ggml.c 416 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  567. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  568. }
  569. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  570. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  571. }
  572. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  573. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  574. }
  575. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  576. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK4_2 16
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  605. } block_q4_2;
  606. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  607. #define QK5_0 32
  608. typedef struct {
  609. ggml_fp16_t d; // delta
  610. uint8_t qh[4]; // 5-th bit of quants
  611. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  612. } block_q5_0;
  613. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  614. #define QK5_1 32
  615. typedef struct {
  616. ggml_fp16_t d; // delta
  617. ggml_fp16_t m; // min
  618. uint8_t qh[4]; // 5-th bit of quants
  619. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  620. } block_q5_1;
  621. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  622. #define QK8_0 32
  623. typedef struct {
  624. float d; // delta
  625. int8_t qs[QK8_0]; // quants
  626. } block_q8_0;
  627. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  628. #define QK8_1 32
  629. typedef struct {
  630. float d; // delta
  631. float s0; // d * sum(qs[i]) low
  632. float s1; // d * sum(qs[i]) high
  633. int8_t qs[QK8_1]; // quants
  634. } block_q8_1;
  635. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  636. // reference implementation for deterministic creation of model files
  637. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  638. assert(k % QK4_0 == 0);
  639. const int nb = k / QK4_0;
  640. uint8_t pp[QK4_0/2];
  641. for (int i = 0; i < nb; i++) {
  642. float amax = 0.0f; // absolute max
  643. float max = 0.0f;
  644. for (int l = 0; l < QK4_0; l++) {
  645. const float v = x[i*QK4_0 + l];
  646. if (amax < fabsf(v)) {
  647. amax = fabsf(v);
  648. max = v;
  649. }
  650. }
  651. const float d = max / -8;
  652. const float id = d ? 1.0f/d : 0.0f;
  653. y[i].d = d;
  654. for (int l = 0; l < QK4_0; l += 2) {
  655. const float v0 = x[i*QK4_0 + l + 0]*id;
  656. const float v1 = x[i*QK4_0 + l + 1]*id;
  657. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  658. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  659. assert(vi0 < 16);
  660. assert(vi1 < 16);
  661. pp[l/2] = vi0 | (vi1 << 4);
  662. }
  663. memcpy(y[i].qs, pp, sizeof(pp));
  664. }
  665. }
  666. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  667. assert(k % QK4_0 == 0);
  668. const int nb = k / QK4_0;
  669. block_q4_0 * restrict y = vy;
  670. #if defined(__POWER9_VECTOR__)
  671. const vector float v85 = vec_splats(8.5f);
  672. const vector signed int v15 = vec_splats(15);
  673. for (int i = 0; i < nb; i++) {
  674. float max = 0.0f;
  675. float min = 0.0f;
  676. vector float srcv [8];
  677. vector float maxv[8];
  678. vector float minv[8];
  679. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  680. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  681. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  682. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  683. maxv[0] = vec_max(maxv[0], maxv[2]);
  684. maxv[4] = vec_max(maxv[4], maxv[6]);
  685. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  686. maxv[0] = vec_max(maxv[0], maxv[4]);
  687. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  688. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  689. minv[0] = vec_min(minv[0], minv[2]);
  690. minv[4] = vec_min(minv[4], minv[6]);
  691. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  692. minv[0] = vec_min(minv[0], minv[4]);
  693. max = MAX(
  694. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  695. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  696. min = MIN(
  697. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  698. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  699. const float magnitude = max >= fabsf(min) ? max : min;
  700. const float d = magnitude / -8;
  701. const float id = d ? 1.0/d : 0.0;
  702. y[i].d = d;
  703. const vector float vid = vec_splats(id);
  704. uint8_t * restrict pb = y[i].qs;
  705. for (int l = 0; l < 8; l++) {
  706. const vector float vf = vec_madd(srcv[l], vid, v85);
  707. const vector signed int vi = vec_signed(vf);
  708. const vector signed int vc = vec_min(vi, v15);
  709. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  710. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  711. }
  712. }
  713. #elif __ARM_NEON
  714. for (int i = 0; i < nb; i++) {
  715. float32x4_t srcv [8];
  716. float32x4_t maxv[8];
  717. float32x4_t minv[8];
  718. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  719. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  720. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  721. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  722. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  723. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  724. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  725. const float max = vmaxvq_f32(maxv[0]);
  726. const float min = vminvq_f32(minv[0]);
  727. const float magnitude = max >= fabsf(min) ? max : min;
  728. const float d = magnitude / -8;
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = d;
  731. for (int l = 0; l < 8; l++) {
  732. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  733. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  734. const int32x4_t vi = vcvtq_s32_f32(vf);
  735. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  736. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  737. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  738. }
  739. }
  740. #elif defined(__AVX2__)
  741. for (int i = 0; i < nb; i++) {
  742. // Load elements into 4 AVX vectors
  743. __m256 v0 = _mm256_loadu_ps( x );
  744. __m256 v1 = _mm256_loadu_ps( x + 8 );
  745. __m256 v2 = _mm256_loadu_ps( x + 16 );
  746. __m256 v3 = _mm256_loadu_ps( x + 24 );
  747. x += 32;
  748. // Compute max for the block
  749. __m256 max = _mm256_max_ps( v0, v1 );
  750. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  751. max = _mm256_max_ps( max, maxTmp );
  752. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  753. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  754. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  755. const float maxScalar = _mm_cvtss_f32( max4 );
  756. // Compute min for the block
  757. __m256 min = _mm256_min_ps( v0, v1 );
  758. __m256 minTmp = _mm256_min_ps( v2, v3 );
  759. min = _mm256_min_ps( min, minTmp );
  760. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  761. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  762. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  763. const float minScalar = _mm_cvtss_f32( min4 );
  764. // Quantize these floats
  765. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  766. const float d = magnitude / -8.0f;
  767. y[i].d = d;
  768. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  769. const __m256 mul = _mm256_set1_ps( id );
  770. // Apply the multiplier
  771. v0 = _mm256_mul_ps( v0, mul );
  772. v1 = _mm256_mul_ps( v1, mul );
  773. v2 = _mm256_mul_ps( v2, mul );
  774. v3 = _mm256_mul_ps( v3, mul );
  775. // Round to nearest integer
  776. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  777. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  778. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  779. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  780. // Convert floats to integers
  781. __m256i i0 = _mm256_cvtps_epi32( v0 );
  782. __m256i i1 = _mm256_cvtps_epi32( v1 );
  783. __m256i i2 = _mm256_cvtps_epi32( v2 );
  784. __m256i i3 = _mm256_cvtps_epi32( v3 );
  785. // Convert int32 to int16
  786. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  787. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  788. // Convert int16 to int8
  789. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  790. // We got our precious signed bytes, but the order is now wrong
  791. // These AVX2 pack instructions process 16-byte pieces independently
  792. // The following instruction is fixing the order
  793. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  794. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  795. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  796. const __m256i off = _mm256_set1_epi8( 8 );
  797. i0 = _mm256_add_epi8( i0, off );
  798. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  799. i0 = _mm256_min_epi8( i0, maxNibble );
  800. // Compress the vector into 4 bit/value, and store
  801. __m128i res = packNibbles( i0 );
  802. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  803. }
  804. #elif defined(__AVX__)
  805. for (int i = 0; i < nb; i++) {
  806. // Load elements into 4 AVX vectors
  807. __m256 v0 = _mm256_loadu_ps( x );
  808. __m256 v1 = _mm256_loadu_ps( x + 8 );
  809. __m256 v2 = _mm256_loadu_ps( x + 16 );
  810. __m256 v3 = _mm256_loadu_ps( x + 24 );
  811. x += 32;
  812. // Compute max for the block
  813. __m256 max = _mm256_max_ps( v0, v1 );
  814. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  815. max = _mm256_max_ps( max, maxTmp );
  816. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  817. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  818. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  819. const float maxScalar = _mm_cvtss_f32( max4 );
  820. // Compute min for the block
  821. __m256 min = _mm256_min_ps( v0, v1 );
  822. __m256 minTmp = _mm256_min_ps( v2, v3 );
  823. min = _mm256_min_ps( min, minTmp );
  824. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  825. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  826. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  827. const float minScalar = _mm_cvtss_f32( min4 );
  828. // Quantize these floats
  829. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  830. const float d = magnitude / -8.0f;
  831. y[i].d = d;
  832. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  833. const __m256 mul = _mm256_set1_ps( id );
  834. // Apply the multiplier
  835. v0 = _mm256_mul_ps( v0, mul );
  836. v1 = _mm256_mul_ps( v1, mul );
  837. v2 = _mm256_mul_ps( v2, mul );
  838. v3 = _mm256_mul_ps( v3, mul );
  839. // Round to nearest integer
  840. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  841. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  842. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  843. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  844. // Convert floats to integers
  845. __m256i i0 = _mm256_cvtps_epi32( v0 );
  846. __m256i i1 = _mm256_cvtps_epi32( v1 );
  847. __m256i i2 = _mm256_cvtps_epi32( v2 );
  848. __m256i i3 = _mm256_cvtps_epi32( v3 );
  849. // Since we don't have in AVX some necessary functions,
  850. // we split the registers in half and call AVX2 analogs from SSE
  851. __m128i ni0 = _mm256_castsi256_si128( i0 );
  852. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  853. __m128i ni2 = _mm256_castsi256_si128( i1 );
  854. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  855. __m128i ni4 = _mm256_castsi256_si128( i2 );
  856. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  857. __m128i ni6 = _mm256_castsi256_si128( i3 );
  858. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  859. // Convert int32 to int16
  860. ni0 = _mm_packs_epi32( ni0, ni1 );
  861. ni2 = _mm_packs_epi32( ni2, ni3 );
  862. ni4 = _mm_packs_epi32( ni4, ni5 );
  863. ni6 = _mm_packs_epi32( ni6, ni7 );
  864. // Convert int16 to int8
  865. ni0 = _mm_packs_epi16( ni0, ni2 );
  866. ni4 = _mm_packs_epi16( ni4, ni6 );
  867. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  868. const __m128i off = _mm_set1_epi8( 8 );
  869. ni0 = _mm_add_epi8( ni0, off );
  870. ni4 = _mm_add_epi8( ni4, off );
  871. const __m128i maxNibble = _mm_set1_epi8( 15 );
  872. ni0 = _mm_min_epi8( ni0, maxNibble );
  873. ni4 = _mm_min_epi8( ni4, maxNibble );
  874. // Compress the vector into 4 bit/value, and store
  875. __m128i res = packNibbles( ni0, ni4 );
  876. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  877. }
  878. #elif defined(__wasm_simd128__)
  879. for (int i = 0; i < nb; i++) {
  880. float max = 0.0f;
  881. float min = 0.0f;
  882. v128_t srcv [8];
  883. v128_t maxv[8];
  884. v128_t minv[8];
  885. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  886. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  887. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  888. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  889. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  890. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  891. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  892. max = MAX(
  893. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  894. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  895. min = MIN(
  896. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  897. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  898. const float magnitude = max >= fabsf(min) ? max : min;
  899. const float d = magnitude / -8;
  900. const float id = d ? 1.0/d : 0.0;
  901. y[i].d = d;
  902. for (int l = 0; l < 8; l++) {
  903. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  904. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  905. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  906. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  907. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  908. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  909. }
  910. }
  911. #else
  912. // scalar
  913. quantize_row_q4_0_reference(x, y, k);
  914. #endif
  915. }
  916. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  917. assert(k % QK4_1 == 0);
  918. const int nb = k / QK4_1;
  919. block_q4_1 * restrict y = vy;
  920. uint8_t pp[QK4_1/2];
  921. for (int i = 0; i < nb; i++) {
  922. float min = FLT_MAX;
  923. float max = -FLT_MAX;
  924. for (int l = 0; l < QK4_1; l++) {
  925. const float v = x[i*QK4_1 + l];
  926. if (v < min) min = v;
  927. if (v > max) max = v;
  928. }
  929. const float d = (max - min) / ((1 << 4) - 1);
  930. const float id = d ? 1.0f/d : 0.0f;
  931. y[i].d = d;
  932. y[i].m = min;
  933. for (int l = 0; l < QK4_1; l += 2) {
  934. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  935. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  936. const uint8_t vi0 = roundf(v0);
  937. const uint8_t vi1 = roundf(v1);
  938. assert(vi0 < 16);
  939. assert(vi1 < 16);
  940. pp[l/2] = vi0 | (vi1 << 4);
  941. }
  942. memcpy(y[i].qs, pp, sizeof(pp));
  943. }
  944. }
  945. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  946. assert(k % QK4_1 == 0);
  947. const int nb = k / QK4_1;
  948. block_q4_1 * restrict y = vy;
  949. #if defined(__AVX2__)
  950. for (int i = 0; i < nb; i++) {
  951. // Load elements into 4 AVX vectors
  952. __m256 v0 = _mm256_loadu_ps( x );
  953. __m256 v1 = _mm256_loadu_ps( x + 8 );
  954. __m256 v2 = _mm256_loadu_ps( x + 16 );
  955. __m256 v3 = _mm256_loadu_ps( x + 24 );
  956. x += 32;
  957. // Compute max for the block
  958. __m256 vmax;
  959. vmax = _mm256_max_ps( v0, v1 );
  960. vmax = _mm256_max_ps( vmax, v2 );
  961. vmax = _mm256_max_ps( vmax, v3 );
  962. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  963. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  964. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  965. const float maxScalar = _mm_cvtss_f32( max4 );
  966. // Compute min for the block
  967. __m256 vmin;
  968. vmin = _mm256_min_ps( v0, v1 );
  969. vmin = _mm256_min_ps( vmin, v2 );
  970. vmin = _mm256_min_ps( vmin, v3 );
  971. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  972. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  973. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  974. const float minScalar = _mm_cvtss_f32( min4 );
  975. // Quantize these floats
  976. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  977. const float id = d ? 1.0f/d : 0.0f;
  978. y[i].m = minScalar;
  979. y[i].d = d;
  980. // x = (x-min)*id
  981. const __m256 mul = _mm256_set1_ps( id );
  982. const __m256 off = _mm256_set1_ps( minScalar );
  983. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  984. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  985. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  986. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  987. // Round to nearest integer
  988. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  989. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  990. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  991. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  992. // Convert floats to integers
  993. __m256i i0 = _mm256_cvtps_epi32( v0 );
  994. __m256i i1 = _mm256_cvtps_epi32( v1 );
  995. __m256i i2 = _mm256_cvtps_epi32( v2 );
  996. __m256i i3 = _mm256_cvtps_epi32( v3 );
  997. // Convert int32 to int16
  998. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  999. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1000. // Convert int16 to int8
  1001. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1002. // We got our precious signed bytes, but the order is now wrong
  1003. // These AVX2 pack instructions process 16-byte pieces independently
  1004. // The following instruction is fixing the order
  1005. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1006. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1007. // Compress the vector into 4 bit/value, and store
  1008. __m128i res = packNibbles( i0 );
  1009. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1010. }
  1011. #elif __ARM_NEON
  1012. for (int i = 0; i < nb; i++) {
  1013. float32x4_t srcv[8];
  1014. float32x4_t minv[8];
  1015. float32x4_t maxv[8];
  1016. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1017. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1018. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1019. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1020. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1021. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1022. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1023. const float min = vminvq_f32(minv[0]);
  1024. const float max = vmaxvq_f32(maxv[0]);
  1025. const float d = (max - min) / ((1 << 4) - 1);
  1026. const float id = d ? 1.0f/d : 0.0f;
  1027. y[i].d = d;
  1028. y[i].m = min;
  1029. const float32x4_t minv0 = vdupq_n_f32(min);
  1030. for (int l = 0; l < 8; l++) {
  1031. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1032. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1033. const int32x4_t vi = vcvtq_s32_f32(vf);
  1034. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1035. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1036. }
  1037. }
  1038. #else
  1039. // scalar
  1040. quantize_row_q4_1_reference(x, vy, k);
  1041. #endif
  1042. }
  1043. // reference implementation for deterministic creation of model files
  1044. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1045. assert(k % QK4_2 == 0);
  1046. const int nb = k / QK4_2;
  1047. for (int i = 0; i < nb; i++) {
  1048. float amax = 0.0f; // absolute max
  1049. float max = 0.0f;
  1050. for (int l = 0; l < QK4_2; l++) {
  1051. const float v = x[i*QK4_2 + l];
  1052. if (amax < fabsf(v)) {
  1053. amax = fabsf(v);
  1054. max = v;
  1055. }
  1056. }
  1057. const float d = max / -8;
  1058. const float id = d ? 1.0f/d : 0.0f;
  1059. y[i].d = GGML_FP32_TO_FP16(d);
  1060. for (int l = 0; l < QK4_2; l += 2) {
  1061. const float v0 = x[i*QK4_2 + l + 0]*id;
  1062. const float v1 = x[i*QK4_2 + l + 1]*id;
  1063. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1064. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1065. assert(vi0 < 16);
  1066. assert(vi1 < 16);
  1067. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1068. }
  1069. }
  1070. }
  1071. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1072. assert(k % QK4_2 == 0);
  1073. block_q4_2 * restrict y = vy;
  1074. quantize_row_q4_2_reference(x, y, k);
  1075. }
  1076. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1077. assert(k % QK5_0 == 0);
  1078. const int nb = k / QK5_0;
  1079. for (int i = 0; i < nb; i++) {
  1080. float amax = 0.0f; // absolute max
  1081. float max = 0.0f;
  1082. for (int l = 0; l < QK5_0; l++) {
  1083. const float v = x[i*QK5_0 + l];
  1084. if (amax < fabsf(v)) {
  1085. amax = fabsf(v);
  1086. max = v;
  1087. }
  1088. }
  1089. const float d = max / -16;
  1090. const float id = d ? 1.0f/d : 0.0f;
  1091. y[i].d = GGML_FP32_TO_FP16(d);
  1092. uint32_t qh = 0;
  1093. for (int l = 0; l < QK5_0; l += 2) {
  1094. const float v0 = x[i*QK5_0 + l + 0]*id;
  1095. const float v1 = x[i*QK5_0 + l + 1]*id;
  1096. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1097. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1098. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1099. // get the 5-th bit and store it in qh at the right position
  1100. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1101. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1102. }
  1103. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1104. }
  1105. }
  1106. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK5_0 == 0);
  1108. block_q5_0 * restrict y = vy;
  1109. quantize_row_q5_0_reference(x, y, k);
  1110. }
  1111. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1112. assert(k % QK5_1 == 0);
  1113. const int nb = k / QK5_1;
  1114. for (int i = 0; i < nb; i++) {
  1115. float min = FLT_MAX;
  1116. float max = -FLT_MAX;
  1117. for (int l = 0; l < QK5_1; l++) {
  1118. const float v = x[i*QK5_1 + l];
  1119. if (v < min) min = v;
  1120. if (v > max) max = v;
  1121. }
  1122. const float d = (max - min) / ((1 << 5) - 1);
  1123. const float id = d ? 1.0f/d : 0.0f;
  1124. y[i].d = GGML_FP32_TO_FP16(d);
  1125. y[i].m = GGML_FP32_TO_FP16(min);
  1126. uint32_t qh = 0;
  1127. for (int l = 0; l < QK5_1; l += 2) {
  1128. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1129. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1130. const uint32_t vi0 = (int) (v0 + 0.5f);
  1131. const uint32_t vi1 = (int) (v1 + 0.5f);
  1132. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1133. // get the 5-th bit and store it in qh at the right position
  1134. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1135. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1136. }
  1137. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1138. }
  1139. }
  1140. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1141. assert(k % QK5_1 == 0);
  1142. block_q5_1 * restrict y = vy;
  1143. quantize_row_q5_1_reference(x, y, k);
  1144. }
  1145. // reference implementation for deterministic creation of model files
  1146. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1147. assert(k % QK8_0 == 0);
  1148. const int nb = k / QK8_0;
  1149. for (int i = 0; i < nb; i++) {
  1150. float amax = 0.0f; // absolute max
  1151. for (int l = 0; l < QK8_0; l++) {
  1152. const float v = x[i*QK8_0 + l];
  1153. amax = MAX(amax, fabsf(v));
  1154. }
  1155. const float d = amax / ((1 << 7) - 1);
  1156. const float id = d ? 1.0f/d : 0.0f;
  1157. y[i].d = d;
  1158. for (int l = 0; l < QK8_0; ++l) {
  1159. const float v0 = x[i*QK8_0 + l]*id;
  1160. y[i].qs[l] = roundf(v0);
  1161. }
  1162. }
  1163. }
  1164. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1165. assert(k % QK8_0 == 0);
  1166. block_q8_0 * restrict y = vy;
  1167. quantize_row_q8_0_reference(x, y, k);
  1168. }
  1169. // reference implementation for deterministic creation of model files
  1170. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1171. assert(k % QK8_1 == 0);
  1172. const int nb = k / QK8_1;
  1173. for (int i = 0; i < nb; i++) {
  1174. float amax = 0.0f; // absolute max
  1175. for (int l = 0; l < QK8_1; l++) {
  1176. const float v = x[i*QK8_1 + l];
  1177. amax = MAX(amax, fabsf(v));
  1178. }
  1179. const float d = amax / ((1 << 7) - 1);
  1180. const float id = d ? 1.0f/d : 0.0f;
  1181. y[i].d = d;
  1182. int sum0 = 0;
  1183. int sum1 = 0;
  1184. for (int l = 0; l < QK8_1/2; ++l) {
  1185. const float v0 = x[i*QK8_1 + l]*id;
  1186. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1187. y[i].qs[ l] = roundf(v0);
  1188. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1189. sum0 += y[i].qs[ l];
  1190. sum1 += y[i].qs[QK8_1/2 + l];
  1191. }
  1192. y[i].s0 = d * sum0;
  1193. y[i].s1 = d * sum1;
  1194. }
  1195. }
  1196. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1197. assert(k % QK8_1 == 0);
  1198. const int nb = k / QK8_1;
  1199. block_q8_1 * restrict y = vy;
  1200. #if defined(__ARM_NEON)
  1201. for (int i = 0; i < nb; i++) {
  1202. float32x4_t srcv [8];
  1203. float32x4_t asrcv[8];
  1204. float32x4_t amaxv[8];
  1205. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1206. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1207. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1208. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1209. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1210. const float amax = vmaxvq_f32(amaxv[0]);
  1211. const float d = amax / ((1 << 7) - 1);
  1212. const float id = d ? 1.0f/d : 0.0f;
  1213. y[i].d = d;
  1214. int32x4_t accv0 = vdupq_n_s32(0);
  1215. int32x4_t accv1 = vdupq_n_s32(0);
  1216. // low half
  1217. for (int l = 0; l < 4; l++) {
  1218. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1219. const int32x4_t vi = vcvtnq_s32_f32(v);
  1220. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1221. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1222. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1223. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1224. accv0 = vaddq_s32(accv0, vi);
  1225. }
  1226. // high half
  1227. for (int l = 4; l < 8; l++) {
  1228. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1229. const int32x4_t vi = vcvtnq_s32_f32(v);
  1230. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1231. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1232. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1233. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1234. accv1 = vaddq_s32(accv1, vi);
  1235. }
  1236. const int32_t sum0 = vaddvq_s32(accv0);
  1237. const int32_t sum1 = vaddvq_s32(accv1);
  1238. y[i].s0 = d * sum0;
  1239. y[i].s1 = d * sum1;
  1240. }
  1241. #elif defined(__AVX2__) || defined(__AVX__)
  1242. for (int i = 0; i < nb; i++) {
  1243. // Load elements into 4 AVX vectors
  1244. __m256 v0 = _mm256_loadu_ps( x );
  1245. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1246. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1247. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1248. x += 32;
  1249. // Compute max(abs(e)) for the block
  1250. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1251. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1252. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1253. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1254. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1255. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1256. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1257. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1258. const float maxScalar = _mm_cvtss_f32( max4 );
  1259. // Quantize these floats
  1260. const float d = maxScalar / 127.f;
  1261. y[i].d = d;
  1262. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1263. const __m256 mul = _mm256_set1_ps( id );
  1264. // Apply the multiplier
  1265. v0 = _mm256_mul_ps( v0, mul );
  1266. v1 = _mm256_mul_ps( v1, mul );
  1267. v2 = _mm256_mul_ps( v2, mul );
  1268. v3 = _mm256_mul_ps( v3, mul );
  1269. // Round to nearest integer
  1270. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1271. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1272. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1273. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1274. // Convert floats to integers
  1275. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1276. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1277. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1278. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1279. #if defined(__AVX2__)
  1280. // Compute the sum of the quants and set y[i].s
  1281. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1282. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1283. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1284. // Convert int32 to int16
  1285. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1286. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1287. // Convert int16 to int8
  1288. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1289. // We got our precious signed bytes, but the order is now wrong
  1290. // These AVX2 pack instructions process 16-byte pieces independently
  1291. // The following instruction is fixing the order
  1292. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1293. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1294. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1295. #else
  1296. // Since we don't have in AVX some necessary functions,
  1297. // we split the registers in half and call AVX2 analogs from SSE
  1298. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1299. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1300. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1301. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1302. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1303. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1304. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1305. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1306. // Compute the sum of the quants and set y[i].s
  1307. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1308. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1309. y[i].s0 = d * hsum_i32_4(s0);
  1310. y[i].s1 = d * hsum_i32_4(s1);
  1311. // Convert int32 to int16
  1312. ni0 = _mm_packs_epi32( ni0, ni1 );
  1313. ni2 = _mm_packs_epi32( ni2, ni3 );
  1314. ni4 = _mm_packs_epi32( ni4, ni5 );
  1315. ni6 = _mm_packs_epi32( ni6, ni7 );
  1316. // Convert int16 to int8
  1317. ni0 = _mm_packs_epi16( ni0, ni2 );
  1318. ni4 = _mm_packs_epi16( ni4, ni6 );
  1319. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1320. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1321. #endif
  1322. }
  1323. #else
  1324. // scalar
  1325. quantize_row_q8_1_reference(x, y, k);
  1326. #endif
  1327. }
  1328. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1329. assert(k % QK4_0 == 0);
  1330. const int nb = k / QK4_0;
  1331. const block_q4_0 * restrict x = vx;
  1332. #if defined(__AVX2__)
  1333. for (int i = 0; i < nb; i++) {
  1334. // scale factor
  1335. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1336. const uint8_t * restrict pp = x[i].qs;
  1337. for (int l = 0; l < QK4_0; l += 32) {
  1338. // Load 32x4-bit integers into 32x8-bit integers
  1339. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1340. // Subtract 8 from the integers
  1341. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1342. // Convert to 16-bit int
  1343. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1344. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1345. // Convert to 32-bit int -> float 32
  1346. const __m256 vf[4] = {
  1347. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1348. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1349. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1350. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1351. };
  1352. // Scale and store
  1353. for (int j = 0; j < 4; j++) {
  1354. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1355. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1356. }
  1357. }
  1358. }
  1359. #elif defined(__ARM_NEON)
  1360. for (int i = 0; i < nb; i++) {
  1361. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1362. const uint8_t * restrict pp = x[i].qs;
  1363. for (int l = 0; l < QK4_0; l += 16) {
  1364. // Load 16x4-bit integers into 8x8-bit integers
  1365. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1366. // Expand 4-bit qs to 8-bit bytes
  1367. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1368. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1369. // Convert to signed 8-bit integers
  1370. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1371. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1372. // Subtract 8 from each byte
  1373. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1374. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1375. // Interleave and combine
  1376. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1377. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1378. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1379. // convert to 2x int16x8_t
  1380. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1381. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1382. // convert to 4x float32x4_t
  1383. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1384. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1385. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1386. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1387. // Multiply by d
  1388. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1389. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1390. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1391. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1392. // Store
  1393. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1394. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1395. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1396. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1397. }
  1398. }
  1399. #else
  1400. // scalar
  1401. for (int i = 0; i < nb; i++) {
  1402. const float d = x[i].d;
  1403. const uint8_t * restrict pp = x[i].qs;
  1404. for (int l = 0; l < QK4_0; l += 2) {
  1405. const uint8_t vi = pp[l/2];
  1406. const int8_t vi0 = vi & 0x0F;
  1407. const int8_t vi1 = vi >> 4;
  1408. const float v0 = (vi0 - 8)*d;
  1409. const float v1 = (vi1 - 8)*d;
  1410. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1411. y[i*QK4_0 + l + 0] = v0;
  1412. y[i*QK4_0 + l + 1] = v1;
  1413. assert(!isnan(y[i*QK4_0 + l + 0]));
  1414. assert(!isnan(y[i*QK4_0 + l + 1]));
  1415. }
  1416. }
  1417. #endif
  1418. }
  1419. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1420. assert(k % QK4_1 == 0);
  1421. const int nb = k / QK4_1;
  1422. const block_q4_1 * restrict x = vx;
  1423. #if defined(__AVX2__)
  1424. for (int i = 0; i < nb; i++) {
  1425. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1426. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1427. const uint8_t * restrict pp = x[i].qs;
  1428. for (int l = 0; l < QK4_1; l += 32) {
  1429. // Load 32x4-bit integers into 32x8-bit integers
  1430. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1431. // Convert to 16-bit int
  1432. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1433. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1434. // Convert to 32-bit int -> float 32
  1435. const __m256 vf[4] = {
  1436. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1437. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1438. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1439. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1440. };
  1441. // Scale, add m and store
  1442. for (int j = 0; j < 4; j++) {
  1443. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1444. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1445. }
  1446. }
  1447. }
  1448. #elif defined(__ARM_NEON)
  1449. for (int i = 0; i < nb; i++) {
  1450. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1451. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1452. const uint8_t * restrict pp = x[i].qs;
  1453. for (int l = 0; l < QK4_1; l += 16) {
  1454. // Load 16x4-bit integers into 8x8-bit integers
  1455. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1456. // Expand 4-bit qs to 8-bit bytes
  1457. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1458. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1459. // Interleave and combine
  1460. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1461. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1462. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1463. // convert to 2x uint16x8_t
  1464. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1465. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1466. // convert to 4x float32x4_t
  1467. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1468. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1469. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1470. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1471. // multiply by d and add m
  1472. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1473. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1474. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1475. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1476. // Store
  1477. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1478. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1479. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1480. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1481. }
  1482. }
  1483. #else
  1484. for (int i = 0; i < nb; i++) {
  1485. const float d = x[i].d;
  1486. const float m = x[i].m;
  1487. const uint8_t * restrict pp = x[i].qs;
  1488. for (int l = 0; l < QK4_1; l += 2) {
  1489. const uint8_t vi = pp[l/2];
  1490. const int8_t vi0 = vi & 0x0F;
  1491. const int8_t vi1 = vi >> 4;
  1492. const float v0 = vi0*d + m;
  1493. const float v1 = vi1*d + m;
  1494. y[i*QK4_1 + l + 0] = v0;
  1495. y[i*QK4_1 + l + 1] = v1;
  1496. assert(!isnan(y[i*QK4_1 + l + 0]));
  1497. assert(!isnan(y[i*QK4_1 + l + 1]));
  1498. }
  1499. }
  1500. #endif
  1501. }
  1502. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1503. assert(k % QK4_2 == 0);
  1504. const int nb = k / QK4_2;
  1505. const block_q4_2 * restrict x = vx;
  1506. for (int i = 0; i < nb; i++) {
  1507. const float d = GGML_FP16_TO_FP32(x[i].d);
  1508. const uint8_t * restrict pp = x[i].qs;
  1509. for (int l = 0; l < QK4_2; l += 2) {
  1510. const uint8_t vi = pp[l/2];
  1511. const int8_t vi0 = vi & 0x0F;
  1512. const int8_t vi1 = vi >> 4;
  1513. const float v0 = (vi0 - 8)*d;
  1514. const float v1 = (vi1 - 8)*d;
  1515. y[i*QK4_2 + l + 0] = v0;
  1516. y[i*QK4_2 + l + 1] = v1;
  1517. assert(!isnan(y[i*QK4_2 + l + 0]));
  1518. assert(!isnan(y[i*QK4_2 + l + 1]));
  1519. }
  1520. }
  1521. }
  1522. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1523. assert(k % QK5_0 == 0);
  1524. const int nb = k / QK5_0;
  1525. const block_q5_0 * restrict x = vx;
  1526. for (int i = 0; i < nb; i++) {
  1527. const float d = GGML_FP16_TO_FP32(x[i].d);
  1528. const uint8_t * restrict pp = x[i].qs;
  1529. uint32_t qh;
  1530. memcpy(&qh, x[i].qh, sizeof(qh));
  1531. for (int l = 0; l < QK5_0; l += 2) {
  1532. const uint8_t vi = pp[l/2];
  1533. // extract the 5-th bit from qh
  1534. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1535. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1536. const int8_t vi0 = (vi & 0x0F) | vh0;
  1537. const int8_t vi1 = (vi >> 4) | vh1;
  1538. const float v0 = (vi0 - 16)*d;
  1539. const float v1 = (vi1 - 16)*d;
  1540. y[i*QK5_0 + l + 0] = v0;
  1541. y[i*QK5_0 + l + 1] = v1;
  1542. assert(!isnan(y[i*QK5_0 + l + 0]));
  1543. assert(!isnan(y[i*QK5_0 + l + 1]));
  1544. }
  1545. }
  1546. }
  1547. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1548. assert(k % QK5_1 == 0);
  1549. const int nb = k / QK5_1;
  1550. const block_q5_1 * restrict x = vx;
  1551. for (int i = 0; i < nb; i++) {
  1552. const float d = GGML_FP16_TO_FP32(x[i].d);
  1553. const float m = GGML_FP16_TO_FP32(x[i].m);
  1554. const uint8_t * restrict pp = x[i].qs;
  1555. uint32_t qh;
  1556. memcpy(&qh, x[i].qh, sizeof(qh));
  1557. for (int l = 0; l < QK5_1; l += 2) {
  1558. const uint8_t vi = pp[l/2];
  1559. // extract the 5-th bit from qh
  1560. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1561. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1562. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1563. const uint8_t vi1 = (vi >> 4) | vh1;
  1564. const float v0 = vi0*d + m;
  1565. const float v1 = vi1*d + m;
  1566. y[i*QK5_1 + l + 0] = v0;
  1567. y[i*QK5_1 + l + 1] = v1;
  1568. assert(!isnan(y[i*QK5_1 + l + 0]));
  1569. assert(!isnan(y[i*QK5_1 + l + 1]));
  1570. }
  1571. }
  1572. }
  1573. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1574. assert(k % QK8_0 == 0);
  1575. const int nb = k / QK8_0;
  1576. const block_q8_0 * restrict x = vx;
  1577. for (int i = 0; i < nb; i++) {
  1578. const float d = x[i].d;
  1579. const int8_t * restrict pp = x[i].qs;
  1580. for (int l = 0; l < QK8_0; ++l) {
  1581. y[i*QK8_0 + l] = pp[l]*d;
  1582. }
  1583. }
  1584. }
  1585. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1586. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1587. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1588. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1589. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1590. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1591. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1592. [GGML_TYPE_Q4_0] = {
  1593. .dequantize_row_q = dequantize_row_q4_0,
  1594. .quantize_row_q = quantize_row_q4_0,
  1595. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1596. .quantize_row_q_dot = quantize_row_q8_0,
  1597. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1598. .vec_dot_type = GGML_TYPE_Q8_0,
  1599. },
  1600. [GGML_TYPE_Q4_1] = {
  1601. .dequantize_row_q = dequantize_row_q4_1,
  1602. .quantize_row_q = quantize_row_q4_1,
  1603. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1604. .quantize_row_q_dot = quantize_row_q8_1,
  1605. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1606. .vec_dot_type = GGML_TYPE_Q8_1,
  1607. },
  1608. [GGML_TYPE_Q4_2] = {
  1609. .dequantize_row_q = dequantize_row_q4_2,
  1610. .quantize_row_q = quantize_row_q4_2,
  1611. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1612. .quantize_row_q_dot = quantize_row_q8_0,
  1613. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1614. .vec_dot_type = GGML_TYPE_Q8_0,
  1615. },
  1616. [GGML_TYPE_Q5_0] = {
  1617. .dequantize_row_q = dequantize_row_q5_0,
  1618. .quantize_row_q = quantize_row_q5_0,
  1619. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1620. .quantize_row_q_dot = quantize_row_q8_0,
  1621. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1622. .vec_dot_type = GGML_TYPE_Q8_0,
  1623. },
  1624. [GGML_TYPE_Q5_1] = {
  1625. .dequantize_row_q = dequantize_row_q5_1,
  1626. .quantize_row_q = quantize_row_q5_1,
  1627. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1628. .quantize_row_q_dot = quantize_row_q8_1,
  1629. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1630. .vec_dot_type = GGML_TYPE_Q8_1,
  1631. },
  1632. [GGML_TYPE_Q8_0] = {
  1633. .dequantize_row_q = dequantize_row_q8_0,
  1634. .quantize_row_q = quantize_row_q8_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q8_1] = {
  1641. .dequantize_row_q = NULL, // TODO
  1642. .quantize_row_q = quantize_row_q8_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = NULL, // TODO
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. };
  1649. // For internal test use
  1650. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1651. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1652. return quantize_fns[i];
  1653. }
  1654. //
  1655. // simd mappings
  1656. //
  1657. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1658. // we then implement the fundamental computation operations below using only these macros
  1659. // adding support for new architectures requires to define the corresponding SIMD macros
  1660. //
  1661. // GGML_F32_STEP / GGML_F16_STEP
  1662. // number of elements to process in a single step
  1663. //
  1664. // GGML_F32_EPR / GGML_F16_EPR
  1665. // number of elements to fit in a single register
  1666. //
  1667. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1668. #define GGML_SIMD
  1669. // F32 NEON
  1670. #define GGML_F32_STEP 16
  1671. #define GGML_F32_EPR 4
  1672. #define GGML_F32x4 float32x4_t
  1673. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1674. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1675. #define GGML_F32x4_LOAD vld1q_f32
  1676. #define GGML_F32x4_STORE vst1q_f32
  1677. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1678. #define GGML_F32x4_ADD vaddq_f32
  1679. #define GGML_F32x4_MUL vmulq_f32
  1680. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1681. #define GGML_F32x4_REDUCE(res, x) \
  1682. { \
  1683. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1684. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1685. } \
  1686. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1687. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1688. } \
  1689. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1690. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1691. } \
  1692. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1693. }
  1694. #define GGML_F32_VEC GGML_F32x4
  1695. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1696. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1697. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1698. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1699. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1700. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1701. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1702. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1703. // F16 NEON
  1704. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1705. #define GGML_F16_STEP 32
  1706. #define GGML_F16_EPR 8
  1707. #define GGML_F16x8 float16x8_t
  1708. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1709. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1710. #define GGML_F16x8_LOAD vld1q_f16
  1711. #define GGML_F16x8_STORE vst1q_f16
  1712. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1713. #define GGML_F16x8_ADD vaddq_f16
  1714. #define GGML_F16x8_MUL vmulq_f16
  1715. #define GGML_F16x8_REDUCE(res, x) \
  1716. { \
  1717. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1718. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1719. } \
  1720. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1721. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1722. } \
  1723. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1724. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1725. } \
  1726. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1727. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1728. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1729. }
  1730. #define GGML_F16_VEC GGML_F16x8
  1731. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1732. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1733. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1734. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1735. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1736. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1737. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1738. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1739. #else
  1740. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1741. // and take advantage of the vcvt_ functions to convert to/from FP16
  1742. #define GGML_F16_STEP 16
  1743. #define GGML_F16_EPR 4
  1744. #define GGML_F32Cx4 float32x4_t
  1745. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1746. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1747. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1748. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1749. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1750. #define GGML_F32Cx4_ADD vaddq_f32
  1751. #define GGML_F32Cx4_MUL vmulq_f32
  1752. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1753. #define GGML_F16_VEC GGML_F32Cx4
  1754. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1755. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1756. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1757. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1758. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1759. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1760. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1761. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1762. #endif
  1763. #elif defined(__AVX__)
  1764. #define GGML_SIMD
  1765. // F32 AVX
  1766. #define GGML_F32_STEP 32
  1767. #define GGML_F32_EPR 8
  1768. #define GGML_F32x8 __m256
  1769. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1770. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1771. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1772. #define GGML_F32x8_STORE _mm256_storeu_ps
  1773. #if defined(__FMA__)
  1774. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1775. #else
  1776. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1777. #endif
  1778. #define GGML_F32x8_ADD _mm256_add_ps
  1779. #define GGML_F32x8_MUL _mm256_mul_ps
  1780. #define GGML_F32x8_REDUCE(res, x) \
  1781. { \
  1782. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1783. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1784. } \
  1785. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1786. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1787. } \
  1788. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1789. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1790. } \
  1791. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1792. _mm256_extractf128_ps(x[0], 1)); \
  1793. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1794. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1795. }
  1796. // TODO: is this optimal ?
