const int64_t i03 = ir/(ne02*ne01);
  8460. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8461. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8462. const int64_t i13 = i03 % ne13;
  8463. const int64_t i12 = i02 % ne12;
  8464. const int64_t i11 = i01 % ne11;
  8465. const int64_t nr0 = ne00 / ne10;
  8466. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8467. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8468. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8469. for (int64_t r = 0; r < nr0; ++r) {
  8470. #ifdef GGML_USE_ACCELERATE
  8471. UNUSED(ggml_vec_div_f32);
  8472. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8473. #else
  8474. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8475. #endif
  8476. }
  8477. }
  8478. } else {
  8479. // src1 is not contiguous
  8480. for (int64_t ir = ith; ir < nr; ir += nth) {
  8481. // src0 and dst are same shape => same indices
  8482. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8483. const int64_t i03 = ir/(ne02*ne01);
  8484. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8485. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8486. const int64_t i13 = i03 % ne13;
  8487. const int64_t i12 = i02 % ne12;
  8488. const int64_t i11 = i01 % ne11;
  8489. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8490. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8491. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8492. const int64_t i10 = i0 % ne10;
  8493. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8494. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8495. }
  8496. }
  8497. }
  8498. }
  8499. static void ggml_compute_forward_div(
  8500. const struct ggml_compute_params * params,
  8501. struct ggml_tensor * dst) {
  8502. const struct ggml_tensor * src0 = dst->src[0];
  8503. switch (src0->type) {
  8504. case GGML_TYPE_F32:
  8505. {
  8506. ggml_compute_forward_div_f32(params, dst);
  8507. } break;
  8508. default:
  8509. {
  8510. GGML_ASSERT(false);
  8511. } break;
  8512. }
  8513. }
  8514. // ggml_compute_forward_sqr
  8515. static void ggml_compute_forward_sqr_f32(
  8516. const struct ggml_compute_params * params,
  8517. struct ggml_tensor * dst) {
  8518. const struct ggml_tensor * src0 = dst->src[0];
  8519. assert(params->ith == 0);
  8520. assert(ggml_are_same_shape(src0, dst));
  8521. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8522. return;
  8523. }
  8524. const int n = ggml_nrows(src0);
  8525. const int nc = src0->ne[0];
  8526. assert( dst->nb[0] == sizeof(float));
  8527. assert(src0->nb[0] == sizeof(float));
  8528. for (int i = 0; i < n; i++) {
  8529. ggml_vec_sqr_f32(nc,
  8530. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8531. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8532. }
  8533. }
  8534. static void ggml_compute_forward_sqr(
  8535. const struct ggml_compute_params * params,
  8536. struct ggml_tensor * dst) {
  8537. const struct ggml_tensor * src0 = dst->src[0];
  8538. switch (src0->type) {
  8539. case GGML_TYPE_F32:
  8540. {
  8541. ggml_compute_forward_sqr_f32(params, dst);
  8542. } break;
  8543. default:
  8544. {
  8545. GGML_ASSERT(false);
  8546. } break;
  8547. }
  8548. }
  8549. // ggml_compute_forward_sqrt
  8550. static void ggml_compute_forward_sqrt_f32(
  8551. const struct ggml_compute_params * params,
  8552. struct ggml_tensor * dst) {
  8553. const struct ggml_tensor * src0 = dst->src[0];
  8554. assert(params->ith == 0);
  8555. assert(ggml_are_same_shape(src0, dst));
  8556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8557. return;
  8558. }
  8559. const int n = ggml_nrows(src0);
  8560. const int nc = src0->ne[0];
  8561. assert( dst->nb[0] == sizeof(float));
  8562. assert(src0->nb[0] == sizeof(float));
  8563. for (int i = 0; i < n; i++) {
  8564. ggml_vec_sqrt_f32(nc,
  8565. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8566. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8567. }
  8568. }
  8569. static void ggml_compute_forward_sqrt(
  8570. const struct ggml_compute_params * params,
  8571. struct ggml_tensor * dst) {
  8572. const struct ggml_tensor * src0 = dst->src[0];
  8573. switch (src0->type) {
  8574. case GGML_TYPE_F32:
  8575. {
  8576. ggml_compute_forward_sqrt_f32(params, dst);
  8577. } break;
  8578. default:
  8579. {
  8580. GGML_ASSERT(false);
  8581. } break;
  8582. }
  8583. }
  8584. // ggml_compute_forward_log
  8585. static void ggml_compute_forward_log_f32(
  8586. const struct ggml_compute_params * params,
  8587. struct ggml_tensor * dst) {
  8588. const struct ggml_tensor * src0 = dst->src[0];
  8589. GGML_ASSERT(params->ith == 0);
  8590. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8592. return;
  8593. }
  8594. const int n = ggml_nrows(src0);
  8595. const int nc = src0->ne[0];
  8596. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8597. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8598. for (int i = 0; i < n; i++) {
  8599. ggml_vec_log_f32(nc,
  8600. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8601. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8602. }
  8603. }
  8604. static void ggml_compute_forward_log(
  8605. const struct ggml_compute_params * params,
  8606. struct ggml_tensor * dst) {
  8607. const struct ggml_tensor * src0 = dst->src[0];
  8608. switch (src0->type) {
  8609. case GGML_TYPE_F32:
  8610. {
  8611. ggml_compute_forward_log_f32(params, dst);
  8612. } break;
  8613. default:
  8614. {
  8615. GGML_ASSERT(false);
  8616. } break;
  8617. }
  8618. }
  8619. // ggml_compute_forward_sum
  8620. static void ggml_compute_forward_sum_f32(
  8621. const struct ggml_compute_params * params,
  8622. struct ggml_tensor * dst) {
  8623. const struct ggml_tensor * src0 = dst->src[0];
  8624. assert(params->ith == 0);
  8625. assert(ggml_is_scalar(dst));
  8626. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8627. return;
  8628. }
  8629. assert(ggml_is_scalar(dst));
  8630. assert(src0->nb[0] == sizeof(float));
  8631. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8632. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8633. ggml_float sum = 0;
  8634. ggml_float row_sum = 0;
  8635. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8636. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8638. ggml_vec_sum_f32_ggf(ne00,
  8639. &row_sum,
  8640. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8641. sum += row_sum;
  8642. }
  8643. }
  8644. }
  8645. ((float *) dst->data)[0] = sum;
  8646. }
  8647. static void ggml_compute_forward_sum_f16(
  8648. const struct ggml_compute_params * params,
  8649. struct ggml_tensor * dst) {
  8650. const struct ggml_tensor * src0 = dst->src[0];
  8651. assert(params->ith == 0);
  8652. assert(ggml_is_scalar(dst));
  8653. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8654. return;
  8655. }
  8656. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8657. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8658. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8659. float sum = 0;
  8660. float row_sum = 0;
  8661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8663. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8664. ggml_vec_sum_f16_ggf(ne00,
  8665. &row_sum,
  8666. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8667. sum += row_sum;
  8668. }
  8669. }
  8670. }
  8671. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8672. }
  8673. static void ggml_compute_forward_sum_bf16(
  8674. const struct ggml_compute_params * params,
  8675. struct ggml_tensor * dst) {
  8676. const struct ggml_tensor * src0 = dst->src[0];
  8677. assert(params->ith == 0);
  8678. assert(ggml_is_scalar(dst));
  8679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8680. return;
  8681. }
  8682. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8683. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8684. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8685. float sum = 0;
  8686. float row_sum = 0;
  8687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8689. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8690. ggml_vec_sum_bf16_ggf(ne00,
  8691. &row_sum,
  8692. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8693. sum += row_sum;
  8694. }
  8695. }
  8696. }
  8697. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8698. }
  8699. static void ggml_compute_forward_sum(
  8700. const struct ggml_compute_params * params,
  8701. struct ggml_tensor * dst) {
  8702. const struct ggml_tensor * src0 = dst->src[0];
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F32:
  8705. {
  8706. ggml_compute_forward_sum_f32(params, dst);
  8707. } break;
  8708. case GGML_TYPE_F16:
  8709. {
  8710. ggml_compute_forward_sum_f16(params, dst);
  8711. } break;
  8712. case GGML_TYPE_BF16:
  8713. {
  8714. ggml_compute_forward_sum_bf16(params, dst);
  8715. } break;
  8716. default:
  8717. {
  8718. GGML_ASSERT(false);
  8719. } break;
  8720. }
  8721. }
  8722. // ggml_compute_forward_sum_rows
  8723. static void ggml_compute_forward_sum_rows_f32(
  8724. const struct ggml_compute_params * params,
  8725. struct ggml_tensor * dst) {
  8726. const struct ggml_tensor * src0 = dst->src[0];
  8727. GGML_ASSERT(params->ith == 0);
  8728. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8729. return;
  8730. }
  8731. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8732. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8733. GGML_TENSOR_UNARY_OP_LOCALS
  8734. GGML_ASSERT(ne0 == 1);
  8735. GGML_ASSERT(ne1 == ne01);
  8736. GGML_ASSERT(ne2 == ne02);
  8737. GGML_ASSERT(ne3 == ne03);
  8738. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8739. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8740. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8741. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8742. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8743. float row_sum = 0;
  8744. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8745. dst_row[0] = row_sum;
  8746. }
  8747. }
  8748. }
  8749. }
  8750. static void ggml_compute_forward_sum_rows(
  8751. const struct ggml_compute_params * params,
  8752. struct ggml_tensor * dst) {
  8753. const struct ggml_tensor * src0 = dst->src[0];
  8754. switch (src0->type) {
  8755. case GGML_TYPE_F32:
  8756. {
  8757. ggml_compute_forward_sum_rows_f32(params, dst);
  8758. } break;
  8759. default:
  8760. {
  8761. GGML_ASSERT(false);
  8762. } break;
  8763. }
  8764. }
  8765. // ggml_compute_forward_mean
  8766. static void ggml_compute_forward_mean_f32(
  8767. const struct ggml_compute_params * params,
  8768. struct ggml_tensor * dst) {
  8769. const struct ggml_tensor * src0 = dst->src[0];
  8770. assert(params->ith == 0);
  8771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8772. return;
  8773. }
  8774. assert(src0->nb[0] == sizeof(float));
  8775. GGML_TENSOR_UNARY_OP_LOCALS
  8776. assert(ne0 == 1);
  8777. assert(ne1 == ne01);
  8778. assert(ne2 == ne02);
  8779. assert(ne3 == ne03);
  8780. UNUSED(ne0);
  8781. UNUSED(ne1);
  8782. UNUSED(ne2);
  8783. UNUSED(ne3);
  8784. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8785. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8786. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8787. ggml_vec_sum_f32(ne00,
  8788. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8789. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8790. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8791. }
  8792. }
  8793. }
  8794. }
  8795. static void ggml_compute_forward_mean(
  8796. const struct ggml_compute_params * params,
  8797. struct ggml_tensor * dst) {
  8798. const struct ggml_tensor * src0 = dst->src[0];
  8799. switch (src0->type) {
  8800. case GGML_TYPE_F32:
  8801. {
  8802. ggml_compute_forward_mean_f32(params, dst);
  8803. } break;
  8804. default:
  8805. {
  8806. GGML_ASSERT(false);
  8807. } break;
  8808. }
  8809. }
  8810. // ggml_compute_forward_argmax
  8811. static void ggml_compute_forward_argmax_f32(
  8812. const struct ggml_compute_params * params,
  8813. struct ggml_tensor * dst) {
  8814. const struct ggml_tensor * src0 = dst->src[0];
  8815. assert(params->ith == 0);
  8816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8817. return;
  8818. }
  8819. assert(src0->nb[0] == sizeof(float));
  8820. assert(dst->nb[0] == sizeof(float));
  8821. const int64_t ne00 = src0->ne[0];
  8822. const int64_t ne01 = src0->ne[1];
  8823. const size_t nb01 = src0->nb[1];
  8824. const size_t nb0 = dst->nb[0];
  8825. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8826. float * src = (float *) ((char *) src0->data + i1*nb01);
  8827. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8828. int v = 0;
  8829. ggml_vec_argmax_f32(ne00, &v, src);
  8830. dst_[0] = v;
  8831. }
  8832. }
  8833. static void ggml_compute_forward_argmax(
  8834. const struct ggml_compute_params * params,
  8835. struct ggml_tensor * dst) {
  8836. const struct ggml_tensor * src0 = dst->src[0];
  8837. switch (src0->type) {
  8838. case GGML_TYPE_F32:
  8839. {
  8840. ggml_compute_forward_argmax_f32(params, dst);
  8841. } break;
  8842. default:
  8843. {
  8844. GGML_ASSERT(false);
  8845. } break;
  8846. }
  8847. }
  8848. // ggml_compute_forward_repeat
  8849. static void ggml_compute_forward_repeat_f32(
  8850. const struct ggml_compute_params * params,
  8851. struct ggml_tensor * dst) {
  8852. const struct ggml_tensor * src0 = dst->src[0];
  8853. GGML_ASSERT(params->ith == 0);
  8854. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8855. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8856. return;
  8857. }
  8858. GGML_TENSOR_UNARY_OP_LOCALS
  8859. // guaranteed to be an integer due to the check in ggml_can_repeat
  8860. const int nr0 = (int)(ne0/ne00);
  8861. const int nr1 = (int)(ne1/ne01);
  8862. const int nr2 = (int)(ne2/ne02);
  8863. const int nr3 = (int)(ne3/ne03);
  8864. // TODO: support for transposed / permuted tensors
  8865. GGML_ASSERT(nb0 == sizeof(float));
  8866. GGML_ASSERT(nb00 == sizeof(float));
  8867. // TODO: maybe this is not optimal?
  8868. for (int i3 = 0; i3 < nr3; i3++) {
  8869. for (int k3 = 0; k3 < ne03; k3++) {
  8870. for (int i2 = 0; i2 < nr2; i2++) {
  8871. for (int k2 = 0; k2 < ne02; k2++) {
  8872. for (int i1 = 0; i1 < nr1; i1++) {
  8873. for (int k1 = 0; k1 < ne01; k1++) {
  8874. for (int i0 = 0; i0 < nr0; i0++) {
  8875. ggml_vec_cpy_f32(ne00,
  8876. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8877. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8878. }
  8879. }
  8880. }
  8881. }
  8882. }
  8883. }
  8884. }
  8885. }
  8886. static void ggml_compute_forward_repeat_f16(
  8887. const struct ggml_compute_params * params,
  8888. struct ggml_tensor * dst) {
  8889. const struct ggml_tensor * src0 = dst->src[0];
  8890. GGML_ASSERT(params->ith == 0);
  8891. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8892. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8893. return;
  8894. }
  8895. GGML_TENSOR_UNARY_OP_LOCALS
  8896. // guaranteed to be an integer due to the check in ggml_can_repeat
  8897. const int nr0 = (int)(ne0/ne00);
  8898. const int nr1 = (int)(ne1/ne01);
  8899. const int nr2 = (int)(ne2/ne02);
  8900. const int nr3 = (int)(ne3/ne03);
  8901. // TODO: support for transposed / permuted tensors
  8902. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8903. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8904. // TODO: maybe this is not optimal?
  8905. for (int i3 = 0; i3 < nr3; i3++) {
  8906. for (int k3 = 0; k3 < ne03; k3++) {
  8907. for (int i2 = 0; i2 < nr2; i2++) {
  8908. for (int k2 = 0; k2 < ne02; k2++) {
  8909. for (int i1 = 0; i1 < nr1; i1++) {
  8910. for (int k1 = 0; k1 < ne01; k1++) {
  8911. for (int i0 = 0; i0 < nr0; i0++) {
  8912. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8913. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8914. // ggml_vec_cpy_f16(ne00, y, x)
  8915. for (int i = 0; i < ne00; ++i) {
  8916. y[i] = x[i];
  8917. }
  8918. }
  8919. }
  8920. }
  8921. }
  8922. }
  8923. }
  8924. }
  8925. }
  8926. static void ggml_compute_forward_repeat(
  8927. const struct ggml_compute_params * params,
  8928. struct ggml_tensor * dst) {
  8929. const struct ggml_tensor * src0 = dst->src[0];
  8930. switch (src0->type) {
  8931. case GGML_TYPE_F16:
  8932. case GGML_TYPE_BF16:
  8933. case GGML_TYPE_I16:
  8934. {
  8935. ggml_compute_forward_repeat_f16(params, dst);
  8936. } break;
  8937. case GGML_TYPE_F32:
  8938. case GGML_TYPE_I32:
  8939. {
  8940. ggml_compute_forward_repeat_f32(params, dst);
  8941. } break;
  8942. default:
  8943. {
  8944. GGML_ASSERT(false);
  8945. } break;
  8946. }
  8947. }
  8948. // ggml_compute_forward_repeat_back
  8949. static void ggml_compute_forward_repeat_back_f32(
  8950. const struct ggml_compute_params * params,
  8951. struct ggml_tensor * dst) {
  8952. const struct ggml_tensor * src0 = dst->src[0];
  8953. GGML_ASSERT(params->ith == 0);
  8954. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8955. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8956. return;
  8957. }
  8958. GGML_TENSOR_UNARY_OP_LOCALS
  8959. // guaranteed to be an integer due to the check in ggml_can_repeat
  8960. const int nr0 = (int)(ne00/ne0);
  8961. const int nr1 = (int)(ne01/ne1);
  8962. const int nr2 = (int)(ne02/ne2);
  8963. const int nr3 = (int)(ne03/ne3);
  8964. // TODO: support for transposed / permuted tensors
  8965. GGML_ASSERT(nb0 == sizeof(float));
  8966. GGML_ASSERT(nb00 == sizeof(float));
  8967. if (ggml_is_contiguous(dst)) {
  8968. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8969. } else {
  8970. for (int k3 = 0; k3 < ne3; k3++) {
  8971. for (int k2 = 0; k2 < ne2; k2++) {
  8972. for (int k1 = 0; k1 < ne1; k1++) {
  8973. ggml_vec_set_f32(ne0,
  8974. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8975. 0);
  8976. }
  8977. }
  8978. }
  8979. }
  8980. // TODO: maybe this is not optimal?
  8981. for (int i3 = 0; i3 < nr3; i3++) {
  8982. for (int k3 = 0; k3 < ne3; k3++) {
  8983. for (int i2 = 0; i2 < nr2; i2++) {
  8984. for (int k2 = 0; k2 < ne2; k2++) {
  8985. for (int i1 = 0; i1 < nr1; i1++) {
  8986. for (int k1 = 0; k1 < ne1; k1++) {
  8987. for (int i0 = 0; i0 < nr0; i0++) {
  8988. ggml_vec_acc_f32(ne0,
  8989. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8990. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8991. }
  8992. }
  8993. }
  8994. }
  8995. }
  8996. }
  8997. }
  8998. }
  8999. static void ggml_compute_forward_repeat_back(
  9000. const struct ggml_compute_params * params,
  9001. struct ggml_tensor * dst) {
  9002. const struct ggml_tensor * src0 = dst->src[0];
  9003. switch (src0->type) {
  9004. case GGML_TYPE_F32:
  9005. {
  9006. ggml_compute_forward_repeat_back_f32(params, dst);
  9007. } break;
  9008. default:
  9009. {
  9010. GGML_ASSERT(false);
  9011. } break;
  9012. }
  9013. }
  9014. // ggml_compute_forward_concat
  9015. static void ggml_compute_forward_concat_f32(
  9016. const struct ggml_compute_params * params,
  9017. struct ggml_tensor * dst) {
  9018. const struct ggml_tensor * src0 = dst->src[0];
  9019. const struct ggml_tensor * src1 = dst->src[1];
  9020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9021. return;
  9022. }
  9023. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9024. const int ith = params->ith;
  9025. const int nth = params->nth;
  9026. GGML_TENSOR_BINARY_OP_LOCALS
  9027. // TODO: support for transposed / permuted tensors
  9028. GGML_ASSERT(nb0 == sizeof(float));
  9029. GGML_ASSERT(nb00 == sizeof(float));
  9030. GGML_ASSERT(nb10 == sizeof(float));
  9031. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9032. GGML_ASSERT(dim >= 0 && dim < 4);
  9033. int64_t o[4] = {0, 0, 0, 0};
  9034. o[dim] = src0->ne[dim];
  9035. const float * x;
  9036. // TODO: smarter multi-theading
  9037. for (int i3 = 0; i3 < ne3; i3++) {
  9038. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9039. for (int i1 = 0; i1 < ne1; i1++) {
  9040. for (int i0 = 0; i0 < ne0; i0++) {
  9041. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9042. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9043. } else {
  9044. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9045. }
  9046. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9047. *y = *x;
  9048. }
  9049. }
  9050. }
  9051. }
  9052. }
  9053. static void ggml_compute_forward_concat(
  9054. const struct ggml_compute_params * params,
  9055. struct ggml_tensor * dst) {
  9056. const struct ggml_tensor * src0 = dst->src[0];
  9057. switch (src0->type) {
  9058. case GGML_TYPE_F32:
  9059. case GGML_TYPE_I32:
  9060. {
  9061. ggml_compute_forward_concat_f32(params, dst);
  9062. } break;
  9063. default:
  9064. {
  9065. GGML_ASSERT(false);
  9066. } break;
  9067. }
  9068. }
  9069. // ggml_compute_forward_abs
  9070. static void ggml_compute_forward_abs_f32(
  9071. const struct ggml_compute_params * params,
  9072. struct ggml_tensor * dst) {
  9073. const struct ggml_tensor * src0 = dst->src[0];
  9074. assert(params->ith == 0);
  9075. assert(ggml_are_same_shape(src0, dst));
  9076. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9077. return;
  9078. }
  9079. const int n = ggml_nrows(src0);
  9080. const int nc = src0->ne[0];
  9081. assert(dst->nb[0] == sizeof(float));
  9082. assert(src0->nb[0] == sizeof(float));
  9083. for (int i = 0; i < n; i++) {
  9084. ggml_vec_abs_f32(nc,
  9085. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9086. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9087. }
  9088. }
  9089. static void ggml_compute_forward_abs(
  9090. const struct ggml_compute_params * params,
  9091. struct ggml_tensor * dst) {
  9092. const struct ggml_tensor * src0 = dst->src[0];
  9093. switch (src0->type) {
  9094. case GGML_TYPE_F32:
  9095. {
  9096. ggml_compute_forward_abs_f32(params, dst);
  9097. } break;
  9098. default:
  9099. {
  9100. GGML_ASSERT(false);
  9101. } break;
  9102. }
  9103. }
  9104. // ggml_compute_forward_sgn
  9105. static void ggml_compute_forward_sgn_f32(
  9106. const struct ggml_compute_params * params,
  9107. struct ggml_tensor * dst) {
  9108. const struct ggml_tensor * src0 = dst->src[0];
  9109. assert(params->ith == 0);
  9110. assert(ggml_are_same_shape(src0, dst));
  9111. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9112. return;
  9113. }
  9114. const int n = ggml_nrows(src0);
  9115. const int nc = src0->ne[0];
  9116. assert(dst->nb[0] == sizeof(float));
  9117. assert(src0->nb[0] == sizeof(float));
  9118. for (int i = 0; i < n; i++) {
  9119. ggml_vec_sgn_f32(nc,
  9120. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9121. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9122. }
  9123. }
  9124. static void ggml_compute_forward_sgn(
  9125. const struct ggml_compute_params * params,
  9126. struct ggml_tensor * dst) {
  9127. const struct ggml_tensor * src0 = dst->src[0];
  9128. switch (src0->type) {
  9129. case GGML_TYPE_F32:
  9130. {
  9131. ggml_compute_forward_sgn_f32(params, dst);
  9132. } break;
  9133. default:
  9134. {
  9135. GGML_ASSERT(false);
  9136. } break;
  9137. }
  9138. }
  9139. // ggml_compute_forward_neg
  9140. static void ggml_compute_forward_neg_f32(
  9141. const struct ggml_compute_params * params,
  9142. struct ggml_tensor * dst) {
  9143. const struct ggml_tensor * src0 = dst->src[0];
  9144. assert(params->ith == 0);
  9145. assert(ggml_are_same_shape(src0, dst));
  9146. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9147. return;
  9148. }
  9149. const int n = ggml_nrows(src0);
  9150. const int nc = src0->ne[0];
  9151. assert(dst->nb[0] == sizeof(float));
  9152. assert(src0->nb[0] == sizeof(float));
  9153. for (int i = 0; i < n; i++) {
  9154. ggml_vec_neg_f32(nc,
  9155. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9156. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9157. }
  9158. }
  9159. static void ggml_compute_forward_neg(
  9160. const struct ggml_compute_params * params,
  9161. struct ggml_tensor * dst) {
  9162. const struct ggml_tensor * src0 = dst->src[0];
  9163. switch (src0->type) {
  9164. case GGML_TYPE_F32:
  9165. {
  9166. ggml_compute_forward_neg_f32(params, dst);
  9167. } break;
  9168. default:
  9169. {
  9170. GGML_ASSERT(false);
  9171. } break;
  9172. }
  9173. }
  9174. // ggml_compute_forward_step
  9175. static void ggml_compute_forward_step_f32(
  9176. const struct ggml_compute_params * params,
  9177. struct ggml_tensor * dst) {
  9178. const struct ggml_tensor * src0 = dst->src[0];
  9179. assert(params->ith == 0);
  9180. assert(ggml_are_same_shape(src0, dst));
  9181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9182. return;
  9183. }
  9184. const int n = ggml_nrows(src0);
  9185. const int nc = src0->ne[0];
  9186. assert(dst->nb[0] == sizeof(float));
  9187. assert(src0->nb[0] == sizeof(float));
  9188. for (int i = 0; i < n; i++) {
  9189. ggml_vec_step_f32(nc,
  9190. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9191. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9192. }
  9193. }
  9194. static void ggml_compute_forward_step(
  9195. const struct ggml_compute_params * params,
  9196. struct ggml_tensor * dst) {
  9197. const struct ggml_tensor * src0 = dst->src[0];
  9198. switch (src0->type) {
  9199. case GGML_TYPE_F32:
  9200. {
  9201. ggml_compute_forward_step_f32(params, dst);
  9202. } break;
  9203. default:
  9204. {
  9205. GGML_ASSERT(false);
  9206. } break;
  9207. }
  9208. }
  9209. // ggml_compute_forward_tanh
  9210. static void ggml_compute_forward_tanh_f32(
  9211. const struct ggml_compute_params * params,
  9212. struct ggml_tensor * dst) {
  9213. const struct ggml_tensor * src0 = dst->src[0];
  9214. assert(params->ith == 0);
  9215. assert(ggml_are_same_shape(src0, dst));
  9216. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9217. return;
  9218. }
  9219. const int n = ggml_nrows(src0);
  9220. const int nc = src0->ne[0];
  9221. assert(dst->nb[0] == sizeof(float));
  9222. assert(src0->nb[0] == sizeof(float));
  9223. for (int i = 0; i < n; i++) {
  9224. ggml_vec_tanh_f32(nc,
  9225. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9226. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9227. }
  9228. }
  9229. static void ggml_compute_forward_tanh(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. switch (src0->type) {
  9234. case GGML_TYPE_F32:
  9235. {
  9236. ggml_compute_forward_tanh_f32(params, dst);
  9237. } break;
  9238. default:
  9239. {
  9240. GGML_ASSERT(false);
  9241. } break;
  9242. }
  9243. }
  9244. // ggml_compute_forward_elu
  9245. static void ggml_compute_forward_elu_f32(
  9246. const struct ggml_compute_params * params,
  9247. struct ggml_tensor * dst) {
  9248. const struct ggml_tensor * src0 = dst->src[0];
  9249. assert(params->ith == 0);
  9250. assert(ggml_are_same_shape(src0, dst));
  9251. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9252. return;
  9253. }
  9254. const int n = ggml_nrows(src0);
  9255. const int nc = src0->ne[0];
  9256. assert(dst->nb[0] == sizeof(float));
  9257. assert(src0->nb[0] == sizeof(float));
  9258. for (int i = 0; i < n; i++) {
  9259. ggml_vec_elu_f32(nc,
  9260. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9261. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9262. }
  9263. }
  9264. static void ggml_compute_forward_elu(
  9265. const struct ggml_compute_params * params,
  9266. struct ggml_tensor * dst) {
  9267. const struct ggml_tensor * src0 = dst->src[0];
  9268. switch (src0->type) {
  9269. case GGML_TYPE_F32:
  9270. {
  9271. ggml_compute_forward_elu_f32(params, dst);
  9272. } break;
  9273. default:
  9274. {
  9275. GGML_ASSERT(false);
  9276. } break;
  9277. }
  9278. }
  9279. // ggml_compute_forward_relu
  9280. static void ggml_compute_forward_relu_f32(
  9281. const struct ggml_compute_params * params,
  9282. struct ggml_tensor * dst) {
  9283. const struct ggml_tensor * src0 = dst->src[0];
  9284. assert(params->ith == 0);
  9285. assert(ggml_are_same_shape(src0, dst));
  9286. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9287. return;
  9288. }
  9289. const int n = ggml_nrows(src0);
  9290. const int nc = src0->ne[0];
  9291. assert(dst->nb[0] == sizeof(float));
  9292. assert(src0->nb[0] == sizeof(float));
  9293. for (int i = 0; i < n; i++) {
  9294. ggml_vec_relu_f32(nc,
  9295. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9296. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9297. }
  9298. }
  9299. static void ggml_compute_forward_relu(
  9300. const struct ggml_compute_params * params,
  9301. struct ggml_tensor * dst) {
  9302. const struct ggml_tensor * src0 = dst->src[0];
  9303. switch (src0->type) {
  9304. case GGML_TYPE_F32:
  9305. {
  9306. ggml_compute_forward_relu_f32(params, dst);
  9307. } break;
  9308. default:
  9309. {
  9310. GGML_ASSERT(false);
  9311. } break;
  9312. }
  9313. }
  9314. // ggml_compute_forward_sigmoid
  9315. static void ggml_compute_forward_sigmoid_f32(
  9316. const struct ggml_compute_params * params,
  9317. struct ggml_tensor * dst) {
  9318. const struct ggml_tensor * src0 = dst->src[0];
  9319. assert(params->ith == 0);
  9320. assert(ggml_are_same_shape(src0, dst));
  9321. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9322. return;
  9323. }
  9324. const int n = ggml_nrows(src0);
  9325. const int nc = src0->ne[0];
  9326. assert(dst->nb[0] == sizeof(float));
  9327. assert(src0->nb[0] == sizeof(float));
  9328. for (int i = 0; i < n; i++) {
  9329. ggml_vec_sigmoid_f32(nc,
  9330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9331. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9332. }
  9333. }
  9334. static void ggml_compute_forward_sigmoid(
  9335. const struct ggml_compute_params * params,
  9336. struct ggml_tensor * dst) {
  9337. const struct ggml_tensor * src0 = dst->src[0];
  9338. switch (src0->type) {
  9339. case GGML_TYPE_F32:
  9340. {
  9341. ggml_compute_forward_sigmoid_f32(params, dst);
  9342. } break;
  9343. default:
  9344. {
  9345. GGML_ASSERT(false);
  9346. } break;
  9347. }
  9348. }
  9349. // ggml_compute_forward_gelu
  9350. static void ggml_compute_forward_gelu_f32(
  9351. const struct ggml_compute_params * params,
  9352. struct ggml_tensor * dst) {
  9353. const struct ggml_tensor * src0 = dst->src[0];
  9354. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9355. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9356. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9358. return;
  9359. }
  9360. const int ith = params->ith;
  9361. const int nth = params->nth;
  9362. const int nc = src0->ne[0];
  9363. const int nr = ggml_nrows(src0);
  9364. // rows per thread
  9365. const int dr = (nr + nth - 1)/nth;
  9366. // row range for this thread
  9367. const int ir0 = dr*ith;
  9368. const int ir1 = MIN(ir0 + dr, nr);
  9369. for (int i1 = ir0; i1 < ir1; i1++) {
  9370. ggml_vec_gelu_f32(nc,
  9371. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9372. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9373. #ifndef NDEBUG
  9374. for (int k = 0; k < nc; k++) {
  9375. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9376. UNUSED(x);
  9377. assert(!isnan(x));
  9378. assert(!isinf(x));
  9379. }
  9380. #endif
  9381. }
  9382. }
  9383. static void ggml_compute_forward_gelu(
  9384. const struct ggml_compute_params * params,
  9385. struct ggml_tensor * dst) {
  9386. const struct ggml_tensor * src0 = dst->src[0];
  9387. switch (src0->type) {
  9388. case GGML_TYPE_F32:
  9389. {
  9390. ggml_compute_forward_gelu_f32(params, dst);
  9391. } break;
  9392. default:
  9393. {
  9394. GGML_ASSERT(false);
  9395. } break;
  9396. }
  9397. }
  9398. // ggml_compute_forward_gelu_quick
  9399. static void ggml_compute_forward_gelu_quick_f32(
  9400. const struct ggml_compute_params * params,
  9401. struct ggml_tensor * dst) {
  9402. const struct ggml_tensor * src0 = dst->src[0];
  9403. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9404. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9405. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9406. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9407. return;
  9408. }
  9409. const int ith = params->ith;
  9410. const int nth = params->nth;
  9411. const int nc = src0->ne[0];
  9412. const int nr = ggml_nrows(src0);
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. for (int i1 = ir0; i1 < ir1; i1++) {
  9419. ggml_vec_gelu_quick_f32(nc,
  9420. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9421. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9422. #ifndef NDEBUG
  9423. for (int k = 0; k < nc; k++) {
  9424. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9425. UNUSED(x);
  9426. assert(!isnan(x));
  9427. assert(!isinf(x));
  9428. }
  9429. #endif
  9430. }
  9431. }
  9432. static void ggml_compute_forward_gelu_quick(
  9433. const struct ggml_compute_params * params,
  9434. struct ggml_tensor * dst) {
  9435. const struct ggml_tensor * src0 = dst->src[0];
  9436. switch (src0->type) {
  9437. case GGML_TYPE_F32:
  9438. {
  9439. ggml_compute_forward_gelu_quick_f32(params, dst);
  9440. } break;
  9441. default:
  9442. {
  9443. GGML_ASSERT(false);
  9444. } break;
  9445. }
  9446. }
  9447. // ggml_compute_forward_silu
  9448. static void ggml_compute_forward_silu_f32(
  9449. const struct ggml_compute_params * params,
  9450. struct ggml_tensor * dst) {
  9451. const struct ggml_tensor * src0 = dst->src[0];
  9452. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9453. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9455. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9456. return;
  9457. }
  9458. const int ith = params->ith;
  9459. const int nth = params->nth;
  9460. const int nc = src0->ne[0];
  9461. const int nr = ggml_nrows(src0);
  9462. // rows per thread
  9463. const int dr = (nr + nth - 1)/nth;
  9464. // row range for this thread
  9465. const int ir0 = dr*ith;
  9466. const int ir1 = MIN(ir0 + dr, nr);
  9467. for (int i1 = ir0; i1 < ir1; i1++) {
  9468. ggml_vec_silu_f32(nc,
  9469. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9470. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9471. #ifndef NDEBUG
  9472. for (int k = 0; k < nc; k++) {
  9473. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9474. UNUSED(x);
  9475. assert(!isnan(x));
  9476. assert(!isinf(x));
  9477. }
  9478. #endif
  9479. }
  9480. }
  9481. static void ggml_compute_forward_silu(
  9482. const struct ggml_compute_params * params,
  9483. struct ggml_tensor * dst) {
  9484. const struct ggml_tensor * src0 = dst->src[0];
  9485. switch (src0->type) {
  9486. case GGML_TYPE_F32:
  9487. {
  9488. ggml_compute_forward_silu_f32(params, dst);
  9489. } break;
  9490. default:
  9491. {
  9492. GGML_ASSERT(false);
  9493. } break;
  9494. }
  9495. }
  9496. // ggml_compute_forward_leaky_relu
  9497. static void ggml_compute_forward_leaky_relu_f32(
  9498. const struct ggml_compute_params * params,
  9499. struct ggml_tensor * dst) {
  9500. const struct ggml_tensor * src0 = dst->src[0];
  9501. assert(params->ith == 0);
  9502. assert(ggml_are_same_shape(src0, dst));
  9503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9504. return;
  9505. }
  9506. const int n = ggml_nrows(src0);
  9507. const int nc = src0->ne[0];
  9508. float negative_slope;
  9509. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9510. assert(dst->nb[0] == sizeof(float));
  9511. assert(src0->nb[0] == sizeof(float));
  9512. for (int i = 0; i < n; i++) {
  9513. ggml_vec_leaky_relu_f32(nc,
  9514. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9515. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9516. }
  9517. }
  9518. static void ggml_compute_forward_leaky_relu(
  9519. const struct ggml_compute_params * params,
  9520. struct ggml_tensor * dst) {
  9521. const struct ggml_tensor * src0 = dst->src[0];
  9522. switch (src0->type) {
  9523. case GGML_TYPE_F32:
  9524. {
  9525. ggml_compute_forward_leaky_relu_f32(params, dst);
  9526. } break;
  9527. default:
  9528. {
  9529. GGML_ASSERT(false);
  9530. } break;
  9531. }
  9532. }
  9533. // ggml_compute_forward_silu_back
  9534. static void ggml_compute_forward_silu_back_f32(
  9535. const struct ggml_compute_params * params,
  9536. struct ggml_tensor * dst) {
  9537. const struct ggml_tensor * src0 = dst->src[0];
  9538. const struct ggml_tensor * grad = dst->src[1];
  9539. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9540. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9541. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9542. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9543. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9545. return;
  9546. }
  9547. const int ith = params->ith;
  9548. const int nth = params->nth;
  9549. const int nc = src0->ne[0];
  9550. const int nr = ggml_nrows(src0);
  9551. // rows per thread
  9552. const int dr = (nr + nth - 1)/nth;
  9553. // row range for this thread
  9554. const int ir0 = dr*ith;
  9555. const int ir1 = MIN(ir0 + dr, nr);
  9556. for (int i1 = ir0; i1 < ir1; i1++) {
  9557. ggml_vec_silu_backward_f32(nc,
  9558. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9559. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9560. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9561. #ifndef NDEBUG
  9562. for (int k = 0; k < nc; k++) {
  9563. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9564. UNUSED(x);
  9565. assert(!isnan(x));
  9566. assert(!isinf(x));
  9567. }
  9568. #endif
  9569. }
  9570. }
  9571. static void ggml_compute_forward_silu_back(
  9572. const struct ggml_compute_params * params,
  9573. struct ggml_tensor * dst) {
  9574. const struct ggml_tensor * src0 = dst->src[0];
  9575. switch (src0->type) {
  9576. case GGML_TYPE_F32:
  9577. {
  9578. ggml_compute_forward_silu_back_f32(params, dst);
  9579. } break;
  9580. default:
  9581. {
  9582. GGML_ASSERT(false);
  9583. } break;
  9584. }
  9585. }
  9586. static void ggml_compute_forward_hardswish_f32(
  9587. const struct ggml_compute_params * params,
  9588. struct ggml_tensor * dst) {
  9589. const struct ggml_tensor * src0 = dst->src[0];
  9590. assert(params->ith == 0);
  9591. assert(ggml_are_same_shape(src0, dst));
  9592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9593. return;
  9594. }
  9595. const int n = ggml_nrows(src0);
  9596. const int nc = src0->ne[0];
  9597. assert(dst->nb[0] == sizeof(float));
  9598. assert(src0->nb[0] == sizeof(float));
  9599. for (int i = 0; i < n; i++) {
  9600. ggml_vec_hardswish_f32(nc,
  9601. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9602. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9603. }
  9604. }
  9605. static void ggml_compute_forward_hardswish(
  9606. const struct ggml_compute_params * params,
  9607. struct ggml_tensor * dst) {
  9608. const struct ggml_tensor * src0 = dst->src[0];
  9609. switch (src0->type) {
  9610. case GGML_TYPE_F32:
  9611. {
  9612. ggml_compute_forward_hardswish_f32(params, dst);
  9613. } break;
  9614. default:
  9615. {
  9616. GGML_ASSERT(false);
  9617. } break;
  9618. }
  9619. }
  9620. static void ggml_compute_forward_hardsigmoid_f32(
  9621. const struct ggml_compute_params * params,
  9622. struct ggml_tensor * dst) {
  9623. const struct ggml_tensor * src0 = dst->src[0];
  9624. assert(params->ith == 0);
  9625. assert(ggml_are_same_shape(src0, dst));
  9626. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9627. return;
  9628. }
  9629. const int n = ggml_nrows(src0);
  9630. const int nc = src0->ne[0];
  9631. assert(dst->nb[0] == sizeof(float));
  9632. assert(src0->nb[0] == sizeof(float));
  9633. for (int i = 0; i < n; i++) {
  9634. ggml_vec_hardsigmoid_f32(nc,
  9635. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9636. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9637. }
  9638. }
  9639. static void ggml_compute_forward_hardsigmoid(
  9640. const struct ggml_compute_params * params,
  9641. struct ggml_tensor * dst) {
  9642. const struct ggml_tensor * src0 = dst->src[0];
  9643. switch (src0->type) {
  9644. case GGML_TYPE_F32:
  9645. {
  9646. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9647. } break;
  9648. default:
  9649. {
  9650. GGML_ASSERT(false);
  9651. } break;
  9652. }
  9653. }
  9654. // ggml_compute_forward_norm
  9655. static void ggml_compute_forward_norm_f32(
  9656. const struct ggml_compute_params * params,
  9657. struct ggml_tensor * dst) {
  9658. const struct ggml_tensor * src0 = dst->src[0];
  9659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9660. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9661. return;
  9662. }
  9663. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9664. const int ith = params->ith;
  9665. const int nth = params->nth;
  9666. GGML_TENSOR_UNARY_OP_LOCALS
  9667. float eps;
  9668. memcpy(&eps, dst->op_params, sizeof(float));
  9669. GGML_ASSERT(eps > 0.0f);
  9670. // TODO: optimize
  9671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9673. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9674. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9675. ggml_float sum = 0.0;
  9676. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9677. sum += (ggml_float)x[i00];
  9678. }
  9679. float mean = sum/ne00;
  9680. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9681. ggml_float sum2 = 0.0;
  9682. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9683. float v = x[i00] - mean;
  9684. y[i00] = v;
  9685. sum2 += (ggml_float)(v*v);
  9686. }
  9687. float variance = sum2/ne00;
  9688. const float scale = 1.0f/sqrtf(variance + eps);
  9689. ggml_vec_scale_f32(ne00, y, scale);
  9690. }
  9691. }
  9692. }
  9693. }
  9694. static void ggml_compute_forward_norm(
  9695. const struct ggml_compute_params * params,
  9696. struct ggml_tensor * dst) {
  9697. const struct ggml_tensor * src0 = dst->src[0];
  9698. switch (src0->type) {
  9699. case GGML_TYPE_F32:
  9700. {
  9701. ggml_compute_forward_norm_f32(params, dst);
  9702. } break;
  9703. default:
  9704. {
  9705. GGML_ASSERT(false);
  9706. } break;
  9707. }
  9708. }
  9709. // ggml_compute_forward_group_rms_norm
  9710. static void ggml_compute_forward_rms_norm_f32(
  9711. const struct ggml_compute_params * params,
  9712. struct ggml_tensor * dst) {
  9713. const struct ggml_tensor * src0 = dst->src[0];
  9714. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9716. return;
  9717. }
  9718. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9719. const int ith = params->ith;
  9720. const int nth = params->nth;
  9721. GGML_TENSOR_UNARY_OP_LOCALS
  9722. float eps;
  9723. memcpy(&eps, dst->op_params, sizeof(float));
  9724. GGML_ASSERT(eps > 0.0f);
  9725. // TODO: optimize
  9726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9728. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9729. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9730. ggml_float sum = 0.0;
  9731. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9732. sum += (ggml_float)(x[i00] * x[i00]);
  9733. }
  9734. const float mean = sum/ne00;
  9735. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9736. memcpy(y, x, ne00 * sizeof(float));
  9737. // for (int i00 = 0; i00 < ne00; i00++) {
  9738. // y[i00] = x[i00];
  9739. // }
  9740. const float scale = 1.0f/sqrtf(mean + eps);
  9741. ggml_vec_scale_f32(ne00, y, scale);
  9742. }
  9743. }
  9744. }
  9745. }
  9746. static void ggml_compute_forward_rms_norm(
  9747. const struct ggml_compute_params * params,
  9748. struct ggml_tensor * dst) {
  9749. const struct ggml_tensor * src0 = dst->src[0];
  9750. switch (src0->type) {
  9751. case GGML_TYPE_F32:
  9752. {
  9753. ggml_compute_forward_rms_norm_f32(params, dst);
  9754. } break;
  9755. default:
  9756. {
  9757. GGML_ASSERT(false);
  9758. } break;
  9759. }
  9760. }
  9761. static void ggml_compute_forward_rms_norm_back_f32(
  9762. const struct ggml_compute_params * params,
  9763. struct ggml_tensor * dst) {
  9764. const struct ggml_tensor * src0 = dst->src[0];
  9765. const struct ggml_tensor * src1 = dst->src[1];
  9766. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9767. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9768. return;
  9769. }
  9770. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9771. const int ith = params->ith;
  9772. const int nth = params->nth;
  9773. GGML_TENSOR_BINARY_OP_LOCALS
  9774. float eps;
  9775. memcpy(&eps, dst->op_params, sizeof(float));
  9776. // TODO: optimize
  9777. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9779. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9780. // src1 is same shape as src0 => same indices
  9781. const int64_t i11 = i01;
  9782. const int64_t i12 = i02;
  9783. const int64_t i13 = i03;
  9784. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9785. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9786. ggml_float sum_xx = 0.0;
  9787. ggml_float sum_xdz = 0.0;
  9788. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9789. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9790. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9791. }
  9792. //const float mean = (float)(sum_xx)/ne00;
  9793. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9794. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9795. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9796. // we could cache rms from forward pass to improve performance.
