sampling.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. #define LLAMA_API_INTERNAL
  2. #include "sampling.h"
  3. #include <random>
  4. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
  5. struct llama_sampling_context * result = new llama_sampling_context();
  6. result->params = params;
  7. result->grammar = nullptr;
  8. // if there is a grammar, parse it
  9. if (!params.grammar.empty()) {
  10. result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  11. // will be empty (default) if there are parse errors
  12. if (result->parsed_grammar.rules.empty()) {
  13. fprintf(stderr, "%s: failed to parse grammar\n", __func__);
  14. delete result;
  15. return nullptr;
  16. }
  17. // Ensure that there is a "root" node.
  18. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
  19. fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
  20. delete result;
  21. return nullptr;
  22. }
  23. std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
  24. result->grammar = llama_grammar_init(
  25. grammar_rules.data(),
  26. grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
  27. }
  28. result->prev.resize(params.n_prev);
  29. result->n_valid = 0;
  30. llama_sampling_set_rng_seed(result, params.seed);
  31. return result;
  32. }
  33. void llama_sampling_free(struct llama_sampling_context * ctx) {
  34. if (ctx->grammar != NULL) {
  35. llama_grammar_free(ctx->grammar);
  36. }
  37. delete ctx;
  38. }
  39. void llama_sampling_reset(llama_sampling_context * ctx) {
  40. if (ctx->grammar != NULL) {
  41. llama_grammar_free(ctx->grammar);
  42. ctx->grammar = NULL;
  43. }
  44. if (!ctx->parsed_grammar.rules.empty()) {
  45. std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
  46. ctx->grammar = llama_grammar_init(
  47. grammar_rules.data(),
  48. grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
  49. }
  50. std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
  51. ctx->cur.clear();
  52. ctx->n_valid = 0;
  53. }
  54. void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
  55. if (seed == LLAMA_DEFAULT_SEED) {
  56. seed = std::random_device{}();
  57. }
  58. ctx->rng.seed(seed);
  59. }
  60. void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
  61. if (dst->grammar) {
  62. llama_grammar_free(dst->grammar);
  63. dst->grammar = nullptr;
  64. }
  65. if (src->grammar) {
  66. dst->grammar = llama_grammar_copy(src->grammar);
  67. }
  68. dst->prev = src->prev;
  69. }
  70. llama_token llama_sampling_last(llama_sampling_context * ctx) {
  71. return ctx->prev.back();
  72. }
  73. std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
  74. const int size = ctx_sampling->prev.size();
  75. n = std::min(n, size);
  76. std::string result;
  77. for (int i = size - n; i < size; i++) {
  78. result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
  79. }
  80. return result;
  81. }
  82. std::string llama_sampling_print(const llama_sampling_params & params) {
  83. char result[1024];
  84. snprintf(result, sizeof(result),
  85. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  86. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
  87. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  88. params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
  89. params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
  90. params.mirostat, params.mirostat_eta, params.mirostat_tau);
  91. return std::string(result);
  92. }
  93. std::string llama_sampling_order_print(const llama_sampling_params & params) {
  94. std::string result = "CFG -> Penalties ";
  95. if (params.mirostat == 0) {
  96. for (auto sampler_type : params.samplers_sequence) {
  97. const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
  98. if (!sampler_type_name.empty()) {
  99. result += "-> " + sampler_type_name + " ";
  100. }
  101. }
  102. } else {
  103. result += "-> mirostat ";
  104. }
  105. return result;
  106. }
  107. std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
  108. switch (sampler_type) {
  109. case llama_sampler_type::TOP_K: return "top_k";
  110. case llama_sampler_type::TFS_Z: return "tfs_z";
  111. case llama_sampler_type::TYPICAL_P: return "typical_p";
  112. case llama_sampler_type::TOP_P: return "top_p";
  113. case llama_sampler_type::MIN_P: return "min_p";
  114. case llama_sampler_type::TEMPERATURE: return "temperature";
  115. default : return "";
  116. }
  117. }
  118. std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  119. std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
  120. {"top_k", llama_sampler_type::TOP_K},
  121. {"top_p", llama_sampler_type::TOP_P},
  122. {"typical_p", llama_sampler_type::TYPICAL_P},
  123. {"min_p", llama_sampler_type::MIN_P},
  124. {"tfs_z", llama_sampler_type::TFS_Z},
  125. {"temperature", llama_sampler_type::TEMPERATURE}
  126. };
  127. // since samplers names are written multiple ways
  128. // make it ready for both system names and input names
  129. std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
  130. {"top-k", llama_sampler_type::TOP_K},
  131. {"top-p", llama_sampler_type::TOP_P},
  132. {"nucleus", llama_sampler_type::TOP_P},