  1797. #define GGML_F32_VEC GGML_F32x8
  1798. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1799. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1800. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1801. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1802. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1803. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1804. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1805. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1806. // F16 AVX
  1807. #define GGML_F16_STEP 32
  1808. #define GGML_F16_EPR 8
  1809. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1810. #define GGML_F32Cx8 __m256
  1811. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1812. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1813. #if defined(__F16C__)
  1814. // the _mm256_cvt intrinsics require F16C
  1815. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1816. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1817. #else
  1818. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1819. float tmp[8];
  1820. for (int i = 0; i < 8; i++)
  1821. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1822. return _mm256_loadu_ps(tmp);
  1823. }
  1824. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1825. float arr[8];
  1826. _mm256_storeu_ps(arr, y);
  1827. for (int i = 0; i < 8; i++)
  1828. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1829. }
  1830. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1831. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1832. #endif
  1833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1834. #define GGML_F32Cx8_ADD _mm256_add_ps
  1835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1837. #define GGML_F16_VEC GGML_F32Cx8
  1838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1846. #elif defined(__POWER9_VECTOR__)
  1847. #define GGML_SIMD
  1848. // F32 POWER9
  1849. #define GGML_F32_STEP 32
  1850. #define GGML_F32_EPR 4
  1851. #define GGML_F32x4 vector float
  1852. #define GGML_F32x4_ZERO 0.0f
  1853. #define GGML_F32x4_SET1 vec_splats
  1854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1857. #define GGML_F32x4_ADD vec_add
  1858. #define GGML_F32x4_MUL vec_mul
  1859. #define GGML_F32x4_REDUCE(res, x) \
  1860. { \
  1861. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1862. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1863. } \
  1864. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1865. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1866. } \
  1867. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1868. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1869. } \
  1870. res = vec_extract(x[0], 0) + \
  1871. vec_extract(x[0], 1) + \
  1872. vec_extract(x[0], 2) + \
  1873. vec_extract(x[0], 3); \
  1874. }
  1875. #define GGML_F32_VEC GGML_F32x4
  1876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1884. // F16 POWER9
  1885. #define GGML_F16_STEP GGML_F32_STEP
  1886. #define GGML_F16_EPR GGML_F32_EPR
  1887. #define GGML_F16_VEC GGML_F32x4
  1888. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1889. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1890. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1891. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1892. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1893. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1894. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1895. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1896. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1897. #define GGML_F16_VEC_STORE(p, r, i) \
  1898. if (i & 0x1) \
  1899. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1900. r[i - GGML_ENDIAN_BYTE(0)]), \
  1901. 0, p - GGML_F16_EPR)
  1902. #elif defined(__wasm_simd128__)
  1903. #define GGML_SIMD
  1904. // F32 WASM
  1905. #define GGML_F32_STEP 16
  1906. #define GGML_F32_EPR 4
  1907. #define GGML_F32x4 v128_t
  1908. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1909. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1910. #define GGML_F32x4_LOAD wasm_v128_load
  1911. #define GGML_F32x4_STORE wasm_v128_store
  1912. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1913. #define GGML_F32x4_ADD wasm_f32x4_add
  1914. #define GGML_F32x4_MUL wasm_f32x4_mul
  1915. #define GGML_F32x4_REDUCE(res, x) \
  1916. { \
  1917. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1918. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1919. } \
  1920. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1921. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1922. } \
  1923. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1924. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1925. } \
  1926. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1927. wasm_f32x4_extract_lane(x[0], 1) + \
  1928. wasm_f32x4_extract_lane(x[0], 2) + \
  1929. wasm_f32x4_extract_lane(x[0], 3); \
  1930. }
  1931. #define GGML_F32_VEC GGML_F32x4
  1932. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1933. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1934. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1935. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1936. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1937. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1938. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1939. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1940. // F16 WASM
  1941. #define GGML_F16_STEP 16
  1942. #define GGML_F16_EPR 4
  1943. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1944. float tmp[4];
  1945. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1946. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1947. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1948. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1949. return wasm_v128_load(tmp);
  1950. }
  1951. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1952. float tmp[4];
  1953. wasm_v128_store(tmp, x);
  1954. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1955. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1956. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1957. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1958. }
  1959. #define GGML_F16x4 v128_t
  1960. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1961. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1962. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1963. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1964. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1965. #define GGML_F16x4_ADD wasm_f32x4_add
  1966. #define GGML_F16x4_MUL wasm_f32x4_mul
  1967. #define GGML_F16x4_REDUCE(res, x) \
  1968. { \
  1969. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1970. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1971. } \
  1972. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1973. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1974. } \
  1975. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1976. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1977. } \
  1978. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1979. wasm_f32x4_extract_lane(x[0], 1) + \
  1980. wasm_f32x4_extract_lane(x[0], 2) + \
  1981. wasm_f32x4_extract_lane(x[0], 3); \
  1982. }
  1983. #define GGML_F16_VEC GGML_F16x4
  1984. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1985. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1986. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1987. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1988. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1989. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1990. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1991. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1992. #elif defined(__SSE3__)
  1993. #define GGML_SIMD
  1994. // F32 SSE
  1995. #define GGML_F32_STEP 32
  1996. #define GGML_F32_EPR 4
  1997. #define GGML_F32x4 __m128
  1998. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1999. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2000. #define GGML_F32x4_LOAD _mm_loadu_ps
  2001. #define GGML_F32x4_STORE _mm_storeu_ps
  2002. #if defined(__FMA__)
  2003. // TODO: Does this work?
  2004. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2005. #else
  2006. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2007. #endif
  2008. #define GGML_F32x4_ADD _mm_add_ps
  2009. #define GGML_F32x4_MUL _mm_mul_ps
  2010. #define GGML_F32x4_REDUCE(res, x) \
  2011. { \
  2012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2013. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2014. } \
  2015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2016. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2017. } \
  2018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2019. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2020. } \
  2021. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2022. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2023. }
  2024. // TODO: is this optimal ?
  2025. #define GGML_F32_VEC GGML_F32x4
  2026. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2027. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2028. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2029. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2030. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2031. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2032. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2033. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2034. // F16 SSE
  2035. #define GGML_F16_STEP 32
  2036. #define GGML_F16_EPR 4
  2037. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2038. float tmp[4];
  2039. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2040. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2041. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2042. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2043. return _mm_loadu_ps(tmp);
  2044. }
  2045. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2046. float arr[4];
  2047. _mm_storeu_ps(arr, y);
  2048. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2049. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2050. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2051. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2052. }
  2053. #define GGML_F32Cx4 __m128
  2054. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2055. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2056. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2057. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2058. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2059. #define GGML_F32Cx4_ADD _mm_add_ps
  2060. #define GGML_F32Cx4_MUL _mm_mul_ps
  2061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2062. #define GGML_F16_VEC GGML_F32Cx4
  2063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2071. #endif
  2072. // GGML_F32_ARR / GGML_F16_ARR
  2073. // number of registers to use per step
  2074. #ifdef GGML_SIMD
  2075. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2076. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2077. #endif
  2078. //
  2079. // fundamental operations
  2080. //
  2081. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2082. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2083. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2084. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2085. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2086. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2087. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2088. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2089. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2090. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2091. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2092. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2093. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2094. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2095. #ifdef GGML_SIMD
  2096. float sumf = 0.0f;
  2097. const int np = (n & ~(GGML_F32_STEP - 1));
  2098. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2099. GGML_F32_VEC ax[GGML_F32_ARR];
  2100. GGML_F32_VEC ay[GGML_F32_ARR];
  2101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2102. for (int j = 0; j < GGML_F32_ARR; j++) {
  2103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2105. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2106. }
  2107. }
  2108. // reduce sum0..sum3 to sum0
  2109. GGML_F32_VEC_REDUCE(sumf, sum);
  2110. // leftovers
  2111. for (int i = np; i < n; ++i) {
  2112. sumf += x[i]*y[i];
  2113. }
  2114. #else
  2115. // scalar
  2116. ggml_float sumf = 0.0;
  2117. for (int i = 0; i < n; ++i) {
  2118. sumf += (ggml_float)(x[i]*y[i]);
  2119. }
  2120. #endif
  2121. *s = sumf;
  2122. }
  2123. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2124. ggml_float sumf = 0.0;
  2125. #if defined(GGML_SIMD)
  2126. const int np = (n & ~(GGML_F16_STEP - 1));
  2127. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2128. GGML_F16_VEC ax[GGML_F16_ARR];
  2129. GGML_F16_VEC ay[GGML_F16_ARR];
  2130. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2131. for (int j = 0; j < GGML_F16_ARR; j++) {
  2132. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2134. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2135. }
  2136. }
  2137. // reduce sum0..sum3 to sum0
  2138. GGML_F16_VEC_REDUCE(sumf, sum);
  2139. // leftovers
  2140. for (int i = np; i < n; ++i) {
  2141. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2142. }
  2143. #else
  2144. for (int i = 0; i < n; ++i) {
  2145. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2146. }
  2147. #endif
  2148. *s = sumf;
  2149. }
  2150. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2151. const int nb = n / QK8_0;
  2152. assert(n % QK8_0 == 0);
  2153. assert(nb % 2 == 0);
  2154. const block_q4_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. for (int i = 0; i < nb; i += 2) {
  2160. const block_q4_0 * restrict x0 = &x[i + 0];
  2161. const block_q4_0 * restrict x1 = &x[i + 1];
  2162. const block_q8_0 * restrict y0 = &y[i + 0];
  2163. const block_q8_0 * restrict y1 = &y[i + 1];
  2164. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2165. const int8x16_t s8b = vdupq_n_s8(0x8);
  2166. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2167. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2168. // 4-bit -> 8-bit
  2169. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2170. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2171. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2172. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2173. // sub 8
  2174. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2175. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2176. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2177. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2178. // interleave
  2179. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2180. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2181. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2182. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2183. // load y
  2184. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2185. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2186. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2187. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2188. #if defined(__ARM_FEATURE_DOTPROD)
  2189. // dot product into int32x4_t
  2190. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2191. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2192. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2193. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2194. #else
  2195. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2196. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2197. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2198. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2199. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2200. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2201. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2202. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2203. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2204. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2205. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2206. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2207. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2208. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2209. #endif
  2210. }
  2211. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2212. #elif defined(__AVX2__)
  2213. // Initialize accumulator with zeros
  2214. __m256 acc = _mm256_setzero_ps();
  2215. // Main loop
  2216. for (int i = 0; i < nb; ++i) {
  2217. /* Compute combined scale for the block */
  2218. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2219. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2220. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2221. const __m256i off = _mm256_set1_epi8( 8 );
  2222. bx = _mm256_sub_epi8( bx, off );
  2223. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2224. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2225. /* Multiply q with scale and accumulate */
  2226. acc = _mm256_fmadd_ps( d, q, acc );
  2227. }
  2228. *s = hsum_float_8(acc);
  2229. #elif defined(__AVX__)
  2230. // Initialize accumulator with zeros
  2231. __m256 acc = _mm256_setzero_ps();
  2232. // Main loop
  2233. for (int i = 0; i < nb; ++i) {
  2234. // Compute combined scale for the block
  2235. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2236. __m128i i32[2];
  2237. for (int j = 0; j < 2; ++j) {
  2238. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2239. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2240. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2241. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2242. const __m128i off = _mm_set1_epi8( 8 );
  2243. bx = _mm_sub_epi8( bx, off );
  2244. // Get absolute values of x vectors
  2245. const __m128i ax = _mm_sign_epi8(bx, bx);
  2246. // Sign the values of the y vectors
  2247. const __m128i sy = _mm_sign_epi8(by, bx);
  2248. // Perform multiplication and create 16-bit values
  2249. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2250. const __m128i ones = _mm_set1_epi16(1);
  2251. i32[j] = _mm_madd_epi16(ones, dot);
  2252. }
  2253. // Convert int32_t to float
  2254. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2255. // Apply the scale, and accumulate
  2256. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2257. }
  2258. *s = hsum_float_8(acc);
  2259. #else
  2260. // scalar
  2261. float sumf = 0.0;
  2262. for (int i = 0; i < nb; i++) {
  2263. const float d0 = x[i].d;
  2264. const float d1 = y[i].d;
  2265. const uint8_t * restrict p0 = x[i].qs;
  2266. const int8_t * restrict p1 = y[i].qs;
  2267. int sumi = 0;
  2268. for (int j = 0; j < QK8_0/2; j++) {
  2269. const uint8_t v0 = p0[j];
  2270. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2271. const int i1 = (int8_t) (v0 >> 4) - 8;
  2272. const int i2 = p1[2*j + 0];
  2273. const int i3 = p1[2*j + 1];
  2274. sumi += i0*i2 + i1*i3;
  2275. }
  2276. sumf += d0*d1*sumi;
  2277. }
  2278. *s = sumf;
  2279. #endif
  2280. }
  2281. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2282. const int nb = n / QK8_1;
  2283. assert(n % QK8_1 == 0);
  2284. assert(nb % 2 == 0);
  2285. const block_q4_1 * restrict x = vx;
  2286. const block_q8_1 * restrict y = vy;
  2287. // TODO: add AVX / WASM SIMD / etc
  2288. #if defined(__ARM_NEON)
  2289. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2290. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2291. float summs = 0;
  2292. for (int i = 0; i < nb; i += 2) {
  2293. const block_q4_1 * restrict x0 = &x[i + 0];
  2294. const block_q4_1 * restrict x1 = &x[i + 1];
  2295. const block_q8_1 * restrict y0 = &y[i + 0];
  2296. const block_q8_1 * restrict y1 = &y[i + 1];
  2297. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2300. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2301. // 4-bit -> 8-bit
  2302. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2303. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2304. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2305. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2306. // interleave
  2307. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2308. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2309. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2310. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2311. // load y
  2312. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2313. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2314. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2315. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2316. #if defined(__ARM_FEATURE_DOTPROD)
  2317. // dot product into int32x4_t
  2318. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2319. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2320. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2321. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2322. #else
  2323. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2324. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2325. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2326. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2327. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2328. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2329. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2330. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2331. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2332. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2333. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2334. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2335. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2336. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2337. #endif
  2338. }
  2339. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2340. #elif defined(__AVX2__)
  2341. // Initialize accumulator with zeros
  2342. __m256 acc = _mm256_setzero_ps();
  2343. float summs = 0;
  2344. // Main loop
  2345. for (int i = 0; i < nb; ++i) {
  2346. const float * d0 = &x[i].d;
  2347. const float * d1 = &y[i].d;
  2348. summs += x[i].m * (y[i].s0 + y[i].s1);
  2349. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2350. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2351. // Compute combined scales
  2352. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2353. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2354. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2355. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2356. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2357. // Accumulate d0*d1*x*y
  2358. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2359. }
  2360. *s = hsum_float_8(acc) + summs;
  2361. #else
  2362. // scalar
  2363. float sumf = 0.0;
  2364. for (int i = 0; i < nb; i++) {
  2365. const float d0 = x[i].d;
  2366. const float m0 = x[i].m;
  2367. const float d1 = y[i].d;
  2368. const uint8_t * restrict p0 = x[i].qs;
  2369. const int8_t * restrict p1 = y[i].qs;
  2370. // TODO: this is very slow ..
  2371. for (int j = 0; j < QK8_1/2; j++) {
  2372. const uint8_t v0 = p0[j];
  2373. const float f0 = d0*(v0 & 0x0F) + m0;
  2374. const float f1 = d0*(v0 >> 4) + m0;
  2375. const float f2 = d1*p1[2*j + 0];
  2376. const float f3 = d1*p1[2*j + 1];
  2377. sumf += f0*f2 + f1*f3;
  2378. }
  2379. }
  2380. *s = sumf;
  2381. #endif
  2382. }
  2383. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2384. const int nb = n / QK8_0;
  2385. assert(n % QK8_0 == 0);
  2386. assert(nb % 2 == 0);
  2387. assert(QK8_0 == 2*QK4_2);
  2388. const block_q4_2 * restrict x = vx;
  2389. const block_q8_0 * restrict y = vy;
  2390. #if defined(__ARM_NEON)
  2391. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2392. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2393. for (int i = 0; i < nb; i += 2) {
  2394. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2395. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2396. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2397. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2398. const block_q8_0 * restrict y0 = &y[i + 0];
  2399. const block_q8_0 * restrict y1 = &y[i + 1];
  2400. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2401. const int8x16_t s8b = vdupq_n_s8(0x8);
  2402. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2403. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2404. // 4-bit -> 8-bit
  2405. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2406. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2407. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2408. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2409. // sub 8
  2410. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2411. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2412. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2413. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2414. // interleave
  2415. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2416. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2417. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2418. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2419. // load y
  2420. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2421. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2422. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2423. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2424. #if defined(__ARM_FEATURE_DOTPROD)
  2425. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2426. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2427. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2428. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2429. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2430. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2431. #else
  2432. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2433. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2434. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2435. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2436. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2437. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2438. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2439. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2440. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2441. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2442. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2443. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2444. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2445. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2446. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2447. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2448. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2449. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2450. #endif
  2451. }
  2452. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2453. #elif defined(__AVX2__)
  2454. // Initialize accumulator with zeros
  2455. __m256 acc = _mm256_setzero_ps();
  2456. // Main loop
  2457. for (int i = 0; i < nb; i++) {
  2458. /* Compute combined scale for the block */
  2459. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2460. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2461. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2462. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2463. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2464. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2465. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2466. const __m256i off = _mm256_set1_epi8(8);
  2467. bx = _mm256_sub_epi8(bx, off);
  2468. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2469. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2470. /* Multiply q with scale and accumulate */
  2471. acc = _mm256_fmadd_ps(d, q, acc);
  2472. }
  2473. *s = hsum_float_8(acc);
  2474. #else
  2475. // scalar
  2476. float sumf = 0.0;
  2477. for (int i = 0; i < nb; i++) {
  2478. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2479. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2480. const int8_t * restrict y0 = y[i].qs;
  2481. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2482. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2483. int sumi_0 = 0;
  2484. int sumi_1 = 0;
  2485. for (int j = 0; j < QK8_0/4; j++) {
  2486. const uint8_t v0 = x0[j];
  2487. const uint8_t v1 = x1[j];
  2488. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2489. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2490. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2491. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2492. const int i2_0 = y0[2*j + 0];
  2493. const int i3_0 = y0[2*j + 1];
  2494. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2495. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2496. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2497. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2498. }
  2499. sumf += (d0 * y[i].d) * sumi_0;
  2500. sumf += (d1 * y[i].d) * sumi_1;
  2501. }
  2502. *s = sumf;
  2503. #endif
  2504. }
  2505. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2506. const int nb = n / QK8_0;
  2507. assert(n % QK8_0 == 0);
  2508. assert(nb % 2 == 0);
  2509. assert(QK8_0 == QK5_0);
  2510. const block_q5_0 * restrict x = vx;
  2511. const block_q8_0 * restrict y = vy;
  2512. #if defined(__ARM_NEON)
  2513. float32x4_t sumv = vdupq_n_f32(0.0f);
  2514. uint64_t tmp[4];
  2515. for (int i = 0; i < nb; ++i) {
  2516. const block_q5_0 * restrict x0 = &x[i];
  2517. const block_q8_0 * restrict y0 = &y[i];
  2518. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2519. const int8x16_t s16b = vdupq_n_s8(0x10);
  2520. // extract the 5th bit
  2521. uint32_t qh;
  2522. memcpy(&qh, x0->qh, sizeof(qh));
  2523. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2524. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2525. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2526. tmp[3] = table_b2b_u[(qh >> 24) ];
  2527. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2528. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2529. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2530. // 4-bit -> 8-bit
  2531. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2532. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2533. // interleave
  2534. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2535. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2536. // add high bit and sub 16
  2537. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2538. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2539. // load y
  2540. const int8x16_t v1l = vld1q_s8(y0->qs);
  2541. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2542. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2543. #if defined(__ARM_FEATURE_DOTPROD)
  2544. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2545. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2546. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2547. #else
  2548. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2549. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2550. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2551. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2552. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2553. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2554. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2555. #endif
  2556. }
  2557. *s = vaddvq_f32(sumv);
  2558. #elif defined(__wasm_simd128__)
  2559. v128_t sumv = wasm_f32x4_splat(0.0f);
  2560. uint64_t tmp[4];
  2561. for (int i = 0; i < nb; ++i) {
  2562. const block_q5_0 * restrict x0 = &x[i];
  2563. const block_q8_0 * restrict y0 = &y[i];
  2564. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2565. const v128_t s16b = wasm_i8x16_splat(0x10);
  2566. // extract the 5th bit
  2567. uint32_t qh;
  2568. memcpy(&qh, x0->qh, sizeof(qh));
  2569. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2570. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2571. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2572. tmp[3] = table_b2b_u[(qh >> 24) ];
  2573. const v128_t qhl = wasm_v128_load(tmp + 0);
  2574. const v128_t qhh = wasm_v128_load(tmp + 2);
  2575. const v128_t v0 = wasm_v128_load(x0->qs);
  2576. // 4-bit -> 8-bit
  2577. const v128_t v0l = wasm_v128_and (v0, m4b);
  2578. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2579. // interleave
  2580. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2581. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2582. // add high bit and sub 16
  2583. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2584. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2585. // load y
  2586. const v128_t v1l = wasm_v128_load(y0->qs);
  2587. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2588. // int8x16 -> int16x8
  2589. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2590. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2591. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2592. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2593. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2594. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2595. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2596. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2597. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2598. // dot product
  2599. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2600. wasm_i32x4_add(
  2601. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2602. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2603. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2604. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2605. }
  2606. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2607. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2608. #elif defined(__AVX2__)
  2609. // Initialize accumulator with zeros
  2610. __m256 acc = _mm256_setzero_ps();
  2611. // Main loop
  2612. for (int i = 0; i < nb; i++) {
  2613. /* Compute combined scale for the block */
  2614. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2615. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2616. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2617. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2618. bx = _mm256_or_si256(bx, bxhi);
  2619. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2620. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2621. /* Multiply q with scale and accumulate */
  2622. acc = _mm256_fmadd_ps(d, q, acc);
  2623. }
  2624. *s = hsum_float_8(acc);
  2625. #else
  2626. // scalar
  2627. float sumf = 0.0;
  2628. for (int i = 0; i < nb; i++) {
  2629. const uint8_t * restrict x0 = x[i].qs;
  2630. const int8_t * restrict y0 = y[i].qs;
  2631. uint32_t qh;
  2632. memcpy(&qh, x[i].qh, sizeof(qh));
  2633. const float d = GGML_FP16_TO_FP32(x[i].d);
  2634. int sxy = 0;
  2635. for (int j = 0; j < QK8_0/2; j++) {
  2636. const uint8_t v0 = x0[j];
  2637. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2638. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2639. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2640. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2641. const int y0_0 = y0[2*j + 0];
  2642. const int y1_0 = y0[2*j + 1];
  2643. sxy += x0_0*y0_0 + x1_0*y1_0;
  2644. }
  2645. sumf += (d*sxy)*y[i].d;
  2646. }
  2647. *s = sumf;
  2648. #endif
  2649. }
  2650. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2651. const int nb = n / QK8_1;
  2652. assert(n % QK8_1 == 0);
  2653. assert(nb % 2 == 0);
  2654. assert(QK8_1 == QK5_1);
  2655. const block_q5_1 * restrict x = vx;
  2656. const block_q8_1 * restrict y = vy;
  2657. #if defined(__ARM_NEON)
  2658. float32x4_t sumv = vdupq_n_f32(0.0f);
  2659. float summs = 0.0f;
  2660. uint64_t tmp[4];
  2661. for (int i = 0; i < nb; ++i) {
  2662. const block_q5_1 * restrict x0 = &x[i];
  2663. const block_q8_1 * restrict y0 = &y[i];
  2664. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2665. // extract the 5th bit
  2666. uint32_t qh;
  2667. memcpy(&qh, x0->qh, sizeof(qh));
  2668. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2669. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2670. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2671. tmp[3] = table_b2b_u[(qh >> 24) ];
  2672. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2673. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2674. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2675. // 4-bit -> 8-bit
  2676. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2677. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2678. // interleave
  2679. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2680. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2681. // add
  2682. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2683. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2684. // load y
  2685. const int8x16_t v1l = vld1q_s8(y0->qs);
  2686. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2687. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2691. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2692. #else
  2693. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2694. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2695. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2696. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2697. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2698. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2699. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2700. #endif
  2701. }
  2702. *s = vaddvq_f32(sumv) + summs;
  2703. #elif defined(__wasm_simd128__)
  2704. v128_t sumv = wasm_f32x4_splat(0.0f);
  2705. float summs = 0.0f;
  2706. uint64_t tmp[4];
  2707. for (int i = 0; i < nb; ++i) {
  2708. const block_q5_1 * restrict x0 = &x[i];
  2709. const block_q8_1 * restrict y0 = &y[i];
  2710. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2711. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2712. // extract the 5th bit
  2713. uint32_t qh;
  2714. memcpy(&qh, x0->qh, sizeof(qh));
  2715. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2716. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2717. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2718. tmp[3] = table_b2b_u[(qh >> 24) ];
  2719. const v128_t qhl = wasm_v128_load(tmp + 0);
  2720. const v128_t qhh = wasm_v128_load(tmp + 2);
  2721. const v128_t v0 = wasm_v128_load(x0->qs);
  2722. // 4-bit -> 8-bit
  2723. const v128_t v0l = wasm_v128_and (v0, m4b);
  2724. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2725. static bool x = true;
  2726. // interleave
  2727. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2728. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2729. // add high bit
  2730. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2731. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2732. // load y
  2733. const v128_t v1l = wasm_v128_load(y0->qs);
  2734. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2735. // int8x16 -> int16x8
  2736. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2737. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2738. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2739. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2740. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2741. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2742. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2743. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2744. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2745. // dot product
  2746. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2747. wasm_i32x4_add(
  2748. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2749. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2750. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2751. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2752. }
  2753. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2754. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2755. #elif defined(__AVX2__)
  2756. // Initialize accumulator with zeros
  2757. __m256 acc = _mm256_setzero_ps();
  2758. float summs = 0.0f;
  2759. // Main loop
  2760. for (int i = 0; i < nb; i++) {
  2761. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2762. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2763. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2764. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2765. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2766. bx = _mm256_or_si256(bx, bxhi);
  2767. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2768. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2769. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2770. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2771. }
  2772. *s = hsum_float_8(acc) + summs;
  2773. #else
  2774. float sumf = 0.0;
  2775. for (int i = 0; i < nb; i++) {
  2776. const uint8_t * restrict x0 = x[i].qs;
  2777. const int8_t * restrict y0 = y[i].qs;
  2778. uint32_t qh;
  2779. memcpy(&qh, x[i].qh, sizeof(qh));
  2780. const float d = GGML_FP16_TO_FP32(x[i].d);
  2781. const float m = GGML_FP16_TO_FP32(x[i].m);
  2782. int sxy = 0;
  2783. for (int j = 0; j < QK8_1/2; j++) {
  2784. const uint8_t v0 = x0[j];
  2785. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2786. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2787. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2788. const int x1_0 = (v0 >> 4) | x1_0h;
  2789. const int y0_0 = y0[2*j + 0];
  2790. const int y1_0 = y0[2*j + 1];
  2791. sxy += x0_0*y0_0 + x1_0*y1_0;
  2792. }
  2793. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2794. }
  2795. *s = sumf;
  2796. #endif
  2797. }
  2798. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2799. const int nb = n / QK8_0;
  2800. assert(n % QK8_0 == 0);
  2801. assert(nb % 2 == 0);
  2802. assert(QK8_0 == QK8_0);
  2803. const block_q8_0 * restrict x = vx;
  2804. const block_q8_0 * restrict y = vy;
  2805. #if defined(__ARM_NEON)
  2806. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2807. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2808. for (int i = 0; i < nb; i += 2) {
  2809. const block_q8_0 * restrict x0 = &x[i + 0];
  2810. const block_q8_0 * restrict x1 = &x[i + 1];
  2811. const block_q8_0 * restrict y0 = &y[i + 0];
  2812. const block_q8_0 * restrict y1 = &y[i + 1];
  2813. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2814. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2815. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2816. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2817. // load y
  2818. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2819. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2820. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2821. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2822. #if defined(__ARM_FEATURE_DOTPROD)
  2823. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2824. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2825. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2826. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2827. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2828. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2829. #else
  2830. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2831. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2832. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2833. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2834. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2835. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2836. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2837. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2838. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2839. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2840. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2841. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2842. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2843. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2844. #endif
  2845. }
  2846. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2847. #elif defined(__AVX2__)
  2848. // Initialize accumulator with zeros
  2849. __m256 acc = _mm256_setzero_ps();
  2850. // Main loop
  2851. for (int i = 0; i < nb; ++i) {
  2852. // Compute combined scale for the block
  2853. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2854. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2855. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2856. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2857. // Multiply q with scale and accumulate
  2858. acc = _mm256_fmadd_ps( d, q, acc );
  2859. }
  2860. *s = hsum_float_8(acc);
  2861. #else
  2862. // scalar
  2863. float sumf = 0.0;
  2864. for (int i = 0; i < nb; i++) {
  2865. const int8_t * restrict x0 = x[i].qs;
  2866. const int8_t * restrict y0 = y[i].qs;
  2867. int sumi = 0;
  2868. for (int j = 0; j < QK8_0; j++) {
  2869. const int v0 = x0[j];
  2870. const int v1 = y0[j];
  2871. sumi += v0*v1;
  2872. }
  2873. sumf += (x[i].d*y[i].d)*sumi;
  2874. }
  2875. *s = sumf;
  2876. #endif
  2877. }
  2878. // compute GGML_VEC_DOT_UNROLL dot products at once
  2879. // xs - x row stride in bytes
  2880. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2881. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2882. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2883. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2884. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2885. }
  2886. #if defined(GGML_SIMD)
  2887. const int np = (n & ~(GGML_F16_STEP - 1));
  2888. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2889. GGML_F16_VEC ax[GGML_F16_ARR];
  2890. GGML_F16_VEC ay[GGML_F16_ARR];
  2891. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2892. for (int j = 0; j < GGML_F16_ARR; j++) {
  2893. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2894. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2895. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2896. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2897. }
  2898. }
  2899. }
  2900. // reduce sum0..sum3 to sum0
  2901. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2902. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2903. }
  2904. // leftovers
  2905. for (int i = np; i < n; ++i) {
  2906. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2907. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2908. }
  2909. }
  2910. #else
  2911. for (int i = 0; i < n; ++i) {
  2912. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2913. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2914. }
  2915. }
  2916. #endif
  2917. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2918. s[i] = sumf[i];
  2919. }
  2920. }
  2921. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2922. #if defined(GGML_SIMD)
  2923. const int np = (n & ~(GGML_F32_STEP - 1));
  2924. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2925. GGML_F32_VEC ax[GGML_F32_ARR];
  2926. GGML_F32_VEC ay[GGML_F32_ARR];
  2927. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2928. for (int j = 0; j < GGML_F32_ARR; j++) {
  2929. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2930. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2931. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2932. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2933. }
  2934. }
  2935. // leftovers
  2936. for (int i = np; i < n; ++i) {
  2937. y[i] += x[i]*v;
  2938. }
  2939. #else
  2940. // scalar
  2941. for (int i = 0; i < n; ++i) {
  2942. y[i] += x[i]*v;
  2943. }
  2944. #endif
  2945. }
  2946. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2947. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2948. #if defined(GGML_SIMD)
  2949. const int np = (n & ~(GGML_F32_STEP - 1));
  2950. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2951. GGML_F32_VEC ay[GGML_F32_ARR];
  2952. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2953. for (int j = 0; j < GGML_F32_ARR; j++) {
  2954. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2955. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2956. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2957. }
  2958. }
  2959. // leftovers
  2960. for (int i = np; i < n; ++i) {
  2961. y[i] *= v;
  2962. }
  2963. #else
  2964. // scalar
  2965. for (int i = 0; i < n; ++i) {
  2966. y[i] *= v;
  2967. }
  2968. #endif
  2969. }
  2970. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2971. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2972. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2973. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2974. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2975. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2976. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2977. static const float GELU_COEF_A = 0.044715f;
  2978. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2979. inline static float ggml_gelu_f32(float x) {
  2980. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2981. }
  2982. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2983. const uint16_t * i16 = (const uint16_t *) x;
  2984. for (int i = 0; i < n; ++i) {
  2985. y[i] = table_gelu_f16[i16[i]];
  2986. }
  2987. }
  2988. #ifdef GGML_GELU_FP16
  2989. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2990. uint16_t t;
  2991. for (int i = 0; i < n; ++i) {
  2992. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2993. memcpy(&t, &fp16, sizeof(uint16_t));
  2994. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2995. }
  2996. }
  2997. #else
  2998. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2999. for (int i = 0; i < n; ++i) {
  3000. y[i] = ggml_gelu_f32(x[i]);
  3001. }
  3002. }
  3003. #endif
  3004. // Sigmoid Linear Unit (SiLU) function
  3005. inline static float ggml_silu_f32(float x) {
  3006. return x/(1.0f + expf(-x));
  3007. }
  3008. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3009. const uint16_t * i16 = (const uint16_t *) x;
  3010. for (int i = 0; i < n; ++i) {
  3011. y[i] = table_silu_f16[i16[i]];
  3012. }
  3013. }
  3014. #ifdef GGML_SILU_FP16
  3015. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3016. uint16_t t;
  3017. for (int i = 0; i < n; ++i) {
  3018. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3019. memcpy(&t, &fp16, sizeof(uint16_t));
  3020. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3021. }
  3022. }
  3023. #else
  3024. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3025. for (int i = 0; i < n; ++i) {
  3026. y[i] = ggml_silu_f32(x[i]);
  3027. }
  3028. }
  3029. #endif
  3030. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3031. #ifndef GGML_USE_ACCELERATE
  3032. ggml_float sum = 0.0;
  3033. for (int i = 0; i < n; ++i) {
  3034. sum += (ggml_float)x[i];
  3035. }
  3036. *s = sum;
  3037. #else
  3038. vDSP_sve(x, 1, s, n);
  3039. #endif
  3040. }
  3041. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3042. ggml_float sum = 0.0;
  3043. for (int i = 0; i < n; ++i) {
  3044. sum += (ggml_float)x[i];
  3045. }
  3046. *s = sum;
  3047. }
  3048. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3049. #ifndef GGML_USE_ACCELERATE
  3050. float max = -INFINITY;
  3051. for (int i = 0; i < n; ++i) {
  3052. max = MAX(max, x[i]);
  3053. }
  3054. *s = max;
  3055. #else
  3056. vDSP_maxv(x, 1, s, n);
  3057. #endif
  3058. }
  3059. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3060. ggml_vec_norm_f32(n, s, x);
  3061. *s = 1.f/(*s);
  3062. }
  3063. //
  3064. // logging
  3065. //
  3066. #if (GGML_DEBUG >= 1)
  3067. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3068. #else
  3069. #define GGML_PRINT_DEBUG(...)
  3070. #endif
  3071. #if (GGML_DEBUG >= 5)
  3072. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3073. #else
  3074. #define GGML_PRINT_DEBUG_5(...)
  3075. #endif
  3076. #if (GGML_DEBUG >= 10)
  3077. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3078. #else
  3079. #define GGML_PRINT_DEBUG_10(...)