  9797. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9798. //const float rms = sqrtf(mean_eps);
  9799. const float rrms = 1.0f / sqrtf(mean_eps);
  9800. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9801. {
  9802. // z = rms_norm(x)
  9803. //
  9804. // rms_norm(src0) =
  9805. // scale(
  9806. // src0,
  9807. // div(
  9808. // 1,
  9809. // sqrt(
  9810. // add(
  9811. // scale(
  9812. // sum(
  9813. // sqr(
  9814. // src0)),
  9815. // (1.0/N)),
  9816. // eps))));
  9817. // postorder:
  9818. // ## op args grad
  9819. // 00 param src0 grad[#00]
  9820. // 01 const 1
  9821. // 02 sqr (#00) grad[#02]
  9822. // 03 sum (#02) grad[#03]
  9823. // 04 const 1/N
  9824. // 05 scale (#03, #04) grad[#05]
  9825. // 06 const eps
  9826. // 07 add (#05, #06) grad[#07]
  9827. // 08 sqrt (#07) grad[#08]
  9828. // 09 div (#01,#08) grad[#09]
  9829. // 10 scale (#00,#09) grad[#10]
  9830. //
  9831. // backward pass, given grad[#10]
  9832. // #10: scale
  9833. // grad[#00] += scale(grad[#10],#09)
  9834. // grad[#09] += sum(mul(grad[#10],#00))
  9835. // #09: div
  9836. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9837. // #08: sqrt
  9838. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9839. // #07: add
  9840. // grad[#05] += grad[#07]
  9841. // #05: scale
  9842. // grad[#03] += scale(grad[#05],#04)
  9843. // #03: sum
  9844. // grad[#02] += repeat(grad[#03], #02)
  9845. // #02:
  9846. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9847. //
  9848. // substitute and simplify:
  9849. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9850. // grad[#02] = repeat(grad[#03], #02)
  9851. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9852. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9853. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9854. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9855. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9856. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9857. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9858. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9859. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9860. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9861. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9862. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9863. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9864. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9865. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9866. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9867. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9868. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9869. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9870. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9871. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9872. // a = b*c + d*e
  9873. // a = b*c*f/f + d*e*f/f
  9874. // a = (b*c*f + d*e*f)*(1/f)
  9875. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9876. // a = (b + d*e/c)*c
  9877. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9878. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9879. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9880. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9881. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9882. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9883. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9884. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9885. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9886. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9887. }
  9888. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9889. // post-order:
  9890. // dx := x
  9891. // dx := scale(dx,-mean_xdz/mean_eps)
  9892. // dx := add(dx, dz)
  9893. // dx := scale(dx, rrms)
  9894. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9895. ggml_vec_cpy_f32 (ne00, dx, x);
  9896. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9897. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9898. ggml_vec_acc_f32 (ne00, dx, dz);
  9899. ggml_vec_scale_f32(ne00, dx, rrms);
  9900. }
  9901. }
  9902. }
  9903. }
  9904. static void ggml_compute_forward_rms_norm_back(
  9905. const struct ggml_compute_params * params,
  9906. struct ggml_tensor * dst) {
  9907. const struct ggml_tensor * src0 = dst->src[0];
  9908. switch (src0->type) {
  9909. case GGML_TYPE_F32:
  9910. {
  9911. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9912. } break;
  9913. default:
  9914. {
  9915. GGML_ASSERT(false);
  9916. } break;
  9917. }
  9918. }
  9919. // ggml_compute_forward_group_norm
  9920. static void ggml_compute_forward_group_norm_f32(
  9921. const struct ggml_compute_params * params,
  9922. struct ggml_tensor * dst) {
  9923. const struct ggml_tensor * src0 = dst->src[0];
  9924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9925. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9926. return;
  9927. }
  9928. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9929. const int ith = params->ith;
  9930. const int nth = params->nth;
  9931. GGML_TENSOR_UNARY_OP_LOCALS
  9932. const float eps = 1e-6f; // TODO: make this a parameter
  9933. // TODO: optimize
  9934. int n_channels = src0->ne[2];
  9935. int n_groups = dst->op_params[0];
  9936. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9937. for (int i = ith; i < n_groups; i += nth) {
  9938. int start = i * n_channels_per_group;
  9939. int end = start + n_channels_per_group;
  9940. if (end > n_channels) {
  9941. end = n_channels;
  9942. }
  9943. int step = end - start;
  9944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9945. ggml_float sum = 0.0;
  9946. for (int64_t i02 = start; i02 < end; i02++) {
  9947. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9948. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9949. ggml_float sumr = 0.0;
  9950. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9951. sumr += (ggml_float)x[i00];
  9952. }
  9953. sum += sumr;
  9954. }
  9955. }
  9956. const float mean = sum / (ne00 * ne01 * step);
  9957. ggml_float sum2 = 0.0;
  9958. for (int64_t i02 = start; i02 < end; i02++) {
  9959. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9960. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9961. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9962. ggml_float sumr = 0.0;
  9963. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9964. float v = x[i00] - mean;
  9965. y[i00] = v;
  9966. sumr += (ggml_float)(v * v);
  9967. }
  9968. sum2 += sumr;
  9969. }
  9970. }
  9971. const float variance = sum2 / (ne00 * ne01 * step);
  9972. const float scale = 1.0f / sqrtf(variance + eps);
  9973. for (int64_t i02 = start; i02 < end; i02++) {
  9974. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9975. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9976. ggml_vec_scale_f32(ne00, y, scale);
  9977. }
  9978. }
  9979. }
  9980. }
  9981. }
  9982. static void ggml_compute_forward_group_norm(
  9983. const struct ggml_compute_params * params,
  9984. struct ggml_tensor * dst) {
  9985. const struct ggml_tensor * src0 = dst->src[0];
  9986. switch (src0->type) {
  9987. case GGML_TYPE_F32:
  9988. {
  9989. ggml_compute_forward_group_norm_f32(params, dst);
  9990. } break;
  9991. default:
  9992. {
  9993. GGML_ASSERT(false);
  9994. } break;
  9995. }
  9996. }
  9997. // ggml_compute_forward_mul_mat
  9998. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9999. // helper function to determine if it is better to use BLAS or not
  10000. // for large matrices, BLAS is faster
  10001. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10002. const struct ggml_tensor * src0 = dst->src[0];
  10003. const struct ggml_tensor * src1 = dst->src[1];
  10004. //const int64_t ne00 = src0->ne[0];
  10005. //const int64_t ne01 = src0->ne[1];
  10006. const int64_t ne10 = src1->ne[0];
  10007. const int64_t ne0 = dst->ne[0];
  10008. const int64_t ne1 = dst->ne[1];
  10009. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10010. // all the experts for each batch element and the processing would become incredibly slow
  10011. // TODO: find the optimal values for these
  10012. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10013. ggml_is_contiguous(src0) &&
  10014. ggml_is_contiguous(src1) &&
  10015. //src0->type == GGML_TYPE_F32 &&
  10016. src1->type == GGML_TYPE_F32 &&
  10017. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10018. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10019. return true;
  10020. }
  10021. return false;
  10022. }
  10023. #endif
  10024. static void ggml_compute_forward_mul_mat_one_chunk(
  10025. const struct ggml_compute_params * params,
  10026. struct ggml_tensor * dst,
  10027. const int64_t num_rows_per_vec_dot,
  10028. const int64_t ir0_start,
  10029. const int64_t ir0_end,
  10030. const int64_t ir1_start,
  10031. const int64_t ir1_end) {
  10032. const struct ggml_tensor * src0 = dst->src[0];
  10033. const struct ggml_tensor * src1 = dst->src[1];
  10034. GGML_TENSOR_BINARY_OP_LOCALS
  10035. const enum ggml_type type = src0->type;
  10036. const bool src1_cont = ggml_is_contiguous(src1);
  10037. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10038. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10039. // broadcast factors
  10040. const int64_t r2 = ne12 / ne02;
  10041. const int64_t r3 = ne13 / ne03;
  10042. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10043. // threads with no work simply yield (not sure if it helps)
  10044. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10045. return;
  10046. }
  10047. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10048. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10049. assert(ne12 % ne02 == 0);
  10050. assert(ne13 % ne03 == 0);
  10051. // block-tiling attempt
  10052. const int64_t blck_0 = 16;
  10053. const int64_t blck_1 = 16;
  10054. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10055. // attempt to reduce false-sharing (does not seem to make a difference)
  10056. // 16 * 2, accounting for mmla kernels
  10057. float tmp[32];
  10058. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10059. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10060. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10061. const int64_t i13 = (ir1 / (ne12 * ne1));
  10062. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10063. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10064. // broadcast src0 into src1
  10065. const int64_t i03 = i13 / r3;
  10066. const int64_t i02 = i12 / r2;
  10067. const int64_t i1 = i11;
  10068. const int64_t i2 = i12;
  10069. const int64_t i3 = i13;
  10070. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10071. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10072. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10073. // the original src1 data pointer, so we should index using the indices directly
  10074. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10075. const char * src1_col = (const char*)wdata +
  10076. (src1_cont || src1->type != vec_dot_type
  10077. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10078. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10079. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10080. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10081. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10082. //}
  10083. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10084. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10085. }
  10086. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10087. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10088. }
  10089. }
  10090. }
  10091. }
  10092. }
  10093. static void ggml_compute_forward_mul_mat(
  10094. const struct ggml_compute_params * params,
  10095. struct ggml_tensor * dst,
  10096. struct ggml_compute_state * state) {
  10097. const struct ggml_tensor * src0 = dst->src[0];
  10098. const struct ggml_tensor * src1 = dst->src[1];
  10099. int64_t t0 = ggml_perf_time_us();
  10100. UNUSED(t0);
  10101. GGML_TENSOR_BINARY_OP_LOCALS
  10102. const int ith = params->ith;
  10103. const int nth = params->nth;
  10104. const enum ggml_type type = src0->type;
  10105. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10106. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10107. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10108. GGML_ASSERT(ne0 == ne01);
  10109. GGML_ASSERT(ne1 == ne11);
  10110. GGML_ASSERT(ne2 == ne12);
  10111. GGML_ASSERT(ne3 == ne13);
  10112. // we don't support permuted src0 or src1
  10113. GGML_ASSERT(nb00 == ggml_type_size(type));
  10114. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10115. // dst cannot be transposed or permuted
  10116. GGML_ASSERT(nb0 == sizeof(float));
  10117. GGML_ASSERT(nb0 <= nb1);
  10118. GGML_ASSERT(nb1 <= nb2);
  10119. GGML_ASSERT(nb2 <= nb3);
  10120. // broadcast factors
  10121. const int64_t r2 = ne12 / ne02;
  10122. const int64_t r3 = ne13 / ne03;
  10123. UNUSED(r2);
  10124. UNUSED(r3);
  10125. // nb01 >= nb00 - src0 is not transposed
  10126. // compute by src0 rows
  10127. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10128. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10129. const int64_t ne_plane = ne01*ne00;
  10130. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10131. UNUSED(desired_wsize);
  10132. if (params->type == GGML_TASK_TYPE_INIT) {
  10133. if (type != GGML_TYPE_F32) {
  10134. assert(params->wsize >= desired_wsize);
  10135. // parallelize by src0 rows
  10136. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10137. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10138. // broadcast src0 into src1 across 2nd,3rd dimension
  10139. const int64_t i03 = i13/r3;
  10140. const int64_t i02 = i12/r2;
  10141. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10142. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10143. ggml_to_float_t const to_float = type_traits[type].to_float;
  10144. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10145. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10146. }
  10147. }
  10148. }
  10149. }
  10150. return;
  10151. }
  10152. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10153. return;
  10154. }
  10155. // perform sgemm, parallelization controlled by blas lib
  10156. if (ith != 0) {
  10157. return;
  10158. }
  10159. //const int64_t tgemm0 = ggml_perf_time_us();
  10160. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10161. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10162. const int64_t i03 = i13/r3;
  10163. const int64_t i02 = i12/r2;
  10164. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10165. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10166. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10167. if (type != GGML_TYPE_F32) {
  10168. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10169. }
  10170. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10171. ne1, ne01, ne10,
  10172. 1.0f, y, ne10,
  10173. x, ne00,
  10174. 0.0f, d, ne01);
  10175. }
  10176. }
  10177. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10178. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10179. return;
  10180. }
  10181. #endif
  10182. #if GGML_USE_LLAMAFILE
  10183. const bool src1_cont = ggml_is_contiguous(src1);
  10184. if (src1_cont) {
  10185. for (int64_t i13 = 0; i13 < ne13; i13++)
  10186. for (int64_t i12 = 0; i12 < ne12; i12++)
  10187. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10188. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10189. nb01/ggml_type_size(src0->type),
  10190. (const char *)src1->data + i12*nb12 + i13*nb13,
  10191. nb11/ggml_type_size(src1->type),
  10192. (char *)dst->data + i12*nb2 + i13*nb3,
  10193. nb1/ggml_type_size(dst->type),
  10194. ith, nth,
  10195. params->type,
  10196. src0->type,
  10197. src1->type,
  10198. dst->type))
  10199. goto UseGgmlGemm1;
  10200. return;
  10201. }
  10202. UseGgmlGemm1:;
  10203. #endif
  10204. if (params->type == GGML_TASK_TYPE_INIT) {
  10205. if (ith != 0) {
  10206. return;
  10207. }
  10208. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10209. atomic_store(&state->shared->current_chunk, nth);
  10210. if (src1->type != vec_dot_type) {
  10211. char * wdata = params->wdata;
  10212. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10213. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10214. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10215. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10216. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10217. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10218. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10219. wdata += row_size;
  10220. }
  10221. }
  10222. }
  10223. }
  10224. return;
  10225. }
  10226. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10227. return;
  10228. }
  10229. #if GGML_USE_LLAMAFILE
  10230. if (src1->type != vec_dot_type) {
  10231. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10232. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10233. for (int64_t i13 = 0; i13 < ne13; i13++)
  10234. for (int64_t i12 = 0; i12 < ne12; i12++)
  10235. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10236. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10237. nb01/ggml_type_size(src0->type),
  10238. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10239. row_size/ggml_type_size(vec_dot_type),
  10240. (char *)dst->data + i12*nb2 + i13*nb3,
  10241. nb1/ggml_type_size(dst->type),
  10242. ith, nth,
  10243. params->type,
  10244. src0->type,
  10245. vec_dot_type,
  10246. dst->type))
  10247. goto UseGgmlGemm2;
  10248. return;
  10249. }
  10250. UseGgmlGemm2:;
  10251. #endif
  10252. #ifdef GGML_PERF
  10253. int chunks_executed = 0;
  10254. UNUSED(chunks_executed);
  10255. #endif
  10256. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10257. const int64_t nr0 = ne0;
  10258. // This is the size of the rest of the dimensions of the result
  10259. const int64_t nr1 = ne1 * ne2 * ne3;
  10260. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10261. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10262. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10263. // this check can be removed once they are extended to support odd numbered rows/cols too
  10264. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10265. num_rows_per_vec_dot = 1;
  10266. }
  10267. // Now select a reasonable chunk size.
  10268. int chunk_size = 16;
  10269. // We need to step up the size if it's small
  10270. if (nr0 == 1 || nr1 == 1) {
  10271. chunk_size = 64;
  10272. }
  10273. // distribute the work across the inner or outer loop based on which one is larger
  10274. // The number of chunks in the 0/1 dim.
  10275. // CEIL(nr0/chunk_size)
  10276. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10277. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10278. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10279. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10280. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10281. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10282. // distribute the thread work across the inner or outer loop based on which one is larger
  10283. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10284. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10285. }
  10286. // The number of elements in each chunk
  10287. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10288. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10289. //if (ith == 0)
  10290. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10291. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10292. int current_chunk = ith;
  10293. while (current_chunk < nchunk0 * nchunk1) {
  10294. const int64_t ith0 = current_chunk % nchunk0;
  10295. const int64_t ith1 = current_chunk / nchunk0;
  10296. const int64_t ir0_start = dr0 * ith0;
  10297. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10298. const int64_t ir1_start = dr1 * ith1;
  10299. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10300. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10301. #ifdef GGML_PERF
  10302. chunks_executed++;
  10303. #endif
  10304. if (nth >= nchunk0 * nchunk1) {
  10305. break;
  10306. }
  10307. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10308. }
  10309. #ifdef GGML_PERF
  10310. // These numbers are useful when trying to measure how well the threading scheduling works.
  10311. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10312. //float time = (ggml_perf_time_us() - t0);
  10313. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10314. #endif
  10315. }
  10316. // ggml_compute_forward_mul_mat_id
  10317. static void ggml_compute_forward_mul_mat_id(
  10318. const struct ggml_compute_params * params,
  10319. struct ggml_tensor * dst) {
  10320. const struct ggml_tensor * src0 = dst->src[0];
  10321. const struct ggml_tensor * src1 = dst->src[1];
  10322. const struct ggml_tensor * ids = dst->src[2];
  10323. GGML_TENSOR_BINARY_OP_LOCALS
  10324. const int ith = params->ith;
  10325. const int nth = params->nth;
  10326. const enum ggml_type type = src0->type;
  10327. const bool src1_cont = ggml_is_contiguous(src1);
  10328. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10329. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10330. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10331. // we don't support permuted src0 or src1
  10332. GGML_ASSERT(nb00 == ggml_type_size(type));
  10333. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10334. // dst cannot be transposed or permuted
  10335. GGML_ASSERT(nb0 == sizeof(float));
  10336. GGML_ASSERT(nb0 <= nb1);
  10337. GGML_ASSERT(nb1 <= nb2);
  10338. GGML_ASSERT(nb2 <= nb3);
  10339. // row groups
  10340. const int n_ids = ids->ne[0]; // n_expert_used
  10341. const int n_as = ne02; // n_expert
  10342. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10343. (char *) params->wdata :
  10344. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10345. struct mmid_row_mapping {
  10346. int32_t i1;
  10347. int32_t i2;
  10348. };
  10349. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10350. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10351. if (params->type == GGML_TASK_TYPE_INIT) {
  10352. if (ith != 0) {
  10353. return;
  10354. }
  10355. char * wdata = params->wdata;
  10356. if (src1->type != vec_dot_type) {
  10357. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10358. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10359. assert(src1->type == GGML_TYPE_F32);
  10360. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10361. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10362. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10363. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10364. wdata += row_size;
  10365. }
  10366. }
  10367. }
  10368. }
  10369. // initialize matrix_row_counts
  10370. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10371. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10372. // group rows by src0 matrix
  10373. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10374. for (int id = 0; id < n_ids; ++id) {
  10375. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10376. assert(i02 >= 0 && i02 < n_as);
  10377. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10378. matrix_row_counts[i02] += 1;
  10379. }
  10380. }
  10381. return;
  10382. }
  10383. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10384. return;
  10385. }
  10386. // compute each matrix multiplication in sequence
  10387. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10388. const int64_t cne1 = matrix_row_counts[cur_a];
  10389. if (cne1 == 0) {
  10390. continue;
  10391. }
  10392. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10393. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10394. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10395. const int64_t nr0 = ne01; // src0 rows
  10396. const int64_t nr1 = cne1; // src1 rows
  10397. // distribute the thread work across the inner or outer loop based on which one is larger
  10398. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10399. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10400. const int64_t ith0 = ith % nth0;
  10401. const int64_t ith1 = ith / nth0;
  10402. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10403. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10404. const int64_t ir010 = dr0*ith0;
  10405. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10406. const int64_t ir110 = dr1*ith1;
  10407. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10408. // threads with no work simply yield (not sure if it helps)
  10409. //if (ir010 >= ir011 || ir110 >= ir111) {
  10410. // sched_yield();
  10411. // continue;
  10412. //}
  10413. // block-tiling attempt
  10414. const int64_t blck_0 = 16;
  10415. const int64_t blck_1 = 16;
  10416. // attempt to reduce false-sharing (does not seem to make a difference)
  10417. float tmp[16];
  10418. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10419. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10420. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10421. const int64_t _i12 = ir1; // logical row index for this expert
  10422. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10423. const int id = row_mapping.i1; // selected expert index
  10424. const int64_t i11 = id % ne11;
  10425. const int64_t i12 = row_mapping.i2; // row index in src1
  10426. const int64_t i1 = id; // selected expert index
  10427. const int64_t i2 = i12; // row
  10428. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10429. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10430. // the original src1 data pointer, so we should index using the indices directly
  10431. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10432. const char * src1_col = (const char *) wdata +
  10433. (src1_cont || src1->type != vec_dot_type
  10434. ? (i11 + i12*ne11)*row_size
  10435. : (i11*nb11 + i12*nb12));
  10436. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10437. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10438. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10439. //}
  10440. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10441. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10442. }
  10443. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10444. }
  10445. }
  10446. }
  10447. }
  10448. #undef MMID_MATRIX_ROW
  10449. }
  10450. // ggml_compute_forward_out_prod
  10451. static void ggml_compute_forward_out_prod_f32(
  10452. const struct ggml_compute_params * params,
  10453. struct ggml_tensor * dst) {
  10454. const struct ggml_tensor * src0 = dst->src[0];
  10455. const struct ggml_tensor * src1 = dst->src[1];
  10456. // int64_t t0 = ggml_perf_time_us();
  10457. // UNUSED(t0);
  10458. GGML_TENSOR_BINARY_OP_LOCALS
  10459. const int ith = params->ith;
  10460. const int nth = params->nth;
  10461. GGML_ASSERT(ne0 == ne00);
  10462. GGML_ASSERT(ne1 == ne10);
  10463. GGML_ASSERT(ne2 == ne02);
  10464. GGML_ASSERT(ne02 == ne12);
  10465. GGML_ASSERT(ne3 == ne13);
  10466. GGML_ASSERT(ne03 == ne13);
  10467. // we don't support permuted src0 or src1
  10468. GGML_ASSERT(nb00 == sizeof(float));
  10469. // dst cannot be transposed or permuted
  10470. GGML_ASSERT(nb0 == sizeof(float));
  10471. // GGML_ASSERT(nb0 <= nb1);
  10472. // GGML_ASSERT(nb1 <= nb2);
  10473. // GGML_ASSERT(nb2 <= nb3);
  10474. // nb01 >= nb00 - src0 is not transposed
  10475. // compute by src0 rows
  10476. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10477. bool use_blas = ggml_is_matrix(src0) &&
  10478. ggml_is_matrix(src1) &&
  10479. ggml_is_contiguous(src0) &&
  10480. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10481. #endif
  10482. if (params->type == GGML_TASK_TYPE_INIT) {
  10483. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10484. if (use_blas) {
  10485. return;
  10486. }
  10487. #endif
  10488. if (ith != 0) {
  10489. return;
  10490. }
  10491. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10492. return;
  10493. }
  10494. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10495. return;
  10496. }
  10497. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10498. if (use_blas) {
  10499. if (params->ith != 0) { // All threads other than the first do no work.
  10500. return;
  10501. }
  10502. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10503. // src0: (k,n)
  10504. // src1: (k,m)
  10505. // dst: (m,n)
  10506. //
  10507. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10508. // Also expressed as (major,minor)
  10509. // a: (m,k): so src1 transposed
  10510. // b: (k,n): so src0
  10511. // c: (m,n)
  10512. //
  10513. // However, if ggml_is_transposed(src1) is true, then
  10514. // src1->data already contains a transposed version, so sgemm mustn't
  10515. // transpose it further.
  10516. int n = src0->ne[0];
  10517. int k = src0->ne[1];
  10518. int m = src1->ne[0];
  10519. int transposeA, lda;
  10520. if (!ggml_is_transposed(src1)) {
  10521. transposeA = CblasTrans;
  10522. lda = m;
  10523. } else {
  10524. transposeA = CblasNoTrans;
  10525. lda = k;
  10526. }
  10527. float * a = (float *) ((char *) src1->data);
  10528. float * b = (float *) ((char *) src0->data);
  10529. float * c = (float *) ((char *) dst->data);
  10530. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10531. return;
  10532. }
  10533. #endif
  10534. // dst[:,:,:,:] = 0
  10535. // for i2,i3:
  10536. // for i1:
  10537. // for i01:
  10538. // for i0:
  10539. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10540. // parallelize by last three dimensions
  10541. // total rows in dst
  10542. const int64_t nr = ne1*ne2*ne3;
  10543. // rows per thread
  10544. const int64_t dr = (nr + nth - 1)/nth;
  10545. // row range for this thread
  10546. const int64_t ir0 = dr*ith;
  10547. const int64_t ir1 = MIN(ir0 + dr, nr);
  10548. // block-tiling attempt
  10549. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10550. const int64_t blck_1 = 16;
  10551. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10552. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10553. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10554. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10555. for (int64_t ir = bir; ir < bir1; ++ir) {
  10556. // dst indices
  10557. const int64_t i3 = ir/(ne2*ne1);
  10558. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10559. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10560. const int64_t i02 = i2;
  10561. const int64_t i03 = i3;
  10562. //const int64_t i10 = i1;
  10563. const int64_t i12 = i2;
  10564. const int64_t i13 = i3;
  10565. #if GGML_VEC_MAD_UNROLL > 2
  10566. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10567. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10568. const int64_t i11 = i01;
  10569. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10570. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10571. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10572. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10573. }
  10574. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10575. const int64_t i11 = i01;
  10576. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10577. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10578. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10579. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10580. }
  10581. #else
  10582. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10583. const int64_t i11 = i01;
  10584. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10585. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10586. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10587. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10588. }
  10589. #endif
  10590. }
  10591. }
  10592. }
  10593. //int64_t t1 = ggml_perf_time_us();
  10594. //static int64_t acc = 0;
  10595. //acc += t1 - t0;
  10596. //if (t1 - t0 > 10) {
  10597. // printf("\n");
  10598. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10599. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10600. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10601. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10602. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10603. //}
  10604. }
  10605. static void ggml_compute_forward_out_prod_q_f32(
  10606. const struct ggml_compute_params * params,
  10607. struct ggml_tensor * dst) {
  10608. const struct ggml_tensor * src0 = dst->src[0];
  10609. const struct ggml_tensor * src1 = dst->src[1];
  10610. // int64_t t0 = ggml_perf_time_us();
  10611. // UNUSED(t0);
  10612. GGML_TENSOR_BINARY_OP_LOCALS;
  10613. const int ith = params->ith;
  10614. const int nth = params->nth;
  10615. const enum ggml_type type = src0->type;
  10616. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10617. GGML_ASSERT(ne02 == ne12);
  10618. GGML_ASSERT(ne03 == ne13);
  10619. GGML_ASSERT(ne2 == ne12);
  10620. GGML_ASSERT(ne3 == ne13);
  10621. // we don't support permuted src0 dim0
  10622. GGML_ASSERT(nb00 == ggml_type_size(type));
  10623. // dst dim0 cannot be transposed or permuted
  10624. GGML_ASSERT(nb0 == sizeof(float));
  10625. // GGML_ASSERT(nb0 <= nb1);
  10626. // GGML_ASSERT(nb1 <= nb2);
  10627. // GGML_ASSERT(nb2 <= nb3);
  10628. GGML_ASSERT(ne0 == ne00);
  10629. GGML_ASSERT(ne1 == ne10);
  10630. GGML_ASSERT(ne2 == ne02);
  10631. GGML_ASSERT(ne3 == ne03);
  10632. // nb01 >= nb00 - src0 is not transposed
  10633. // compute by src0 rows
  10634. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10635. if (params->type == GGML_TASK_TYPE_INIT) {
  10636. if (ith != 0) {
  10637. return;
  10638. }
  10639. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10640. return;
  10641. }
  10642. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10643. return;
  10644. }
  10645. // parallelize by last three dimensions
  10646. // total rows in dst
  10647. const int64_t nr = ne1*ne2*ne3;
  10648. // rows per thread
  10649. const int64_t dr = (nr + nth - 1)/nth;
  10650. // row range for this thread
  10651. const int64_t ir0 = dr*ith;
  10652. const int64_t ir1 = MIN(ir0 + dr, nr);
  10653. // dst[:,:,:,:] = 0
  10654. // for i2,i3:
  10655. // for i1:
  10656. // for i01:
  10657. // for i0:
  10658. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10659. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10660. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10661. // dst indices
  10662. const int64_t i3 = ir/(ne2*ne1);
  10663. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10664. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10665. const int64_t i02 = i2;
  10666. const int64_t i03 = i3;
  10667. //const int64_t i10 = i1;
  10668. const int64_t i12 = i2;
  10669. const int64_t i13 = i3;
  10670. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10671. const int64_t i11 = i01;
  10672. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10673. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10674. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10675. dequantize_row_q(s0, wdata, ne0);
  10676. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10677. }
  10678. }
  10679. //int64_t t1 = ggml_perf_time_us();
  10680. //static int64_t acc = 0;
  10681. //acc += t1 - t0;
  10682. //if (t1 - t0 > 10) {
  10683. // printf("\n");
  10684. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10685. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10686. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10687. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10688. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10689. //}
  10690. }
  10691. static void ggml_compute_forward_out_prod(
  10692. const struct ggml_compute_params * params,
  10693. struct ggml_tensor * dst) {
  10694. const struct ggml_tensor * src0 = dst->src[0];
  10695. switch (src0->type) {
  10696. case GGML_TYPE_Q4_0:
  10697. case GGML_TYPE_Q4_1:
  10698. case GGML_TYPE_Q5_0:
  10699. case GGML_TYPE_Q5_1:
  10700. case GGML_TYPE_Q8_0:
  10701. case GGML_TYPE_Q2_K:
  10702. case GGML_TYPE_Q3_K:
  10703. case GGML_TYPE_Q4_K:
  10704. case GGML_TYPE_Q5_K:
  10705. case GGML_TYPE_Q6_K:
  10706. case GGML_TYPE_IQ2_XXS:
  10707. case GGML_TYPE_IQ2_XS:
  10708. case GGML_TYPE_IQ3_XXS:
  10709. case GGML_TYPE_IQ1_S:
  10710. case GGML_TYPE_IQ1_M:
  10711. case GGML_TYPE_IQ4_NL:
  10712. case GGML_TYPE_IQ4_XS:
  10713. case GGML_TYPE_IQ3_S:
  10714. case GGML_TYPE_IQ2_S:
  10715. {
  10716. ggml_compute_forward_out_prod_q_f32(params, dst);
  10717. } break;
  10718. case GGML_TYPE_F16:
  10719. {
  10720. GGML_ASSERT(false); // todo
  10721. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10722. } break;
  10723. case GGML_TYPE_F32:
  10724. {
  10725. ggml_compute_forward_out_prod_f32(params, dst);
  10726. } break;
  10727. default:
  10728. {
  10729. GGML_ASSERT(false);
  10730. } break;
  10731. }
  10732. }
  10733. // ggml_compute_forward_scale
  10734. static void ggml_compute_forward_scale_f32(
  10735. const struct ggml_compute_params * params,
  10736. struct ggml_tensor * dst) {
  10737. const struct ggml_tensor * src0 = dst->src[0];
  10738. GGML_ASSERT(ggml_is_contiguous(src0));
  10739. GGML_ASSERT(ggml_is_contiguous(dst));
  10740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10741. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10742. return;
  10743. }
  10744. // scale factor
  10745. float v;
  10746. memcpy(&v, dst->op_params, sizeof(float));
  10747. const int ith = params->ith;
  10748. const int nth = params->nth;
  10749. const int nc = src0->ne[0];
  10750. const int nr = ggml_nrows(src0);
  10751. // rows per thread
  10752. const int dr = (nr + nth - 1)/nth;
  10753. // row range for this thread
  10754. const int ir0 = dr*ith;
  10755. const int ir1 = MIN(ir0 + dr, nr);
  10756. const size_t nb01 = src0->nb[1];
  10757. const size_t nb1 = dst->nb[1];
  10758. for (int i1 = ir0; i1 < ir1; i1++) {
  10759. if (dst->data != src0->data) {
  10760. // src0 is same shape as dst => same indices
  10761. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10762. }
  10763. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10764. }
  10765. }
  10766. static void ggml_compute_forward_scale(
  10767. const struct ggml_compute_params * params,
  10768. struct ggml_tensor * dst) {
  10769. const struct ggml_tensor * src0 = dst->src[0];
  10770. switch (src0->type) {
  10771. case GGML_TYPE_F32:
  10772. {
  10773. ggml_compute_forward_scale_f32(params, dst);
  10774. } break;
  10775. default:
  10776. {
  10777. GGML_ASSERT(false);
  10778. } break;
  10779. }
  10780. }
  10781. // ggml_compute_forward_set
  10782. static void ggml_compute_forward_set_f32(
  10783. const struct ggml_compute_params * params,
  10784. struct ggml_tensor * dst) {
  10785. const struct ggml_tensor * src0 = dst->src[0];
  10786. const struct ggml_tensor * src1 = dst->src[1];
  10787. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10788. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10789. // view src0 and dst with these strides and data offset inbytes during set
  10790. // nb0 is implicitly element_size because src0 and dst are contiguous
  10791. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10792. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10793. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10794. size_t offset = ((int32_t *) dst->op_params)[3];
  10795. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10796. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10797. if (params->ith != 0) {
  10798. return;
  10799. }
  10800. // memcpy needs to be synchronized across threads to avoid race conditions.
