| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061 |
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include <chrono>
- #include <algorithm>
- #include <array>
- #include <atomic>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <mutex>
- #include <random>
- #include <sstream>
- #include <thread>
- #include <vector>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- struct results_perplexity {
- std::vector<llama_token> tokens;
- double ppl_value;
- std::vector<float> logits;
- std::vector<float> probs;
- };
- struct results_log_softmax {
- double log_softmax;
- float logit;
- float prob;
- };
- static std::vector<float> softmax(const std::vector<float>& logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) {
- max_logit = std::max(max_logit, v);
- }
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) {
- probs[i] /= sum_exp;
- }
- return probs;
- }
- static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
- float max_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
- }
- static inline int nearest_int(float fval) {
- //assert(fval <= 4194303.f);
- float val = fval + 12582912.f;
- int i; memcpy(&i, &val, sizeof(int));
- return (i & 0x007fffff) - 0x00400000;
- }
- static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
- float max_logit = logits[0];
- float min_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- min_logit = std::min(min_logit, logits[i]);
- }
- min_logit = std::max(min_logit, max_logit - 16);
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- const float log_sum_exp = log(sum_exp);
- const float min_log_prob = min_logit - max_logit - log_sum_exp;
- const float scale = (max_logit - min_logit)/65535.f;
- float * d = (float *)log_prob;
- d[0] = scale;
- d[1] = min_log_prob;
- log_prob += 4;
- if (scale) {
- const float inv_scale = 1/scale;
- for (int i = 0; i < n_vocab; ++i) {
- log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
- }
- } else {
- std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
- }
- return max_logit + log_sum_exp - logits[tok];
- }
- static void process_logits(
- int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
- double & nll, double & nll2, float * logit_history, float * prob_history
- ) {
- std::mutex mutex;
- int counter = 0;
- auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
- const double v = -results.log_softmax;
- local_nll += v;
- local_nll2 += v*v;
- logit_history[i] = results.logit;
- prob_history[i] = results.prob;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
- std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
- std::mutex mutex;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- int counter = 0;
- auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
- local_nll += v;
- local_nll2 += v*v;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
- }
- struct kl_divergence_result {
- double sum_nll = 0.0;
- double sum_nll2 = 0.0;
- double sum_nll_base = 0.0;
- double sum_nll_base2 = 0.0;
- double sum_nll_nll_base = 0.0;
- double sum_kld = 0.0;
- double sum_kld2 = 0.0;
- double sum_p_diff = 0.0;
- double sum_p_diff2 = 0.0;
- double sum_p_diff4 = 0.0;
- float max_p_diff = 0.0f;
- size_t n_same_top = 0.0;
- size_t count = 0.0;
- };
- static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
- float max_logit = logits[0];
- int imax = 0;
- for (int i = 1; i < n_vocab; ++i) {
- if (logits[i] > max_logit) {
- max_logit = logits[i];
- imax = i;
- }
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- const float log_sum_exp = log(sum_exp);
- const float * d = (const float *)base_log_prob;
- const float scale = d[0];
- const float min_log_prob = d[1];
- base_log_prob += 4;
- const float nll = max_logit + log_sum_exp - logits[tok];
- kld.sum_nll += nll;
- kld.sum_nll2 += nll*nll;
- const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
- kld.sum_nll_base += nll_base;
- kld.sum_nll_base2 += nll_base*nll_base;
- kld.sum_nll_nll_base += nll*nll_base;
- max_logit += log_sum_exp;
- double sum = 0;
- int imax_base = -1;
- float p_log_base_max = 0;
- for (int i = 0; i < n_vocab; ++i) {
- const float p_log_base = scale*base_log_prob[i] + min_log_prob;
- if (i == 0 || p_log_base > p_log_base_max) {
- p_log_base_max = p_log_base;
- imax_base = i;
- }
- if (p_log_base > -16.f) {
- const float p_base = expf(p_log_base);
- sum += p_base * (p_log_base - logits[i] + max_logit);
- }
- }
- kld.sum_kld += sum;
- kld.sum_kld2 += sum*sum;
- ++kld.count;
- if (imax == imax_base) {
- ++kld.n_same_top;
- }
- const float p_base = expf(-nll_base);
- const float p = expf(-nll);
- const float p_diff = p - p_base;
- kld.sum_p_diff += p_diff;
- const double p_diff2 = p_diff*p_diff;
- kld.sum_p_diff2 += p_diff2;
- kld.sum_p_diff4 += p_diff2*p_diff2;
- kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
- return std::make_pair(sum, p_diff);
- }
- static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
- std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
- float * kld_values, float * p_diff_values) {
- std::mutex mutex;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- int counter = 0;
- auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
- kl_divergence_result local_kld;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- kld.sum_nll += local_kld.sum_nll;
- kld.sum_nll2 += local_kld.sum_nll2;
- kld.sum_nll_base += local_kld.sum_nll_base;
- kld.sum_nll_base2 += local_kld.sum_nll_base2;
- kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
- kld.sum_kld += local_kld.sum_kld;
- kld.sum_kld2 += local_kld.sum_kld2;
- kld.sum_p_diff += local_kld.sum_p_diff;
- kld.sum_p_diff2 += local_kld.sum_p_diff2;
- kld.sum_p_diff4 += local_kld.sum_p_diff4;
- kld.n_same_top += local_kld.n_same_top;
- kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
- kld.count += local_kld.count;
- break;
- }
- lock.unlock();
- std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
- kld_values[i] = (float)v.first;