  3080. #endif
  3081. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3082. //
  3083. // data types
  3084. //
  3085. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3086. [GGML_TYPE_F32] = 1,
  3087. [GGML_TYPE_F16] = 1,
  3088. [GGML_TYPE_Q4_0] = QK4_0,
  3089. [GGML_TYPE_Q4_1] = QK4_1,
  3090. [GGML_TYPE_Q4_2] = QK4_2,
  3091. [GGML_TYPE_Q5_0] = QK5_0,
  3092. [GGML_TYPE_Q5_1] = QK5_1,
  3093. [GGML_TYPE_Q8_0] = QK8_0,
  3094. [GGML_TYPE_Q8_1] = QK8_1,
  3095. [GGML_TYPE_I8] = 1,
  3096. [GGML_TYPE_I16] = 1,
  3097. [GGML_TYPE_I32] = 1,
  3098. };
  3099. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3100. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3101. [GGML_TYPE_F32] = sizeof(float),
  3102. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3103. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3104. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3105. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3106. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3107. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3108. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3109. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3110. [GGML_TYPE_I8] = sizeof(int8_t),
  3111. [GGML_TYPE_I16] = sizeof(int16_t),
  3112. [GGML_TYPE_I32] = sizeof(int32_t),
  3113. };
  3114. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3115. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3116. [GGML_TYPE_F32] = "f32",
  3117. [GGML_TYPE_F16] = "f16",
  3118. [GGML_TYPE_Q4_0] = "q4_0",
  3119. [GGML_TYPE_Q4_1] = "q4_1",
  3120. [GGML_TYPE_Q4_2] = "q4_2",
  3121. [GGML_TYPE_Q5_0] = "q5_0",
  3122. [GGML_TYPE_Q5_1] = "q5_1",
  3123. [GGML_TYPE_Q8_0] = "q8_0",
  3124. [GGML_TYPE_Q8_1] = "q8_1",
  3125. [GGML_TYPE_I8] = "i8",
  3126. [GGML_TYPE_I16] = "i16",
  3127. [GGML_TYPE_I32] = "i32",
  3128. };
  3129. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3130. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3131. [GGML_TYPE_F32] = false,
  3132. [GGML_TYPE_F16] = false,
  3133. [GGML_TYPE_Q4_0] = true,
  3134. [GGML_TYPE_Q4_1] = true,
  3135. [GGML_TYPE_Q4_2] = true,
  3136. [GGML_TYPE_Q5_0] = true,
  3137. [GGML_TYPE_Q5_1] = true,
  3138. [GGML_TYPE_Q8_0] = true,
  3139. [GGML_TYPE_Q8_1] = true,
  3140. [GGML_TYPE_I8] = false,
  3141. [GGML_TYPE_I16] = false,
  3142. [GGML_TYPE_I32] = false,
  3143. };
  3144. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3145. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3146. "NONE",
  3147. "DUP",
  3148. "ADD",
  3149. "SUB",
  3150. "MUL",
  3151. "DIV",
  3152. "SQR",
  3153. "SQRT",
  3154. "SUM",
  3155. "MEAN",
  3156. "REPEAT",
  3157. "ABS",
  3158. "SGN",
  3159. "NEG",
  3160. "STEP",
  3161. "RELU",
  3162. "GELU",
  3163. "SILU",
  3164. "NORM",
  3165. "RMS_NORM",
  3166. "MUL_MAT",
  3167. "SCALE",
  3168. "CPY",
  3169. "CONT",
  3170. "RESHAPE",
  3171. "VIEW",
  3172. "PERMUTE",
  3173. "TRANSPOSE",
  3174. "GET_ROWS",
  3175. "DIAG_MASK_INF",
  3176. "SOFT_MAX",
  3177. "ROPE",
  3178. "ALIBI",
  3179. "CONV_1D_1S",
  3180. "CONV_1D_2S",
  3181. "FLASH_ATTN",
  3182. "FLASH_FF",
  3183. "MAP_UNARY",
  3184. "MAP_BINARY",
  3185. };
  3186. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3187. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3188. "none",
  3189. "x",
  3190. "x+y",
  3191. "x-y",
  3192. "x*y",
  3193. "x/y",
  3194. "x^2",
  3195. "√x",
  3196. "Σx",
  3197. "Σx/n",
  3198. "repeat(x)",
  3199. "abs(x)",
  3200. "sgn(x)",
  3201. "-x",
  3202. "step(x)",
  3203. "relu(x)",
  3204. "gelu(x)",
  3205. "silu(x)",
  3206. "norm(x)",
  3207. "rms_norm(x)",
  3208. "X*Y",
  3209. "x*v",
  3210. "x-\\>y",
  3211. "cont(x)",
  3212. "reshape(x)",
  3213. "view(x)",
  3214. "permute(x)",
  3215. "transpose(x)",
  3216. "get_rows(x)",
  3217. "diag_mask_inf(x)",
  3218. "soft_max(x)",
  3219. "rope(x)",
  3220. "alibi(x)",
  3221. "conv_1d_1s(x)",
  3222. "conv_1d_2s(x)",
  3223. "flash_attn(x)",
  3224. "flash_ff(x)",
  3225. "f(x)",
  3226. "f(x,y)",
  3227. };
  3228. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3229. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3230. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3231. //
  3232. // ggml context
  3233. //
  3234. struct ggml_context {
  3235. size_t mem_size;
  3236. void * mem_buffer;
  3237. bool mem_buffer_owned;
  3238. bool no_alloc;
  3239. int n_objects;
  3240. struct ggml_object * objects_begin;
  3241. struct ggml_object * objects_end;
  3242. struct ggml_scratch scratch;
  3243. struct ggml_scratch scratch_save;
  3244. };
  3245. struct ggml_context_container {
  3246. bool used;
  3247. struct ggml_context context;
  3248. };
  3249. //
  3250. // compute types
  3251. //
  3252. enum ggml_task_type {
  3253. GGML_TASK_INIT = 0,
  3254. GGML_TASK_COMPUTE,
  3255. GGML_TASK_FINALIZE,
  3256. };
  3257. struct ggml_compute_params {
  3258. enum ggml_task_type type;
  3259. int ith, nth;
  3260. // work buffer for all threads
  3261. size_t wsize;
  3262. void * wdata;
  3263. };
  3264. //
  3265. // ggml state
  3266. //
  3267. struct ggml_state {
  3268. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3269. };
  3270. // global state
  3271. static struct ggml_state g_state;
  3272. static atomic_int g_state_barrier = 0;
  3273. // barrier via spin lock
  3274. inline static void ggml_critical_section_start(void) {
  3275. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3276. while (processing > 0) {
  3277. // wait for other threads to finish
  3278. atomic_fetch_sub(&g_state_barrier, 1);
  3279. sched_yield(); // TODO: reconsider this
  3280. processing = atomic_fetch_add(&g_state_barrier, 1);
  3281. }
  3282. }
  3283. // TODO: make this somehow automatically executed
  3284. // some sort of "sentry" mechanism
  3285. inline static void ggml_critical_section_end(void) {
  3286. atomic_fetch_sub(&g_state_barrier, 1);
  3287. }
  3288. ////////////////////////////////////////////////////////////////////////////////
  3289. void ggml_print_object(const struct ggml_object * obj) {
  3290. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3291. obj->offs, obj->size, (const void *) obj->next);
  3292. }
  3293. void ggml_print_objects(const struct ggml_context * ctx) {
  3294. struct ggml_object * obj = ctx->objects_begin;
  3295. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3296. while (obj != NULL) {
  3297. ggml_print_object(obj);
  3298. obj = obj->next;
  3299. }
  3300. GGML_PRINT("%s: --- end ---\n", __func__);
  3301. }
  3302. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3303. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3304. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3305. }
  3306. int ggml_nrows(const struct ggml_tensor * tensor) {
  3307. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3308. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3309. }
  3310. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3311. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3312. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3313. }
  3314. int ggml_blck_size(enum ggml_type type) {
  3315. return GGML_BLCK_SIZE[type];
  3316. }
  3317. size_t ggml_type_size(enum ggml_type type) {
  3318. return GGML_TYPE_SIZE[type];
  3319. }
  3320. float ggml_type_sizef(enum ggml_type type) {
  3321. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3322. }
  3323. const char * ggml_type_name(enum ggml_type type) {
  3324. return GGML_TYPE_NAME[type];
  3325. }
  3326. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3327. return GGML_TYPE_SIZE[tensor->type];
  3328. }
  3329. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3330. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3331. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3332. }
  3333. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3334. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3335. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3336. }
  3337. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3338. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3339. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3340. }
  3341. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3342. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3343. return
  3344. (t0->ne[0] == t1->ne[0]) &&
  3345. (t0->ne[2] == t1->ne[2]) &&
  3346. (t0->ne[3] == t1->ne[3]);
  3347. }
  3348. bool ggml_is_quantized(enum ggml_type type) {
  3349. return GGML_IS_QUANTIZED[type];
  3350. }
  3351. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3352. enum ggml_type wtype = GGML_TYPE_COUNT;
  3353. switch (ftype) {
  3354. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3355. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3356. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3357. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3358. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3359. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3360. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3361. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3362. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3363. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3364. }
  3365. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3366. return wtype;
  3367. }
  3368. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3369. return tensor->nb[0] > tensor->nb[1];
  3370. }
  3371. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return
  3374. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3375. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3376. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3377. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3378. }
  3379. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. return
  3382. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3383. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3384. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3385. }
  3386. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return
  3389. (t0->ne[0] == t1->ne[0] ) &&
  3390. (t0->ne[1] == t1->ne[1] ) &&
  3391. (t0->ne[2] == t1->ne[2] ) &&
  3392. (t0->ne[3] == t1->ne[3] );
  3393. }
  3394. // check if t1 can be represented as a repeatition of t0
  3395. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return
  3398. (t1->ne[0]%t0->ne[0] == 0) &&
  3399. (t1->ne[1]%t0->ne[1] == 0) &&
  3400. (t1->ne[2]%t0->ne[2] == 0) &&
  3401. (t1->ne[3]%t0->ne[3] == 0);
  3402. }
  3403. static inline int ggml_up32(int n) {
  3404. return (n + 31) & ~31;
  3405. }
  3406. static inline int ggml_up64(int n) {
  3407. return (n + 63) & ~63;
  3408. }
  3409. static inline int ggml_up(int n, int m) {
  3410. // assert m is a power of 2
  3411. GGML_ASSERT((m & (m - 1)) == 0);
  3412. return (n + m - 1) & ~(m - 1);
  3413. }
  3414. // assert that pointer is aligned to GGML_MEM_ALIGN
  3415. #define ggml_assert_aligned(ptr) \
  3416. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3417. ////////////////////////////////////////////////////////////////////////////////
  3418. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3419. // make this function thread safe
  3420. ggml_critical_section_start();
  3421. static bool is_first_call = true;
  3422. if (is_first_call) {
  3423. // initialize time system (required on Windows)
  3424. ggml_time_init();
  3425. // initialize GELU, SILU and EXP F32 tables
  3426. {
  3427. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3428. ggml_fp16_t ii;
  3429. for (int i = 0; i < (1 << 16); ++i) {
  3430. uint16_t ui = i;
  3431. memcpy(&ii, &ui, sizeof(ii));
  3432. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3433. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3434. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3435. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3436. }
  3437. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3438. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3439. }
  3440. // initialize g_state
  3441. {
  3442. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3443. g_state = (struct ggml_state) {
  3444. /*.contexts =*/ { { 0 } },
  3445. };
  3446. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3447. g_state.contexts[i].used = false;
  3448. }
  3449. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3450. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3451. }
  3452. // initialize cuBLAS
  3453. #if defined(GGML_USE_CUBLAS)
  3454. ggml_init_cublas();
  3455. #elif defined(GGML_USE_CLBLAST)
  3456. ggml_cl_init();
  3457. #endif
  3458. is_first_call = false;
  3459. }
  3460. // find non-used context in g_state
  3461. struct ggml_context * ctx = NULL;
  3462. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3463. if (!g_state.contexts[i].used) {
  3464. g_state.contexts[i].used = true;
  3465. ctx = &g_state.contexts[i].context;
  3466. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3467. break;
  3468. }
  3469. }
  3470. if (ctx == NULL) {
  3471. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3472. ggml_critical_section_end();
  3473. return NULL;
  3474. }
  3475. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3476. *ctx = (struct ggml_context) {
  3477. /*.mem_size =*/ mem_size,
  3478. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3479. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3480. /*.no_alloc =*/ params.no_alloc,
  3481. /*.n_objects =*/ 0,
  3482. /*.objects_begin =*/ NULL,
  3483. /*.objects_end =*/ NULL,
  3484. /*.scratch =*/ { 0, 0, NULL, },
  3485. /*.scratch_save =*/ { 0, 0, NULL, },
  3486. };
  3487. GGML_ASSERT(ctx->mem_buffer != NULL);
  3488. ggml_assert_aligned(ctx->mem_buffer);
  3489. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3490. ggml_critical_section_end();
  3491. return ctx;
  3492. }
  3493. void ggml_free(struct ggml_context * ctx) {
  3494. // make this function thread safe
  3495. ggml_critical_section_start();
  3496. bool found = false;
  3497. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3498. if (&g_state.contexts[i].context == ctx) {
  3499. g_state.contexts[i].used = false;
  3500. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3501. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3502. if (ctx->mem_buffer_owned) {
  3503. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3504. }
  3505. found = true;
  3506. break;
  3507. }
  3508. }
  3509. if (!found) {
  3510. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3511. }
  3512. ggml_critical_section_end();
  3513. }
  3514. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3515. return ctx->objects_end->offs + ctx->objects_end->size;
  3516. }
  3517. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3518. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3519. ctx->scratch = scratch;
  3520. return result;
  3521. }
  3522. ////////////////////////////////////////////////////////////////////////////////
  3523. struct ggml_tensor * ggml_new_tensor_impl(
  3524. struct ggml_context * ctx,
  3525. enum ggml_type type,
  3526. int n_dims,
  3527. const int64_t* ne,
  3528. void* data) {
  3529. // always insert objects at the end of the context's memory pool
  3530. struct ggml_object * obj_cur = ctx->objects_end;
  3531. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3532. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3533. const size_t cur_end = cur_offs + cur_size;
  3534. size_t size_needed = 0;
  3535. if (data == NULL && !ctx->no_alloc) {
  3536. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3537. for (int i = 1; i < n_dims; i++) {
  3538. size_needed *= ne[i];
  3539. }
  3540. // align to GGML_MEM_ALIGN
  3541. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3542. }
  3543. char * const mem_buffer = ctx->mem_buffer;
  3544. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3545. if (ctx->scratch.data == NULL || data != NULL) {
  3546. size_needed += sizeof(struct ggml_tensor);
  3547. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3548. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3549. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3550. assert(false);
  3551. return NULL;
  3552. }
  3553. *obj_new = (struct ggml_object) {
  3554. .offs = cur_end + GGML_OBJECT_SIZE,
  3555. .size = size_needed,
  3556. .next = NULL,
  3557. };
  3558. } else {
  3559. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3560. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3561. assert(false);
  3562. return NULL;
  3563. }
  3564. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3565. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3566. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3567. assert(false);
  3568. return NULL;
  3569. }
  3570. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3571. *obj_new = (struct ggml_object) {
  3572. .offs = cur_end + GGML_OBJECT_SIZE,
  3573. .size = sizeof(struct ggml_tensor),
  3574. .next = NULL,
  3575. };
  3576. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3577. ctx->scratch.offs += size_needed;
  3578. }
  3579. if (obj_cur != NULL) {
  3580. obj_cur->next = obj_new;
  3581. } else {
  3582. // this is the first object in this context
  3583. ctx->objects_begin = obj_new;
  3584. }
  3585. ctx->objects_end = obj_new;
  3586. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3587. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3588. ggml_assert_aligned(result);
  3589. *result = (struct ggml_tensor) {
  3590. /*.type =*/ type,
  3591. /*.n_dims =*/ n_dims,
  3592. /*.ne =*/ { 1, 1, 1, 1 },
  3593. /*.nb =*/ { 0, 0, 0, 0 },
  3594. /*.op =*/ GGML_OP_NONE,
  3595. /*.is_param =*/ false,
  3596. /*.grad =*/ NULL,
  3597. /*.src0 =*/ NULL,
  3598. /*.src1 =*/ NULL,
  3599. /*.opt =*/ { NULL },
  3600. /*.n_tasks =*/ 0,
  3601. /*.perf_runs =*/ 0,
  3602. /*.perf_cycles =*/ 0,
  3603. /*.perf_time_us =*/ 0,
  3604. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3605. /*.pad =*/ { 0 },
  3606. };
  3607. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3608. //ggml_assert_aligned(result->data);
  3609. for (int i = 0; i < n_dims; i++) {
  3610. result->ne[i] = ne[i];
  3611. }
  3612. result->nb[0] = GGML_TYPE_SIZE[type];
  3613. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3614. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3615. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3616. }
  3617. ctx->n_objects++;
  3618. return result;
  3619. }
  3620. struct ggml_tensor * ggml_new_tensor(
  3621. struct ggml_context * ctx,
  3622. enum ggml_type type,
  3623. int n_dims,
  3624. const int64_t * ne) {
  3625. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3626. }
  3627. struct ggml_tensor * ggml_new_tensor_1d(
  3628. struct ggml_context * ctx,
  3629. enum ggml_type type,
  3630. int64_t ne0) {
  3631. return ggml_new_tensor(ctx, type, 1, &ne0);
  3632. }
  3633. struct ggml_tensor * ggml_new_tensor_2d(
  3634. struct ggml_context * ctx,
  3635. enum ggml_type type,
  3636. int64_t ne0,
  3637. int64_t ne1) {
  3638. const int64_t ne[2] = { ne0, ne1 };
  3639. return ggml_new_tensor(ctx, type, 2, ne);
  3640. }
  3641. struct ggml_tensor * ggml_new_tensor_3d(
  3642. struct ggml_context * ctx,
  3643. enum ggml_type type,
  3644. int64_t ne0,
  3645. int64_t ne1,
  3646. int64_t ne2) {
  3647. const int64_t ne[3] = { ne0, ne1, ne2 };
  3648. return ggml_new_tensor(ctx, type, 3, ne);
  3649. }
  3650. struct ggml_tensor * ggml_new_tensor_4d(
  3651. struct ggml_context * ctx,
  3652. enum ggml_type type,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3658. return ggml_new_tensor(ctx, type, 4, ne);
  3659. }
  3660. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3661. ctx->scratch_save = ctx->scratch;
  3662. ctx->scratch.data = NULL;
  3663. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3664. ctx->scratch = ctx->scratch_save;
  3665. ggml_set_i32(result, value);
  3666. return result;
  3667. }
  3668. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3669. ctx->scratch_save = ctx->scratch;
  3670. ctx->scratch.data = NULL;
  3671. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3672. ctx->scratch = ctx->scratch_save;
  3673. ggml_set_f32(result, value);
  3674. return result;
  3675. }
  3676. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3677. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3678. }
  3679. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3680. memset(tensor->data, 0, ggml_nbytes(tensor));
  3681. return tensor;
  3682. }
  3683. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3684. const int n = ggml_nrows(tensor);
  3685. const int nc = tensor->ne[0];
  3686. const size_t n1 = tensor->nb[1];
  3687. char * const data = tensor->data;
  3688. switch (tensor->type) {
  3689. case GGML_TYPE_I8:
  3690. {
  3691. assert(tensor->nb[0] == sizeof(int8_t));
  3692. for (int i = 0; i < n; i++) {
  3693. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3694. }
  3695. } break;
  3696. case GGML_TYPE_I16:
  3697. {
  3698. assert(tensor->nb[0] == sizeof(int16_t));
  3699. for (int i = 0; i < n; i++) {
  3700. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3701. }
  3702. } break;
  3703. case GGML_TYPE_I32:
  3704. {
  3705. assert(tensor->nb[0] == sizeof(int32_t));
  3706. for (int i = 0; i < n; i++) {
  3707. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3708. }
  3709. } break;
  3710. case GGML_TYPE_F16:
  3711. {
  3712. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3713. for (int i = 0; i < n; i++) {
  3714. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3715. }
  3716. } break;
  3717. case GGML_TYPE_F32:
  3718. {
  3719. assert(tensor->nb[0] == sizeof(float));
  3720. for (int i = 0; i < n; i++) {
  3721. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3722. }
  3723. } break;
  3724. default:
  3725. {
  3726. GGML_ASSERT(false);
  3727. } break;
  3728. }
  3729. return tensor;
  3730. }
  3731. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3732. const int n = ggml_nrows(tensor);
  3733. const int nc = tensor->ne[0];
  3734. const size_t n1 = tensor->nb[1];
  3735. char * const data = tensor->data;
  3736. switch (tensor->type) {
  3737. case GGML_TYPE_I8:
  3738. {
  3739. assert(tensor->nb[0] == sizeof(int8_t));
  3740. for (int i = 0; i < n; i++) {
  3741. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3742. }
  3743. } break;
  3744. case GGML_TYPE_I16:
  3745. {
  3746. assert(tensor->nb[0] == sizeof(int16_t));
  3747. for (int i = 0; i < n; i++) {
  3748. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3749. }
  3750. } break;
  3751. case GGML_TYPE_I32:
  3752. {
  3753. assert(tensor->nb[0] == sizeof(int32_t));
  3754. for (int i = 0; i < n; i++) {
  3755. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3756. }
  3757. } break;
  3758. case GGML_TYPE_F16:
  3759. {
  3760. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3761. for (int i = 0; i < n; i++) {
  3762. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3763. }
  3764. } break;
  3765. case GGML_TYPE_F32:
  3766. {
  3767. assert(tensor->nb[0] == sizeof(float));
  3768. for (int i = 0; i < n; i++) {
  3769. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3770. }
  3771. } break;
  3772. default:
  3773. {
  3774. GGML_ASSERT(false);
  3775. } break;
  3776. }
  3777. return tensor;
  3778. }
  3779. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3780. switch (tensor->type) {
  3781. case GGML_TYPE_I8:
  3782. {
  3783. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3784. return ((int8_t *)(tensor->data))[i];
  3785. } break;
  3786. case GGML_TYPE_I16:
  3787. {
  3788. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3789. return ((int16_t *)(tensor->data))[i];
  3790. } break;
  3791. case GGML_TYPE_I32:
  3792. {
  3793. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3794. return ((int32_t *)(tensor->data))[i];
  3795. } break;
  3796. case GGML_TYPE_F16:
  3797. {
  3798. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3799. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3800. } break;
  3801. case GGML_TYPE_F32:
  3802. {
  3803. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3804. return ((float *)(tensor->data))[i];
  3805. } break;
  3806. default:
  3807. {
  3808. GGML_ASSERT(false);
  3809. } break;
  3810. }
  3811. return 0.0f;
  3812. }
  3813. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3814. switch (tensor->type) {
  3815. case GGML_TYPE_I8:
  3816. {
  3817. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3818. ((int8_t *)(tensor->data))[i] = value;
  3819. } break;
  3820. case GGML_TYPE_I16:
  3821. {
  3822. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3823. ((int16_t *)(tensor->data))[i] = value;
  3824. } break;
  3825. case GGML_TYPE_I32:
  3826. {
  3827. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3828. ((int32_t *)(tensor->data))[i] = value;
  3829. } break;
  3830. case GGML_TYPE_F16:
  3831. {
  3832. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3833. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3834. } break;
  3835. case GGML_TYPE_F32:
  3836. {
  3837. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3838. ((float *)(tensor->data))[i] = value;
  3839. } break;
  3840. default:
  3841. {
  3842. GGML_ASSERT(false);
  3843. } break;
  3844. }
  3845. }
  3846. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3847. switch (tensor->type) {
  3848. case GGML_TYPE_I8:
  3849. {
  3850. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3851. return ((int8_t *)(tensor->data))[i];
  3852. } break;
  3853. case GGML_TYPE_I16:
  3854. {
  3855. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3856. return ((int16_t *)(tensor->data))[i];
  3857. } break;
  3858. case GGML_TYPE_I32:
  3859. {
  3860. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3861. return ((int32_t *)(tensor->data))[i];
  3862. } break;
  3863. case GGML_TYPE_F16:
  3864. {
  3865. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3866. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3867. } break;
  3868. case GGML_TYPE_F32:
  3869. {
  3870. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3871. return ((float *)(tensor->data))[i];
  3872. } break;
  3873. default:
  3874. {
  3875. GGML_ASSERT(false);
  3876. } break;
  3877. }
  3878. return 0.0f;
  3879. }
  3880. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3881. switch (tensor->type) {
  3882. case GGML_TYPE_I8:
  3883. {
  3884. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3885. ((int8_t *)(tensor->data))[i] = value;
  3886. } break;
  3887. case GGML_TYPE_I16:
  3888. {
  3889. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3890. ((int16_t *)(tensor->data))[i] = value;
  3891. } break;
  3892. case GGML_TYPE_I32:
  3893. {
  3894. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3895. ((int32_t *)(tensor->data))[i] = value;
  3896. } break;
  3897. case GGML_TYPE_F16:
  3898. {
  3899. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3900. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3901. } break;
  3902. case GGML_TYPE_F32:
  3903. {
  3904. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3905. ((float *)(tensor->data))[i] = value;
  3906. } break;
  3907. default:
  3908. {
  3909. GGML_ASSERT(false);
  3910. } break;
  3911. }
  3912. }
  3913. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3914. return tensor->data;
  3915. }
  3916. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3917. assert(tensor->type == GGML_TYPE_F32);
  3918. return (float *)(tensor->data);
  3919. }
  3920. struct ggml_tensor * ggml_view_tensor(
  3921. struct ggml_context * ctx,
  3922. const struct ggml_tensor * src) {
  3923. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3924. result->nb[0] = src->nb[0];
  3925. result->nb[1] = src->nb[1];
  3926. result->nb[2] = src->nb[2];
  3927. result->nb[3] = src->nb[3];
  3928. return result;
  3929. }
  3930. ////////////////////////////////////////////////////////////////////////////////
  3931. // ggml_dup
  3932. struct ggml_tensor * ggml_dup_impl(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. bool inplace) {
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad)) {
  3938. is_node = true;
  3939. }
  3940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3941. result->op = GGML_OP_DUP;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src0 = a;
  3944. result->src1 = NULL;
  3945. return result;
  3946. }
  3947. struct ggml_tensor * ggml_dup(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a) {
  3950. return ggml_dup_impl(ctx, a, false);
  3951. }
  3952. struct ggml_tensor * ggml_dup_inplace(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. return ggml_dup_impl(ctx, a, true);
  3956. }
  3957. // ggml_add
  3958. struct ggml_tensor * ggml_add_impl(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. struct ggml_tensor * b,
  3962. bool inplace) {
  3963. GGML_ASSERT(ggml_are_same_shape(a, b));
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad || b->grad)) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_ADD;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src0 = a;
  3972. result->src1 = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_add(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_add_impl(ctx, a, b, false);
  3980. }
  3981. struct ggml_tensor * ggml_add_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b) {
  3985. return ggml_add_impl(ctx, a, b, true);
  3986. }
  3987. // ggml_sub
  3988. struct ggml_tensor * ggml_sub_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b,
  3992. bool inplace) {
  3993. GGML_ASSERT(ggml_are_same_shape(a, b));
  3994. bool is_node = false;
  3995. if (!inplace && (a->grad || b->grad)) {
  3996. is_node = true;
  3997. }
  3998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3999. result->op = GGML_OP_SUB;
  4000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4001. result->src0 = a;
  4002. result->src1 = b;
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_sub(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. struct ggml_tensor * b) {
  4009. return ggml_sub_impl(ctx, a, b, false);
  4010. }
  4011. struct ggml_tensor * ggml_sub_inplace(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. struct ggml_tensor * b) {
  4015. return ggml_sub_impl(ctx, a, b, true);
  4016. }
  4017. // ggml_mul
  4018. struct ggml_tensor * ggml_mul_impl(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. struct ggml_tensor * b,
  4022. bool inplace) {
  4023. GGML_ASSERT(ggml_are_same_shape(a, b));
  4024. bool is_node = false;
  4025. if (!inplace && (a->grad || b->grad)) {
  4026. is_node = true;
  4027. }
  4028. if (inplace) {
  4029. GGML_ASSERT(is_node == false);
  4030. }
  4031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4032. result->op = GGML_OP_MUL;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src0 = a;
  4035. result->src1 = b;
  4036. return result;
  4037. }
  4038. struct ggml_tensor * ggml_mul(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * b) {
  4042. return ggml_mul_impl(ctx, a, b, false);
  4043. }
  4044. struct ggml_tensor * ggml_mul_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * b) {
  4048. return ggml_mul_impl(ctx, a, b, true);
  4049. }
  4050. // ggml_div
  4051. struct ggml_tensor * ggml_div_impl(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. bool inplace) {
  4056. GGML_ASSERT(ggml_are_same_shape(a, b));
  4057. bool is_node = false;
  4058. if (!inplace && (a->grad || b->grad)) {
  4059. is_node = true;
  4060. }
  4061. if (inplace) {
  4062. GGML_ASSERT(is_node == false);
  4063. }
  4064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4065. result->op = GGML_OP_DIV;
  4066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4067. result->src0 = a;
  4068. result->src1 = b;
  4069. return result;
  4070. }
  4071. struct ggml_tensor * ggml_div(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b) {
  4075. return ggml_div_impl(ctx, a, b, false);
  4076. }
  4077. struct ggml_tensor * ggml_div_inplace(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. struct ggml_tensor * b) {
  4081. return ggml_div_impl(ctx, a, b, true);
  4082. }
  4083. // ggml_sqr
  4084. struct ggml_tensor * ggml_sqr_impl(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. bool inplace) {
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad)) {
  4090. is_node = true;
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_SQR;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src0 = a;
  4096. result->src1 = NULL;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_sqr(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_sqr_impl(ctx, a, false);
  4103. }
  4104. struct ggml_tensor * ggml_sqr_inplace(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a) {
  4107. return ggml_sqr_impl(ctx, a, true);
  4108. }
  4109. // ggml_sqrt
  4110. struct ggml_tensor * ggml_sqrt_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. bool inplace) {
  4114. bool is_node = false;
  4115. if (!inplace && (a->grad)) {
  4116. is_node = true;
  4117. }
  4118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4119. result->op = GGML_OP_SQRT;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src0 = a;
  4122. result->src1 = NULL;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_sqrt(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_sqrt_impl(ctx, a, false);
  4129. }
  4130. struct ggml_tensor * ggml_sqrt_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a) {
  4133. return ggml_sqrt_impl(ctx, a, true);
  4134. }
  4135. // ggml_sum
  4136. struct ggml_tensor * ggml_sum(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. bool is_node = false;
  4140. if (a->grad) {
  4141. is_node = true;
  4142. }
  4143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4144. result->op = GGML_OP_SUM;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src0 = a;
  4147. result->src1 = NULL;
  4148. return result;
  4149. }
  4150. // ggml_mean
  4151. struct ggml_tensor * ggml_mean(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. bool is_node = false;
  4155. if (a->grad) {
  4156. GGML_ASSERT(false); // TODO: implement
  4157. is_node = true;
  4158. }
  4159. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4160. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4161. result->op = GGML_OP_MEAN;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src0 = a;
  4164. result->src1 = NULL;
  4165. return result;
  4166. }
  4167. // ggml_repeat
  4168. struct ggml_tensor * ggml_repeat(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b) {
  4172. GGML_ASSERT(ggml_can_repeat(a, b));
  4173. bool is_node = false;
  4174. if (a->grad) {
  4175. is_node = true;
  4176. }
  4177. if (ggml_are_same_shape(a, b) && !is_node) {
  4178. return a;
  4179. }
  4180. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4181. result->op = GGML_OP_REPEAT;
  4182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4183. result->src0 = a;
  4184. result->src1 = b;
  4185. return result;
  4186. }
  4187. // ggml_abs
  4188. struct ggml_tensor * ggml_abs_impl(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. bool inplace) {
  4192. bool is_node = false;
  4193. if (!inplace && (a->grad)) {
  4194. is_node = true;
  4195. }
  4196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4197. result->op = GGML_OP_ABS;
  4198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4199. result->src0 = a;
  4200. result->src1 = NULL;
  4201. return result;
  4202. }
  4203. struct ggml_tensor * ggml_abs(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_abs_impl(ctx, a, false);
  4207. }
  4208. struct ggml_tensor * ggml_abs_inplace(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. return ggml_abs_impl(ctx, a, true);
  4212. }
  4213. // ggml_sgn
  4214. struct ggml_tensor * ggml_sgn_impl(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. bool inplace) {
  4218. bool is_node = false;
  4219. if (!inplace && (a->grad)) {
  4220. is_node = true;
  4221. }
  4222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4223. result->op = GGML_OP_SGN;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src0 = a;
  4226. result->src1 = NULL;
  4227. return result;
  4228. }
  4229. struct ggml_tensor * ggml_sgn(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a) {
  4232. return ggml_sgn_impl(ctx, a, false);
  4233. }
  4234. struct ggml_tensor * ggml_sgn_inplace(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a) {
  4237. return ggml_sgn_impl(ctx, a, true);
  4238. }
  4239. // ggml_neg
  4240. struct ggml_tensor * ggml_neg_impl(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. bool inplace) {
  4244. bool is_node = false;
  4245. if (!inplace && (a->grad)) {
  4246. is_node = true;
  4247. }
  4248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4249. result->op = GGML_OP_NEG;
  4250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4251. result->src0 = a;
  4252. result->src1 = NULL;
  4253. return result;
  4254. }
  4255. struct ggml_tensor * ggml_neg(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. return ggml_neg_impl(ctx, a, false);
  4259. }
  4260. struct ggml_tensor * ggml_neg_inplace(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_neg_impl(ctx, a, true);
  4264. }
  4265. // ggml_step
  4266. struct ggml_tensor * ggml_step_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. bool inplace) {
  4270. bool is_node = false;
  4271. if (!inplace && (a->grad)) {
  4272. is_node = true;
  4273. }
  4274. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4275. result->op = GGML_OP_STEP;
  4276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4277. result->src0 = a;
  4278. result->src1 = NULL;
  4279. return result;
  4280. }
  4281. struct ggml_tensor * ggml_step(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a) {
  4284. return ggml_step_impl(ctx, a, false);
  4285. }
  4286. struct ggml_tensor * ggml_step_inplace(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a) {
  4289. return ggml_step_impl(ctx, a, true);
  4290. }
  4291. // ggml_relu
  4292. struct ggml_tensor * ggml_relu_impl(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. bool inplace) {
  4296. bool is_node = false;
  4297. if (!inplace && (a->grad)) {
  4298. is_node = true;
  4299. }
  4300. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4301. result->op = GGML_OP_RELU;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = NULL;
  4305. return result;
  4306. }
  4307. struct ggml_tensor * ggml_relu(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_relu_impl(ctx, a, false);
  4311. }
  4312. struct ggml_tensor * ggml_relu_inplace(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_relu_impl(ctx, a, true);
  4316. }
  4317. // ggml_gelu
  4318. struct ggml_tensor * ggml_gelu_impl(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. bool inplace) {
  4322. bool is_node = false;
  4323. if (!inplace && (a->grad)) {
  4324. is_node = true;
  4325. }
  4326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4327. result->op = GGML_OP_GELU;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src0 = a;
  4330. result->src1 = NULL;
  4331. return result;
  4332. }
  4333. struct ggml_tensor * ggml_gelu(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a) {
  4336. return ggml_gelu_impl(ctx, a, false);
  4337. }
  4338. struct ggml_tensor * ggml_gelu_inplace(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a) {
  4341. return ggml_gelu_impl(ctx, a, true);
  4342. }
  4343. // ggml_silu
  4344. struct ggml_tensor * ggml_silu_impl(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. bool inplace) {
  4348. bool is_node = false;
  4349. if (!inplace && (a->grad)) {
  4350. is_node = true;
  4351. }
  4352. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4353. result->op = GGML_OP_SILU;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src0 = a;
  4356. result->src1 = NULL;
  4357. return result;
  4358. }
  4359. struct ggml_tensor * ggml_silu(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a) {
  4362. return ggml_silu_impl(ctx, a, false);
  4363. }
  4364. struct ggml_tensor * ggml_silu_inplace(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_silu_impl(ctx, a, true);
  4368. }
  4369. // ggml_norm
  4370. struct ggml_tensor * ggml_norm_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. bool inplace) {
  4374. bool is_node = false;
  4375. if (!inplace && (a->grad)) {
  4376. GGML_ASSERT(false); // TODO: implement backward
  4377. is_node = true;
  4378. }
  4379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4380. result->op = GGML_OP_NORM;
  4381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4382. result->src0 = a;
  4383. result->src1 = NULL; // TODO: maybe store epsilon here?
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_norm(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a) {
  4389. return ggml_norm_impl(ctx, a, false);
  4390. }
  4391. struct ggml_tensor * ggml_norm_inplace(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a) {
  4394. return ggml_norm_impl(ctx, a, true);
  4395. }
  4396. struct ggml_tensor * ggml_rms_norm_impl(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (!inplace && (a->grad)) {
  4402. GGML_ASSERT(false); // TODO: implement backward
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4406. result->op = GGML_OP_RMS_NORM;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = a;
  4409. result->src1 = NULL; // TODO: maybe store epsilon here?
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_rms_norm(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_rms_norm_impl(ctx, a, false);
  4416. }
  4417. struct ggml_tensor * ggml_rms_norm_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_rms_norm_impl(ctx, a, true);
  4421. }
  4422. // ggml_mul_mat
  4423. struct ggml_tensor * ggml_mul_mat(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b) {
  4427. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4428. GGML_ASSERT(!ggml_is_transposed(a));
  4429. bool is_node = false;
  4430. if (a->grad || b->grad) {
  4431. is_node = true;
  4432. }
  4433. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4434. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4435. result->op = GGML_OP_MUL_MAT;
  4436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4437. result->src0 = a;
  4438. result->src1 = b;
  4439. return result;
  4440. }
  4441. // ggml_scale
  4442. struct ggml_tensor * ggml_scale_impl(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * b,
  4446. bool inplace) {
  4447. GGML_ASSERT(ggml_is_scalar(b));
  4448. GGML_ASSERT(ggml_is_padded_1d(a));
  4449. bool is_node = false;
  4450. if (!inplace && (a->grad || b->grad)) {
  4451. GGML_ASSERT(false); // TODO: implement backward
  4452. is_node = true;
  4453. }
  4454. // TODO: when implement backward, fix this:
  4455. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4456. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4457. result->op = GGML_OP_SCALE;
  4458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4459. result->src0 = a;
  4460. result->src1 = b;
  4461. return result;
  4462. }
  4463. struct ggml_tensor * ggml_scale(
  4464. struct ggml_context * ctx,
  4465. struct ggml_tensor * a,
  4466. struct ggml_tensor * b) {
  4467. return ggml_scale_impl(ctx, a, b, false);
  4468. }
  4469. struct ggml_tensor * ggml_scale_inplace(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b) {
  4473. return ggml_scale_impl(ctx, a, b, true);
  4474. }
  4475. // ggml_cpy
  4476. struct ggml_tensor * ggml_cpy_impl(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b,
  4480. bool inplace) {
  4481. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4482. bool is_node = false;
  4483. if (!inplace && (a->grad || b->grad)) {
  4484. GGML_ASSERT(false); // TODO: implement backward
  4485. is_node = true;
  4486. }
  4487. // make a view of the destination
  4488. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4489. result->op = GGML_OP_CPY;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src0 = a;
  4492. result->src1 = b;
  4493. return result;
  4494. }
  4495. struct ggml_tensor * ggml_cpy(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b) {
  4499. return ggml_cpy_impl(ctx, a, b, false);
  4500. }
  4501. struct ggml_tensor * ggml_cpy_inplace(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. struct ggml_tensor * b) {
  4505. return ggml_cpy_impl(ctx, a, b, true);
  4506. }
  4507. // ggml_cont
  4508. struct ggml_tensor * ggml_cont_impl(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. bool inplace) {
  4512. bool is_node = false;
  4513. if (!inplace && a->grad) {
  4514. GGML_ASSERT(false); // TODO: implement backward
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4518. result->op = GGML_OP_CONT;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src0 = a;
  4521. result->src1 = NULL;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_cont(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a) {
  4527. return ggml_cont_impl(ctx, a, false);
  4528. }
  4529. struct ggml_tensor * ggml_cont_inplace(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a) {
  4532. return ggml_cont_impl(ctx, a, true);
  4533. }
  4534. // ggml_reshape
  4535. struct ggml_tensor * ggml_reshape(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a,
  4538. struct ggml_tensor * b) {
  4539. GGML_ASSERT(ggml_is_contiguous(a));
  4540. GGML_ASSERT(ggml_is_contiguous(b));
  4541. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4542. bool is_node = false;
  4543. if (a->grad || b->grad) {
  4544. GGML_ASSERT(false); // TODO: implement backward
  4545. is_node = true;
  4546. }
  4547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4548. result->op = GGML_OP_RESHAPE;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src0 = a;
  4551. result->src1 = NULL;
  4552. return result;
  4553. }
  4554. struct ggml_tensor * ggml_reshape_2d(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. int64_t ne0,
  4558. int64_t ne1) {
  4559. GGML_ASSERT(ggml_is_contiguous(a));
  4560. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4561. bool is_node = false;
  4562. if (a->grad) {
  4563. GGML_ASSERT(false); // TODO: implement backward
  4564. is_node = true;
  4565. }
  4566. const int64_t ne[2] = { ne0, ne1 };
  4567. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4568. result->op = GGML_OP_RESHAPE;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src0 = a;
  4571. result->src1 = NULL;
  4572. return result;
  4573. }
  4574. struct ggml_tensor * ggml_reshape_3d(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. int64_t ne0,
  4578. int64_t ne1,
  4579. int64_t ne2) {
  4580. GGML_ASSERT(ggml_is_contiguous(a));
  4581. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4582. bool is_node = false;
  4583. if (a->grad) {
  4584. GGML_ASSERT(false); // TODO: implement backward
  4585. is_node = true;
  4586. }
  4587. const int64_t ne[3] = { ne0, ne1, ne2 };
  4588. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4589. result->op = GGML_OP_RESHAPE;
  4590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4591. result->src0 = a;
  4592. result->src1 = NULL;
  4593. return result;
  4594. }
  4595. // ggml_view_1d
  4596. struct ggml_tensor * ggml_view_1d(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. int64_t ne0,
  4600. size_t offset) {
  4601. if (a->grad) {
  4602. GGML_ASSERT(false); // gradient propagation is not supported
  4603. }
  4604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4605. result->op = GGML_OP_VIEW;
  4606. result->grad = NULL;
  4607. result->src0 = a;
  4608. result->src1 = NULL; // TODO: maybe store the offset here?
  4609. return result;
  4610. }
  4611. // ggml_view_2d
  4612. struct ggml_tensor * ggml_view_2d(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. int64_t ne0,
  4616. int64_t ne1,
  4617. size_t nb1,
  4618. size_t offset) {
  4619. if (a->grad) {
  4620. GGML_ASSERT(false); // gradient propagation is not supported
  4621. }
  4622. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4623. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4624. result->nb[1] = nb1;
  4625. result->nb[2] = result->nb[1]*ne1;
  4626. result->nb[3] = result->nb[2];
  4627. result->op = GGML_OP_VIEW;
  4628. result->grad = NULL;
  4629. result->src0 = a;
  4630. result->src1 = NULL; // TODO: maybe store the offset here?
  4631. return result;
  4632. }
  4633. // ggml_view_3d
  4634. struct ggml_tensor * ggml_view_3d(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. int64_t ne0,
  4638. int64_t ne1,
  4639. int64_t ne2,
  4640. size_t nb1,
  4641. size_t nb2,
  4642. size_t offset) {
  4643. if (a->grad) {
  4644. GGML_ASSERT(false); // gradient propagation is not supported
  4645. }
  4646. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4647. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4648. result->nb[1] = nb1;
  4649. result->nb[2] = nb2;
  4650. result->nb[3] = result->nb[2]*ne2;
  4651. result->op = GGML_OP_VIEW;
  4652. result->grad = NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL; // TODO: maybe store the offset here?
  4655. return result;
  4656. }
  4657. // ggml_permute
  4658. struct ggml_tensor * ggml_permute(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int axis0,
  4662. int axis1,
  4663. int axis2,
  4664. int axis3) {
  4665. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4666. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4667. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4668. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4669. GGML_ASSERT(axis0 != axis1);
  4670. GGML_ASSERT(axis0 != axis2);
  4671. GGML_ASSERT(axis0 != axis3);
  4672. GGML_ASSERT(axis1 != axis2);
  4673. GGML_ASSERT(axis1 != axis3);
  4674. GGML_ASSERT(axis2 != axis3);
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4681. int ne[GGML_MAX_DIMS];
  4682. int nb[GGML_MAX_DIMS];
  4683. ne[axis0] = a->ne[0];
  4684. ne[axis1] = a->ne[1];
  4685. ne[axis2] = a->ne[2];
  4686. ne[axis3] = a->ne[3];
  4687. nb[axis0] = a->nb[0];
  4688. nb[axis1] = a->nb[1];
  4689. nb[axis2] = a->nb[2];
  4690. nb[axis3] = a->nb[3];
  4691. result->ne[0] = ne[0];
  4692. result->ne[1] = ne[1];
  4693. result->ne[2] = ne[2];
  4694. result->ne[3] = ne[3];
  4695. result->nb[0] = nb[0];
  4696. result->nb[1] = nb[1];
  4697. result->nb[2] = nb[2];
  4698. result->nb[3] = nb[3];
  4699. result->op = GGML_OP_PERMUTE;
  4700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4701. result->src0 = a;
  4702. result->src1 = NULL; // TODO: maybe store the permutation here?
