ggml.c 625 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "ARGSORT",
  1403. "FLASH_ATTN",
  1404. "FLASH_FF",
  1405. "FLASH_ATTN_BACK",
  1406. "WIN_PART",
  1407. "WIN_UNPART",
  1408. "GET_REL_POS",
  1409. "ADD_REL_POS",
  1410. "UNARY",
  1411. "MAP_UNARY",
  1412. "MAP_BINARY",
  1413. "MAP_CUSTOM1_F32",
  1414. "MAP_CUSTOM2_F32",
  1415. "MAP_CUSTOM3_F32",
  1416. "MAP_CUSTOM1",
  1417. "MAP_CUSTOM2",
  1418. "MAP_CUSTOM3",
  1419. "CROSS_ENTROPY_LOSS",
  1420. "CROSS_ENTROPY_LOSS_BACK",
  1421. };
  1422. static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
  1423. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1424. "none",
  1425. "x",
  1426. "x+y",
  1427. "x+y",
  1428. "view(x,nb,offset)+=y->x",
  1429. "x-y",
  1430. "x*y",
  1431. "x/y",
  1432. "x^2",
  1433. "√x",
  1434. "log(x)",
  1435. "Σx",
  1436. "Σx_k",
  1437. "Σx/n",
  1438. "argmax(x)",
  1439. "repeat(x)",
  1440. "repeat_back(x)",
  1441. "concat(x, y)",
  1442. "silu_back(x)",
  1443. "norm(x)",
  1444. "rms_norm(x)",
  1445. "rms_norm_back(x)",
  1446. "group_norm(x)",
  1447. "X*Y",
  1448. "X[i]*Y",
  1449. "X*Y",
  1450. "x*v",
  1451. "y-\\>view(x)",
  1452. "x-\\>y",
  1453. "cont(x)",
  1454. "reshape(x)",
  1455. "view(x)",
  1456. "permute(x)",
  1457. "transpose(x)",
  1458. "get_rows(x)",
  1459. "get_rows_back(x)",
  1460. "diag(x)",
  1461. "diag_mask_inf(x)",
  1462. "diag_mask_zero(x)",
  1463. "soft_max(x)",
  1464. "soft_max_back(x)",
  1465. "rope(x)",
  1466. "rope_back(x)",
  1467. "alibi(x)",
  1468. "clamp(x)",
  1469. "conv_transpose_1d(x)",
  1470. "im2col(x)",
  1471. "conv_transpose_2d(x)",
  1472. "pool_1d(x)",
  1473. "pool_2d(x)",
  1474. "upscale(x)",
  1475. "argsort(x)",
  1476. "flash_attn(x)",
  1477. "flash_ff(x)",
  1478. "flash_attn_back(x)",
  1479. "win_part(x)",
  1480. "win_unpart(x)",
  1481. "get_rel_pos(x)",
  1482. "add_rel_pos(x)",
  1483. "unary(x)",
  1484. "f(x)",
  1485. "f(x,y)",
  1486. "custom_f32(x)",
  1487. "custom_f32(x,y)",
  1488. "custom_f32(x,y,z)",
  1489. "custom(x)",
  1490. "custom(x,y)",
  1491. "custom(x,y,z)",
  1492. "cross_entropy_loss(x,y)",
  1493. "cross_entropy_loss_back(x,y)",
  1494. };
  1495. static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
  1496. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1497. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1498. "ABS",
  1499. "SGN",
  1500. "NEG",
  1501. "STEP",
  1502. "TANH",
  1503. "ELU",
  1504. "RELU",
  1505. "GELU",
  1506. "GELU_QUICK",
  1507. "SILU",
  1508. "LEAKY",
  1509. };
  1510. static_assert(GGML_UNARY_OP_COUNT == 11, "GGML_UNARY_OP_COUNT != 11");
  1511. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1512. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1513. // WARN:
  1514. // Mis-configuration can lead to problem that's hard to reason about:
  1515. // * At best it crash or talks nosense.
  1516. // * At worst it talks slightly difference but hard to perceive.
  1517. //
  1518. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1519. // Take care about compile options (e.g., GGML_USE_xxx).