- p_diff_values[i] = v.second;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
- // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
- // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- LOG_INF("%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
- const int n_ctx = llama_n_ctx(ctx);
- if (int(tokens.size()) < 2*n_ctx) {
- LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
- n_ctx);
- LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
- return {std::move(tokens), 0., {}, {}};
- }
- std::vector<float> logit_history;
- std::vector<float> prob_history;
- logit_history.resize(tokens.size());
- prob_history.resize(tokens.size());
- if (params.ppl_stride <= 0) {
- LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
- return {tokens, -1, logit_history, prob_history};
- }
- const int calc_chunk = n_ctx;
- LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
- if (int(tokens.size()) <= calc_chunk) {
- LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
- tokens.size(), n_ctx, params.ppl_stride);
- return {tokens, -1, logit_history, prob_history};
- }
- const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_batch = params.n_batch;
- const int n_vocab = llama_vocab_n_tokens(vocab);
- int count = 0;
- double nll = 0.0;
- LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * params.ppl_stride;
- const int end = start + calc_chunk;
- const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
- //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_kv_self_clear(ctx);
- llama_batch batch = llama_batch_init(n_batch, 0, 1);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- common_batch_clear(batch);
- for (int i = 0; i < batch_size; i++) {
- common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
- }
- //LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
- if (llama_decode(ctx, batch)) {
- //LOG_ERR("%s : failed to eval\n", __func__);
- llama_batch_free(batch);
- return {tokens, -1, logit_history, prob_history};
- }
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_vocab_bos(vocab);
- }
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
- if (j == 0) {
- tokens[batch_start] = token_org;
- }
- }
- llama_batch_free(batch);
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- LOG("%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- LOG("%.2f minutes\n", total_seconds / 60.0);
- }
- //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
- for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + size_t(j + 0) * n_vocab,
- logits.begin() + size_t(j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[tokens[start + j + 1]];
- logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
- prob_history[start + j + 1] = prob;
- nll += -std::log(prob);
- ++count;
- }
- // perplexity is e^(average negative log-likelihood)
- if (params.ppl_output_type == 0) {
- LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
- } else {
- LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
- }
- }
- LOG("\n");
- return {tokens, std::exp(nll / count), logit_history, prob_history};
- }
- static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
- if (params.ppl_stride > 0) {
- return perplexity_v2(ctx, params);
- }
- // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
- // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- std::ofstream logits_stream;
- if (!params.logits_file.empty()) {
- logits_stream.open(params.logits_file.c_str(), std::ios::binary);
- if (!logits_stream.is_open()) {
- LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
- return {};
- }
- LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
- logits_stream.write("_logits_", 8);
- logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
- }
- auto tim1 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
- auto tim2 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
- if (int(tokens.size()) < 2*n_ctx) {
- LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
- n_ctx);
- LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
- return {std::move(tokens), 0., {}, {}};
- }
- std::vector<float> logit_history;
- logit_history.resize(tokens.size());
- std::vector<float> prob_history;
- prob_history.resize(tokens.size());
- const int n_chunk_max = tokens.size() / n_ctx;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_batch = params.n_batch;
- const int n_vocab = llama_vocab_n_tokens(vocab);
- int count = 0;
- double nll = 0.0;
- double nll2 = 0.0;
- const int num_batches = (n_ctx + n_batch - 1) / n_batch;
- const int n_seq = std::max(1, n_batch / n_ctx);
- GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
- GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
- llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
- std::vector<float> logits;
- if (num_batches > 1) {
- logits.reserve(size_t(n_ctx) * n_vocab);
- }
- LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- std::vector<uint16_t> log_probs;
- if (!params.logits_file.empty()) {
- logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
- logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
- logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
- const int nv = 2*((n_vocab + 1)/2) + 4;
- log_probs.resize(n_ctx * nv);
- }
- // We get the logits for all the tokens in the context window (params.n_ctx)
- // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
- // calculate the perplexity over the last half of the window (so the model always has
- // some context to predict the token).
- //
- // We rely on the fact that attention in the forward pass only looks at previous
- // tokens here, so the logits returned for each token are an accurate representation
- // of what the model would have predicted at that point.
- //
- // Example, we have a context window of 512, we will compute perplexity for each of the
- // last 256 tokens. Then, we split the input up into context window size chunks to
- // process the entire prompt.
