ggml-backend.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. #include "ggml-backend.h"
  2. #include "ggml-alloc.h"
  3. #include <assert.h>
  4. #include <stdarg.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #define UNUSED GGML_UNUSED
  9. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  10. // backend buffer
  11. ggml_backend_buffer_t ggml_backend_buffer_init(
  12. struct ggml_backend * backend,
  13. struct ggml_backend_buffer_i iface,
  14. ggml_backend_buffer_context_t context,
  15. size_t size) {
  16. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  17. GGML_ASSERT(iface.get_base != NULL);
  18. (*buffer) = (struct ggml_backend_buffer) {
  19. /* .interface = */ iface,
  20. /* .backend = */ backend,
  21. /* .context = */ context,
  22. /* .size = */ size,
  23. };
  24. return buffer;
  25. }
  26. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  27. if (buffer->iface.free_buffer != NULL) {
  28. buffer->iface.free_buffer(buffer);
  29. }
  30. free(buffer);
  31. }
  32. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  33. return ggml_backend_get_alignment(buffer->backend);
  34. }
  35. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  36. return buffer->iface.get_base(buffer);
  37. }
  38. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  39. return buffer->size;
  40. }
  41. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  42. if (buffer->iface.get_alloc_size) {
  43. return buffer->iface.get_alloc_size(buffer, tensor);
  44. }
  45. return ggml_nbytes(tensor);
  46. }
  47. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  48. if (buffer->iface.init_tensor) {
  49. buffer->iface.init_tensor(buffer, tensor);
  50. }
  51. }
  52. void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  53. if (buffer->iface.free_tensor) {
  54. buffer->iface.free_tensor(buffer, tensor);
  55. }
  56. }
  57. // backend
  58. ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
  59. return tensor->buffer->backend;
  60. }
  61. const char * ggml_backend_name(ggml_backend_t backend) {
  62. return backend->iface.get_name(backend);
  63. }
  64. void ggml_backend_free(ggml_backend_t backend) {
  65. backend->iface.free(backend);
  66. }
  67. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  68. return backend->iface.alloc_buffer(backend, size);
  69. }
  70. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  71. return backend->iface.get_alignment(backend);
  72. }
  73. void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  74. ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  75. }
  76. void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  77. ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  78. }
  79. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  80. ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  81. ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
  82. }
  83. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  84. ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  85. ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
  86. }
  87. void ggml_backend_synchronize(ggml_backend_t backend) {
  88. backend->iface.synchronize(backend);
  89. }
  90. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  91. return backend->iface.graph_plan_create(backend, cgraph);
  92. }
  93. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  94. backend->iface.graph_plan_free(backend, plan);
  95. }
  96. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  97. backend->iface.graph_plan_compute(backend, plan);
  98. }
  99. void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  100. backend->iface.graph_compute(backend, cgraph);
  101. }
  102. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  103. return backend->iface.supports_op(backend, op);
  104. }
  105. // backend copy
  106. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  107. if (a->type != b->type) {
  108. return false;
  109. }
  110. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  111. if (a->ne[i] != b->ne[i]) {
  112. return false;
  113. }
  114. if (a->nb[i] != b->nb[i]) {
  115. return false;
  116. }
  117. }
  118. return true;
  119. }
  120. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  121. //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
  122. //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
  123. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  124. // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
  125. if (src == dst) {
  126. return;
  127. }
  128. // TODO: allow backends to support copy to/from same backend
  129. if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
  130. ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
  131. } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
  132. ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
  133. } else {
  134. // shouldn't be hit when copying from/to CPU
  135. #ifndef NDEBUG
  136. fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
  137. #endif
  138. size_t nbytes = ggml_nbytes(src);
  139. void * data = malloc(nbytes);
  140. ggml_backend_tensor_get(src, data, 0, nbytes);
  141. ggml_backend_tensor_set(dst, data, 0, nbytes);
  142. free(data);
  143. }
  144. }
  145. // backend CPU
  146. struct ggml_backend_cpu_context {
  147. int n_threads;
  148. void * work_data;
  149. size_t work_size;
  150. };
  151. static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  152. return "CPU";
  153. UNUSED(backend);
  154. }
  155. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  156. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  157. free(cpu_ctx->work_data);
  158. free(cpu_ctx);
  159. free(backend);
  160. }
  161. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  162. return (void *)buffer->context;