  10801. // => do it in INIT phase
  10802. memcpy(
  10803. ((char *) dst->data),
  10804. ((char *) src0->data),
  10805. ggml_nbytes(dst));
  10806. }
  10807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10808. return;
  10809. }
  10810. const int ith = params->ith;
  10811. const int nth = params->nth;
  10812. const int nr = ggml_nrows(src1);
  10813. const int nc = src1->ne[0];
  10814. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10815. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10816. // src0 and dst as viewed during set
  10817. const size_t nb0 = ggml_element_size(src0);
  10818. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10819. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10820. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10821. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10822. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10823. GGML_ASSERT(nb10 == sizeof(float));
  10824. // rows per thread
  10825. const int dr = (nr + nth - 1)/nth;
  10826. // row range for this thread
  10827. const int ir0 = dr*ith;
  10828. const int ir1 = MIN(ir0 + dr, nr);
  10829. for (int ir = ir0; ir < ir1; ++ir) {
  10830. // src0 and dst are viewed with shape of src1 and offset
  10831. // => same indices
  10832. const int i3 = ir/(ne12*ne11);
  10833. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10834. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10835. ggml_vec_cpy_f32(nc,
  10836. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10837. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10838. }
  10839. }
  10840. static void ggml_compute_forward_set(
  10841. const struct ggml_compute_params * params,
  10842. struct ggml_tensor * dst) {
  10843. const struct ggml_tensor * src0 = dst->src[0];
  10844. switch (src0->type) {
  10845. case GGML_TYPE_F32:
  10846. {
  10847. ggml_compute_forward_set_f32(params, dst);
  10848. } break;
  10849. case GGML_TYPE_F16:
  10850. case GGML_TYPE_BF16:
  10851. case GGML_TYPE_Q4_0:
  10852. case GGML_TYPE_Q4_1:
  10853. case GGML_TYPE_Q5_0:
  10854. case GGML_TYPE_Q5_1:
  10855. case GGML_TYPE_Q8_0:
  10856. case GGML_TYPE_Q8_1:
  10857. case GGML_TYPE_Q2_K:
  10858. case GGML_TYPE_Q3_K:
  10859. case GGML_TYPE_Q4_K:
  10860. case GGML_TYPE_Q5_K:
  10861. case GGML_TYPE_Q6_K:
  10862. case GGML_TYPE_IQ2_XXS:
  10863. case GGML_TYPE_IQ2_XS:
  10864. case GGML_TYPE_IQ3_XXS:
  10865. case GGML_TYPE_IQ1_S:
  10866. case GGML_TYPE_IQ1_M:
  10867. case GGML_TYPE_IQ4_NL:
  10868. case GGML_TYPE_IQ4_XS:
  10869. case GGML_TYPE_IQ3_S:
  10870. case GGML_TYPE_IQ2_S:
  10871. default:
  10872. {
  10873. GGML_ASSERT(false);
  10874. } break;
  10875. }
  10876. }
  10877. // ggml_compute_forward_cpy
  10878. static void ggml_compute_forward_cpy(
  10879. const struct ggml_compute_params * params,
  10880. struct ggml_tensor * dst) {
  10881. ggml_compute_forward_dup(params, dst);
  10882. }
  10883. // ggml_compute_forward_cont
  10884. static void ggml_compute_forward_cont(
  10885. const struct ggml_compute_params * params,
  10886. struct ggml_tensor * dst) {
  10887. ggml_compute_forward_dup(params, dst);
  10888. }
  10889. // ggml_compute_forward_reshape
  10890. static void ggml_compute_forward_reshape(
  10891. const struct ggml_compute_params * params,
  10892. struct ggml_tensor * dst) {
  10893. // NOP
  10894. UNUSED(params);
  10895. UNUSED(dst);
  10896. }
  10897. // ggml_compute_forward_view
  10898. static void ggml_compute_forward_view(
  10899. const struct ggml_compute_params * params,
  10900. const struct ggml_tensor * dst) {
  10901. // NOP
  10902. UNUSED(params);
  10903. UNUSED(dst);
  10904. }
  10905. // ggml_compute_forward_permute
  10906. static void ggml_compute_forward_permute(
  10907. const struct ggml_compute_params * params,
  10908. const struct ggml_tensor * dst) {
  10909. // NOP
  10910. UNUSED(params);
  10911. UNUSED(dst);
  10912. }
  10913. // ggml_compute_forward_transpose
  10914. static void ggml_compute_forward_transpose(
  10915. const struct ggml_compute_params * params,
  10916. const struct ggml_tensor * dst) {
  10917. // NOP
  10918. UNUSED(params);
  10919. UNUSED(dst);
  10920. }
  10921. // ggml_compute_forward_get_rows
  10922. static void ggml_compute_forward_get_rows_q(
  10923. const struct ggml_compute_params * params,
  10924. struct ggml_tensor * dst) {
  10925. const struct ggml_tensor * src0 = dst->src[0];
  10926. const struct ggml_tensor * src1 = dst->src[1];
  10927. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10928. return;
  10929. }
  10930. GGML_TENSOR_BINARY_OP_LOCALS
  10931. const int64_t nc = ne00;
  10932. const int64_t nr = ggml_nelements(src1);
  10933. const enum ggml_type type = src0->type;
  10934. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10935. assert(ne0 == nc);
  10936. assert(ne02 == ne11);
  10937. assert(nb00 == ggml_type_size(type));
  10938. assert(ggml_nrows(dst) == nr);
  10939. const int ith = params->ith;
  10940. const int nth = params->nth;
  10941. // rows per thread
  10942. const int dr = (nr + nth - 1)/nth;
  10943. // row range for this thread
  10944. const int ir0 = dr*ith;
  10945. const int ir1 = MIN(ir0 + dr, nr);
  10946. for (int64_t i = ir0; i < ir1; ++i) {
  10947. const int64_t i12 = i/(ne11*ne10);
  10948. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10949. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10950. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10951. dequantize_row_q(
  10952. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10953. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10954. }
  10955. }
  10956. static void ggml_compute_forward_get_rows_f16(
  10957. const struct ggml_compute_params * params,
  10958. struct ggml_tensor * dst) {
  10959. const struct ggml_tensor * src0 = dst->src[0];
  10960. const struct ggml_tensor * src1 = dst->src[1];
  10961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10962. return;
  10963. }
  10964. GGML_TENSOR_BINARY_OP_LOCALS
  10965. const int64_t nc = ne00;
  10966. const int64_t nr = ggml_nelements(src1);
  10967. assert(ne0 == nc);
  10968. assert(ne02 == ne11);
  10969. assert(nb00 == sizeof(ggml_fp16_t));
  10970. assert(ggml_nrows(dst) == nr);
  10971. const int ith = params->ith;
  10972. const int nth = params->nth;
  10973. // rows per thread
  10974. const int dr = (nr + nth - 1)/nth;
  10975. // row range for this thread
  10976. const int ir0 = dr*ith;
  10977. const int ir1 = MIN(ir0 + dr, nr);
  10978. for (int64_t i = ir0; i < ir1; ++i) {
  10979. const int64_t i12 = i/(ne11*ne10);
  10980. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10981. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10982. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10983. ggml_fp16_to_fp32_row(
  10984. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10985. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10986. }
  10987. }
  10988. static void ggml_compute_forward_get_rows_bf16(
  10989. const struct ggml_compute_params * params,
  10990. struct ggml_tensor * dst) {
  10991. const struct ggml_tensor * src0 = dst->src[0];
  10992. const struct ggml_tensor * src1 = dst->src[1];
  10993. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10994. return;
  10995. }
  10996. GGML_TENSOR_BINARY_OP_LOCALS
  10997. const int64_t nc = ne00;
  10998. const int64_t nr = ggml_nelements(src1);
  10999. assert(ne0 == nc);
  11000. assert(ne02 == ne11);
  11001. assert(nb00 == sizeof(ggml_bf16_t));
  11002. assert(ggml_nrows(dst) == nr);
  11003. const int ith = params->ith;
  11004. const int nth = params->nth;
  11005. // rows per thread
  11006. const int dr = (nr + nth - 1)/nth;
  11007. // row range for this thread
  11008. const int ir0 = dr*ith;
  11009. const int ir1 = MIN(ir0 + dr, nr);
  11010. for (int64_t i = ir0; i < ir1; ++i) {
  11011. const int64_t i12 = i/(ne11*ne10);
  11012. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11013. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11014. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11015. ggml_bf16_to_fp32_row(
  11016. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11017. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11018. }
  11019. }
  11020. static void ggml_compute_forward_get_rows_f32(
  11021. const struct ggml_compute_params * params,
  11022. struct ggml_tensor * dst) {
  11023. const struct ggml_tensor * src0 = dst->src[0];
  11024. const struct ggml_tensor * src1 = dst->src[1];
  11025. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11026. return;
  11027. }
  11028. GGML_TENSOR_BINARY_OP_LOCALS
  11029. const int64_t nc = ne00;
  11030. const int64_t nr = ggml_nelements(src1);
  11031. assert(ne0 == nc);
  11032. assert(ne02 == ne11);
  11033. assert(nb00 == sizeof(float));
  11034. assert(ggml_nrows(dst) == nr);
  11035. const int ith = params->ith;
  11036. const int nth = params->nth;
  11037. // rows per thread
  11038. const int dr = (nr + nth - 1)/nth;
  11039. // row range for this thread
  11040. const int ir0 = dr*ith;
  11041. const int ir1 = MIN(ir0 + dr, nr);
  11042. for (int64_t i = ir0; i < ir1; ++i) {
  11043. const int64_t i12 = i/(ne11*ne10);
  11044. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11045. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11046. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11047. ggml_vec_cpy_f32(nc,
  11048. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11049. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11050. }
  11051. }
  11052. static void ggml_compute_forward_get_rows(
  11053. const struct ggml_compute_params * params,
  11054. struct ggml_tensor * dst) {
  11055. const struct ggml_tensor * src0 = dst->src[0];
  11056. switch (src0->type) {
  11057. case GGML_TYPE_Q4_0:
  11058. case GGML_TYPE_Q4_1:
  11059. case GGML_TYPE_Q5_0:
  11060. case GGML_TYPE_Q5_1:
  11061. case GGML_TYPE_Q8_0:
  11062. case GGML_TYPE_Q8_1:
  11063. case GGML_TYPE_Q2_K:
  11064. case GGML_TYPE_Q3_K:
  11065. case GGML_TYPE_Q4_K:
  11066. case GGML_TYPE_Q5_K:
  11067. case GGML_TYPE_Q6_K:
  11068. case GGML_TYPE_IQ2_XXS:
  11069. case GGML_TYPE_IQ2_XS:
  11070. case GGML_TYPE_IQ3_XXS:
  11071. case GGML_TYPE_IQ1_S:
  11072. case GGML_TYPE_IQ1_M:
  11073. case GGML_TYPE_IQ4_NL:
  11074. case GGML_TYPE_IQ4_XS:
  11075. case GGML_TYPE_IQ3_S:
  11076. case GGML_TYPE_IQ2_S:
  11077. {
  11078. ggml_compute_forward_get_rows_q(params, dst);
  11079. } break;
  11080. case GGML_TYPE_F16:
  11081. {
  11082. ggml_compute_forward_get_rows_f16(params, dst);
  11083. } break;
  11084. case GGML_TYPE_BF16:
  11085. {
  11086. ggml_compute_forward_get_rows_bf16(params, dst);
  11087. } break;
  11088. case GGML_TYPE_F32:
  11089. case GGML_TYPE_I32:
  11090. {
  11091. ggml_compute_forward_get_rows_f32(params, dst);
  11092. } break;
  11093. default:
  11094. {
  11095. GGML_ASSERT(false);
  11096. } break;
  11097. }
  11098. //static bool first = true;
  11099. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11100. //if (first) {
  11101. // first = false;
  11102. //} else {
  11103. // for (int k = 0; k < dst->ne[1]; ++k) {
  11104. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11105. // for (int i = 0; i < 16; ++i) {
  11106. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11107. // }
  11108. // printf("\n");
  11109. // }
  11110. // printf("\n");
  11111. // }
  11112. // printf("\n");
  11113. // exit(0);
  11114. //}
  11115. }
  11116. // ggml_compute_forward_get_rows_back
  11117. static void ggml_compute_forward_get_rows_back_f32_f16(
  11118. const struct ggml_compute_params * params,
  11119. struct ggml_tensor * dst) {
  11120. const struct ggml_tensor * src0 = dst->src[0];
  11121. const struct ggml_tensor * src1 = dst->src[1];
  11122. GGML_ASSERT(params->ith == 0);
  11123. GGML_ASSERT(ggml_is_contiguous(dst));
  11124. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11125. if (params->type == GGML_TASK_TYPE_INIT) {
  11126. if (params->ith != 0) {
  11127. return;
  11128. }
  11129. memset(dst->data, 0, ggml_nbytes(dst));
  11130. }
  11131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11132. return;
  11133. }
  11134. const int nc = src0->ne[0];
  11135. const int nr = ggml_nelements(src1);
  11136. GGML_ASSERT( dst->ne[0] == nc);
  11137. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11138. for (int i = 0; i < nr; ++i) {
  11139. const int r = ((int32_t *) src1->data)[i];
  11140. for (int j = 0; j < nc; ++j) {
  11141. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11142. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11143. }
  11144. }
  11145. }
  11146. static void ggml_compute_forward_get_rows_back_f32(
  11147. const struct ggml_compute_params * params,
  11148. struct ggml_tensor * dst) {
  11149. const struct ggml_tensor * src0 = dst->src[0];
  11150. const struct ggml_tensor * src1 = dst->src[1];
  11151. GGML_ASSERT(params->ith == 0);
  11152. GGML_ASSERT(ggml_is_contiguous(dst));
  11153. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11154. if (params->type == GGML_TASK_TYPE_INIT) {
  11155. if (params->ith != 0) {
  11156. return;
  11157. }
  11158. memset(dst->data, 0, ggml_nbytes(dst));
  11159. }
  11160. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11161. return;
  11162. }
  11163. const int nc = src0->ne[0];
  11164. const int nr = ggml_nelements(src1);
  11165. GGML_ASSERT( dst->ne[0] == nc);
  11166. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11167. for (int i = 0; i < nr; ++i) {
  11168. const int r = ((int32_t *) src1->data)[i];
  11169. ggml_vec_add_f32(nc,
  11170. (float *) ((char *) dst->data + r*dst->nb[1]),
  11171. (float *) ((char *) dst->data + r*dst->nb[1]),
  11172. (float *) ((char *) src0->data + i*src0->nb[1]));
  11173. }
  11174. }
  11175. static void ggml_compute_forward_get_rows_back(
  11176. const struct ggml_compute_params * params,
  11177. struct ggml_tensor * dst) {
  11178. const struct ggml_tensor * src0 = dst->src[0];
  11179. switch (src0->type) {
  11180. case GGML_TYPE_F16:
  11181. {
  11182. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11183. } break;
  11184. case GGML_TYPE_F32:
  11185. {
  11186. ggml_compute_forward_get_rows_back_f32(params, dst);
  11187. } break;
  11188. default:
  11189. {
  11190. GGML_ASSERT(false);
  11191. } break;
  11192. }
  11193. //static bool first = true;
  11194. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11195. //if (first) {
  11196. // first = false;
  11197. //} else {
  11198. // for (int k = 0; k < dst->ne[1]; ++k) {
  11199. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11200. // for (int i = 0; i < 16; ++i) {
  11201. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11202. // }
  11203. // printf("\n");
  11204. // }
  11205. // printf("\n");
  11206. // }
  11207. // printf("\n");
  11208. // exit(0);
  11209. //}
  11210. }
  11211. // ggml_compute_forward_diag
  11212. static void ggml_compute_forward_diag_f32(
  11213. const struct ggml_compute_params * params,
  11214. struct ggml_tensor * dst) {
  11215. const struct ggml_tensor * src0 = dst->src[0];
  11216. GGML_ASSERT(params->ith == 0);
  11217. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11218. return;
  11219. }
  11220. // TODO: handle transposed/permuted matrices
  11221. GGML_TENSOR_UNARY_OP_LOCALS
  11222. GGML_ASSERT(ne00 == ne0);
  11223. GGML_ASSERT(ne00 == ne1);
  11224. GGML_ASSERT(ne01 == 1);
  11225. GGML_ASSERT(ne02 == ne2);
  11226. GGML_ASSERT(ne03 == ne3);
  11227. GGML_ASSERT(nb00 == sizeof(float));
  11228. GGML_ASSERT(nb0 == sizeof(float));
  11229. for (int i3 = 0; i3 < ne3; i3++) {
  11230. for (int i2 = 0; i2 < ne2; i2++) {
  11231. for (int i1 = 0; i1 < ne1; i1++) {
  11232. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11233. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11234. for (int i0 = 0; i0 < i1; i0++) {
  11235. d[i0] = 0;
  11236. }
  11237. d[i1] = s[i1];
  11238. for (int i0 = i1+1; i0 < ne0; i0++) {
  11239. d[i0] = 0;
  11240. }
  11241. }
  11242. }
  11243. }
  11244. }
  11245. static void ggml_compute_forward_diag(
  11246. const struct ggml_compute_params * params,
  11247. struct ggml_tensor * dst) {
  11248. const struct ggml_tensor * src0 = dst->src[0];
  11249. switch (src0->type) {
  11250. case GGML_TYPE_F32:
  11251. {
  11252. ggml_compute_forward_diag_f32(params, dst);
  11253. } break;
  11254. default:
  11255. {
  11256. GGML_ASSERT(false);
  11257. } break;
  11258. }
  11259. }
  11260. // ggml_compute_forward_diag_mask_inf
  11261. static void ggml_compute_forward_diag_mask_f32(
  11262. const struct ggml_compute_params * params,
  11263. struct ggml_tensor * dst,
  11264. const float value) {
  11265. const struct ggml_tensor * src0 = dst->src[0];
  11266. const int ith = params->ith;
  11267. const int nth = params->nth;
  11268. const int n_past = ((int32_t *) dst->op_params)[0];
  11269. const bool inplace = src0->data == dst->data;
  11270. GGML_ASSERT(n_past >= 0);
  11271. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11272. if (ith != 0) {
  11273. return;
  11274. }
  11275. // memcpy needs to be synchronized across threads to avoid race conditions.
  11276. // => do it in INIT phase
  11277. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11278. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11279. memcpy(
  11280. ((char *) dst->data),
  11281. ((char *) src0->data),
  11282. ggml_nbytes(dst));
  11283. }
  11284. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11285. return;
  11286. }
  11287. // TODO: handle transposed/permuted matrices
  11288. const int n = ggml_nrows(src0);
  11289. const int nc = src0->ne[0];
  11290. const int nr = src0->ne[1];
  11291. const int nz = n/nr;
  11292. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11293. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11294. for (int k = 0; k < nz; k++) {
  11295. for (int j = ith; j < nr; j += nth) {
  11296. for (int i = n_past; i < nc; i++) {
  11297. if (i > n_past + j) {
  11298. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11299. }
  11300. }
  11301. }
  11302. }
  11303. }
  11304. static void ggml_compute_forward_diag_mask_inf(
  11305. const struct ggml_compute_params * params,
  11306. struct ggml_tensor * dst) {
  11307. const struct ggml_tensor * src0 = dst->src[0];
  11308. switch (src0->type) {
  11309. case GGML_TYPE_F32:
  11310. {
  11311. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11312. } break;
  11313. default:
  11314. {
  11315. GGML_ASSERT(false);
  11316. } break;
  11317. }
  11318. }
  11319. static void ggml_compute_forward_diag_mask_zero(
  11320. const struct ggml_compute_params * params,
  11321. struct ggml_tensor * dst) {
  11322. const struct ggml_tensor * src0 = dst->src[0];
  11323. switch (src0->type) {
  11324. case GGML_TYPE_F32:
  11325. {
  11326. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11327. } break;
  11328. default:
  11329. {
  11330. GGML_ASSERT(false);
  11331. } break;
  11332. }
  11333. }
  11334. // ggml_compute_forward_soft_max
  11335. static void ggml_compute_forward_soft_max_f32(
  11336. const struct ggml_compute_params * params,
  11337. struct ggml_tensor * dst) {
  11338. const struct ggml_tensor * src0 = dst->src[0];
  11339. const struct ggml_tensor * src1 = dst->src[1];
  11340. assert(ggml_is_contiguous(dst));
  11341. assert(ggml_are_same_shape(src0, dst));
  11342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11343. return;
  11344. }
  11345. float scale = 1.0f;
  11346. float max_bias = 0.0f;
  11347. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11348. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11349. // TODO: handle transposed/permuted matrices
  11350. const int ith = params->ith;
  11351. const int nth = params->nth;
  11352. GGML_TENSOR_UNARY_OP_LOCALS
  11353. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11354. // TODO: is this supposed to be ceil instead of floor?
  11355. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11356. const uint32_t n_head = ne02;
  11357. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11358. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11359. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11360. const int nc = src0->ne[0];
  11361. const int nr = ggml_nrows(src0);
  11362. // rows per thread
  11363. const int dr = (nr + nth - 1)/nth;
  11364. // row range for this thread
  11365. const int ir0 = dr*ith;
  11366. const int ir1 = MIN(ir0 + dr, nr);
  11367. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11368. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11369. for (int i1 = ir0; i1 < ir1; i1++) {
  11370. // ALiBi
  11371. const uint32_t h = (i1/ne01)%ne02; // head
  11372. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11373. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11374. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11375. // broadcast the mask across rows
  11376. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11377. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11378. ggml_vec_cpy_f32 (nc, wp, sp);
  11379. ggml_vec_scale_f32(nc, wp, scale);
  11380. if (mp_f32) {
  11381. if (use_f16) {
  11382. for (int i = 0; i < nc; ++i) {
  11383. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11384. }
  11385. } else {
  11386. for (int i = 0; i < nc; ++i) {
  11387. wp[i] += slope*mp_f32[i];
  11388. }
  11389. }
  11390. }
  11391. #ifndef NDEBUG
  11392. for (int i = 0; i < nc; ++i) {
  11393. //printf("p[%d] = %f\n", i, p[i]);
  11394. assert(!isnan(wp[i]));
  11395. }
  11396. #endif
  11397. float max = -INFINITY;
  11398. ggml_vec_max_f32(nc, &max, wp);
  11399. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11400. assert(sum > 0.0);
  11401. sum = 1.0/sum;
  11402. ggml_vec_scale_f32(nc, dp, sum);
  11403. #ifndef NDEBUG
  11404. for (int i = 0; i < nc; ++i) {
  11405. assert(!isnan(dp[i]));
  11406. assert(!isinf(dp[i]));
  11407. }
  11408. #endif
  11409. }
  11410. }
  11411. static void ggml_compute_forward_soft_max(
  11412. const struct ggml_compute_params * params,
  11413. struct ggml_tensor * dst) {
  11414. const struct ggml_tensor * src0 = dst->src[0];
  11415. switch (src0->type) {
  11416. case GGML_TYPE_F32:
  11417. {
  11418. ggml_compute_forward_soft_max_f32(params, dst);
  11419. } break;
  11420. default:
  11421. {
  11422. GGML_ASSERT(false);
  11423. } break;
  11424. }
  11425. }
  11426. // ggml_compute_forward_soft_max_back
  11427. static void ggml_compute_forward_soft_max_back_f32(
  11428. const struct ggml_compute_params * params,
  11429. struct ggml_tensor * dst) {
  11430. const struct ggml_tensor * src0 = dst->src[0];
  11431. const struct ggml_tensor * src1 = dst->src[1];
  11432. GGML_ASSERT(ggml_is_contiguous(src0));
  11433. GGML_ASSERT(ggml_is_contiguous(src1));
  11434. GGML_ASSERT(ggml_is_contiguous(dst));
  11435. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11436. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11437. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11438. return;
  11439. }
  11440. // TODO: handle transposed/permuted matrices
  11441. const int ith = params->ith;
  11442. const int nth = params->nth;
  11443. const int nc = src0->ne[0];
  11444. const int nr = ggml_nrows(src0);
  11445. // rows per thread
  11446. const int dr = (nr + nth - 1)/nth;
  11447. // row range for this thread
  11448. const int ir0 = dr*ith;
  11449. const int ir1 = MIN(ir0 + dr, nr);
  11450. for (int i1 = ir0; i1 < ir1; i1++) {
  11451. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11452. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11453. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11454. #ifndef NDEBUG
  11455. for (int i = 0; i < nc; ++i) {
  11456. //printf("p[%d] = %f\n", i, p[i]);
  11457. assert(!isnan(dy[i]));
  11458. assert(!isnan(y[i]));
  11459. }
  11460. #endif
  11461. // Jii = yi - yi*yi
  11462. // Jij = -yi*yj
  11463. // J = diag(y)-y.T*y
  11464. // dx = J * dy
  11465. // dxk = sum_i(Jki * dyi)
  11466. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11467. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11468. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11469. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11470. // dxk = -yk * dot(y, dy) + yk*dyk
  11471. // dxk = yk * (- dot(y, dy) + dyk)
  11472. // dxk = yk * (dyk - dot(y, dy))
  11473. //
  11474. // post-order:
  11475. // dot_y_dy := dot(y, dy)
  11476. // dx := dy
  11477. // dx := dx - dot_y_dy
  11478. // dx := dx * y
  11479. // linear runtime, no additional memory
  11480. float dot_y_dy = 0;
  11481. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11482. ggml_vec_cpy_f32 (nc, dx, dy);
  11483. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11484. ggml_vec_mul_f32 (nc, dx, dx, y);
  11485. #ifndef NDEBUG
  11486. for (int i = 0; i < nc; ++i) {
  11487. assert(!isnan(dx[i]));
  11488. assert(!isinf(dx[i]));
  11489. }
  11490. #endif
  11491. }
  11492. }
  11493. static void ggml_compute_forward_soft_max_back(
  11494. const struct ggml_compute_params * params,
  11495. struct ggml_tensor * dst) {
  11496. const struct ggml_tensor * src0 = dst->src[0];
  11497. switch (src0->type) {
  11498. case GGML_TYPE_F32:
  11499. {
  11500. ggml_compute_forward_soft_max_back_f32(params, dst);
  11501. } break;
  11502. default:
  11503. {
  11504. GGML_ASSERT(false);
  11505. } break;
  11506. }
  11507. }
  11508. // ggml_compute_forward_clamp
  11509. static void ggml_compute_forward_clamp_f32(
  11510. const struct ggml_compute_params * params,
  11511. struct ggml_tensor * dst) {
  11512. const struct ggml_tensor * src0 = dst->src[0];
  11513. assert(params->ith == 0);
  11514. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11515. return;
  11516. }
  11517. float min;
  11518. float max;
  11519. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11520. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11521. const int ith = params->ith;
  11522. const int nth = params->nth;
  11523. const int n = ggml_nrows(src0);
  11524. const int nc = src0->ne[0];
  11525. const size_t nb00 = src0->nb[0];
  11526. const size_t nb01 = src0->nb[1];
  11527. const size_t nb0 = dst->nb[0];
  11528. const size_t nb1 = dst->nb[1];
  11529. GGML_ASSERT( nb0 == sizeof(float));
  11530. GGML_ASSERT(nb00 == sizeof(float));
  11531. for (int j = ith; j < n; j += nth) {
  11532. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11533. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11534. for (int i = 0; i < nc; i++) {
  11535. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11536. }
  11537. }
  11538. }
  11539. static void ggml_compute_forward_clamp(
  11540. const struct ggml_compute_params * params,
  11541. struct ggml_tensor * dst) {
  11542. const struct ggml_tensor * src0 = dst->src[0];
  11543. switch (src0->type) {
  11544. case GGML_TYPE_F32:
  11545. {
  11546. ggml_compute_forward_clamp_f32(params, dst);
  11547. } break;
  11548. case GGML_TYPE_F16:
  11549. case GGML_TYPE_BF16:
  11550. case GGML_TYPE_Q4_0:
  11551. case GGML_TYPE_Q4_1:
  11552. case GGML_TYPE_Q5_0:
  11553. case GGML_TYPE_Q5_1:
  11554. case GGML_TYPE_Q8_0:
  11555. case GGML_TYPE_Q8_1:
  11556. case GGML_TYPE_Q2_K:
  11557. case GGML_TYPE_Q3_K:
  11558. case GGML_TYPE_Q4_K:
  11559. case GGML_TYPE_Q5_K:
  11560. case GGML_TYPE_Q6_K:
  11561. case GGML_TYPE_IQ2_XXS:
  11562. case GGML_TYPE_IQ2_XS:
  11563. case GGML_TYPE_IQ3_XXS:
  11564. case GGML_TYPE_IQ1_S:
  11565. case GGML_TYPE_IQ1_M:
  11566. case GGML_TYPE_IQ4_NL:
  11567. case GGML_TYPE_IQ4_XS:
  11568. case GGML_TYPE_IQ3_S:
  11569. case GGML_TYPE_IQ2_S:
  11570. case GGML_TYPE_Q8_K:
  11571. case GGML_TYPE_I8:
  11572. case GGML_TYPE_I16:
  11573. case GGML_TYPE_I32:
  11574. case GGML_TYPE_I64:
  11575. case GGML_TYPE_F64:
  11576. case GGML_TYPE_COUNT:
  11577. {
  11578. GGML_ASSERT(false);
  11579. } break;
  11580. }
  11581. }
  11582. // ggml_compute_forward_rope
  11583. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11584. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11585. return 1 - MIN(1, MAX(0, y));
  11586. }
  11587. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11588. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11589. static void rope_yarn(
  11590. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11591. float * cos_theta, float * sin_theta) {
  11592. // Get n-d rotational scaling corrected for extrapolation
  11593. float theta_interp = freq_scale * theta_extrap;
  11594. float theta = theta_interp;
  11595. if (ext_factor != 0.0f) {
  11596. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11597. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11598. // Get n-d magnitude scaling corrected for interpolation
  11599. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11600. }
  11601. *cos_theta = cosf(theta) * mscale;
  11602. *sin_theta = sinf(theta) * mscale;
  11603. }
  11604. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11605. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11606. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11607. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11608. }
  11609. static void ggml_rope_cache_init(
  11610. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11611. float * cache, float sin_sign, float theta_scale) {
  11612. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11613. float theta = theta_base;
  11614. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11615. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11616. rope_yarn(
  11617. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11618. );
  11619. cache[i0 + 1] *= sin_sign;
  11620. theta *= theta_scale;
  11621. }
  11622. }
  11623. GGML_CALL void ggml_rope_yarn_corr_dims(
  11624. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11625. ) {
  11626. // start and end correction dims
  11627. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11628. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11629. dims[0] = MAX(0, start);
  11630. dims[1] = MIN(n_dims - 1, end);
  11631. }
  11632. static void ggml_compute_forward_rope_f32(
  11633. const struct ggml_compute_params * params,
  11634. struct ggml_tensor * dst,
  11635. const bool forward) {
  11636. const struct ggml_tensor * src0 = dst->src[0];
  11637. const struct ggml_tensor * src1 = dst->src[1];
  11638. const struct ggml_tensor * src2 = dst->src[2];
  11639. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11640. return;
  11641. }
  11642. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11643. //const int n_past = ((int32_t *) dst->op_params)[0];
  11644. const int n_dims = ((int32_t *) dst->op_params)[1];
  11645. const int mode = ((int32_t *) dst->op_params)[2];
  11646. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11647. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11648. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11649. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11650. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11651. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11652. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11653. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11654. GGML_TENSOR_UNARY_OP_LOCALS
  11655. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11656. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11657. GGML_ASSERT(nb00 == sizeof(float));
  11658. const int ith = params->ith;
  11659. const int nth = params->nth;
  11660. const int nr = ggml_nrows(dst);
  11661. GGML_ASSERT(n_dims <= ne0);
  11662. GGML_ASSERT(n_dims % 2 == 0);
  11663. // rows per thread
  11664. const int dr = (nr + nth - 1)/nth;
  11665. // row range for this thread
  11666. const int ir0 = dr*ith;
  11667. const int ir1 = MIN(ir0 + dr, nr);
  11668. // row index used to determine which thread to use
  11669. int ir = 0;
  11670. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11671. float corr_dims[2];
  11672. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11673. const bool is_neox = mode & 2;
  11674. const float * freq_factors = NULL;
  11675. if (src2 != NULL) {
  11676. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11677. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11678. freq_factors = (const float *) src2->data;
  11679. }
  11680. // backward process uses inverse rotation by cos and sin.
  11681. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11682. // this essentially just switches the sign of sin.
  11683. const float sin_sign = forward ? 1.0f : -1.0f;
  11684. const int32_t * pos = (const int32_t *) src1->data;
  11685. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11686. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11687. const int64_t p = pos[i2];
  11688. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11689. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11690. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11691. if (ir++ < ir0) continue;
  11692. if (ir > ir1) break;
  11693. if (!is_neox) {
  11694. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11695. const float cos_theta = cache[i0 + 0];
  11696. const float sin_theta = cache[i0 + 1];
  11697. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11698. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11699. const float x0 = src[0];
  11700. const float x1 = src[1];
  11701. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11702. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11703. }
  11704. } else {
  11705. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11706. const int64_t ic = i0/2;
  11707. const float cos_theta = cache[i0 + 0];
  11708. const float sin_theta = cache[i0 + 1];
  11709. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11710. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11711. const float x0 = src[0];
  11712. const float x1 = src[n_dims/2];
  11713. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11714. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11715. }
  11716. }
  11717. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11718. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11719. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11720. dst_data[0] = src[0];
  11721. dst_data[1] = src[1];
  11722. }
  11723. }
  11724. }
  11725. }
  11726. }
  11727. // TODO: deduplicate f16/f32 code
  11728. static void ggml_compute_forward_rope_f16(
  11729. const struct ggml_compute_params * params,
  11730. struct ggml_tensor * dst,
  11731. const bool forward) {
  11732. const struct ggml_tensor * src0 = dst->src[0];
  11733. const struct ggml_tensor * src1 = dst->src[1];
  11734. const struct ggml_tensor * src2 = dst->src[2];
  11735. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11736. return;
  11737. }
  11738. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11739. //const int n_past = ((int32_t *) dst->op_params)[0];
  11740. const int n_dims = ((int32_t *) dst->op_params)[1];
  11741. const int mode = ((int32_t *) dst->op_params)[2];
  11742. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11743. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11744. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11745. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11746. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11747. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11748. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11749. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11750. GGML_TENSOR_UNARY_OP_LOCALS
  11751. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11752. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11753. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11754. const int ith = params->ith;
  11755. const int nth = params->nth;
  11756. const int nr = ggml_nrows(dst);
  11757. GGML_ASSERT(n_dims <= ne0);
  11758. GGML_ASSERT(n_dims % 2 == 0);
  11759. // rows per thread
  11760. const int dr = (nr + nth - 1)/nth;
  11761. // row range for this thread
  11762. const int ir0 = dr*ith;
  11763. const int ir1 = MIN(ir0 + dr, nr);
  11764. // row index used to determine which thread to use
  11765. int ir = 0;
  11766. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11767. float corr_dims[2];
  11768. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11769. const bool is_neox = mode & 2;
  11770. const float * freq_factors = NULL;
  11771. if (src2 != NULL) {
  11772. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11773. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11774. freq_factors = (const float *) src2->data;
  11775. }
  11776. // backward process uses inverse rotation by cos and sin.
  11777. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11778. // this essentially just switches the sign of sin.
  11779. const float sin_sign = forward ? 1.0f : -1.0f;
  11780. const int32_t * pos = (const int32_t *) src1->data;
  11781. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11782. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11783. const int64_t p = pos[i2];
  11784. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11785. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11786. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11787. if (ir++ < ir0) continue;
  11788. if (ir > ir1) break;
  11789. if (!is_neox) {
  11790. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11791. const float cos_theta = cache[i0 + 0];
  11792. const float sin_theta = cache[i0 + 1];
  11793. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11794. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11795. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11796. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11797. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11798. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11799. }
  11800. } else {
  11801. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11802. const int64_t ic = i0/2;
  11803. const float cos_theta = cache[i0 + 0];
  11804. const float sin_theta = cache[i0 + 1];
  11805. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11806. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11807. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11808. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11809. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11810. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11811. }
  11812. }
  11813. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11814. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11815. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11816. dst_data[0] = src[0];
  11817. dst_data[1] = src[1];
  11818. }
  11819. }
  11820. }
  11821. }
  11822. }
  11823. static void ggml_compute_forward_rope(
  11824. const struct ggml_compute_params * params,
  11825. struct ggml_tensor * dst) {
  11826. const struct ggml_tensor * src0 = dst->src[0];
  11827. switch (src0->type) {
  11828. case GGML_TYPE_F16:
  11829. {
  11830. ggml_compute_forward_rope_f16(params, dst, true);
  11831. } break;
  11832. case GGML_TYPE_F32:
  11833. {
  11834. ggml_compute_forward_rope_f32(params, dst, true);
  11835. } break;
  11836. default:
  11837. {
  11838. GGML_ASSERT(false);
  11839. } break;
  11840. }
  11841. }
  11842. // ggml_compute_forward_rope_back
  11843. static void ggml_compute_forward_rope_back(
  11844. const struct ggml_compute_params * params,
  11845. struct ggml_tensor * dst) {
  11846. const struct ggml_tensor * src0 = dst->src[0];
  11847. switch (src0->type) {
  11848. case GGML_TYPE_F16:
  11849. {
  11850. ggml_compute_forward_rope_f16(params, dst, false);
  11851. } break;
  11852. case GGML_TYPE_F32:
  11853. {
  11854. ggml_compute_forward_rope_f32(params, dst, false);
  11855. } break;
  11856. default:
  11857. {
  11858. GGML_ASSERT(false);
  11859. } break;
  11860. }
  11861. }
  11862. // ggml_compute_forward_conv_transpose_1d
  11863. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11864. const struct ggml_compute_params * params,
  11865. struct ggml_tensor * dst) {
  11866. const struct ggml_tensor * src0 = dst->src[0];
  11867. const struct ggml_tensor * src1 = dst->src[1];
  11868. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11869. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11870. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11871. int64_t t0 = ggml_perf_time_us();
  11872. UNUSED(t0);
  11873. GGML_TENSOR_BINARY_OP_LOCALS
  11874. const int ith = params->ith;
  11875. const int nth = params->nth;
  11876. const int nk = ne00*ne01*ne02;
  11877. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11878. GGML_ASSERT(nb10 == sizeof(float));
  11879. if (params->type == GGML_TASK_TYPE_INIT) {
  11880. if (ith != 0) {
  11881. return;
  11882. }
  11883. memset(params->wdata, 0, params->wsize);
  11884. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11885. {
  11886. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11887. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11888. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11889. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11890. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11891. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11892. dst_data[i00*ne02 + i02] = src[i00];
  11893. }
  11894. }
  11895. }
  11896. }
  11897. // permute source data (src1) from (L x Cin) to (Cin x L)
  11898. {
  11899. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11900. ggml_fp16_t * dst_data = wdata;
  11901. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11902. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11903. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11904. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11905. }
  11906. }
  11907. }
  11908. // need to zero dst since we are accumulating into it
  11909. memset(dst->data, 0, ggml_nbytes(dst));
  11910. return;
  11911. }
  11912. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11913. return;
  11914. }
  11915. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11916. // total rows in dst
  11917. const int nr = ne1;
  11918. // rows per thread
  11919. const int dr = (nr + nth - 1)/nth;
  11920. // row range for this thread
  11921. const int ir0 = dr*ith;
  11922. const int ir1 = MIN(ir0 + dr, nr);
  11923. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11924. ggml_fp16_t * const wdata_src = wdata + nk;
  11925. for (int i1 = ir0; i1 < ir1; i1++) {
  11926. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11927. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11928. for (int i10 = 0; i10 < ne10; i10++) {
  11929. const int i1n = i10*ne11;
  11930. for (int i00 = 0; i00 < ne00; i00++) {
  11931. float v = 0;
  11932. ggml_vec_dot_f16(ne02, &v, 0,
  11933. (ggml_fp16_t *) wdata_src + i1n, 0,
  11934. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11935. dst_data[i10*s0 + i00] += v;
  11936. }
  11937. }
  11938. }
  11939. }
  11940. static void ggml_compute_forward_conv_transpose_1d_f32(
  11941. const struct ggml_compute_params * params,
  11942. struct ggml_tensor * dst) {
  11943. const struct ggml_tensor * src0 = dst->src[0];
  11944. const struct ggml_tensor * src1 = dst->src[1];
  11945. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11946. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11947. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11948. int64_t t0 = ggml_perf_time_us();
  11949. UNUSED(t0);
  11950. GGML_TENSOR_BINARY_OP_LOCALS
  11951. const int ith = params->ith;
  11952. const int nth = params->nth;
  11953. const int nk = ne00*ne01*ne02;
  11954. GGML_ASSERT(nb00 == sizeof(float));
  11955. GGML_ASSERT(nb10 == sizeof(float));
  11956. if (params->type == GGML_TASK_TYPE_INIT) {
  11957. if (ith != 0) {
  11958. return;
  11959. }
  11960. memset(params->wdata, 0, params->wsize);
  11961. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11962. {
  11963. float * const wdata = (float *) params->wdata + 0;
  11964. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11965. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11966. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11967. float * dst_data = wdata + i01*ne00*ne02;
  11968. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11969. dst_data[i00*ne02 + i02] = src[i00];
  11970. }
  11971. }
  11972. }
  11973. }
  11974. // prepare source data (src1)
  11975. {
  11976. float * const wdata = (float *) params->wdata + nk;
  11977. float * dst_data = wdata;
  11978. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11979. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11980. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11981. dst_data[i10*ne11 + i11] = src[i10];
  11982. }
  11983. }
  11984. }
  11985. // need to zero dst since we are accumulating into it
  11986. memset(dst->data, 0, ggml_nbytes(dst));
  11987. return;
  11988. }
  11989. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11990. return;
  11991. }
  11992. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11993. // total rows in dst
  11994. const int nr = ne1;
  11995. // rows per thread
  11996. const int dr = (nr + nth - 1)/nth;
  11997. // row range for this thread
  11998. const int ir0 = dr*ith;
  11999. const int ir1 = MIN(ir0 + dr, nr);
  12000. float * const wdata = (float *) params->wdata + 0;
  12001. float * const wdata_src = wdata + nk;
  12002. for (int i1 = ir0; i1 < ir1; i1++) {
  12003. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12004. float * wdata_kernel = wdata + i1*ne02*ne00;
  12005. for (int i10 = 0; i10 < ne10; i10++) {
  12006. const int i1n = i10*ne11;
  12007. for (int i00 = 0; i00 < ne00; i00++) {
  12008. float v = 0;
  12009. ggml_vec_dot_f32(ne02, &v, 0,
  12010. wdata_src + i1n, 0,
  12011. wdata_kernel + i00*ne02, 0, 1);
  12012. dst_data[i10*s0 + i00] += v;
  12013. }
  12014. }
  12015. }
  12016. }
  12017. static void ggml_compute_forward_conv_transpose_1d(
  12018. const struct ggml_compute_params * params,
  12019. struct ggml_tensor * dst) {
  12020. const struct ggml_tensor * src0 = dst->src[0];
  12021. switch (src0->type) {
  12022. case GGML_TYPE_F16:
  12023. {
  12024. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12025. } break;
  12026. case GGML_TYPE_F32:
  12027. {
  12028. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12029. } break;
  12030. default:
  12031. {
  12032. GGML_ASSERT(false);
  12033. } break;
  12034. }
  12035. }
  12036. // src0: kernel [OC, IC, KH, KW]
  12037. // src1: image [N, IC, IH, IW]
  12038. // dst: result [N, OH, OW, IC*KH*KW]
  12039. static void ggml_compute_forward_im2col_f32(
  12040. const struct ggml_compute_params * params,
  12041. struct ggml_tensor * dst) {