- const int first = n_ctx/2;
- for (int i = 0; i < n_chunk; i += n_seq) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- const int n_seq_batch = std::min(n_seq, n_chunk - i);
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_kv_self_clear(ctx);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- int n_outputs = 0;
- batch.n_tokens = 0;
- for (int seq = 0; seq < n_seq_batch; seq++) {
- int seq_start = batch_start + seq*n_ctx;
- // save original token and restore it after eval
- const auto token_org = tokens[seq_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[seq_start] = llama_vocab_bos(vocab);
- }
- for (int k = 0; k < batch_size; ++k) {
- const int idx = seq*n_ctx + k;
- batch.token [idx] = tokens[seq_start + k];
- batch.pos [idx] = j*n_batch + k;
- batch.n_seq_id[idx] = 1;
- batch.seq_id [idx][0] = seq;
- batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
- n_outputs += batch.logits[idx] != 0;
- }
- batch.n_tokens += batch_size;
- // restore the original token in case it was set to BOS
- tokens[seq_start] = token_org;
- }
- if (llama_decode(ctx, batch)) {
- LOG_INF("%s : failed to eval\n", __func__);
- return {tokens, -1, logit_history, prob_history};
- }
- if (num_batches > 1 && n_outputs > 0) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
- }
- }
- if (i == 0) {
- llama_synchronize(ctx);
- const auto t_end = std::chrono::high_resolution_clock::now();
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total*n_chunk/n_seq);
- if (total_seconds >= 60*60) {
- LOG("%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- LOG("%.2f minutes\n", total_seconds / 60.0);
- }
- for (int seq = 0; seq < n_seq_batch; seq++) {
- const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
- llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
- if (!params.logits_file.empty()) {
- process_logits(logits_stream, n_vocab, all_logits,
- tokens_data, n_ctx - 1 - first,
- workers, log_probs, nll, nll2);
- } else {
- process_logits(n_vocab, all_logits,
- tokens_data, n_ctx - 1 - first,
- workers, nll, nll2,
- logit_history.data() + start + seq*n_ctx + first,
- prob_history.data() + start + seq*n_ctx + first);
- }
- count += n_ctx - first - 1;
- // perplexity is e^(average negative log-likelihood)
- if (params.ppl_output_type == 0) {
- LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
- } else {
- double av = nll/count;
- double av2 = nll2/count - av*av;
- if (av2 > 0) {
- av2 = sqrt(av2/(count-1));
- }
- LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
- }
- }
- logits.clear();
- }
- LOG("\n");
- nll2 /= count;
- nll /= count;
- const double ppl = exp(nll);
- nll2 -= nll * nll;
- if (nll2 > 0) {
- nll2 = sqrt(nll2/(count-1));
- LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
- } else {
- LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
- }
- llama_batch_free(batch);
- return {tokens, ppl, logit_history, prob_history};
- }
- static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
- int prev_outputs = 0;
- for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
- const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- };
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0) {
- LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
- return false;
- }
- int n_outputs = 0;
- for (int i = 0; i < n_tokens; ++i) {
- n_outputs += batch_view.logits[i] != 0;
- }
- memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
- prev_outputs += n_outputs;
- }
- return true;
- }
- #define K_TOKEN_CHUNK 4
- static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
- const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
- if (eval_results.size() != eval_pairs.size()) {
- eval_results.resize(eval_pairs.size());
- }
- if (eval_pairs.empty()) {
- return;
- }
- size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
- std::atomic<int> counter(0);
- auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
- float local_logprobs[K_TOKEN_CHUNK];
- while (true) {
- const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
- if (first >= eval_results.size()) {
- break;
- }
- const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
- for (size_t i = first; i < last; ++i) {
- const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
- float max_logit = logits[0];
- for (int j = 1; j < n_vocab; ++j) {
- max_logit = std::max(max_logit, logits[j]);
- }
- float sum_p = 0.f;
- for (int j = 0; j < n_vocab; ++j) {
- sum_p += expf(logits[j] - max_logit);
- }
- local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
- }
- std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
- }
- };
- for (size_t it = 0; it < max_threads; ++it) {
- workers[it] = std::thread(compute);
- }
- for (size_t it = 0; it < max_threads; ++it) {
- workers[it].join();
- }
- }
- static void hellaswag_score(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- // Calculates hellaswag score (acc_norm) from prompt
- //
- // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
- // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
- //
- // All 10042 tasks should be extracted to keep the results standardized like other implementations.
- //
- // Datafile layout:
- // ['??'] denotes json fields
- // 6 lines per task:
- // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
- // ['label'] - The index the best common sense ending aka gold ending
- // ['endings'][0] - Endings added to the first part of the query
- // ['endings'][1]
- // ['endings'][2]
- // ['endings'][3]
- std::vector<std::string> prompt_lines;
- std::istringstream strstream(params.prompt);
- std::string line;
- while (std::getline(strstream,line,'\n')) {
- prompt_lines.push_back(line);
- }
- if (prompt_lines.size() % 6 != 0) {
- LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
- return;
- }
- size_t hs_task_count = prompt_lines.size()/6;
- LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
- const bool is_spm = llama_vocab_type(vocab) == LLAMA_VOCAB_TYPE_SPM;
- LOG_INF("================================= is_spm = %d\n", is_spm);
- // The tasks should be randomized so the score stabilizes quickly.