  4703. return result;
  4704. }
  4705. // ggml_transpose
  4706. struct ggml_tensor * ggml_transpose(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. GGML_ASSERT(false); // TODO: implement backward
  4712. is_node = true;
  4713. }
  4714. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4715. result->ne[0] = a->ne[1];
  4716. result->ne[1] = a->ne[0];
  4717. result->nb[0] = a->nb[1];
  4718. result->nb[1] = a->nb[0];
  4719. result->op = GGML_OP_TRANSPOSE;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src0 = a;
  4722. result->src1 = NULL;
  4723. return result;
  4724. }
  4725. // ggml_get_rows
  4726. struct ggml_tensor * ggml_get_rows(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b) {
  4730. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4731. bool is_node = false;
  4732. if (a->grad || b->grad) {
  4733. GGML_ASSERT(false); // TODO: implement backward
  4734. is_node = true;
  4735. }
  4736. // TODO: implement non F32 return
  4737. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4738. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4739. result->op = GGML_OP_GET_ROWS;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src0 = a;
  4742. result->src1 = b;
  4743. return result;
  4744. }
  4745. // ggml_diag_mask_inf
  4746. struct ggml_tensor * ggml_diag_mask_inf(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. int n_past) {
  4750. bool is_node = false;
  4751. if (a->grad) {
  4752. GGML_ASSERT(false); // TODO: implement backward
  4753. is_node = true;
  4754. }
  4755. // TODO: when implement backward, fix this:
  4756. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4757. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4758. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4759. result->op = GGML_OP_DIAG_MASK_INF;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src0 = a;
  4762. result->src1 = b;
  4763. return result;
  4764. }
  4765. // ggml_soft_max
  4766. struct ggml_tensor * ggml_soft_max(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a) {
  4769. bool is_node = false;
  4770. if (a->grad) {
  4771. GGML_ASSERT(false); // TODO: implement backward
  4772. is_node = true;
  4773. }
  4774. // TODO: when implement backward, fix this:
  4775. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4776. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4777. result->op = GGML_OP_SOFT_MAX;
  4778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4779. result->src0 = a;
  4780. result->src1 = NULL;
  4781. return result;
  4782. }
  4783. // ggml_rope
  4784. struct ggml_tensor * ggml_rope(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. int n_past,
  4788. int n_dims,
  4789. int mode) {
  4790. GGML_ASSERT(n_past >= 0);
  4791. bool is_node = false;
  4792. if (a->grad) {
  4793. GGML_ASSERT(false); // TODO: implement backward
  4794. is_node = true;
  4795. }
  4796. // TODO: when implement backward, fix this:
  4797. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4798. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4799. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4800. ((int32_t *) b->data)[0] = n_past;
  4801. ((int32_t *) b->data)[1] = n_dims;
  4802. ((int32_t *) b->data)[2] = mode;
  4803. result->op = GGML_OP_ROPE;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src0 = a;
  4806. result->src1 = b;
  4807. return result;
  4808. }
  4809. // ggml_alibi
  4810. struct ggml_tensor * ggml_alibi(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. int n_past,
  4814. int n_head) {
  4815. GGML_ASSERT(n_past >= 0);
  4816. bool is_node = false;
  4817. if (a->grad) {
  4818. GGML_ASSERT(false); // TODO: implement backward
  4819. is_node = true;
  4820. }
  4821. // TODO: when implement backward, fix this:
  4822. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4823. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4824. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4825. ((int32_t *) b->data)[0] = n_past;
  4826. ((int32_t *) b->data)[1] = n_head;
  4827. result->op = GGML_OP_ALIBI;
  4828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4829. result->src0 = a;
  4830. result->src1 = b;
  4831. return result;
  4832. }
  4833. // ggml_conv_1d_1s
  4834. struct ggml_tensor * ggml_conv_1d_1s(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. struct ggml_tensor * b) {
  4838. GGML_ASSERT(ggml_is_matrix(b));
  4839. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4840. GGML_ASSERT(a->ne[3] == 1);
  4841. bool is_node = false;
  4842. if (a->grad || b->grad) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4847. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4848. result->op = GGML_OP_CONV_1D_1S;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src0 = a;
  4851. result->src1 = b;
  4852. return result;
  4853. }
  4854. // ggml_conv_1d_2s
  4855. struct ggml_tensor * ggml_conv_1d_2s(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b) {
  4859. GGML_ASSERT(ggml_is_matrix(b));
  4860. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4861. GGML_ASSERT(a->ne[3] == 1);
  4862. bool is_node = false;
  4863. if (a->grad || b->grad) {
  4864. GGML_ASSERT(false); // TODO: implement backward
  4865. is_node = true;
  4866. }
  4867. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4868. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4869. result->op = GGML_OP_CONV_1D_2S;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src0 = a;
  4872. result->src1 = b;
  4873. return result;
  4874. }
  4875. // ggml_flash_attn
  4876. struct ggml_tensor * ggml_flash_attn(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * q,
  4879. struct ggml_tensor * k,
  4880. struct ggml_tensor * v,
  4881. bool masked) {
  4882. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4883. // TODO: check if vT can be multiplied by (k*qT)
  4884. bool is_node = false;
  4885. if (q->grad || k->grad || v->grad) {
  4886. GGML_ASSERT(false); // TODO: implement backward
  4887. is_node = true;
  4888. }
  4889. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4890. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4891. result->op = GGML_OP_FLASH_ATTN;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src0 = q;
  4894. result->src1 = k;
  4895. result->opt[0] = v;
  4896. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4897. return result;
  4898. }
  4899. // ggml_flash_ff
  4900. struct ggml_tensor * ggml_flash_ff(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. struct ggml_tensor * b0,
  4904. struct ggml_tensor * b1,
  4905. struct ggml_tensor * c0,
  4906. struct ggml_tensor * c1) {
  4907. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4908. // TODO: more checks
  4909. bool is_node = false;
  4910. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4911. GGML_ASSERT(false); // TODO: implement backward
  4912. is_node = true;
  4913. }
  4914. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4915. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4916. result->op = GGML_OP_FLASH_FF;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src0 = a;
  4919. result->src1 = b0;
  4920. result->opt[0] = b1;
  4921. result->opt[1] = c0;
  4922. result->opt[2] = c1;
  4923. return result;
  4924. }
  4925. // ggml_map_unary
  4926. struct ggml_tensor * ggml_map_unary_impl_f32(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. const ggml_unary_op_f32_t fun,
  4930. bool inplace) {
  4931. bool is_node = false;
  4932. if (!inplace && a->grad) {
  4933. is_node = true;
  4934. }
  4935. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4936. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4937. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4938. result->op = GGML_OP_MAP_UNARY;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src0 = a;
  4941. result->opt[0] = addr_tensor;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_map_unary_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. const ggml_unary_op_f32_t fun) {
  4948. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4949. }
  4950. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. const ggml_unary_op_f32_t fun) {
  4954. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4955. }
  4956. // ggml_map_binary
  4957. struct ggml_tensor * ggml_map_binary_impl_f32(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * b,
  4961. const ggml_binary_op_f32_t fun,
  4962. bool inplace) {
  4963. GGML_ASSERT(ggml_are_same_shape(a, b));
  4964. bool is_node = false;
  4965. if (!inplace && (a->grad || b->grad)) {
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4969. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4970. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4971. result->op = GGML_OP_MAP_BINARY;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src0 = a;
  4974. result->src1 = b;
  4975. result->opt[0] = addr_tensor;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_map_binary_f32(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. const ggml_binary_op_f32_t fun) {
  4983. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4984. }
  4985. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * b,
  4989. const ggml_binary_op_f32_t fun) {
  4990. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4991. }
  4992. ////////////////////////////////////////////////////////////////////////////////
  4993. void ggml_set_param(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * tensor) {
  4996. tensor->is_param = true;
  4997. GGML_ASSERT(tensor->grad == NULL);
  4998. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4999. }
  5000. // ggml_compute_forward_dup
  5001. static void ggml_compute_forward_dup_f16(
  5002. const struct ggml_compute_params * params,
  5003. const struct ggml_tensor * src0,
  5004. struct ggml_tensor * dst) {
  5005. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5007. return;
  5008. }
  5009. const int64_t ne00 = src0->ne[0];
  5010. const int64_t ne01 = src0->ne[1];
  5011. const int64_t ne02 = src0->ne[2];
  5012. const int64_t ne03 = src0->ne[3];
  5013. const int64_t ne0 = dst->ne[0];
  5014. const int64_t ne1 = dst->ne[1];
  5015. const int64_t ne2 = dst->ne[2];
  5016. const int64_t ne3 = dst->ne[3];
  5017. const size_t nb00 = src0->nb[0];
  5018. const size_t nb01 = src0->nb[1];
  5019. const size_t nb02 = src0->nb[2];
  5020. const size_t nb03 = src0->nb[3];
  5021. const size_t nb0 = dst->nb[0];
  5022. const size_t nb1 = dst->nb[1];
  5023. const size_t nb2 = dst->nb[2];
  5024. const size_t nb3 = dst->nb[3];
  5025. const int ith = params->ith; // thread index
  5026. const int nth = params->nth; // number of threads
  5027. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5028. // parallelize by elements
  5029. const int ne = ggml_nelements(dst);
  5030. const int dr = (ne + nth - 1) / nth;
  5031. const int ie0 = dr * ith;
  5032. const int ie1 = MIN(ie0 + dr, ne);
  5033. memcpy(
  5034. ((char *) dst->data + ie0*nb0),
  5035. ((char *) src0->data + ie0*nb00),
  5036. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5037. return;
  5038. }
  5039. // parallelize by rows
  5040. const int nr = ne01;
  5041. // number of rows per thread
  5042. const int dr = (nr + nth - 1) / nth;
  5043. // row range for this thread
  5044. const int ir0 = dr * ith;
  5045. const int ir1 = MIN(ir0 + dr, nr);
  5046. if (src0->type == dst->type &&
  5047. ne00 == ne0 &&
  5048. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5049. // copy by rows
  5050. const size_t rs = ne00*nb00;
  5051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5053. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5054. memcpy(
  5055. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5056. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5057. rs);
  5058. }
  5059. }
  5060. }
  5061. return;
  5062. }
  5063. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5064. if (ggml_is_contiguous(dst)) {
  5065. if (nb00 == sizeof(ggml_fp16_t)) {
  5066. if (dst->type == GGML_TYPE_F16) {
  5067. size_t id = 0;
  5068. const size_t rs = ne00 * nb00;
  5069. char * dst_ptr = (char *) dst->data;
  5070. for (int i03 = 0; i03 < ne03; i03++) {
  5071. for (int i02 = 0; i02 < ne02; i02++) {
  5072. id += rs * ir0;
  5073. for (int i01 = ir0; i01 < ir1; i01++) {
  5074. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5075. memcpy(dst_ptr + id, src0_ptr, rs);
  5076. id += rs;
  5077. }
  5078. id += rs * (ne01 - ir1);
  5079. }
  5080. }
  5081. } else if (dst->type == GGML_TYPE_F32) {
  5082. size_t id = 0;
  5083. float * dst_ptr = (float *) dst->data;
  5084. for (int i03 = 0; i03 < ne03; i03++) {
  5085. for (int i02 = 0; i02 < ne02; i02++) {
  5086. id += ne00 * ir0;
  5087. for (int i01 = ir0; i01 < ir1; i01++) {
  5088. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5089. for (int i00 = 0; i00 < ne00; i00++) {
  5090. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5091. id++;
  5092. }
  5093. }
  5094. id += ne00 * (ne01 - ir1);
  5095. }
  5096. }
  5097. } else if (ggml_is_quantized(dst->type)) {
  5098. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5099. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5100. size_t id = 0;
  5101. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5102. char * dst_ptr = (char *) dst->data;
  5103. for (int i03 = 0; i03 < ne03; i03++) {
  5104. for (int i02 = 0; i02 < ne02; i02++) {
  5105. id += rs * ir0;
  5106. for (int i01 = ir0; i01 < ir1; i01++) {
  5107. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5108. for (int i00 = 0; i00 < ne00; i00++) {
  5109. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5110. }
  5111. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5112. id += rs;
  5113. }
  5114. id += rs * (ne01 - ir1);
  5115. }
  5116. }
  5117. } else {
  5118. GGML_ASSERT(false); // TODO: implement
  5119. }
  5120. } else {
  5121. //printf("%s: this is not optimal - fix me\n", __func__);
  5122. if (dst->type == GGML_TYPE_F32) {
  5123. size_t id = 0;
  5124. float * dst_ptr = (float *) dst->data;
  5125. for (int i03 = 0; i03 < ne03; i03++) {
  5126. for (int i02 = 0; i02 < ne02; i02++) {
  5127. id += ne00 * ir0;
  5128. for (int i01 = ir0; i01 < ir1; i01++) {
  5129. for (int i00 = 0; i00 < ne00; i00++) {
  5130. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5131. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5132. id++;
  5133. }
  5134. }
  5135. id += ne00 * (ne01 - ir1);
  5136. }
  5137. }
  5138. } else if (dst->type == GGML_TYPE_F16) {
  5139. size_t id = 0;
  5140. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5141. for (int i03 = 0; i03 < ne03; i03++) {
  5142. for (int i02 = 0; i02 < ne02; i02++) {
  5143. id += ne00 * ir0;
  5144. for (int i01 = ir0; i01 < ir1; i01++) {
  5145. for (int i00 = 0; i00 < ne00; i00++) {
  5146. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5147. dst_ptr[id] = *src0_ptr;
  5148. id++;
  5149. }
  5150. }
  5151. id += ne00 * (ne01 - ir1);
  5152. }
  5153. }
  5154. } else {
  5155. GGML_ASSERT(false); // TODO: implement
  5156. }
  5157. }
  5158. return;
  5159. }
  5160. // dst counters
  5161. int64_t i10 = 0;
  5162. int64_t i11 = 0;
  5163. int64_t i12 = 0;
  5164. int64_t i13 = 0;
  5165. if (dst->type == GGML_TYPE_F16) {
  5166. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5168. i10 += ne00 * ir0;
  5169. while (i10 >= ne0) {
  5170. i10 -= ne0;
  5171. if (++i11 == ne1) {
  5172. i11 = 0;
  5173. if (++i12 == ne2) {
  5174. i12 = 0;
  5175. if (++i13 == ne3) {
  5176. i13 = 0;
  5177. }
  5178. }
  5179. }
  5180. }
  5181. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5182. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5183. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5184. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5185. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5186. if (++i10 == ne00) {
  5187. i10 = 0;
  5188. if (++i11 == ne01) {
  5189. i11 = 0;
  5190. if (++i12 == ne02) {
  5191. i12 = 0;
  5192. if (++i13 == ne03) {
  5193. i13 = 0;
  5194. }
  5195. }
  5196. }
  5197. }
  5198. }
  5199. }
  5200. i10 += ne00 * (ne01 - ir1);
  5201. while (i10 >= ne0) {
  5202. i10 -= ne0;
  5203. if (++i11 == ne1) {
  5204. i11 = 0;
  5205. if (++i12 == ne2) {
  5206. i12 = 0;
  5207. if (++i13 == ne3) {
  5208. i13 = 0;
  5209. }
  5210. }
  5211. }
  5212. }
  5213. }
  5214. }
  5215. } else if (dst->type == GGML_TYPE_F32) {
  5216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5218. i10 += ne00 * ir0;
  5219. while (i10 >= ne0) {
  5220. i10 -= ne0;
  5221. if (++i11 == ne1) {
  5222. i11 = 0;
  5223. if (++i12 == ne2) {
  5224. i12 = 0;
  5225. if (++i13 == ne3) {
  5226. i13 = 0;
  5227. }
  5228. }
  5229. }
  5230. }
  5231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5232. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5233. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5234. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5235. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5236. if (++i10 == ne0) {
  5237. i10 = 0;
  5238. if (++i11 == ne1) {
  5239. i11 = 0;
  5240. if (++i12 == ne2) {
  5241. i12 = 0;
  5242. if (++i13 == ne3) {
  5243. i13 = 0;
  5244. }
  5245. }
  5246. }
  5247. }
  5248. }
  5249. }
  5250. i10 += ne00 * (ne01 - ir1);
  5251. while (i10 >= ne0) {
  5252. i10 -= ne0;
  5253. if (++i11 == ne1) {
  5254. i11 = 0;
  5255. if (++i12 == ne2) {
  5256. i12 = 0;
  5257. if (++i13 == ne3) {
  5258. i13 = 0;
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. } else {
  5266. GGML_ASSERT(false); // TODO: implement
  5267. }
  5268. }
  5269. static void ggml_compute_forward_dup_f32(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. struct ggml_tensor * dst) {
  5273. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5275. return;
  5276. }
  5277. const int64_t ne00 = src0->ne[0];
  5278. const int64_t ne01 = src0->ne[1];
  5279. const int64_t ne02 = src0->ne[2];
  5280. const int64_t ne03 = src0->ne[3];
  5281. const int64_t ne0 = dst->ne[0];
  5282. const int64_t ne1 = dst->ne[1];
  5283. const int64_t ne2 = dst->ne[2];
  5284. const int64_t ne3 = dst->ne[3];
  5285. const size_t nb00 = src0->nb[0];
  5286. const size_t nb01 = src0->nb[1];
  5287. const size_t nb02 = src0->nb[2];
  5288. const size_t nb03 = src0->nb[3];
  5289. const size_t nb0 = dst->nb[0];
  5290. const size_t nb1 = dst->nb[1];
  5291. const size_t nb2 = dst->nb[2];
  5292. const size_t nb3 = dst->nb[3];
  5293. const int ith = params->ith; // thread index
  5294. const int nth = params->nth; // number of threads
  5295. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5296. // parallelize by elements
  5297. const int ne = ggml_nelements(dst);
  5298. const int dr = (ne + nth - 1) / nth;
  5299. const int ie0 = dr * ith;
  5300. const int ie1 = MIN(ie0 + dr, ne);
  5301. memcpy(
  5302. ((char *) dst->data + ie0*nb0),
  5303. ((char *) src0->data + ie0*nb00),
  5304. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5305. return;
  5306. }
  5307. // parallelize by rows
  5308. const int nr = ne01;
  5309. // number of rows per thread
  5310. const int dr = (nr + nth - 1) / nth;
  5311. // row range for this thread
  5312. const int ir0 = dr * ith;
  5313. const int ir1 = MIN(ir0 + dr, nr);
  5314. if (src0->type == dst->type &&
  5315. ne00 == ne0 &&
  5316. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5317. // copy by rows
  5318. const size_t rs = ne00*nb00;
  5319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5322. memcpy(
  5323. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5324. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5325. rs);
  5326. }
  5327. }
  5328. }
  5329. return;
  5330. }
  5331. if (ggml_is_contiguous(dst)) {
  5332. // TODO: simplify
  5333. if (nb00 == sizeof(float)) {
  5334. if (dst->type == GGML_TYPE_F32) {
  5335. size_t id = 0;
  5336. const size_t rs = ne00 * nb00;
  5337. char * dst_ptr = (char *) dst->data;
  5338. for (int i03 = 0; i03 < ne03; i03++) {
  5339. for (int i02 = 0; i02 < ne02; i02++) {
  5340. id += rs * ir0;
  5341. for (int i01 = ir0; i01 < ir1; i01++) {
  5342. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5343. memcpy(dst_ptr + id, src0_ptr, rs);
  5344. id += rs;
  5345. }
  5346. id += rs * (ne01 - ir1);
  5347. }
  5348. }
  5349. } else if (dst->type == GGML_TYPE_F16) {
  5350. size_t id = 0;
  5351. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5352. for (int i03 = 0; i03 < ne03; i03++) {
  5353. for (int i02 = 0; i02 < ne02; i02++) {
  5354. id += ne00 * ir0;
  5355. for (int i01 = ir0; i01 < ir1; i01++) {
  5356. for (int i00 = 0; i00 < ne00; i00++) {
  5357. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5358. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5359. id++;
  5360. }
  5361. }
  5362. id += ne00 * (ne01 - ir1);
  5363. }
  5364. }
  5365. } else if (ggml_is_quantized(dst->type)) {
  5366. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5367. size_t id = 0;
  5368. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5369. char * dst_ptr = (char *) dst->data;
  5370. for (int i03 = 0; i03 < ne03; i03++) {
  5371. for (int i02 = 0; i02 < ne02; i02++) {
  5372. id += rs * ir0;
  5373. for (int i01 = ir0; i01 < ir1; i01++) {
  5374. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5375. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5376. id += rs;
  5377. }
  5378. id += rs * (ne01 - ir1);
  5379. }
  5380. }
  5381. } else {
  5382. GGML_ASSERT(false); // TODO: implement
  5383. }
  5384. } else {
  5385. //printf("%s: this is not optimal - fix me\n", __func__);
  5386. if (dst->type == GGML_TYPE_F32) {
  5387. size_t id = 0;
  5388. float * dst_ptr = (float *) dst->data;
  5389. for (int i03 = 0; i03 < ne03; i03++) {
  5390. for (int i02 = 0; i02 < ne02; i02++) {
  5391. id += ne00 * ir0;
  5392. for (int i01 = ir0; i01 < ir1; i01++) {
  5393. for (int i00 = 0; i00 < ne00; i00++) {
  5394. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5395. dst_ptr[id] = *src0_ptr;
  5396. id++;
  5397. }
  5398. }
  5399. id += ne00 * (ne01 - ir1);
  5400. }
  5401. }
  5402. } else if (dst->type == GGML_TYPE_F16) {
  5403. size_t id = 0;
  5404. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5405. for (int i03 = 0; i03 < ne03; i03++) {
  5406. for (int i02 = 0; i02 < ne02; i02++) {
  5407. id += ne00 * ir0;
  5408. for (int i01 = ir0; i01 < ir1; i01++) {
  5409. for (int i00 = 0; i00 < ne00; i00++) {
  5410. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5411. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5412. id++;
  5413. }
  5414. }
  5415. id += ne00 * (ne01 - ir1);
  5416. }
  5417. }
  5418. } else {
  5419. GGML_ASSERT(false); // TODO: implement
  5420. }
  5421. }
  5422. return;
  5423. }
  5424. // dst counters
  5425. int64_t i10 = 0;
  5426. int64_t i11 = 0;
  5427. int64_t i12 = 0;
  5428. int64_t i13 = 0;
  5429. if (dst->type == GGML_TYPE_F32) {
  5430. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5431. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5432. i10 += ne00 * ir0;
  5433. while (i10 >= ne0) {
  5434. i10 -= ne0;
  5435. if (++i11 == ne1) {
  5436. i11 = 0;
  5437. if (++i12 == ne2) {
  5438. i12 = 0;
  5439. if (++i13 == ne3) {
  5440. i13 = 0;
  5441. }
  5442. }
  5443. }
  5444. }
  5445. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5446. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5447. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5448. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5449. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5450. if (++i10 == ne0) {
  5451. i10 = 0;
  5452. if (++i11 == ne1) {
  5453. i11 = 0;
  5454. if (++i12 == ne2) {
  5455. i12 = 0;
  5456. if (++i13 == ne3) {
  5457. i13 = 0;
  5458. }
  5459. }
  5460. }
  5461. }
  5462. }
  5463. }
  5464. i10 += ne00 * (ne01 - ir1);
  5465. while (i10 >= ne0) {
  5466. i10 -= ne0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. }
  5478. }
  5479. } else if (dst->type == GGML_TYPE_F16) {
  5480. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5481. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5482. i10 += ne00 * ir0;
  5483. while (i10 >= ne0) {
  5484. i10 -= ne0;
  5485. if (++i11 == ne1) {
  5486. i11 = 0;
  5487. if (++i12 == ne2) {
  5488. i12 = 0;
  5489. if (++i13 == ne3) {
  5490. i13 = 0;
  5491. }
  5492. }
  5493. }
  5494. }
  5495. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5496. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5497. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5498. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5499. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5500. if (++i10 == ne0) {
  5501. i10 = 0;
  5502. if (++i11 == ne1) {
  5503. i11 = 0;
  5504. if (++i12 == ne2) {
  5505. i12 = 0;
  5506. if (++i13 == ne3) {
  5507. i13 = 0;
  5508. }
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. i10 += ne00 * (ne01 - ir1);
  5515. while (i10 >= ne0) {
  5516. i10 -= ne0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. }
  5528. }
  5529. } else {
  5530. GGML_ASSERT(false); // TODO: implement
  5531. }
  5532. }
  5533. static void ggml_compute_forward_dup(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. struct ggml_tensor * dst) {
  5537. switch (src0->type) {
  5538. case GGML_TYPE_F16:
  5539. {
  5540. ggml_compute_forward_dup_f16(params, src0, dst);
  5541. } break;
  5542. case GGML_TYPE_F32:
  5543. {
  5544. ggml_compute_forward_dup_f32(params, src0, dst);
  5545. } break;
  5546. default:
  5547. {
  5548. GGML_ASSERT(false);
  5549. } break;
  5550. }
  5551. }
  5552. // ggml_compute_forward_add
  5553. static void ggml_compute_forward_add_f32(
  5554. const struct ggml_compute_params * params,
  5555. const struct ggml_tensor * src0,
  5556. const struct ggml_tensor * src1,
  5557. struct ggml_tensor * dst) {
  5558. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5559. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5560. return;
  5561. }
  5562. const int ith = params->ith;
  5563. const int nth = params->nth;
  5564. const int n = ggml_nrows(src0);
  5565. const int nc = src0->ne[0];
  5566. const size_t nb00 = src0->nb[0];
  5567. const size_t nb01 = src0->nb[1];
  5568. const size_t nb10 = src1->nb[0];
  5569. const size_t nb11 = src1->nb[1];
  5570. const size_t nb0 = dst->nb[0];
  5571. const size_t nb1 = dst->nb[1];
  5572. GGML_ASSERT( nb0 == sizeof(float));
  5573. GGML_ASSERT(nb00 == sizeof(float));
  5574. if (nb10 == sizeof(float)) {
  5575. for (int j = ith; j < n; j += nth) {
  5576. #ifdef GGML_USE_ACCELERATE
  5577. vDSP_vadd(
  5578. (float *) ((char *) src0->data + j*nb01), 1,
  5579. (float *) ((char *) src1->data + j*nb11), 1,
  5580. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5581. #else
  5582. ggml_vec_add_f32(nc,
  5583. (float *) ((char *) dst->data + j*nb1),
  5584. (float *) ((char *) src0->data + j*nb01),
  5585. (float *) ((char *) src1->data + j*nb11));
  5586. #endif
  5587. }
  5588. } else {
  5589. // src1 is not contiguous
  5590. for (int j = ith; j < n; j += nth) {
  5591. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5592. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5593. for (int i = 0; i < nc; i++) {
  5594. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5595. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5596. }
  5597. }
  5598. }
  5599. }
  5600. static void ggml_compute_forward_add_f16_f32(
  5601. const struct ggml_compute_params * params,
  5602. const struct ggml_tensor * src0,
  5603. const struct ggml_tensor * src1,
  5604. struct ggml_tensor * dst) {
  5605. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5607. return;
  5608. }
  5609. const int ith = params->ith;
  5610. const int nth = params->nth;
  5611. const int n = ggml_nrows(src0);
  5612. const int nc = src0->ne[0];
  5613. const size_t nb00 = src0->nb[0];
  5614. const size_t nb01 = src0->nb[1];
  5615. const size_t nb10 = src1->nb[0];
  5616. const size_t nb11 = src1->nb[1];
  5617. const size_t nb0 = dst->nb[0];
  5618. const size_t nb1 = dst->nb[1];
  5619. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5620. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5621. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5622. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5623. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5624. if (nb10 == sizeof(float)) {
  5625. for (int j = ith; j < n; j += nth) {
  5626. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5627. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5628. for (int i = 0; i < nc; i++) {
  5629. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5630. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5631. }
  5632. }
  5633. }
  5634. else {
  5635. // src1 is not contiguous
  5636. GGML_ASSERT(false);
  5637. }
  5638. }
  5639. static void ggml_compute_forward_add_f16_f16(
  5640. const struct ggml_compute_params * params,
  5641. const struct ggml_tensor * src0,
  5642. const struct ggml_tensor * src1,
  5643. struct ggml_tensor * dst) {
  5644. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5646. return;
  5647. }
  5648. const int ith = params->ith;
  5649. const int nth = params->nth;
  5650. const int n = ggml_nrows(src0);
  5651. const int nc = src0->ne[0];
  5652. const size_t nb00 = src0->nb[0];
  5653. const size_t nb01 = src0->nb[1];
  5654. const size_t nb10 = src1->nb[0];
  5655. const size_t nb11 = src1->nb[1];
  5656. const size_t nb0 = dst->nb[0];
  5657. const size_t nb1 = dst->nb[1];
  5658. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5659. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5660. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5661. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5662. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5663. if (nb10 == sizeof(ggml_fp16_t)) {
  5664. for (int j = ith; j < n; j += nth) {
  5665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5666. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5667. for (int i = 0; i < nc; i++) {
  5668. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5669. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5670. }
  5671. }
  5672. }
  5673. else {
  5674. // src1 is not contiguous
  5675. GGML_ASSERT(false);
  5676. }
  5677. }
  5678. static void ggml_compute_forward_add_q_f32(
  5679. const struct ggml_compute_params * params,
  5680. const struct ggml_tensor * src0,
  5681. const struct ggml_tensor * src1,
  5682. struct ggml_tensor * dst) {
  5683. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5685. return;
  5686. }
  5687. const int64_t ne00 = src0->ne[0];
  5688. const int64_t ne01 = src0->ne[1];
  5689. const int64_t ne02 = src0->ne[2];
  5690. const int64_t ne03 = src0->ne[3];
  5691. //const int64_t ne10 = src1->ne[0];
  5692. //const int64_t ne11 = src1->ne[1];
  5693. const int64_t ne12 = src1->ne[2];
  5694. const int64_t ne13 = src1->ne[3];
  5695. //const int64_t ne0 = dst->ne[0];
  5696. //const int64_t ne1 = dst->ne[1];
  5697. const int64_t ne2 = dst->ne[2];
  5698. const int64_t ne3 = dst->ne[3];
  5699. const int nb00 = src0->nb[0];
  5700. const int nb01 = src0->nb[1];
  5701. const int nb02 = src0->nb[2];
  5702. const int nb03 = src0->nb[3];
  5703. const int nb10 = src1->nb[0];
  5704. const int nb11 = src1->nb[1];
  5705. const int nb12 = src1->nb[2];
  5706. const int nb13 = src1->nb[3];
  5707. const int nb0 = dst->nb[0];
  5708. const int nb1 = dst->nb[1];
  5709. const int nb2 = dst->nb[2];
  5710. const int nb3 = dst->nb[3];
  5711. const int ith = params->ith;
  5712. const int nth = params->nth;
  5713. GGML_ASSERT(ne02 == ne12);
  5714. GGML_ASSERT(ne03 == ne13);
  5715. GGML_ASSERT(ne2 == ne12);
  5716. GGML_ASSERT(ne3 == ne13);
  5717. const enum ggml_type type = src0->type;
  5718. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5719. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5720. // we don't support permuted src0 or src1
  5721. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5722. GGML_ASSERT(nb10 == sizeof(float));
  5723. // dst cannot be transposed or permuted
  5724. GGML_ASSERT(nb0 <= nb1);
  5725. GGML_ASSERT(nb1 <= nb2);
  5726. GGML_ASSERT(nb2 <= nb3);
  5727. GGML_ASSERT(ggml_is_quantized(src0->type));
  5728. GGML_ASSERT(dst->type == src0->type);
  5729. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5730. // total rows in src0
  5731. const int nr = ne01*ne02*ne03;
  5732. // rows per thread
  5733. const int dr = (nr + nth - 1)/nth;
  5734. // row range for this thread
  5735. const int ir0 = dr*ith;
  5736. const int ir1 = MIN(ir0 + dr, nr);
  5737. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5738. for (int ir = ir0; ir < ir1; ++ir) {
  5739. // src0 indices
  5740. const int i03 = ir/(ne02*ne01);
  5741. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5742. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5743. // src1 and dst are same shape as src0 => same indices
  5744. const int i13 = i03;
  5745. const int i12 = i02;
  5746. const int i11 = i01;
  5747. const int i3 = i03;
  5748. const int i2 = i02;
  5749. const int i1 = i01;
  5750. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5751. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5752. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5753. assert(ne00 % 32 == 0);
  5754. // unquantize row from src0 to temp buffer
  5755. dequantize_row_q(src0_row, wdata, ne00);
  5756. // add src1
  5757. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5758. // quantize row to dst
  5759. quantize_row_q(wdata, dst_row, ne00);
  5760. }
  5761. }
  5762. static void ggml_compute_forward_add(
  5763. const struct ggml_compute_params * params,
  5764. const struct ggml_tensor * src0,
  5765. const struct ggml_tensor * src1,
  5766. struct ggml_tensor * dst) {
  5767. switch (src0->type) {
  5768. case GGML_TYPE_F32:
  5769. {
  5770. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5771. } break;
  5772. case GGML_TYPE_F16:
  5773. {
  5774. if (src1->type == GGML_TYPE_F16) {
  5775. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5776. }
  5777. else if (src1->type == GGML_TYPE_F32) {
  5778. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5779. }
  5780. else {
  5781. GGML_ASSERT(false);
  5782. }
  5783. } break;
  5784. case GGML_TYPE_Q4_0:
  5785. case GGML_TYPE_Q4_1:
  5786. case GGML_TYPE_Q4_2:
  5787. case GGML_TYPE_Q5_0:
  5788. case GGML_TYPE_Q5_1:
  5789. case GGML_TYPE_Q8_0:
  5790. {
  5791. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5792. } break;
  5793. default:
  5794. {
  5795. GGML_ASSERT(false);
  5796. } break;
  5797. }
  5798. }
  5799. // ggml_compute_forward_sub
  5800. static void ggml_compute_forward_sub_f32(
  5801. const struct ggml_compute_params * params,
  5802. const struct ggml_tensor * src0,
  5803. const struct ggml_tensor * src1,
  5804. struct ggml_tensor * dst) {
  5805. assert(params->ith == 0);
  5806. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5808. return;
  5809. }
  5810. const int n = ggml_nrows(src0);
  5811. const int nc = src0->ne[0];
  5812. assert( dst->nb[0] == sizeof(float));
  5813. assert(src0->nb[0] == sizeof(float));
  5814. assert(src1->nb[0] == sizeof(float));
  5815. for (int i = 0; i < n; i++) {
  5816. ggml_vec_sub_f32(nc,
  5817. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5818. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5819. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5820. }
  5821. }
  5822. static void ggml_compute_forward_sub(
  5823. const struct ggml_compute_params * params,
  5824. const struct ggml_tensor * src0,
  5825. const struct ggml_tensor * src1,
  5826. struct ggml_tensor * dst) {
  5827. switch (src0->type) {
  5828. case GGML_TYPE_F32:
  5829. {
  5830. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5831. } break;
  5832. default:
  5833. {
  5834. GGML_ASSERT(false);
  5835. } break;
  5836. }
  5837. }
  5838. // ggml_compute_forward_mul
  5839. static void ggml_compute_forward_mul_f32(
  5840. const struct ggml_compute_params * params,
  5841. const struct ggml_tensor * src0,
  5842. const struct ggml_tensor * src1,
  5843. struct ggml_tensor * dst) {
  5844. assert(params->ith == 0);
  5845. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5847. return;
  5848. }
  5849. const int n = ggml_nrows(src0);
  5850. const int nc = src0->ne[0];
  5851. assert( dst->nb[0] == sizeof(float));
  5852. assert(src0->nb[0] == sizeof(float));
  5853. assert(src1->nb[0] == sizeof(float));
  5854. for (int i = 0; i < n; i++) {
  5855. ggml_vec_mul_f32(nc,
  5856. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5857. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5858. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5859. }
  5860. }
  5861. static void ggml_compute_forward_mul(
  5862. const struct ggml_compute_params * params,
  5863. const struct ggml_tensor * src0,
  5864. const struct ggml_tensor * src1,
  5865. struct ggml_tensor * dst) {
  5866. switch (src0->type) {
  5867. case GGML_TYPE_F32:
  5868. {
  5869. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5870. } break;
  5871. default:
  5872. {
  5873. GGML_ASSERT(false);
  5874. } break;
  5875. }
  5876. }
  5877. // ggml_compute_forward_div
  5878. static void ggml_compute_forward_div_f32(
  5879. const struct ggml_compute_params * params,
  5880. const struct ggml_tensor * src0,
  5881. const struct ggml_tensor * src1,
  5882. struct ggml_tensor * dst) {
  5883. assert(params->ith == 0);
  5884. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5886. return;
  5887. }
  5888. const int n = ggml_nrows(src0);
  5889. const int nc = src0->ne[0];
  5890. assert( dst->nb[0] == sizeof(float));
  5891. assert(src0->nb[0] == sizeof(float));
  5892. assert(src1->nb[0] == sizeof(float));
  5893. for (int i = 0; i < n; i++) {
  5894. ggml_vec_div_f32(nc,
  5895. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5896. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5897. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5898. }
  5899. }
  5900. static void ggml_compute_forward_div(
  5901. const struct ggml_compute_params * params,
  5902. const struct ggml_tensor * src0,
  5903. const struct ggml_tensor * src1,
  5904. struct ggml_tensor * dst) {
  5905. switch (src0->type) {
  5906. case GGML_TYPE_F32:
  5907. {
  5908. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5909. } break;
  5910. default:
  5911. {
  5912. GGML_ASSERT(false);
  5913. } break;
  5914. }
  5915. }
  5916. // ggml_compute_forward_sqr
  5917. static void ggml_compute_forward_sqr_f32(
  5918. const struct ggml_compute_params * params,
  5919. const struct ggml_tensor * src0,
  5920. struct ggml_tensor * dst) {
  5921. assert(params->ith == 0);
  5922. assert(ggml_are_same_shape(src0, dst));
  5923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5924. return;
  5925. }
  5926. const int n = ggml_nrows(src0);
  5927. const int nc = src0->ne[0];
  5928. assert( dst->nb[0] == sizeof(float));
  5929. assert(src0->nb[0] == sizeof(float));
  5930. for (int i = 0; i < n; i++) {
  5931. ggml_vec_sqr_f32(nc,
  5932. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5933. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5934. }
  5935. }
  5936. static void ggml_compute_forward_sqr(
  5937. const struct ggml_compute_params * params,
  5938. const struct ggml_tensor * src0,
  5939. struct ggml_tensor * dst) {
  5940. switch (src0->type) {
  5941. case GGML_TYPE_F32:
  5942. {
  5943. ggml_compute_forward_sqr_f32(params, src0, dst);
  5944. } break;
  5945. default:
  5946. {
  5947. GGML_ASSERT(false);
  5948. } break;
  5949. }
  5950. }
  5951. // ggml_compute_forward_sqrt
  5952. static void ggml_compute_forward_sqrt_f32(
  5953. const struct ggml_compute_params * params,
  5954. const struct ggml_tensor * src0,
  5955. struct ggml_tensor * dst) {
  5956. assert(params->ith == 0);
  5957. assert(ggml_are_same_shape(src0, dst));
  5958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5959. return;
  5960. }
  5961. const int n = ggml_nrows(src0);
  5962. const int nc = src0->ne[0];
  5963. assert( dst->nb[0] == sizeof(float));
  5964. assert(src0->nb[0] == sizeof(float));
  5965. for (int i = 0; i < n; i++) {
  5966. ggml_vec_sqrt_f32(nc,
  5967. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5968. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5969. }
  5970. }
  5971. static void ggml_compute_forward_sqrt(
  5972. const struct ggml_compute_params * params,
  5973. const struct ggml_tensor * src0,
  5974. struct ggml_tensor * dst) {
  5975. switch (src0->type) {
  5976. case GGML_TYPE_F32:
  5977. {
  5978. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5979. } break;
  5980. default:
  5981. {
  5982. GGML_ASSERT(false);
  5983. } break;
  5984. }
  5985. }
  5986. // ggml_compute_forward_sum
  5987. static void ggml_compute_forward_sum_f32(
  5988. const struct ggml_compute_params * params,
  5989. const struct ggml_tensor * src0,
  5990. struct ggml_tensor * dst) {
  5991. assert(params->ith == 0);
  5992. assert(ggml_is_scalar(dst));
  5993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5994. return;
  5995. }
  5996. assert(ggml_is_scalar(dst));
  5997. assert(src0->nb[0] == sizeof(float));
  5998. const int64_t ne00 = src0->ne[0];
  5999. const int64_t ne01 = src0->ne[1];
  6000. const int64_t ne02 = src0->ne[2];
  6001. const int64_t ne03 = src0->ne[3];
  6002. const size_t nb01 = src0->nb[1];
  6003. const size_t nb02 = src0->nb[2];
  6004. const size_t nb03 = src0->nb[3];
  6005. ggml_float sum = 0;
  6006. ggml_float row_sum = 0;
  6007. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6008. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6009. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6010. ggml_vec_sum_ggf(ne00,
  6011. &row_sum,
  6012. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6013. sum += row_sum;
  6014. }
  6015. }
  6016. }
  6017. ((float *) dst->data)[0] = sum;
  6018. }
  6019. static void ggml_compute_forward_sum(
  6020. const struct ggml_compute_params * params,
  6021. const struct ggml_tensor * src0,
  6022. struct ggml_tensor * dst) {
  6023. switch (src0->type) {
  6024. case GGML_TYPE_F32:
  6025. {
  6026. ggml_compute_forward_sum_f32(params, src0, dst);
  6027. } break;
  6028. default:
  6029. {
  6030. GGML_ASSERT(false);
  6031. } break;
  6032. }
  6033. }
  6034. // ggml_compute_forward_mean
  6035. static void ggml_compute_forward_mean_f32(
  6036. const struct ggml_compute_params * params,
  6037. const struct ggml_tensor * src0,
  6038. struct ggml_tensor * dst) {
  6039. assert(params->ith == 0);
  6040. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6041. return;
  6042. }
  6043. assert(src0->nb[0] == sizeof(float));
  6044. const int64_t ne00 = src0->ne[0];
  6045. const int64_t ne01 = src0->ne[1];
  6046. const int64_t ne02 = src0->ne[2];
  6047. const int64_t ne03 = src0->ne[3];
  6048. const size_t nb01 = src0->nb[1];
  6049. const size_t nb02 = src0->nb[2];
  6050. const size_t nb03 = src0->nb[3];
  6051. const int64_t ne0 = dst->ne[0];
  6052. const int64_t ne1 = dst->ne[1];
  6053. const int64_t ne2 = dst->ne[2];
  6054. const int64_t ne3 = dst->ne[3];
  6055. assert(ne0 == 1);
  6056. assert(ne1 == ne01);
  6057. assert(ne2 == ne02);
  6058. assert(ne3 == ne03);
  6059. UNUSED(ne0);
  6060. UNUSED(ne1);
  6061. UNUSED(ne2);
  6062. UNUSED(ne3);
  6063. const size_t nb1 = dst->nb[1];
  6064. const size_t nb2 = dst->nb[2];
  6065. const size_t nb3 = dst->nb[3];
  6066. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6067. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6068. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6069. ggml_vec_sum_f32(ne00,
  6070. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6071. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6072. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6073. }
  6074. }
  6075. }
  6076. }
  6077. static void ggml_compute_forward_mean(
  6078. const struct ggml_compute_params * params,
  6079. const struct ggml_tensor * src0,
  6080. struct ggml_tensor * dst) {
  6081. switch (src0->type) {
  6082. case GGML_TYPE_F32:
  6083. {
  6084. ggml_compute_forward_mean_f32(params, src0, dst);
  6085. } break;
  6086. default:
  6087. {
  6088. GGML_ASSERT(false);
  6089. } break;
  6090. }
  6091. }
  6092. // ggml_compute_forward_repeat
  6093. static void ggml_compute_forward_repeat_f32(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. struct ggml_tensor * dst) {
  6097. assert(params->ith == 0);
  6098. assert(ggml_can_repeat(src0, dst));
  6099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6100. return;
  6101. }
  6102. // TODO: implement support for rank > 2 tensors
  6103. assert(src0->ne[2] == 1);
  6104. assert(src0->ne[3] == 1);
  6105. assert( dst->ne[2] == 1);
  6106. assert( dst->ne[3] == 1);
  6107. const int nc = dst->ne[0];
  6108. const int nr = dst->ne[1];
  6109. const int nc0 = src0->ne[0];
  6110. const int nr0 = src0->ne[1];
  6111. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6112. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6113. // TODO: support for transposed / permuted tensors
  6114. assert( dst->nb[0] == sizeof(float));
  6115. assert(src0->nb[0] == sizeof(float));
  6116. // TODO: maybe this is not optimal?