  133. {"typical-p", llama_sampler_type::TYPICAL_P},
  134. {"typical", llama_sampler_type::TYPICAL_P},
  135. {"min-p", llama_sampler_type::MIN_P},
  136. {"tfs-z", llama_sampler_type::TFS_Z},
  137. {"tfs", llama_sampler_type::TFS_Z},
  138. {"temp", llama_sampler_type::TEMPERATURE}
  139. };
  140. std::vector<llama_sampler_type> sampler_types;
  141. sampler_types.reserve(names.size());
  142. for (const auto & name : names)
  143. {
  144. auto sampler_item = sampler_canonical_name_map.find(name);
  145. if (sampler_item != sampler_canonical_name_map.end())
  146. {
  147. sampler_types.push_back(sampler_item->second);
  148. }
  149. else
  150. {
  151. if (allow_alt_names)
  152. {
  153. sampler_item = sampler_alt_name_map.find(name);
  154. if (sampler_item != sampler_alt_name_map.end())
  155. {
  156. sampler_types.push_back(sampler_item->second);
  157. }
  158. }
  159. }
  160. }
  161. return sampler_types;
  162. }
  163. std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
  164. std::unordered_map<char, llama_sampler_type> sampler_name_map {
  165. {'k', llama_sampler_type::TOP_K},
  166. {'p', llama_sampler_type::TOP_P},
  167. {'y', llama_sampler_type::TYPICAL_P},
  168. {'m', llama_sampler_type::MIN_P},
  169. {'f', llama_sampler_type::TFS_Z},
  170. {'t', llama_sampler_type::TEMPERATURE}
  171. };
  172. std::vector<llama_sampler_type> sampler_types;
  173. sampler_types.reserve(names_string.size());
  174. for (const auto & c : names_string) {
  175. const auto sampler_item = sampler_name_map.find(c);
  176. if (sampler_item != sampler_name_map.end()) {
  177. sampler_types.push_back(sampler_item->second);
  178. }
  179. }
  180. return sampler_types;
  181. }
  182. // no reasons to expose this function in header
  183. static void sampler_queue(
  184. struct llama_context * ctx_main,
  185. const llama_sampling_params & params,
  186. llama_token_data_array & cur_p,
  187. size_t min_keep) {
  188. const float temp = params.temp;
  189. const float dynatemp_range = params.dynatemp_range;
  190. const float dynatemp_exponent = params.dynatemp_exponent;
  191. const int32_t top_k = params.top_k;
  192. const float top_p = params.top_p;
  193. const float min_p = params.min_p;
  194. const float tfs_z = params.tfs_z;
  195. const float typical_p = params.typical_p;
  196. const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
  197. for (auto sampler_type : samplers_sequence) {
  198. switch (sampler_type) {
  199. case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
  200. case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
  201. case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
  202. case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
  203. case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
  204. case llama_sampler_type::TEMPERATURE:
  205. if (dynatemp_range > 0) {
  206. float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
  207. float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
  208. llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
  209. } else {
  210. llama_sample_temp(ctx_main, &cur_p, temp);
  211. }
  212. break;
  213. default : break;
  214. }
  215. }
  216. }
  217. static llama_token llama_sampling_sample_impl(
  218. struct llama_sampling_context * ctx_sampling,
  219. struct llama_context * ctx_main,
  220. struct llama_context * ctx_cfg,
  221. const int idx,
  222. bool is_resampling) {
  223. const llama_sampling_params & params = ctx_sampling->params;
  224. const float temp = params.temp;
  225. const int mirostat = params.mirostat;
  226. const float mirostat_tau = params.mirostat_tau;
  227. const float mirostat_eta = params.mirostat_eta;
  228. std::vector<float> original_logits;
  229. auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
  230. if (ctx_sampling->grammar != NULL && !is_resampling) {
  231. GGML_ASSERT(!original_logits.empty());
  232. }
  233. llama_token id = 0;
  234. // Get a pointer to the logits
  235. float * logits = llama_get_logits_ith(ctx_main, idx);
  236. if (temp < 0.0) {
  237. // greedy sampling, with probs
  238. llama_sample_softmax(ctx_main, &cur_p);
  239. id = cur_p.data[0].id;
  240. } else if (temp == 0.0) {
  241. // greedy sampling, no probs
  242. id = llama_sample_token_greedy(ctx_main, &cur_p);
  243. } else {
  244. if (mirostat == 1) {
  245. const int mirostat_m = 100;
  246. llama_sample_temp(ctx_main, &cur_p, temp);
  247. id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
  248. } else if (mirostat == 2) {
  249. llama_sample_temp(ctx_main, &cur_p, temp);
  250. id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
  251. } else {
  252. // temperature sampling
  253. size_t min_keep = std::max(1, params.min_keep);
  254. sampler_queue(ctx_main, params, cur_p, min_keep);
  255. id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
  256. //{
  257. // const int n_top = 10;
  258. // LOG("top %d candidates:\n", n_top);
  259. // for (int i = 0; i < n_top; i++) {
  260. // const llama_token id = cur_p.data[i].id;
  261. // (void)id; // To avoid a warning that id is unused when logging is disabled.