- bool randomize_tasks = true;
- // Number of tasks to use when computing the score
- if (params.hellaswag_tasks < hs_task_count) {
- hs_task_count = params.hellaswag_tasks;
- }
- // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
- std::mt19937 rng(1);
- // Dataholder for hellaswag tasks
- struct hs_data_t {
- std::string context;
- size_t gold_ending_idx;
- std::string ending[4];
- size_t ending_logprob_count[4];
- double ending_logprob[4];
- size_t i_logits; // starting index of logits in the llama_batch
- size_t common_prefix; // max number of initial tokens that are the same in all sentences
- size_t required_tokens; // needed number of tokens to evaluate all 4 endings
- std::vector<llama_token> seq_tokens[4];
- };
- LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
- // Select and read data from prompt lines
- std::vector<hs_data_t> hs_data(hs_task_count);
- for (size_t i = 0; i < hs_task_count; i++) {
- size_t idx = i;
- auto & hs_cur = hs_data[i];
- // Select a random example of those left in the prompt
- if (randomize_tasks) {
- std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
- idx = dist(rng);
- }
- hs_cur.context = prompt_lines[idx*6];
- hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
- for (size_t j = 0; j < 4; j++) {
- hs_cur.ending[j] = prompt_lines[idx*6+2+j];
- hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
- }
- // determine the common prefix of the endings
- hs_cur.common_prefix = 0;
- for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
- if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
- hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
- hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
- break;
- }
- hs_cur.common_prefix++;
- }
- hs_cur.required_tokens = hs_cur.common_prefix +
- hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
- //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
- // Delete the selected random example from the prompt
- if (randomize_tasks) {
- prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
- }
- }
- LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
- LOG("\ntask\tacc_norm\t95%% confidence interval\n");
- double acc = 0.0f;
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int n_vocab = llama_vocab_n_tokens(vocab);
- const int max_tasks_per_batch = 32;
- const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
- llama_batch batch = llama_batch_init(n_ctx, 0, 4);
- std::vector<float> tok_logits(n_vocab);
- // TODO: this could be made smaller; it's currently the worst-case size
- std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- for (size_t i0 = 0; i0 < hs_task_count; i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
- common_batch_clear(batch);
- // batch as much tasks as possible into the available context
- // each task has 4 unique sequence ids - one for each ending
- // the common prefix is shared among the 4 sequences to save tokens
- // we extract logits only from the last common token and from all ending tokens of each sequence
- while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
- auto & hs_cur = hs_data[i1];
- int n_logits = 0;
- const int s0 = 4*(i1 - i0);
- if (s0 + 4 > max_seq) {
- break;
- }
- for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
- common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
- }
- batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
- n_logits += 1;
- for (int s = 0; s < 4; ++s) {
- const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
- // TODO: don't evaluate the last token of each sequence
- for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
- const bool needs_logits = i < seq_tokens_size - 1;
- common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
- n_logits += needs_logits;
- }
- }
- hs_cur.i_logits = i_logits;
- i_logits += n_logits;
- n_cur += hs_data[i1].required_tokens;
- if (++i1 == hs_task_count) {
- break;
- }
- }
- if (i0 == i1) {
- LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_self_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- LOG_ERR("%s: llama_decode() failed\n", __func__);
- return;
- }
- // Compute log-probs in parallel
- // First we collect all tasks
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto & hs_cur = hs_data[i];
- size_t li = 1; // skip the last logit of the common prefix (computed separately below)
- for (int s = 0; s < 4; ++s) {
- for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
- eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
- }
- }
- }
- // Then we do the actual calculation
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- // compute the logprobs for each ending of the decoded tasks
- for (size_t i = i0; i < i1; ++i) {
- auto & hs_cur = hs_data[i];
- // get the logits of the last token of the common prefix
- std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
- const auto first_probs = softmax(tok_logits);
- for (int s = 0; s < 4; ++s) {
- hs_cur.ending_logprob_count[s] = 1;
- hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
- for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
- hs_cur.ending_logprob[s] += eval_results[ir++];
- hs_cur.ending_logprob_count[s]++;
- }
- hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
- }
- // Find the ending with maximum logprob
- size_t ending_logprob_max_idx = 0;
- double ending_logprob_max_val = hs_cur.ending_logprob[0];
- for (size_t s = 1; s < 4; s++) {
- if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
- ending_logprob_max_idx = s;
- ending_logprob_max_val = hs_cur.ending_logprob[s];
- }
- }
- //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
- // If the gold ending got the maximum logprobe add one accuracy point
- if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
- acc += 1.0;
- }
- double freq = acc / double(i + 1);
- const double za = 1.95996398454;
- // // Wald normal approx
- // double conf =za*sqrt(freq*(1-freq)/double(i + 1));
- // LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
- // Wilson score interval, more accurate
- double z = za * za / double(i + 1);
- double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
- double a = (freq + z * 0.5 - cnf) / (1.0 + z);
- double b = (freq + z * 0.5 + cnf) / (1.0 + z);
- // Print the accumulated accuracy mean x 100 and confidence interval
- LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
- }
- i0 = i1 - 1;
- }
- llama_batch_free(batch);
- LOG("\n");
- }
- struct winogrande_entry {
- std::string first;
- std::string second;
- std::array<std::string, 2> choices;
- int answer;
- size_t i_logits;
- size_t common_prefix;
- size_t required_tokens;
- size_t n_base1; // number of tokens for context + choice 1
- size_t n_base2; // number of tokens for context + choice 2
- std::vector<llama_token> seq_tokens[2];
- };
- static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
- std::vector<winogrande_entry> result;
- std::istringstream in(prompt);
- std::string line;
- std::array<int, 4> comma_pos;
- while (true) {
- std::getline(in, line);
- if (in.fail() || in.eof()) break;
- int ipos = 0;
- bool quote_open = false;
- for (int i = 0; i < int(line.size()); ++i) {
- if (!quote_open) {
- if (line[i] == ',') {
- comma_pos[ipos++] = i;
- if (ipos == 4) break;
- }
- else if (line[i] == '"') {
- quote_open = true;
- }
- }
- else {
- if (line[i] == '"') {
- quote_open = false;
- }
- }
- }
- if (ipos != 4) {
- LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
- continue;
- }
- auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
- : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
- auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
- auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
- auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
- auto index = line.substr(0, comma_pos[0]);
- int where = 0;
- for ( ; where < int(sentence.size()); ++where) {
- if (sentence[where] == '_') break;
- }
- if (where == int(sentence.size())) {
- LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
- continue;
- }
- std::istringstream stream(answer.c_str());
- int i_answer; stream >> i_answer;
- if (stream.fail() || i_answer < 1 || i_answer > 2) {
- LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
- continue;
- }
- result.emplace_back();
- auto& wg = result.back();
- wg.first = sentence.substr(0, where);
- wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
- wg.choices[0] = std::move(choice1);
- wg.choices[1] = std::move(choice2);
- wg.answer = i_answer;
- }
- return result;
- }
- /*
- * Evaluates the Winogrande score.
- * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
- * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
- * As an example, the 1st row in the above dataset is
- *
- * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
- *
- */
- static void winogrande_score(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- constexpr int k_min_trailing_ctx = 3;
- auto data = load_winogrande_from_csv(params.prompt);
- if (data.empty()) {
- LOG_ERR("%s: no tasks\n", __func__);
- return;
- }
- LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
- if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
- LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
- std::mt19937 rng(1);
- std::vector<int> aux(data.size());
- for (int i = 0; i < int(data.size()); ++i) {
- aux[i] = i;
- }
- float scale = 1/(1.f + (float)rng.max());
- std::vector<winogrande_entry> selected;
- selected.resize(params.winogrande_tasks);
- for (int i = 0; i < int(params.winogrande_tasks); ++i) {
- int j = int(scale*rng()*aux.size());
- selected[i] = std::move(data[aux[j]]);
- aux[j] = aux.back();
- aux.pop_back();
- }
- data = std::move(selected);
- }
- LOG_INF("%s : tokenizing selected tasks\n", __func__);
- for (auto & task : data) {
- task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
- task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
- task.common_prefix = 0;
- for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
- if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
- break;
- }
- task.common_prefix++;
- }
- // TODO: the last token of each of the sequences don't need to be evaluated
- task.required_tokens = task.common_prefix +
- task.seq_tokens[0].size() - task.common_prefix +
- task.seq_tokens[1].size() - task.common_prefix;
- task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
- task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
- }
- LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int n_vocab = llama_vocab_n_tokens(vocab);
- const int max_tasks_per_batch = 128;
- const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
- llama_batch batch = llama_batch_init(n_ctx, 0, 2);
- std::vector<float> tok_logits(n_vocab);
- // TODO: this could be made smaller; it's currently the worst-case size
- std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- int n_correct = 0;
- int n_done = 0;
- for (size_t i0 = 0; i0 < data.size(); i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_logits = 0;
- common_batch_clear(batch);
- while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
- int n_logits = 0;
- const int s0 = 2*(i1 - i0);
- if (s0 + 2 > max_seq) {
- break;
- }
- for (size_t i = 0; i < data[i1].common_prefix; ++i) {
- common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
- }
- batch.logits[batch.n_tokens - 1] = true;
- n_logits += 1;
- for (int s = 0; s < 2; ++s) {
- // TODO: end before the last token, no need to predict past the end of the sequences
- for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
- common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
- n_logits += 1;
- }
- }
- data[i1].i_logits = i_logits;
- i_logits += n_logits;
- n_cur += data[i1].required_tokens;
- if (++i1 == data.size()) {
- break;
- }
- }
- if (i0 == i1) {
- LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_self_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- LOG_ERR("%s: llama_decode() failed\n", __func__);
- return;
- }
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto & task = data[i];
- const bool skip_choice =
- task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
- task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
- const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
- const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
- size_t li = n_base1 - task.common_prefix;
- for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
- eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
- }
- const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
- const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
- // FIXME: this uses the wrong first logits when not skipping the choice word
- li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
- for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
- eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
- }
- }
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- for (size_t i = i0; i < i1; ++i) {
- auto & task = data[i];
- const bool skip_choice =
- task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
- task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
- float score_1st = 0;
- const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
- const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
- for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
- score_1st += eval_results[ir++];
- }
- score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
- float score_2nd = 0;
- const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
- const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
- for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
- score_2nd += eval_results[ir++];
- }
- score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
- int result = score_1st > score_2nd ? 1 : 2;
- if (result == task.answer) {
- ++n_correct;
- }
- ++n_done;
- // print the accumulated accuracy mean x 100
- LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
- }
- i0 = i1 - 1;
- }
- LOG("\n");
- if (n_done < 100) return;
- const float p = 1.f*n_correct/n_done;
- const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
- LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
- }
- static bool deserialize_string(std::istream & in, std::string & str) {
- uint32_t size;
- if (!in.read((char *)&size, sizeof(size)).fail()) {
- str.resize(size);
- if (!in.read((char *)&str[0], size).fail()) return true;
- }
- return false;
- }
- struct multiple_choice_answers {
- std::vector<std::string> answers;
- std::vector<int> labels;
- bool deserialize(std::istream& in) {
- uint32_t n;
- in.read((char *)&n, sizeof(n));
- if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
- answers.resize(n);
- labels.resize(n);
- for (auto& a : answers) {
- if (!deserialize_string(in, a)) return false;
- }
- in.read((char *)labels.data(), n*sizeof(int));
- return !in.fail();
- }
- };
- struct multiple_choice_task {
- std::string question; // the question (or context that needs to be continued)
- multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
- multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
- bool deserialize(std::istream& in) {
- if (!deserialize_string(in, question)) return false;
- return mc1.deserialize(in) && mc2.deserialize(in);
- }
- // For evaluation
- size_t i_logits; // starting index of logits in the llama_batch