  6117. for (int i = 0; i < nrr; i++) {
  6118. for (int j = 0; j < ncr; j++) {
  6119. for (int k = 0; k < nr0; k++) {
  6120. ggml_vec_cpy_f32(nc0,
  6121. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6122. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6123. }
  6124. }
  6125. }
  6126. }
  6127. static void ggml_compute_forward_repeat(
  6128. const struct ggml_compute_params * params,
  6129. const struct ggml_tensor * src0,
  6130. struct ggml_tensor * dst) {
  6131. switch (src0->type) {
  6132. case GGML_TYPE_F32:
  6133. {
  6134. ggml_compute_forward_repeat_f32(params, src0, dst);
  6135. } break;
  6136. default:
  6137. {
  6138. GGML_ASSERT(false);
  6139. } break;
  6140. }
  6141. }
  6142. // ggml_compute_forward_abs
  6143. static void ggml_compute_forward_abs_f32(
  6144. const struct ggml_compute_params * params,
  6145. const struct ggml_tensor * src0,
  6146. struct ggml_tensor * dst) {
  6147. assert(params->ith == 0);
  6148. assert(ggml_are_same_shape(src0, dst));
  6149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6150. return;
  6151. }
  6152. const int n = ggml_nrows(src0);
  6153. const int nc = src0->ne[0];
  6154. assert(dst->nb[0] == sizeof(float));
  6155. assert(src0->nb[0] == sizeof(float));
  6156. for (int i = 0; i < n; i++) {
  6157. ggml_vec_abs_f32(nc,
  6158. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6159. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6160. }
  6161. }
  6162. static void ggml_compute_forward_abs(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. struct ggml_tensor * dst) {
  6166. switch (src0->type) {
  6167. case GGML_TYPE_F32:
  6168. {
  6169. ggml_compute_forward_abs_f32(params, src0, dst);
  6170. } break;
  6171. default:
  6172. {
  6173. GGML_ASSERT(false);
  6174. } break;
  6175. }
  6176. }
  6177. // ggml_compute_forward_sgn
  6178. static void ggml_compute_forward_sgn_f32(
  6179. const struct ggml_compute_params * params,
  6180. const struct ggml_tensor * src0,
  6181. struct ggml_tensor * dst) {
  6182. assert(params->ith == 0);
  6183. assert(ggml_are_same_shape(src0, dst));
  6184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6185. return;
  6186. }
  6187. const int n = ggml_nrows(src0);
  6188. const int nc = src0->ne[0];
  6189. assert(dst->nb[0] == sizeof(float));
  6190. assert(src0->nb[0] == sizeof(float));
  6191. for (int i = 0; i < n; i++) {
  6192. ggml_vec_sgn_f32(nc,
  6193. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6194. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6195. }
  6196. }
  6197. static void ggml_compute_forward_sgn(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. struct ggml_tensor * dst) {
  6201. switch (src0->type) {
  6202. case GGML_TYPE_F32:
  6203. {
  6204. ggml_compute_forward_sgn_f32(params, src0, dst);
  6205. } break;
  6206. default:
  6207. {
  6208. GGML_ASSERT(false);
  6209. } break;
  6210. }
  6211. }
  6212. // ggml_compute_forward_neg
  6213. static void ggml_compute_forward_neg_f32(
  6214. const struct ggml_compute_params * params,
  6215. const struct ggml_tensor * src0,
  6216. struct ggml_tensor * dst) {
  6217. assert(params->ith == 0);
  6218. assert(ggml_are_same_shape(src0, dst));
  6219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6220. return;
  6221. }
  6222. const int n = ggml_nrows(src0);
  6223. const int nc = src0->ne[0];
  6224. assert(dst->nb[0] == sizeof(float));
  6225. assert(src0->nb[0] == sizeof(float));
  6226. for (int i = 0; i < n; i++) {
  6227. ggml_vec_neg_f32(nc,
  6228. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6229. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6230. }
  6231. }
  6232. static void ggml_compute_forward_neg(
  6233. const struct ggml_compute_params * params,
  6234. const struct ggml_tensor * src0,
  6235. struct ggml_tensor * dst) {
  6236. switch (src0->type) {
  6237. case GGML_TYPE_F32:
  6238. {
  6239. ggml_compute_forward_neg_f32(params, src0, dst);
  6240. } break;
  6241. default:
  6242. {
  6243. GGML_ASSERT(false);
  6244. } break;
  6245. }
  6246. }
  6247. // ggml_compute_forward_step
  6248. static void ggml_compute_forward_step_f32(
  6249. const struct ggml_compute_params * params,
  6250. const struct ggml_tensor * src0,
  6251. struct ggml_tensor * dst) {
  6252. assert(params->ith == 0);
  6253. assert(ggml_are_same_shape(src0, dst));
  6254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6255. return;
  6256. }
  6257. const int n = ggml_nrows(src0);
  6258. const int nc = src0->ne[0];
  6259. assert(dst->nb[0] == sizeof(float));
  6260. assert(src0->nb[0] == sizeof(float));
  6261. for (int i = 0; i < n; i++) {
  6262. ggml_vec_step_f32(nc,
  6263. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6264. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6265. }
  6266. }
  6267. static void ggml_compute_forward_step(
  6268. const struct ggml_compute_params * params,
  6269. const struct ggml_tensor * src0,
  6270. struct ggml_tensor * dst) {
  6271. switch (src0->type) {
  6272. case GGML_TYPE_F32:
  6273. {
  6274. ggml_compute_forward_step_f32(params, src0, dst);
  6275. } break;
  6276. default:
  6277. {
  6278. GGML_ASSERT(false);
  6279. } break;
  6280. }
  6281. }
  6282. // ggml_compute_forward_relu
  6283. static void ggml_compute_forward_relu_f32(
  6284. const struct ggml_compute_params * params,
  6285. const struct ggml_tensor * src0,
  6286. struct ggml_tensor * dst) {
  6287. assert(params->ith == 0);
  6288. assert(ggml_are_same_shape(src0, dst));
  6289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6290. return;
  6291. }
  6292. const int n = ggml_nrows(src0);
  6293. const int nc = src0->ne[0];
  6294. assert(dst->nb[0] == sizeof(float));
  6295. assert(src0->nb[0] == sizeof(float));
  6296. for (int i = 0; i < n; i++) {
  6297. ggml_vec_relu_f32(nc,
  6298. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6299. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6300. }
  6301. }
  6302. static void ggml_compute_forward_relu(
  6303. const struct ggml_compute_params * params,
  6304. const struct ggml_tensor * src0,
  6305. struct ggml_tensor * dst) {
  6306. switch (src0->type) {
  6307. case GGML_TYPE_F32:
  6308. {
  6309. ggml_compute_forward_relu_f32(params, src0, dst);
  6310. } break;
  6311. default:
  6312. {
  6313. GGML_ASSERT(false);
  6314. } break;
  6315. }
  6316. }
  6317. // ggml_compute_forward_gelu
  6318. static void ggml_compute_forward_gelu_f32(
  6319. const struct ggml_compute_params * params,
  6320. const struct ggml_tensor * src0,
  6321. struct ggml_tensor * dst) {
  6322. GGML_ASSERT(ggml_is_contiguous(src0));
  6323. GGML_ASSERT(ggml_is_contiguous(dst));
  6324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6326. return;
  6327. }
  6328. const int ith = params->ith;
  6329. const int nth = params->nth;
  6330. const int nc = src0->ne[0];
  6331. const int nr = ggml_nrows(src0);
  6332. // rows per thread
  6333. const int dr = (nr + nth - 1)/nth;
  6334. // row range for this thread
  6335. const int ir0 = dr*ith;
  6336. const int ir1 = MIN(ir0 + dr, nr);
  6337. for (int i1 = ir0; i1 < ir1; i1++) {
  6338. ggml_vec_gelu_f32(nc,
  6339. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6340. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6341. #ifndef NDEBUG
  6342. for (int k = 0; k < nc; k++) {
  6343. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6344. UNUSED(x);
  6345. assert(!isnan(x));
  6346. assert(!isinf(x));
  6347. }
  6348. #endif
  6349. }
  6350. }
  6351. static void ggml_compute_forward_gelu(
  6352. const struct ggml_compute_params * params,
  6353. const struct ggml_tensor * src0,
  6354. struct ggml_tensor * dst) {
  6355. switch (src0->type) {
  6356. case GGML_TYPE_F32:
  6357. {
  6358. ggml_compute_forward_gelu_f32(params, src0, dst);
  6359. } break;
  6360. default:
  6361. {
  6362. GGML_ASSERT(false);
  6363. } break;
  6364. }
  6365. //printf("XXXXXXXX gelu\n");
  6366. }
  6367. // ggml_compute_forward_silu
  6368. static void ggml_compute_forward_silu_f32(
  6369. const struct ggml_compute_params * params,
  6370. const struct ggml_tensor * src0,
  6371. struct ggml_tensor * dst) {
  6372. GGML_ASSERT(ggml_is_contiguous(src0));
  6373. GGML_ASSERT(ggml_is_contiguous(dst));
  6374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6376. return;
  6377. }
  6378. const int ith = params->ith;
  6379. const int nth = params->nth;
  6380. const int nc = src0->ne[0];
  6381. const int nr = ggml_nrows(src0);
  6382. // rows per thread
  6383. const int dr = (nr + nth - 1)/nth;
  6384. // row range for this thread
  6385. const int ir0 = dr*ith;
  6386. const int ir1 = MIN(ir0 + dr, nr);
  6387. for (int i1 = ir0; i1 < ir1; i1++) {
  6388. ggml_vec_silu_f32(nc,
  6389. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6390. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6391. #ifndef NDEBUG
  6392. for (int k = 0; k < nc; k++) {
  6393. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6394. UNUSED(x);
  6395. assert(!isnan(x));
  6396. assert(!isinf(x));
  6397. }
  6398. #endif
  6399. }
  6400. }
  6401. static void ggml_compute_forward_silu(
  6402. const struct ggml_compute_params * params,
  6403. const struct ggml_tensor * src0,
  6404. struct ggml_tensor * dst) {
  6405. switch (src0->type) {
  6406. case GGML_TYPE_F32:
  6407. {
  6408. ggml_compute_forward_silu_f32(params, src0, dst);
  6409. } break;
  6410. default:
  6411. {
  6412. GGML_ASSERT(false);
  6413. } break;
  6414. }
  6415. }
  6416. // ggml_compute_forward_norm
  6417. static void ggml_compute_forward_norm_f32(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. struct ggml_tensor * dst) {
  6421. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6423. return;
  6424. }
  6425. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6426. const int ith = params->ith;
  6427. const int nth = params->nth;
  6428. const int64_t ne00 = src0->ne[0];
  6429. const int64_t ne01 = src0->ne[1];
  6430. const int64_t ne02 = src0->ne[2];
  6431. const int64_t ne03 = src0->ne[3];
  6432. const size_t nb01 = src0->nb[1];
  6433. const size_t nb02 = src0->nb[2];
  6434. const size_t nb03 = src0->nb[3];
  6435. const size_t nb1 = dst->nb[1];
  6436. const size_t nb2 = dst->nb[2];
  6437. const size_t nb3 = dst->nb[3];
  6438. const float eps = 1e-5f; // TODO: make this a parameter
  6439. // TODO: optimize
  6440. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6442. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6443. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6444. ggml_float sum = 0.0;
  6445. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6446. sum += (ggml_float)x[i00];
  6447. }
  6448. float mean = sum/ne00;
  6449. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6450. ggml_float sum2 = 0.0;
  6451. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6452. float v = x[i00] - mean;
  6453. y[i00] = v;
  6454. sum2 += (ggml_float)(v*v);
  6455. }
  6456. float variance = sum2/ne00;
  6457. const float scale = 1.0f/sqrtf(variance + eps);
  6458. ggml_vec_scale_f32(ne00, y, scale);
  6459. }
  6460. }
  6461. }
  6462. }
  6463. static void ggml_compute_forward_norm(
  6464. const struct ggml_compute_params * params,
  6465. const struct ggml_tensor * src0,
  6466. struct ggml_tensor * dst) {
  6467. switch (src0->type) {
  6468. case GGML_TYPE_F32:
  6469. {
  6470. ggml_compute_forward_norm_f32(params, src0, dst);
  6471. } break;
  6472. default:
  6473. {
  6474. GGML_ASSERT(false);
  6475. } break;
  6476. }
  6477. }
  6478. static void ggml_compute_forward_rms_norm_f32(
  6479. const struct ggml_compute_params * params,
  6480. const struct ggml_tensor * src0,
  6481. struct ggml_tensor * dst) {
  6482. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6484. return;
  6485. }
  6486. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6487. const int ith = params->ith;
  6488. const int nth = params->nth;
  6489. const int64_t ne00 = src0->ne[0];
  6490. const int64_t ne01 = src0->ne[1];
  6491. const int64_t ne02 = src0->ne[2];
  6492. const int64_t ne03 = src0->ne[3];
  6493. const size_t nb01 = src0->nb[1];
  6494. const size_t nb02 = src0->nb[2];
  6495. const size_t nb03 = src0->nb[3];
  6496. const size_t nb1 = dst->nb[1];
  6497. const size_t nb2 = dst->nb[2];
  6498. const size_t nb3 = dst->nb[3];
  6499. const float eps = 1e-6f; // TODO: make this a parameter
  6500. // TODO: optimize
  6501. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6502. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6503. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6504. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6505. ggml_float sum = 0.0;
  6506. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6507. sum += (ggml_float)(x[i00] * x[i00]);
  6508. }
  6509. float mean = sum/ne00;
  6510. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6511. memcpy(y, x, ne00 * sizeof(float));
  6512. // for (int i00 = 0; i00 < ne00; i00++) {
  6513. // y[i00] = x[i00];
  6514. // }
  6515. const float scale = 1.0f/sqrtf(mean + eps);
  6516. ggml_vec_scale_f32(ne00, y, scale);
  6517. }
  6518. }
  6519. }
  6520. }
  6521. static void ggml_compute_forward_rms_norm(
  6522. const struct ggml_compute_params * params,
  6523. const struct ggml_tensor * src0,
  6524. struct ggml_tensor * dst) {
  6525. switch (src0->type) {
  6526. case GGML_TYPE_F32:
  6527. {
  6528. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6529. } break;
  6530. default:
  6531. {
  6532. GGML_ASSERT(false);
  6533. } break;
  6534. }
  6535. }
  6536. // ggml_compute_forward_mul_mat
  6537. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6538. // helper function to determine if it is better to use BLAS or not
  6539. // for large matrices, BLAS is faster
  6540. static bool ggml_compute_forward_mul_mat_use_blas(
  6541. const struct ggml_tensor * src0,
  6542. const struct ggml_tensor * src1,
  6543. struct ggml_tensor * dst) {
  6544. //const int64_t ne00 = src0->ne[0];
  6545. //const int64_t ne01 = src0->ne[1];
  6546. const int64_t ne10 = src1->ne[0];
  6547. const int64_t ne0 = dst->ne[0];
  6548. const int64_t ne1 = dst->ne[1];
  6549. // TODO: find the optimal values for these
  6550. if (
  6551. #if !defined(GGML_USE_CUBLAS)
  6552. ggml_is_contiguous(src0) &&
  6553. ggml_is_contiguous(src1) &&
  6554. #endif
  6555. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6556. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6557. return true;
  6558. }
  6559. return false;
  6560. }
  6561. #endif
  6562. static void ggml_compute_forward_mul_mat_f32(
  6563. const struct ggml_compute_params * params,
  6564. const struct ggml_tensor * src0,
  6565. const struct ggml_tensor * src1,
  6566. struct ggml_tensor * dst) {
  6567. int64_t t0 = ggml_perf_time_us();
  6568. UNUSED(t0);
  6569. const int64_t ne00 = src0->ne[0];
  6570. const int64_t ne01 = src0->ne[1];
  6571. const int64_t ne02 = src0->ne[2];
  6572. const int64_t ne03 = src0->ne[3];
  6573. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6574. const int64_t ne10 = src1->ne[0];
  6575. #endif
  6576. const int64_t ne11 = src1->ne[1];
  6577. #ifndef NDEBUG
  6578. const int64_t ne12 = src1->ne[2];
  6579. const int64_t ne13 = src1->ne[3];
  6580. const int64_t ne0 = dst->ne[0];
  6581. const int64_t ne1 = dst->ne[1];
  6582. const int64_t ne2 = dst->ne[2];
  6583. const int64_t ne3 = dst->ne[3];
  6584. const int nb00 = src0->nb[0];
  6585. #endif
  6586. const int nb01 = src0->nb[1];
  6587. const int nb02 = src0->nb[2];
  6588. const int nb03 = src0->nb[3];
  6589. #ifndef NDEBUG
  6590. const int nb10 = src1->nb[0];
  6591. #endif
  6592. const int nb11 = src1->nb[1];
  6593. const int nb12 = src1->nb[2];
  6594. const int nb13 = src1->nb[3];
  6595. const int nb0 = dst->nb[0];
  6596. const int nb1 = dst->nb[1];
  6597. const int nb2 = dst->nb[2];
  6598. const int nb3 = dst->nb[3];
  6599. const int ith = params->ith;
  6600. const int nth = params->nth;
  6601. assert(ne02 == ne12);
  6602. assert(ne03 == ne13);
  6603. assert(ne2 == ne12);
  6604. assert(ne3 == ne13);
  6605. // we don't support permuted src0 or src1
  6606. assert(nb00 == sizeof(float));
  6607. assert(nb10 == sizeof(float));
  6608. // dst cannot be transposed or permuted
  6609. assert(nb0 == sizeof(float));
  6610. assert(nb0 <= nb1);
  6611. assert(nb1 <= nb2);
  6612. assert(nb2 <= nb3);
  6613. assert(ne0 == ne01);
  6614. assert(ne1 == ne11);
  6615. assert(ne2 == ne02);
  6616. assert(ne3 == ne03);
  6617. // nb01 >= nb00 - src0 is not transposed
  6618. // compute by src0 rows
  6619. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6620. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6621. if (params->ith != 0) {
  6622. return;
  6623. }
  6624. if (params->type == GGML_TASK_INIT) {
  6625. return;
  6626. }
  6627. if (params->type == GGML_TASK_FINALIZE) {
  6628. return;
  6629. }
  6630. #if defined(GGML_USE_CUBLAS)
  6631. const float alpha = 1.0f;
  6632. const float beta = 0.0f;
  6633. const int x_ne = ne01 * ne00;
  6634. const int y_ne = ne11 * ne10;
  6635. const int d_ne = ne11 * ne01;
  6636. size_t x_size, y_size, d_size;
  6637. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6638. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6639. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6640. #endif
  6641. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6642. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6643. #if !defined(GGML_USE_CUBLAS)
  6644. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6645. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6646. #endif
  6647. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6648. #if defined(GGML_USE_CUBLAS)
  6649. // copy data to device
  6650. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6651. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6652. // compute
  6653. CUBLAS_CHECK(
  6654. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6655. ne01, ne11, ne10,
  6656. &alpha, d_X, ne00,
  6657. d_Y, ne10,
  6658. &beta, d_D, ne01));
  6659. // copy data to host
  6660. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6661. #elif defined(GGML_USE_CLBLAST)
  6662. // zT = y * xT
  6663. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6664. ne11, ne01, ne10,
  6665. 1.0f, y, ne10,
  6666. x, ne10,
  6667. 0.0f, d, ne01,
  6668. GGML_TYPE_F32);
  6669. #else
  6670. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6671. ne11, ne01, ne10,
  6672. 1.0f, y, ne10,
  6673. x, ne00,
  6674. 0.0f, d, ne01);
  6675. #endif
  6676. }
  6677. }
  6678. #if defined(GGML_USE_CUBLAS)
  6679. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6680. ggml_cuda_pool_free(d_X, x_size);
  6681. ggml_cuda_pool_free(d_Y, y_size);
  6682. ggml_cuda_pool_free(d_D, d_size);
  6683. #endif
  6684. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6685. return;
  6686. }
  6687. #endif
  6688. if (params->type == GGML_TASK_INIT) {
  6689. return;
  6690. }
  6691. if (params->type == GGML_TASK_FINALIZE) {
  6692. return;
  6693. }
  6694. // parallelize by src0 rows using ggml_vec_dot_f32
  6695. // total rows in src0
  6696. const int nr = ne01*ne02*ne03;
  6697. // rows per thread
  6698. const int dr = (nr + nth - 1)/nth;
  6699. // row range for this thread
  6700. const int ir0 = dr*ith;
  6701. const int ir1 = MIN(ir0 + dr, nr);
  6702. for (int ir = ir0; ir < ir1; ++ir) {
  6703. // src0 indices
  6704. const int i03 = ir/(ne02*ne01);
  6705. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6706. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6707. for (int64_t ic = 0; ic < ne11; ++ic) {
  6708. // src1 indices
  6709. const int i13 = i03;
  6710. const int i12 = i02;
  6711. const int i11 = ic;
  6712. // dst indices
  6713. const int i0 = i01;
  6714. const int i1 = i11;
  6715. const int i2 = i02;
  6716. const int i3 = i03;
  6717. ggml_vec_dot_f32(ne00,
  6718. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6719. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6720. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6721. }
  6722. }
  6723. //int64_t t1 = ggml_perf_time_us();
  6724. //static int64_t acc = 0;
  6725. //acc += t1 - t0;
  6726. //if (t1 - t0 > 10) {
  6727. // printf("\n");
  6728. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6729. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6730. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6731. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6732. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6733. //}
  6734. }
  6735. static void ggml_compute_forward_mul_mat_f16_f32(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0,
  6738. const struct ggml_tensor * src1,
  6739. struct ggml_tensor * dst) {
  6740. int64_t t0 = ggml_perf_time_us();
  6741. UNUSED(t0);
  6742. const int64_t ne00 = src0->ne[0];
  6743. const int64_t ne01 = src0->ne[1];
  6744. const int64_t ne02 = src0->ne[2];
  6745. const int64_t ne03 = src0->ne[3];
  6746. const int64_t ne10 = src1->ne[0];
  6747. const int64_t ne11 = src1->ne[1];
  6748. const int64_t ne12 = src1->ne[2];
  6749. const int64_t ne13 = src1->ne[3];
  6750. const int64_t ne0 = dst->ne[0];
  6751. const int64_t ne1 = dst->ne[1];
  6752. const int64_t ne2 = dst->ne[2];
  6753. const int64_t ne3 = dst->ne[3];
  6754. //const int64_t ne = ne0*ne1*ne2*ne3;
  6755. const int nb00 = src0->nb[0];
  6756. const int nb01 = src0->nb[1];
  6757. const int nb02 = src0->nb[2];
  6758. const int nb03 = src0->nb[3];
  6759. const int nb10 = src1->nb[0];
  6760. const int nb11 = src1->nb[1];
  6761. const int nb12 = src1->nb[2];
  6762. const int nb13 = src1->nb[3];
  6763. const int nb0 = dst->nb[0];
  6764. const int nb1 = dst->nb[1];
  6765. const int nb2 = dst->nb[2];
  6766. const int nb3 = dst->nb[3];
  6767. const int ith = params->ith;
  6768. const int nth = params->nth;
  6769. GGML_ASSERT(ne02 == ne12);
  6770. GGML_ASSERT(ne03 == ne13);
  6771. GGML_ASSERT(ne2 == ne12);
  6772. GGML_ASSERT(ne3 == ne13);
  6773. // TODO: we don't support permuted src0
  6774. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6775. // dst cannot be transposed or permuted
  6776. GGML_ASSERT(nb0 == sizeof(float));
  6777. GGML_ASSERT(nb0 <= nb1);
  6778. GGML_ASSERT(nb1 <= nb2);
  6779. GGML_ASSERT(nb2 <= nb3);
  6780. GGML_ASSERT(ne0 == ne01);
  6781. GGML_ASSERT(ne1 == ne11);
  6782. GGML_ASSERT(ne2 == ne02);
  6783. GGML_ASSERT(ne3 == ne03);
  6784. // nb01 >= nb00 - src0 is not transposed
  6785. // compute by src0 rows
  6786. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6787. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6788. GGML_ASSERT(nb10 == sizeof(float));
  6789. if (params->ith != 0) {
  6790. return;
  6791. }
  6792. if (params->type == GGML_TASK_INIT) {
  6793. return;
  6794. }
  6795. if (params->type == GGML_TASK_FINALIZE) {
  6796. return;
  6797. }
  6798. #if defined(GGML_USE_CUBLAS)
  6799. const float alpha = 1.0f;
  6800. const float beta = 0.0f;
  6801. const int x_ne = ne01 * ne00;
  6802. const int y_ne = ne11 * ne10;
  6803. const int d_ne = ne11 * ne01;
  6804. size_t x_size, y_size, d_size;
  6805. ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6806. ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6807. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6808. #endif
  6809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6811. #if defined(GGML_USE_CUBLAS)
  6812. // copy src0 while converting src1
  6813. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6814. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6815. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  6816. {
  6817. size_t id = 0;
  6818. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6819. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6820. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6821. }
  6822. }
  6823. assert(id*sizeof(ggml_fp16_t) <= params->wsize);
  6824. }
  6825. #else
  6826. float * const wdata = params->wdata;
  6827. {
  6828. size_t id = 0;
  6829. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6830. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6831. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6832. }
  6833. }
  6834. assert(id*sizeof(float) <= params->wsize);
  6835. }
  6836. #endif
  6837. #if defined(GGML_USE_CUBLAS)
  6838. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6839. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6840. // copy data to device
  6841. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6842. // compute
  6843. CUBLAS_CHECK(
  6844. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6845. ne01, ne11, ne10,
  6846. &alpha, d_X, CUDA_R_16F, ne00,
  6847. d_Y, CUDA_R_16F, ne10,
  6848. &beta, d_D, CUDA_R_32F, ne01,
  6849. CUBLAS_COMPUTE_32F,
  6850. CUBLAS_GEMM_DEFAULT));
  6851. // copy data to host
  6852. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6853. #elif defined(GGML_USE_CLBLAST)
  6854. const float * x = wdata;
  6855. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6856. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6857. // zT = y * xT
  6858. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6859. ne11, ne01, ne10,
  6860. 1.0f, y, ne10,
  6861. x, ne10,
  6862. 0.0f, d, ne01,
  6863. GGML_TYPE_F32);
  6864. #else
  6865. const float * x = wdata;
  6866. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6867. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6868. // zT = y * xT
  6869. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6870. ne11, ne01, ne10,
  6871. 1.0f, y, ne10,
  6872. x, ne00,
  6873. 0.0f, d, ne01);
  6874. #endif
  6875. }
  6876. }
  6877. #if defined(GGML_USE_CUBLAS)
  6878. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6879. ggml_cuda_pool_free(d_X, x_size);
  6880. ggml_cuda_pool_free(d_Y, y_size);
  6881. ggml_cuda_pool_free(d_D, d_size);
  6882. #endif
  6883. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6884. return;
  6885. }
  6886. #endif
  6887. if (params->type == GGML_TASK_INIT) {
  6888. ggml_fp16_t * const wdata = params->wdata;
  6889. size_t id = 0;
  6890. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6891. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6892. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6893. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6894. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6895. }
  6896. }
  6897. }
  6898. }
  6899. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6900. return;
  6901. }
  6902. if (params->type == GGML_TASK_FINALIZE) {
  6903. return;
  6904. }
  6905. // fp16 -> half the size, so divide by 2
  6906. // TODO: do not support transposed src1
  6907. assert(nb10/2 == sizeof(ggml_fp16_t));
  6908. // parallelize by src0 rows using ggml_vec_dot_f16
  6909. // total rows in src0
  6910. const int nr = ne01*ne02*ne03;
  6911. // rows per thread
  6912. const int dr = (nr + nth - 1)/nth;
  6913. // row range for this thread
  6914. const int ir0 = dr*ith;
  6915. const int ir1 = MIN(ir0 + dr, nr);
  6916. ggml_fp16_t * wdata = params->wdata;
  6917. for (int ir = ir0; ir < ir1; ++ir) {
  6918. // src0 indices
  6919. const int i03 = ir/(ne02*ne01);
  6920. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6921. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6922. const int i13 = i03;
  6923. const int i12 = i02;
  6924. const int i0 = i01;
  6925. const int i2 = i02;
  6926. const int i3 = i03;
  6927. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6928. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6929. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6930. for (int64_t ic = 0; ic < ne11; ++ic) {
  6931. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6932. }
  6933. }
  6934. //int64_t t1 = ggml_time_us();
  6935. //static int64_t acc = 0;
  6936. //acc += t1 - t0;
  6937. //if (t1 - t0 > 10) {
  6938. // printf("\n");
  6939. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6940. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6941. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6942. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6943. //}
  6944. }
  6945. static void ggml_compute_forward_mul_mat_q_f32(
  6946. const struct ggml_compute_params * params,
  6947. const struct ggml_tensor * src0,
  6948. const struct ggml_tensor * src1,
  6949. struct ggml_tensor * dst) {
  6950. int64_t t0 = ggml_perf_time_us();
  6951. UNUSED(t0);
  6952. const int64_t ne00 = src0->ne[0];
  6953. const int64_t ne01 = src0->ne[1];
  6954. const int64_t ne02 = src0->ne[2];
  6955. const int64_t ne03 = src0->ne[3];
  6956. const int64_t ne10 = src1->ne[0];
  6957. const int64_t ne11 = src1->ne[1];
  6958. const int64_t ne12 = src1->ne[2];
  6959. const int64_t ne13 = src1->ne[3];
  6960. const int64_t ne0 = dst->ne[0];
  6961. const int64_t ne1 = dst->ne[1];
  6962. const int64_t ne2 = dst->ne[2];
  6963. const int64_t ne3 = dst->ne[3];
  6964. const int nb00 = src0->nb[0];
  6965. const int nb01 = src0->nb[1];
  6966. const int nb02 = src0->nb[2];
  6967. const int nb03 = src0->nb[3];
  6968. const int nb10 = src1->nb[0];
  6969. const int nb11 = src1->nb[1];
  6970. const int nb12 = src1->nb[2];
  6971. const int nb13 = src1->nb[3];
  6972. const int nb0 = dst->nb[0];
  6973. const int nb1 = dst->nb[1];
  6974. const int nb2 = dst->nb[2];
  6975. const int nb3 = dst->nb[3];
  6976. const int ith = params->ith;
  6977. const int nth = params->nth;
  6978. GGML_ASSERT(ne02 == ne12);
  6979. GGML_ASSERT(ne03 == ne13);
  6980. GGML_ASSERT(ne2 == ne12);
  6981. GGML_ASSERT(ne3 == ne13);
  6982. const enum ggml_type type = src0->type;
  6983. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6984. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6985. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6986. // we don't support permuted src0 or src1
  6987. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6988. GGML_ASSERT(nb10 == sizeof(float));
  6989. // dst cannot be transposed or permuted
  6990. GGML_ASSERT(nb0 == sizeof(float));
  6991. GGML_ASSERT(nb0 <= nb1);
  6992. GGML_ASSERT(nb1 <= nb2);
  6993. GGML_ASSERT(nb2 <= nb3);
  6994. GGML_ASSERT(ne0 == ne01);
  6995. GGML_ASSERT(ne1 == ne11);
  6996. GGML_ASSERT(ne2 == ne02);
  6997. GGML_ASSERT(ne3 == ne03);
  6998. // nb01 >= nb00 - src0 is not transposed
  6999. // compute by src0 rows
  7000. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  7001. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7002. if (params->ith != 0) {
  7003. return;
  7004. }
  7005. if (params->type == GGML_TASK_INIT) {
  7006. return;
  7007. }
  7008. if (params->type == GGML_TASK_FINALIZE) {
  7009. return;
  7010. }
  7011. #if defined(GGML_USE_CUBLAS)
  7012. const float alpha = 1.0f;
  7013. const float beta = 0.0f;
  7014. const int x_ne = ne01 * ne00;
  7015. const int y_ne = ne11 * ne10;
  7016. const int d_ne = ne11 * ne01;
  7017. size_t x_size, y_size, d_size, q_size;
  7018. float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  7019. float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  7020. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  7021. void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  7022. const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
  7023. GGML_ASSERT(dequantize_row_q_cuda != NULL);
  7024. #else
  7025. float * const wdata = params->wdata;
  7026. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7027. #endif
  7028. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7029. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7030. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7031. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7032. #if defined(GGML_USE_CUBLAS)
  7033. // copy and dequantize on device
  7034. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
  7035. dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
  7036. CUDA_CHECK(cudaGetLastError());
  7037. CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
  7038. #elif defined(GGML_USE_CLBLAST)
  7039. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7040. #else
  7041. {
  7042. size_t id = 0;
  7043. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7044. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7045. id += ne00;
  7046. }
  7047. assert(id*sizeof(float) <= params->wsize);
  7048. }
  7049. const float * x = wdata;
  7050. #endif
  7051. #if defined(GGML_USE_CUBLAS)
  7052. // copy data to device
  7053. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  7054. // wait for dequantization
  7055. CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
  7056. // compute
  7057. CUBLAS_CHECK(
  7058. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7059. ne01, ne11, ne10,
  7060. &alpha, d_X, ne00,
  7061. d_Y, ne10,
  7062. &beta, d_D, ne01));
  7063. // copy data to host
  7064. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7065. #elif defined(GGML_USE_CLBLAST)
  7066. // zT = y * xT
  7067. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7068. ne11, ne01, ne10,
  7069. 1.0f, y, ne10,
  7070. x, ne10,
  7071. 0.0f, d, ne01,
  7072. type);
  7073. #else
  7074. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7075. ne11, ne01, ne10,
  7076. 1.0f, y, ne10,
  7077. x, ne00,
  7078. 0.0f, d, ne01);
  7079. #endif
  7080. }
  7081. }
  7082. #if defined(GGML_USE_CUBLAS)
  7083. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7084. ggml_cuda_pool_free(d_X, x_size);
  7085. ggml_cuda_pool_free(d_Y, y_size);
  7086. ggml_cuda_pool_free(d_D, d_size);
  7087. ggml_cuda_pool_free(d_Q, q_size);
  7088. #endif
  7089. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7090. return;
  7091. }
  7092. #endif
  7093. if (params->type == GGML_TASK_INIT) {
  7094. char * wdata = params->wdata;
  7095. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7096. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7097. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7098. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7099. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7100. wdata += row_size;
  7101. }
  7102. }
  7103. }
  7104. return;
  7105. }
  7106. if (params->type == GGML_TASK_FINALIZE) {
  7107. return;
  7108. }
  7109. // parallelize by src0 rows using ggml_vec_dot_q
  7110. // total rows in src0
  7111. const int nr = ne01*ne02*ne03;
  7112. // rows per thread
  7113. const int dr = (nr + nth - 1)/nth;
  7114. // row range for this thread
  7115. const int ir0 = dr*ith;
  7116. const int ir1 = MIN(ir0 + dr, nr);
  7117. void * wdata = params->wdata;
  7118. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7119. for (int ir = ir0; ir < ir1; ++ir) {
  7120. // src0 indices
  7121. const int i03 = ir/(ne02*ne01);
  7122. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7123. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7124. const int i13 = i03;
  7125. const int i12 = i02;
  7126. const int i0 = i01;
  7127. const int i2 = i02;
  7128. const int i3 = i03;
  7129. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7130. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7131. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7132. assert(ne00 % 32 == 0);
  7133. for (int64_t ic = 0; ic < ne11; ++ic) {
  7134. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7135. }
  7136. }
  7137. //int64_t t1 = ggml_time_us();
  7138. //static int64_t acc = 0;
  7139. //acc += t1 - t0;
  7140. //if (t1 - t0 > 10) {
  7141. // printf("\n");
  7142. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7143. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7144. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7145. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7146. //}
  7147. }
  7148. static void ggml_compute_forward_mul_mat(
  7149. const struct ggml_compute_params * params,
  7150. const struct ggml_tensor * src0,
  7151. const struct ggml_tensor * src1,
  7152. struct ggml_tensor * dst) {
  7153. switch (src0->type) {
  7154. case GGML_TYPE_Q4_0:
  7155. case GGML_TYPE_Q4_1:
  7156. case GGML_TYPE_Q4_2:
  7157. case GGML_TYPE_Q5_0:
  7158. case GGML_TYPE_Q5_1:
  7159. case GGML_TYPE_Q8_0:
  7160. case GGML_TYPE_Q8_1:
  7161. {
  7162. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7163. } break;
  7164. case GGML_TYPE_F16:
  7165. {
  7166. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7167. } break;
  7168. case GGML_TYPE_F32:
  7169. {
  7170. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7171. } break;
  7172. default:
  7173. {
  7174. GGML_ASSERT(false);
  7175. } break;
  7176. }
  7177. }
  7178. // ggml_compute_forward_scale
  7179. static void ggml_compute_forward_scale_f32(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * src0,
  7182. const struct ggml_tensor * src1,
  7183. struct ggml_tensor * dst) {
  7184. GGML_ASSERT(ggml_is_contiguous(src0));
  7185. GGML_ASSERT(ggml_is_contiguous(dst));
  7186. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7187. GGML_ASSERT(ggml_is_scalar(src1));
  7188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7189. return;
  7190. }
  7191. // scale factor
  7192. const float v = *(float *) src1->data;
  7193. const int ith = params->ith;
  7194. const int nth = params->nth;
  7195. const int nc = src0->ne[0];
  7196. const int nr = ggml_nrows(src0);
  7197. // rows per thread
  7198. const int dr = (nr + nth - 1)/nth;
  7199. // row range for this thread
  7200. const int ir0 = dr*ith;
  7201. const int ir1 = MIN(ir0 + dr, nr);
  7202. for (int i1 = ir0; i1 < ir1; i1++) {
  7203. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7204. }
  7205. }
  7206. static void ggml_compute_forward_scale(
  7207. const struct ggml_compute_params * params,
  7208. const struct ggml_tensor * src0,
  7209. const struct ggml_tensor * src1,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7215. } break;
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_cpy
  7223. static void ggml_compute_forward_cpy(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. ggml_compute_forward_dup(params, src0, dst);
  7228. }
  7229. // ggml_compute_forward_cont
  7230. static void ggml_compute_forward_cont(
  7231. const struct ggml_compute_params * params,
  7232. const struct ggml_tensor * src0,
  7233. struct ggml_tensor * dst) {
  7234. ggml_compute_forward_dup(params, src0, dst);
  7235. }
  7236. // ggml_compute_forward_reshape
  7237. static void ggml_compute_forward_reshape(
  7238. const struct ggml_compute_params * params,
  7239. const struct ggml_tensor * src0,
  7240. struct ggml_tensor * dst) {
  7241. // NOP
  7242. UNUSED(params);
  7243. UNUSED(src0);
  7244. UNUSED(dst);
  7245. }
  7246. // ggml_compute_forward_view
  7247. static void ggml_compute_forward_view(
  7248. const struct ggml_compute_params * params,
  7249. const struct ggml_tensor * src0) {
  7250. // NOP
  7251. UNUSED(params);
  7252. UNUSED(src0);
  7253. }
  7254. // ggml_compute_forward_permute
  7255. static void ggml_compute_forward_permute(
  7256. const struct ggml_compute_params * params,
  7257. const struct ggml_tensor * src0) {
  7258. // NOP
  7259. UNUSED(params);
  7260. UNUSED(src0);
  7261. }
  7262. // ggml_compute_forward_transpose
  7263. static void ggml_compute_forward_transpose(
  7264. const struct ggml_compute_params * params,
  7265. const struct ggml_tensor * src0) {
  7266. // NOP
  7267. UNUSED(params);
  7268. UNUSED(src0);
  7269. }
  7270. // ggml_compute_forward_get_rows
  7271. static void ggml_compute_forward_get_rows_q(
  7272. const struct ggml_compute_params * params,