  12042. const struct ggml_tensor * src0 = dst->src[0];
  12043. const struct ggml_tensor * src1 = dst->src[1];
  12044. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12045. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12046. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12047. int64_t t0 = ggml_perf_time_us();
  12048. UNUSED(t0);
  12049. GGML_TENSOR_BINARY_OP_LOCALS;
  12050. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12051. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12052. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12053. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12054. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12055. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12056. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12057. const int ith = params->ith;
  12058. const int nth = params->nth;
  12059. const int64_t N = is_2D ? ne13 : ne12;
  12060. const int64_t IC = is_2D ? ne12 : ne11;
  12061. const int64_t IH = is_2D ? ne11 : 1;
  12062. const int64_t IW = ne10;
  12063. const int64_t KH = is_2D ? ne01 : 1;
  12064. const int64_t KW = ne00;
  12065. const int64_t OH = is_2D ? ne2 : 1;
  12066. const int64_t OW = ne1;
  12067. int ofs0 = is_2D ? nb13 : nb12;
  12068. int ofs1 = is_2D ? nb12 : nb11;
  12069. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12070. GGML_ASSERT(nb10 == sizeof(float));
  12071. if (params->type == GGML_TASK_TYPE_INIT) {
  12072. return;
  12073. }
  12074. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12075. return;
  12076. }
  12077. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12078. {
  12079. float * const wdata = (float *) dst->data;
  12080. for (int64_t in = 0; in < N; in++) {
  12081. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12082. for (int64_t iow = 0; iow < OW; iow++) {
  12083. for (int64_t iic = ith; iic < IC; iic += nth) {
  12084. // micro kernel
  12085. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12086. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12087. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12088. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12089. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12090. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12091. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12092. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12093. } else {
  12094. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12095. }
  12096. }
  12097. }
  12098. }
  12099. }
  12100. }
  12101. }
  12102. }
  12103. }
  12104. // src0: kernel [OC, IC, KH, KW]
  12105. // src1: image [N, IC, IH, IW]
  12106. // dst: result [N, OH, OW, IC*KH*KW]
  12107. static void ggml_compute_forward_im2col_f16(
  12108. const struct ggml_compute_params * params,
  12109. struct ggml_tensor * dst) {
  12110. const struct ggml_tensor * src0 = dst->src[0];
  12111. const struct ggml_tensor * src1 = dst->src[1];
  12112. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12114. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12115. int64_t t0 = ggml_perf_time_us();
  12116. UNUSED(t0);
  12117. GGML_TENSOR_BINARY_OP_LOCALS;
  12118. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12119. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12120. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12121. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12122. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12123. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12124. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12125. const int ith = params->ith;
  12126. const int nth = params->nth;
  12127. const int64_t N = is_2D ? ne13 : ne12;
  12128. const int64_t IC = is_2D ? ne12 : ne11;
  12129. const int64_t IH = is_2D ? ne11 : 1;
  12130. const int64_t IW = ne10;
  12131. const int64_t KH = is_2D ? ne01 : 1;
  12132. const int64_t KW = ne00;
  12133. const int64_t OH = is_2D ? ne2 : 1;
  12134. const int64_t OW = ne1;
  12135. int ofs0 = is_2D ? nb13 : nb12;
  12136. int ofs1 = is_2D ? nb12 : nb11;
  12137. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12138. GGML_ASSERT(nb10 == sizeof(float));
  12139. if (params->type == GGML_TASK_TYPE_INIT) {
  12140. return;
  12141. }
  12142. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12143. return;
  12144. }
  12145. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12146. {
  12147. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12148. for (int64_t in = 0; in < N; in++) {
  12149. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12150. for (int64_t iow = 0; iow < OW; iow++) {
  12151. for (int64_t iic = ith; iic < IC; iic += nth) {
  12152. // micro kernel
  12153. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12154. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12155. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12156. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12157. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12158. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12159. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12160. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12161. } else {
  12162. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12163. }
  12164. }
  12165. }
  12166. }
  12167. }
  12168. }
  12169. }
  12170. }
  12171. }
  12172. static void ggml_compute_forward_im2col(
  12173. const struct ggml_compute_params * params,
  12174. struct ggml_tensor * dst) {
  12175. switch (dst->type) {
  12176. case GGML_TYPE_F16:
  12177. {
  12178. ggml_compute_forward_im2col_f16(params, dst);
  12179. } break;
  12180. case GGML_TYPE_F32:
  12181. {
  12182. ggml_compute_forward_im2col_f32(params, dst);
  12183. } break;
  12184. default:
  12185. {
  12186. GGML_ASSERT(false);
  12187. } break;
  12188. }
  12189. }
  12190. // ggml_compute_forward_conv_transpose_2d
  12191. static void ggml_compute_forward_conv_transpose_2d(
  12192. const struct ggml_compute_params * params,
  12193. struct ggml_tensor * dst) {
  12194. const struct ggml_tensor * src0 = dst->src[0];
  12195. const struct ggml_tensor * src1 = dst->src[1];
  12196. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12197. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12198. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12199. int64_t t0 = ggml_perf_time_us();
  12200. UNUSED(t0);
  12201. GGML_TENSOR_BINARY_OP_LOCALS
  12202. const int ith = params->ith;
  12203. const int nth = params->nth;
  12204. const int nk = ne00*ne01*ne02*ne03;
  12205. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12206. GGML_ASSERT(nb10 == sizeof(float));
  12207. if (params->type == GGML_TASK_TYPE_INIT) {
  12208. if (ith != 0) {
  12209. return;
  12210. }
  12211. memset(params->wdata, 0, params->wsize);
  12212. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12213. {
  12214. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12215. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12216. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12217. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12218. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12219. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12220. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12221. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12222. }
  12223. }
  12224. }
  12225. }
  12226. }
  12227. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12228. {
  12229. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12230. for (int i12 = 0; i12 < ne12; i12++) {
  12231. for (int i11 = 0; i11 < ne11; i11++) {
  12232. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12233. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12234. for (int i10 = 0; i10 < ne10; i10++) {
  12235. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12236. }
  12237. }
  12238. }
  12239. }
  12240. memset(dst->data, 0, ggml_nbytes(dst));
  12241. return;
  12242. }
  12243. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12244. return;
  12245. }
  12246. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12247. // total patches in dst
  12248. const int np = ne2;
  12249. // patches per thread
  12250. const int dp = (np + nth - 1)/nth;
  12251. // patch range for this thread
  12252. const int ip0 = dp*ith;
  12253. const int ip1 = MIN(ip0 + dp, np);
  12254. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12255. ggml_fp16_t * const wdata_src = wdata + nk;
  12256. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12257. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12258. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12259. for (int i11 = 0; i11 < ne11; i11++) {
  12260. for (int i10 = 0; i10 < ne10; i10++) {
  12261. const int i1n = i11*ne10*ne12 + i10*ne12;
  12262. for (int i01 = 0; i01 < ne01; i01++) {
  12263. for (int i00 = 0; i00 < ne00; i00++) {
  12264. float v = 0;
  12265. ggml_vec_dot_f16(ne03, &v, 0,
  12266. wdata_src + i1n, 0,
  12267. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12268. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12269. }
  12270. }
  12271. }
  12272. }
  12273. }
  12274. }
  12275. // ggml_compute_forward_pool_1d_sk_p0
  12276. static void ggml_compute_forward_pool_1d_sk_p0(
  12277. const struct ggml_compute_params * params,
  12278. const enum ggml_op_pool op,
  12279. const int k,
  12280. struct ggml_tensor * dst) {
  12281. const struct ggml_tensor * src = dst->src[0];
  12282. assert(src->type == GGML_TYPE_F32);
  12283. assert(params->ith == 0);
  12284. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12285. return;
  12286. }
  12287. const char * cdata = (const char *)src->data;
  12288. const char * const data_end = cdata + ggml_nbytes(src);
  12289. float * drow = (float *)dst->data;
  12290. const int64_t rs = dst->ne[0];
  12291. while (cdata < data_end) {
  12292. const float * const srow = (const float *)cdata;
  12293. int j = 0;
  12294. for (int64_t i = 0; i < rs; ++i) {
  12295. switch (op) {
  12296. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12297. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12298. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12299. }
  12300. for (int ki = 0; ki < k; ++ki) {
  12301. switch (op) {
  12302. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12303. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12304. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12305. }
  12306. ++j;
  12307. }
  12308. switch (op) {
  12309. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12310. case GGML_OP_POOL_MAX: break;
  12311. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12312. }
  12313. }
  12314. cdata += src->nb[1];
  12315. drow += rs;
  12316. }
  12317. }
  12318. // ggml_compute_forward_pool_1d
  12319. static void ggml_compute_forward_pool_1d(
  12320. const struct ggml_compute_params * params,
  12321. struct ggml_tensor * dst) {
  12322. const int32_t * opts = (const int32_t *)dst->op_params;
  12323. enum ggml_op_pool op = opts[0];
  12324. const int k0 = opts[1];
  12325. const int s0 = opts[2];
  12326. const int p0 = opts[3];
  12327. GGML_ASSERT(p0 == 0); // padding not supported
  12328. GGML_ASSERT(k0 == s0); // only s = k supported
  12329. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12330. }
  12331. // ggml_compute_forward_pool_2d
  12332. static void ggml_compute_forward_pool_2d(
  12333. const struct ggml_compute_params * params,
  12334. struct ggml_tensor * dst) {
  12335. const struct ggml_tensor * src = dst->src[0];
  12336. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12337. GGML_ASSERT(params->ith == 0);
  12338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12339. return;
  12340. }
  12341. const int32_t * opts = (const int32_t *)dst->op_params;
  12342. enum ggml_op_pool op = opts[0];
  12343. const int k0 = opts[1];
  12344. const int k1 = opts[2];
  12345. const int s0 = opts[3];
  12346. const int s1 = opts[4];
  12347. const int p0 = opts[5];
  12348. const int p1 = opts[6];
  12349. const char * cdata = (const char*)src->data;
  12350. const char * const data_end = cdata + ggml_nbytes(src);
  12351. const int64_t px = dst->ne[0];
  12352. const int64_t py = dst->ne[1];
  12353. const int64_t pa = px * py;
  12354. float * dplane = (float *)dst->data;
  12355. const int ka = k0 * k1;
  12356. const int offset0 = -p0;
  12357. const int offset1 = -p1;
  12358. while (cdata < data_end) {
  12359. for (int oy = 0; oy < py; ++oy) {
  12360. float * const drow = dplane + oy * px;
  12361. for (int ox = 0; ox < px; ++ox) {
  12362. float * const out = drow + ox;
  12363. switch (op) {
  12364. case GGML_OP_POOL_AVG: *out = 0; break;
  12365. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12366. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12367. }
  12368. const int ix = offset0 + ox * s0;
  12369. const int iy = offset1 + oy * s1;
  12370. for (int ky = 0; ky < k1; ++ky) {
  12371. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12372. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12373. for (int kx = 0; kx < k0; ++kx) {
  12374. int j = ix + kx;
  12375. if (j < 0 || j >= src->ne[0]) continue;
  12376. switch (op) {
  12377. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12378. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12379. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12380. }
  12381. }
  12382. }
  12383. switch (op) {
  12384. case GGML_OP_POOL_AVG: *out /= ka; break;
  12385. case GGML_OP_POOL_MAX: break;
  12386. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12387. }
  12388. }
  12389. }
  12390. cdata += src->nb[2];
  12391. dplane += pa;
  12392. }
  12393. }
  12394. // ggml_compute_forward_upscale
  12395. static void ggml_compute_forward_upscale_f32(
  12396. const struct ggml_compute_params * params,
  12397. struct ggml_tensor * dst) {
  12398. const struct ggml_tensor * src0 = dst->src[0];
  12399. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12400. return;
  12401. }
  12402. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12403. const int ith = params->ith;
  12404. const int nth = params->nth;
  12405. GGML_TENSOR_UNARY_OP_LOCALS
  12406. const float sf0 = (float)ne0/src0->ne[0];
  12407. const float sf1 = (float)ne1/src0->ne[1];
  12408. const float sf2 = (float)ne2/src0->ne[2];
  12409. const float sf3 = (float)ne3/src0->ne[3];
  12410. // TODO: optimize
  12411. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12412. const int64_t i03 = i3 / sf3;
  12413. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12414. const int64_t i02 = i2 / sf2;
  12415. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12416. const int64_t i01 = i1 / sf1;
  12417. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12418. const int64_t i00 = i0 / sf0;
  12419. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12420. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12421. *y = *x;
  12422. }
  12423. }
  12424. }
  12425. }
  12426. }
  12427. static void ggml_compute_forward_upscale(
  12428. const struct ggml_compute_params * params,
  12429. struct ggml_tensor * dst) {
  12430. const struct ggml_tensor * src0 = dst->src[0];
  12431. switch (src0->type) {
  12432. case GGML_TYPE_F32:
  12433. {
  12434. ggml_compute_forward_upscale_f32(params, dst);
  12435. } break;
  12436. default:
  12437. {
  12438. GGML_ASSERT(false);
  12439. } break;
  12440. }
  12441. }
  12442. // ggml_compute_forward_pad
  12443. static void ggml_compute_forward_pad_f32(
  12444. const struct ggml_compute_params * params,
  12445. struct ggml_tensor * dst) {
  12446. const struct ggml_tensor * src0 = dst->src[0];
  12447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12448. return;
  12449. }
  12450. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12451. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12452. const int ith = params->ith;
  12453. const int nth = params->nth;
  12454. GGML_TENSOR_UNARY_OP_LOCALS
  12455. float * dst_ptr = (float *) dst->data;
  12456. // TODO: optimize
  12457. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12458. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12459. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12460. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12461. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12462. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12463. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12464. dst_ptr[dst_idx] = *src_ptr;
  12465. } else {
  12466. dst_ptr[dst_idx] = 0;
  12467. }
  12468. }
  12469. }
  12470. }
  12471. }
  12472. }
  12473. static void ggml_compute_forward_pad(
  12474. const struct ggml_compute_params * params,
  12475. struct ggml_tensor * dst) {
  12476. const struct ggml_tensor * src0 = dst->src[0];
  12477. switch (src0->type) {
  12478. case GGML_TYPE_F32:
  12479. {
  12480. ggml_compute_forward_pad_f32(params, dst);
  12481. } break;
  12482. default:
  12483. {
  12484. GGML_ASSERT(false);
  12485. } break;
  12486. }
  12487. }
  12488. // ggml_compute_forward_arange
  12489. static void ggml_compute_forward_arange_f32(
  12490. const struct ggml_compute_params * params,
  12491. struct ggml_tensor * dst) {
  12492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12493. return;
  12494. }
  12495. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12496. const int ith = params->ith;
  12497. const int nth = params->nth;
  12498. const float start = ggml_get_op_params_f32(dst, 0);
  12499. const float stop = ggml_get_op_params_f32(dst, 1);
  12500. const float step = ggml_get_op_params_f32(dst, 2);
  12501. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12502. GGML_ASSERT(ggml_nelements(dst) == steps);
  12503. for (int64_t i = ith; i < steps; i+= nth) {
  12504. float value = start + step * i;
  12505. ((float *)dst->data)[i] = value;
  12506. }
  12507. }
  12508. static void ggml_compute_forward_arange(
  12509. const struct ggml_compute_params * params,
  12510. struct ggml_tensor * dst) {
  12511. switch (dst->type) {
  12512. case GGML_TYPE_F32:
  12513. {
  12514. ggml_compute_forward_arange_f32(params, dst);
  12515. } break;
  12516. default:
  12517. {
  12518. GGML_ASSERT(false);
  12519. } break;
  12520. }
  12521. }
  12522. static void ggml_compute_forward_timestep_embedding_f32(
  12523. const struct ggml_compute_params * params,
  12524. struct ggml_tensor * dst) {
  12525. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12526. return;
  12527. }
  12528. const struct ggml_tensor * src0 = dst->src[0];
  12529. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12530. const int ith = params->ith;
  12531. const int nth = params->nth;
  12532. GGML_TENSOR_UNARY_OP_LOCALS
  12533. const int dim = ggml_get_op_params_i32(dst, 0);
  12534. const int max_period = ggml_get_op_params_i32(dst, 1);
  12535. int half = dim / 2;
  12536. for (int64_t i = 0; i < ne00; i++) {
  12537. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12538. for (int64_t j = ith; j < half; j += nth) {
  12539. float timestep = ((float *)src0->data)[i];
  12540. float freq = (float)expf(-logf(max_period) * j / half);
  12541. float arg = timestep * freq;
  12542. embed_data[j] = cosf(arg);
  12543. embed_data[j + half] = sinf(arg);
  12544. }
  12545. if (dim % 2 != 0 && ith == 0) {
  12546. embed_data[dim] = 0.f;
  12547. }
  12548. }
  12549. }
  12550. static void ggml_compute_forward_timestep_embedding(
  12551. const struct ggml_compute_params * params,
  12552. struct ggml_tensor * dst) {
  12553. const struct ggml_tensor * src0 = dst->src[0];
  12554. switch (src0->type) {
  12555. case GGML_TYPE_F32:
  12556. {
  12557. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12558. } break;
  12559. default:
  12560. {
  12561. GGML_ASSERT(false);
  12562. } break;
  12563. }
  12564. }
  12565. // ggml_compute_forward_argsort
  12566. static void ggml_compute_forward_argsort_f32(
  12567. const struct ggml_compute_params * params,
  12568. struct ggml_tensor * dst) {
  12569. const struct ggml_tensor * src0 = dst->src[0];
  12570. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12571. return;
  12572. }
  12573. GGML_TENSOR_UNARY_OP_LOCALS
  12574. GGML_ASSERT(nb0 == sizeof(float));
  12575. const int ith = params->ith;
  12576. const int nth = params->nth;
  12577. const int64_t nr = ggml_nrows(src0);
  12578. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12579. for (int64_t i = ith; i < nr; i += nth) {
  12580. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12581. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12582. for (int64_t j = 0; j < ne0; j++) {
  12583. dst_data[j] = j;
  12584. }
  12585. // C doesn't have a functional sort, so we do a bubble sort instead
  12586. for (int64_t j = 0; j < ne0; j++) {
  12587. for (int64_t k = j + 1; k < ne0; k++) {
  12588. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12589. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12590. int32_t tmp = dst_data[j];
  12591. dst_data[j] = dst_data[k];
  12592. dst_data[k] = tmp;
  12593. }
  12594. }
  12595. }
  12596. }
  12597. }
  12598. static void ggml_compute_forward_argsort(
  12599. const struct ggml_compute_params * params,
  12600. struct ggml_tensor * dst) {
  12601. const struct ggml_tensor * src0 = dst->src[0];
  12602. switch (src0->type) {
  12603. case GGML_TYPE_F32:
  12604. {
  12605. ggml_compute_forward_argsort_f32(params, dst);
  12606. } break;
  12607. default:
  12608. {
  12609. GGML_ASSERT(false);
  12610. } break;
  12611. }
  12612. }
  12613. // ggml_compute_forward_flash_attn_ext
  12614. static void ggml_compute_forward_flash_attn_ext_f16(
  12615. const struct ggml_compute_params * params,
  12616. const struct ggml_tensor * q,
  12617. const struct ggml_tensor * k,
  12618. const struct ggml_tensor * v,
  12619. const struct ggml_tensor * mask,
  12620. struct ggml_tensor * dst) {
  12621. int64_t t0 = ggml_perf_time_us();
  12622. UNUSED(t0);
  12623. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12624. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12625. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12626. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12627. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12628. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12629. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12630. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12631. const int ith = params->ith;
  12632. const int nth = params->nth;
  12633. const int64_t D = neq0;
  12634. const int64_t N = neq1;
  12635. GGML_ASSERT(ne0 == D);
  12636. GGML_ASSERT(ne2 == N);
  12637. // input tensor rows must be contiguous
  12638. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12639. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12640. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12641. GGML_ASSERT(neq0 == D);
  12642. GGML_ASSERT(nek0 == D);
  12643. GGML_ASSERT(nev0 == D);
  12644. GGML_ASSERT(neq1 == N);
  12645. GGML_ASSERT(nev0 == D);
  12646. // dst cannot be transposed or permuted
  12647. GGML_ASSERT(nb0 == sizeof(float));
  12648. GGML_ASSERT(nb0 <= nb1);
  12649. GGML_ASSERT(nb1 <= nb2);
  12650. GGML_ASSERT(nb2 <= nb3);
  12651. // broadcast factors
  12652. const int64_t rk2 = neq2/nek2;
  12653. const int64_t rk3 = neq3/nek3;
  12654. const int64_t rv2 = neq2/nev2;
  12655. const int64_t rv3 = neq3/nev3;
  12656. if (params->type == GGML_TASK_TYPE_INIT) {
  12657. return;
  12658. }
  12659. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12660. return;
  12661. }
  12662. // parallelize by q rows using ggml_vec_dot_f32
  12663. // total rows in q
  12664. const int nr = neq1*neq2*neq3;
  12665. // rows per thread
  12666. const int dr = (nr + nth - 1)/nth;
  12667. // row range for this thread
  12668. const int ir0 = dr*ith;
  12669. const int ir1 = MIN(ir0 + dr, nr);
  12670. float scale = 1.0f;
  12671. float max_bias = 0.0f;
  12672. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12673. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12674. const uint32_t n_head = neq2;
  12675. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12676. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12677. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12678. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12679. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12680. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12681. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12682. // loop over n_batch and n_head
  12683. for (int ir = ir0; ir < ir1; ++ir) {
  12684. // q indices
  12685. const int iq3 = ir/(neq2*neq1);
  12686. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12687. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12688. const uint32_t h = iq2; // head index
  12689. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12690. float S = 0.0f; // sum
  12691. float M = -INFINITY; // maximum KQ value
  12692. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12693. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12694. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12695. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12696. if (v->type == GGML_TYPE_F16) {
  12697. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12698. } else {
  12699. memset(VKQ32, 0, D*sizeof(float));
  12700. }
  12701. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12702. // k indices
  12703. const int ik3 = iq3 / rk3;
  12704. const int ik2 = iq2 / rk2;
  12705. // v indices
  12706. const int iv3 = iq3 / rv3;
  12707. const int iv2 = iq2 / rv2;
  12708. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12709. q_to_vec_dot(pq, Q_q, D);
  12710. // online softmax / attention
  12711. // loop over n_kv and n_head_kv
  12712. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12713. for (int64_t ic = 0; ic < nek1; ++ic) {
  12714. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12715. if (mv == -INFINITY) {
  12716. continue;
  12717. }
  12718. float s; // KQ value
  12719. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12720. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12721. s = s*scale + mv; // scale KQ value and apply mask
  12722. const float Mold = M;
  12723. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12724. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12725. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12726. if (v->type== GGML_TYPE_F16) {
  12727. if (s > M) {
  12728. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12729. M = s;
  12730. ms = expf(Mold - M);
  12731. // V = V*expf(Mold - M)
  12732. ggml_vec_scale_f16(D, VKQ16, ms);
  12733. } else {
  12734. // no new maximum, ms == 1.0f, vs != 1.0f
  12735. vs = expf(s - M);
  12736. }
  12737. // V += v*expf(s - M)
  12738. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12739. } else {
  12740. if (s > M) {
  12741. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12742. M = s;
  12743. ms = expf(Mold - M);
  12744. // V = V*expf(Mold - M)
  12745. ggml_vec_scale_f32(D, VKQ32, ms);
  12746. } else {
  12747. // no new maximum, ms == 1.0f, vs != 1.0f
  12748. vs = expf(s - M);
  12749. }
  12750. v_to_float(v_data, V32, D);
  12751. // V += v*expf(s - M)
  12752. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12753. }
  12754. S = S*ms + vs; // scale and increment sum with partial sum
  12755. }
  12756. if (v->type == GGML_TYPE_F16) {
  12757. for (int64_t d = 0; d < D; ++d) {
  12758. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12759. }
  12760. }
  12761. // V /= S
  12762. const float S_inv = 1.0f/S;
  12763. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12764. // dst indices
  12765. const int i1 = iq1;
  12766. const int i2 = iq2;
  12767. const int i3 = iq3;
  12768. // original
  12769. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12770. // permute(0, 2, 1, 3)
  12771. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12772. }
  12773. }
  12774. static void ggml_compute_forward_flash_attn_ext(
  12775. const struct ggml_compute_params * params,
  12776. const struct ggml_tensor * q,
  12777. const struct ggml_tensor * k,
  12778. const struct ggml_tensor * v,
  12779. const struct ggml_tensor * mask,
  12780. struct ggml_tensor * dst) {
  12781. switch (dst->op_params[2]) {
  12782. case GGML_PREC_DEFAULT:
  12783. case GGML_PREC_F32:
  12784. {
  12785. // uses F32 accumulators
  12786. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12787. } break;
  12788. default:
  12789. {
  12790. GGML_ASSERT(false);
  12791. } break;
  12792. }
  12793. }
  12794. // ggml_compute_forward_flash_attn_back
  12795. static void ggml_compute_forward_flash_attn_back_f32(
  12796. const struct ggml_compute_params * params,
  12797. const bool masked,
  12798. struct ggml_tensor * dst) {
  12799. const struct ggml_tensor * q = dst->src[0];
  12800. const struct ggml_tensor * k = dst->src[1];
  12801. const struct ggml_tensor * v = dst->src[2];
  12802. const struct ggml_tensor * d = dst->src[3];
  12803. int64_t t0 = ggml_perf_time_us();
  12804. UNUSED(t0);
  12805. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12806. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12807. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12808. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12809. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12810. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12811. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12812. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12813. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12814. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12815. const int ith = params->ith;
  12816. const int nth = params->nth;
  12817. const int64_t D = neq0;
  12818. const int64_t N = neq1;
  12819. const int64_t P = nek1 - N;
  12820. const int64_t M = P + N;
  12821. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12822. const int mxDM = MAX(D, Mup);
  12823. // GGML_ASSERT(ne0 == D);
  12824. // GGML_ASSERT(ne1 == N);
  12825. GGML_ASSERT(P >= 0);
  12826. GGML_ASSERT(nbq0 == sizeof(float));
  12827. GGML_ASSERT(nbk0 == sizeof(float));
  12828. GGML_ASSERT(nbv0 == sizeof(float));
  12829. GGML_ASSERT(neq0 == D);
  12830. GGML_ASSERT(nek0 == D);
  12831. GGML_ASSERT(nev1 == D);
  12832. GGML_ASSERT(ned0 == D);
  12833. GGML_ASSERT(neq1 == N);
  12834. GGML_ASSERT(nek1 == N + P);
  12835. GGML_ASSERT(nev1 == D);
  12836. GGML_ASSERT(ned1 == N);
  12837. // dst cannot be transposed or permuted
  12838. GGML_ASSERT(nb0 == sizeof(float));
  12839. GGML_ASSERT(nb0 <= nb1);
  12840. GGML_ASSERT(nb1 <= nb2);
  12841. GGML_ASSERT(nb2 <= nb3);
  12842. if (params->type == GGML_TASK_TYPE_INIT) {
  12843. if (ith == 0) {
  12844. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12845. }
  12846. return;
  12847. }
  12848. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12849. return;
  12850. }
  12851. const int64_t elem_q = ggml_nelements(q);
  12852. const int64_t elem_k = ggml_nelements(k);
  12853. enum ggml_type result_type = dst->type;
  12854. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12855. const size_t tsize = ggml_type_size(result_type);
  12856. const size_t offs_q = 0;
  12857. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12858. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12859. void * grad_q = (char *) dst->data;
  12860. void * grad_k = (char *) dst->data + offs_k;
  12861. void * grad_v = (char *) dst->data + offs_v;
  12862. const size_t nbgq1 = nb0*neq0;
  12863. const size_t nbgq2 = nb0*neq0*neq1;
  12864. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12865. const size_t nbgk1 = nb0*nek0;
  12866. const size_t nbgk2 = nb0*nek0*nek1;
  12867. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12868. const size_t nbgv1 = nb0*nev0;
  12869. const size_t nbgv2 = nb0*nev0*nev1;
  12870. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12871. // parallelize by k rows using ggml_vec_dot_f32
  12872. // total rows in k
  12873. const int nr = nek2*nek3;
  12874. // rows per thread
  12875. const int dr = (nr + nth - 1)/nth;
  12876. // row range for this thread
  12877. const int ir0 = dr*ith;
  12878. const int ir1 = MIN(ir0 + dr, nr);
  12879. const float scale = 1.0f/sqrtf(D);
  12880. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12881. // how often k2 (and v2) is repeated in q2
  12882. int nrep = neq2/nek2;
  12883. for (int ir = ir0; ir < ir1; ++ir) {
  12884. // q indices
  12885. const int ik3 = ir/(nek2);
  12886. const int ik2 = ir - ik3*nek2;
  12887. const int iq3 = ik3;
  12888. const int id3 = ik3;
  12889. const int iv3 = ik3;
  12890. const int iv2 = ik2;
  12891. for (int irep = 0; irep < nrep; ++irep) {
  12892. const int iq2 = ik2 + irep*nek2;
  12893. const int id2 = iq2;
  12894. // (ik2 + irep*nek2) % nek2 == ik2
  12895. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12896. const int id1 = iq1;
  12897. // not sure about CACHE_LINE_SIZE_F32..
  12898. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12899. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12900. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12901. for (int i = M; i < Mup; ++i) {
  12902. S[i] = -INFINITY;
  12903. }
  12904. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12905. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12906. // k indices
  12907. const int ik1 = ic;
  12908. // S indices
  12909. const int i1 = ik1;
  12910. ggml_vec_dot_f32(neq0,
  12911. S + i1, 0,
  12912. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12913. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12914. }
  12915. // scale
  12916. ggml_vec_scale_f32(masked_begin, S, scale);
  12917. for (int64_t i = masked_begin; i < M; i++) {
  12918. S[i] = -INFINITY;
  12919. }
  12920. // softmax
  12921. // exclude known -INF S[..] values from max and loop
  12922. // dont forget to set their SM values to zero
  12923. {
  12924. float max = -INFINITY;
  12925. ggml_vec_max_f32(masked_begin, &max, S);
  12926. ggml_float sum = 0.0;
  12927. {
  12928. #ifdef GGML_SOFT_MAX_ACCELERATE
  12929. max = -max;
  12930. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12931. vvexpf(SM, SM, &Mup);
  12932. ggml_vec_sum_f32(Mup, &sum, SM);
  12933. #else
  12934. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12935. #endif
  12936. }
  12937. assert(sum > 0.0);
  12938. sum = 1.0/sum;
  12939. ggml_vec_scale_f32(masked_begin, SM, sum);
  12940. }
  12941. // step-by-step explanation
  12942. {
  12943. // forward-process shape grads from backward process
  12944. // parallel_for ik2,ik3:
  12945. // for irep:
  12946. // iq2 = ik2 + irep*nek2
  12947. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12948. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12949. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12950. // for iq1:
  12951. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12952. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12953. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12954. // S0 = -Inf [D,1,1,1]
  12955. // ~S1[i] = dot(kcur[:D,i], qcur)
  12956. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12957. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12958. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12959. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12960. // ~S5[i] = dot(vcur[:,i], S4)
  12961. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12962. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12963. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12964. // dst backward-/ grad[dst] = d
  12965. //
  12966. // output gradients with their dependencies:
  12967. //
  12968. // grad[kcur] = grad[S1].T @ qcur
  12969. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12970. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12971. // grad[S4] = grad[S5] @ vcur
  12972. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12973. // grad[qcur] = grad[S1] @ kcur
  12974. // grad[vcur] = grad[S5].T @ S4
  12975. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12976. //
  12977. // in post-order:
  12978. //
  12979. // S1 = qcur @ kcur.T
  12980. // S2 = S1 * scale
  12981. // S3 = diag_mask_inf(S2, P)
  12982. // S4 = softmax(S3)
  12983. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12984. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12985. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12986. // grad[qcur] = grad[S1] @ kcur
  12987. // grad[kcur] = grad[S1].T @ qcur
  12988. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12989. //
  12990. // using less variables (SM=S4):
  12991. //
  12992. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12993. // SM = softmax(S)
  12994. // S = d[:D,iq1,iq2,iq3] @ vcur
  12995. // dot_SM_gradSM = dot(SM, S)
  12996. // S = SM * (S - dot(SM, S))
  12997. // S = diag_mask_zero(S, P) * scale
  12998. //
  12999. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13000. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13001. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13002. }
  13003. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13004. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13005. // for ic:
  13006. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13007. // exclude known future zero S[..] values from operation
  13008. ggml_vec_set_f32(masked_begin, S, 0);
  13009. for (int64_t ic = 0; ic < D; ++ic) {
  13010. ggml_vec_mad_f32(masked_begin,
  13011. S,
  13012. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13013. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13014. }
  13015. // S = SM * (S - dot(SM, S))
  13016. float dot_SM_gradSM = 0;
  13017. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13018. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13019. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13020. // S = diag_mask_zero(S, P) * scale
  13021. // already done by above ggml_vec_set_f32
  13022. // exclude known zero S[..] values from operation
  13023. ggml_vec_scale_f32(masked_begin, S, scale);
  13024. // S shape [M,1]
  13025. // SM shape [M,1]
  13026. // kcur shape [D,M]
  13027. // qcur shape [D,1]
  13028. // vcur shape [M,D]
  13029. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13030. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13031. // for ic:
  13032. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13033. // exclude known zero S[..] values from loop
  13034. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13035. ggml_vec_mad_f32(D,
  13036. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13037. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13038. S[ic]);
  13039. }
  13040. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13041. // for ic:
  13042. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13043. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13044. // exclude known zero S[..] values from loop
  13045. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13046. ggml_vec_mad_f32(D,
  13047. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13048. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13049. S[ic]);
  13050. }
  13051. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13052. // for ic:
  13053. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13054. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13055. // exclude known zero SM[..] values from mad
  13056. for (int64_t ic = 0; ic < D; ++ic) {
  13057. ggml_vec_mad_f32(masked_begin,
  13058. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13059. SM,
  13060. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13061. }
  13062. }
  13063. }
  13064. }
  13065. }
  13066. static void ggml_compute_forward_flash_attn_back(
  13067. const struct ggml_compute_params * params,
  13068. const bool masked,
  13069. struct ggml_tensor * dst) {
  13070. const struct ggml_tensor * q = dst->src[0];
  13071. switch (q->type) {
  13072. case GGML_TYPE_F32:
  13073. {
  13074. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13075. } break;
  13076. default:
  13077. {
  13078. GGML_ASSERT(false);
  13079. } break;
  13080. }
  13081. }
  13082. // ggml_compute_forward_ssm_conv
  13083. static void ggml_compute_forward_ssm_conv_f32(
  13084. const struct ggml_compute_params * params,
  13085. struct ggml_tensor * dst) {
  13086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13087. return;
  13088. }
  13089. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13090. const struct ggml_tensor * src1 = dst->src[1]; // x
  13091. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13092. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13093. const int ith = params->ith;
  13094. const int nth = params->nth;
  13095. const int nc = src2->ne[0]; // d_conv
  13096. const int nr = src0->ne[1]; // d_inner
  13097. const int n_t = src1->ne[1]; // n_tokens
  13098. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13099. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13100. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13101. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13102. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13103. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13104. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13105. // for use with the destination state offset between sequences
  13106. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13107. // rows per thread
  13108. const int dr = (nr + nth - 1)/nth;
  13109. // row range for this thread
  13110. const int ir0 = dr*ith;
  13111. const int ir1 = MIN(ir0 + dr, nr);
  13112. const int ir = ir1 - ir0;
  13113. if (n_kv > 1) {
  13114. // multiple sequences means it's hard to know when it's the first time a state is read,
  13115. // so copy them all over to the destination, just to be sure.
  13116. for (int i3 = 0; i3 < n_kv; ++i3) {
  13117. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13118. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13119. // can't use memcpy because of d_conv vs d_conv - 1
  13120. for (int i1 = 0; i1 < ir; ++i1) {
  13121. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13122. // copy s0 to last (d_conv - 1) columns of s
  13123. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13124. }
  13125. }
  13126. }
  13127. }
  13128. for (int i2 = 0; i2 < n_t; ++i2) {
  13129. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13130. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13131. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13132. float * s0; // {d_conv - 1, d_inner, n_kv}
  13133. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13134. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13135. int ne0s0;
  13136. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13137. // avoid needing to copy the state for the first token
  13138. if (i2 == 0) {
  13139. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13140. ne0s0 = src0->ne[0];
  13141. } else {
  13142. // the source is the last (d_conv - 1) columns of the destination
  13143. s0 = s + 1;
  13144. ne0s0 = nc;
  13145. }
  13146. // d_inner
  13147. for (int i1 = 0; i1 < ir; ++i1) {
  13148. // shift state left
  13149. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13150. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13151. }
  13152. // insert x on the last column
  13153. s[(nc - 1) + i1*nc] = x0[i1];
  13154. }
  13155. // handle copies when there are multiple output states
  13156. for (int i3 = 1; i3 < n_kv; ++i3) {
  13157. int32_t seq = sq[i3];
  13158. if (0 <= seq && seq < n_kv) {
  13159. float * s1 = s + (seq - sq[0])*nc*nr;
  13160. memcpy(s1, s, nc*ir*sizeof(float));
  13161. } else {
  13162. // stop at negative or too big seq_ids
  13163. break;
  13164. }
  13165. }
  13166. // it seems a little faster when this is separate from the state shift
  13167. for (int i1 = 0; i1 < ir; ++i1) {
  13168. // rowwise dot product
  13169. float sumf = 0.0f;
  13170. for (int i0 = 0; i0 < nc; ++i0) {
  13171. int i = i0 + i1*nc;
  13172. sumf += s[i] * c[i];
  13173. }
  13174. x[i1] = sumf;
  13175. }
  13176. }
  13177. }
  13178. static void ggml_compute_forward_ssm_conv(
  13179. const struct ggml_compute_params * params,
  13180. struct ggml_tensor * dst) {
  13181. switch (dst->src[0]->type) {
  13182. case GGML_TYPE_F32:
  13183. {
  13184. ggml_compute_forward_ssm_conv_f32(params, dst);
  13185. } break;
  13186. default:
  13187. {
  13188. GGML_ASSERT(false);
  13189. } break;
  13190. }
  13191. }
  13192. // ggml_compute_forward_ssm_scan
  13193. static void ggml_compute_forward_ssm_scan_f32(
  13194. const struct ggml_compute_params * params,
  13195. struct ggml_tensor * dst) {
  13196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13197. return;
  13198. }
  13199. const struct ggml_tensor * src0 = dst->src[0]; // s
  13200. const struct ggml_tensor * src1 = dst->src[1]; // x
  13201. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13202. const struct ggml_tensor * src3 = dst->src[3]; // A
  13203. const struct ggml_tensor * src4 = dst->src[4]; // B
  13204. const struct ggml_tensor * src5 = dst->src[5]; // C
  13205. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13206. const int ith = params->ith;
  13207. const int nth = params->nth;
  13208. const int64_t nc = src0->ne[0]; // d_state
  13209. const int64_t nr = src0->ne[1]; // d_inner
  13210. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13211. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13212. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13213. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13214. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13215. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13216. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13217. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13218. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13219. // required for the dot product between s and C, and when copying the states
  13220. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13221. // required for per-sequence offsets for states
  13222. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13223. // required to get correct offset for state destination (i.e. src1->nb[2])
  13224. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13225. // rows per thread
  13226. const int dr = (nr + nth - 1)/nth;
  13227. // row range for this thread
  13228. const int ir0 = dr*ith;
  13229. const int ir1 = MIN(ir0 + dr, nr);
  13230. const int ir = ir1 - ir0;
  13231. if (n_kv > 1) {
  13232. // it's hard to know if the source states have already been copied
  13233. // when there are multiple, so copy them already.