- size_t common_prefix; // max number of initial tokens that are the same in all sentences
- size_t required_tokens; // needed number of tokens to evaluate all answers
- std::vector<std::vector<llama_token>> seq_tokens;
- std::vector<float> log_probs;
- };
- static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
- if (task.question.empty() || task.mc1.answers.empty()) {
- if (log_error) {
- LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
- }
- return false;
- }
- task.seq_tokens.reserve(task.mc1.answers.size());
- for (auto& answer : task.mc1.answers) {
- if (answer.empty()) {
- if (log_error) {
- LOG_ERR("%s: found empty answer\n", __func__);
- }
- return false;
- }
- task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
- }
- auto min_len = task.seq_tokens.front().size();
- for (auto& seq : task.seq_tokens) {
- min_len = std::min(min_len, seq.size());
- }
- task.common_prefix = 0;
- for (size_t k = 0; k < min_len; ++k) {
- auto token = task.seq_tokens[0][k];
- bool all_same = true;
- for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
- if (task.seq_tokens[i][k] != token) {
- all_same = false;
- break;
- }
- }
- if (!all_same) {
- break;
- }
- ++task.common_prefix;
- }
- task.required_tokens = task.common_prefix;
- for (auto& seq : task.seq_tokens) {
- task.required_tokens += seq.size() - task.common_prefix;
- }
- return true;
- }
- //
- // Calculates score for multiple choice tasks with single correct answer from prompt.
- // Commonly used LLM evaluation metrics of this type are
- // * ARC
- // * HellaSwag
- // * MMLU
- // * TruthfulQA
- //
- // Validation datasets for these 4 tests can be found at
- // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
- // The data for these datasets was extracted from
- // git@hf.co:datasets/allenai/ai2_arc
- // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
- // git@hf.co:datasets/Stevross/mmlu
- // https://huggingface.co/datasets/truthful_qa
- //
- static void multiple_choice_score(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- std::istringstream strstream(params.prompt);
- uint32_t n_task;
- strstream.read((char *)&n_task, sizeof(n_task));
- if (strstream.fail() || n_task == 0) {
- LOG_ERR("%s: no tasks\n", __func__);
- return;
- }
- LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
- std::vector<uint32_t> task_pos(n_task);
- strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
- if (strstream.fail()) {
- LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
- return;
- }
- std::vector<multiple_choice_task> tasks;
- if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
- // Use all tasks
- tasks.resize(n_task);
- LOG_INF("%s: reading tasks", __func__);
- int n_dot = std::max((int) n_task/100, 1);
- int i = 0;
- for (auto& task : tasks) {
- ++i;
- if (!task.deserialize(strstream)) {
- LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
- return;
- }
- if (i%n_dot == 0) LOG(".");
- }
- LOG("done\n");
- }
- else {
- LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
- std::mt19937 rng(1);
- std::vector<int> aux(n_task);
- for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
- float scale = 1.f/(1.f + (float)std::mt19937::max());
- tasks.resize(params.multiple_choice_tasks);
- for (auto& task : tasks) {
- int j = (int)(scale * rng() * aux.size());
- int idx = aux[j];
- aux[j] = aux.back();
- aux.pop_back();
- strstream.seekg(task_pos[idx], std::ios::beg);
- if (!task.deserialize(strstream)) {
- LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
- return;
- }
- }
- n_task = params.multiple_choice_tasks;
- }
- LOG_INF("%s: preparing task data", __func__);
- if (n_task > 500) {
- LOG("...");
- std::atomic<int> counter(0);
- std::atomic<int> n_bad(0);
- auto prepare = [&counter, &n_bad, &tasks, ctx] () {
- int num_tasks = tasks.size();
- int n_bad_local = 0;
- while (true) {
- int first = counter.fetch_add(K_TOKEN_CHUNK);
- if (first >= num_tasks) {
- if (n_bad_local > 0) n_bad += n_bad_local;
- break;
- }
- int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
- for (int i = first; i < last; ++i) {
- if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
- }
- }
- };
- size_t max_thread = std::thread::hardware_concurrency();
- max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
- std::vector<std::thread> workers(max_thread-1);
- for (auto& w : workers) w = std::thread(prepare);
- prepare();
- for (auto& w : workers) w.join();
- LOG("done\n");
- int nbad = n_bad;
- if (nbad > 0) {
- LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
- return;
- }
- } else {
- int n_dot = std::max((int) n_task/100, 1);
- int i_task = 0;
- for (auto& task : tasks) {
- ++i_task;
- if (!multiple_choice_prepare_one_task(ctx, task, true)) {
- return;
- }
- if (i_task%n_dot == 0) {
- LOG(".");
- }
- }
- LOG("done\n");
- }
- LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
- LOG("\ntask\tacc_norm\n");
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int n_vocab = llama_vocab_n_tokens(vocab);
- const int max_tasks_per_batch = 32;
- const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
- llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
- std::vector<float> tok_logits(n_vocab);
- std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- std::vector<int> batch_indeces;
- int n_done = 0;
- int n_correct = 0;
- int n_tot_answers = 0;
- for (size_t i0 = 0; i0 < tasks.size(); i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
- common_batch_clear(batch);
- // batch as much tasks as possible into the available context
- // each task has 4 unique sequence ids - one for each ending
- // the common prefix is shared among the 4 sequences to save tokens
- // we extract logits only from the last common token and from all ending tokens of each sequence
- int s0 = 0;
- while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
- auto& cur_task = tasks[i1];
- int n_logits = 0;
- int num_answers = cur_task.seq_tokens.size();
- if (s0 + num_answers > max_seq) {
- break;
- }
- if (int(batch_indeces.size()) != num_answers) {
- batch_indeces.resize(num_answers);
- }
- for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
- for (size_t i = 0; i < cur_task.common_prefix; ++i) {
- //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
- common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
- }
- batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
- n_logits += 1;
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
- // TODO: don't evaluate the last token of each sequence
- for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
- const bool needs_logits = i < seq_tokens_size - 1;
- common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
- n_logits += needs_logits;
- }
- }
- s0 += num_answers;