  262. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
  263. // }
  264. //}
  265. //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
  266. }
  267. }
  268. if (ctx_sampling->grammar != NULL && !is_resampling) {
  269. // Create an array with a single token data element for the sampled id
  270. llama_token_data single_token_data = {id, logits[id], 0.0f};
  271. llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
  272. // Apply grammar constraints to the single token
  273. llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
  274. // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
  275. bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  276. // If the token is not valid according to the grammar, perform resampling
  277. if (!is_valid) {
  278. LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
  279. // Restore logits from the copy
  280. std::copy(original_logits.begin(), original_logits.end(), logits);
  281. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
  282. }
  283. }
  284. ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
  285. return id;
  286. }
  287. static llama_token_data_array llama_sampling_prepare_impl(
  288. struct llama_sampling_context * ctx_sampling,
  289. struct llama_context * ctx_main,
  290. struct llama_context * ctx_cfg,
  291. const int idx,
  292. bool apply_grammar,
  293. std::vector<float> * original_logits) {
  294. const llama_sampling_params & params = ctx_sampling->params;
  295. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  296. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  297. const float penalty_repeat = params.penalty_repeat;
  298. const float penalty_freq = params.penalty_freq;
  299. const float penalty_present = params.penalty_present;
  300. const bool penalize_nl = params.penalize_nl;
  301. auto & prev = ctx_sampling->prev;
  302. auto & cur = ctx_sampling->cur;
  303. // Get a pointer to the logits
  304. float * logits = llama_get_logits_ith(ctx_main, idx);
  305. if (ctx_sampling->grammar != NULL && !apply_grammar) {
  306. GGML_ASSERT(original_logits != NULL);
  307. // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
  308. *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
  309. }
  310. // apply params.logit_bias map
  311. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  312. logits[it->first] += it->second;
  313. }
  314. if (ctx_cfg) {
  315. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  316. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  317. }
  318. cur.clear();
  319. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  320. cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  321. }
  322. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  323. // apply penalties
  324. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  325. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  326. if (penalty_tokens_used_size) {
  327. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  328. llama_sample_repetition_penalties(ctx_main, &cur_p,
  329. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  330. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  331. if (!penalize_nl) {
  332. for (size_t idx = 0; idx < cur_p.size; idx++) {
  333. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  334. cur_p.data[idx].logit = nl_logit;
  335. break;
  336. }
  337. }
  338. }
  339. }
  340. // apply grammar checks before sampling logic
  341. if (apply_grammar && ctx_sampling->grammar != NULL) {
  342. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  343. }
  344. return cur_p;
  345. }
  346. llama_token llama_sampling_sample(
  347. struct llama_sampling_context * ctx_sampling,
  348. struct llama_context * ctx_main,
  349. struct llama_context * ctx_cfg,
  350. const int idx) {
  351. // Call the implementation function with is_resampling set to false by default
  352. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
  353. }
  354. llama_token_data_array llama_sampling_prepare(
  355. struct llama_sampling_context * ctx_sampling,
  356. struct llama_context * ctx_main,
  357. struct llama_context * ctx_cfg,
  358. const int idx,
  359. bool apply_grammar,
  360. std::vector<float> * original_logits) {
  361. return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
  362. }
  363. void llama_sampling_accept(
  364. struct llama_sampling_context * ctx_sampling,
  365. struct llama_context * ctx_main,
  366. llama_token id,
  367. bool apply_grammar) {
  368. ctx_sampling->prev.erase(ctx_sampling->prev.begin());
  369. ctx_sampling->prev.push_back(id);
  370. if (ctx_sampling->grammar != NULL && apply_grammar) {
  371. llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
  372. }
  373. }