| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- #!/usr/bin/env python3
- # HF starcoder --> gguf conversion
- from __future__ import annotations
- import argparse
- import json
- import os
- import struct
- import sys
- from pathlib import Path
- from typing import Any
- import numpy as np
- import torch
- from transformers import AutoTokenizer # type: ignore[import]
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
- import gguf
- def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
- parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
- return parser.parse_args()
- args = parse_args()
- dir_model = args.model
- ftype = args.ftype
- if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
- # possible tensor data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
- print("gguf: loading model "+dir_model.name)
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit(1)
- # get number of model parts
- num_parts = count_model_parts(dir_model)
- ARCH=gguf.MODEL_ARCH.STARCODER
- gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- print("gguf: get model metadata")
- block_count = hparams["n_layer"]
- gguf_writer.add_name("StarCoder")
- gguf_writer.add_context_length(hparams["n_positions"])
- gguf_writer.add_embedding_length(hparams["n_embd"])
- gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_head_count(hparams["n_head"])
- gguf_writer.add_head_count_kv(1)
- gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
- gguf_writer.add_file_type(ftype)
- # TOKENIZATION
- print("gguf: get tokenizer metadata")
- tokens: list[bytearray] = []
- scores: list[float] = []
- toktypes: list[int] = []
- # gpt2 tokenizer
- gguf_writer.add_tokenizer_model("gpt2")
- print("gguf: get gpt2 tokenizer vocab")
- # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- # The number of tokens in tokenizer.json can differ from the expected vocab size.
- # This causes downstream issues with mismatched tensor sizes when running the inference
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
- for i in range(vocab_size):
- tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
- special_vocab.add_to_gguf(gguf_writer)
- # TENSORS
- tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
- # params for qkv transform
- n_head = hparams["n_head"]
- n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
- head_dim = hparams["n_embd"] // n_head
- # tensor info
- print("gguf: get tensor metadata")
- if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
- else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
- for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
- for name in model_part.keys():
- data = model_part[name]
- old_dtype = data.dtype
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
- data = data.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(new_name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print(f"gguf: model successfully exported to '{fname_out}'")
- print("")
|