- cur_task.i_logits = i_logits;
- i_logits += n_logits;
- n_cur += cur_task.required_tokens;
- if (++i1 == tasks.size()) {
- break;
- }
- }
- if (i0 == i1) {
- LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_self_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- LOG_ERR("%s: llama_decode() failed\n", __func__);
- return;
- }
- // Compute log-probs in parallel
- // First we collect all tasks
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto& cur_task = tasks[i];
- size_t li = 1; // skip the last logit of the common prefix (computed separately below)
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
- eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
- }
- }
- }
- // Then we do the actual calculation
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- // compute the logprobs for each ending of the decoded tasks
- for (size_t i = i0; i < i1; ++i) {
- auto & cur_task = tasks[i];
- //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
- //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
- // if (cur_task.mc1.labels[j] == 1) {
- // LOG("%d", j+1);
- // }
- //}
- //LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
- // get the logits of the last token of the common prefix
- std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
- const auto first_probs = softmax(tok_logits);
- cur_task.log_probs.resize(cur_task.seq_tokens.size());
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- size_t count = 1;
- float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
- for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
- //LOG(" %zu %g\n", ir, eval_results[ir]);
- ++count;
- log_prob += eval_results[ir++];
- }
- cur_task.log_probs[s] = log_prob / count;
- //LOG(" Final: %g\n", log_prob / count);
- //LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
- }
- // Find the ending with maximum logprob
- size_t logprob_max_idx = 0;
- float logprob_max_val = cur_task.log_probs[0];
- for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
- if (cur_task.log_probs[s] > logprob_max_val) {
- logprob_max_val = cur_task.log_probs[s];
- logprob_max_idx = s;
- }
- }
- n_tot_answers += cur_task.log_probs.size();
- if (cur_task.mc1.labels[logprob_max_idx] == 1) {
- ++n_correct;
- }
- ++n_done;
- // Print the accumulated accuracy mean x 100
- LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
- }
- i0 = i1 - 1;
- }
- llama_batch_free(batch);
- if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
- float p = 1.f*n_correct/n_done;
- float sigma = sqrt(p*(1-p)/(n_done-1));
- LOG("\n");
- LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
- p = 1.f*n_done/n_tot_answers;
- sigma = sqrt(p*(1-p)/(n_done-1));
- LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
- LOG_INF("\n");
- }
- static void kl_divergence(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- if (params.logits_file.empty()) {
- LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
- return;
- }
- std::ifstream in(params.logits_file.c_str(), std::ios::binary);
- if (!in) {
- LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
- return;
- }
- {
- char check[9]; check[8] = 0;
- in.read(check, 8);
- if (in.fail() || strncmp("_logits_", check, 8) != 0) {
- LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
- return;
- }
- }
- uint32_t n_ctx;
- in.read((char *)&n_ctx, sizeof(n_ctx));
- if (n_ctx > llama_n_ctx(ctx)) {
- LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
- __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
- }
- int n_vocab;
- int n_chunk;
- in.read((char *)&n_vocab, sizeof(n_vocab));
- in.read((char *)&n_chunk, sizeof(n_chunk));
- if (in.fail()) {
- LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
- return;
- }
- if (n_vocab != llama_vocab_n_tokens(vocab)) {
- LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_vocab_n_tokens(vocab));
- }
- std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
- if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
- LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
- return;
- }
- const int n_batch = params.n_batch;
- const int num_batches = (n_ctx + n_batch - 1)/n_batch;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
- std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
- std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
- std::vector<float> logits;
- if (num_batches > 1) {
- logits.reserve(size_t(n_ctx) * n_vocab);
- }
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
- if (count < 1) {
- return std::make_pair(0., 0.);
- }
- double f = sum/count;
- double df = sum2/count - f*f;
- df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
- return std::make_pair(f, df);
- };
- auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
- if (count < 10) {
- return 0.0;
- }
- double var = sumab/count - (suma/count)*(sumb/count);
- var /= count - 1;
- return var;
- };
- kl_divergence_result kld;
- auto kld_ptr = kld_values.data();
- auto p_diff_ptr = p_diff_values.data();
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- const auto t_start = std::chrono::high_resolution_clock::now();
- if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
- LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
- return;
- }
- // clear the KV cache
- llama_kv_self_clear(ctx);
- llama_batch batch = llama_batch_init(n_batch, 0, 1);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_vocab_bos(vocab);
- }
- common_batch_clear(batch);
- for (int i = 0; i < batch_size; i++) {
- common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
- }
- if (llama_decode(ctx, batch)) {
- LOG_ERR("%s : failed to eval\n", __func__);
- llama_batch_free(batch);
- return;
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- if (num_batches > 1) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
- }
- }
- llama_batch_free(batch);
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- LOG("%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- LOG("%.2f minutes\n", total_seconds / 60.0);
- }
- LOG("\n");
- LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
- const int first = n_ctx/2;
- const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
- process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
- workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
- p_diff_ptr += n_ctx - 1 - first;
- kld_ptr += n_ctx - 1 - first;
- LOG("%4d", i+1);
- auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
- const double ppl_val = exp(log_ppl.first);
- const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
- LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
- auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
- const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
- const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