  13234. for (int i3 = 0; i3 < n_kv; ++i3) {
  13235. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13236. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13237. memcpy(s, s0, nc*ir*sizeof(float));
  13238. }
  13239. }
  13240. for (int i2 = 0; i2 < n_t; ++i2) {
  13241. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13242. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13243. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13244. float * s0;
  13245. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13246. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13247. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13248. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13249. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13250. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13251. // avoid needing to copy the state for the first token
  13252. if (i2 == 0) {
  13253. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13254. } else {
  13255. // otherwise the source is the same as the destination
  13256. s0 = s;
  13257. }
  13258. // d_inner
  13259. for (int i1 = 0; i1 < ir; ++i1) {
  13260. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13261. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13262. float x_dt = x[i1] * dt_soft_plus;
  13263. float sumf = 0.0f;
  13264. // d_state
  13265. for (int i0 = 0; i0 < nc; ++i0) {
  13266. int i = i0 + i1*nc;
  13267. // state = prev_state * dA + dB * x
  13268. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13269. // y = rowwise_dotprod(state, C)
  13270. sumf += state * C[i0];
  13271. s[i] = state;
  13272. }
  13273. y[i1] = sumf;
  13274. }
  13275. // handle copies when there are multiple output states
  13276. for (int i3 = 1; i3 < n_kv; ++i3) {
  13277. int32_t seq = sq[i3];
  13278. if (0 <= seq && seq < n_kv) {
  13279. float * s1 = s + (seq - sq[0])*nc*nr;
  13280. memcpy(s1, s, nc*ir*sizeof(float));
  13281. } else {
  13282. // stop at negative or too big seq_ids
  13283. break;
  13284. }
  13285. }
  13286. }
  13287. }
  13288. static void ggml_compute_forward_ssm_scan(
  13289. const struct ggml_compute_params * params,
  13290. struct ggml_tensor * dst) {
  13291. switch (dst->src[0]->type) {
  13292. case GGML_TYPE_F32:
  13293. {
  13294. ggml_compute_forward_ssm_scan_f32(params, dst);
  13295. } break;
  13296. default:
  13297. {
  13298. GGML_ASSERT(false);
  13299. } break;
  13300. }
  13301. }
  13302. // ggml_compute_forward_win_part
  13303. static void ggml_compute_forward_win_part_f32(
  13304. const struct ggml_compute_params * params,
  13305. struct ggml_tensor * dst) {
  13306. const struct ggml_tensor * src0 = dst->src[0];
  13307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13308. return;
  13309. }
  13310. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13311. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13312. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13313. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13314. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13315. assert(ne00 == ne0);
  13316. assert(ne3 == nep0*nep1);
  13317. // TODO: optimize / multi-thread
  13318. for (int py = 0; py < nep1; ++py) {
  13319. for (int px = 0; px < nep0; ++px) {
  13320. const int64_t i3 = py*nep0 + px;
  13321. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13322. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13323. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13324. const int64_t i02 = py*w + i2;
  13325. const int64_t i01 = px*w + i1;
  13326. const int64_t i00 = i0;
  13327. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13328. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13329. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13330. ((float *) dst->data)[i] = 0.0f;
  13331. } else {
  13332. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13333. }
  13334. }
  13335. }
  13336. }
  13337. }
  13338. }
  13339. }
  13340. static void ggml_compute_forward_win_part(
  13341. const struct ggml_compute_params * params,
  13342. struct ggml_tensor * dst) {
  13343. const struct ggml_tensor * src0 = dst->src[0];
  13344. switch (src0->type) {
  13345. case GGML_TYPE_F32:
  13346. {
  13347. ggml_compute_forward_win_part_f32(params, dst);
  13348. } break;
  13349. default:
  13350. {
  13351. GGML_ASSERT(false);
  13352. } break;
  13353. }
  13354. }
  13355. // ggml_compute_forward_win_unpart
  13356. static void ggml_compute_forward_win_unpart_f32(
  13357. const struct ggml_compute_params * params,
  13358. struct ggml_tensor * dst) {
  13359. const struct ggml_tensor * src0 = dst->src[0];
  13360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13361. return;
  13362. }
  13363. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13364. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13365. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13366. // padding
  13367. const int px = (w - ne1%w)%w;
  13368. //const int py = (w - ne2%w)%w;
  13369. const int npx = (px + ne1)/w;
  13370. //const int npy = (py + ne2)/w;
  13371. assert(ne0 == ne00);
  13372. // TODO: optimize / multi-thread
  13373. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13374. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13375. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13376. const int ip2 = i2/w;
  13377. const int ip1 = i1/w;
  13378. const int64_t i02 = i2%w;
  13379. const int64_t i01 = i1%w;
  13380. const int64_t i00 = i0;
  13381. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13382. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13383. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13384. }
  13385. }
  13386. }
  13387. }
  13388. static void ggml_compute_forward_win_unpart(
  13389. const struct ggml_compute_params * params,
  13390. struct ggml_tensor * dst) {
  13391. const struct ggml_tensor * src0 = dst->src[0];
  13392. switch (src0->type) {
  13393. case GGML_TYPE_F32:
  13394. {
  13395. ggml_compute_forward_win_unpart_f32(params, dst);
  13396. } break;
  13397. default:
  13398. {
  13399. GGML_ASSERT(false);
  13400. } break;
  13401. }
  13402. }
  13403. //gmml_compute_forward_unary
  13404. static void ggml_compute_forward_unary(
  13405. const struct ggml_compute_params * params,
  13406. struct ggml_tensor * dst) {
  13407. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13408. switch (op) {
  13409. case GGML_UNARY_OP_ABS:
  13410. {
  13411. ggml_compute_forward_abs(params, dst);
  13412. } break;
  13413. case GGML_UNARY_OP_SGN:
  13414. {
  13415. ggml_compute_forward_sgn(params, dst);
  13416. } break;
  13417. case GGML_UNARY_OP_NEG:
  13418. {
  13419. ggml_compute_forward_neg(params, dst);
  13420. } break;
  13421. case GGML_UNARY_OP_STEP:
  13422. {
  13423. ggml_compute_forward_step(params, dst);
  13424. } break;
  13425. case GGML_UNARY_OP_TANH:
  13426. {
  13427. ggml_compute_forward_tanh(params, dst);
  13428. } break;
  13429. case GGML_UNARY_OP_ELU:
  13430. {
  13431. ggml_compute_forward_elu(params, dst);
  13432. } break;
  13433. case GGML_UNARY_OP_RELU:
  13434. {
  13435. ggml_compute_forward_relu(params, dst);
  13436. } break;
  13437. case GGML_UNARY_OP_SIGMOID:
  13438. {
  13439. ggml_compute_forward_sigmoid(params, dst);
  13440. } break;
  13441. case GGML_UNARY_OP_GELU:
  13442. {
  13443. ggml_compute_forward_gelu(params, dst);
  13444. } break;
  13445. case GGML_UNARY_OP_GELU_QUICK:
  13446. {
  13447. ggml_compute_forward_gelu_quick(params, dst);
  13448. } break;
  13449. case GGML_UNARY_OP_SILU:
  13450. {
  13451. ggml_compute_forward_silu(params, dst);
  13452. } break;
  13453. case GGML_UNARY_OP_HARDSWISH:
  13454. {
  13455. ggml_compute_forward_hardswish(params, dst);
  13456. } break;
  13457. case GGML_UNARY_OP_HARDSIGMOID:
  13458. {
  13459. ggml_compute_forward_hardsigmoid(params, dst);
  13460. } break;
  13461. default:
  13462. {
  13463. GGML_ASSERT(false);
  13464. } break;
  13465. }
  13466. }
  13467. // ggml_compute_forward_get_rel_pos
  13468. static void ggml_compute_forward_get_rel_pos_f16(
  13469. const struct ggml_compute_params * params,
  13470. struct ggml_tensor * dst) {
  13471. const struct ggml_tensor * src0 = dst->src[0];
  13472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13473. return;
  13474. }
  13475. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13476. GGML_TENSOR_UNARY_OP_LOCALS
  13477. const int64_t w = ne1;
  13478. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13479. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13480. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13481. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13482. const int64_t pos = (w - i1 - 1) + i2;
  13483. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13484. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13485. }
  13486. }
  13487. }
  13488. }
  13489. static void ggml_compute_forward_get_rel_pos(
  13490. const struct ggml_compute_params * params,
  13491. struct ggml_tensor * dst) {
  13492. const struct ggml_tensor * src0 = dst->src[0];
  13493. switch (src0->type) {
  13494. case GGML_TYPE_F16:
  13495. case GGML_TYPE_BF16:
  13496. {
  13497. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13498. } break;
  13499. default:
  13500. {
  13501. GGML_ASSERT(false);
  13502. } break;
  13503. }
  13504. }
  13505. // ggml_compute_forward_add_rel_pos
  13506. static void ggml_compute_forward_add_rel_pos_f32(
  13507. const struct ggml_compute_params * params,
  13508. struct ggml_tensor * dst) {
  13509. const struct ggml_tensor * src0 = dst->src[0];
  13510. const struct ggml_tensor * src1 = dst->src[1];
  13511. const struct ggml_tensor * src2 = dst->src[2];
  13512. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13513. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13514. if (params->ith != 0) {
  13515. return;
  13516. }
  13517. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13518. return;
  13519. }
  13520. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13521. return;
  13522. }
  13523. int64_t t0 = ggml_perf_time_us();
  13524. UNUSED(t0);
  13525. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13526. float * src1_data = (float *) src1->data;
  13527. float * src2_data = (float *) src2->data;
  13528. float * dst_data = (float *) dst->data;
  13529. const int64_t ne10 = src1->ne[0];
  13530. const int64_t ne11 = src1->ne[1];
  13531. const int64_t ne12 = src1->ne[2];
  13532. const int64_t ne13 = src1->ne[3];
  13533. const int ith = params->ith;
  13534. const int nth = params->nth;
  13535. // total patches in dst
  13536. const int np = ne13;
  13537. // patches per thread
  13538. const int dp = (np + nth - 1)/nth;
  13539. // patch range for this thread
  13540. const int ip0 = dp*ith;
  13541. const int ip1 = MIN(ip0 + dp, np);
  13542. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13543. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13544. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13545. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13546. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13547. const int64_t jp0 = jp1 + i10;
  13548. const float src1_e = src1_data[jp0];
  13549. const float src2_e = src2_data[jp0];
  13550. const int64_t jdh = jp0 * ne10;
  13551. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13552. for (int64_t j = 0; j < ne10; ++j) {
  13553. dst_data[jdh + j ] += src2_e;
  13554. dst_data[jdw + j*ne10] += src1_e;
  13555. }
  13556. }
  13557. }
  13558. }
  13559. }
  13560. }
  13561. static void ggml_compute_forward_add_rel_pos(
  13562. const struct ggml_compute_params * params,
  13563. struct ggml_tensor * dst) {
  13564. const struct ggml_tensor * src0 = dst->src[0];
  13565. switch (src0->type) {
  13566. case GGML_TYPE_F32:
  13567. {
  13568. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13569. } break;
  13570. default:
  13571. {
  13572. GGML_ASSERT(false);
  13573. } break;
  13574. }
  13575. }
  13576. // ggml_compute_forward_map_unary
  13577. static void ggml_compute_forward_map_unary_f32(
  13578. const struct ggml_compute_params * params,
  13579. struct ggml_tensor * dst,
  13580. const ggml_unary_op_f32_t fun) {
  13581. const struct ggml_tensor * src0 = dst->src[0];
  13582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13583. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13584. return;
  13585. }
  13586. const int n = ggml_nrows(src0);
  13587. const int nc = src0->ne[0];
  13588. assert( dst->nb[0] == sizeof(float));
  13589. assert(src0->nb[0] == sizeof(float));
  13590. for (int i = 0; i < n; i++) {
  13591. fun(nc,
  13592. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13593. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13594. }
  13595. }
  13596. static void ggml_compute_forward_map_unary(
  13597. const struct ggml_compute_params * params,
  13598. struct ggml_tensor * dst,
  13599. const ggml_unary_op_f32_t fun) {
  13600. const struct ggml_tensor * src0 = dst->src[0];
  13601. switch (src0->type) {
  13602. case GGML_TYPE_F32:
  13603. {
  13604. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13605. } break;
  13606. default:
  13607. {
  13608. GGML_ASSERT(false);
  13609. } break;
  13610. }
  13611. }
  13612. // ggml_compute_forward_map_binary
  13613. static void ggml_compute_forward_map_binary_f32(
  13614. const struct ggml_compute_params * params,
  13615. struct ggml_tensor * dst,
  13616. const ggml_binary_op_f32_t fun) {
  13617. const struct ggml_tensor * src0 = dst->src[0];
  13618. const struct ggml_tensor * src1 = dst->src[1];
  13619. assert(params->ith == 0);
  13620. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13622. return;
  13623. }
  13624. const int n = ggml_nrows(src0);
  13625. const int nc = src0->ne[0];
  13626. assert( dst->nb[0] == sizeof(float));
  13627. assert(src0->nb[0] == sizeof(float));
  13628. assert(src1->nb[0] == sizeof(float));
  13629. for (int i = 0; i < n; i++) {
  13630. fun(nc,
  13631. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13632. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13633. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13634. }
  13635. }
  13636. static void ggml_compute_forward_map_binary(
  13637. const struct ggml_compute_params * params,
  13638. struct ggml_tensor * dst,
  13639. const ggml_binary_op_f32_t fun) {
  13640. const struct ggml_tensor * src0 = dst->src[0];
  13641. switch (src0->type) {
  13642. case GGML_TYPE_F32:
  13643. {
  13644. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13645. } break;
  13646. default:
  13647. {
  13648. GGML_ASSERT(false);
  13649. } break;
  13650. }
  13651. }
  13652. // ggml_compute_forward_map_custom1
  13653. static void ggml_compute_forward_map_custom1_f32(
  13654. const struct ggml_compute_params * params,
  13655. struct ggml_tensor * dst,
  13656. const ggml_custom1_op_f32_t fun) {
  13657. const struct ggml_tensor * a = dst->src[0];
  13658. assert(params->ith == 0);
  13659. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13660. return;
  13661. }
  13662. fun(dst, a);
  13663. }
  13664. // ggml_compute_forward_map_custom2
  13665. static void ggml_compute_forward_map_custom2_f32(
  13666. const struct ggml_compute_params * params,
  13667. struct ggml_tensor * dst,
  13668. const ggml_custom2_op_f32_t fun) {
  13669. const struct ggml_tensor * a = dst->src[0];
  13670. const struct ggml_tensor * b = dst->src[1];
  13671. assert(params->ith == 0);
  13672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13673. return;
  13674. }
  13675. fun(dst, a, b);
  13676. }
  13677. // ggml_compute_forward_map_custom3
  13678. static void ggml_compute_forward_map_custom3_f32(
  13679. const struct ggml_compute_params * params,
  13680. struct ggml_tensor * dst,
  13681. const ggml_custom3_op_f32_t fun) {
  13682. const struct ggml_tensor * a = dst->src[0];
  13683. const struct ggml_tensor * b = dst->src[1];
  13684. const struct ggml_tensor * c = dst->src[1];
  13685. assert(params->ith == 0);
  13686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13687. return;
  13688. }
  13689. fun(dst, a, b, c);
  13690. }
  13691. // ggml_compute_forward_map_custom1
  13692. static void ggml_compute_forward_map_custom1(
  13693. const struct ggml_compute_params * params,
  13694. struct ggml_tensor * dst) {
  13695. const struct ggml_tensor * a = dst->src[0];
  13696. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13697. return;
  13698. }
  13699. struct ggml_map_custom1_op_params p;
  13700. memcpy(&p, dst->op_params, sizeof(p));
  13701. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13702. }
  13703. // ggml_compute_forward_map_custom2
  13704. static void ggml_compute_forward_map_custom2(
  13705. const struct ggml_compute_params * params,
  13706. struct ggml_tensor * dst) {
  13707. const struct ggml_tensor * a = dst->src[0];
  13708. const struct ggml_tensor * b = dst->src[1];
  13709. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13710. return;
  13711. }
  13712. struct ggml_map_custom2_op_params p;
  13713. memcpy(&p, dst->op_params, sizeof(p));
  13714. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13715. }
  13716. // ggml_compute_forward_map_custom3
  13717. static void ggml_compute_forward_map_custom3(
  13718. const struct ggml_compute_params * params,
  13719. struct ggml_tensor * dst) {
  13720. const struct ggml_tensor * a = dst->src[0];
  13721. const struct ggml_tensor * b = dst->src[1];
  13722. const struct ggml_tensor * c = dst->src[2];
  13723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13724. return;
  13725. }
  13726. struct ggml_map_custom3_op_params p;
  13727. memcpy(&p, dst->op_params, sizeof(p));
  13728. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13729. }
  13730. // ggml_compute_forward_cross_entropy_loss
  13731. static void ggml_compute_forward_cross_entropy_loss_f32(
  13732. const struct ggml_compute_params * params,
  13733. struct ggml_tensor * dst) {
  13734. const struct ggml_tensor * src0 = dst->src[0];
  13735. const struct ggml_tensor * src1 = dst->src[1];
  13736. GGML_ASSERT(ggml_is_contiguous(src0));
  13737. GGML_ASSERT(ggml_is_contiguous(src1));
  13738. GGML_ASSERT(ggml_is_scalar(dst));
  13739. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13740. const int ith = params->ith;
  13741. const int nth = params->nth;
  13742. float * sums = (float *) params->wdata;
  13743. // TODO: handle transposed/permuted matrices
  13744. const int nc = src0->ne[0];
  13745. const int nr = ggml_nrows(src0);
  13746. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13747. if (params->type == GGML_TASK_TYPE_INIT) {
  13748. if (ith == 0) {
  13749. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13750. }
  13751. return;
  13752. }
  13753. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13754. if (ith == 0) {
  13755. float * dp = (float *) dst->data;
  13756. ggml_vec_sum_f32(nth, dp, sums);
  13757. dp[0] *= -1.0f / (float) nr;
  13758. }
  13759. return;
  13760. }
  13761. const double eps = 1e-9;
  13762. // rows per thread
  13763. const int dr = (nr + nth - 1)/nth;
  13764. // row range for this thread
  13765. const int ir0 = dr*ith;
  13766. const int ir1 = MIN(ir0 + dr, nr);
  13767. for (int i1 = ir0; i1 < ir1; i1++) {
  13768. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13769. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13770. float * st = ((float *) params->wdata) + nth + ith*nc;
  13771. #ifndef NDEBUG
  13772. for (int i = 0; i < nc; ++i) {
  13773. //printf("p[%d] = %f\n", i, p[i]);
  13774. assert(!isnan(s0[i]));
  13775. assert(!isnan(s1[i]));
  13776. }
  13777. #endif
  13778. // soft_max
  13779. float max = -INFINITY;
  13780. ggml_vec_max_f32(nc, &max, s0);
  13781. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13782. assert(sum > 0.0);
  13783. sum = (1.0 - eps) / sum;
  13784. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13785. ggml_vec_scale_f32(nc, st, sum);
  13786. ggml_vec_add1_f32(nc, st, st, eps);
  13787. ggml_vec_log_f32(nc, st, st);
  13788. ggml_vec_mul_f32(nc, st, st, s1);
  13789. float st_sum = 0;
  13790. ggml_vec_sum_f32(nc, &st_sum, st);
  13791. sums[ith] += st_sum;
  13792. #ifndef NDEBUG
  13793. for (int i = 0; i < nc; ++i) {
  13794. assert(!isnan(st[i]));
  13795. assert(!isinf(st[i]));
  13796. }
  13797. #endif
  13798. }
  13799. }
  13800. static void ggml_compute_forward_cross_entropy_loss(
  13801. const struct ggml_compute_params * params,
  13802. struct ggml_tensor * dst) {
  13803. const struct ggml_tensor * src0 = dst->src[0];
  13804. switch (src0->type) {
  13805. case GGML_TYPE_F32:
  13806. {
  13807. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13808. } break;
  13809. default:
  13810. {
  13811. GGML_ASSERT(false);
  13812. } break;
  13813. }
  13814. }
  13815. // ggml_compute_forward_cross_entropy_loss_back
  13816. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13817. const struct ggml_compute_params * params,
  13818. struct ggml_tensor * dst) {
  13819. const struct ggml_tensor * src0 = dst->src[0];
  13820. const struct ggml_tensor * src1 = dst->src[1];
  13821. const struct ggml_tensor * opt0 = dst->src[2];
  13822. GGML_ASSERT(ggml_is_contiguous(dst));
  13823. GGML_ASSERT(ggml_is_contiguous(src0));
  13824. GGML_ASSERT(ggml_is_contiguous(src1));
  13825. GGML_ASSERT(ggml_is_contiguous(opt0));
  13826. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13827. const int64_t ith = params->ith;
  13828. const int64_t nth = params->nth;
  13829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13830. return;
  13831. }
  13832. const double eps = 1e-9;
  13833. // TODO: handle transposed/permuted matrices
  13834. const int64_t nc = src0->ne[0];
  13835. const int64_t nr = ggml_nrows(src0);
  13836. // rows per thread
  13837. const int64_t dr = (nr + nth - 1)/nth;
  13838. // row range for this thread
  13839. const int64_t ir0 = dr*ith;
  13840. const int64_t ir1 = MIN(ir0 + dr, nr);
  13841. float * d = (float *) opt0->data;
  13842. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13843. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13844. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13845. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13846. #ifndef NDEBUG
  13847. for (int i = 0; i < nc; ++i) {
  13848. //printf("p[%d] = %f\n", i, p[i]);
  13849. assert(!isnan(s0[i]));
  13850. assert(!isnan(s1[i]));
  13851. }
  13852. #endif
  13853. // soft_max
  13854. float max = -INFINITY;
  13855. ggml_vec_max_f32(nc, &max, s0);
  13856. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13857. assert(sum > 0.0);
  13858. sum = (1.0 - eps) / sum;
  13859. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13860. ggml_vec_scale_f32(nc, ds0, sum);
  13861. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13862. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13863. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13864. #ifndef NDEBUG
  13865. for (int i = 0; i < nc; ++i) {
  13866. assert(!isnan(ds0[i]));
  13867. assert(!isinf(ds0[i]));
  13868. }
  13869. #endif
  13870. }
  13871. }
  13872. static void ggml_compute_forward_cross_entropy_loss_back(
  13873. const struct ggml_compute_params * params,
  13874. struct ggml_tensor * dst) {
  13875. const struct ggml_tensor * src0 = dst->src[0];
  13876. switch (src0->type) {
  13877. case GGML_TYPE_F32:
  13878. {
  13879. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13880. } break;
  13881. default:
  13882. {
  13883. GGML_ASSERT(false);
  13884. } break;
  13885. }
  13886. }
  13887. /////////////////////////////////
  13888. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  13889. GGML_ASSERT(params);
  13890. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13891. return;
  13892. }
  13893. switch (tensor->op) {
  13894. case GGML_OP_DUP:
  13895. {
  13896. ggml_compute_forward_dup(params, tensor);
  13897. } break;
  13898. case GGML_OP_ADD:
  13899. {
  13900. ggml_compute_forward_add(params, tensor);
  13901. } break;
  13902. case GGML_OP_ADD1:
  13903. {
  13904. ggml_compute_forward_add1(params, tensor);
  13905. } break;
  13906. case GGML_OP_ACC:
  13907. {
  13908. ggml_compute_forward_acc(params, tensor);
  13909. } break;
  13910. case GGML_OP_SUB:
  13911. {
  13912. ggml_compute_forward_sub(params, tensor);
  13913. } break;
  13914. case GGML_OP_MUL:
  13915. {
  13916. ggml_compute_forward_mul(params, tensor);
  13917. } break;
  13918. case GGML_OP_DIV:
  13919. {
  13920. ggml_compute_forward_div(params, tensor);
  13921. } break;
  13922. case GGML_OP_SQR:
  13923. {
  13924. ggml_compute_forward_sqr(params, tensor);
  13925. } break;
  13926. case GGML_OP_SQRT:
  13927. {
  13928. ggml_compute_forward_sqrt(params, tensor);
  13929. } break;
  13930. case GGML_OP_LOG:
  13931. {
  13932. ggml_compute_forward_log(params, tensor);
  13933. } break;
  13934. case GGML_OP_SUM:
  13935. {
  13936. ggml_compute_forward_sum(params, tensor);
  13937. } break;
  13938. case GGML_OP_SUM_ROWS:
  13939. {
  13940. ggml_compute_forward_sum_rows(params, tensor);
  13941. } break;
  13942. case GGML_OP_MEAN:
  13943. {
  13944. ggml_compute_forward_mean(params, tensor);
  13945. } break;
  13946. case GGML_OP_ARGMAX:
  13947. {
  13948. ggml_compute_forward_argmax(params, tensor);
  13949. } break;
  13950. case GGML_OP_REPEAT:
  13951. {
  13952. ggml_compute_forward_repeat(params, tensor);
  13953. } break;
  13954. case GGML_OP_REPEAT_BACK:
  13955. {
  13956. ggml_compute_forward_repeat_back(params, tensor);
  13957. } break;
  13958. case GGML_OP_CONCAT:
  13959. {
  13960. ggml_compute_forward_concat(params, tensor);
  13961. } break;
  13962. case GGML_OP_SILU_BACK:
  13963. {
  13964. ggml_compute_forward_silu_back(params, tensor);
  13965. } break;
  13966. case GGML_OP_NORM:
  13967. {
  13968. ggml_compute_forward_norm(params, tensor);
  13969. } break;
  13970. case GGML_OP_RMS_NORM:
  13971. {
  13972. ggml_compute_forward_rms_norm(params, tensor);
  13973. } break;
  13974. case GGML_OP_RMS_NORM_BACK:
  13975. {
  13976. ggml_compute_forward_rms_norm_back(params, tensor);
  13977. } break;
  13978. case GGML_OP_GROUP_NORM:
  13979. {
  13980. ggml_compute_forward_group_norm(params, tensor);
  13981. } break;
  13982. case GGML_OP_MUL_MAT:
  13983. {
  13984. ggml_compute_forward_mul_mat(params, tensor, state);
  13985. } break;
  13986. case GGML_OP_MUL_MAT_ID:
  13987. {
  13988. ggml_compute_forward_mul_mat_id(params, tensor);
  13989. } break;
  13990. case GGML_OP_OUT_PROD:
  13991. {
  13992. ggml_compute_forward_out_prod(params, tensor);
  13993. } break;
  13994. case GGML_OP_SCALE:
  13995. {
  13996. ggml_compute_forward_scale(params, tensor);
  13997. } break;
  13998. case GGML_OP_SET:
  13999. {
  14000. ggml_compute_forward_set(params, tensor);
  14001. } break;
  14002. case GGML_OP_CPY:
  14003. {
  14004. ggml_compute_forward_cpy(params, tensor);
  14005. } break;
  14006. case GGML_OP_CONT:
  14007. {
  14008. ggml_compute_forward_cont(params, tensor);
  14009. } break;
  14010. case GGML_OP_RESHAPE:
  14011. {
  14012. ggml_compute_forward_reshape(params, tensor);
  14013. } break;
  14014. case GGML_OP_VIEW:
  14015. {
  14016. ggml_compute_forward_view(params, tensor);
  14017. } break;
  14018. case GGML_OP_PERMUTE:
  14019. {
  14020. ggml_compute_forward_permute(params, tensor);
  14021. } break;
  14022. case GGML_OP_TRANSPOSE:
  14023. {
  14024. ggml_compute_forward_transpose(params, tensor);
  14025. } break;
  14026. case GGML_OP_GET_ROWS:
  14027. {
  14028. ggml_compute_forward_get_rows(params, tensor);
  14029. } break;
  14030. case GGML_OP_GET_ROWS_BACK:
  14031. {
  14032. ggml_compute_forward_get_rows_back(params, tensor);
  14033. } break;
  14034. case GGML_OP_DIAG:
  14035. {
  14036. ggml_compute_forward_diag(params, tensor);
  14037. } break;
  14038. case GGML_OP_DIAG_MASK_INF:
  14039. {
  14040. ggml_compute_forward_diag_mask_inf(params, tensor);
  14041. } break;
  14042. case GGML_OP_DIAG_MASK_ZERO:
  14043. {
  14044. ggml_compute_forward_diag_mask_zero(params, tensor);
  14045. } break;
  14046. case GGML_OP_SOFT_MAX:
  14047. {
  14048. ggml_compute_forward_soft_max(params, tensor);
  14049. } break;
  14050. case GGML_OP_SOFT_MAX_BACK:
  14051. {
  14052. ggml_compute_forward_soft_max_back(params, tensor);
  14053. } break;
  14054. case GGML_OP_ROPE:
  14055. {
  14056. ggml_compute_forward_rope(params, tensor);
  14057. } break;
  14058. case GGML_OP_ROPE_BACK:
  14059. {
  14060. ggml_compute_forward_rope_back(params, tensor);
  14061. } break;
  14062. case GGML_OP_CLAMP:
  14063. {
  14064. ggml_compute_forward_clamp(params, tensor);
  14065. } break;
  14066. case GGML_OP_CONV_TRANSPOSE_1D:
  14067. {
  14068. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14069. } break;
  14070. case GGML_OP_IM2COL:
  14071. {
  14072. ggml_compute_forward_im2col(params, tensor);
  14073. } break;
  14074. case GGML_OP_CONV_TRANSPOSE_2D:
  14075. {
  14076. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14077. } break;
  14078. case GGML_OP_POOL_1D:
  14079. {
  14080. ggml_compute_forward_pool_1d(params, tensor);
  14081. } break;
  14082. case GGML_OP_POOL_2D:
  14083. {
  14084. ggml_compute_forward_pool_2d(params, tensor);
  14085. } break;
  14086. case GGML_OP_UPSCALE:
  14087. {
  14088. ggml_compute_forward_upscale(params, tensor);
  14089. } break;
  14090. case GGML_OP_PAD:
  14091. {
  14092. ggml_compute_forward_pad(params, tensor);
  14093. } break;
  14094. case GGML_OP_ARANGE:
  14095. {
  14096. ggml_compute_forward_arange(params, tensor);
  14097. } break;
  14098. case GGML_OP_TIMESTEP_EMBEDDING:
  14099. {
  14100. ggml_compute_forward_timestep_embedding(params, tensor);
  14101. } break;
  14102. case GGML_OP_ARGSORT:
  14103. {
  14104. ggml_compute_forward_argsort(params, tensor);
  14105. } break;
  14106. case GGML_OP_LEAKY_RELU:
  14107. {
  14108. ggml_compute_forward_leaky_relu(params, tensor);
  14109. } break;
  14110. case GGML_OP_FLASH_ATTN_EXT:
  14111. {
  14112. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14113. } break;
  14114. case GGML_OP_FLASH_ATTN_BACK:
  14115. {
  14116. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14117. GGML_ASSERT(t == 0 || t == 1);
  14118. bool masked = t != 0;
  14119. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14120. } break;
  14121. case GGML_OP_SSM_CONV:
  14122. {
  14123. ggml_compute_forward_ssm_conv(params, tensor);
  14124. } break;
  14125. case GGML_OP_SSM_SCAN:
  14126. {
  14127. ggml_compute_forward_ssm_scan(params, tensor);
  14128. } break;
  14129. case GGML_OP_WIN_PART:
  14130. {
  14131. ggml_compute_forward_win_part(params, tensor);
  14132. } break;
  14133. case GGML_OP_WIN_UNPART:
  14134. {
  14135. ggml_compute_forward_win_unpart(params, tensor);
  14136. } break;
  14137. case GGML_OP_UNARY:
  14138. {
  14139. ggml_compute_forward_unary(params, tensor);
  14140. } break;
  14141. case GGML_OP_GET_REL_POS:
  14142. {
  14143. ggml_compute_forward_get_rel_pos(params, tensor);
  14144. } break;
  14145. case GGML_OP_ADD_REL_POS:
  14146. {
  14147. ggml_compute_forward_add_rel_pos(params, tensor);
  14148. } break;
  14149. case GGML_OP_MAP_UNARY:
  14150. {
  14151. ggml_unary_op_f32_t fun;
  14152. memcpy(&fun, tensor->op_params, sizeof(fun));
  14153. ggml_compute_forward_map_unary(params, tensor, fun);
  14154. }
  14155. break;
  14156. case GGML_OP_MAP_BINARY:
  14157. {
  14158. ggml_binary_op_f32_t fun;
  14159. memcpy(&fun, tensor->op_params, sizeof(fun));
  14160. ggml_compute_forward_map_binary(params, tensor, fun);
  14161. }
  14162. break;
  14163. case GGML_OP_MAP_CUSTOM1_F32:
  14164. {
  14165. ggml_custom1_op_f32_t fun;
  14166. memcpy(&fun, tensor->op_params, sizeof(fun));
  14167. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14168. }
  14169. break;
  14170. case GGML_OP_MAP_CUSTOM2_F32:
  14171. {
  14172. ggml_custom2_op_f32_t fun;
  14173. memcpy(&fun, tensor->op_params, sizeof(fun));
  14174. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14175. }
  14176. break;
  14177. case GGML_OP_MAP_CUSTOM3_F32:
  14178. {
  14179. ggml_custom3_op_f32_t fun;
  14180. memcpy(&fun, tensor->op_params, sizeof(fun));
  14181. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14182. }
  14183. break;
  14184. case GGML_OP_MAP_CUSTOM1:
  14185. {
  14186. ggml_compute_forward_map_custom1(params, tensor);
  14187. }
  14188. break;
  14189. case GGML_OP_MAP_CUSTOM2:
  14190. {
  14191. ggml_compute_forward_map_custom2(params, tensor);
  14192. }
  14193. break;
  14194. case GGML_OP_MAP_CUSTOM3:
  14195. {
  14196. ggml_compute_forward_map_custom3(params, tensor);
  14197. }
  14198. break;
  14199. case GGML_OP_CROSS_ENTROPY_LOSS:
  14200. {
  14201. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14202. }
  14203. break;
  14204. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14205. {
  14206. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14207. }
  14208. break;
  14209. case GGML_OP_NONE:
  14210. {
  14211. // nop
  14212. } break;
  14213. case GGML_OP_COUNT:
  14214. {
  14215. GGML_ASSERT(false);
  14216. } break;
  14217. }
  14218. }
  14219. ////////////////////////////////////////////////////////////////////////////////
  14220. static size_t ggml_hash_size(size_t min_sz) {
  14221. // next primes after powers of two
  14222. static const size_t primes[] = {
  14223. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14224. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14225. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14226. 16777259, 33554467, 67108879, 134217757, 268435459,
  14227. 536870923, 1073741827, 2147483659
  14228. };
  14229. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14230. // find the smallest prime that is larger or equal to min_sz
  14231. size_t l = 0;
  14232. size_t r = n_primes;
  14233. while (l < r) {
  14234. size_t m = (l + r)/2;
  14235. if (primes[m] < min_sz) {
  14236. l = m + 1;
  14237. } else {
  14238. r = m;
  14239. }
  14240. }
  14241. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14242. return sz;
  14243. }
  14244. static size_t ggml_hash(const void * p) {
  14245. return (size_t)p;
  14246. }
  14247. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14248. size_t h = ggml_hash(key) % hash_set.size;
  14249. // linear probing
  14250. size_t i = h;
  14251. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14252. i = (i + 1) % hash_set.size;
  14253. if (i == h) {
  14254. // visited all hash table entries -> not found
  14255. return GGML_HASHTABLE_FULL;
  14256. }
  14257. }
  14258. return i;
  14259. }
  14260. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14261. size_t i = ggml_hash_find(hash_set, key);
  14262. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14263. }
  14264. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14265. size_t i = ggml_hash_find(hash_set, key);
  14266. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14267. if (hash_set.keys[i] == key) {
  14268. return GGML_HASHTABLE_ALREADY_EXISTS;
  14269. }
  14270. // insert
  14271. GGML_ASSERT(hash_set.keys[i] == NULL);
  14272. hash_set.keys[i] = key;
  14273. return i;
  14274. }
  14275. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14276. size_t i = ggml_hash_find(hash_set, key);
  14277. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14278. hash_set.keys[i] = key;
  14279. return i;
  14280. }
  14281. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14282. size = ggml_hash_size(size);
  14283. struct ggml_hash_set result;
  14284. result.size = size;
  14285. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14286. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14287. return result;
  14288. }
  14289. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14290. GGML_FREE(hash_set.keys);
  14291. }
  14292. struct hash_map {
  14293. struct ggml_hash_set set;
  14294. struct ggml_tensor ** vals;
  14295. };
  14296. static struct hash_map * ggml_new_hash_map(size_t size) {
  14297. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14298. result->set = ggml_hash_set_new(size);
  14299. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14300. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14301. return result;
  14302. }
  14303. static void ggml_hash_map_free(struct hash_map * map) {
  14304. ggml_hash_set_free(map->set);
  14305. GGML_FREE(map->vals);
  14306. GGML_FREE(map);
  14307. }
  14308. // gradient checkpointing
  14309. static struct ggml_tensor * ggml_recompute_graph_node(
  14310. struct ggml_context * ctx,
  14311. struct ggml_cgraph * graph,
  14312. struct hash_map * replacements,
  14313. struct ggml_tensor * node) {
  14314. if (node == NULL) {
  14315. return NULL;
  14316. }
  14317. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14318. return node;
  14319. }
  14320. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14321. return node;
  14322. }
  14323. int count_children = 0;
  14324. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14325. if (node->src[k]) {
  14326. ++count_children;
  14327. }
  14328. }
  14329. if (count_children == 0) {
  14330. return node;
  14331. }
  14332. size_t i = ggml_hash_find(replacements->set, node);
  14333. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14334. if (replacements->set.keys[i] == node) {
  14335. return replacements->vals[i];
  14336. }
  14337. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14338. // insert clone into replacements
  14339. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14340. replacements->set.keys[i] = node;
  14341. replacements->vals[i] = clone;
  14342. clone->op = node->op;
  14343. clone->grad = node->grad;
  14344. clone->flags = node->flags;
  14345. clone->extra = node->extra;
  14346. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14347. clone->nb[k] = node->nb[k];
  14348. }
  14349. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14350. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14351. }
  14352. if (node->view_src != NULL) {
  14353. clone->data = (node->view_src->data == NULL)
  14354. ? NULL // view_src not yet allocated
  14355. : (char *) node->view_src->data // view_src already allocated
  14356. + node->view_offs;
  14357. clone->view_src = node->view_src;
  14358. clone->view_offs = node->view_offs;
  14359. }
  14360. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14361. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14362. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14363. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14364. return clone;
  14365. }
  14366. void ggml_build_backward_gradient_checkpointing(
  14367. struct ggml_context * ctx,
  14368. struct ggml_cgraph * gf,
  14369. struct ggml_cgraph * gb,
  14370. struct ggml_cgraph * gb_tmp,
  14371. struct ggml_tensor * * checkpoints,
  14372. int n_checkpoints) {
  14373. ggml_graph_cpy(gf, gb_tmp);
  14374. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14375. if (n_checkpoints <= 0) {
  14376. ggml_graph_cpy(gb_tmp, gb);
  14377. return;
  14378. }
  14379. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14380. // insert checkpoints in replacements
  14381. for (int i = 0; i < n_checkpoints; ++i) {
  14382. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14383. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14384. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14385. replacements->set.keys[k] = checkpoints[i];
  14386. replacements->vals[k] = checkpoints[i];
  14387. }
  14388. ggml_graph_cpy(gf, gb);
  14389. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14390. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14391. // by recomputing them from checkpoints
  14392. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14393. struct ggml_tensor * node = gb_tmp->nodes[i];
  14394. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14395. // insert new tensors recomputing src, reusing already made replacements,
  14396. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14397. // recurse for input tensors,
  14398. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14399. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14400. }
  14401. // insert rewritten backward node with replacements made into resulting backward graph gb
  14402. ggml_build_forward_expand(gb, node);
  14403. }
  14404. ggml_hash_map_free(replacements);
  14405. }
  14406. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14407. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14408. if (ggml_hash_contains(zero_table, a)) {
  14409. return b;
  14410. } else {
  14411. return ggml_add_impl(ctx, a, b, false);
  14412. }
  14413. }
  14414. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14415. if (ggml_hash_contains(zero_table, a)) {
  14416. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14417. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14418. } else {
  14419. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14420. }
  14421. }
  14422. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14423. if (ggml_hash_contains(zero_table, a)) {
  14424. return ggml_repeat(ctx, b, a);
  14425. } else {
  14426. return ggml_add1_impl(ctx, a, b, false);
  14427. }
  14428. }
  14429. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14430. if (ggml_hash_contains(zero_table, a)) {
  14431. return ggml_neg(ctx, b);
  14432. } else {
  14433. return ggml_sub_impl(ctx, a, b, false);
  14434. }
  14435. }
  14436. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14437. struct ggml_tensor * src0 = tensor->src[0];
  14438. struct ggml_tensor * src1 = tensor->src[1];
  14439. struct ggml_tensor * src2 = tensor->src[2];
  14440. switch (tensor->op) {
  14441. case GGML_OP_DUP:
  14442. {
  14443. if (src0->grad) {
  14444. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14445. }
  14446. } break;
  14447. case GGML_OP_ADD:
  14448. {
  14449. if (src0->grad) {
  14450. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14451. }
  14452. if (src1->grad) {
  14453. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14454. }
  14455. } break;
  14456. case GGML_OP_ADD1:
  14457. {
  14458. if (src0->grad) {
  14459. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14460. }
  14461. if (src1->grad) {
  14462. src1->grad = ggml_add_or_set(ctx,
  14463. src1->grad,
  14464. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14465. zero_table);
  14466. }
  14467. } break;
  14468. case GGML_OP_ACC:
  14469. {
  14470. if (src0->grad) {
  14471. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14472. }
  14473. if (src1->grad) {
  14474. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14475. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14476. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14477. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14478. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14479. tensor->grad,
  14480. src1->grad->ne[0],
  14481. src1->grad->ne[1],
  14482. src1->grad->ne[2],
  14483. src1->grad->ne[3],
  14484. nb1, nb2, nb3, offset);
  14485. src1->grad =
  14486. ggml_add_or_set(ctx,
  14487. src1->grad,
  14488. ggml_reshape(ctx,
  14489. ggml_cont(ctx, tensor_grad_view),
  14490. src1->grad),
  14491. zero_table);
  14492. }
  14493. } break;
  14494. case GGML_OP_SUB:
  14495. {
  14496. if (src0->grad) {
  14497. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14498. }
  14499. if (src1->grad) {
  14500. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14501. }
  14502. } break;
  14503. case GGML_OP_MUL:
  14504. {
  14505. if (src0->grad) {
  14506. src0->grad =
  14507. ggml_add_or_set(ctx,
  14508. src0->grad,
  14509. ggml_mul(ctx, src1, tensor->grad),
  14510. zero_table);
  14511. }
  14512. if (src1->grad) {
  14513. src1->grad =
  14514. ggml_add_or_set(ctx,
  14515. src1->grad,
  14516. ggml_mul(ctx, src0, tensor->grad),
  14517. zero_table);
  14518. }
  14519. } break;
  14520. case GGML_OP_DIV:
  14521. {
  14522. if (src0->grad) {
  14523. src0->grad =
  14524. ggml_add_or_set(ctx,
  14525. src0->grad,
  14526. ggml_div(ctx, tensor->grad, src1),
  14527. zero_table);
  14528. }
  14529. if (src1->grad) {
  14530. src1->grad =
  14531. ggml_sub_or_set(ctx,
  14532. src1->grad,
  14533. ggml_mul(ctx,
  14534. tensor->grad,
  14535. ggml_div(ctx, tensor, src1)),
  14536. zero_table);