  163. }
  164. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  165. free(buffer->context);
  166. UNUSED(buffer);
  167. }
  168. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  169. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  170. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  171. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  172. /* .init_tensor = */ NULL, // no initialization required
  173. /* .free_tensor = */ NULL, // no cleanup required
  174. };
  175. // for buffers from ptr, free is not called
  176. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  177. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  178. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  179. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  180. /* .init_tensor = */ NULL,
  181. /* .free_tensor = */ NULL,
  182. };
  183. static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
  184. static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
  185. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  186. void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
  187. return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
  188. }
  189. static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
  190. return TENSOR_ALIGNMENT;
  191. UNUSED(backend);
  192. }
  193. static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  194. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  195. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  196. memcpy((char *)tensor->data + offset, data, size);
  197. UNUSED(backend);
  198. }
  199. static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  200. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  201. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  202. memcpy(data, (const char *)tensor->data + offset, size);
  203. UNUSED(backend);
  204. }
  205. static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
  206. UNUSED(backend);
  207. }
  208. static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  209. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  210. UNUSED(backend);
  211. }
  212. static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  213. // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
  214. ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
  215. UNUSED(backend);
  216. }
  217. struct ggml_backend_plan_cpu {
  218. struct ggml_cplan cplan;
  219. struct ggml_cgraph cgraph;
  220. };
  221. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  222. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  223. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  224. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  225. cpu_plan->cgraph = *cgraph;
  226. if (cpu_plan->cplan.work_size > 0) {
  227. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  228. }
  229. return cpu_plan;
  230. }
  231. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  232. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  233. free(cpu_plan->cplan.work_data);
  234. free(cpu_plan);
  235. UNUSED(backend);
  236. }
  237. static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  238. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  239. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  240. UNUSED(backend);
  241. }
  242. static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  243. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  244. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  245. if (cpu_ctx->work_size < cplan.work_size) {
  246. // TODO: may be faster to free and use malloc to avoid the copy
  247. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  248. cpu_ctx->work_size = cplan.work_size;
  249. }
  250. cplan.work_data = cpu_ctx->work_data;
  251. ggml_graph_compute(cgraph, &cplan);
  252. }
  253. static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  254. return true;
  255. UNUSED(backend);
  256. UNUSED(op);
  257. }
  258. static struct ggml_backend_i cpu_backend_i = {
  259. /* .get_name = */ ggml_backend_cpu_name,
  260. /* .free = */ ggml_backend_cpu_free,
  261. /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
  262. /* .get_alignment = */ ggml_backend_cpu_get_alignment,
  263. /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
  264. /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
  265. /* .synchronize = */ ggml_backend_cpu_synchronize,
  266. /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
  267. /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
  268. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  269. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  270. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  271. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  272. /* .supports_op = */ ggml_backend_cpu_supports_op,
  273. };
  274. ggml_backend_t ggml_backend_cpu_init(void) {
  275. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  276. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  277. ctx->work_data = NULL;
  278. ctx->work_size = 0;
  279. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  280. *cpu_backend = (struct ggml_backend) {
  281. /* .interface = */ cpu_backend_i,
  282. /* .context = */ ctx
  283. };
  284. return cpu_backend;
  285. }
  286. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  287. return backend->iface.get_name == ggml_backend_cpu_name;
  288. }
  289. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  290. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  291. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  292. ctx->n_threads = n_threads;
  293. }
  294. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
  295. return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
  296. }