  7273. const struct ggml_tensor * src0,
  7274. const struct ggml_tensor * src1,
  7275. struct ggml_tensor * dst) {
  7276. assert(params->ith == 0);
  7277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7278. return;
  7279. }
  7280. const int nc = src0->ne[0];
  7281. const int nr = ggml_nelements(src1);
  7282. const enum ggml_type type = src0->type;
  7283. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7284. assert( dst->ne[0] == nc);
  7285. assert( dst->ne[1] == nr);
  7286. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7287. for (int i = 0; i < nr; ++i) {
  7288. const int r = ((int32_t *) src1->data)[i];
  7289. dequantize_row_q(
  7290. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7291. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7292. }
  7293. }
  7294. static void ggml_compute_forward_get_rows_f16(
  7295. const struct ggml_compute_params * params,
  7296. const struct ggml_tensor * src0,
  7297. const struct ggml_tensor * src1,
  7298. struct ggml_tensor * dst) {
  7299. assert(params->ith == 0);
  7300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7301. return;
  7302. }
  7303. const int nc = src0->ne[0];
  7304. const int nr = ggml_nelements(src1);
  7305. assert( dst->ne[0] == nc);
  7306. assert( dst->ne[1] == nr);
  7307. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7308. for (int i = 0; i < nr; ++i) {
  7309. const int r = ((int32_t *) src1->data)[i];
  7310. for (int j = 0; j < nc; ++j) {
  7311. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7312. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7313. }
  7314. }
  7315. }
  7316. static void ggml_compute_forward_get_rows_f32(
  7317. const struct ggml_compute_params * params,
  7318. const struct ggml_tensor * src0,
  7319. const struct ggml_tensor * src1,
  7320. struct ggml_tensor * dst) {
  7321. assert(params->ith == 0);
  7322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7323. return;
  7324. }
  7325. const int nc = src0->ne[0];
  7326. const int nr = ggml_nelements(src1);
  7327. assert( dst->ne[0] == nc);
  7328. assert( dst->ne[1] == nr);
  7329. assert(src0->nb[0] == sizeof(float));
  7330. for (int i = 0; i < nr; ++i) {
  7331. const int r = ((int32_t *) src1->data)[i];
  7332. ggml_vec_cpy_f32(nc,
  7333. (float *) ((char *) dst->data + i*dst->nb[1]),
  7334. (float *) ((char *) src0->data + r*src0->nb[1]));
  7335. }
  7336. }
  7337. static void ggml_compute_forward_get_rows(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * src1,
  7341. struct ggml_tensor * dst) {
  7342. switch (src0->type) {
  7343. case GGML_TYPE_Q4_0:
  7344. case GGML_TYPE_Q4_1:
  7345. case GGML_TYPE_Q4_2:
  7346. case GGML_TYPE_Q5_0:
  7347. case GGML_TYPE_Q5_1:
  7348. case GGML_TYPE_Q8_0:
  7349. case GGML_TYPE_Q8_1:
  7350. {
  7351. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7352. } break;
  7353. case GGML_TYPE_F16:
  7354. {
  7355. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7356. } break;
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. //static bool first = true;
  7367. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7368. //if (first) {
  7369. // first = false;
  7370. //} else {
  7371. // for (int k = 0; k < dst->ne[1]; ++k) {
  7372. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7373. // for (int i = 0; i < 16; ++i) {
  7374. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7375. // }
  7376. // printf("\n");
  7377. // }
  7378. // printf("\n");
  7379. // }
  7380. // printf("\n");
  7381. // exit(0);
  7382. //}
  7383. }
  7384. // ggml_compute_forward_diag_mask_inf
  7385. static void ggml_compute_forward_diag_mask_inf_f32(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. const struct ggml_tensor * src1,
  7389. struct ggml_tensor * dst) {
  7390. assert(params->ith == 0);
  7391. assert(src1->type == GGML_TYPE_I32);
  7392. assert(ggml_nelements(src1) == 1);
  7393. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7394. return;
  7395. }
  7396. const int n_past = ((int32_t *) src1->data)[0];
  7397. // TODO: handle transposed/permuted matrices
  7398. const int n = ggml_nrows(src0);
  7399. const int nc = src0->ne[0];
  7400. const int nr = src0->ne[1];
  7401. const int nz = n/nr;
  7402. assert( dst->nb[0] == sizeof(float));
  7403. assert(src0->nb[0] == sizeof(float));
  7404. for (int k = 0; k < nz; k++) {
  7405. for (int j = 0; j < nr; j++) {
  7406. for (int i = n_past; i < nc; i++) {
  7407. if (i > n_past + j) {
  7408. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7409. }
  7410. }
  7411. }
  7412. }
  7413. }
  7414. static void ggml_compute_forward_diag_mask_inf(
  7415. const struct ggml_compute_params * params,
  7416. const struct ggml_tensor * src0,
  7417. const struct ggml_tensor * src1,
  7418. struct ggml_tensor * dst) {
  7419. switch (src0->type) {
  7420. case GGML_TYPE_F32:
  7421. {
  7422. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7423. } break;
  7424. default:
  7425. {
  7426. GGML_ASSERT(false);
  7427. } break;
  7428. }
  7429. }
  7430. // ggml_compute_forward_soft_max
  7431. static void ggml_compute_forward_soft_max_f32(
  7432. const struct ggml_compute_params * params,
  7433. const struct ggml_tensor * src0,
  7434. struct ggml_tensor * dst) {
  7435. GGML_ASSERT(ggml_is_contiguous(src0));
  7436. GGML_ASSERT(ggml_is_contiguous(dst));
  7437. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7439. return;
  7440. }
  7441. // TODO: handle transposed/permuted matrices
  7442. const int ith = params->ith;
  7443. const int nth = params->nth;
  7444. const int nc = src0->ne[0];
  7445. const int nr = ggml_nrows(src0);
  7446. // rows per thread
  7447. const int dr = (nr + nth - 1)/nth;
  7448. // row range for this thread
  7449. const int ir0 = dr*ith;
  7450. const int ir1 = MIN(ir0 + dr, nr);
  7451. for (int i1 = ir0; i1 < ir1; i1++) {
  7452. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7453. #ifndef NDEBUG
  7454. for (int i = 0; i < nc; ++i) {
  7455. //printf("p[%d] = %f\n", i, p[i]);
  7456. assert(!isnan(p[i]));
  7457. }
  7458. #endif
  7459. float max = -INFINITY;
  7460. ggml_vec_max_f32(nc, &max, p);
  7461. ggml_float sum = 0.0;
  7462. uint16_t scvt;
  7463. for (int i = 0; i < nc; i++) {
  7464. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7465. if (p[i] == -INFINITY) {
  7466. p[i] = 0.0f;
  7467. } else {
  7468. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7469. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7470. memcpy(&scvt, &s, sizeof(scvt));
  7471. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7472. sum += (ggml_float)val;
  7473. p[i] = val;
  7474. }
  7475. }
  7476. assert(sum > 0.0);
  7477. sum = 1.0/sum;
  7478. ggml_vec_scale_f32(nc, p, sum);
  7479. #ifndef NDEBUG
  7480. for (int i = 0; i < nc; ++i) {
  7481. assert(!isnan(p[i]));
  7482. assert(!isinf(p[i]));
  7483. }
  7484. #endif
  7485. }
  7486. }
  7487. static void ggml_compute_forward_soft_max(
  7488. const struct ggml_compute_params * params,
  7489. const struct ggml_tensor * src0,
  7490. struct ggml_tensor * dst) {
  7491. switch (src0->type) {
  7492. case GGML_TYPE_F32:
  7493. {
  7494. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7495. } break;
  7496. default:
  7497. {
  7498. GGML_ASSERT(false);
  7499. } break;
  7500. }
  7501. }
  7502. // ggml_compute_forward_alibi
  7503. static void ggml_compute_forward_alibi_f32(
  7504. const struct ggml_compute_params * params,
  7505. const struct ggml_tensor * src0,
  7506. const struct ggml_tensor * src1,
  7507. struct ggml_tensor * dst) {
  7508. assert(params->ith == 0);
  7509. assert(src1->type == GGML_TYPE_I32);
  7510. assert(ggml_nelements(src1) == 2);
  7511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7512. return;
  7513. }
  7514. const int n_past = ((int32_t *) src1->data)[0];
  7515. const int n_head = ((int32_t *) src1->data)[1];
  7516. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7517. const int ne1 = src0->ne[1]; // seq_len_without_past
  7518. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7519. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7520. const int n = ggml_nrows(src0);
  7521. const int ne2_ne3 = n/ne1; // ne2*ne3
  7522. const int nb0 = src0->nb[0];
  7523. const int nb1 = src0->nb[1];
  7524. const int nb2 = src0->nb[2];
  7525. //const int nb3 = src0->nb[3];
  7526. assert(nb0 == sizeof(float));
  7527. assert(ne1 + n_past == ne0); (void) n_past;
  7528. // add alibi to src0 (KQ_scaled)
  7529. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7530. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7531. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7532. for (int i = 0; i < ne0; i++) {
  7533. for (int j = 0; j < ne1; j++) {
  7534. for (int k = 0; k < ne2_ne3; k++) {
  7535. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7536. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7537. // TODO: k*nb2 or k*nb3
  7538. float m_k;
  7539. if (k < n_heads_log2_floor) {
  7540. m_k = powf(m0, k + 1);
  7541. } else {
  7542. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7543. }
  7544. pdst[0] = (j+1) * m_k + src[0];
  7545. }
  7546. }
  7547. }
  7548. }
  7549. static void ggml_compute_forward_alibi_f16(
  7550. const struct ggml_compute_params * params,
  7551. const struct ggml_tensor * src0,
  7552. const struct ggml_tensor * src1,
  7553. struct ggml_tensor * dst) {
  7554. assert(params->ith == 0);
  7555. assert(src1->type == GGML_TYPE_I32);
  7556. assert(ggml_nelements(src1) == 2);
  7557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7558. return;
  7559. }
  7560. const int n_past = ((int32_t *) src1->data)[0];
  7561. const int n_head = ((int32_t *) src1->data)[1];
  7562. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7563. const int ne1 = src0->ne[1]; // seq_len_without_past
  7564. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7565. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7566. const int n = ggml_nrows(src0);
  7567. const int ne2_ne3 = n/ne1; // ne2*ne3
  7568. const int nb0 = src0->nb[0];
  7569. const int nb1 = src0->nb[1];
  7570. const int nb2 = src0->nb[2];
  7571. //const int nb3 = src0->nb[3];
  7572. assert(nb0 == sizeof(ggml_fp16_t));
  7573. assert(ne1 + n_past == ne0); (void) n_past;
  7574. // add alibi to src0 (KQ_scaled)
  7575. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7576. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7577. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7578. for (int i = 0; i < ne0; i++) {
  7579. for (int j = 0; j < ne1; j++) {
  7580. for (int k = 0; k < ne2_ne3; k++) {
  7581. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7582. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7583. // TODO: k*nb2 or k*nb3
  7584. float m_k;
  7585. if (k < n_heads_log2_floor) {
  7586. m_k = powf(m0, k + 1);
  7587. } else {
  7588. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7589. }
  7590. // we return F32
  7591. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7592. }
  7593. }
  7594. }
  7595. }
  7596. static void ggml_compute_forward_alibi(
  7597. const struct ggml_compute_params * params,
  7598. const struct ggml_tensor * src0,
  7599. const struct ggml_tensor * src1,
  7600. struct ggml_tensor * dst) {
  7601. switch (src0->type) {
  7602. case GGML_TYPE_F16:
  7603. {
  7604. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7605. } break;
  7606. case GGML_TYPE_F32:
  7607. {
  7608. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7609. } break;
  7610. case GGML_TYPE_Q4_0:
  7611. case GGML_TYPE_Q4_1:
  7612. case GGML_TYPE_Q4_2:
  7613. case GGML_TYPE_Q5_0:
  7614. case GGML_TYPE_Q5_1:
  7615. case GGML_TYPE_Q8_0:
  7616. case GGML_TYPE_Q8_1:
  7617. case GGML_TYPE_I8:
  7618. case GGML_TYPE_I16:
  7619. case GGML_TYPE_I32:
  7620. case GGML_TYPE_COUNT:
  7621. {
  7622. GGML_ASSERT(false);
  7623. } break;
  7624. }
  7625. }
  7626. // ggml_compute_forward_rope
  7627. static void ggml_compute_forward_rope_f32(
  7628. const struct ggml_compute_params * params,
  7629. const struct ggml_tensor * src0,
  7630. const struct ggml_tensor * src1,
  7631. struct ggml_tensor * dst) {
  7632. assert(src1->type == GGML_TYPE_I32);
  7633. assert(ggml_nelements(src1) == 3);
  7634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7635. return;
  7636. }
  7637. const int n_past = ((int32_t *) src1->data)[0];
  7638. const int n_dims = ((int32_t *) src1->data)[1];
  7639. const int mode = ((int32_t *) src1->data)[2];
  7640. //const int64_t ne0 = src0->ne[0];
  7641. const int64_t ne1 = src0->ne[1];
  7642. const int64_t ne2 = src0->ne[2];
  7643. const int64_t ne3 = src0->ne[3];
  7644. const int nb0 = src0->nb[0];
  7645. const int nb1 = src0->nb[1];
  7646. const int nb2 = src0->nb[2];
  7647. const int nb3 = src0->nb[3];
  7648. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7649. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7650. assert(nb0 == sizeof(float));
  7651. const int ith = params->ith;
  7652. const int nth = params->nth;
  7653. const int nr = ggml_nrows(src0);
  7654. // rows per thread
  7655. const int dr = (nr + nth - 1)/nth;
  7656. // row range for this thread
  7657. const int ir0 = dr*ith;
  7658. const int ir1 = MIN(ir0 + dr, nr);
  7659. // row index used to determine which thread to use
  7660. int ir = 0;
  7661. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7662. const bool is_neox = mode & 2;
  7663. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7664. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7665. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7666. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7667. if (ir++ < ir0) continue;
  7668. if (ir > ir1) break;
  7669. float theta = (float)p;
  7670. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7671. const float cos_theta = cosf(theta);
  7672. const float sin_theta = sinf(theta);
  7673. theta *= theta_scale;
  7674. if (!is_neox) {
  7675. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7676. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7677. const float x0 = src[0];
  7678. const float x1 = src[1];
  7679. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7680. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7681. } else {
  7682. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7683. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7684. const float x0 = src[0];
  7685. const float x1 = src[n_dims/2];
  7686. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7687. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7688. }
  7689. }
  7690. }
  7691. }
  7692. }
  7693. }
  7694. static void ggml_compute_forward_rope_f16(
  7695. const struct ggml_compute_params * params,
  7696. const struct ggml_tensor * src0,
  7697. const struct ggml_tensor * src1,
  7698. struct ggml_tensor * dst) {
  7699. assert(src1->type == GGML_TYPE_I32);
  7700. assert(ggml_nelements(src1) == 3);
  7701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7702. return;
  7703. }
  7704. const int n_past = ((int32_t *) src1->data)[0];
  7705. const int n_dims = ((int32_t *) src1->data)[1];
  7706. const int mode = ((int32_t *) src1->data)[2];
  7707. //const int64_t ne0 = src0->ne[0];
  7708. const int64_t ne1 = src0->ne[1];
  7709. const int64_t ne2 = src0->ne[2];
  7710. const int64_t ne3 = src0->ne[3];
  7711. const int nb0 = src0->nb[0];
  7712. const int nb1 = src0->nb[1];
  7713. const int nb2 = src0->nb[2];
  7714. const int nb3 = src0->nb[3];
  7715. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7716. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7717. assert(nb0 == sizeof(ggml_fp16_t));
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. const int nr = ggml_nrows(src0);
  7721. // rows per thread
  7722. const int dr = (nr + nth - 1)/nth;
  7723. // row range for this thread
  7724. const int ir0 = dr*ith;
  7725. const int ir1 = MIN(ir0 + dr, nr);
  7726. // row index used to determine which thread to use
  7727. int ir = 0;
  7728. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7729. const bool is_neox = mode & 2;
  7730. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7731. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7732. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7733. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7734. if (ir++ < ir0) continue;
  7735. if (ir > ir1) break;
  7736. float theta = (float)p;
  7737. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7738. const float cos_theta = cosf(theta);
  7739. const float sin_theta = sinf(theta);
  7740. theta *= theta_scale;
  7741. if (!is_neox) {
  7742. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7743. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7744. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7745. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7746. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7747. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7748. } else {
  7749. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7750. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7751. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7752. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7753. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7754. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7755. }
  7756. }
  7757. }
  7758. }
  7759. }
  7760. }
  7761. static void ggml_compute_forward_rope(
  7762. const struct ggml_compute_params * params,
  7763. const struct ggml_tensor * src0,
  7764. const struct ggml_tensor * src1,
  7765. struct ggml_tensor * dst) {
  7766. switch (src0->type) {
  7767. case GGML_TYPE_F16:
  7768. {
  7769. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7770. } break;
  7771. case GGML_TYPE_F32:
  7772. {
  7773. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7774. } break;
  7775. default:
  7776. {
  7777. GGML_ASSERT(false);
  7778. } break;
  7779. }
  7780. }
  7781. // ggml_compute_forward_conv_1d_1s
  7782. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7783. const struct ggml_compute_params * params,
  7784. const struct ggml_tensor * src0,
  7785. const struct ggml_tensor * src1,
  7786. struct ggml_tensor * dst) {
  7787. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7788. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7789. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7790. int64_t t0 = ggml_perf_time_us();
  7791. UNUSED(t0);
  7792. const int64_t ne00 = src0->ne[0];
  7793. const int64_t ne01 = src0->ne[1];
  7794. const int64_t ne02 = src0->ne[2];
  7795. //const int64_t ne03 = src0->ne[3];
  7796. const int64_t ne10 = src1->ne[0];
  7797. const int64_t ne11 = src1->ne[1];
  7798. //const int64_t ne12 = src1->ne[2];
  7799. //const int64_t ne13 = src1->ne[3];
  7800. //const int64_t ne0 = dst->ne[0];
  7801. //const int64_t ne1 = dst->ne[1];
  7802. //const int64_t ne2 = dst->ne[2];
  7803. //const int64_t ne3 = dst->ne[3];
  7804. //const int64_t ne = ne0*ne1*ne2*ne3;
  7805. const int nb00 = src0->nb[0];
  7806. const int nb01 = src0->nb[1];
  7807. const int nb02 = src0->nb[2];
  7808. //const int nb03 = src0->nb[3];
  7809. const int nb10 = src1->nb[0];
  7810. const int nb11 = src1->nb[1];
  7811. //const int nb12 = src1->nb[2];
  7812. //const int nb13 = src1->nb[3];
  7813. //const int nb0 = dst->nb[0];
  7814. const int nb1 = dst->nb[1];
  7815. //const int nb2 = dst->nb[2];
  7816. //const int nb3 = dst->nb[3];
  7817. const int ith = params->ith;
  7818. const int nth = params->nth;
  7819. const int nk = ne00;
  7820. const int nh = nk/2;
  7821. const int ew0 = ggml_up32(ne01);
  7822. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7823. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7824. GGML_ASSERT(nb10 == sizeof(float));
  7825. if (params->type == GGML_TASK_INIT) {
  7826. // TODO: fix this memset (wsize is overestimated)
  7827. memset(params->wdata, 0, params->wsize);
  7828. // prepare kernel data (src0)
  7829. {
  7830. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7831. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7832. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7833. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7834. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7836. dst_data[i00*ew0 + i01] = src[i00];
  7837. }
  7838. }
  7839. }
  7840. }
  7841. // prepare source data (src1)
  7842. {
  7843. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7844. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7845. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7846. ggml_fp16_t * dst_data = wdata;
  7847. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7848. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7849. }
  7850. }
  7851. }
  7852. return;
  7853. }
  7854. if (params->type == GGML_TASK_FINALIZE) {
  7855. return;
  7856. }
  7857. // total rows in dst
  7858. const int nr = ne02;
  7859. // rows per thread
  7860. const int dr = (nr + nth - 1)/nth;
  7861. // row range for this thread
  7862. const int ir0 = dr*ith;
  7863. const int ir1 = MIN(ir0 + dr, nr);
  7864. for (int i1 = ir0; i1 < ir1; i1++) {
  7865. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7866. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7867. dst_data[i0] = 0;
  7868. for (int k = -nh; k <= nh; k++) {
  7869. float v = 0.0f;
  7870. ggml_vec_dot_f16(ew0, &v,
  7871. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7872. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7873. dst_data[i0] += v;
  7874. }
  7875. }
  7876. }
  7877. }
  7878. static void ggml_compute_forward_conv_1d_1s_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7884. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7885. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7886. int64_t t0 = ggml_perf_time_us();
  7887. UNUSED(t0);
  7888. const int64_t ne00 = src0->ne[0];
  7889. const int64_t ne01 = src0->ne[1];
  7890. const int64_t ne02 = src0->ne[2];
  7891. //const int64_t ne03 = src0->ne[3];
  7892. const int64_t ne10 = src1->ne[0];
  7893. const int64_t ne11 = src1->ne[1];
  7894. //const int64_t ne12 = src1->ne[2];
  7895. //const int64_t ne13 = src1->ne[3];
  7896. //const int64_t ne0 = dst->ne[0];
  7897. //const int64_t ne1 = dst->ne[1];
  7898. //const int64_t ne2 = dst->ne[2];
  7899. //const int64_t ne3 = dst->ne[3];
  7900. //const int64_t ne = ne0*ne1*ne2*ne3;
  7901. const int nb00 = src0->nb[0];
  7902. const int nb01 = src0->nb[1];
  7903. const int nb02 = src0->nb[2];
  7904. //const int nb03 = src0->nb[3];
  7905. const int nb10 = src1->nb[0];
  7906. const int nb11 = src1->nb[1];
  7907. //const int nb12 = src1->nb[2];
  7908. //const int nb13 = src1->nb[3];
  7909. //const int nb0 = dst->nb[0];
  7910. const int nb1 = dst->nb[1];
  7911. //const int nb2 = dst->nb[2];
  7912. //const int nb3 = dst->nb[3];
  7913. const int ith = params->ith;
  7914. const int nth = params->nth;
  7915. const int nk = ne00;
  7916. const int nh = nk/2;
  7917. const int ew0 = ggml_up32(ne01);
  7918. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7919. GGML_ASSERT(nb00 == sizeof(float));
  7920. GGML_ASSERT(nb10 == sizeof(float));
  7921. if (params->type == GGML_TASK_INIT) {
  7922. // TODO: fix this memset (wsize is overestimated)
  7923. memset(params->wdata, 0, params->wsize);
  7924. // prepare kernel data (src0)
  7925. {
  7926. float * const wdata = (float *) params->wdata + 0;
  7927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7928. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7929. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7930. float * dst_data = wdata + i02*ew0*ne00;
  7931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7932. dst_data[i00*ew0 + i01] = src[i00];
  7933. }
  7934. }
  7935. }
  7936. }
  7937. // prepare source data (src1)
  7938. {
  7939. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7940. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7941. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7942. float * dst_data = wdata;
  7943. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7944. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7945. }
  7946. }
  7947. }
  7948. return;
  7949. }
  7950. if (params->type == GGML_TASK_FINALIZE) {
  7951. return;
  7952. }
  7953. // total rows in dst
  7954. const int nr = ne02;
  7955. // rows per thread
  7956. const int dr = (nr + nth - 1)/nth;
  7957. // row range for this thread
  7958. const int ir0 = dr*ith;
  7959. const int ir1 = MIN(ir0 + dr, nr);
  7960. for (int i1 = ir0; i1 < ir1; i1++) {
  7961. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7962. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7963. dst_data[i0] = 0;
  7964. for (int k = -nh; k <= nh; k++) {
  7965. float v = 0.0f;
  7966. ggml_vec_dot_f32(ew0, &v,
  7967. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7968. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7969. dst_data[i0] += v;
  7970. }
  7971. }
  7972. }
  7973. }
  7974. static void ggml_compute_forward_conv_1d_1s(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. const struct ggml_tensor * src1,
  7978. struct ggml_tensor * dst) {
  7979. switch (src0->type) {
  7980. case GGML_TYPE_F16:
  7981. {
  7982. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7983. } break;
  7984. case GGML_TYPE_F32:
  7985. {
  7986. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7987. } break;
  7988. default:
  7989. {
  7990. GGML_ASSERT(false);
  7991. } break;
  7992. }
  7993. }
  7994. // ggml_compute_forward_conv_1d_2s
  7995. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7996. const struct ggml_compute_params * params,
  7997. const struct ggml_tensor * src0,
  7998. const struct ggml_tensor * src1,
  7999. struct ggml_tensor * dst) {
  8000. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8001. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8002. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8003. int64_t t0 = ggml_perf_time_us();
  8004. UNUSED(t0);
  8005. const int64_t ne00 = src0->ne[0];
  8006. const int64_t ne01 = src0->ne[1];
  8007. const int64_t ne02 = src0->ne[2];
  8008. //const int64_t ne03 = src0->ne[3];
  8009. const int64_t ne10 = src1->ne[0];
  8010. const int64_t ne11 = src1->ne[1];
  8011. //const int64_t ne12 = src1->ne[2];
  8012. //const int64_t ne13 = src1->ne[3];
  8013. //const int64_t ne0 = dst->ne[0];
  8014. //const int64_t ne1 = dst->ne[1];
  8015. //const int64_t ne2 = dst->ne[2];
  8016. //const int64_t ne3 = dst->ne[3];
  8017. //const int64_t ne = ne0*ne1*ne2*ne3;
  8018. const int nb00 = src0->nb[0];
  8019. const int nb01 = src0->nb[1];
  8020. const int nb02 = src0->nb[2];
  8021. //const int nb03 = src0->nb[3];
  8022. const int nb10 = src1->nb[0];
  8023. const int nb11 = src1->nb[1];
  8024. //const int nb12 = src1->nb[2];
  8025. //const int nb13 = src1->nb[3];
  8026. //const int nb0 = dst->nb[0];
  8027. const int nb1 = dst->nb[1];
  8028. //const int nb2 = dst->nb[2];
  8029. //const int nb3 = dst->nb[3];
  8030. const int ith = params->ith;
  8031. const int nth = params->nth;
  8032. const int nk = ne00;
  8033. const int nh = nk/2;
  8034. const int ew0 = ggml_up32(ne01);
  8035. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8036. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8037. GGML_ASSERT(nb10 == sizeof(float));
  8038. if (params->type == GGML_TASK_INIT) {
  8039. // TODO: fix this memset (wsize is overestimated)
  8040. memset(params->wdata, 0, params->wsize);
  8041. // prepare kernel data (src0)
  8042. {
  8043. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8044. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8045. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8046. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  8047. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  8048. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8049. dst_data[i00*ew0 + i01] = src[i00];
  8050. }
  8051. }
  8052. }
  8053. }
  8054. // prepare source data (src1)
  8055. {
  8056. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  8057. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8058. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8059. ggml_fp16_t * dst_data = wdata;
  8060. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8061. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  8062. }
  8063. }
  8064. }
  8065. return;
  8066. }
  8067. if (params->type == GGML_TASK_FINALIZE) {
  8068. return;
  8069. }
  8070. // total rows in dst
  8071. const int nr = ne02;
  8072. // rows per thread
  8073. const int dr = (nr + nth - 1)/nth;
  8074. // row range for this thread
  8075. const int ir0 = dr*ith;
  8076. const int ir1 = MIN(ir0 + dr, nr);
  8077. for (int i1 = ir0; i1 < ir1; i1++) {
  8078. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8079. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8080. dst_data[i0/2] = 0;
  8081. for (int k = -nh; k <= nh; k++) {
  8082. float v = 0.0f;
  8083. ggml_vec_dot_f16(ew0, &v,
  8084. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8085. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8086. dst_data[i0/2] += v;
  8087. }
  8088. }
  8089. }
  8090. }
  8091. static void ggml_compute_forward_conv_1d_2s_f32(
  8092. const struct ggml_compute_params * params,
  8093. const struct ggml_tensor * src0,
  8094. const struct ggml_tensor * src1,
  8095. struct ggml_tensor * dst) {
  8096. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8097. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8098. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8099. int64_t t0 = ggml_perf_time_us();
  8100. UNUSED(t0);
  8101. const int64_t ne00 = src0->ne[0];
  8102. const int64_t ne01 = src0->ne[1];
  8103. const int64_t ne02 = src0->ne[2];
  8104. //const int64_t ne03 = src0->ne[3];
  8105. const int64_t ne10 = src1->ne[0];
  8106. const int64_t ne11 = src1->ne[1];
  8107. //const int64_t ne12 = src1->ne[2];
  8108. //const int64_t ne13 = src1->ne[3];
  8109. //const int64_t ne0 = dst->ne[0];
  8110. //const int64_t ne1 = dst->ne[1];
  8111. //const int64_t ne2 = dst->ne[2];
  8112. //const int64_t ne3 = dst->ne[3];
  8113. //const int64_t ne = ne0*ne1*ne2*ne3;
  8114. const int nb00 = src0->nb[0];
  8115. const int nb01 = src0->nb[1];
  8116. const int nb02 = src0->nb[2];
  8117. //const int nb03 = src0->nb[3];
  8118. const int nb10 = src1->nb[0];
  8119. const int nb11 = src1->nb[1];
  8120. //const int nb12 = src1->nb[2];
  8121. //const int nb13 = src1->nb[3];
  8122. //const int nb0 = dst->nb[0];
  8123. const int nb1 = dst->nb[1];
  8124. //const int nb2 = dst->nb[2];
  8125. //const int nb3 = dst->nb[3];
  8126. const int ith = params->ith;
  8127. const int nth = params->nth;
  8128. const int nk = ne00;
  8129. const int nh = nk/2;
  8130. const int ew0 = ggml_up32(ne01);
  8131. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8132. GGML_ASSERT(nb00 == sizeof(float));
  8133. GGML_ASSERT(nb10 == sizeof(float));
  8134. if (params->type == GGML_TASK_INIT) {
  8135. // TODO: fix this memset (wsize is overestimated)
  8136. memset(params->wdata, 0, params->wsize);
  8137. // prepare kernel data (src0)
  8138. {
  8139. float * const wdata = (float *) params->wdata + 0;
  8140. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8141. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8142. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8143. float * dst_data = wdata + i02*ew0*ne00;
  8144. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8145. dst_data[i00*ew0 + i01] = src[i00];
  8146. }
  8147. }
  8148. }
  8149. }
  8150. // prepare source data (src1)
  8151. {
  8152. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8153. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8154. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8155. float * dst_data = wdata;
  8156. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8157. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8158. }
  8159. }
  8160. }
  8161. return;
  8162. }
  8163. if (params->type == GGML_TASK_FINALIZE) {
  8164. return;
  8165. }
  8166. // total rows in dst
  8167. const int nr = ne02;
  8168. // rows per thread
  8169. const int dr = (nr + nth - 1)/nth;
  8170. // row range for this thread
  8171. const int ir0 = dr*ith;
  8172. const int ir1 = MIN(ir0 + dr, nr);
  8173. for (int i1 = ir0; i1 < ir1; i1++) {
  8174. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8175. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8176. dst_data[i0/2] = 0;
  8177. for (int k = -nh; k <= nh; k++) {
  8178. float v = 0.0f;
  8179. ggml_vec_dot_f32(ew0, &v,
  8180. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8181. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8182. dst_data[i0/2] += v;
  8183. }
  8184. }
  8185. }
  8186. }
  8187. static void ggml_compute_forward_conv_1d_2s(
  8188. const struct ggml_compute_params * params,
  8189. const struct ggml_tensor * src0,
  8190. const struct ggml_tensor * src1,
  8191. struct ggml_tensor * dst) {
  8192. switch (src0->type) {
  8193. case GGML_TYPE_F16:
  8194. {
  8195. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8196. } break;
  8197. case GGML_TYPE_F32:
  8198. {
  8199. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8200. } break;
  8201. default:
  8202. {
  8203. GGML_ASSERT(false);
  8204. } break;
  8205. }
  8206. }
  8207. // ggml_compute_forward_flash_attn
  8208. static void ggml_compute_forward_flash_attn_f32(
  8209. const struct ggml_compute_params * params,
  8210. const struct ggml_tensor * q,
  8211. const struct ggml_tensor * k,
  8212. const struct ggml_tensor * v,
  8213. const bool masked,
  8214. struct ggml_tensor * dst) {
  8215. int64_t t0 = ggml_perf_time_us();
  8216. UNUSED(t0);
  8217. const int64_t neq0 = q->ne[0];
  8218. const int64_t neq1 = q->ne[1];
  8219. const int64_t neq2 = q->ne[2];
  8220. const int64_t neq3 = q->ne[3];
  8221. const int64_t nek0 = k->ne[0];
  8222. const int64_t nek1 = k->ne[1];
  8223. //const int64_t nek2 = k->ne[2];
  8224. //const int64_t nek3 = k->ne[3];
  8225. //const int64_t nev0 = v->ne[0];
  8226. const int64_t nev1 = v->ne[1];
  8227. //const int64_t nev2 = v->ne[2];
  8228. //const int64_t nev3 = v->ne[3];
  8229. const int64_t ne0 = dst->ne[0];
  8230. const int64_t ne1 = dst->ne[1];
  8231. //const int64_t ne2 = dst->ne[2];
  8232. //const int64_t ne3 = dst->ne[3];
  8233. const int nbk0 = k->nb[0];
  8234. const int nbk1 = k->nb[1];
  8235. const int nbk2 = k->nb[2];
  8236. const int nbk3 = k->nb[3];
  8237. const int nbq0 = q->nb[0];
  8238. const int nbq1 = q->nb[1];
  8239. const int nbq2 = q->nb[2];
  8240. const int nbq3 = q->nb[3];
  8241. const int nbv0 = v->nb[0];
  8242. const int nbv1 = v->nb[1];
  8243. const int nbv2 = v->nb[2];
  8244. const int nbv3 = v->nb[3];
  8245. const int nb0 = dst->nb[0];
  8246. const int nb1 = dst->nb[1];
  8247. const int nb2 = dst->nb[2];
  8248. const int nb3 = dst->nb[3];
  8249. const int ith = params->ith;
  8250. const int nth = params->nth;
  8251. const int64_t D = neq0;
  8252. const int64_t N = neq1;
  8253. const int64_t P = nek1 - N;
  8254. const int64_t M = P + N;
  8255. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8256. GGML_ASSERT(ne0 == D);
  8257. GGML_ASSERT(ne1 == N);
  8258. GGML_ASSERT(P >= 0);
  8259. GGML_ASSERT(nbq0 == sizeof(float));
  8260. GGML_ASSERT(nbk0 == sizeof(float));
  8261. GGML_ASSERT(nbv0 == sizeof(float));
  8262. GGML_ASSERT(neq0 == D);
  8263. GGML_ASSERT(nek0 == D);
  8264. GGML_ASSERT(nev1 == D);
  8265. GGML_ASSERT(neq1 == N);
  8266. GGML_ASSERT(nek1 == N + P);
  8267. GGML_ASSERT(nev1 == D);
  8268. // dst cannot be transposed or permuted
  8269. GGML_ASSERT(nb0 == sizeof(float));
  8270. GGML_ASSERT(nb0 <= nb1);
  8271. GGML_ASSERT(nb1 <= nb2);
  8272. GGML_ASSERT(nb2 <= nb3);
  8273. if (params->type == GGML_TASK_INIT) {
  8274. return;
  8275. }
  8276. if (params->type == GGML_TASK_FINALIZE) {
  8277. return;
  8278. }
  8279. // parallelize by q rows using ggml_vec_dot_f32
  8280. // total rows in q
  8281. const int nr = neq1*neq2*neq3;
  8282. // rows per thread
  8283. const int dr = (nr + nth - 1)/nth;
  8284. // row range for this thread
  8285. const int ir0 = dr*ith;
  8286. const int ir1 = MIN(ir0 + dr, nr);
  8287. const float scale = 1.0f/sqrtf(D);
  8288. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8289. for (int ir = ir0; ir < ir1; ++ir) {
  8290. // q indices
  8291. const int iq3 = ir/(neq2*neq1);
  8292. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8293. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8294. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8295. for (int i = M; i < Mup; ++i) {
  8296. S[i] = -INFINITY;
  8297. }
  8298. for (int64_t ic = 0; ic < nek1; ++ic) {
  8299. // k indices
  8300. const int ik3 = iq3;
  8301. const int ik2 = iq2;
  8302. const int ik1 = ic;
  8303. // S indices
  8304. const int i1 = ik1;
  8305. ggml_vec_dot_f32(neq0,
  8306. S + i1,
  8307. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8308. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8309. }
  8310. // scale
  8311. ggml_vec_scale_f32(nek1, S, scale);
  8312. if (masked) {
  8313. for (int64_t i = P; i < M; i++) {
  8314. if (i > P + iq1) {
  8315. S[i] = -INFINITY;
  8316. }
  8317. }
  8318. }
  8319. // softmax
  8320. {
  8321. float max = -INFINITY;
  8322. ggml_vec_max_f32(M, &max, S);
  8323. ggml_float sum = 0.0;
  8324. {
  8325. #ifdef GGML_SOFT_MAX_ACCELERATE
  8326. max = -max;
  8327. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8328. vvexpf(S, S, &Mup);
  8329. ggml_vec_sum_f32(Mup, &sum, S);
  8330. #else
  8331. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8332. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8333. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8334. float * SS = S + i;
  8335. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8336. if (SS[j] == -INFINITY) {
  8337. SS[j] = 0.0f;
  8338. } else {
  8339. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8340. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8341. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8342. sump[j] += (ggml_float)val;
  8343. SS[j] = val;
  8344. }
  8345. }
  8346. }
  8347. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8348. sum += sump[i];
  8349. }
  8350. #endif
  8351. }
  8352. assert(sum > 0.0);
  8353. sum = 1.0/sum;
  8354. ggml_vec_scale_f32(M, S, sum);
  8355. #ifndef NDEBUG
  8356. for (int i = 0; i < M; ++i) {
  8357. assert(!isnan(S[i]));
  8358. assert(!isinf(S[i]));
  8359. }
  8360. #endif
  8361. }
  8362. for (int64_t ic = 0; ic < nev1; ++ic) {
  8363. // dst indices
  8364. const int i1 = iq1;
  8365. const int i2 = iq2;
  8366. const int i3 = iq3;
  8367. ggml_vec_dot_f32(nek1,
  8368. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8369. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8370. S);
  8371. }
  8372. }
  8373. }
  8374. static void ggml_compute_forward_flash_attn_f16(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * q,
  8377. const struct ggml_tensor * k,
  8378. const struct ggml_tensor * v,
  8379. const bool masked,
  8380. struct ggml_tensor * dst) {
  8381. int64_t t0 = ggml_perf_time_us();
  8382. UNUSED(t0);
  8383. const int64_t neq0 = q->ne[0];
  8384. const int64_t neq1 = q->ne[1];
  8385. const int64_t neq2 = q->ne[2];
  8386. const int64_t neq3 = q->ne[3];
  8387. const int64_t nek0 = k->ne[0];
  8388. const int64_t nek1 = k->ne[1];
  8389. //const int64_t nek2 = k->ne[2];