  14537. }
  14538. } break;
  14539. case GGML_OP_SQR:
  14540. {
  14541. if (src0->grad) {
  14542. src0->grad =
  14543. ggml_add_or_set(ctx,
  14544. src0->grad,
  14545. ggml_scale(ctx,
  14546. ggml_mul(ctx, src0, tensor->grad),
  14547. 2.0f),
  14548. zero_table);
  14549. }
  14550. } break;
  14551. case GGML_OP_SQRT:
  14552. {
  14553. if (src0->grad) {
  14554. src0->grad =
  14555. ggml_add_or_set(ctx,
  14556. src0->grad,
  14557. ggml_scale(ctx,
  14558. ggml_div(ctx,
  14559. tensor->grad,
  14560. tensor),
  14561. 0.5f),
  14562. zero_table);
  14563. }
  14564. } break;
  14565. case GGML_OP_LOG:
  14566. {
  14567. if (src0->grad) {
  14568. src0->grad =
  14569. ggml_add_or_set(ctx,
  14570. src0->grad,
  14571. ggml_div(ctx,
  14572. tensor->grad,
  14573. src0),
  14574. zero_table);
  14575. }
  14576. } break;
  14577. case GGML_OP_SUM:
  14578. {
  14579. if (src0->grad) {
  14580. src0->grad =
  14581. ggml_add1_or_set(ctx,
  14582. src0->grad,
  14583. tensor->grad,
  14584. zero_table);
  14585. }
  14586. } break;
  14587. case GGML_OP_SUM_ROWS:
  14588. {
  14589. if (src0->grad) {
  14590. src0->grad =
  14591. ggml_add_or_set(ctx,
  14592. src0->grad,
  14593. ggml_repeat(ctx,
  14594. tensor->grad,
  14595. src0->grad),
  14596. zero_table);
  14597. }
  14598. } break;
  14599. case GGML_OP_MEAN:
  14600. case GGML_OP_ARGMAX:
  14601. {
  14602. GGML_ASSERT(false); // TODO: implement
  14603. } break;
  14604. case GGML_OP_REPEAT:
  14605. {
  14606. // necessary for llama
  14607. if (src0->grad) {
  14608. src0->grad = ggml_add_or_set(ctx,
  14609. src0->grad,
  14610. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14611. zero_table);
  14612. }
  14613. } break;
  14614. case GGML_OP_REPEAT_BACK:
  14615. {
  14616. if (src0->grad) {
  14617. // TODO: test this
  14618. src0->grad = ggml_add_or_set(ctx,
  14619. src0->grad,
  14620. ggml_repeat(ctx, tensor->grad, src0->grad),
  14621. zero_table);
  14622. }
  14623. } break;
  14624. case GGML_OP_CONCAT:
  14625. {
  14626. GGML_ASSERT(false); // TODO: implement
  14627. } break;
  14628. case GGML_OP_SILU_BACK:
  14629. {
  14630. GGML_ASSERT(false); // TODO: not implemented
  14631. } break;
  14632. case GGML_OP_NORM:
  14633. {
  14634. GGML_ASSERT(false); // TODO: not implemented
  14635. } break;
  14636. case GGML_OP_RMS_NORM:
  14637. {
  14638. // necessary for llama
  14639. if (src0->grad) {
  14640. float eps;
  14641. memcpy(&eps, tensor->op_params, sizeof(float));
  14642. src0->grad = ggml_add_or_set(ctx,
  14643. src0->grad,
  14644. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14645. zero_table);
  14646. }
  14647. } break;
  14648. case GGML_OP_RMS_NORM_BACK:
  14649. {
  14650. GGML_ASSERT(false); // TODO: not implemented
  14651. } break;
  14652. case GGML_OP_GROUP_NORM:
  14653. {
  14654. GGML_ASSERT(false); // TODO: not implemented
  14655. } break;
  14656. case GGML_OP_MUL_MAT:
  14657. {
  14658. // https://cs231n.github.io/optimization-2/#staged
  14659. // # forward pass
  14660. // s0 = np.random.randn(5, 10)
  14661. // s1 = np.random.randn(10, 3)
  14662. // t = s0.dot(s1)
  14663. // # now suppose we had the gradient on t from above in the circuit
  14664. // dt = np.random.randn(*t.shape) # same shape as t
  14665. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14666. // ds1 = t.T.dot(dt)
  14667. // tensor.shape [m,p,qq,rr]
  14668. // src0.shape [n,m,q1,r1]
  14669. // src1.shape [n,p,qq,rr]
  14670. // necessary for llama
  14671. if (src0->grad) {
  14672. struct ggml_tensor * s1_tg =
  14673. ggml_out_prod(ctx, // [n,m,qq,rr]
  14674. src1, // [n,p,qq,rr]
  14675. tensor->grad); // [m,p,qq,rr]
  14676. const int64_t qq = s1_tg->ne[2];
  14677. const int64_t rr = s1_tg->ne[3];
  14678. const int64_t q1 = src0->ne[2];
  14679. const int64_t r1 = src0->ne[3];
  14680. const bool ne2_broadcasted = qq > q1;
  14681. const bool ne3_broadcasted = rr > r1;
  14682. if (ne2_broadcasted || ne3_broadcasted) {
  14683. // sum broadcast repetitions of s1_tg into shape of src0
  14684. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14685. }
  14686. src0->grad =
  14687. ggml_add_or_set(ctx,
  14688. src0->grad, // [n,m,q1,r1]
  14689. s1_tg, // [n,m,q1,r1]
  14690. zero_table);
  14691. }
  14692. if (src1->grad) {
  14693. src1->grad =
  14694. ggml_add_or_set(ctx,
  14695. src1->grad, // [n,p,qq,rr]
  14696. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14697. // ggml_cont(ctx, // [m,n,q1,r1]
  14698. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14699. // tensor->grad), // [m,p,qq,rr]
  14700. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14701. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14702. // // and then use ggml_out_prod
  14703. ggml_out_prod(ctx, // [n,p,qq,rr]
  14704. src0, // [n,m,q1,r1]
  14705. ggml_transpose(ctx, // [p,m,qq,rr]
  14706. tensor->grad)), // [m,p,qq,rr]
  14707. zero_table);
  14708. }
  14709. } break;
  14710. case GGML_OP_MUL_MAT_ID:
  14711. {
  14712. GGML_ASSERT(false); // TODO: not implemented
  14713. } break;
  14714. case GGML_OP_OUT_PROD:
  14715. {
  14716. GGML_ASSERT(false); // TODO: not implemented
  14717. } break;
  14718. case GGML_OP_SCALE:
  14719. {
  14720. // necessary for llama
  14721. if (src0->grad) {
  14722. float s;
  14723. memcpy(&s, tensor->op_params, sizeof(float));
  14724. src0->grad =
  14725. ggml_add_or_set(ctx,
  14726. src0->grad,
  14727. ggml_scale_impl(ctx, tensor->grad, s, false),
  14728. zero_table);
  14729. }
  14730. } break;
  14731. case GGML_OP_SET:
  14732. {
  14733. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14734. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14735. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14736. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14737. struct ggml_tensor * tensor_grad_view = NULL;
  14738. if (src0->grad || src1->grad) {
  14739. GGML_ASSERT(src0->type == tensor->type);
  14740. GGML_ASSERT(tensor->grad->type == tensor->type);
  14741. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14742. tensor_grad_view = ggml_view_4d(ctx,
  14743. tensor->grad,
  14744. src1->grad->ne[0],
  14745. src1->grad->ne[1],
  14746. src1->grad->ne[2],
  14747. src1->grad->ne[3],
  14748. nb1, nb2, nb3, offset);
  14749. }
  14750. if (src0->grad) {
  14751. src0->grad = ggml_add_or_set(ctx,
  14752. src0->grad,
  14753. ggml_acc_impl(ctx,
  14754. tensor->grad,
  14755. ggml_neg(ctx, tensor_grad_view),
  14756. nb1, nb2, nb3, offset, false),
  14757. zero_table);
  14758. }
  14759. if (src1->grad) {
  14760. src1->grad =
  14761. ggml_add_or_set(ctx,
  14762. src1->grad,
  14763. ggml_reshape(ctx,
  14764. ggml_cont(ctx, tensor_grad_view),
  14765. src1->grad),
  14766. zero_table);
  14767. }
  14768. } break;
  14769. case GGML_OP_CPY:
  14770. {
  14771. // necessary for llama
  14772. // cpy overwrites value of src1 by src0 and returns view(src1)
  14773. // the overwriting is mathematically equivalent to:
  14774. // tensor = src0 * 1 + src1 * 0
  14775. if (src0->grad) {
  14776. // dsrc0 = dtensor * 1
  14777. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14778. }
  14779. if (src1->grad) {
  14780. // dsrc1 = dtensor * 0 -> noop
  14781. }
  14782. } break;
  14783. case GGML_OP_CONT:
  14784. {
  14785. // same as cpy
  14786. if (src0->grad) {
  14787. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14788. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14789. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14790. }
  14791. } break;
  14792. case GGML_OP_RESHAPE:
  14793. {
  14794. // necessary for llama
  14795. if (src0->grad) {
  14796. src0->grad =
  14797. ggml_add_or_set(ctx, src0->grad,
  14798. ggml_reshape(ctx,
  14799. ggml_is_contiguous(tensor->grad)
  14800. ? tensor->grad
  14801. : ggml_cont(ctx, tensor->grad),
  14802. src0->grad),
  14803. zero_table);
  14804. }
  14805. } break;
  14806. case GGML_OP_VIEW:
  14807. {
  14808. // necessary for llama
  14809. if (src0->grad) {
  14810. size_t offset;
  14811. memcpy(&offset, tensor->op_params, sizeof(offset));
  14812. size_t nb1 = tensor->nb[1];
  14813. size_t nb2 = tensor->nb[2];
  14814. size_t nb3 = tensor->nb[3];
  14815. if (src0->type != src0->grad->type) {
  14816. // gradient is typically F32, but src0 could be other type
  14817. size_t ng = ggml_element_size(src0->grad);
  14818. size_t n0 = ggml_element_size(src0);
  14819. GGML_ASSERT(offset % n0 == 0);
  14820. GGML_ASSERT(nb1 % n0 == 0);
  14821. GGML_ASSERT(nb2 % n0 == 0);
  14822. GGML_ASSERT(nb3 % n0 == 0);
  14823. offset = (offset / n0) * ng;
  14824. nb1 = (nb1 / n0) * ng;
  14825. nb2 = (nb2 / n0) * ng;
  14826. nb3 = (nb3 / n0) * ng;
  14827. }
  14828. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14829. }
  14830. } break;
  14831. case GGML_OP_PERMUTE:
  14832. {
  14833. // necessary for llama
  14834. if (src0->grad) {
  14835. int32_t * axes = (int32_t *) tensor->op_params;
  14836. int axis0 = axes[0] & 0x3;
  14837. int axis1 = axes[1] & 0x3;
  14838. int axis2 = axes[2] & 0x3;
  14839. int axis3 = axes[3] & 0x3;
  14840. int axes_backward[4] = {0,0,0,0};
  14841. axes_backward[axis0] = 0;
  14842. axes_backward[axis1] = 1;
  14843. axes_backward[axis2] = 2;
  14844. axes_backward[axis3] = 3;
  14845. src0->grad =
  14846. ggml_add_or_set(ctx, src0->grad,
  14847. ggml_permute(ctx,
  14848. tensor->grad,
  14849. axes_backward[0],
  14850. axes_backward[1],
  14851. axes_backward[2],
  14852. axes_backward[3]),
  14853. zero_table);
  14854. }
  14855. } break;
  14856. case GGML_OP_TRANSPOSE:
  14857. {
  14858. // necessary for llama
  14859. if (src0->grad) {
  14860. src0->grad =
  14861. ggml_add_or_set(ctx, src0->grad,
  14862. ggml_transpose(ctx, tensor->grad),
  14863. zero_table);
  14864. }
  14865. } break;
  14866. case GGML_OP_GET_ROWS:
  14867. {
  14868. // necessary for llama (only for tokenizer)
  14869. if (src0->grad) {
  14870. src0->grad =
  14871. ggml_add_or_set(ctx, src0->grad,
  14872. // last ggml_get_rows_back argument src0->grad is only
  14873. // necessary to setup correct output shape
  14874. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14875. zero_table);
  14876. }
  14877. if (src1->grad) {
  14878. // noop
  14879. }
  14880. } break;
  14881. case GGML_OP_GET_ROWS_BACK:
  14882. {
  14883. GGML_ASSERT(false); // TODO: not implemented
  14884. } break;
  14885. case GGML_OP_DIAG:
  14886. {
  14887. GGML_ASSERT(false); // TODO: not implemented
  14888. } break;
  14889. case GGML_OP_DIAG_MASK_INF:
  14890. {
  14891. // necessary for llama
  14892. if (src0->grad) {
  14893. const int n_past = ((int32_t *) tensor->op_params)[0];
  14894. src0->grad =
  14895. ggml_add_or_set(ctx, src0->grad,
  14896. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14897. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14898. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14899. zero_table);
  14900. }
  14901. } break;
  14902. case GGML_OP_DIAG_MASK_ZERO:
  14903. {
  14904. // necessary for llama
  14905. if (src0->grad) {
  14906. const int n_past = ((int32_t *) tensor->op_params)[0];
  14907. src0->grad =
  14908. ggml_add_or_set(ctx, src0->grad,
  14909. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14910. zero_table);
  14911. }
  14912. } break;
  14913. case GGML_OP_SOFT_MAX:
  14914. {
  14915. // necessary for llama
  14916. if (src0->grad) {
  14917. src0->grad =
  14918. ggml_add_or_set(ctx, src0->grad,
  14919. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14920. zero_table);
  14921. }
  14922. } break;
  14923. case GGML_OP_SOFT_MAX_BACK:
  14924. {
  14925. GGML_ASSERT(false); // TODO: not implemented
  14926. } break;
  14927. case GGML_OP_ROPE:
  14928. {
  14929. // necessary for llama
  14930. if (src0->grad) {
  14931. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14932. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14933. const int mode = ((int32_t *) tensor->op_params)[2];
  14934. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14935. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14936. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14937. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14938. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14939. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14940. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14941. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14942. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14943. src0->grad = ggml_add_or_set(ctx,
  14944. src0->grad,
  14945. ggml_rope_back(ctx,
  14946. tensor->grad,
  14947. src1,
  14948. src2,
  14949. n_dims,
  14950. mode,
  14951. n_ctx_orig,
  14952. freq_base,
  14953. freq_scale,
  14954. ext_factor,
  14955. attn_factor,
  14956. beta_fast,
  14957. beta_slow),
  14958. zero_table);
  14959. }
  14960. } break;
  14961. case GGML_OP_ROPE_BACK:
  14962. {
  14963. if (src0->grad) {
  14964. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14965. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14966. const int mode = ((int32_t *) tensor->op_params)[2];
  14967. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14968. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14969. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14970. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14971. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14972. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14973. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14974. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14975. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14976. src0->grad = ggml_add_or_set(ctx,
  14977. src0->grad,
  14978. ggml_rope_impl(ctx,
  14979. tensor->grad,
  14980. src1,
  14981. src2,
  14982. n_dims,
  14983. mode,
  14984. n_ctx_orig,
  14985. freq_base,
  14986. freq_scale,
  14987. ext_factor,
  14988. attn_factor,
  14989. beta_fast,
  14990. beta_slow,
  14991. false),
  14992. zero_table);
  14993. }
  14994. } break;
  14995. case GGML_OP_CLAMP:
  14996. {
  14997. GGML_ASSERT(false); // TODO: not implemented
  14998. } break;
  14999. case GGML_OP_CONV_TRANSPOSE_1D:
  15000. {
  15001. GGML_ASSERT(false); // TODO: not implemented
  15002. } break;
  15003. case GGML_OP_IM2COL:
  15004. {
  15005. GGML_ASSERT(false); // TODO: not implemented
  15006. } break;
  15007. case GGML_OP_CONV_TRANSPOSE_2D:
  15008. {
  15009. GGML_ASSERT(false); // TODO: not implemented
  15010. } break;
  15011. case GGML_OP_POOL_1D:
  15012. {
  15013. GGML_ASSERT(false); // TODO: not implemented
  15014. } break;
  15015. case GGML_OP_POOL_2D:
  15016. {
  15017. GGML_ASSERT(false); // TODO: not implemented
  15018. } break;
  15019. case GGML_OP_UPSCALE:
  15020. {
  15021. GGML_ASSERT(false); // TODO: not implemented
  15022. } break;
  15023. case GGML_OP_PAD:
  15024. {
  15025. GGML_ASSERT(false); // TODO: not implemented
  15026. } break;
  15027. case GGML_OP_ARANGE:
  15028. {
  15029. GGML_ASSERT(false); // TODO: not implemented
  15030. } break;
  15031. case GGML_OP_TIMESTEP_EMBEDDING:
  15032. {
  15033. GGML_ASSERT(false); // TODO: not implemented
  15034. } break;
  15035. case GGML_OP_ARGSORT:
  15036. {
  15037. GGML_ASSERT(false); // TODO: not implemented
  15038. } break;
  15039. case GGML_OP_LEAKY_RELU:
  15040. {
  15041. GGML_ASSERT(false); // TODO: not implemented
  15042. } break;
  15043. case GGML_OP_FLASH_ATTN_EXT:
  15044. {
  15045. struct ggml_tensor * flash_grad = NULL;
  15046. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15047. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15048. GGML_ASSERT(t == 0 || t == 1);
  15049. bool masked = t != 0;
  15050. flash_grad =
  15051. ggml_flash_attn_back(ctx,
  15052. src0,
  15053. src1,
  15054. tensor->src[2],
  15055. tensor->grad,
  15056. masked);
  15057. }
  15058. const int64_t elem_q = ggml_nelements(src0);
  15059. const int64_t elem_k = ggml_nelements(src1);
  15060. const int64_t elem_v = ggml_nelements(src2);
  15061. enum ggml_type result_type = flash_grad->type;
  15062. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15063. const size_t tsize = ggml_type_size(result_type);
  15064. const size_t offs_q = 0;
  15065. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15066. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15067. if (src0->grad) {
  15068. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15069. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15070. src0->grad = ggml_add_or_set(ctx,
  15071. src0->grad,
  15072. grad_q,
  15073. zero_table);
  15074. }
  15075. if (src1->grad) {
  15076. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15077. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15078. src1->grad = ggml_add_or_set(ctx,
  15079. src1->grad,
  15080. grad_k,
  15081. zero_table);
  15082. }
  15083. if (src2->grad) {
  15084. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15085. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15086. src2->grad = ggml_add_or_set(ctx,
  15087. src2->grad,
  15088. grad_v,
  15089. zero_table);
  15090. }
  15091. } break;
  15092. case GGML_OP_FLASH_ATTN_BACK:
  15093. {
  15094. GGML_ASSERT(false); // not supported
  15095. } break;
  15096. case GGML_OP_SSM_CONV:
  15097. case GGML_OP_SSM_SCAN:
  15098. {
  15099. GGML_ASSERT(false); // TODO: not implemented
  15100. } break;
  15101. case GGML_OP_WIN_PART:
  15102. case GGML_OP_WIN_UNPART:
  15103. case GGML_OP_UNARY:
  15104. {
  15105. switch (ggml_get_unary_op(tensor)) {
  15106. case GGML_UNARY_OP_ABS:
  15107. {
  15108. if (src0->grad) {
  15109. src0->grad =
  15110. ggml_add_or_set(ctx,
  15111. src0->grad,
  15112. ggml_mul(ctx,
  15113. ggml_sgn(ctx, src0),
  15114. tensor->grad),
  15115. zero_table);
  15116. }
  15117. } break;
  15118. case GGML_UNARY_OP_SGN:
  15119. {
  15120. if (src0->grad) {
  15121. // noop
  15122. }
  15123. } break;
  15124. case GGML_UNARY_OP_NEG:
  15125. {
  15126. if (src0->grad) {
  15127. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15128. }
  15129. } break;
  15130. case GGML_UNARY_OP_STEP:
  15131. {
  15132. if (src0->grad) {
  15133. // noop
  15134. }
  15135. } break;
  15136. case GGML_UNARY_OP_TANH:
  15137. {
  15138. GGML_ASSERT(false); // TODO: not implemented
  15139. } break;
  15140. case GGML_UNARY_OP_ELU:
  15141. {
  15142. GGML_ASSERT(false); // TODO: not implemented
  15143. } break;
  15144. case GGML_UNARY_OP_RELU:
  15145. {
  15146. if (src0->grad) {
  15147. src0->grad = ggml_add_or_set(ctx,
  15148. src0->grad,
  15149. ggml_mul(ctx,
  15150. ggml_step(ctx, src0),
  15151. tensor->grad),
  15152. zero_table);
  15153. }
  15154. } break;
  15155. case GGML_UNARY_OP_SIGMOID:
  15156. {
  15157. GGML_ASSERT(false); // TODO: not implemented
  15158. } break;
  15159. case GGML_UNARY_OP_GELU:
  15160. {
  15161. GGML_ASSERT(false); // TODO: not implemented
  15162. } break;
  15163. case GGML_UNARY_OP_GELU_QUICK:
  15164. {
  15165. GGML_ASSERT(false); // TODO: not implemented
  15166. } break;
  15167. case GGML_UNARY_OP_SILU:
  15168. {
  15169. // necessary for llama
  15170. if (src0->grad) {
  15171. src0->grad = ggml_add_or_set(ctx,
  15172. src0->grad,
  15173. ggml_silu_back(ctx, src0, tensor->grad),
  15174. zero_table);
  15175. }
  15176. } break;
  15177. default:
  15178. GGML_ASSERT(false);
  15179. }
  15180. } break;
  15181. case GGML_OP_GET_REL_POS:
  15182. case GGML_OP_ADD_REL_POS:
  15183. case GGML_OP_MAP_UNARY:
  15184. case GGML_OP_MAP_BINARY:
  15185. case GGML_OP_MAP_CUSTOM1_F32:
  15186. case GGML_OP_MAP_CUSTOM2_F32:
  15187. case GGML_OP_MAP_CUSTOM3_F32:
  15188. case GGML_OP_MAP_CUSTOM1:
  15189. case GGML_OP_MAP_CUSTOM2:
  15190. case GGML_OP_MAP_CUSTOM3:
  15191. {
  15192. GGML_ASSERT(false); // not supported
  15193. } break;
  15194. case GGML_OP_CROSS_ENTROPY_LOSS:
  15195. {
  15196. if (src0->grad) {
  15197. src0->grad = ggml_add_or_set(ctx,
  15198. src0->grad,
  15199. ggml_cross_entropy_loss_back(ctx,
  15200. src0,
  15201. src1,
  15202. tensor->grad),
  15203. zero_table);
  15204. }
  15205. } break;
  15206. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15207. {
  15208. GGML_ASSERT(false); // not supported
  15209. } break;
  15210. case GGML_OP_NONE:
  15211. {
  15212. // nop
  15213. } break;
  15214. case GGML_OP_COUNT:
  15215. {
  15216. GGML_ASSERT(false);
  15217. } break;
  15218. }
  15219. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15220. if (tensor->src[i] && tensor->src[i]->grad) {
  15221. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15222. }
  15223. }
  15224. }
  15225. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15226. if (node->grad == NULL) {
  15227. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15228. // it can also happen during forward pass, if the user performs computations with constants
  15229. if (node->op != GGML_OP_NONE) {
  15230. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15231. }
  15232. }
  15233. // check if already visited
  15234. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15235. return;
  15236. }
  15237. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15238. const int k =
  15239. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15240. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15241. /* unknown order, just fall back to using i*/ i;
  15242. if (node->src[k]) {
  15243. ggml_visit_parents(cgraph, node->src[k]);
  15244. }
  15245. }
  15246. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15247. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15248. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15249. if (strlen(node->name) == 0) {
  15250. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15251. }
  15252. cgraph->leafs[cgraph->n_leafs] = node;
  15253. cgraph->n_leafs++;
  15254. } else {
  15255. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15256. if (strlen(node->name) == 0) {
  15257. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15258. }
  15259. cgraph->nodes[cgraph->n_nodes] = node;
  15260. if (cgraph->grads) {
  15261. cgraph->grads[cgraph->n_nodes] = node->grad;
  15262. }
  15263. cgraph->n_nodes++;
  15264. }
  15265. }
  15266. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15267. if (!expand) {
  15268. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15269. ggml_graph_clear(cgraph);
  15270. }
  15271. const int n0 = cgraph->n_nodes;
  15272. UNUSED(n0);
  15273. ggml_visit_parents(cgraph, tensor);
  15274. const int n_new = cgraph->n_nodes - n0;
  15275. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15276. if (n_new > 0) {
  15277. // the last added node should always be starting point
  15278. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15279. }
  15280. }
  15281. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15282. ggml_build_forward_impl(cgraph, tensor, true);
  15283. }
  15284. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15285. GGML_ASSERT(gf->n_nodes > 0);
  15286. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15287. if (keep) {
  15288. for (int i = 0; i < gf->n_nodes; i++) {
  15289. struct ggml_tensor * node = gf->nodes[i];
  15290. if (node->grad) {
  15291. node->grad = ggml_dup_tensor(ctx, node);
  15292. gf->grads[i] = node->grad;
  15293. }
  15294. }
  15295. }
  15296. // remember original gradients which start with zero values
  15297. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15298. for (int i = 0; i < gf->n_nodes; i++) {
  15299. if (gf->grads[i]) {
  15300. ggml_hash_insert(zero_table, gf->grads[i]);
  15301. }
  15302. }
  15303. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15304. struct ggml_tensor * node = gf->nodes[i];
  15305. // inplace operations to add gradients are not created by ggml_compute_backward
  15306. // use allocator to automatically make inplace operations
  15307. if (node->grad) {
  15308. ggml_compute_backward(ctx, node, zero_table);
  15309. }
  15310. }
  15311. for (int i = 0; i < gf->n_nodes; i++) {
  15312. struct ggml_tensor * node = gf->nodes[i];
  15313. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15314. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15315. ggml_build_forward_expand(gb, node->grad);
  15316. }
  15317. }
  15318. ggml_hash_set_free(zero_table);
  15319. }
  15320. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15321. size_t nbytes = sizeof(struct ggml_cgraph);
  15322. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15323. if (grads) {
  15324. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15325. }
  15326. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15327. return nbytes;
  15328. }
  15329. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15330. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15331. }
  15332. size_t ggml_graph_overhead(void) {
  15333. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15334. }
  15335. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15336. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15337. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15338. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15339. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15340. size_t hash_size = ggml_hash_size(size * 2);
  15341. struct ggml_tensor ** nodes_ptr = data_start;
  15342. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15343. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15344. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15345. // check that we allocated the correct amount of memory
  15346. assert(obj_size == (size_t) (
  15347. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15348. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15349. *cgraph = (struct ggml_cgraph) {
  15350. /*.size =*/ size,
  15351. /*.n_nodes =*/ 0,
  15352. /*.n_leafs =*/ 0,
  15353. /*.nodes =*/ nodes_ptr,
  15354. /*.grads =*/ grads_ptr,
  15355. /*.leafs =*/ leafs_ptr,
  15356. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15357. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15358. /*.perf_runs =*/ 0,
  15359. /*.perf_cycles =*/ 0,
  15360. /*.perf_time_us =*/ 0,
  15361. };
  15362. return cgraph;
  15363. }
  15364. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15365. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15366. }
  15367. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15368. struct ggml_cgraph cgraph = {
  15369. /*.size =*/ 0,
  15370. /*.n_nodes =*/ i1 - i0,
  15371. /*.n_leafs =*/ 0,
  15372. /*.nodes =*/ cgraph0->nodes + i0,
  15373. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15374. /*.leafs =*/ NULL,
  15375. /*.hash_table =*/ { 0, NULL },
  15376. /*.order =*/ cgraph0->order,
  15377. /*.perf_runs =*/ 0,
  15378. /*.perf_cycles =*/ 0,
  15379. /*.perf_time_us =*/ 0,
  15380. };
  15381. return cgraph;
  15382. }
  15383. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15384. GGML_ASSERT(dst->size >= src->n_leafs);
  15385. GGML_ASSERT(dst->size >= src->n_nodes);
  15386. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15387. dst->n_leafs = src->n_leafs;
  15388. dst->n_nodes = src->n_nodes;
  15389. dst->order = src->order;
  15390. for (int i = 0; i < src->n_leafs; ++i) {
  15391. dst->leafs[i] = src->leafs[i];
  15392. }
  15393. for (int i = 0; i < src->n_nodes; ++i) {
  15394. dst->nodes[i] = src->nodes[i];
  15395. }
  15396. if (src->grads) {
  15397. GGML_ASSERT(dst->grads != NULL);
  15398. for (int i = 0; i < src->n_nodes; ++i) {
  15399. dst->grads[i] = src->grads[i];
  15400. }
  15401. }
  15402. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15403. if (src->visited_hash_table.keys[i]) {
  15404. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15405. }
  15406. }
  15407. }
  15408. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15409. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15410. ggml_graph_cpy(cgraph, result);
  15411. return result;
  15412. }
  15413. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15414. GGML_ASSERT(cgraph->grads != NULL);
  15415. for (int i = 0; i < cgraph->n_nodes; i++) {
  15416. struct ggml_tensor * grad = cgraph->grads[i];
  15417. if (grad) {
  15418. ggml_set_zero(grad);
  15419. }
  15420. }
  15421. }
  15422. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15423. cgraph->n_leafs = 0;
  15424. cgraph->n_nodes = 0;
  15425. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15426. }
  15427. //
  15428. // thread data
  15429. //
  15430. // synchronization is done via busy loops
  15431. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15432. //
  15433. #ifdef __APPLE__
  15434. //#include <os/lock.h>
  15435. //
  15436. //typedef os_unfair_lock ggml_lock_t;
  15437. //
  15438. //#define ggml_lock_init(x) UNUSED(x)
  15439. //#define ggml_lock_destroy(x) UNUSED(x)
  15440. //#define ggml_lock_lock os_unfair_lock_lock
  15441. //#define ggml_lock_unlock os_unfair_lock_unlock
  15442. //
  15443. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15444. typedef int ggml_lock_t;
  15445. #define ggml_lock_init(x) UNUSED(x)
  15446. #define ggml_lock_destroy(x) UNUSED(x)
  15447. #define ggml_lock_lock(x) UNUSED(x)
  15448. #define ggml_lock_unlock(x) UNUSED(x)
  15449. #define GGML_LOCK_INITIALIZER 0
  15450. #define ggml_thread_create pthread_create
  15451. #define ggml_thread_join pthread_join
  15452. #else
  15453. //typedef pthread_spinlock_t ggml_lock_t;
  15454. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15455. //#define ggml_lock_destroy pthread_spin_destroy
  15456. //#define ggml_lock_lock pthread_spin_lock
  15457. //#define ggml_lock_unlock pthread_spin_unlock
  15458. typedef int ggml_lock_t;
  15459. #define ggml_lock_init(x) UNUSED(x)
  15460. #define ggml_lock_destroy(x) UNUSED(x)
  15461. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15462. #define ggml_lock_lock(x) _mm_pause()
  15463. #else
  15464. #define ggml_lock_lock(x) UNUSED(x)
  15465. #endif
  15466. #define ggml_lock_unlock(x) UNUSED(x)
  15467. #define GGML_LOCK_INITIALIZER 0
  15468. #define ggml_thread_create pthread_create
  15469. #define ggml_thread_join pthread_join
  15470. #endif
  15471. // Android's libc implementation "bionic" does not support setting affinity
  15472. #if defined(__gnu_linux__)
  15473. static void set_numa_thread_affinity(int thread_n) {
  15474. if (!ggml_is_numa()) {
  15475. return;
  15476. }
  15477. int node_num;
  15478. int rv;
  15479. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15480. switch(g_state.numa.numa_strategy) {
  15481. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15482. // run thread on node_num thread_n / (threads per node)
  15483. node_num = thread_n % g_state.numa.n_nodes;
  15484. break;
  15485. case GGML_NUMA_STRATEGY_ISOLATE:
  15486. // run thread on current_node
  15487. node_num = g_state.numa.current_node;
  15488. break;
  15489. case GGML_NUMA_STRATEGY_NUMACTL:
  15490. // use the cpuset that numactl gave us
  15491. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15492. if (rv) {
  15493. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15494. }
  15495. return;
  15496. default:
  15497. return;
  15498. }
  15499. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15500. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15501. CPU_ZERO_S(setsize, cpus);
  15502. for (size_t i = 0; i < node->n_cpus; ++i) {
  15503. CPU_SET_S(node->cpus[i], setsize, cpus);
  15504. }
  15505. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15506. if (rv) {
  15507. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15508. }
  15509. CPU_FREE(cpus);
  15510. }
  15511. static void clear_numa_thread_affinity(void) {
  15512. if (!ggml_is_numa()) {
  15513. return;
  15514. }
  15515. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15516. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15517. CPU_ZERO_S(setsize, cpus);
  15518. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15519. CPU_SET_S(i, setsize, cpus);
  15520. }
  15521. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15522. if (rv) {
  15523. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15524. }
  15525. CPU_FREE(cpus);
  15526. }
  15527. #else
  15528. // TODO: Windows etc.
  15529. // (the linux implementation may also work on BSD, someone should test)
  15530. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15531. static void clear_numa_thread_affinity(void) {}
  15532. #endif
  15533. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15534. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15535. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15536. node->perf_runs++;
  15537. node->perf_cycles += cycles_cur;
  15538. node->perf_time_us += time_us_cur;
  15539. }
  15540. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15541. int n_tasks = 0;
  15542. if (ggml_is_empty(node)) {
  15543. // no need to multi-thread a no-op
  15544. n_tasks = 1;
  15545. return n_tasks;
  15546. }
  15547. switch (node->op) {
  15548. case GGML_OP_CPY:
  15549. case GGML_OP_DUP:
  15550. case GGML_OP_ADD:
  15551. case GGML_OP_ADD1:
  15552. case GGML_OP_ACC:
  15553. {
  15554. n_tasks = n_threads;
  15555. } break;
  15556. case GGML_OP_SUB:
  15557. case GGML_OP_SQR:
  15558. case GGML_OP_SQRT:
  15559. case GGML_OP_LOG:
  15560. case GGML_OP_SUM:
  15561. case GGML_OP_SUM_ROWS:
  15562. case GGML_OP_MEAN:
  15563. case GGML_OP_ARGMAX:
  15564. case GGML_OP_REPEAT:
  15565. case GGML_OP_REPEAT_BACK:
  15566. case GGML_OP_LEAKY_RELU:
  15567. {
  15568. n_tasks = 1;
  15569. } break;
  15570. case GGML_OP_UNARY:
  15571. switch (ggml_get_unary_op(node)) {
  15572. case GGML_UNARY_OP_ABS:
  15573. case GGML_UNARY_OP_SGN:
  15574. case GGML_UNARY_OP_NEG:
  15575. case GGML_UNARY_OP_STEP:
  15576. case GGML_UNARY_OP_TANH:
  15577. case GGML_UNARY_OP_ELU:
  15578. case GGML_UNARY_OP_RELU:
  15579. case GGML_UNARY_OP_SIGMOID:
  15580. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15581. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15582. {
  15583. n_tasks = 1;
  15584. } break;
  15585. case GGML_UNARY_OP_GELU:
  15586. case GGML_UNARY_OP_GELU_QUICK:
  15587. case GGML_UNARY_OP_SILU:
  15588. {
  15589. n_tasks = n_threads;
  15590. } break;
  15591. default:
  15592. GGML_ASSERT(false);
  15593. }
  15594. break;
  15595. case GGML_OP_SILU_BACK:
  15596. case GGML_OP_MUL:
  15597. case GGML_OP_DIV:
  15598. case GGML_OP_NORM:
  15599. case GGML_OP_RMS_NORM:
  15600. case GGML_OP_RMS_NORM_BACK:
  15601. case GGML_OP_GROUP_NORM:
  15602. case GGML_OP_CONCAT:
  15603. {
  15604. n_tasks = n_threads;
  15605. } break;
  15606. case GGML_OP_MUL_MAT:
  15607. {
  15608. n_tasks = n_threads;
  15609. // TODO: use different scheduling for different matrix sizes
  15610. //const int nr0 = ggml_nrows(node->src[0]);
  15611. //const int nr1 = ggml_nrows(node->src[1]);
  15612. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15613. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15614. } break;
  15615. case GGML_OP_MUL_MAT_ID:
  15616. {
  15617. n_tasks = n_threads;
  15618. } break;
  15619. case GGML_OP_OUT_PROD:
  15620. {
  15621. n_tasks = n_threads;
  15622. } break;
  15623. case GGML_OP_GET_ROWS:
  15624. {
  15625. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15626. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15627. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15628. } break;
  15629. case GGML_OP_SCALE:
  15630. case GGML_OP_SET:
  15631. case GGML_OP_CONT:
  15632. case GGML_OP_RESHAPE:
  15633. case GGML_OP_VIEW:
  15634. case GGML_OP_PERMUTE:
  15635. case GGML_OP_TRANSPOSE:
  15636. case GGML_OP_GET_ROWS_BACK:
  15637. case GGML_OP_DIAG:
  15638. {
  15639. n_tasks = 1;
  15640. } break;
  15641. case GGML_OP_DIAG_MASK_ZERO:
  15642. case GGML_OP_DIAG_MASK_INF:
  15643. case GGML_OP_SOFT_MAX_BACK:
  15644. case GGML_OP_ROPE:
  15645. case GGML_OP_ROPE_BACK:
  15646. case GGML_OP_ADD_REL_POS:
  15647. {
  15648. n_tasks = n_threads;
  15649. } break;
  15650. case GGML_OP_CLAMP:
  15651. {
  15652. n_tasks = 1; //TODO
  15653. } break;
  15654. case GGML_OP_SOFT_MAX:
  15655. {
  15656. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15657. } break;
  15658. case GGML_OP_CONV_TRANSPOSE_1D:
  15659. {
  15660. n_tasks = n_threads;
  15661. } break;
  15662. case GGML_OP_IM2COL:
  15663. {
  15664. n_tasks = n_threads;
  15665. } break;
  15666. case GGML_OP_CONV_TRANSPOSE_2D:
  15667. {
  15668. n_tasks = n_threads;
  15669. } break;
  15670. case GGML_OP_POOL_1D:
  15671. case GGML_OP_POOL_2D:
  15672. {
  15673. n_tasks = 1;
  15674. } break;
  15675. case GGML_OP_UPSCALE:
  15676. {
  15677. n_tasks = n_threads;
  15678. } break;
  15679. case GGML_OP_PAD:
  15680. {
  15681. n_tasks = n_threads;
  15682. } break;
  15683. case GGML_OP_ARANGE:
  15684. {
  15685. n_tasks = n_threads;
  15686. } break;
  15687. case GGML_OP_TIMESTEP_EMBEDDING:
  15688. {
  15689. n_tasks = n_threads;
  15690. } break;
  15691. case GGML_OP_ARGSORT:
  15692. {
  15693. n_tasks = n_threads;
  15694. } break;
  15695. case GGML_OP_FLASH_ATTN_EXT:
  15696. {
  15697. n_tasks = n_threads;
  15698. } break;
  15699. case GGML_OP_FLASH_ATTN_BACK:
  15700. {
  15701. n_tasks = n_threads;
  15702. } break;
  15703. case GGML_OP_SSM_CONV:
  15704. case GGML_OP_SSM_SCAN:
  15705. {
  15706. n_tasks = n_threads;
  15707. } break;
  15708. case GGML_OP_WIN_PART:
  15709. case GGML_OP_WIN_UNPART:
  15710. case GGML_OP_GET_REL_POS:
  15711. case GGML_OP_MAP_UNARY:
  15712. case GGML_OP_MAP_BINARY:
  15713. case GGML_OP_MAP_CUSTOM1_F32:
  15714. case GGML_OP_MAP_CUSTOM2_F32:
  15715. case GGML_OP_MAP_CUSTOM3_F32:
  15716. {
  15717. n_tasks = 1;
  15718. } break;
  15719. case GGML_OP_MAP_CUSTOM1:
  15720. {
  15721. struct ggml_map_custom1_op_params p;
  15722. memcpy(&p, node->op_params, sizeof(p));
  15723. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15724. n_tasks = n_threads;
  15725. } else {
  15726. n_tasks = MIN(p.n_tasks, n_threads);
  15727. }
  15728. } break;
  15729. case GGML_OP_MAP_CUSTOM2:
  15730. {
  15731. struct ggml_map_custom2_op_params p;
  15732. memcpy(&p, node->op_params, sizeof(p));
  15733. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15734. n_tasks = n_threads;
  15735. } else {
  15736. n_tasks = MIN(p.n_tasks, n_threads);
  15737. }
  15738. } break;
  15739. case GGML_OP_MAP_CUSTOM3:
  15740. {
  15741. struct ggml_map_custom3_op_params p;
  15742. memcpy(&p, node->op_params, sizeof(p));
  15743. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15744. n_tasks = n_threads;
  15745. } else {
  15746. n_tasks = MIN(p.n_tasks, n_threads);
  15747. }
  15748. } break;
  15749. case GGML_OP_CROSS_ENTROPY_LOSS:
  15750. {
  15751. n_tasks = n_threads;
  15752. } break;
  15753. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15754. {
  15755. n_tasks = n_threads;
  15756. } break;
  15757. case GGML_OP_NONE:
  15758. {
  15759. n_tasks = 1;
  15760. } break;
  15761. case GGML_OP_COUNT:
  15762. {
  15763. GGML_ASSERT(false);
  15764. } break;
  15765. default:
  15766. {
  15767. fprintf(stderr, "%s: op not implemented: ", __func__);
  15768. if (node->op < GGML_OP_COUNT) {
  15769. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15770. } else {
  15771. fprintf(stderr, "%d\n", node->op);
  15772. }
  15773. GGML_ASSERT(false);
  15774. } break;
  15775. }
  15776. assert(n_tasks > 0);
  15777. return n_tasks;
  15778. }
  15779. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15780. // wait for other threads to finish
  15781. const int last_node_n = * node_n;
  15782. while (true) {
  15783. if (do_yield) {
  15784. sched_yield();
  15785. }
  15786. * node_n = atomic_load(&state->shared->node_n);
  15787. if (* node_n != last_node_n) break;
  15788. #if defined(__SSE3__)
  15789. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15790. _mm_pause();
  15791. #endif
  15792. }
  15793. }
  15794. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15795. // wait for other threads to finish
  15796. const int last_task_phase = * task_phase;
  15797. while (true) {
  15798. if (do_yield) {
  15799. sched_yield();
  15800. }
  15801. * task_phase = atomic_load(&state->shared->node_task);
  15802. if (* task_phase != last_task_phase) break;
  15803. #if defined(__SSE3__)
  15804. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15805. _mm_pause();
  15806. #endif
  15807. }
  15808. }
  15809. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15810. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15811. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15812. const struct ggml_cplan * cplan = state->shared->cplan;
  15813. const int n_threads = state->shared->n_threads;
  15814. set_numa_thread_affinity(state->ith);
  15815. int node_n = -1;
  15816. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15817. while (true) {
  15818. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15819. state->shared->node_n += 1;
  15820. state->ec = GGML_STATUS_ABORTED;
  15821. return 0;
  15822. }
  15823. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15824. // all other threads are finished and spinning
  15825. // do finalize and init here so we don't have synchronize again
  15826. struct ggml_compute_params params = {
  15827. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15828. /*.ith =*/ 0,
  15829. /*.nth =*/ 0,
  15830. /*.wsize =*/ cplan->work_size,
  15831. /*.wdata =*/ cplan->work_data,
  15832. };
  15833. if (node_n != -1) {
  15834. /* FINALIZE */
  15835. struct ggml_tensor * node = cgraph->nodes[node_n];
  15836. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15837. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15838. ggml_compute_forward(&params, node, state);
  15839. }
  15840. ggml_graph_compute_perf_stats_node(node, state->shared);
  15841. }
  15842. // distribute new work or execute it direct if 1T
  15843. while (++node_n < cgraph->n_nodes) {
  15844. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15845. struct ggml_tensor * node = cgraph->nodes[node_n];
  15846. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15847. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15848. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15849. params.nth = n_tasks;
  15850. if (n_tasks == 1) {
  15851. /* INIT */
  15852. if (GGML_OP_HAS_INIT[node->op]) {
  15853. params.type = GGML_TASK_TYPE_INIT;
  15854. ggml_compute_forward(&params, node, state);
  15855. }
  15856. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15857. // they do something more efficient than spinning (?)
  15858. params.type = GGML_TASK_TYPE_COMPUTE;
  15859. ggml_compute_forward(&params, node, state);
  15860. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15861. params.type = GGML_TASK_TYPE_FINALIZE;
  15862. ggml_compute_forward(&params, node, state);
  15863. }
  15864. ggml_graph_compute_perf_stats_node(node, state->shared);
  15865. } else {
  15866. break;
  15867. }
  15868. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15869. break;
  15870. }
  15871. }
  15872. task_phase = GGML_TASK_TYPE_INIT;
  15873. atomic_store(&state->shared->n_active, n_threads);
  15874. atomic_store(&state->shared->node_n, node_n);
  15875. atomic_store(&state->shared->node_task, task_phase);
  15876. } else {
  15877. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15878. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15879. }
  15880. // check if we should stop
  15881. if (node_n >= cgraph->n_nodes) break;
  15882. /* INIT & COMPUTE */
  15883. struct ggml_tensor * node = cgraph->nodes[node_n];
  15884. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15885. struct ggml_compute_params params = {
  15886. /*.type =*/ GGML_TASK_TYPE_INIT,
  15887. /*.ith =*/ state->ith,
  15888. /*.nth =*/ n_tasks,
  15889. /*.wsize =*/ cplan->work_size,
  15890. /*.wdata =*/ cplan->work_data,
  15891. };
  15892. if (state->ith < n_tasks) {
  15893. if (GGML_OP_HAS_INIT[node->op]) {
  15894. ggml_compute_forward(&params, node, state);
  15895. }
  15896. }
  15897. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15898. task_phase = GGML_TASK_TYPE_COMPUTE;
  15899. atomic_store(&state->shared->n_active, n_threads);
  15900. atomic_store(&state->shared->node_task, task_phase);
  15901. }
  15902. else {
  15903. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15904. // depending on the workload and the operating system.