- const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
- LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
- auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
- LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
- auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
- const double p_diff_rms_val = sqrt(p_diff_mse.first);
- const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
- LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
- double p_top_val = 1.*kld.n_same_top/kld.count;
- double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
- LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
- LOG("\n");
- logits.clear();
- }
- LOG("\n");
- if (kld.count < 100) return; // we do not wish to do statistics on so few values
- std::sort(kld_values.begin(), kld_values.end());
- std::sort(p_diff_values.begin(), p_diff_values.end());
- LOG("====== Perplexity statistics ======\n");
- auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
- const double ppl_val = exp(log_ppl.first);
- const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
- LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
- auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
- const double ppl_base_val = exp(log_ppl_base.first);
- const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
- LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
- const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
- // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
- const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
- LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
- const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
- const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
- LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
- const double ppl_ratio_val = exp(log_ppl_ratio_val);
- const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
- LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
- const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
- const double ppl_diff_val = ppl_val - ppl_base_val;
- const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
- LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
- LOG("\n");
- LOG("====== KL divergence statistics ======\n");
- auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
- LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
- auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
- : kld_values[kld_values.size()/2];
- auto percentile = [] (std::vector<float> values, float fraction) {
- if (fraction <= 0) return values.front();
- if (fraction >= 1) return values.back();
- float p = fraction*(values.size() - 1);
- size_t ip = size_t(p); p -= ip;
- return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
- };
- LOG("Maximum KLD: %10.6f\n", kld_values.back());
- LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
- LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
- LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
- LOG("Median KLD: %10.6f\n", kld_median);
- LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
- LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
- LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
- LOG("Minimum KLD: %10.6f\n", kld_values.front());
- LOG("\n");
- LOG("====== Token probability statistics ======\n");
- auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
- LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
- auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
- : p_diff_values[p_diff_values.size()/2];
- LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
- LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
- LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
- LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
- LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
- LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
- LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
- LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
- LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
- LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
- LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
- LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
- LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
- auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
- // LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
- const double p_diff_rms_val = sqrt(p_diff_mse.first);
- const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
- LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
- const double same_top_p = 1.0*kld.n_same_top/kld.count;
- LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
- }
- int main(int argc, char ** argv) {
- common_params params;
- params.n_ctx = 512;
- params.logits_all = true;
- params.escape = false;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
- return 1;
- }
- common_init();
- const int32_t n_ctx = params.n_ctx;
- if (n_ctx <= 0) {
- LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
- return 1;
- }
- const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
- if (ppl) {
- const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
- const int32_t n_kv = n_seq * n_ctx;
- params.n_parallel = n_seq;
- params.n_ctx = n_kv;
- params.n_batch = std::min(params.n_batch, n_kv);
- } else {
- params.n_batch = std::min(params.n_batch, params.n_ctx);
- if (params.kl_divergence) {
- params.n_parallel = 1;
- } else {
- // ensure there's at least enough seq_ids for HellaSwag
- params.n_parallel = std::max(4, params.n_parallel);
- }
- }
- if (params.ppl_stride > 0) {
- LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
- params.n_ctx, params.n_ctx + params.ppl_stride/2);
- params.n_ctx += params.ppl_stride/2;
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model and apply lora adapter, if any
- common_init_result llama_init = common_init_from_params(params);
- llama_model * model = llama_init.model.get();
- llama_context * ctx = llama_init.context.get();
- if (model == NULL) {
- LOG_ERR("%s: unable to load model\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_model_n_ctx_train(model);
- if (params.n_ctx > n_ctx_train) {
- LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, params.n_ctx);
- }
- // print system information
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- }
- struct results_perplexity results;
- if (params.hellaswag) {
- hellaswag_score(ctx, params);
- } else if (params.winogrande) {
- winogrande_score(ctx, params);
- } else if (params.multiple_choice) {
- multiple_choice_score(ctx, params);
- } else if (params.kl_divergence) {
- kl_divergence(ctx, params);
- } else {
- results = perplexity(ctx, params, n_ctx);
- }
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|