  8390. //const int64_t nek3 = k->ne[3];
  8391. //const int64_t nev0 = v->ne[0];
  8392. const int64_t nev1 = v->ne[1];
  8393. //const int64_t nev2 = v->ne[2];
  8394. //const int64_t nev3 = v->ne[3];
  8395. const int64_t ne0 = dst->ne[0];
  8396. const int64_t ne1 = dst->ne[1];
  8397. //const int64_t ne2 = dst->ne[2];
  8398. //const int64_t ne3 = dst->ne[3];
  8399. const int nbk0 = k->nb[0];
  8400. const int nbk1 = k->nb[1];
  8401. const int nbk2 = k->nb[2];
  8402. const int nbk3 = k->nb[3];
  8403. const int nbq0 = q->nb[0];
  8404. const int nbq1 = q->nb[1];
  8405. const int nbq2 = q->nb[2];
  8406. const int nbq3 = q->nb[3];
  8407. const int nbv0 = v->nb[0];
  8408. const int nbv1 = v->nb[1];
  8409. const int nbv2 = v->nb[2];
  8410. const int nbv3 = v->nb[3];
  8411. const int nb0 = dst->nb[0];
  8412. const int nb1 = dst->nb[1];
  8413. const int nb2 = dst->nb[2];
  8414. const int nb3 = dst->nb[3];
  8415. const int ith = params->ith;
  8416. const int nth = params->nth;
  8417. const int64_t D = neq0;
  8418. const int64_t N = neq1;
  8419. const int64_t P = nek1 - N;
  8420. const int64_t M = P + N;
  8421. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8422. GGML_ASSERT(ne0 == D);
  8423. GGML_ASSERT(ne1 == N);
  8424. GGML_ASSERT(P >= 0);
  8425. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8426. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8427. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8428. GGML_ASSERT(neq0 == D);
  8429. GGML_ASSERT(nek0 == D);
  8430. GGML_ASSERT(nev1 == D);
  8431. GGML_ASSERT(neq1 == N);
  8432. GGML_ASSERT(nek1 == N + P);
  8433. GGML_ASSERT(nev1 == D);
  8434. // dst cannot be transposed or permuted
  8435. GGML_ASSERT(nb0 == sizeof(float));
  8436. GGML_ASSERT(nb0 <= nb1);
  8437. GGML_ASSERT(nb1 <= nb2);
  8438. GGML_ASSERT(nb2 <= nb3);
  8439. if (params->type == GGML_TASK_INIT) {
  8440. return;
  8441. }
  8442. if (params->type == GGML_TASK_FINALIZE) {
  8443. return;
  8444. }
  8445. // parallelize by q rows using ggml_vec_dot_f32
  8446. // total rows in q
  8447. const int nr = neq1*neq2*neq3;
  8448. // rows per thread
  8449. const int dr = (nr + nth - 1)/nth;
  8450. // row range for this thread
  8451. const int ir0 = dr*ith;
  8452. const int ir1 = MIN(ir0 + dr, nr);
  8453. const float scale = 1.0f/sqrtf(D);
  8454. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8455. for (int ir = ir0; ir < ir1; ++ir) {
  8456. // q indices
  8457. const int iq3 = ir/(neq2*neq1);
  8458. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8459. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8460. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8461. for (int i = M; i < Mup; ++i) {
  8462. S[i] = -INFINITY;
  8463. }
  8464. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8465. for (int64_t ic = 0; ic < nek1; ++ic) {
  8466. // k indices
  8467. const int ik3 = iq3;
  8468. const int ik2 = iq2;
  8469. const int ik1 = ic;
  8470. // S indices
  8471. const int i1 = ik1;
  8472. ggml_vec_dot_f16(neq0,
  8473. S + i1,
  8474. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8475. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8476. }
  8477. } else {
  8478. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8479. // k indices
  8480. const int ik3 = iq3;
  8481. const int ik2 = iq2;
  8482. const int ik1 = ic;
  8483. // S indices
  8484. const int i1 = ik1;
  8485. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8486. S + i1,
  8487. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8488. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8489. }
  8490. }
  8491. // scale
  8492. ggml_vec_scale_f32(nek1, S, scale);
  8493. if (masked) {
  8494. for (int64_t i = P; i < M; i++) {
  8495. if (i > P + iq1) {
  8496. S[i] = -INFINITY;
  8497. }
  8498. }
  8499. }
  8500. // softmax
  8501. {
  8502. float max = -INFINITY;
  8503. ggml_vec_max_f32(M, &max, S);
  8504. ggml_float sum = 0.0;
  8505. {
  8506. #ifdef GGML_SOFT_MAX_ACCELERATE
  8507. max = -max;
  8508. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8509. vvexpf(S, S, &Mup);
  8510. ggml_vec_sum_f32(Mup, &sum, S);
  8511. #else
  8512. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8513. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8514. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8515. float * SS = S + i;
  8516. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8517. if (SS[j] == -INFINITY) {
  8518. SS[j] = 0.0f;
  8519. } else {
  8520. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8521. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8522. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8523. sump[j] += (ggml_float)val;
  8524. SS[j] = val;
  8525. }
  8526. }
  8527. }
  8528. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8529. sum += sump[i];
  8530. }
  8531. #endif
  8532. }
  8533. assert(sum > 0.0);
  8534. sum = 1.0/sum;
  8535. ggml_vec_scale_f32(M, S, sum);
  8536. #ifndef NDEBUG
  8537. for (int i = 0; i < M; ++i) {
  8538. assert(!isnan(S[i]));
  8539. assert(!isinf(S[i]));
  8540. }
  8541. #endif
  8542. }
  8543. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8544. for (int64_t i = 0; i < M; i++) {
  8545. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8546. }
  8547. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8548. for (int64_t ic = 0; ic < nev1; ++ic) {
  8549. // dst indices
  8550. const int i1 = iq1;
  8551. const int i2 = iq2;
  8552. const int i3 = iq3;
  8553. ggml_vec_dot_f16(nek1,
  8554. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8555. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8556. S16);
  8557. }
  8558. } else {
  8559. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8560. // dst indices
  8561. const int i1 = iq1;
  8562. const int i2 = iq2;
  8563. const int i3 = iq3;
  8564. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8565. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8566. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8567. S16);
  8568. }
  8569. }
  8570. }
  8571. }
  8572. static void ggml_compute_forward_flash_attn(
  8573. const struct ggml_compute_params * params,
  8574. const struct ggml_tensor * q,
  8575. const struct ggml_tensor * k,
  8576. const struct ggml_tensor * v,
  8577. const bool masked,
  8578. struct ggml_tensor * dst) {
  8579. switch (q->type) {
  8580. case GGML_TYPE_F16:
  8581. {
  8582. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8583. } break;
  8584. case GGML_TYPE_F32:
  8585. {
  8586. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8587. } break;
  8588. default:
  8589. {
  8590. GGML_ASSERT(false);
  8591. } break;
  8592. }
  8593. }
  8594. // ggml_compute_forward_flash_ff
  8595. static void ggml_compute_forward_flash_ff_f16(
  8596. const struct ggml_compute_params * params,
  8597. const struct ggml_tensor * a, // F16
  8598. const struct ggml_tensor * b0, // F16 fc_w
  8599. const struct ggml_tensor * b1, // F32 fc_b
  8600. const struct ggml_tensor * c0, // F16 proj_w
  8601. const struct ggml_tensor * c1, // F32 proj_b
  8602. struct ggml_tensor * dst) {
  8603. int64_t t0 = ggml_perf_time_us();
  8604. UNUSED(t0);
  8605. const int64_t nea0 = a->ne[0];
  8606. const int64_t nea1 = a->ne[1];
  8607. const int64_t nea2 = a->ne[2];
  8608. const int64_t nea3 = a->ne[3];
  8609. const int64_t neb00 = b0->ne[0];
  8610. const int64_t neb01 = b0->ne[1];
  8611. //const int64_t neb02 = b0->ne[2];
  8612. //const int64_t neb03 = b0->ne[3];
  8613. const int64_t neb10 = b1->ne[0];
  8614. const int64_t neb11 = b1->ne[1];
  8615. //const int64_t neb12 = b1->ne[2];
  8616. //const int64_t neb13 = b1->ne[3];
  8617. const int64_t nec00 = c0->ne[0];
  8618. const int64_t nec01 = c0->ne[1];
  8619. //const int64_t nec02 = c0->ne[2];
  8620. //const int64_t nec03 = c0->ne[3];
  8621. const int64_t nec10 = c1->ne[0];
  8622. const int64_t nec11 = c1->ne[1];
  8623. //const int64_t nec12 = c1->ne[2];
  8624. //const int64_t nec13 = c1->ne[3];
  8625. const int64_t ne0 = dst->ne[0];
  8626. const int64_t ne1 = dst->ne[1];
  8627. const int64_t ne2 = dst->ne[2];
  8628. //const int64_t ne3 = dst->ne[3];
  8629. const int nba0 = a->nb[0];
  8630. const int nba1 = a->nb[1];
  8631. const int nba2 = a->nb[2];
  8632. const int nba3 = a->nb[3];
  8633. const int nbb00 = b0->nb[0];
  8634. const int nbb01 = b0->nb[1];
  8635. const int nbb02 = b0->nb[2];
  8636. const int nbb03 = b0->nb[3];
  8637. const int nbb10 = b1->nb[0];
  8638. //const int nbb11 = b1->nb[1];
  8639. //const int nbb12 = b1->nb[2];
  8640. //const int nbb13 = b1->nb[3];
  8641. const int nbc00 = c0->nb[0];
  8642. const int nbc01 = c0->nb[1];
  8643. const int nbc02 = c0->nb[2];
  8644. const int nbc03 = c0->nb[3];
  8645. const int nbc10 = c1->nb[0];
  8646. //const int nbc11 = c1->nb[1];
  8647. //const int nbc12 = c1->nb[2];
  8648. //const int nbc13 = c1->nb[3];
  8649. const int nb0 = dst->nb[0];
  8650. const int nb1 = dst->nb[1];
  8651. const int nb2 = dst->nb[2];
  8652. const int nb3 = dst->nb[3];
  8653. const int ith = params->ith;
  8654. const int nth = params->nth;
  8655. const int64_t D = nea0;
  8656. //const int64_t N = nea1;
  8657. const int64_t M = neb01;
  8658. GGML_ASSERT(ne0 == nea0);
  8659. GGML_ASSERT(ne1 == nea1);
  8660. GGML_ASSERT(ne2 == nea2);
  8661. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8662. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8663. GGML_ASSERT(nbb10 == sizeof(float));
  8664. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8665. GGML_ASSERT(nbc10 == sizeof(float));
  8666. GGML_ASSERT(neb00 == D);
  8667. GGML_ASSERT(neb01 == M);
  8668. GGML_ASSERT(neb10 == M);
  8669. GGML_ASSERT(neb11 == 1);
  8670. GGML_ASSERT(nec00 == M);
  8671. GGML_ASSERT(nec01 == D);
  8672. GGML_ASSERT(nec10 == D);
  8673. GGML_ASSERT(nec11 == 1);
  8674. // dst cannot be transposed or permuted
  8675. GGML_ASSERT(nb0 == sizeof(float));
  8676. GGML_ASSERT(nb0 <= nb1);
  8677. GGML_ASSERT(nb1 <= nb2);
  8678. GGML_ASSERT(nb2 <= nb3);
  8679. if (params->type == GGML_TASK_INIT) {
  8680. return;
  8681. }
  8682. if (params->type == GGML_TASK_FINALIZE) {
  8683. return;
  8684. }
  8685. // parallelize by a rows using ggml_vec_dot_f32
  8686. // total rows in a
  8687. const int nr = nea1*nea2*nea3;
  8688. // rows per thread
  8689. const int dr = (nr + nth - 1)/nth;
  8690. // row range for this thread
  8691. const int ir0 = dr*ith;
  8692. const int ir1 = MIN(ir0 + dr, nr);
  8693. for (int ir = ir0; ir < ir1; ++ir) {
  8694. // a indices
  8695. const int ia3 = ir/(nea2*nea1);
  8696. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8697. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8698. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8699. for (int64_t ic = 0; ic < neb01; ++ic) {
  8700. // b0 indices
  8701. const int ib03 = ia3;
  8702. const int ib02 = ia2;
  8703. const int ib01 = ic;
  8704. // S indices
  8705. const int i1 = ib01;
  8706. ggml_vec_dot_f16(nea0,
  8707. S + i1,
  8708. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8709. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8710. }
  8711. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8712. //ggml_vec_gelu_f32(neb01, S, S);
  8713. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8714. for (int64_t i = 0; i < M; i++) {
  8715. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8716. }
  8717. ggml_vec_gelu_f16(neb01, S16, S16);
  8718. {
  8719. // dst indices
  8720. const int i1 = ia1;
  8721. const int i2 = ia2;
  8722. const int i3 = ia3;
  8723. for (int64_t ic = 0; ic < nec01; ++ic) {
  8724. ggml_vec_dot_f16(neb01,
  8725. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8726. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8727. S16);
  8728. }
  8729. ggml_vec_add_f32(nec01,
  8730. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8731. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8732. (float *) c1->data);
  8733. }
  8734. }
  8735. }
  8736. static void ggml_compute_forward_flash_ff(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * a,
  8739. const struct ggml_tensor * b0,
  8740. const struct ggml_tensor * b1,
  8741. const struct ggml_tensor * c0,
  8742. const struct ggml_tensor * c1,
  8743. struct ggml_tensor * dst) {
  8744. switch (b0->type) {
  8745. case GGML_TYPE_F16:
  8746. {
  8747. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8748. } break;
  8749. case GGML_TYPE_F32:
  8750. {
  8751. GGML_ASSERT(false); // TODO
  8752. } break;
  8753. default:
  8754. {
  8755. GGML_ASSERT(false);
  8756. } break;
  8757. }
  8758. }
  8759. // ggml_compute_forward_map_unary
  8760. static void ggml_compute_forward_map_unary_f32(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0,
  8763. struct ggml_tensor * dst,
  8764. const ggml_unary_op_f32_t fun) {
  8765. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8767. return;
  8768. }
  8769. const int n = ggml_nrows(src0);
  8770. const int nc = src0->ne[0];
  8771. assert( dst->nb[0] == sizeof(float));
  8772. assert(src0->nb[0] == sizeof(float));
  8773. for (int i = 0; i < n; i++) {
  8774. fun(nc,
  8775. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8776. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8777. }
  8778. }
  8779. static void ggml_compute_forward_map_unary(
  8780. const struct ggml_compute_params * params,
  8781. const struct ggml_tensor * src0,
  8782. struct ggml_tensor * dst,
  8783. const ggml_unary_op_f32_t fun) {
  8784. switch (src0->type) {
  8785. case GGML_TYPE_F32:
  8786. {
  8787. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8788. } break;
  8789. default:
  8790. {
  8791. GGML_ASSERT(false);
  8792. } break;
  8793. }
  8794. }
  8795. // ggml_compute_forward_map_binary
  8796. static void ggml_compute_forward_map_binary_f32(
  8797. const struct ggml_compute_params * params,
  8798. const struct ggml_tensor * src0,
  8799. const struct ggml_tensor * src1,
  8800. struct ggml_tensor * dst,
  8801. const ggml_binary_op_f32_t fun) {
  8802. assert(params->ith == 0);
  8803. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8805. return;
  8806. }
  8807. const int n = ggml_nrows(src0);
  8808. const int nc = src0->ne[0];
  8809. assert( dst->nb[0] == sizeof(float));
  8810. assert(src0->nb[0] == sizeof(float));
  8811. assert(src1->nb[0] == sizeof(float));
  8812. for (int i = 0; i < n; i++) {
  8813. fun(nc,
  8814. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8815. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8816. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8817. }
  8818. }
  8819. static void ggml_compute_forward_map_binary(
  8820. const struct ggml_compute_params * params,
  8821. const struct ggml_tensor * src0,
  8822. const struct ggml_tensor * src1,
  8823. struct ggml_tensor * dst,
  8824. const ggml_binary_op_f32_t fun) {
  8825. switch (src0->type) {
  8826. case GGML_TYPE_F32:
  8827. {
  8828. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8829. } break;
  8830. default:
  8831. {
  8832. GGML_ASSERT(false);
  8833. } break;
  8834. }
  8835. }
  8836. /////////////////////////////////
  8837. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8838. GGML_ASSERT(params);
  8839. switch (tensor->op) {
  8840. case GGML_OP_DUP:
  8841. {
  8842. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8843. } break;
  8844. case GGML_OP_ADD:
  8845. {
  8846. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8847. } break;
  8848. case GGML_OP_SUB:
  8849. {
  8850. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8851. } break;
  8852. case GGML_OP_MUL:
  8853. {
  8854. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8855. } break;
  8856. case GGML_OP_DIV:
  8857. {
  8858. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8859. } break;
  8860. case GGML_OP_SQR:
  8861. {
  8862. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8863. } break;
  8864. case GGML_OP_SQRT:
  8865. {
  8866. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8867. } break;
  8868. case GGML_OP_SUM:
  8869. {
  8870. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8871. } break;
  8872. case GGML_OP_MEAN:
  8873. {
  8874. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8875. } break;
  8876. case GGML_OP_REPEAT:
  8877. {
  8878. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8879. } break;
  8880. case GGML_OP_ABS:
  8881. {
  8882. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8883. } break;
  8884. case GGML_OP_SGN:
  8885. {
  8886. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8887. } break;
  8888. case GGML_OP_NEG:
  8889. {
  8890. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8891. } break;
  8892. case GGML_OP_STEP:
  8893. {
  8894. ggml_compute_forward_step(params, tensor->src0, tensor);
  8895. } break;
  8896. case GGML_OP_RELU:
  8897. {
  8898. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8899. } break;
  8900. case GGML_OP_GELU:
  8901. {
  8902. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8903. } break;
  8904. case GGML_OP_SILU:
  8905. {
  8906. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8907. } break;
  8908. case GGML_OP_NORM:
  8909. {
  8910. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8911. } break;
  8912. case GGML_OP_RMS_NORM:
  8913. {
  8914. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8915. } break;
  8916. case GGML_OP_MUL_MAT:
  8917. {
  8918. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8919. } break;
  8920. case GGML_OP_SCALE:
  8921. {
  8922. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8923. } break;
  8924. case GGML_OP_CPY:
  8925. {
  8926. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8927. } break;
  8928. case GGML_OP_CONT:
  8929. {
  8930. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8931. } break;
  8932. case GGML_OP_RESHAPE:
  8933. {
  8934. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8935. } break;
  8936. case GGML_OP_VIEW:
  8937. {
  8938. ggml_compute_forward_view(params, tensor->src0);
  8939. } break;
  8940. case GGML_OP_PERMUTE:
  8941. {
  8942. ggml_compute_forward_permute(params, tensor->src0);
  8943. } break;
  8944. case GGML_OP_TRANSPOSE:
  8945. {
  8946. ggml_compute_forward_transpose(params, tensor->src0);
  8947. } break;
  8948. case GGML_OP_GET_ROWS:
  8949. {
  8950. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8951. } break;
  8952. case GGML_OP_DIAG_MASK_INF:
  8953. {
  8954. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8955. } break;
  8956. case GGML_OP_SOFT_MAX:
  8957. {
  8958. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8959. } break;
  8960. case GGML_OP_ROPE:
  8961. {
  8962. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8963. } break;
  8964. case GGML_OP_ALIBI:
  8965. {
  8966. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8967. } break;
  8968. case GGML_OP_CONV_1D_1S:
  8969. {
  8970. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8971. } break;
  8972. case GGML_OP_CONV_1D_2S:
  8973. {
  8974. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8975. } break;
  8976. case GGML_OP_FLASH_ATTN:
  8977. {
  8978. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8979. GGML_ASSERT(t == 0 || t == 1);
  8980. bool masked = t != 0;
  8981. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8982. } break;
  8983. case GGML_OP_FLASH_FF:
  8984. {
  8985. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8986. } break;
  8987. case GGML_OP_MAP_UNARY:
  8988. {
  8989. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8990. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8991. }
  8992. break;
  8993. case GGML_OP_MAP_BINARY:
  8994. {
  8995. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8996. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8997. }
  8998. break;
  8999. case GGML_OP_NONE:
  9000. {
  9001. // nop
  9002. } break;
  9003. case GGML_OP_COUNT:
  9004. {
  9005. GGML_ASSERT(false);
  9006. } break;
  9007. }
  9008. }
  9009. ////////////////////////////////////////////////////////////////////////////////
  9010. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  9011. struct ggml_tensor * src0 = tensor->src0;
  9012. struct ggml_tensor * src1 = tensor->src1;
  9013. switch (tensor->op) {
  9014. case GGML_OP_DUP:
  9015. {
  9016. if (src0->grad) {
  9017. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9018. }
  9019. } break;
  9020. case GGML_OP_ADD:
  9021. {
  9022. if (src0->grad) {
  9023. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9024. }
  9025. if (src1->grad) {
  9026. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  9027. }
  9028. } break;
  9029. case GGML_OP_SUB:
  9030. {
  9031. if (src0->grad) {
  9032. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9033. }
  9034. if (src1->grad) {
  9035. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  9036. }
  9037. } break;
  9038. case GGML_OP_MUL:
  9039. {
  9040. if (src0->grad) {
  9041. src0->grad =
  9042. ggml_add_impl(ctx,
  9043. src0->grad,
  9044. ggml_mul(ctx, src1, tensor->grad),
  9045. inplace);
  9046. }
  9047. if (src1->grad) {
  9048. src1->grad =
  9049. ggml_add_impl(ctx,
  9050. src1->grad,
  9051. ggml_mul(ctx, src0, tensor->grad),
  9052. inplace);
  9053. }
  9054. } break;
  9055. case GGML_OP_DIV:
  9056. {
  9057. if (src0->grad) {
  9058. src0->grad =
  9059. ggml_add_impl(ctx,
  9060. src0->grad,
  9061. ggml_div(ctx, tensor->grad, src1),
  9062. inplace);
  9063. }
  9064. if (src1->grad) {
  9065. src1->grad =
  9066. ggml_sub_impl(ctx,
  9067. src1->grad,
  9068. ggml_mul(ctx,
  9069. tensor->grad,
  9070. ggml_div(ctx, tensor, src1)),
  9071. inplace);
  9072. }
  9073. } break;
  9074. case GGML_OP_SQR:
  9075. {
  9076. if (src0->grad) {
  9077. src0->grad =
  9078. ggml_add_impl(ctx,
  9079. src0->grad,
  9080. ggml_mul(ctx,
  9081. ggml_mul(ctx, src0, tensor->grad),
  9082. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9083. inplace);
  9084. }
  9085. } break;
  9086. case GGML_OP_SQRT:
  9087. {
  9088. if (src0->grad) {
  9089. src0->grad =
  9090. ggml_add_impl(ctx,
  9091. src0->grad,
  9092. ggml_div(ctx,
  9093. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9094. tensor),
  9095. inplace);
  9096. }
  9097. } break;
  9098. case GGML_OP_SUM:
  9099. {
  9100. if (src0->grad) {
  9101. src0->grad =
  9102. ggml_add_impl(ctx,
  9103. src0->grad,
  9104. ggml_repeat(ctx, tensor->grad, src0->grad),
  9105. inplace);
  9106. }
  9107. } break;
  9108. case GGML_OP_MEAN:
  9109. {
  9110. GGML_ASSERT(false); // TODO: implement
  9111. } break;
  9112. case GGML_OP_REPEAT:
  9113. {
  9114. if (src0->grad) {
  9115. src0->grad =
  9116. ggml_add_impl(ctx,
  9117. src0->grad,
  9118. ggml_sum(ctx, tensor->grad),
  9119. inplace);
  9120. }
  9121. } break;
  9122. case GGML_OP_ABS:
  9123. {
  9124. if (src0->grad) {
  9125. src0->grad =
  9126. ggml_add_impl(ctx,
  9127. src0->grad,
  9128. ggml_mul(ctx,
  9129. ggml_sgn(ctx, src0),
  9130. tensor->grad),
  9131. inplace);
  9132. }
  9133. } break;
  9134. case GGML_OP_SGN:
  9135. {
  9136. if (src0->grad) {
  9137. // noop
  9138. }
  9139. } break;
  9140. case GGML_OP_NEG:
  9141. {
  9142. if (src0->grad) {
  9143. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9144. }
  9145. } break;
  9146. case GGML_OP_STEP:
  9147. {
  9148. if (src0->grad) {
  9149. // noop
  9150. }
  9151. } break;
  9152. case GGML_OP_RELU:
  9153. {
  9154. if (src0->grad) {
  9155. src0->grad = ggml_sub_impl(ctx,
  9156. src0->grad,
  9157. ggml_mul(ctx,
  9158. ggml_step(ctx, src0),
  9159. tensor->grad),
  9160. inplace);
  9161. }
  9162. } break;
  9163. case GGML_OP_GELU:
  9164. {
  9165. GGML_ASSERT(false); // TODO: not implemented
  9166. } break;
  9167. case GGML_OP_ALIBI:
  9168. {
  9169. GGML_ASSERT(false); // TODO: not implemented
  9170. } break;
  9171. case GGML_OP_SILU:
  9172. {
  9173. GGML_ASSERT(false); // TODO: not implemented
  9174. } break;
  9175. case GGML_OP_NORM:
  9176. {
  9177. GGML_ASSERT(false); // TODO: not implemented
  9178. } break;
  9179. case GGML_OP_RMS_NORM:
  9180. {
  9181. GGML_ASSERT(false); // TODO: not implemented
  9182. } break;
  9183. case GGML_OP_MUL_MAT:
  9184. {
  9185. if (src0->grad) {
  9186. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9187. GGML_ASSERT(false);
  9188. }
  9189. if (src1->grad) {
  9190. src1->grad =
  9191. ggml_add_impl(ctx,
  9192. src1->grad,
  9193. ggml_mul_mat(ctx,
  9194. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9195. tensor->grad),
  9196. inplace);
  9197. }
  9198. } break;
  9199. case GGML_OP_SCALE:
  9200. {
  9201. GGML_ASSERT(false); // TODO: not implemented
  9202. } break;
  9203. case GGML_OP_CPY:
  9204. {
  9205. GGML_ASSERT(false); // TODO: not implemented
  9206. } break;
  9207. case GGML_OP_CONT:
  9208. {
  9209. GGML_ASSERT(false); // TODO: not implemented
  9210. } break;
  9211. case GGML_OP_RESHAPE:
  9212. {
  9213. GGML_ASSERT(false); // TODO: not implemented
  9214. } break;
  9215. case GGML_OP_VIEW:
  9216. {
  9217. GGML_ASSERT(false); // not supported
  9218. } break;
  9219. case GGML_OP_PERMUTE:
  9220. {
  9221. GGML_ASSERT(false); // TODO: not implemented
  9222. } break;
  9223. case GGML_OP_TRANSPOSE:
  9224. {
  9225. GGML_ASSERT(false); // TODO: not implemented
  9226. } break;
  9227. case GGML_OP_GET_ROWS:
  9228. {
  9229. GGML_ASSERT(false); // TODO: not implemented
  9230. } break;
  9231. case GGML_OP_DIAG_MASK_INF:
  9232. {
  9233. GGML_ASSERT(false); // TODO: not implemented
  9234. } break;
  9235. case GGML_OP_SOFT_MAX:
  9236. {
  9237. GGML_ASSERT(false); // TODO: not implemented
  9238. } break;
  9239. case GGML_OP_ROPE:
  9240. {
  9241. GGML_ASSERT(false); // TODO: not implemented
  9242. } break;
  9243. case GGML_OP_CONV_1D_1S:
  9244. {
  9245. GGML_ASSERT(false); // TODO: not implemented
  9246. } break;
  9247. case GGML_OP_CONV_1D_2S:
  9248. {
  9249. GGML_ASSERT(false); // TODO: not implemented
  9250. } break;
  9251. case GGML_OP_FLASH_ATTN:
  9252. {
  9253. GGML_ASSERT(false); // not supported
  9254. } break;
  9255. case GGML_OP_FLASH_FF:
  9256. {
  9257. GGML_ASSERT(false); // not supported
  9258. } break;
  9259. case GGML_OP_MAP_UNARY:
  9260. case GGML_OP_MAP_BINARY:
  9261. {
  9262. GGML_ASSERT(false); // not supported
  9263. } break;
  9264. case GGML_OP_NONE:
  9265. {
  9266. // nop
  9267. } break;
  9268. case GGML_OP_COUNT:
  9269. {
  9270. GGML_ASSERT(false);
  9271. } break;
  9272. }
  9273. }
  9274. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9275. if (node->grad == NULL) {
  9276. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9277. // it can also happen during forward pass, if the user performs computations with constants
  9278. if (node->op != GGML_OP_NONE) {
  9279. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9280. }
  9281. }
  9282. // check if already visited
  9283. for (int i = 0; i < cgraph->n_nodes; i++) {
  9284. if (cgraph->nodes[i] == node) {
  9285. return;
  9286. }
  9287. }
  9288. for (int i = 0; i < cgraph->n_leafs; i++) {
  9289. if (cgraph->leafs[i] == node) {
  9290. return;
  9291. }
  9292. }
  9293. if (node->src0) {
  9294. ggml_visit_parents(cgraph, node->src0);
  9295. }
  9296. if (node->src1) {
  9297. ggml_visit_parents(cgraph, node->src1);
  9298. }
  9299. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9300. if (node->opt[i]) {
  9301. ggml_visit_parents(cgraph, node->opt[i]);
  9302. }
  9303. }
  9304. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9305. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9306. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9307. cgraph->leafs[cgraph->n_leafs] = node;
  9308. cgraph->n_leafs++;
  9309. } else {
  9310. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9311. cgraph->nodes[cgraph->n_nodes] = node;
  9312. cgraph->grads[cgraph->n_nodes] = node->grad;
  9313. cgraph->n_nodes++;
  9314. }
  9315. }
  9316. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9317. if (!expand) {
  9318. cgraph->n_nodes = 0;
  9319. cgraph->n_leafs = 0;
  9320. }
  9321. const int n0 = cgraph->n_nodes;
  9322. UNUSED(n0);
  9323. ggml_visit_parents(cgraph, tensor);
  9324. const int n_new = cgraph->n_nodes - n0;
  9325. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9326. if (n_new > 0) {
  9327. // the last added node should always be starting point
  9328. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9329. }
  9330. }
  9331. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9332. ggml_build_forward_impl(cgraph, tensor, true);
  9333. }
  9334. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9335. struct ggml_cgraph result = {
  9336. /*.n_nodes =*/ 0,
  9337. /*.n_leafs =*/ 0,
  9338. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9339. /*.work_size =*/ 0,
  9340. /*.work =*/ NULL,
  9341. /*.nodes =*/ { NULL },
  9342. /*.grads =*/ { NULL },
  9343. /*.leafs =*/ { NULL },
  9344. /*.perf_runs =*/ 0,
  9345. /*.perf_cycles =*/ 0,
  9346. /*.perf_time_us =*/ 0,
  9347. };
  9348. ggml_build_forward_impl(&result, tensor, false);
  9349. return result;
  9350. }
  9351. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9352. struct ggml_cgraph result = *gf;
  9353. GGML_ASSERT(gf->n_nodes > 0);
  9354. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9355. if (keep) {
  9356. for (int i = 0; i < gf->n_nodes; i++) {
  9357. struct ggml_tensor * node = gf->nodes[i];
  9358. if (node->grad) {
  9359. node->grad = ggml_dup_tensor(ctx, node);
  9360. gf->grads[i] = node->grad;
  9361. }
  9362. }
  9363. }
  9364. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9365. struct ggml_tensor * node = gf->nodes[i];
  9366. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9367. if (node->grad) {
  9368. ggml_compute_backward(ctx, node, keep);
  9369. }
  9370. }
  9371. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9372. struct ggml_tensor * node = gf->nodes[i];
  9373. if (node->is_param) {
  9374. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9375. ggml_build_forward_impl(&result, node->grad, true);
  9376. }
  9377. }
  9378. return result;
  9379. }
  9380. //
  9381. // thread data
  9382. //
  9383. // synchronization is done via busy loops
  9384. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9385. //
  9386. #ifdef __APPLE__
  9387. //#include <os/lock.h>
  9388. //
  9389. //typedef os_unfair_lock ggml_lock_t;
  9390. //
  9391. //#define ggml_lock_init(x) UNUSED(x)
  9392. //#define ggml_lock_destroy(x) UNUSED(x)
  9393. //#define ggml_lock_lock os_unfair_lock_lock
  9394. //#define ggml_lock_unlock os_unfair_lock_unlock
  9395. //
  9396. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9397. typedef int ggml_lock_t;
  9398. #define ggml_lock_init(x) UNUSED(x)
  9399. #define ggml_lock_destroy(x) UNUSED(x)
  9400. #define ggml_lock_lock(x) UNUSED(x)
  9401. #define ggml_lock_unlock(x) UNUSED(x)
  9402. #define GGML_LOCK_INITIALIZER 0
  9403. typedef pthread_t ggml_thread_t;
  9404. #define ggml_thread_create pthread_create
  9405. #define ggml_thread_join pthread_join
  9406. #else
  9407. //typedef pthread_spinlock_t ggml_lock_t;
  9408. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9409. //#define ggml_lock_destroy pthread_spin_destroy
  9410. //#define ggml_lock_lock pthread_spin_lock
  9411. //#define ggml_lock_unlock pthread_spin_unlock
  9412. typedef int ggml_lock_t;
  9413. #define ggml_lock_init(x) UNUSED(x)
  9414. #define ggml_lock_destroy(x) UNUSED(x)
  9415. #define ggml_lock_lock(x) UNUSED(x)
  9416. #define ggml_lock_unlock(x) UNUSED(x)
  9417. #define GGML_LOCK_INITIALIZER 0
  9418. typedef pthread_t ggml_thread_t;
  9419. #define ggml_thread_create pthread_create
  9420. #define ggml_thread_join pthread_join
  9421. #endif
  9422. struct ggml_compute_state_shared {
  9423. ggml_lock_t spin;
  9424. int n_threads;
  9425. // synchronization primitives
  9426. atomic_int n_ready;
  9427. atomic_bool has_work;
  9428. atomic_bool stop; // stop all threads
  9429. };
  9430. struct ggml_compute_state {
  9431. ggml_thread_t thrd;
  9432. struct ggml_compute_params params;
  9433. struct ggml_tensor * node;
  9434. struct ggml_compute_state_shared * shared;
  9435. };
  9436. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9437. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9438. const int n_threads = state->shared->n_threads;
  9439. while (true) {
  9440. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9441. atomic_store(&state->shared->has_work, false);
  9442. } else {
  9443. while (atomic_load(&state->shared->has_work)) {
  9444. if (atomic_load(&state->shared->stop)) {
  9445. return 0;
  9446. }
  9447. ggml_lock_lock (&state->shared->spin);
  9448. ggml_lock_unlock(&state->shared->spin);
  9449. }
  9450. }
  9451. atomic_fetch_sub(&state->shared->n_ready, 1);
  9452. // wait for work
  9453. while (!atomic_load(&state->shared->has_work)) {
  9454. if (atomic_load(&state->shared->stop)) {
  9455. return 0;
  9456. }
  9457. ggml_lock_lock (&state->shared->spin);
  9458. ggml_lock_unlock(&state->shared->spin);
  9459. }
  9460. // check if we should stop
  9461. if (atomic_load(&state->shared->stop)) {
  9462. break;
  9463. }
  9464. if (state->node) {
  9465. if (state->params.ith < state->params.nth) {
  9466. ggml_compute_forward(&state->params, state->node);
  9467. }
  9468. state->node = NULL;
  9469. } else {
  9470. break;
  9471. }
  9472. }
  9473. return 0;
  9474. }
  9475. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9476. const int n_threads = cgraph->n_threads;
  9477. struct ggml_compute_state_shared state_shared = {
  9478. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9479. /*.n_threads =*/ n_threads,
  9480. /*.n_ready =*/ 0,
  9481. /*.has_work =*/ false,
  9482. /*.stop =*/ false,
  9483. };
  9484. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9485. // create thread pool
  9486. if (n_threads > 1) {
  9487. ggml_lock_init(&state_shared.spin);
  9488. atomic_store(&state_shared.has_work, true);
  9489. for (int j = 0; j < n_threads - 1; j++) {
  9490. workers[j] = (struct ggml_compute_state) {
  9491. .thrd = 0,
  9492. .params = {
  9493. .type = GGML_TASK_COMPUTE,
  9494. .ith = j + 1,
  9495. .nth = n_threads,
  9496. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9497. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9498. },
  9499. .node = NULL,
  9500. .shared = &state_shared,
  9501. };
  9502. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9503. GGML_ASSERT(rc == 0);
  9504. UNUSED(rc);
  9505. }
  9506. }
  9507. // initialize tasks + work buffer
  9508. {
  9509. size_t work_size = 0;
  9510. // thread scheduling for the different operations
  9511. for (int i = 0; i < cgraph->n_nodes; i++) {
  9512. struct ggml_tensor * node = cgraph->nodes[i];
  9513. switch (node->op) {
  9514. case GGML_OP_CPY:
  9515. case GGML_OP_DUP:
  9516. {
  9517. node->n_tasks = n_threads;
  9518. size_t cur = 0;
  9519. if (ggml_is_quantized(node->type)) {
  9520. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9521. }
  9522. work_size = MAX(work_size, cur);
  9523. } break;
  9524. case GGML_OP_ADD:
  9525. {
  9526. node->n_tasks = n_threads;
  9527. size_t cur = 0;
  9528. if (ggml_is_quantized(node->src0->type)) {
  9529. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9530. }
  9531. work_size = MAX(work_size, cur);
  9532. } break;
  9533. case GGML_OP_SUB:
  9534. case GGML_OP_MUL:
  9535. case GGML_OP_DIV:
  9536. case GGML_OP_SQR:
  9537. case GGML_OP_SQRT:
  9538. case GGML_OP_SUM:
  9539. case GGML_OP_MEAN:
  9540. case GGML_OP_REPEAT:
  9541. case GGML_OP_ABS:
  9542. case GGML_OP_SGN:
  9543. case GGML_OP_NEG:
  9544. case GGML_OP_STEP:
  9545. case GGML_OP_RELU:
  9546. {
  9547. node->n_tasks = 1;
  9548. } break;
  9549. case GGML_OP_GELU:
  9550. {
  9551. node->n_tasks = n_threads;
  9552. } break;
  9553. case GGML_OP_SILU:
  9554. {
  9555. node->n_tasks = n_threads;
  9556. } break;
  9557. case GGML_OP_NORM:
  9558. case GGML_OP_RMS_NORM:
  9559. {
  9560. node->n_tasks = n_threads;
  9561. } break;
  9562. case GGML_OP_MUL_MAT:
  9563. {
  9564. node->n_tasks = n_threads;
  9565. // TODO: use different scheduling for different matrix sizes
  9566. //const int nr0 = ggml_nrows(node->src0);
  9567. //const int nr1 = ggml_nrows(node->src1);
  9568. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9569. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9570. size_t cur = 0;
  9571. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9572. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9573. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9574. node->n_tasks = 1; // TODO: this actually is doing nothing
  9575. // the threads are still spinning
  9576. #if defined(GGML_USE_CUBLAS)
  9577. // with cuBLAS, we need memory for the full 3D / 4D data of src1
  9578. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9579. #else
  9580. // here we need memory just for single 2D matrix from src0
  9581. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9582. #endif
  9583. } else {
  9584. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9585. }
  9586. #else
  9587. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9588. #endif
  9589. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9590. cur = 0;
  9591. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9592. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9593. node->n_tasks = 1;
  9594. }
  9595. #endif
  9596. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9597. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9598. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9599. node->n_tasks = 1;
  9600. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9601. } else
  9602. #endif
  9603. {
  9604. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9605. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9606. }
  9607. } else {
  9608. GGML_ASSERT(false);
  9609. }
  9610. work_size = MAX(work_size, cur);
  9611. } break;
  9612. case GGML_OP_SCALE:
  9613. {
  9614. node->n_tasks = n_threads;
  9615. } break;
  9616. case GGML_OP_CONT:
  9617. case GGML_OP_RESHAPE:
  9618. case GGML_OP_VIEW:
  9619. case GGML_OP_PERMUTE:
  9620. case GGML_OP_TRANSPOSE:
  9621. case GGML_OP_GET_ROWS:
  9622. case GGML_OP_DIAG_MASK_INF:
  9623. {
  9624. node->n_tasks = 1;
  9625. } break;
  9626. case GGML_OP_SOFT_MAX:
  9627. {
  9628. node->n_tasks = n_threads;
  9629. } break;
  9630. case GGML_OP_ROPE:
  9631. {
  9632. node->n_tasks = n_threads;
  9633. } break;
  9634. case GGML_OP_ALIBI:
  9635. {
  9636. node->n_tasks = 1; //TODO
  9637. } break;
  9638. case GGML_OP_CONV_1D_1S:
  9639. case GGML_OP_CONV_1D_2S:
  9640. {
  9641. node->n_tasks = n_threads;
  9642. GGML_ASSERT(node->src0->ne[3] == 1);
  9643. GGML_ASSERT(node->src1->ne[2] == 1);
  9644. GGML_ASSERT(node->src1->ne[3] == 1);
  9645. size_t cur = 0;
  9646. const int nk = node->src0->ne[0];
  9647. if (node->src0->type == GGML_TYPE_F16 &&
  9648. node->src1->type == GGML_TYPE_F32) {
  9649. cur = sizeof(ggml_fp16_t)*(
  9650. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9651. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9652. );
  9653. } else if (node->src0->type == GGML_TYPE_F32 &&
  9654. node->src1->type == GGML_TYPE_F32) {
  9655. cur = sizeof(float)*(
  9656. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9657. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9658. );
  9659. } else {
  9660. GGML_ASSERT(false);
  9661. }
  9662. work_size = MAX(work_size, cur);
  9663. } break;