  15905. // since it is not clear what is the best approach, it should potentially become user-configurable
  15906. // ref: https://github.com/ggerganov/ggml/issues/291
  15907. // UPD: adding the do_yield flag seems to resolve the issue universally
  15908. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15909. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15910. }
  15911. if (state->ith < n_tasks) {
  15912. params.type = GGML_TASK_TYPE_COMPUTE;
  15913. ggml_compute_forward(&params, node, state);
  15914. }
  15915. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15916. task_phase = GGML_TASK_TYPE_FINALIZE;
  15917. atomic_store(&state->shared->n_active, n_threads);
  15918. atomic_store(&state->shared->node_task, task_phase);
  15919. }
  15920. else {
  15921. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15922. }
  15923. }
  15924. return 0;
  15925. }
  15926. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15927. if (n_threads <= 0) {
  15928. n_threads = GGML_DEFAULT_N_THREADS;
  15929. }
  15930. size_t work_size = 0;
  15931. struct ggml_cplan cplan;
  15932. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15933. int max_tasks = 1;
  15934. // thread scheduling for the different operations + work buffer size estimation
  15935. for (int i = 0; i < cgraph->n_nodes; i++) {
  15936. struct ggml_tensor * node = cgraph->nodes[i];
  15937. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15938. max_tasks = MAX(max_tasks, n_tasks);
  15939. size_t cur = 0;
  15940. switch (node->op) {
  15941. case GGML_OP_CPY:
  15942. case GGML_OP_DUP:
  15943. {
  15944. if (ggml_is_quantized(node->type) ||
  15945. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15946. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15947. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15948. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15949. }
  15950. } break;
  15951. case GGML_OP_ADD:
  15952. case GGML_OP_ADD1:
  15953. {
  15954. if (ggml_is_quantized(node->src[0]->type)) {
  15955. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15956. }
  15957. } break;
  15958. case GGML_OP_ACC:
  15959. {
  15960. if (ggml_is_quantized(node->src[0]->type)) {
  15961. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15962. }
  15963. } break;
  15964. case GGML_OP_MUL_MAT:
  15965. {
  15966. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15967. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15968. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15969. if (node->src[0]->type != GGML_TYPE_F32) {
  15970. // here we need memory for fully dequantized matrix from src0
  15971. // take into account that src0 can be broadcasted into src1[2,3]
  15972. cur = ggml_type_size(GGML_TYPE_F32)
  15973. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15974. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15975. }
  15976. } else
  15977. #endif
  15978. if (node->src[1]->type != vec_dot_type) {
  15979. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15980. }
  15981. } break;
  15982. case GGML_OP_MUL_MAT_ID:
  15983. {
  15984. cur = 0;
  15985. const struct ggml_tensor * src0 = node->src[0];
  15986. const struct ggml_tensor * src1 = node->src[1];
  15987. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15988. if (src1->type != vec_dot_type) {
  15989. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15990. }
  15991. const int n_as = src0->ne[2];
  15992. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15993. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15994. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15995. } break;
  15996. case GGML_OP_OUT_PROD:
  15997. {
  15998. if (ggml_is_quantized(node->src[0]->type)) {
  15999. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16000. }
  16001. } break;
  16002. case GGML_OP_SOFT_MAX:
  16003. case GGML_OP_ROPE:
  16004. {
  16005. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16006. } break;
  16007. case GGML_OP_CONV_TRANSPOSE_1D:
  16008. {
  16009. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16010. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16011. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16012. const int64_t ne00 = node->src[0]->ne[0]; // K
  16013. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16014. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16015. const int64_t ne10 = node->src[1]->ne[0]; // L
  16016. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16017. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16018. node->src[0]->type == GGML_TYPE_BF16) &&
  16019. node->src[1]->type == GGML_TYPE_F32) {
  16020. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16021. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16022. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16023. node->src[1]->type == GGML_TYPE_F32) {
  16024. cur += sizeof(float)*ne00*ne01*ne02;
  16025. cur += sizeof(float)*ne10*ne11;
  16026. } else {
  16027. GGML_ASSERT(false);
  16028. }
  16029. } break;
  16030. case GGML_OP_CONV_TRANSPOSE_2D:
  16031. {
  16032. const int64_t ne00 = node->src[0]->ne[0]; // W
  16033. const int64_t ne01 = node->src[0]->ne[1]; // H
  16034. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16035. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16036. const int64_t ne10 = node->src[1]->ne[0]; // W
  16037. const int64_t ne11 = node->src[1]->ne[1]; // H
  16038. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16039. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16040. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16041. } break;
  16042. case GGML_OP_FLASH_ATTN_EXT:
  16043. {
  16044. const int64_t ne00 = node->src[0]->ne[0]; // D
  16045. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16046. } break;
  16047. case GGML_OP_FLASH_ATTN_BACK:
  16048. {
  16049. const int64_t D = node->src[0]->ne[0];
  16050. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16051. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16052. if (node->src[1]->type == GGML_TYPE_F32) {
  16053. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16054. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16055. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16056. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16057. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16058. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16059. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16060. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16061. }
  16062. } break;
  16063. case GGML_OP_CROSS_ENTROPY_LOSS:
  16064. {
  16065. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16066. } break;
  16067. case GGML_OP_COUNT:
  16068. {
  16069. GGML_ASSERT(false);
  16070. } break;
  16071. default:
  16072. break;
  16073. }
  16074. work_size = MAX(work_size, cur);
  16075. }
  16076. if (work_size > 0) {
  16077. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16078. }
  16079. cplan.n_threads = MIN(max_tasks, n_threads);
  16080. cplan.work_size = work_size;
  16081. cplan.work_data = NULL;
  16082. return cplan;
  16083. }
  16084. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  16085. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  16086. #ifdef GGML_USE_OPENMP
  16087. if (n_threads > 1) {
  16088. #pragma omp parallel num_threads(n_threads)
  16089. {
  16090. #pragma omp single
  16091. {
  16092. // update the number of threads from the actual number of threads that we got from OpenMP
  16093. n_threads = omp_get_num_threads();
  16094. workers[0].shared->n_threads = n_threads;
  16095. workers[0].shared->n_active = n_threads;
  16096. }
  16097. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  16098. }
  16099. } else {
  16100. ggml_graph_compute_thread(&workers[0]);
  16101. }
  16102. #else
  16103. // create thread pool
  16104. if (n_threads > 1) {
  16105. for (int j = 1; j < n_threads; ++j) {
  16106. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16107. GGML_ASSERT(rc == 0);
  16108. UNUSED(rc);
  16109. }
  16110. }
  16111. // this is a work thread too
  16112. ggml_graph_compute_thread(&workers[0]);
  16113. // join or kill thread pool
  16114. if (n_threads > 1) {
  16115. for (int j = 1; j < n_threads; j++) {
  16116. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16117. GGML_ASSERT(rc == 0);
  16118. UNUSED(rc);
  16119. }
  16120. }
  16121. #endif
  16122. // don't leave affinity set on the main thread
  16123. clear_numa_thread_affinity();
  16124. for (int j = 0; j < n_threads; j++) {
  16125. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  16126. compute_status = workers[j].ec;
  16127. break;
  16128. }
  16129. }
  16130. return compute_status;
  16131. }
  16132. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16133. {
  16134. GGML_ASSERT(cplan);
  16135. GGML_ASSERT(cplan->n_threads > 0);
  16136. if (cplan->work_size > 0) {
  16137. GGML_ASSERT(cplan->work_data);
  16138. }
  16139. }
  16140. int n_threads = cplan->n_threads;
  16141. #if defined(GGML_USE_OPENMP)
  16142. n_threads = MIN(n_threads, omp_get_max_threads());
  16143. #endif
  16144. struct ggml_compute_state_shared state_shared = {
  16145. /*.cgraph =*/ cgraph,
  16146. /*.cgraph_plan =*/ cplan,
  16147. /*.perf_node_start_cycles =*/ 0,
  16148. /*.perf_node_start_time_us =*/ 0,
  16149. /*.n_threads =*/ n_threads,
  16150. /*.n_active =*/ n_threads,
  16151. /*.node_n =*/ -1,
  16152. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16153. /*.abort_callback =*/ NULL,
  16154. /*.abort_callback_data =*/ NULL,
  16155. /*.current_chunk; =*/ 0,
  16156. };
  16157. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16158. const int64_t perf_start_cycles = ggml_perf_cycles();
  16159. const int64_t perf_start_time_us = ggml_perf_time_us();
  16160. for (int j = 0; j < n_threads; ++j) {
  16161. workers[j] = (struct ggml_compute_state) {
  16162. .thrd = 0,
  16163. .ith = j,
  16164. .shared = &state_shared,
  16165. .ec = GGML_STATUS_SUCCESS,
  16166. };
  16167. }
  16168. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16169. // performance stats (graph)
  16170. {
  16171. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16172. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16173. cgraph->perf_runs++;
  16174. cgraph->perf_cycles += perf_cycles_cur;
  16175. cgraph->perf_time_us += perf_time_us_cur;
  16176. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16177. __func__, cgraph->perf_runs,
  16178. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16179. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16180. (double) perf_time_us_cur / 1000.0,
  16181. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16182. }
  16183. return compute_status;
  16184. }
  16185. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16186. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16187. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16188. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16189. return ggml_graph_compute(cgraph, &cplan);
  16190. }
  16191. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16192. for (int i = 0; i < cgraph->n_leafs; i++) {
  16193. struct ggml_tensor * leaf = cgraph->leafs[i];
  16194. if (strcmp(leaf->name, name) == 0) {
  16195. return leaf;
  16196. }
  16197. }
  16198. for (int i = 0; i < cgraph->n_nodes; i++) {
  16199. struct ggml_tensor * node = cgraph->nodes[i];
  16200. if (strcmp(node->name, name) == 0) {
  16201. return node;
  16202. }
  16203. }
  16204. return NULL;
  16205. }
  16206. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16207. const int64_t * ne = tensor->ne;
  16208. const size_t * nb = tensor->nb;
  16209. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16210. ggml_type_name(tensor->type),
  16211. ggml_op_name (tensor->op),
  16212. ggml_n_dims(tensor),
  16213. ne[0], ne[1], ne[2], ne[3],
  16214. nb[0], nb[1], nb[2], nb[3],
  16215. tensor->data,
  16216. tensor->name);
  16217. }
  16218. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16219. const int64_t * ne = tensor->ne;
  16220. const size_t * nb = tensor->nb;
  16221. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16222. arg,
  16223. ggml_type_name(tensor->type),
  16224. ggml_op_name (tensor->op),
  16225. ggml_n_dims(tensor),
  16226. ne[0], ne[1], ne[2], ne[3],
  16227. nb[0], nb[1], nb[2], nb[3],
  16228. tensor->data,
  16229. tensor->name);
  16230. }
  16231. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16232. uint64_t size_eval = 0;
  16233. // compute size of intermediate results
  16234. // TODO: does not take into account scratch buffers !!!!
  16235. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16236. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16237. }
  16238. // print
  16239. {
  16240. FILE * fout = stdout;
  16241. fprintf(fout, "\n");
  16242. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16243. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16244. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16245. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16246. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16247. // header
  16248. fprintf(fout, "\n");
  16249. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16250. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16251. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16252. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16253. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16254. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16255. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16256. }
  16257. // header
  16258. fprintf(fout, "\n");
  16259. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16260. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16261. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16262. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16263. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16264. if (cgraph->nodes[i]->src[j]) {
  16265. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16266. }
  16267. }
  16268. fprintf(fout, "\n");
  16269. }
  16270. fprintf(fout, "\n");
  16271. }
  16272. // write binary data
  16273. {
  16274. FILE * fout = ggml_fopen(fname, "wb");
  16275. if (!fout) {
  16276. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16277. return;
  16278. }
  16279. // header
  16280. {
  16281. const uint32_t magic = GGML_FILE_MAGIC;
  16282. const uint32_t version = GGML_FILE_VERSION;
  16283. const uint32_t n_leafs = cgraph->n_leafs;
  16284. const uint32_t n_nodes = cgraph->n_nodes;
  16285. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16286. fwrite(&version, sizeof(uint32_t), 1, fout);
  16287. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16288. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16289. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16290. }
  16291. // leafs
  16292. {
  16293. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16294. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16295. const uint32_t type = tensor->type;
  16296. const uint32_t op = tensor->op;
  16297. fwrite(&type, sizeof(uint32_t), 1, fout);
  16298. fwrite(&op, sizeof(uint32_t), 1, fout);
  16299. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16300. const uint64_t ne = tensor->ne[j];
  16301. const uint64_t nb = tensor->nb[j];
  16302. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16303. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16304. }
  16305. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16306. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16307. // dump the data
  16308. // TODO: pad this to 32 byte boundary
  16309. {
  16310. const size_t size = ggml_nbytes(tensor);
  16311. fwrite(tensor->data, sizeof(char), size, fout);
  16312. }
  16313. }
  16314. }
  16315. // nodes
  16316. {
  16317. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16318. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16319. const uint32_t type = tensor->type;
  16320. const uint32_t op = tensor->op;
  16321. fwrite(&type, sizeof(uint32_t), 1, fout);
  16322. fwrite(&op, sizeof(uint32_t), 1, fout);
  16323. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16324. const uint64_t ne = tensor->ne[j];
  16325. const uint64_t nb = tensor->nb[j];
  16326. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16327. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16328. }
  16329. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16330. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16331. // output the op arguments
  16332. {
  16333. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16334. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16335. args[j] = tensor->src[j];
  16336. }
  16337. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16338. if (args[j]) {
  16339. int32_t idx = -1;
  16340. // check if leaf
  16341. {
  16342. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16343. if (args[j] == cgraph->leafs[k]) {
  16344. idx = k;
  16345. break;
  16346. }
  16347. }
  16348. }
  16349. // check if node
  16350. if (idx == -1) {
  16351. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16352. if (args[j] == cgraph->nodes[k]) {
  16353. idx = cgraph->n_leafs + k;
  16354. break;
  16355. }
  16356. }
  16357. }
  16358. if (idx == -1) {
  16359. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16360. fclose(fout);
  16361. return;
  16362. }
  16363. fwrite(&idx, sizeof(int32_t), 1, fout);
  16364. } else {
  16365. const int32_t nul = -1;
  16366. fwrite(&nul, sizeof(int32_t), 1, fout);
  16367. }
  16368. }
  16369. }
  16370. }
  16371. }
  16372. fclose(fout);
  16373. }
  16374. }
  16375. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16376. assert(*ctx_data == NULL);
  16377. assert(*ctx_eval == NULL);
  16378. struct ggml_cgraph * result = NULL;
  16379. struct ggml_tensor * data = NULL;
  16380. // read file into data
  16381. {
  16382. FILE * fin = ggml_fopen(fname, "rb");
  16383. if (!fin) {
  16384. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16385. return result;
  16386. }
  16387. size_t fsize = 0;
  16388. fseek(fin, 0, SEEK_END);
  16389. fsize = ftell(fin);
  16390. fseek(fin, 0, SEEK_SET);
  16391. // create the data context
  16392. {
  16393. const size_t overhead = 1*ggml_tensor_overhead();
  16394. struct ggml_init_params params = {
  16395. .mem_size = fsize + overhead,
  16396. .mem_buffer = NULL,
  16397. .no_alloc = false,
  16398. };
  16399. *ctx_data = ggml_init(params);
  16400. if (!*ctx_data) {
  16401. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16402. fclose(fin);
  16403. return result;
  16404. }
  16405. }
  16406. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16407. {
  16408. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16409. if (ret != fsize) {
  16410. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16411. fclose(fin);
  16412. return result;
  16413. }
  16414. }
  16415. fclose(fin);
  16416. }
  16417. // populate result
  16418. {
  16419. char * ptr = (char *) data->data;
  16420. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16421. if (magic != GGML_FILE_MAGIC) {
  16422. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16423. return result;
  16424. }
  16425. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16426. if (version != GGML_FILE_VERSION) {
  16427. fprintf(stderr, "%s: invalid version number\n", __func__);
  16428. return result;
  16429. }
  16430. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16431. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16432. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16433. const int graph_size = MAX(n_leafs, n_nodes);
  16434. // create the data context
  16435. {
  16436. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16437. struct ggml_init_params params = {
  16438. .mem_size = size_eval + overhead,
  16439. .mem_buffer = NULL,
  16440. .no_alloc = true,
  16441. };
  16442. *ctx_eval = ggml_init(params);
  16443. if (!*ctx_eval) {
  16444. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16445. return result;
  16446. }
  16447. }
  16448. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16449. result->n_leafs = n_leafs;
  16450. result->n_nodes = n_nodes;
  16451. // leafs
  16452. {
  16453. uint32_t type;
  16454. uint32_t op;
  16455. for (uint32_t i = 0; i < n_leafs; ++i) {
  16456. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16457. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16458. int64_t ne[GGML_MAX_DIMS];
  16459. size_t nb[GGML_MAX_DIMS];
  16460. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16461. uint64_t ne_cur;
  16462. uint64_t nb_cur;
  16463. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16464. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16465. ne[j] = ne_cur;
  16466. nb[j] = nb_cur;
  16467. }
  16468. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16469. tensor->op = (enum ggml_op) op;
  16470. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16471. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16472. tensor->data = (void *) ptr;
  16473. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16474. tensor->nb[j] = nb[j];
  16475. }
  16476. result->leafs[i] = tensor;
  16477. ptr += ggml_nbytes(tensor);
  16478. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16479. }
  16480. }
  16481. ggml_set_no_alloc(*ctx_eval, false);
  16482. // nodes
  16483. {
  16484. uint32_t type;
  16485. uint32_t op;
  16486. for (uint32_t i = 0; i < n_nodes; ++i) {
  16487. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16488. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16489. enum ggml_op eop = (enum ggml_op) op;
  16490. int64_t ne[GGML_MAX_DIMS];
  16491. size_t nb[GGML_MAX_DIMS];
  16492. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16493. uint64_t ne_cur;
  16494. uint64_t nb_cur;
  16495. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16496. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16497. ne[j] = ne_cur;
  16498. nb[j] = nb_cur;
  16499. }
  16500. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16501. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16502. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16503. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16504. // parse args
  16505. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16506. const int32_t arg_idx = ptr_arg_idx[j];
  16507. if (arg_idx == -1) {
  16508. continue;
  16509. }
  16510. if (arg_idx < result->n_leafs) {
  16511. args[j] = result->leafs[arg_idx];
  16512. } else {
  16513. args[j] = result->nodes[arg_idx - result->n_leafs];
  16514. }
  16515. }
  16516. // create the tensor
  16517. // "view" operations are handled differently
  16518. // TODO: handle inplace ops - currently a copy is always made
  16519. struct ggml_tensor * tensor = NULL;
  16520. switch (eop) {
  16521. // TODO: implement other view ops
  16522. case GGML_OP_RESHAPE:
  16523. {
  16524. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16525. } break;
  16526. case GGML_OP_VIEW:
  16527. {
  16528. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16529. size_t offs;
  16530. memcpy(&offs, ptr_op_params, sizeof(offs));
  16531. tensor->data = ((char *) tensor->data) + offs;
  16532. } break;
  16533. case GGML_OP_TRANSPOSE:
  16534. {
  16535. tensor = ggml_transpose(*ctx_eval, args[0]);
  16536. } break;
  16537. case GGML_OP_PERMUTE:
  16538. {
  16539. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16540. } break;
  16541. default:
  16542. {
  16543. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16544. tensor->op = eop;
  16545. } break;
  16546. }
  16547. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16548. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16549. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16550. tensor->nb[j] = nb[j];
  16551. }
  16552. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16553. tensor->src[j] = args[j];
  16554. }
  16555. result->nodes[i] = tensor;
  16556. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16557. }
  16558. }
  16559. }
  16560. return result;
  16561. }
  16562. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16563. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16564. GGML_PRINT("=== GRAPH ===\n");
  16565. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16566. for (int i = 0; i < cgraph->n_nodes; i++) {
  16567. struct ggml_tensor * node = cgraph->nodes[i];
  16568. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16569. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16570. i,
  16571. node->ne[0], node->ne[1], node->ne[2],
  16572. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16573. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16574. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16575. (double) node->perf_time_us / 1000.0,
  16576. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16577. }
  16578. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16579. for (int i = 0; i < cgraph->n_leafs; i++) {
  16580. struct ggml_tensor * node = cgraph->leafs[i];
  16581. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16582. i,
  16583. node->ne[0], node->ne[1],
  16584. ggml_op_name(node->op),
  16585. ggml_get_name(node));
  16586. }
  16587. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16588. if (perf_total_per_op_us[i] == 0) {
  16589. continue;
  16590. }
  16591. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16592. }
  16593. GGML_PRINT("========================================\n");
  16594. }
  16595. // check if node is part of the graph
  16596. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16597. if (cgraph == NULL) {
  16598. return true;
  16599. }
  16600. for (int i = 0; i < cgraph->n_nodes; i++) {
  16601. if (cgraph->nodes[i] == node) {
  16602. return true;
  16603. }
  16604. }
  16605. return false;
  16606. }
  16607. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16608. for (int i = 0; i < cgraph->n_nodes; i++) {
  16609. struct ggml_tensor * parent = cgraph->nodes[i];
  16610. if (parent->grad == node) {
  16611. return parent;
  16612. }
  16613. }
  16614. return NULL;
  16615. }
  16616. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16617. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16618. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16619. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16620. gparent0 ? (void *) gparent0 : (void *) parent,
  16621. gparent0 ? "g" : "x",
  16622. gparent ? (void *) gparent : (void *) node,
  16623. gparent ? "g" : "x",
  16624. gparent ? "empty" : "vee",
  16625. gparent ? "dashed" : "solid",
  16626. label);
  16627. }
  16628. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16629. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16630. (void *) parent, "x",
  16631. (void *) node, "x",
  16632. label);
  16633. }
  16634. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16635. char color[16];
  16636. FILE * fp = ggml_fopen(filename, "w");
  16637. GGML_ASSERT(fp);
  16638. fprintf(fp, "digraph G {\n");
  16639. fprintf(fp, " newrank = true;\n");
  16640. fprintf(fp, " rankdir = LR;\n");
  16641. for (int i = 0; i < gb->n_nodes; i++) {
  16642. struct ggml_tensor * node = gb->nodes[i];
  16643. if (ggml_graph_get_parent(gb, node) != NULL) {
  16644. continue;
  16645. }
  16646. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16647. snprintf(color, sizeof(color), "yellow");
  16648. } else if (node->grad) {
  16649. if (ggml_graph_find(gf, node)) {
  16650. snprintf(color, sizeof(color), "green");
  16651. } else {
  16652. snprintf(color, sizeof(color), "lightblue");
  16653. }
  16654. } else {
  16655. snprintf(color, sizeof(color), "white");
  16656. }
  16657. fprintf(fp, " \"%p\" [ "
  16658. "style = filled; fillcolor = %s; shape = record; "
  16659. "label=\"",
  16660. (void *) node, color);
  16661. if (strlen(node->name) > 0) {
  16662. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16663. } else {
  16664. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16665. }
  16666. if (ggml_is_matrix(node)) {
  16667. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16668. } else {
  16669. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16670. }
  16671. if (node->grad) {
  16672. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16673. } else {
  16674. fprintf(fp, "\"; ]\n");
  16675. }
  16676. }
  16677. for (int i = 0; i < gb->n_leafs; i++) {
  16678. struct ggml_tensor * node = gb->leafs[i];
  16679. snprintf(color, sizeof(color), "pink");
  16680. fprintf(fp, " \"%p\" [ "
  16681. "style = filled; fillcolor = %s; shape = record; "
  16682. "label=\"<x>",
  16683. (void *) node, color);
  16684. if (strlen(node->name) > 0) {
  16685. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16686. } else {
  16687. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16688. }
  16689. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16690. if (ggml_nelements(node) < 5) {
  16691. fprintf(fp, " | (");
  16692. for (int j = 0; j < ggml_nelements(node); j++) {
  16693. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16694. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16695. }
  16696. else if (node->type == GGML_TYPE_F32 ||
  16697. node->type == GGML_TYPE_F16 ||
  16698. node->type == GGML_TYPE_BF16) {
  16699. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16700. }
  16701. else {
  16702. fprintf(fp, "#");
  16703. }
  16704. if (j < ggml_nelements(node) - 1) {
  16705. fprintf(fp, ", ");
  16706. }
  16707. }
  16708. fprintf(fp, ")");
  16709. }
  16710. fprintf(fp, "\"; ]\n");
  16711. }
  16712. for (int i = 0; i < gb->n_nodes; i++) {
  16713. struct ggml_tensor * node = gb->nodes[i];
  16714. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16715. if (node->src[j]) {
  16716. char label[16];
  16717. snprintf(label, sizeof(label), "src %d", j);
  16718. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16719. }
  16720. }
  16721. }
  16722. for (int i = 0; i < gb->n_leafs; i++) {
  16723. struct ggml_tensor * node = gb->leafs[i];
  16724. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16725. if (node->src[j]) {
  16726. char label[16];
  16727. snprintf(label, sizeof(label), "src %d", j);
  16728. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16729. }
  16730. }
  16731. }
  16732. fprintf(fp, "}\n");
  16733. fclose(fp);
  16734. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16735. }
  16736. ////////////////////////////////////////////////////////////////////////////////
  16737. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16738. int i = 0;
  16739. for (int p = 0; p < np; ++p) {
  16740. const int64_t ne = ggml_nelements(ps[p]) ;
  16741. // TODO: add function to set tensor from array
  16742. for (int64_t j = 0; j < ne; ++j) {
  16743. ggml_set_f32_1d(ps[p], j, x[i++]);
  16744. }
  16745. }
  16746. }
  16747. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16748. int i = 0;
  16749. for (int p = 0; p < np; ++p) {
  16750. const int64_t ne = ggml_nelements(ps[p]) ;
  16751. // TODO: add function to get all elements at once
  16752. for (int64_t j = 0; j < ne; ++j) {
  16753. x[i++] = ggml_get_f32_1d(ps[p], j);
  16754. }
  16755. }
  16756. }
  16757. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16758. int64_t i = 0;
  16759. for (int p = 0; p < np; ++p) {
  16760. const int64_t ne = ggml_nelements(ps[p]) ;
  16761. // TODO: add function to get all elements at once
  16762. for (int64_t j = 0; j < ne; ++j) {
  16763. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16764. }
  16765. }
  16766. }
  16767. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16768. int64_t i = 0;
  16769. for (int p = 0; p < np; ++p) {
  16770. const int64_t ne = ggml_nelements(ps[p]) ;
  16771. // TODO: add function to get all elements at once
  16772. for (int64_t j = 0; j < ne; ++j) {
  16773. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16774. }
  16775. }
  16776. }
  16777. //
  16778. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16779. //
  16780. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16781. //
  16782. static enum ggml_opt_result ggml_opt_adam(
  16783. struct ggml_context * ctx,
  16784. struct ggml_opt_context * opt,
  16785. struct ggml_opt_params params,
  16786. struct ggml_tensor * f,
  16787. struct ggml_cgraph * gf,
  16788. struct ggml_cgraph * gb,
  16789. ggml_opt_callback callback,
  16790. void * callback_data) {
  16791. GGML_ASSERT(ggml_is_scalar(f));
  16792. // these will store the parameters we want to optimize
  16793. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16794. int np = 0;
  16795. int64_t nx = 0;
  16796. for (int i = 0; i < gf->n_nodes; ++i) {
  16797. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16798. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16799. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16800. ps[np++] = gf->nodes[i];
  16801. nx += ggml_nelements(gf->nodes[i]);
  16802. }
  16803. }
  16804. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16805. int iter = opt->iter;
  16806. ggml_opt_init(opt->ctx, opt, params, nx);
  16807. opt->iter = iter;
  16808. }
  16809. // constants
  16810. float sched = params.adam.sched;
  16811. const float alpha = params.adam.alpha;
  16812. const float decay = params.adam.decay * alpha;
  16813. const float beta1 = params.adam.beta1;
  16814. const float beta2 = params.adam.beta2;
  16815. const float eps = params.adam.eps;
  16816. const float gclip = params.adam.gclip;
  16817. const int decay_min_ndim = params.adam.decay_min_ndim;
  16818. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16819. const float accum_norm = 1.0f / (float) n_accum;
  16820. float * g = opt->adam.g->data; // gradients
  16821. float * m = opt->adam.m->data; // first moment
  16822. float * v = opt->adam.v->data; // second moment
  16823. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16824. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16825. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16826. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16827. bool cancel = false;
  16828. // compute the function value
  16829. float fx = 0;
  16830. ggml_set_zero(opt->adam.g);
  16831. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16832. if (callback) {
  16833. callback(callback_data, accum_step, &sched, &cancel);
  16834. if (cancel) {
  16835. return GGML_OPT_RESULT_CANCEL;
  16836. }
  16837. }
  16838. // ggml_graph_reset (gf);
  16839. ggml_set_f32 (f->grad, 1.0f);
  16840. ggml_graph_compute(gb, &cplan);
  16841. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16842. fx += ggml_get_f32_1d(f, 0);
  16843. }
  16844. fx *= accum_norm;
  16845. opt->adam.fx_prev = fx;
  16846. opt->adam.fx_best = opt->adam.fx_prev;
  16847. if (pf) {
  16848. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16849. }
  16850. opt->loss_before = opt->adam.fx_prev;
  16851. opt->loss_after = opt->adam.fx_prev;
  16852. // initialize
  16853. if (opt->just_initialized) {
  16854. opt->adam.n_no_improvement = 0;
  16855. opt->just_initialized = false;
  16856. }
  16857. float * fx_best = &opt->adam.fx_best;
  16858. float * fx_prev = &opt->adam.fx_prev;
  16859. int * n_no_improvement = &opt->adam.n_no_improvement;
  16860. int iter0 = opt->iter;
  16861. // run the optimizer
  16862. for (int t = 0; t < params.adam.n_iter; ++t) {
  16863. opt->iter = iter0 + t + 1;
  16864. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16865. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16866. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16867. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16868. for (int i = 0; i < np; ++i) {
  16869. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16870. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16871. }
  16872. const int64_t t_start_wall = ggml_time_us();
  16873. const int64_t t_start_cpu = ggml_cycles();
  16874. UNUSED(t_start_wall);
  16875. UNUSED(t_start_cpu);
  16876. {
  16877. float gnorm = 1.0f;
  16878. if (gclip > 0.0f) {
  16879. // gradient clipping
  16880. ggml_float sum = 0.0;
  16881. for (int64_t i = 0; i < nx; ++i) {
  16882. sum += (ggml_float)(g[i]*g[i]);
  16883. }
  16884. ggml_float norm = sqrt(sum);
  16885. if (norm > (ggml_float) gclip) {
  16886. gnorm = (float) ((ggml_float) gclip / norm);
  16887. }
  16888. }
  16889. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16890. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16891. int64_t i = 0;
  16892. for (int p = 0; p < np; ++p) {
  16893. const int64_t ne = ggml_nelements(ps[p]);
  16894. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16895. for (int64_t j = 0; j < ne; ++j) {
  16896. float x = ggml_get_f32_1d(ps[p], j);
  16897. float g_ = g[i]*gnorm;
  16898. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16899. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16900. float mh = m[i]*beta1h;
  16901. float vh = v[i]*beta2h;
  16902. vh = sqrtf(vh) + eps;
  16903. x = x*(1.0f - p_decay) - mh/vh;
  16904. ggml_set_f32_1d(ps[p], j, x);
  16905. ++i;
  16906. }
  16907. }
  16908. }
  16909. fx = 0;
  16910. ggml_set_zero(opt->adam.g);
  16911. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16912. if (callback) {
  16913. callback(callback_data, accum_step, &sched, &cancel);
  16914. if (cancel) {
  16915. return GGML_OPT_RESULT_CANCEL;;
  16916. }
  16917. }
  16918. // ggml_graph_reset (gf);
  16919. ggml_set_f32 (f->grad, 1.0f);
  16920. ggml_graph_compute(gb, &cplan);
  16921. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16922. fx += ggml_get_f32_1d(f, 0);
  16923. }
  16924. fx *= accum_norm;
  16925. opt->loss_after = fx;
  16926. // check convergence
  16927. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16928. GGML_PRINT_DEBUG("converged\n");
  16929. return GGML_OPT_RESULT_OK;
  16930. }
  16931. // delta-based convergence test
  16932. if (pf != NULL) {
  16933. // need at least params.past iterations to start checking for convergence
  16934. if (params.past <= iter0 + t) {
  16935. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16936. if (fabsf(rate) < params.delta) {
  16937. return GGML_OPT_RESULT_OK;
  16938. }
  16939. }
  16940. pf[(iter0 + t)%params.past] = fx;
  16941. }
  16942. // check for improvement
  16943. if (params.max_no_improvement > 0) {
  16944. if (fx_best[0] > fx) {
  16945. fx_best[0] = fx;
  16946. n_no_improvement[0] = 0;
  16947. } else {
  16948. ++n_no_improvement[0];
  16949. if (n_no_improvement[0] >= params.max_no_improvement) {
  16950. return GGML_OPT_RESULT_OK;
  16951. }
  16952. }
  16953. }
  16954. fx_prev[0] = fx;
  16955. {
  16956. const int64_t t_end_cpu = ggml_cycles();
  16957. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16958. UNUSED(t_end_cpu);
  16959. const int64_t t_end_wall = ggml_time_us();
  16960. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16961. UNUSED(t_end_wall);
  16962. }
  16963. }
  16964. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16965. }
  16966. //
  16967. // L-BFGS
  16968. //
  16969. // the L-BFGS implementation below is based on the following implementation:
  16970. //
  16971. // https://github.com/chokkan/liblbfgs
  16972. //
  16973. struct ggml_lbfgs_iteration_data {
  16974. float alpha;
  16975. float ys;
  16976. float * s;
  16977. float * y;
  16978. };
  16979. static enum ggml_opt_result linesearch_backtracking(
  16980. const struct ggml_opt_params * params,
  16981. int nx,
  16982. float * x,
  16983. float * fx,
  16984. float * g,
  16985. float * d,
  16986. float * step,
  16987. const float * xp,
  16988. struct ggml_tensor * f,
  16989. struct ggml_cgraph * gb,
  16990. struct ggml_cplan * cplan,
  16991. const int np,
  16992. struct ggml_tensor * ps[],
  16993. bool * cancel,
  16994. ggml_opt_callback callback,
  16995. void * callback_data) {
  16996. int count = 0;
  16997. float width = 0.0f;
  16998. float dg = 0.0f;
  16999. float finit = 0.0f;
  17000. float dginit = 0.0f;
  17001. float dgtest = 0.0f;
  17002. const float dec = 0.5f;
  17003. const float inc = 2.1f;
  17004. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17005. const float accum_norm = 1.0f / (float) n_accum;
  17006. if (*step <= 0.f) {
  17007. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17008. }
  17009. // compute the initial gradient in the search direction
  17010. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17011. // make sure that d points to a descent direction
  17012. if (0 < dginit) {
  17013. return GGML_LINESEARCH_FAIL;
  17014. }
  17015. // initialize local variables
  17016. finit = *fx;
  17017. dgtest = params->lbfgs.ftol*dginit;
  17018. while (true) {
  17019. ggml_vec_cpy_f32(nx, x, xp);
  17020. ggml_vec_mad_f32(nx, x, d, *step);
  17021. // evaluate the function and gradient values
  17022. {
  17023. ggml_opt_set_params(np, ps, x);
  17024. *fx = 0;
  17025. memset(g, 0, sizeof(float)*nx);
  17026. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17027. if (callback) {
  17028. // LBFG-S does not support learning rate -> ignore learning schedule
  17029. float sched = 0;
  17030. callback(callback_data, accum_step, &sched, cancel);
  17031. if (*cancel) {
  17032. return GGML_OPT_RESULT_CANCEL;
  17033. }
  17034. }
  17035. // ggml_graph_reset (gf);
  17036. ggml_set_f32 (f->grad, 1.0f);
  17037. ggml_graph_compute(gb, cplan);
  17038. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17039. *fx += ggml_get_f32_1d(f, 0);
  17040. }
  17041. *fx *= accum_norm;
  17042. }
  17043. ++count;
  17044. if (*fx > finit + (*step)*dgtest) {
  17045. width = dec;
  17046. } else {
  17047. // Armijo condition is satisfied
  17048. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17049. return count;
  17050. }
  17051. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17052. // check the Wolfe condition
  17053. if (dg < params->lbfgs.wolfe * dginit) {
  17054. width = inc;
  17055. } else {
  17056. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17057. // regular Wolfe conditions
  17058. return count;
  17059. }
  17060. if(dg > -params->lbfgs.wolfe*dginit) {
  17061. width = dec;
  17062. } else {
  17063. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17064. return count;
  17065. }
  17066. }
  17067. }
  17068. if (*step < params->lbfgs.min_step) {
  17069. return GGML_LINESEARCH_MINIMUM_STEP;
  17070. }
  17071. if (*step > params->lbfgs.max_step) {
  17072. return GGML_LINESEARCH_MAXIMUM_STEP;
  17073. }
  17074. if (params->lbfgs.max_linesearch <= count) {
  17075. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17076. }
  17077. (*step) *= width;
  17078. }
  17079. GGML_ASSERT(false && "line search failed");
  17080. return GGML_LINESEARCH_FAIL;
  17081. }
  17082. static enum ggml_opt_result ggml_opt_lbfgs(
  17083. struct ggml_context * ctx,
  17084. struct ggml_opt_context * opt,
  17085. struct ggml_opt_params params,
  17086. struct ggml_tensor * f,
  17087. struct ggml_cgraph * gf,
  17088. struct ggml_cgraph * gb,
  17089. ggml_opt_callback callback,
  17090. void * callback_data) {
  17091. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17092. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17093. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17094. return GGML_OPT_RESULT_INVALID_WOLFE;
  17095. }
  17096. }
  17097. const int m = params.lbfgs.m;
  17098. // these will store the parameters we want to optimize
  17099. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17100. int np = 0;
  17101. int nx = 0;
  17102. for (int i = 0; i < gf->n_nodes; ++i) {
  17103. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17104. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17105. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17106. ps[np++] = gf->nodes[i];
  17107. nx += ggml_nelements(gf->nodes[i]);
  17108. }
  17109. }
  17110. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17111. int iter = opt->iter;
  17112. ggml_opt_init(ctx, opt, params, nx);
  17113. opt->iter = iter;
  17114. }
  17115. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17116. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17117. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17118. float * x = opt->lbfgs.x->data; // current parameters
  17119. float * xp = opt->lbfgs.xp->data; // previous parameters
  17120. float * g = opt->lbfgs.g->data; // current gradient
  17121. float * gp = opt->lbfgs.gp->data; // previous gradient
  17122. float * d = opt->lbfgs.d->data; // search direction
  17123. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17124. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17125. const float accum_norm = 1.0f / (float) n_accum;
  17126. float fx = 0.0f; // cost function value
  17127. float xnorm = 0.0f; // ||x||
  17128. float gnorm = 0.0f; // ||g||
  17129. // initialize x from the graph nodes
  17130. ggml_opt_get_params(np, ps, x);
  17131. // the L-BFGS memory
  17132. float * lm_alpha = opt->lbfgs.lmal->data;
  17133. float * lm_ys = opt->lbfgs.lmys->data;
  17134. float * lm_s = opt->lbfgs.lms->data;
  17135. float * lm_y = opt->lbfgs.lmy->data;
  17136. bool cancel = false;
  17137. // evaluate the function value and its gradient
  17138. {
  17139. ggml_opt_set_params(np, ps, x);
  17140. fx = 0;
  17141. memset(g, 0, sizeof(float)*nx);
  17142. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17143. if (callback) {
  17144. // LBFG-S does not support learning rate -> ignore learning schedule
  17145. float sched = 0;
  17146. callback(callback_data, accum_step, &sched, &cancel);
  17147. if (cancel) {
  17148. return GGML_OPT_RESULT_CANCEL;
  17149. }
  17150. }
  17151. // ggml_graph_reset (gf);
  17152. ggml_set_f32 (f->grad, 1.0f);
  17153. ggml_graph_compute(gb, &cplan);
  17154. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17155. fx += ggml_get_f32_1d(f, 0);
  17156. }
  17157. fx *= accum_norm;
  17158. opt->loss_before = fx;
  17159. opt->loss_after = fx;
  17160. }
  17161. // search direction = -gradient
  17162. ggml_vec_neg_f32(nx, d, g);
  17163. // ||x||, ||g||
  17164. ggml_vec_norm_f32(nx, &xnorm, x);
  17165. ggml_vec_norm_f32(nx, &gnorm, g);
  17166. if (xnorm < 1.0f) {
  17167. xnorm = 1.0f;
  17168. }
  17169. // already optimized
  17170. if (gnorm/xnorm <= params.lbfgs.eps) {
  17171. return GGML_OPT_RESULT_OK;
  17172. }
  17173. if (opt->just_initialized) {
  17174. if (pf) {
  17175. pf[0] = fx;
  17176. }
  17177. opt->lbfgs.fx_best = fx;
  17178. // initial step
  17179. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17180. opt->lbfgs.j = 0;
  17181. opt->lbfgs.k = 1;
  17182. opt->lbfgs.end = 0;
  17183. opt->lbfgs.n_no_improvement = 0;
  17184. opt->just_initialized = false;
  17185. }
  17186. float * fx_best = &opt->lbfgs.fx_best;
  17187. float * step = &opt->lbfgs.step;
  17188. int * j = &opt->lbfgs.j;
  17189. int * k = &opt->lbfgs.k;
  17190. int * end = &opt->lbfgs.end;
  17191. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17192. int ls = 0;
  17193. int bound = 0;
  17194. float ys = 0.0f;
  17195. float yy = 0.0f;
  17196. float beta = 0.0f;
  17197. int it = 0;
  17198. while (true) {
  17199. // store the current position and gradient vectors
  17200. ggml_vec_cpy_f32(nx, xp, x);
  17201. ggml_vec_cpy_f32(nx, gp, g);
  17202. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17203. // to determine if the optimization should be cancelled
  17204. // this is a simple change, but not doing this atm, since I don't have a nice
  17205. // way to test and don't want to break something with so many changes lined up
  17206. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17207. if (cancel) {
  17208. return GGML_OPT_RESULT_CANCEL;
  17209. }
  17210. if (ls < 0) {
  17211. // linesearch failed - go back to the previous point and return
  17212. ggml_vec_cpy_f32(nx, x, xp);
  17213. ggml_vec_cpy_f32(nx, g, gp);
  17214. return ls;
  17215. }
  17216. opt->loss_after = fx;
  17217. ggml_vec_norm_f32(nx, &xnorm, x);
  17218. ggml_vec_norm_f32(nx, &gnorm, g);
  17219. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17220. if (xnorm < 1.0f) {
  17221. xnorm = 1.0f;
  17222. }
  17223. if (gnorm/xnorm <= params.lbfgs.eps) {
  17224. // converged
  17225. return GGML_OPT_RESULT_OK;
  17226. }
  17227. // delta-based convergence test
  17228. if (pf != NULL) {
  17229. // need at least params.past iterations to start checking for convergence
  17230. if (params.past <= k[0]) {
  17231. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17232. if (fabsf(rate) < params.delta) {
  17233. return GGML_OPT_RESULT_OK;
  17234. }
  17235. }
  17236. pf[k[0]%params.past] = fx;
  17237. }
  17238. // check for improvement
  17239. if (params.max_no_improvement > 0) {
  17240. if (fx < fx_best[0]) {
  17241. fx_best[0] = fx;
  17242. n_no_improvement[0] = 0;
  17243. } else {
  17244. n_no_improvement[0]++;
  17245. if (n_no_improvement[0] >= params.max_no_improvement) {
  17246. return GGML_OPT_RESULT_OK;
  17247. }
  17248. }
  17249. }
  17250. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17251. // reached the maximum number of iterations
  17252. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17253. }
  17254. // update vectors s and y:
  17255. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17256. // y_{k+1} = g_{k+1} - g_{k}.
  17257. //
  17258. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17259. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17260. // compute scalars ys and yy:
  17261. // ys = y^t \cdot s -> 1 / \rho.
  17262. // yy = y^t \cdot y.