  9664. case GGML_OP_FLASH_ATTN:
  9665. {
  9666. node->n_tasks = n_threads;
  9667. size_t cur = 0;
  9668. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9669. if (node->src1->type == GGML_TYPE_F32) {
  9670. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9671. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9672. }
  9673. if (node->src1->type == GGML_TYPE_F16) {
  9674. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9675. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9676. }
  9677. work_size = MAX(work_size, cur);
  9678. } break;
  9679. case GGML_OP_FLASH_FF:
  9680. {
  9681. node->n_tasks = n_threads;
  9682. size_t cur = 0;
  9683. if (node->src1->type == GGML_TYPE_F32) {
  9684. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9685. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9686. }
  9687. if (node->src1->type == GGML_TYPE_F16) {
  9688. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9689. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9690. }
  9691. work_size = MAX(work_size, cur);
  9692. } break;
  9693. case GGML_OP_MAP_UNARY:
  9694. case GGML_OP_MAP_BINARY:
  9695. {
  9696. node->n_tasks = 1;
  9697. } break;
  9698. case GGML_OP_NONE:
  9699. {
  9700. node->n_tasks = 1;
  9701. } break;
  9702. case GGML_OP_COUNT:
  9703. {
  9704. GGML_ASSERT(false);
  9705. } break;
  9706. }
  9707. }
  9708. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9709. GGML_ASSERT(false); // TODO: better handling
  9710. }
  9711. if (work_size > 0 && cgraph->work == NULL) {
  9712. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9713. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9714. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9715. }
  9716. }
  9717. const int64_t perf_start_cycles = ggml_perf_cycles();
  9718. const int64_t perf_start_time_us = ggml_perf_time_us();
  9719. for (int i = 0; i < cgraph->n_nodes; i++) {
  9720. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9721. struct ggml_tensor * node = cgraph->nodes[i];
  9722. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9723. //if (node->grad == NULL && node->perf_runs > 0) {
  9724. // continue;
  9725. //}
  9726. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9727. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9728. // INIT
  9729. struct ggml_compute_params params = {
  9730. /*.type =*/ GGML_TASK_INIT,
  9731. /*.ith =*/ 0,
  9732. /*.nth =*/ node->n_tasks,
  9733. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9734. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9735. };
  9736. ggml_compute_forward(&params, node);
  9737. // COMPUTE
  9738. if (node->n_tasks > 1) {
  9739. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9740. atomic_store(&state_shared.has_work, false);
  9741. }
  9742. while (atomic_load(&state_shared.has_work)) {
  9743. ggml_lock_lock (&state_shared.spin);
  9744. ggml_lock_unlock(&state_shared.spin);
  9745. }
  9746. // launch thread pool
  9747. for (int j = 0; j < n_threads - 1; j++) {
  9748. workers[j].params = (struct ggml_compute_params) {
  9749. .type = GGML_TASK_COMPUTE,
  9750. .ith = j + 1,
  9751. .nth = node->n_tasks,
  9752. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9753. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9754. };
  9755. workers[j].node = node;
  9756. }
  9757. atomic_fetch_sub(&state_shared.n_ready, 1);
  9758. while (atomic_load(&state_shared.n_ready) > 0) {
  9759. ggml_lock_lock (&state_shared.spin);
  9760. ggml_lock_unlock(&state_shared.spin);
  9761. }
  9762. atomic_store(&state_shared.has_work, true);
  9763. }
  9764. params.type = GGML_TASK_COMPUTE;
  9765. ggml_compute_forward(&params, node);
  9766. // wait for thread pool
  9767. if (node->n_tasks > 1) {
  9768. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9769. atomic_store(&state_shared.has_work, false);
  9770. }
  9771. while (atomic_load(&state_shared.has_work)) {
  9772. ggml_lock_lock (&state_shared.spin);
  9773. ggml_lock_unlock(&state_shared.spin);
  9774. }
  9775. atomic_fetch_sub(&state_shared.n_ready, 1);
  9776. while (atomic_load(&state_shared.n_ready) != 0) {
  9777. ggml_lock_lock (&state_shared.spin);
  9778. ggml_lock_unlock(&state_shared.spin);
  9779. }
  9780. }
  9781. // FINALIZE
  9782. if (node->n_tasks > 1) {
  9783. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9784. atomic_store(&state_shared.has_work, false);
  9785. }
  9786. while (atomic_load(&state_shared.has_work)) {
  9787. ggml_lock_lock (&state_shared.spin);
  9788. ggml_lock_unlock(&state_shared.spin);
  9789. }
  9790. // launch thread pool
  9791. for (int j = 0; j < n_threads - 1; j++) {
  9792. workers[j].params = (struct ggml_compute_params) {
  9793. .type = GGML_TASK_FINALIZE,
  9794. .ith = j + 1,
  9795. .nth = node->n_tasks,
  9796. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9797. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9798. };
  9799. workers[j].node = node;
  9800. }
  9801. atomic_fetch_sub(&state_shared.n_ready, 1);
  9802. while (atomic_load(&state_shared.n_ready) > 0) {
  9803. ggml_lock_lock (&state_shared.spin);
  9804. ggml_lock_unlock(&state_shared.spin);
  9805. }
  9806. atomic_store(&state_shared.has_work, true);
  9807. }
  9808. params.type = GGML_TASK_FINALIZE;
  9809. ggml_compute_forward(&params, node);
  9810. // wait for thread pool
  9811. if (node->n_tasks > 1) {
  9812. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9813. atomic_store(&state_shared.has_work, false);
  9814. }
  9815. while (atomic_load(&state_shared.has_work)) {
  9816. ggml_lock_lock (&state_shared.spin);
  9817. ggml_lock_unlock(&state_shared.spin);
  9818. }
  9819. atomic_fetch_sub(&state_shared.n_ready, 1);
  9820. while (atomic_load(&state_shared.n_ready) != 0) {
  9821. ggml_lock_lock (&state_shared.spin);
  9822. ggml_lock_unlock(&state_shared.spin);
  9823. }
  9824. }
  9825. // performance stats (node)
  9826. {
  9827. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9828. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9829. node->perf_runs++;
  9830. node->perf_cycles += perf_cycles_cur;
  9831. node->perf_time_us += perf_time_us_cur;
  9832. }
  9833. }
  9834. // join thread pool
  9835. if (n_threads > 1) {
  9836. atomic_store(&state_shared.stop, true);
  9837. atomic_store(&state_shared.has_work, true);
  9838. for (int j = 0; j < n_threads - 1; j++) {
  9839. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9840. GGML_ASSERT(rc == 0);
  9841. UNUSED(rc);
  9842. }
  9843. ggml_lock_destroy(&state_shared.spin);
  9844. }
  9845. // performance stats (graph)
  9846. {
  9847. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9848. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9849. cgraph->perf_runs++;
  9850. cgraph->perf_cycles += perf_cycles_cur;
  9851. cgraph->perf_time_us += perf_time_us_cur;
  9852. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9853. __func__, cgraph->perf_runs,
  9854. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9855. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9856. (double) perf_time_us_cur / 1000.0,
  9857. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9858. }
  9859. }
  9860. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9861. for (int i = 0; i < cgraph->n_nodes; i++) {
  9862. struct ggml_tensor * grad = cgraph->grads[i];
  9863. if (grad) {
  9864. ggml_set_zero(grad);
  9865. }
  9866. }
  9867. }
  9868. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9869. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9870. GGML_PRINT("=== GRAPH ===\n");
  9871. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9872. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9873. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9874. for (int i = 0; i < cgraph->n_nodes; i++) {
  9875. struct ggml_tensor * node = cgraph->nodes[i];
  9876. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9877. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9878. i,
  9879. node->ne[0], node->ne[1], node->ne[2],
  9880. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9881. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9882. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9883. (double) node->perf_time_us / 1000.0,
  9884. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9885. }
  9886. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9887. for (int i = 0; i < cgraph->n_leafs; i++) {
  9888. struct ggml_tensor * node = cgraph->leafs[i];
  9889. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9890. i,
  9891. node->ne[0], node->ne[1],
  9892. GGML_OP_LABEL[node->op]);
  9893. }
  9894. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9895. if (perf_total_per_op_us[i] == 0) {
  9896. continue;
  9897. }
  9898. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9899. }
  9900. GGML_PRINT("========================================\n");
  9901. }
  9902. // check if node is part of the graph
  9903. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9904. if (cgraph == NULL) {
  9905. return true;
  9906. }
  9907. for (int i = 0; i < cgraph->n_nodes; i++) {
  9908. if (cgraph->nodes[i] == node) {
  9909. return true;
  9910. }
  9911. }
  9912. return false;
  9913. }
  9914. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9915. for (int i = 0; i < cgraph->n_nodes; i++) {
  9916. struct ggml_tensor * parent = cgraph->nodes[i];
  9917. if (parent->grad == node) {
  9918. return parent;
  9919. }
  9920. }
  9921. return NULL;
  9922. }
  9923. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9924. char color[16];
  9925. FILE * fp = fopen(filename, "w");
  9926. GGML_ASSERT(fp);
  9927. fprintf(fp, "digraph G {\n");
  9928. fprintf(fp, " newrank = true;\n");
  9929. fprintf(fp, " rankdir = LR;\n");
  9930. for (int i = 0; i < gb->n_nodes; i++) {
  9931. struct ggml_tensor * node = gb->nodes[i];
  9932. if (ggml_graph_get_parent(gb, node) != NULL) {
  9933. continue;
  9934. }
  9935. if (node->is_param) {
  9936. snprintf(color, sizeof(color), "yellow");
  9937. } else if (node->grad) {
  9938. if (ggml_graph_find(gf, node)) {
  9939. snprintf(color, sizeof(color), "green");
  9940. } else {
  9941. snprintf(color, sizeof(color), "lightblue");
  9942. }
  9943. } else {
  9944. snprintf(color, sizeof(color), "white");
  9945. }
  9946. fprintf(fp, " \"%p\" [ \
  9947. style = filled; fillcolor = %s; shape = record; \
  9948. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9949. (void *) node, color,
  9950. i, node->ne[0], node->ne[1],
  9951. GGML_OP_SYMBOL[node->op]);
  9952. if (node->grad) {
  9953. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9954. } else {
  9955. fprintf(fp, "\"; ]\n");
  9956. }
  9957. }
  9958. for (int i = 0; i < gb->n_leafs; i++) {
  9959. struct ggml_tensor * node = gb->leafs[i];
  9960. snprintf(color, sizeof(color), "pink");
  9961. if (ggml_nelements(node) == 1) {
  9962. fprintf(fp, " \"%p\" [ \
  9963. style = filled; fillcolor = %s; shape = record; \
  9964. label=\"<x>%.1e\"; ]\n",
  9965. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9966. } else {
  9967. fprintf(fp, " \"%p\" [ \
  9968. style = filled; fillcolor = %s; shape = record; \
  9969. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9970. (void *) node, color,
  9971. i, node->ne[0], node->ne[1]);
  9972. }
  9973. }
  9974. for (int i = 0; i < gb->n_nodes; i++) {
  9975. struct ggml_tensor * node = gb->nodes[i];
  9976. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9977. if (node->src0) {
  9978. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9979. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9980. parent0 ? (void *) parent0 : (void *) node->src0,
  9981. parent0 ? "g" : "x",
  9982. parent ? (void *) parent : (void *) node,
  9983. parent ? "g" : "x",
  9984. parent ? "empty" : "vee",
  9985. parent ? "dashed" : "solid");
  9986. }
  9987. if (node->src1) {
  9988. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9989. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9990. parent1 ? (void *) parent1 : (void *) node->src1,
  9991. parent1 ? "g" : "x",
  9992. parent ? (void *) parent : (void *) node,
  9993. parent ? "g" : "x",
  9994. parent ? "empty" : "vee",
  9995. parent ? "dashed" : "solid");
  9996. }
  9997. }
  9998. for (int i = 0; i < gb->n_leafs; i++) {
  9999. struct ggml_tensor * node = gb->leafs[i];
  10000. if (node->src0) {
  10001. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  10002. (void *) node->src0, "x",
  10003. (void *) node, "x");
  10004. }
  10005. if (node->src1) {
  10006. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  10007. (void *) node->src1, "x",
  10008. (void *) node, "x");
  10009. }
  10010. }
  10011. fprintf(fp, "}\n");
  10012. fclose(fp);
  10013. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  10014. }
  10015. ////////////////////////////////////////////////////////////////////////////////
  10016. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  10017. int i = 0;
  10018. for (int p = 0; p < np; ++p) {
  10019. const int64_t ne = ggml_nelements(ps[p]) ;
  10020. // TODO: add function to set tensor from array
  10021. for (int64_t j = 0; j < ne; ++j) {
  10022. ggml_set_f32_1d(ps[p], j, x[i++]);
  10023. }
  10024. }
  10025. }
  10026. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  10027. int i = 0;
  10028. for (int p = 0; p < np; ++p) {
  10029. const int64_t ne = ggml_nelements(ps[p]) ;
  10030. // TODO: add function to get all elements at once
  10031. for (int64_t j = 0; j < ne; ++j) {
  10032. x[i++] = ggml_get_f32_1d(ps[p], j);
  10033. }
  10034. }
  10035. }
  10036. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  10037. int i = 0;
  10038. for (int p = 0; p < np; ++p) {
  10039. const int64_t ne = ggml_nelements(ps[p]) ;
  10040. // TODO: add function to get all elements at once
  10041. for (int64_t j = 0; j < ne; ++j) {
  10042. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  10043. }
  10044. }
  10045. }
  10046. //
  10047. // ADAM
  10048. //
  10049. // ref: https://arxiv.org/pdf/1412.6980.pdf
  10050. //
  10051. static enum ggml_opt_result ggml_opt_adam(
  10052. struct ggml_context * ctx,
  10053. struct ggml_opt_params params,
  10054. struct ggml_tensor * f,
  10055. struct ggml_cgraph * gf,
  10056. struct ggml_cgraph * gb) {
  10057. GGML_ASSERT(ggml_is_scalar(f));
  10058. gf->n_threads = params.n_threads;
  10059. gb->n_threads = params.n_threads;
  10060. // these will store the parameters we want to optimize
  10061. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10062. int np = 0;
  10063. int nx = 0;
  10064. for (int i = 0; i < gf->n_nodes; ++i) {
  10065. if (gf->nodes[i]->is_param) {
  10066. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10067. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10068. ps[np++] = gf->nodes[i];
  10069. nx += ggml_nelements(gf->nodes[i]);
  10070. }
  10071. }
  10072. // constants
  10073. const float alpha = params.adam.alpha;
  10074. const float beta1 = params.adam.beta1;
  10075. const float beta2 = params.adam.beta2;
  10076. const float eps = params.adam.eps;
  10077. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10078. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10079. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10080. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10081. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10082. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10083. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10084. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10085. // initialize
  10086. ggml_vec_set_f32(nx, m, 0.0f);
  10087. ggml_vec_set_f32(nx, v, 0.0f);
  10088. // update view
  10089. ggml_opt_get_params(np, ps, x);
  10090. // compute the function value
  10091. ggml_graph_reset (gf);
  10092. ggml_set_f32 (f->grad, 1.0f);
  10093. ggml_graph_compute(ctx, gb);
  10094. float fx_prev = ggml_get_f32_1d(f, 0);
  10095. if (pf) {
  10096. pf[0] = fx_prev;
  10097. }
  10098. int n_no_improvement = 0;
  10099. float fx_best = fx_prev;
  10100. // run the optimizer
  10101. for (int t = 0; t < params.adam.n_iter; ++t) {
  10102. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10103. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10104. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10105. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10106. for (int i = 0; i < np; ++i) {
  10107. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10108. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10109. }
  10110. const int64_t t_start_wall = ggml_time_us();
  10111. const int64_t t_start_cpu = ggml_cycles();
  10112. UNUSED(t_start_wall);
  10113. UNUSED(t_start_cpu);
  10114. {
  10115. // update the gradient
  10116. ggml_opt_get_grad(np, ps, g1);
  10117. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10118. ggml_vec_scale_f32(nx, m, beta1);
  10119. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10120. // g2 = g1^2
  10121. ggml_vec_sqr_f32 (nx, g2, g1);
  10122. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10123. ggml_vec_scale_f32(nx, v, beta2);
  10124. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10125. // m^hat = m_t / (1 - beta1^t)
  10126. // v^hat = v_t / (1 - beta2^t)
  10127. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10128. ggml_vec_cpy_f32 (nx, mh, m);
  10129. ggml_vec_cpy_f32 (nx, vh, v);
  10130. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10131. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10132. ggml_vec_sqrt_f32 (nx, vh, vh);
  10133. ggml_vec_acc1_f32 (nx, vh, eps);
  10134. ggml_vec_div_f32 (nx, mh, mh, vh);
  10135. ggml_vec_sub_f32 (nx, x, x, mh);
  10136. // update the parameters
  10137. ggml_opt_set_params(np, ps, x);
  10138. }
  10139. ggml_graph_reset (gf);
  10140. ggml_set_f32 (f->grad, 1.0f);
  10141. ggml_graph_compute(ctx, gb);
  10142. const float fx = ggml_get_f32_1d(f, 0);
  10143. // check convergence
  10144. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10145. GGML_PRINT_DEBUG("converged\n");
  10146. return GGML_OPT_OK;
  10147. }
  10148. // delta-based convergence test
  10149. if (pf != NULL) {
  10150. // need at least params.past iterations to start checking for convergence
  10151. if (params.past <= t) {
  10152. const float rate = (pf[t%params.past] - fx)/fx;
  10153. if (fabsf(rate) < params.delta) {
  10154. return GGML_OPT_OK;
  10155. }
  10156. }
  10157. pf[t%params.past] = fx;
  10158. }
  10159. // check for improvement
  10160. if (params.max_no_improvement > 0) {
  10161. if (fx_best > fx) {
  10162. fx_best = fx;
  10163. n_no_improvement = 0;
  10164. } else {
  10165. ++n_no_improvement;
  10166. if (n_no_improvement >= params.max_no_improvement) {
  10167. return GGML_OPT_OK;
  10168. }
  10169. }
  10170. }
  10171. fx_prev = fx;
  10172. {
  10173. const int64_t t_end_cpu = ggml_cycles();
  10174. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10175. UNUSED(t_end_cpu);
  10176. const int64_t t_end_wall = ggml_time_us();
  10177. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10178. UNUSED(t_end_wall);
  10179. }
  10180. }
  10181. return GGML_OPT_DID_NOT_CONVERGE;
  10182. }
  10183. //
  10184. // L-BFGS
  10185. //
  10186. // the L-BFGS implementation below is based on the following implementation:
  10187. //
  10188. // https://github.com/chokkan/liblbfgs
  10189. //
  10190. struct ggml_lbfgs_iteration_data {
  10191. float alpha;
  10192. float ys;
  10193. float * s;
  10194. float * y;
  10195. };
  10196. static enum ggml_opt_result linesearch_backtracking(
  10197. struct ggml_context * ctx,
  10198. const struct ggml_opt_params * params,
  10199. int nx,
  10200. float * x,
  10201. float * fx,
  10202. float * g,
  10203. float * d,
  10204. float * step,
  10205. const float * xp,
  10206. struct ggml_tensor * f,
  10207. struct ggml_cgraph * gf,
  10208. struct ggml_cgraph * gb,
  10209. const int np,
  10210. struct ggml_tensor * ps[]) {
  10211. int count = 0;
  10212. float width = 0.0f;
  10213. float dg = 0.0f;
  10214. float finit = 0.0f;
  10215. float dginit = 0.0f;
  10216. float dgtest = 0.0f;
  10217. const float dec = 0.5f;
  10218. const float inc = 2.1f;
  10219. if (*step <= 0.f) {
  10220. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10221. }
  10222. // compute the initial gradient in the search direction
  10223. ggml_vec_dot_f32(nx, &dginit, g, d);
  10224. // make sure that d points to a descent direction
  10225. if (0 < dginit) {
  10226. return GGML_LINESEARCH_FAIL;
  10227. }
  10228. // initialize local variables
  10229. finit = *fx;
  10230. dgtest = params->lbfgs.ftol*dginit;
  10231. while (true) {
  10232. ggml_vec_cpy_f32(nx, x, xp);
  10233. ggml_vec_mad_f32(nx, x, d, *step);
  10234. // evaluate the function and gradient values
  10235. {
  10236. ggml_opt_set_params(np, ps, x);
  10237. ggml_graph_reset (gf);
  10238. ggml_set_f32 (f->grad, 1.0f);
  10239. ggml_graph_compute(ctx, gb);
  10240. ggml_opt_get_grad(np, ps, g);
  10241. *fx = ggml_get_f32_1d(f, 0);
  10242. }
  10243. ++count;
  10244. if (*fx > finit + (*step)*dgtest) {
  10245. width = dec;
  10246. } else {
  10247. // Armijo condition is satisfied
  10248. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10249. return count;
  10250. }
  10251. ggml_vec_dot_f32(nx, &dg, g, d);
  10252. // check the Wolfe condition
  10253. if (dg < params->lbfgs.wolfe * dginit) {
  10254. width = inc;
  10255. } else {
  10256. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10257. // regular Wolfe conditions
  10258. return count;
  10259. }
  10260. if(dg > -params->lbfgs.wolfe*dginit) {
  10261. width = dec;
  10262. } else {
  10263. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10264. return count;
  10265. }
  10266. return count;
  10267. }
  10268. }
  10269. if (*step < params->lbfgs.min_step) {
  10270. return GGML_LINESEARCH_MINIMUM_STEP;
  10271. }
  10272. if (*step > params->lbfgs.max_step) {
  10273. return GGML_LINESEARCH_MAXIMUM_STEP;
  10274. }
  10275. if (params->lbfgs.max_linesearch <= count) {
  10276. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10277. }
  10278. (*step) *= width;
  10279. }
  10280. return GGML_LINESEARCH_FAIL;
  10281. }
  10282. static enum ggml_opt_result ggml_opt_lbfgs(
  10283. struct ggml_context * ctx,
  10284. struct ggml_opt_params params,
  10285. struct ggml_tensor * f,
  10286. struct ggml_cgraph * gf,
  10287. struct ggml_cgraph * gb) {
  10288. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10289. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10290. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10291. return GGML_OPT_INVALID_WOLFE;
  10292. }
  10293. }
  10294. gf->n_threads = params.n_threads;
  10295. gb->n_threads = params.n_threads;
  10296. const int m = params.lbfgs.m;
  10297. // these will store the parameters we want to optimize
  10298. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10299. int np = 0;
  10300. int nx = 0;
  10301. for (int i = 0; i < gf->n_nodes; ++i) {
  10302. if (gf->nodes[i]->is_param) {
  10303. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10304. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10305. ps[np++] = gf->nodes[i];
  10306. nx += ggml_nelements(gf->nodes[i]);
  10307. }
  10308. }
  10309. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10310. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10311. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10312. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10313. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10314. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10315. float fx = 0.0f; // cost function value
  10316. float xnorm = 0.0f; // ||x||
  10317. float gnorm = 0.0f; // ||g||
  10318. float step = 0.0f;
  10319. // initialize x from the graph nodes
  10320. ggml_opt_get_params(np, ps, x);
  10321. // the L-BFGS memory
  10322. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10323. for (int i = 0; i < m; ++i) {
  10324. lm[i].alpha = 0.0f;
  10325. lm[i].ys = 0.0f;
  10326. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10327. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10328. }
  10329. // evaluate the function value and its gradient
  10330. {
  10331. ggml_opt_set_params(np, ps, x);
  10332. ggml_graph_reset (gf);
  10333. ggml_set_f32 (f->grad, 1.0f);
  10334. ggml_graph_compute(ctx, gb);
  10335. ggml_opt_get_grad(np, ps, g);
  10336. fx = ggml_get_f32_1d(f, 0);
  10337. }
  10338. if (pf) {
  10339. pf[0] = fx;
  10340. }
  10341. float fx_best = fx;
  10342. // search direction = -gradient
  10343. ggml_vec_neg_f32(nx, d, g);
  10344. // ||x||, ||g||
  10345. ggml_vec_norm_f32(nx, &xnorm, x);
  10346. ggml_vec_norm_f32(nx, &gnorm, g);
  10347. if (xnorm < 1.0f) {
  10348. xnorm = 1.0f;
  10349. }
  10350. // already optimized
  10351. if (gnorm/xnorm <= params.lbfgs.eps) {
  10352. return GGML_OPT_OK;
  10353. }
  10354. // initial step
  10355. ggml_vec_norm_inv_f32(nx, &step, d);
  10356. int j = 0;
  10357. int k = 1;
  10358. int ls = 0;
  10359. int end = 0;
  10360. int bound = 0;
  10361. int n_no_improvement = 0;
  10362. float ys = 0.0f;
  10363. float yy = 0.0f;
  10364. float beta = 0.0f;
  10365. while (true) {
  10366. // store the current position and gradient vectors
  10367. ggml_vec_cpy_f32(nx, xp, x);
  10368. ggml_vec_cpy_f32(nx, gp, g);
  10369. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10370. if (ls < 0) {
  10371. // linesearch failed - go back to the previous point and return
  10372. ggml_vec_cpy_f32(nx, x, xp);
  10373. ggml_vec_cpy_f32(nx, g, gp);
  10374. return ls;
  10375. }
  10376. ggml_vec_norm_f32(nx, &xnorm, x);
  10377. ggml_vec_norm_f32(nx, &gnorm, g);
  10378. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10379. if (xnorm < 1.0f) {
  10380. xnorm = 1.0f;
  10381. }
  10382. if (gnorm/xnorm <= params.lbfgs.eps) {
  10383. // converged
  10384. return GGML_OPT_OK;
  10385. }
  10386. // delta-based convergence test
  10387. if (pf != NULL) {
  10388. // need at least params.past iterations to start checking for convergence
  10389. if (params.past <= k) {
  10390. const float rate = (pf[k%params.past] - fx)/fx;
  10391. if (fabsf(rate) < params.delta) {
  10392. return GGML_OPT_OK;
  10393. }
  10394. }
  10395. pf[k%params.past] = fx;
  10396. }
  10397. // check for improvement
  10398. if (params.max_no_improvement > 0) {
  10399. if (fx < fx_best) {
  10400. fx_best = fx;
  10401. n_no_improvement = 0;
  10402. } else {
  10403. n_no_improvement++;
  10404. if (n_no_improvement >= params.max_no_improvement) {
  10405. return GGML_OPT_OK;
  10406. }
  10407. }
  10408. }
  10409. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10410. // reached the maximum number of iterations
  10411. return GGML_OPT_DID_NOT_CONVERGE;
  10412. }
  10413. // update vectors s and y:
  10414. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10415. // y_{k+1} = g_{k+1} - g_{k}.
  10416. //
  10417. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10418. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10419. // compute scalars ys and yy:
  10420. // ys = y^t \cdot s -> 1 / \rho.
  10421. // yy = y^t \cdot y.
  10422. //
  10423. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10424. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10425. lm[end].ys = ys;
  10426. // find new search direction
  10427. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10428. bound = (m <= k) ? m : k;
  10429. k++;
  10430. end = (end + 1)%m;
  10431. // initialize search direction with -g
  10432. ggml_vec_neg_f32(nx, d, g);
  10433. j = end;
  10434. for (int i = 0; i < bound; ++i) {
  10435. j = (j + m - 1) % m;
  10436. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10437. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10438. lm[j].alpha /= lm[j].ys;
  10439. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10440. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10441. }
  10442. ggml_vec_scale_f32(nx, d, ys/yy);
  10443. for (int i = 0; i < bound; ++i) {
  10444. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10445. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10446. beta /= lm[j].ys;
  10447. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10448. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10449. j = (j + 1)%m;
  10450. }
  10451. step = 1.0;
  10452. }
  10453. return GGML_OPT_DID_NOT_CONVERGE;
  10454. }
  10455. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10456. struct ggml_opt_params result;
  10457. switch (type) {
  10458. case GGML_OPT_ADAM:
  10459. {
  10460. result = (struct ggml_opt_params) {
  10461. .type = GGML_OPT_ADAM,
  10462. .n_threads = 1,
  10463. .past = 0,
  10464. .delta = 1e-5f,
  10465. .max_no_improvement = 100,
  10466. .print_forward_graph = true,
  10467. .print_backward_graph = true,
  10468. .adam = {
  10469. .n_iter = 10000,
  10470. .alpha = 0.001f,
  10471. .beta1 = 0.9f,
  10472. .beta2 = 0.999f,
  10473. .eps = 1e-8f,
  10474. .eps_f = 1e-5f,
  10475. .eps_g = 1e-3f,
  10476. },
  10477. };
  10478. } break;
  10479. case GGML_OPT_LBFGS:
  10480. {
  10481. result = (struct ggml_opt_params) {
  10482. .type = GGML_OPT_LBFGS,
  10483. .n_threads = 1,
  10484. .past = 0,
  10485. .delta = 1e-5f,
  10486. .max_no_improvement = 0,
  10487. .print_forward_graph = true,
  10488. .print_backward_graph = true,
  10489. .lbfgs = {
  10490. .m = 6,
  10491. .n_iter = 100,
  10492. .max_linesearch = 20,
  10493. .eps = 1e-5f,
  10494. .ftol = 1e-4f,
  10495. .wolfe = 0.9f,
  10496. .min_step = 1e-20f,
  10497. .max_step = 1e+20f,
  10498. .linesearch = GGML_LINESEARCH_DEFAULT,
  10499. },
  10500. };
  10501. } break;
  10502. }
  10503. return result;
  10504. }
  10505. enum ggml_opt_result ggml_opt(
  10506. struct ggml_context * ctx,
  10507. struct ggml_opt_params params,
  10508. struct ggml_tensor * f) {
  10509. bool free_ctx = false;
  10510. if (ctx == NULL) {
  10511. struct ggml_init_params params_ctx = {
  10512. .mem_size = 16*1024*1024,
  10513. .mem_buffer = NULL,
  10514. .no_alloc = false,
  10515. };
  10516. ctx = ggml_init(params_ctx);
  10517. if (ctx == NULL) {
  10518. return GGML_OPT_NO_CONTEXT;
  10519. }
  10520. free_ctx = true;
  10521. }
  10522. enum ggml_opt_result result = GGML_OPT_OK;
  10523. // build forward + backward compute graphs
  10524. struct ggml_cgraph gf = ggml_build_forward (f);
  10525. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10526. switch (params.type) {
  10527. case GGML_OPT_ADAM:
  10528. {
  10529. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10530. } break;
  10531. case GGML_OPT_LBFGS:
  10532. {
  10533. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10534. } break;
  10535. }
  10536. if (params.print_forward_graph) {
  10537. ggml_graph_print (&gf);
  10538. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10539. }
  10540. if (params.print_backward_graph) {
  10541. ggml_graph_print (&gb);
  10542. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10543. }
  10544. if (free_ctx) {
  10545. ggml_free(ctx);
  10546. }
  10547. return result;
  10548. }
  10549. ////////////////////////////////////////////////////////////////////////////////
  10550. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10551. assert(k % QK4_0 == 0);
  10552. const int nb = k / QK4_0;
  10553. for (int j = 0; j < n; j += k) {
  10554. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10555. quantize_row_q4_0_reference(src + j, y, k);
  10556. for (int i = 0; i < nb; i++) {
  10557. for (int l = 0; l < QK4_0; l += 2) {
  10558. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10559. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10560. hist[vi0]++;
  10561. hist[vi1]++;
  10562. }
  10563. }
  10564. }
  10565. return (n/QK4_0*sizeof(block_q4_0));
  10566. }
  10567. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10568. assert(k % QK4_1 == 0);
  10569. const int nb = k / QK4_1;
  10570. for (int j = 0; j < n; j += k) {
  10571. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10572. quantize_row_q4_1_reference(src + j, y, k);
  10573. for (int i = 0; i < nb; i++) {
  10574. for (int l = 0; l < QK4_1; l += 2) {
  10575. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10576. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10577. hist[vi0]++;
  10578. hist[vi1]++;
  10579. }
  10580. }
  10581. }
  10582. return (n/QK4_1*sizeof(block_q4_1));
  10583. }
  10584. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10585. assert(k % QK4_2 == 0);
  10586. const int nb = k / QK4_2;
  10587. for (int j = 0; j < n; j += k) {
  10588. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10589. quantize_row_q4_2_reference(src + j, y, k);
  10590. for (int i = 0; i < nb; i++) {
  10591. for (int l = 0; l < QK4_2; l += 2) {
  10592. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10593. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10594. hist[vi0]++;
  10595. hist[vi1]++;
  10596. }
  10597. }
  10598. }
  10599. return (n/QK4_2*sizeof(block_q4_2));
  10600. }
  10601. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10602. assert(k % QK5_0 == 0);
  10603. const int nb = k / QK5_0;
  10604. for (int j = 0; j < n; j += k) {
  10605. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10606. quantize_row_q5_0_reference(src + j, y, k);
  10607. for (int i = 0; i < nb; i++) {
  10608. uint32_t qh;
  10609. memcpy(&qh, &y[i].qh, sizeof(qh));
  10610. for (int l = 0; l < QK5_0; l += 2) {
  10611. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10612. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10613. // cast to 16 bins
  10614. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10615. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10616. hist[vi0]++;
  10617. hist[vi1]++;
  10618. }
  10619. }
  10620. }
  10621. return (n/QK5_0*sizeof(block_q5_0));
  10622. }
  10623. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10624. assert(k % QK5_1 == 0);
  10625. const int nb = k / QK5_1;
  10626. for (int j = 0; j < n; j += k) {
  10627. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10628. quantize_row_q5_1_reference(src + j, y, k);
  10629. for (int i = 0; i < nb; i++) {
  10630. uint32_t qh;
  10631. memcpy(&qh, &y[i].qh, sizeof(qh));
  10632. for (int l = 0; l < QK5_1; l += 2) {
  10633. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10634. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10635. // cast to 16 bins
  10636. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10637. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10638. hist[vi0]++;
  10639. hist[vi1]++;
  10640. }
  10641. }
  10642. }
  10643. return (n/QK5_1*sizeof(block_q5_1));
  10644. }
  10645. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10646. assert(k % QK8_0 == 0);
  10647. const int nb = k / QK8_0;
  10648. for (int j = 0; j < n; j += k) {
  10649. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10650. quantize_row_q8_0_reference(src + j, y, k);
  10651. for (int i = 0; i < nb; i++) {
  10652. for (int l = 0; l < QK8_0; ++l) {
  10653. const int8_t vi = y[i].qs[l];
  10654. hist[vi/16 + 8]++;
  10655. }
  10656. }
  10657. }
  10658. return (n/QK8_0*sizeof(block_q8_0));
  10659. }
  10660. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10661. size_t result = 0;
  10662. switch (type) {
  10663. case GGML_TYPE_Q4_0:
  10664. {
  10665. GGML_ASSERT(start % QK4_0 == 0);
  10666. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10667. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10668. } break;
  10669. case GGML_TYPE_Q4_1:
  10670. {
  10671. GGML_ASSERT(start % QK4_1 == 0);
  10672. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10673. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10674. } break;
  10675. case GGML_TYPE_Q4_2:
  10676. {
  10677. GGML_ASSERT(start % QK4_2 == 0);
  10678. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10679. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10680. } break;
  10681. case GGML_TYPE_Q5_0:
  10682. {
  10683. GGML_ASSERT(start % QK5_0 == 0);
  10684. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10685. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10686. } break;
  10687. case GGML_TYPE_Q5_1:
  10688. {
  10689. GGML_ASSERT(start % QK5_1 == 0);
  10690. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10691. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10692. } break;
  10693. case GGML_TYPE_Q8_0:
  10694. {
  10695. GGML_ASSERT(start % QK8_0 == 0);
  10696. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10697. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10698. } break;
  10699. default:
  10700. assert(false);
  10701. }
  10702. return result;
  10703. }
  10704. ////////////////////////////////////////////////////////////////////////////////
  10705. int ggml_cpu_has_avx(void) {
  10706. #if defined(__AVX__)
  10707. return 1;
  10708. #else
  10709. return 0;
  10710. #endif
  10711. }
  10712. int ggml_cpu_has_avx2(void) {
  10713. #if defined(__AVX2__)
  10714. return 1;
  10715. #else
  10716. return 0;
  10717. #endif
  10718. }
  10719. int ggml_cpu_has_avx512(void) {
  10720. #if defined(__AVX512F__)
  10721. return 1;
  10722. #else
  10723. return 0;
  10724. #endif
  10725. }
  10726. int ggml_cpu_has_avx512_vbmi(void) {
  10727. #if defined(__AVX512VBMI__)
  10728. return 1;
  10729. #else
  10730. return 0;
  10731. #endif
  10732. }
  10733. int ggml_cpu_has_avx512_vnni(void) {
  10734. #if defined(__AVX512VNNI__)
  10735. return 1;
  10736. #else
  10737. return 0;
  10738. #endif
  10739. }
  10740. int ggml_cpu_has_fma(void) {
  10741. #if defined(__FMA__)
  10742. return 1;
  10743. #else
  10744. return 0;
  10745. #endif
  10746. }
  10747. int ggml_cpu_has_neon(void) {
  10748. #if defined(__ARM_NEON)
  10749. return 1;
  10750. #else
  10751. return 0;
  10752. #endif
  10753. }
  10754. int ggml_cpu_has_arm_fma(void) {
  10755. #if defined(__ARM_FEATURE_FMA)
  10756. return 1;
  10757. #else
  10758. return 0;
  10759. #endif
  10760. }
  10761. int ggml_cpu_has_f16c(void) {
  10762. #if defined(__F16C__)
  10763. return 1;
  10764. #else
  10765. return 0;
  10766. #endif
  10767. }
  10768. int ggml_cpu_has_fp16_va(void) {
  10769. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10770. return 1;
  10771. #else
  10772. return 0;
  10773. #endif
  10774. }
  10775. int ggml_cpu_has_wasm_simd(void) {
  10776. #if defined(__wasm_simd128__)
  10777. return 1;
  10778. #else
  10779. return 0;
  10780. #endif
  10781. }
  10782. int ggml_cpu_has_blas(void) {
  10783. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10784. return 1;
  10785. #else
  10786. return 0;
  10787. #endif
  10788. }
  10789. int ggml_cpu_has_cublas(void) {
  10790. #if defined(GGML_USE_CUBLAS)
  10791. return 1;
  10792. #else
  10793. return 0;
  10794. #endif
  10795. }
  10796. int ggml_cpu_has_clblast(void) {
  10797. #if defined(GGML_USE_CLBLAST)
  10798. return 1;
  10799. #else
  10800. return 0;
  10801. #endif
  10802. }
  10803. int ggml_cpu_has_gpublas(void) {
  10804. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10805. }
  10806. int ggml_cpu_has_sse3(void) {
  10807. #if defined(__SSE3__)
  10808. return 1;
  10809. #else
  10810. return 0;
  10811. #endif
  10812. }
  10813. int ggml_cpu_has_vsx(void) {
  10814. #if defined(__POWER9_VECTOR__)
  10815. return 1;
  10816. #else
  10817. return 0;
  10818. #endif
  10819. }
  10820. ////////////////////////////////////////////////////////////////////////////////