  17263. //
  17264. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17265. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17266. lm_ys[end[0]] = ys;
  17267. // find new search direction
  17268. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17269. bound = (m <= k[0]) ? m : k[0];
  17270. k[0]++;
  17271. it++;
  17272. end[0] = (end[0] + 1)%m;
  17273. // initialize search direction with -g
  17274. ggml_vec_neg_f32(nx, d, g);
  17275. j[0] = end[0];
  17276. for (int i = 0; i < bound; ++i) {
  17277. j[0] = (j[0] + m - 1) % m;
  17278. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17279. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17280. lm_alpha[j[0]] /= lm_ys[j[0]];
  17281. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17282. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17283. }
  17284. ggml_vec_scale_f32(nx, d, ys/yy);
  17285. for (int i = 0; i < bound; ++i) {
  17286. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17287. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17288. beta /= lm_ys[j[0]];
  17289. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17290. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17291. j[0] = (j[0] + 1)%m;
  17292. }
  17293. step[0] = 1.0;
  17294. }
  17295. GGML_ASSERT(false && "lbfgs failed");
  17296. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17297. }
  17298. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17299. struct ggml_opt_params result;
  17300. switch (type) {
  17301. case GGML_OPT_TYPE_ADAM:
  17302. {
  17303. result = (struct ggml_opt_params) {
  17304. .type = GGML_OPT_TYPE_ADAM,
  17305. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17306. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17307. .past = 0,
  17308. .delta = 1e-5f,
  17309. .max_no_improvement = 100,
  17310. .print_forward_graph = true,
  17311. .print_backward_graph = true,
  17312. .n_gradient_accumulation = 1,
  17313. .adam = {
  17314. .n_iter = 10000,
  17315. .sched = 1.000f,
  17316. .decay = 0.0f,
  17317. .decay_min_ndim = 2,
  17318. .alpha = 0.001f,
  17319. .beta1 = 0.9f,
  17320. .beta2 = 0.999f,
  17321. .eps = 1e-8f,
  17322. .eps_f = 1e-5f,
  17323. .eps_g = 1e-3f,
  17324. .gclip = 0.0f,
  17325. },
  17326. };
  17327. } break;
  17328. case GGML_OPT_TYPE_LBFGS:
  17329. {
  17330. result = (struct ggml_opt_params) {
  17331. .type = GGML_OPT_TYPE_LBFGS,
  17332. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17333. .n_threads = 1,
  17334. .past = 0,
  17335. .delta = 1e-5f,
  17336. .max_no_improvement = 0,
  17337. .print_forward_graph = true,
  17338. .print_backward_graph = true,
  17339. .n_gradient_accumulation = 1,
  17340. .lbfgs = {
  17341. .m = 6,
  17342. .n_iter = 100,
  17343. .max_linesearch = 20,
  17344. .eps = 1e-5f,
  17345. .ftol = 1e-4f,
  17346. .wolfe = 0.9f,
  17347. .min_step = 1e-20f,
  17348. .max_step = 1e+20f,
  17349. .linesearch = GGML_LINESEARCH_DEFAULT,
  17350. },
  17351. };
  17352. } break;
  17353. }
  17354. return result;
  17355. }
  17356. GGML_API void ggml_opt_init(
  17357. struct ggml_context * ctx,
  17358. struct ggml_opt_context * opt,
  17359. struct ggml_opt_params params,
  17360. int64_t nx) {
  17361. opt->ctx = ctx;
  17362. opt->params = params;
  17363. opt->iter = 0;
  17364. opt->nx = nx;
  17365. opt->just_initialized = true;
  17366. if (opt->ctx == NULL) {
  17367. struct ggml_init_params ctx_opt_params;
  17368. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17369. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17370. if (opt->params.past > 0) {
  17371. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17372. }
  17373. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17374. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17375. if (opt->params.past > 0) {
  17376. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17377. }
  17378. }
  17379. ctx_opt_params.mem_buffer = NULL;
  17380. ctx_opt_params.no_alloc = false;
  17381. opt->ctx = ggml_init(ctx_opt_params);
  17382. }
  17383. switch (opt->params.type) {
  17384. case GGML_OPT_TYPE_ADAM:
  17385. {
  17386. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17387. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17388. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17389. opt->adam.pf = params.past > 0
  17390. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17391. : NULL;
  17392. ggml_set_zero(opt->adam.m);
  17393. ggml_set_zero(opt->adam.v);
  17394. if (opt->adam.pf) {
  17395. ggml_set_zero(opt->adam.pf);
  17396. }
  17397. } break;
  17398. case GGML_OPT_TYPE_LBFGS:
  17399. {
  17400. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17401. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17402. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17403. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17404. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17405. opt->lbfgs.pf = params.past > 0
  17406. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17407. : NULL;
  17408. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17409. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17410. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17411. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17412. ggml_set_zero(opt->lbfgs.x);
  17413. ggml_set_zero(opt->lbfgs.xp);
  17414. ggml_set_zero(opt->lbfgs.g);
  17415. ggml_set_zero(opt->lbfgs.gp);
  17416. ggml_set_zero(opt->lbfgs.d);
  17417. if (opt->lbfgs.pf) {
  17418. ggml_set_zero(opt->lbfgs.pf);
  17419. }
  17420. ggml_set_zero(opt->lbfgs.lmal);
  17421. ggml_set_zero(opt->lbfgs.lmys);
  17422. ggml_set_zero(opt->lbfgs.lms);
  17423. ggml_set_zero(opt->lbfgs.lmy);
  17424. } break;
  17425. }
  17426. }
  17427. enum ggml_opt_result ggml_opt(
  17428. struct ggml_context * ctx,
  17429. struct ggml_opt_params params,
  17430. struct ggml_tensor * f) {
  17431. bool free_ctx = false;
  17432. if (ctx == NULL) {
  17433. struct ggml_init_params params_ctx = {
  17434. .mem_size = 16*1024*1024,
  17435. .mem_buffer = NULL,
  17436. .no_alloc = false,
  17437. };
  17438. ctx = ggml_init(params_ctx);
  17439. if (ctx == NULL) {
  17440. return GGML_OPT_RESULT_NO_CONTEXT;
  17441. }
  17442. free_ctx = true;
  17443. }
  17444. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17445. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17446. ggml_opt_init(ctx, opt, params, 0);
  17447. result = ggml_opt_resume(ctx, opt, f);
  17448. if (free_ctx) {
  17449. ggml_free(ctx);
  17450. }
  17451. return result;
  17452. }
  17453. enum ggml_opt_result ggml_opt_resume(
  17454. struct ggml_context * ctx,
  17455. struct ggml_opt_context * opt,
  17456. struct ggml_tensor * f) {
  17457. // build forward + backward compute graphs
  17458. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17459. ggml_build_forward_expand(gf, f);
  17460. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17461. ggml_build_backward_expand(ctx, gf, gb, true);
  17462. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17463. }
  17464. enum ggml_opt_result ggml_opt_resume_g(
  17465. struct ggml_context * ctx,
  17466. struct ggml_opt_context * opt,
  17467. struct ggml_tensor * f,
  17468. struct ggml_cgraph * gf,
  17469. struct ggml_cgraph * gb,
  17470. ggml_opt_callback callback,
  17471. void * callback_data) {
  17472. // build forward + backward compute graphs
  17473. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17474. switch (opt->params.type) {
  17475. case GGML_OPT_TYPE_ADAM:
  17476. {
  17477. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17478. } break;
  17479. case GGML_OPT_TYPE_LBFGS:
  17480. {
  17481. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17482. } break;
  17483. }
  17484. if (opt->params.print_forward_graph) {
  17485. ggml_graph_print (gf);
  17486. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17487. }
  17488. if (opt->params.print_backward_graph) {
  17489. ggml_graph_print (gb);
  17490. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17491. }
  17492. return result;
  17493. }
  17494. ////////////////////////////////////////////////////////////////////////////////
  17495. void ggml_set_input(struct ggml_tensor * tensor) {
  17496. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17497. }
  17498. void ggml_set_output(struct ggml_tensor * tensor) {
  17499. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17500. }
  17501. ////////////////////////////////////////////////////////////////////////////////
  17502. void ggml_quantize_init(enum ggml_type type) {
  17503. ggml_critical_section_start();
  17504. switch (type) {
  17505. case GGML_TYPE_IQ2_XXS:
  17506. case GGML_TYPE_IQ2_XS:
  17507. case GGML_TYPE_IQ2_S:
  17508. case GGML_TYPE_IQ1_S:
  17509. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17510. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17511. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17512. default: // nothing
  17513. break;
  17514. }
  17515. ggml_critical_section_end();
  17516. }
  17517. void ggml_quantize_free(void) {
  17518. ggml_critical_section_start();
  17519. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17520. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17521. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17522. iq3xs_free_impl(256);
  17523. ggml_critical_section_end();
  17524. }
  17525. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17526. return
  17527. type == GGML_TYPE_IQ2_XXS ||
  17528. type == GGML_TYPE_IQ2_XS ||
  17529. type == GGML_TYPE_IQ1_S;// ||
  17530. //type == GGML_TYPE_IQ1_M;
  17531. }
  17532. size_t ggml_quantize_chunk(
  17533. enum ggml_type type,
  17534. const float * src,
  17535. void * dst,
  17536. int64_t start,
  17537. int64_t nrows,
  17538. int64_t n_per_row,
  17539. const float * imatrix) {
  17540. const int64_t n = (int64_t) nrows * n_per_row;
  17541. if (ggml_quantize_requires_imatrix(type)) {
  17542. GGML_ASSERT(imatrix != NULL);
  17543. }
  17544. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17545. GGML_ASSERT(start % n_per_row == 0);
  17546. ggml_quantize_init(type); // this is noop if already initialized
  17547. const size_t start_row = start / n_per_row;
  17548. const size_t row_size = ggml_row_size(type, n_per_row);
  17549. size_t result = 0;
  17550. switch (type) {
  17551. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17552. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17553. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17554. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17555. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17556. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17557. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17558. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17559. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17560. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17561. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17562. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17563. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17564. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17565. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17566. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17567. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17568. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17569. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17570. case GGML_TYPE_F16:
  17571. {
  17572. size_t elemsize = sizeof(ggml_fp16_t);
  17573. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17574. result = n * elemsize;
  17575. } break;
  17576. case GGML_TYPE_BF16:
  17577. {
  17578. size_t elemsize = sizeof(ggml_bf16_t);
  17579. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17580. result = n * elemsize;
  17581. } break;
  17582. case GGML_TYPE_F32:
  17583. {
  17584. size_t elemsize = sizeof(float);
  17585. result = n * elemsize;
  17586. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17587. } break;
  17588. default:
  17589. assert(false);
  17590. }
  17591. GGML_ASSERT(result == nrows * row_size);
  17592. return result;
  17593. }
  17594. ////////////////////////////////////////////////////////////////////////////////
  17595. struct gguf_str {
  17596. uint64_t n; // GGUFv2
  17597. char * data;
  17598. };
  17599. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17600. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17601. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17602. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17603. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17604. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17605. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17606. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17607. [GGUF_TYPE_BOOL] = sizeof(bool),
  17608. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17609. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17610. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17611. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17612. [GGUF_TYPE_ARRAY] = 0, // undefined
  17613. };
  17614. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17615. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17616. [GGUF_TYPE_UINT8] = "u8",
  17617. [GGUF_TYPE_INT8] = "i8",
  17618. [GGUF_TYPE_UINT16] = "u16",
  17619. [GGUF_TYPE_INT16] = "i16",
  17620. [GGUF_TYPE_UINT32] = "u32",
  17621. [GGUF_TYPE_INT32] = "i32",
  17622. [GGUF_TYPE_FLOAT32] = "f32",
  17623. [GGUF_TYPE_BOOL] = "bool",
  17624. [GGUF_TYPE_STRING] = "str",
  17625. [GGUF_TYPE_ARRAY] = "arr",
  17626. [GGUF_TYPE_UINT64] = "u64",
  17627. [GGUF_TYPE_INT64] = "i64",
  17628. [GGUF_TYPE_FLOAT64] = "f64",
  17629. };
  17630. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17631. union gguf_value {
  17632. uint8_t uint8;
  17633. int8_t int8;
  17634. uint16_t uint16;
  17635. int16_t int16;
  17636. uint32_t uint32;
  17637. int32_t int32;
  17638. float float32;
  17639. uint64_t uint64;
  17640. int64_t int64;
  17641. double float64;
  17642. bool bool_;
  17643. struct gguf_str str;
  17644. struct {
  17645. enum gguf_type type;
  17646. uint64_t n; // GGUFv2
  17647. void * data;
  17648. } arr;
  17649. };
  17650. struct gguf_kv {
  17651. struct gguf_str key;
  17652. enum gguf_type type;
  17653. union gguf_value value;
  17654. };
  17655. struct gguf_header {
  17656. char magic[4];
  17657. uint32_t version;
  17658. uint64_t n_tensors; // GGUFv2
  17659. uint64_t n_kv; // GGUFv2
  17660. };
  17661. struct gguf_tensor_info {
  17662. struct gguf_str name;
  17663. uint32_t n_dims;
  17664. uint64_t ne[GGML_MAX_DIMS];
  17665. enum ggml_type type;
  17666. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17667. // for writing API
  17668. const void * data;
  17669. size_t size;
  17670. };
  17671. struct gguf_context {
  17672. struct gguf_header header;
  17673. struct gguf_kv * kv;
  17674. struct gguf_tensor_info * infos;
  17675. size_t alignment;
  17676. size_t offset; // offset of `data` from beginning of file
  17677. size_t size; // size of `data` in bytes
  17678. //uint8_t * padding;
  17679. void * data;
  17680. };
  17681. static size_t gguf_type_size(enum gguf_type type) {
  17682. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17683. return GGUF_TYPE_SIZE[type];
  17684. }
  17685. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17686. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17687. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17688. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17689. GGML_ASSERT(info->ne[i] > 0);
  17690. }
  17691. // prevent overflow for total number of elements
  17692. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17693. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17694. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17695. }
  17696. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17697. const size_t n = fread(dst, 1, size, file);
  17698. *offset += n;
  17699. return n == size;
  17700. }
  17701. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17702. p->n = 0;
  17703. p->data = NULL;
  17704. bool ok = true;
  17705. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17706. // early exit if string length is invalid, prevents from integer overflow
  17707. if (p->n == SIZE_MAX) {
  17708. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17709. return false;
  17710. }
  17711. p->data = GGML_CALLOC(p->n + 1, 1);
  17712. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17713. return ok;
  17714. }
  17715. static void gguf_free_kv(struct gguf_kv * kv) {
  17716. if (kv->key.data) {
  17717. GGML_FREE(kv->key.data);
  17718. }
  17719. if (kv->type == GGUF_TYPE_STRING) {
  17720. if (kv->value.str.data) {
  17721. GGML_FREE(kv->value.str.data);
  17722. }
  17723. }
  17724. if (kv->type == GGUF_TYPE_ARRAY) {
  17725. if (kv->value.arr.data) {
  17726. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17727. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17728. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17729. if (str->data) {
  17730. GGML_FREE(str->data);
  17731. }
  17732. }
  17733. }
  17734. GGML_FREE(kv->value.arr.data);
  17735. }
  17736. }
  17737. }
  17738. struct gguf_context * gguf_init_empty(void) {
  17739. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17740. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17741. ctx->header.version = GGUF_VERSION;
  17742. ctx->header.n_tensors = 0;
  17743. ctx->header.n_kv = 0;
  17744. ctx->kv = NULL;
  17745. ctx->infos = NULL;
  17746. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17747. ctx->offset = 0;
  17748. ctx->size = 0;
  17749. ctx->data = NULL;
  17750. return ctx;
  17751. }
  17752. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17753. FILE * file = ggml_fopen(fname, "rb");
  17754. if (!file) {
  17755. return NULL;
  17756. }
  17757. // offset from start of file
  17758. size_t offset = 0;
  17759. char magic[4];
  17760. // check the magic before making allocations
  17761. {
  17762. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17763. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17764. if (magic[i] != GGUF_MAGIC[i]) {
  17765. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17766. fclose(file);
  17767. return NULL;
  17768. }
  17769. }
  17770. }
  17771. bool ok = true;
  17772. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17773. // read the header
  17774. {
  17775. strncpy(ctx->header.magic, magic, 4);
  17776. ctx->kv = NULL;
  17777. ctx->infos = NULL;
  17778. ctx->data = NULL;
  17779. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17780. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17781. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17782. if (ctx->header.version == 1) {
  17783. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17784. fclose(file);
  17785. gguf_free(ctx);
  17786. return NULL;
  17787. }
  17788. // sanity-checks to prevent from integer/buffer overflows
  17789. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17790. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17791. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17792. if (!ok) {
  17793. fprintf(stderr, "%s: failed to read header\n", __func__);
  17794. fclose(file);
  17795. gguf_free(ctx);
  17796. return NULL;
  17797. }
  17798. }
  17799. // read the kv pairs
  17800. {
  17801. const uint64_t n_kv = ctx->header.n_kv;
  17802. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17803. ctx->header.n_kv = 0;
  17804. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17805. for (uint64_t i = 0; i < n_kv; ++i) {
  17806. struct gguf_kv * kv = &ctx->kv[i];
  17807. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17808. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17809. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17810. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17811. switch (kv->type) {
  17812. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17813. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17814. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17815. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17816. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17817. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17818. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17819. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17820. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17821. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17822. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17823. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17824. case GGUF_TYPE_ARRAY:
  17825. {
  17826. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17827. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17828. switch (kv->value.arr.type) {
  17829. case GGUF_TYPE_UINT8:
  17830. case GGUF_TYPE_INT8:
  17831. case GGUF_TYPE_UINT16:
  17832. case GGUF_TYPE_INT16:
  17833. case GGUF_TYPE_UINT32:
  17834. case GGUF_TYPE_INT32:
  17835. case GGUF_TYPE_FLOAT32:
  17836. case GGUF_TYPE_UINT64:
  17837. case GGUF_TYPE_INT64:
  17838. case GGUF_TYPE_FLOAT64:
  17839. case GGUF_TYPE_BOOL:
  17840. {
  17841. // prevent from integer overflow in the malloc below
  17842. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17843. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17844. fclose(file);
  17845. gguf_free(ctx);
  17846. return NULL;
  17847. }
  17848. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17849. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17850. } break;
  17851. case GGUF_TYPE_STRING:
  17852. {
  17853. // prevent from integer overflow in the malloc below
  17854. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17855. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17856. fclose(file);
  17857. gguf_free(ctx);
  17858. return NULL;
  17859. }
  17860. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17861. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17862. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17863. }
  17864. } break;
  17865. case GGUF_TYPE_ARRAY:
  17866. default: GGML_ASSERT(false && "invalid type"); break;
  17867. }
  17868. } break;
  17869. default: GGML_ASSERT(false && "invalid type");
  17870. }
  17871. if (!ok) {
  17872. break;
  17873. }
  17874. ctx->header.n_kv++;
  17875. }
  17876. if (!ok) {
  17877. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17878. fclose(file);
  17879. gguf_free(ctx);
  17880. return NULL;
  17881. }
  17882. }
  17883. // read the tensor infos
  17884. if (ctx->header.n_tensors > 0) {
  17885. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17886. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17887. struct gguf_tensor_info * info = &ctx->infos[i];
  17888. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17889. info->ne[j] = 1;
  17890. }
  17891. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17892. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17893. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17894. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17895. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17896. }
  17897. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17898. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17899. // TODO: return an error instead of crashing with GGML_ASSERT
  17900. gguf_tensor_info_sanitize(info);
  17901. // make sure there is no duplicated tensor names
  17902. for (uint64_t j = 0; j < i; ++j) {
  17903. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17904. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17905. ok = false;
  17906. }
  17907. }
  17908. if (!ok) {
  17909. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17910. fclose(file);
  17911. gguf_free(ctx);
  17912. return NULL;
  17913. }
  17914. }
  17915. }
  17916. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17917. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17918. if (alignment_idx != -1) {
  17919. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17920. }
  17921. // we require the data section to be aligned, so take into account any padding
  17922. {
  17923. const size_t offset_pad = offset % ctx->alignment;
  17924. if (offset_pad != 0) {
  17925. offset += ctx->alignment - offset_pad;
  17926. fseek(file, offset, SEEK_SET);
  17927. }
  17928. }
  17929. // store the current file offset - this is where the data section starts
  17930. ctx->offset = offset;
  17931. // compute the total size of the data section, taking into account the alignment
  17932. {
  17933. ctx->size = 0;
  17934. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17935. struct gguf_tensor_info * info = &ctx->infos[i];
  17936. const int64_t ne =
  17937. (int64_t) info->ne[0] *
  17938. (int64_t) info->ne[1] *
  17939. (int64_t) info->ne[2] *
  17940. (int64_t) info->ne[3];
  17941. if (ne % ggml_blck_size(info->type) != 0) {
  17942. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17943. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17944. fclose(file);
  17945. gguf_free(ctx);
  17946. return NULL;
  17947. }
  17948. const size_t size_cur = ggml_row_size(info->type, ne);
  17949. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17950. }
  17951. }
  17952. // load the tensor data only if requested
  17953. if (params.ctx != NULL) {
  17954. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17955. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17956. // the ggml_tensor structs to the appropriate locations in the binary blob
  17957. // compute the exact size needed for the new ggml_context
  17958. const size_t mem_size =
  17959. params.no_alloc ?
  17960. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17961. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17962. struct ggml_init_params pdata = {
  17963. .mem_size = mem_size,
  17964. .mem_buffer = NULL,
  17965. .no_alloc = params.no_alloc,
  17966. };
  17967. *params.ctx = ggml_init(pdata);
  17968. struct ggml_context * ctx_data = *params.ctx;
  17969. struct ggml_tensor * data = NULL;
  17970. if (!params.no_alloc) {
  17971. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17972. ok = ok && data != NULL;
  17973. // read the binary blob with the tensor data
  17974. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17975. if (!ok) {
  17976. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17977. fclose(file);
  17978. ggml_free(ctx_data);
  17979. gguf_free(ctx);
  17980. return NULL;
  17981. }
  17982. ctx->data = data->data;
  17983. }
  17984. ggml_set_no_alloc(ctx_data, true);
  17985. // create the tensors
  17986. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17987. const int64_t ne[GGML_MAX_DIMS] = {
  17988. ctx->infos[i].ne[0],
  17989. ctx->infos[i].ne[1],
  17990. ctx->infos[i].ne[2],
  17991. ctx->infos[i].ne[3],
  17992. };
  17993. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17994. ok = ok && cur != NULL;
  17995. if (!ok) {
  17996. break;
  17997. }
  17998. ggml_set_name(cur, ctx->infos[i].name.data);
  17999. // point the data member to the appropriate location in the binary blob using the tensor infos
  18000. if (!params.no_alloc) {
  18001. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18002. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18003. }
  18004. }
  18005. if (!ok) {
  18006. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18007. fclose(file);
  18008. ggml_free(ctx_data);
  18009. gguf_free(ctx);
  18010. return NULL;
  18011. }
  18012. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18013. }
  18014. fclose(file);
  18015. return ctx;
  18016. }
  18017. void gguf_free(struct gguf_context * ctx) {
  18018. if (ctx == NULL) {
  18019. return;
  18020. }
  18021. if (ctx->kv) {
  18022. // free string memory - not great..
  18023. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18024. gguf_free_kv(&ctx->kv[i]);
  18025. }
  18026. GGML_FREE(ctx->kv);
  18027. }
  18028. if (ctx->infos) {
  18029. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18030. struct gguf_tensor_info * info = &ctx->infos[i];
  18031. if (info->name.data) {
  18032. GGML_FREE(info->name.data);
  18033. }
  18034. }
  18035. GGML_FREE(ctx->infos);
  18036. }
  18037. GGML_FREE(ctx);
  18038. }
  18039. const char * gguf_type_name(enum gguf_type type) {
  18040. return GGUF_TYPE_NAME[type];
  18041. }
  18042. int gguf_get_version(const struct gguf_context * ctx) {
  18043. return ctx->header.version;
  18044. }
  18045. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18046. return ctx->alignment;
  18047. }
  18048. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18049. return ctx->offset;
  18050. }
  18051. void * gguf_get_data(const struct gguf_context * ctx) {
  18052. return ctx->data;
  18053. }
  18054. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18055. return ctx->header.n_kv;
  18056. }
  18057. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18058. // return -1 if key not found
  18059. int keyfound = -1;
  18060. const int n_kv = gguf_get_n_kv(ctx);
  18061. for (int i = 0; i < n_kv; ++i) {
  18062. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18063. keyfound = i;
  18064. break;
  18065. }
  18066. }
  18067. return keyfound;
  18068. }
  18069. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18070. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18071. return ctx->kv[key_id].key.data;
  18072. }
  18073. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18074. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18075. return ctx->kv[key_id].type;
  18076. }
  18077. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18078. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18079. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18080. return ctx->kv[key_id].value.arr.type;
  18081. }
  18082. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18083. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18084. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18085. return ctx->kv[key_id].value.arr.data;
  18086. }
  18087. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18088. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18089. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18090. struct gguf_kv * kv = &ctx->kv[key_id];
  18091. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18092. return str->data;
  18093. }
  18094. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18095. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18096. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18097. return ctx->kv[key_id].value.arr.n;
  18098. }
  18099. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18100. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18101. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18102. return ctx->kv[key_id].value.uint8;
  18103. }
  18104. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18105. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18106. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18107. return ctx->kv[key_id].value.int8;
  18108. }
  18109. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18110. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18111. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18112. return ctx->kv[key_id].value.uint16;
  18113. }
  18114. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18115. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18116. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18117. return ctx->kv[key_id].value.int16;
  18118. }
  18119. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18120. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18121. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18122. return ctx->kv[key_id].value.uint32;
  18123. }
  18124. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18125. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18126. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18127. return ctx->kv[key_id].value.int32;
  18128. }
  18129. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18130. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18131. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18132. return ctx->kv[key_id].value.float32;
  18133. }
  18134. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18135. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18136. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18137. return ctx->kv[key_id].value.uint64;
  18138. }
  18139. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18140. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18141. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18142. return ctx->kv[key_id].value.int64;
  18143. }
  18144. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18145. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18146. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18147. return ctx->kv[key_id].value.float64;
  18148. }
  18149. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18150. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18151. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18152. return ctx->kv[key_id].value.bool_;
  18153. }
  18154. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18155. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18156. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18157. return ctx->kv[key_id].value.str.data;
  18158. }
  18159. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18160. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18161. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18162. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18163. return &ctx->kv[key_id].value;
  18164. }
  18165. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18166. return ctx->header.n_tensors;
  18167. }
  18168. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18169. // return -1 if tensor not found
  18170. int tensorfound = -1;
  18171. const int n_tensors = gguf_get_n_tensors(ctx);
  18172. for (int i = 0; i < n_tensors; ++i) {
  18173. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18174. tensorfound = i;
  18175. break;
  18176. }
  18177. }
  18178. return tensorfound;
  18179. }
  18180. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18181. return ctx->infos[i].offset;
  18182. }
  18183. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18184. return ctx->infos[i].name.data;
  18185. }
  18186. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18187. return ctx->infos[i].type;
  18188. }
  18189. // returns the index
  18190. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18191. const int idx = gguf_find_key(ctx, key);
  18192. if (idx >= 0) {
  18193. return idx;
  18194. }
  18195. const int n_kv = gguf_get_n_kv(ctx);
  18196. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18197. ctx->kv[n_kv].key.n = strlen(key);
  18198. ctx->kv[n_kv].key.data = strdup(key);
  18199. ctx->header.n_kv++;
  18200. return n_kv;
  18201. }
  18202. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18203. const int idx = gguf_find_key(ctx, key);
  18204. if (idx >= 0) {
  18205. const int n_kv = gguf_get_n_kv(ctx);
  18206. gguf_free_kv(&ctx->kv[idx]);
  18207. for (int i = idx; i < n_kv-1; ++i) {
  18208. ctx->kv[i] = ctx->kv[i+1];
  18209. }
  18210. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18211. ctx->header.n_kv--;
  18212. }
  18213. }
  18214. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18215. const int idx = gguf_get_or_add_key(ctx, key);
  18216. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18217. ctx->kv[idx].value.uint8 = val;
  18218. }
  18219. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18220. const int idx = gguf_get_or_add_key(ctx, key);
  18221. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18222. ctx->kv[idx].value.int8 = val;
  18223. }
  18224. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18225. const int idx = gguf_get_or_add_key(ctx, key);
  18226. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18227. ctx->kv[idx].value.uint16 = val;
  18228. }
  18229. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18230. const int idx = gguf_get_or_add_key(ctx, key);
  18231. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18232. ctx->kv[idx].value.int16 = val;
  18233. }
  18234. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18235. const int idx = gguf_get_or_add_key(ctx, key);
  18236. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18237. ctx->kv[idx].value.uint32 = val;
  18238. }
  18239. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18240. const int idx = gguf_get_or_add_key(ctx, key);
  18241. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18242. ctx->kv[idx].value.int32 = val;
  18243. }
  18244. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18245. const int idx = gguf_get_or_add_key(ctx, key);
  18246. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18247. ctx->kv[idx].value.float32 = val;
  18248. }
  18249. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18250. const int idx = gguf_get_or_add_key(ctx, key);
  18251. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18252. ctx->kv[idx].value.uint64 = val;
  18253. }
  18254. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18255. const int idx = gguf_get_or_add_key(ctx, key);
  18256. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18257. ctx->kv[idx].value.int64 = val;
  18258. }
  18259. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18260. const int idx = gguf_get_or_add_key(ctx, key);
  18261. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18262. ctx->kv[idx].value.float64 = val;
  18263. }
  18264. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18265. const int idx = gguf_get_or_add_key(ctx, key);
  18266. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18267. ctx->kv[idx].value.bool_ = val;
  18268. }
  18269. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18270. const int idx = gguf_get_or_add_key(ctx, key);
  18271. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18272. ctx->kv[idx].value.str.n = strlen(val);
  18273. ctx->kv[idx].value.str.data = strdup(val);
  18274. }
  18275. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18276. const int idx = gguf_get_or_add_key(ctx, key);
  18277. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18278. ctx->kv[idx].value.arr.type = type;
  18279. ctx->kv[idx].value.arr.n = n;
  18280. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18281. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18282. }
  18283. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18284. const int idx = gguf_get_or_add_key(ctx, key);
  18285. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18286. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18287. ctx->kv[idx].value.arr.n = n;
  18288. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18289. for (int i = 0; i < n; i++) {
  18290. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18291. str->n = strlen(data[i]);
  18292. str->data = strdup(data[i]);
  18293. }
  18294. }
  18295. // set or add KV pairs from another context
  18296. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18297. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18298. switch (src->kv[i].type) {
  18299. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18300. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18301. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18302. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18303. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18304. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18305. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18306. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18307. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18308. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18309. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18310. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18311. case GGUF_TYPE_ARRAY:
  18312. {
  18313. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18314. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18315. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18316. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18317. }
  18318. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18319. GGML_FREE((void *)data);
  18320. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18321. GGML_ASSERT(false && "nested arrays not supported");
  18322. } else {
  18323. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18324. }
  18325. } break;
  18326. default: GGML_ASSERT(false && "invalid type"); break;
  18327. }
  18328. }
  18329. }
  18330. void gguf_add_tensor(
  18331. struct gguf_context * ctx,
  18332. const struct ggml_tensor * tensor) {
  18333. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18334. GGML_ASSERT(false && "duplicated tensor name");
  18335. }
  18336. const int idx = ctx->header.n_tensors;
  18337. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18338. ctx->infos[idx].name.n = strlen(tensor->name);
  18339. ctx->infos[idx].name.data = strdup(tensor->name);
  18340. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18341. ctx->infos[idx].ne[i] = 1;
  18342. }
  18343. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18344. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18345. ctx->infos[idx].ne[i] = tensor->ne[i];
  18346. }
  18347. ctx->infos[idx].type = tensor->type;
  18348. ctx->infos[idx].offset = 0;
  18349. ctx->infos[idx].data = tensor->data;
  18350. ctx->infos[idx].size = ggml_nbytes(tensor);
  18351. if (ctx->header.n_tensors > 0) {
  18352. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18353. }
  18354. ctx->header.n_tensors++;
  18355. }
  18356. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18357. const int idx = gguf_find_tensor(ctx, name);
  18358. if (idx < 0) {
  18359. GGML_ASSERT(false && "tensor not found");
  18360. }
  18361. ctx->infos[idx].type = type;
  18362. }
  18363. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18364. const int idx = gguf_find_tensor(ctx, name);
  18365. if (idx < 0) {
  18366. GGML_ASSERT(false && "tensor not found");
  18367. }
  18368. ctx->infos[idx].data = data;
  18369. ctx->infos[idx].size = size;
  18370. // update offsets
  18371. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18372. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18373. }
  18374. }
  18375. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18376. // fwrite(&val->n, sizeof(val->n), 1, file);
  18377. // fwrite(val->data, sizeof(char), val->n, file);
  18378. //}
  18379. //
  18380. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18381. // fwrite(val, sizeof(char), size, file);
  18382. //}
  18383. struct gguf_buf {
  18384. void * data;
  18385. size_t size;
  18386. size_t offset;
  18387. };
  18388. static struct gguf_buf gguf_buf_init(size_t size) {
  18389. struct gguf_buf buf = {
  18390. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18391. /*buf.size =*/ size,
  18392. /*buf.offset =*/ 0,
  18393. };
  18394. return buf;
  18395. }
  18396. static void gguf_buf_free(struct gguf_buf buf) {
  18397. if (buf.data) {
  18398. GGML_FREE(buf.data);
  18399. }
  18400. }
  18401. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18402. if (buf->offset + size > buf->size) {
  18403. buf->size = 1.5*(buf->offset + size);
  18404. if (buf->data) {
  18405. buf->data = realloc(buf->data, buf->size);
  18406. }
  18407. }
  18408. }
  18409. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18410. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18411. if (buf->data) {
  18412. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18413. }
  18414. buf->offset += sizeof(val->n);
  18415. if (buf->data) {
  18416. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18417. }
  18418. buf->offset += val->n;
  18419. }
  18420. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18421. gguf_buf_grow(buf, el_size);
  18422. if (buf->data) {
  18423. memcpy((char *) buf->data + buf->offset, val, el_size);
  18424. }
  18425. buf->offset += el_size;
  18426. }
  18427. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18428. // write header
  18429. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18430. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18431. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18432. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18433. // write key-value pairs
  18434. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18435. struct gguf_kv * kv = &ctx->kv[i];
  18436. gguf_bwrite_str(buf, &kv->key);
  18437. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18438. switch (kv->type) {
  18439. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18440. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18441. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18442. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18443. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18444. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18445. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18446. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18447. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18448. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18449. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18450. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18451. case GGUF_TYPE_ARRAY:
  18452. {
  18453. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18454. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18455. switch (kv->value.arr.type) {
  18456. case GGUF_TYPE_UINT8:
  18457. case GGUF_TYPE_INT8:
  18458. case GGUF_TYPE_UINT16:
  18459. case GGUF_TYPE_INT16:
  18460. case GGUF_TYPE_UINT32:
  18461. case GGUF_TYPE_INT32:
  18462. case GGUF_TYPE_FLOAT32:
  18463. case GGUF_TYPE_UINT64:
  18464. case GGUF_TYPE_INT64:
  18465. case GGUF_TYPE_FLOAT64:
  18466. case GGUF_TYPE_BOOL:
  18467. {
  18468. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18469. } break;
  18470. case GGUF_TYPE_STRING:
  18471. {
  18472. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18473. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18474. }
  18475. } break;
  18476. case GGUF_TYPE_ARRAY:
  18477. default: GGML_ASSERT(false && "invalid type"); break;
  18478. }
  18479. } break;
  18480. default: GGML_ASSERT(false && "invalid type");
  18481. }
  18482. }
  18483. // write tensor infos
  18484. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18485. struct gguf_tensor_info * info = &ctx->infos[i];
  18486. gguf_bwrite_str(buf, &info->name);
  18487. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18488. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18489. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18490. }
  18491. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18492. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18493. }
  18494. // we require the data section to be aligned, so take into account any padding
  18495. {
  18496. const size_t offset = buf->offset;
  18497. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18498. if (offset_pad != offset) {
  18499. uint8_t pad = 0;
  18500. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18501. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18502. }
  18503. }
  18504. }
  18505. if (only_meta) {
  18506. return;
  18507. }
  18508. size_t offset = 0;
  18509. // write tensor data
  18510. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18511. struct gguf_tensor_info * info = &ctx->infos[i];
  18512. const size_t size = info->size;
  18513. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18514. gguf_bwrite_el(buf, info->data, size);
  18515. if (size_pad != size) {
  18516. uint8_t pad = 0;
  18517. for (size_t j = 0; j < size_pad - size; ++j) {
  18518. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18519. }
  18520. }
  18521. GGML_ASSERT(offset == info->offset);
  18522. offset += size_pad;
  18523. }
  18524. }
  18525. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18526. FILE * file = ggml_fopen(fname, "wb");
  18527. if (!file) {
  18528. GGML_ASSERT(false && "failed to open file for writing");
  18529. }
  18530. struct gguf_buf buf = gguf_buf_init(16*1024);
  18531. gguf_write_to_buf(ctx, &buf, only_meta);
  18532. fwrite(buf.data, 1, buf.offset, file);
  18533. gguf_buf_free(buf);
  18534. fclose(file);
  18535. }
  18536. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18537. // no allocs - only compute size
  18538. struct gguf_buf buf = gguf_buf_init(0);
  18539. gguf_write_to_buf(ctx, &buf, true);
  18540. return buf.offset;
  18541. }
  18542. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18543. struct gguf_buf buf = gguf_buf_init(16*1024);
  18544. gguf_write_to_buf(ctx, &buf, true);
  18545. memcpy(data, buf.data, buf.offset);
  18546. gguf_buf_free(buf);
  18547. }
  18548. ////////////////////////////////////////////////////////////////////////////////
  18549. int ggml_cpu_has_avx(void) {
  18550. #if defined(__AVX__)
  18551. return 1;
  18552. #else
  18553. return 0;
  18554. #endif
  18555. }
  18556. int ggml_cpu_has_avx_vnni(void) {
  18557. #if defined(__AVXVNNI__)
  18558. return 1;
  18559. #else
  18560. return 0;
  18561. #endif
  18562. }
  18563. int ggml_cpu_has_avx2(void) {
  18564. #if defined(__AVX2__)
  18565. return 1;
  18566. #else
  18567. return 0;
  18568. #endif
  18569. }
  18570. int ggml_cpu_has_avx512(void) {
  18571. #if defined(__AVX512F__)
  18572. return 1;
  18573. #else
  18574. return 0;
  18575. #endif
  18576. }
  18577. int ggml_cpu_has_avx512_vbmi(void) {
  18578. #if defined(__AVX512VBMI__)
  18579. return 1;
  18580. #else
  18581. return 0;
  18582. #endif
  18583. }
  18584. int ggml_cpu_has_avx512_vnni(void) {
  18585. #if defined(__AVX512VNNI__)
  18586. return 1;
  18587. #else
  18588. return 0;
  18589. #endif
  18590. }
  18591. int ggml_cpu_has_avx512_bf16(void) {
  18592. #if defined(__AVX512BF16__)
  18593. return 1;
  18594. #else
  18595. return 0;
  18596. #endif
  18597. }
  18598. int ggml_cpu_has_fma(void) {
  18599. #if defined(__FMA__)
  18600. return 1;
  18601. #else
  18602. return 0;
  18603. #endif
  18604. }
  18605. int ggml_cpu_has_neon(void) {
  18606. #if defined(__ARM_NEON)
  18607. return 1;
  18608. #else
  18609. return 0;
  18610. #endif
  18611. }
  18612. int ggml_cpu_has_sve(void) {
  18613. #if defined(__ARM_FEATURE_SVE)
  18614. // TODO: Currently, SVE 256 bit is only supported.
  18615. GGML_ASSERT(svcntb() == QK8_0);
  18616. return 1;
  18617. #else
  18618. return 0;
  18619. #endif
  18620. }
  18621. int ggml_cpu_has_arm_fma(void) {
  18622. #if defined(__ARM_FEATURE_FMA)
  18623. return 1;
  18624. #else
  18625. return 0;
  18626. #endif
  18627. }
  18628. int ggml_cpu_has_metal(void) {
  18629. #if defined(GGML_USE_METAL)
  18630. return 1;
  18631. #else
  18632. return 0;
  18633. #endif
  18634. }
  18635. int ggml_cpu_has_f16c(void) {
  18636. #if defined(__F16C__)
  18637. return 1;
  18638. #else
  18639. return 0;
  18640. #endif
  18641. }
  18642. int ggml_cpu_has_fp16_va(void) {
  18643. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18644. return 1;
  18645. #else
  18646. return 0;
  18647. #endif
  18648. }
  18649. int ggml_cpu_has_wasm_simd(void) {
  18650. #if defined(__wasm_simd128__)
  18651. return 1;
  18652. #else
  18653. return 0;
  18654. #endif
  18655. }
  18656. int ggml_cpu_has_blas(void) {
  18657. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18658. return 1;
  18659. #else
  18660. return 0;
  18661. #endif
  18662. }
  18663. int ggml_cpu_has_cuda(void) {
  18664. #if defined(GGML_USE_CUDA)
  18665. return 1;
  18666. #else
  18667. return 0;
  18668. #endif
  18669. }
  18670. int ggml_cpu_has_vulkan(void) {
  18671. #if defined(GGML_USE_VULKAN)
  18672. return 1;
  18673. #else
  18674. return 0;
  18675. #endif
  18676. }
  18677. int ggml_cpu_has_kompute(void) {
  18678. #if defined(GGML_USE_KOMPUTE)
  18679. return 1;
  18680. #else
  18681. return 0;
  18682. #endif
  18683. }
  18684. int ggml_cpu_has_sycl(void) {
  18685. #if defined(GGML_USE_SYCL)
  18686. return 1;
  18687. #else
  18688. return 0;
  18689. #endif
  18690. }
  18691. int ggml_cpu_has_rpc(void) {
  18692. #if defined(GGML_USE_RPC)
  18693. return 1;
  18694. #else
  18695. return 0;
  18696. #endif
  18697. }
  18698. int ggml_cpu_has_gpublas(void) {
  18699. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18700. }
  18701. int ggml_cpu_has_sse3(void) {
  18702. #if defined(__SSE3__)
  18703. return 1;
  18704. #else
  18705. return 0;
  18706. #endif
  18707. }
  18708. int ggml_cpu_has_ssse3(void) {
  18709. #if defined(__SSSE3__)
  18710. return 1;
  18711. #else
  18712. return 0;
  18713. #endif
  18714. }
  18715. int ggml_cpu_has_vsx(void) {
  18716. #if defined(__POWER9_VECTOR__)
  18717. return 1;
  18718. #else
  18719. return 0;
  18720. #endif
  18721. }
  18722. int ggml_cpu_has_matmul_int8(void) {
  18723. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18724. return 1;
  18725. #else
  18726. return 0;
  18727. #endif
  18728. }
  18729. ////////////////////////////////////////////////////////////////////////////////