  1520. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1521. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1522. static void ggml_setup_op_has_task_pass(void) {
  1523. { // INIT
  1524. bool * p = GGML_OP_HAS_INIT;
  1525. p[GGML_OP_ACC ] = true;
  1526. p[GGML_OP_MUL_MAT ] = true;
  1527. p[GGML_OP_MUL_MAT_ID ] = true;
  1528. p[GGML_OP_OUT_PROD ] = true;
  1529. p[GGML_OP_SET ] = true;
  1530. p[GGML_OP_GET_ROWS_BACK ] = true;
  1531. p[GGML_OP_DIAG_MASK_INF ] = true;
  1532. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1533. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1534. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1535. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1536. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1537. p[GGML_OP_ADD_REL_POS ] = true;
  1538. }
  1539. { // FINALIZE
  1540. bool * p = GGML_OP_HAS_FINALIZE;
  1541. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1542. }
  1543. }
  1544. //
  1545. // ggml context
  1546. //
  1547. struct ggml_context {
  1548. size_t mem_size;
  1549. void * mem_buffer;
  1550. bool mem_buffer_owned;
  1551. bool no_alloc;
  1552. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1553. int n_objects;
  1554. struct ggml_object * objects_begin;
  1555. struct ggml_object * objects_end;
  1556. struct ggml_scratch scratch;
  1557. struct ggml_scratch scratch_save;
  1558. };
  1559. struct ggml_context_container {
  1560. bool used;
  1561. struct ggml_context context;
  1562. };
  1563. //
  1564. // NUMA support
  1565. //
  1566. #define GGML_NUMA_MAX_NODES 8
  1567. #define GGML_NUMA_MAX_CPUS 512
  1568. struct ggml_numa_node {
  1569. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1570. uint32_t n_cpus;
  1571. };
  1572. struct ggml_numa_nodes {
  1573. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1574. uint32_t n_nodes;
  1575. uint32_t total_cpus; // hardware threads on system
  1576. };
  1577. //
  1578. // ggml state
  1579. //
  1580. struct ggml_state {
  1581. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1582. struct ggml_numa_nodes numa;
  1583. };
  1584. // global state
  1585. static struct ggml_state g_state;
  1586. static atomic_int g_state_barrier = 0;
  1587. // barrier via spin lock
  1588. inline static void ggml_critical_section_start(void) {
  1589. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1590. while (processing > 0) {
  1591. // wait for other threads to finish
  1592. atomic_fetch_sub(&g_state_barrier, 1);
  1593. sched_yield(); // TODO: reconsider this
  1594. processing = atomic_fetch_add(&g_state_barrier, 1);
  1595. }
  1596. }
  1597. // TODO: make this somehow automatically executed
  1598. // some sort of "sentry" mechanism
  1599. inline static void ggml_critical_section_end(void) {
  1600. atomic_fetch_sub(&g_state_barrier, 1);
  1601. }
  1602. void ggml_numa_init(void) {
  1603. if (g_state.numa.n_nodes > 0) {
  1604. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1605. return;
  1606. }
  1607. #ifdef __linux__
  1608. struct stat st;
  1609. char path[256];
  1610. int rv;
  1611. // enumerate nodes
  1612. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1613. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1614. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1615. if (stat(path, &st) != 0) { break; }
  1616. ++g_state.numa.n_nodes;
  1617. }
  1618. // enumerate CPUs
  1619. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1620. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1621. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1622. if (stat(path, &st) != 0) { break; }
  1623. ++g_state.numa.total_cpus;
  1624. }
  1625. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1626. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1627. g_state.numa.n_nodes = 0;
  1628. return;
  1629. }
  1630. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1631. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1632. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1633. node->n_cpus = 0;
  1634. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1635. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1636. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1637. if (stat(path, &st) == 0) {
  1638. node->cpus[node->n_cpus++] = c;
  1639. GGML_PRINT_DEBUG(" %u", c);
  1640. }
  1641. }
  1642. GGML_PRINT_DEBUG("\n");
  1643. }
  1644. if (ggml_is_numa()) {
  1645. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1646. if (fptr != NULL) {
  1647. char buf[42];
  1648. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1649. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1650. }
  1651. fclose(fptr);
  1652. }
  1653. }
  1654. #else
  1655. // TODO
  1656. #endif
  1657. }
  1658. bool ggml_is_numa(void) {
  1659. return g_state.numa.n_nodes > 1;
  1660. }
  1661. ////////////////////////////////////////////////////////////////////////////////
  1662. void ggml_print_object(const struct ggml_object * obj) {
  1663. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1664. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1665. }
  1666. void ggml_print_objects(const struct ggml_context * ctx) {
  1667. struct ggml_object * obj = ctx->objects_begin;
  1668. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1669. while (obj != NULL) {
  1670. ggml_print_object(obj);
  1671. obj = obj->next;
  1672. }
  1673. GGML_PRINT("%s: --- end ---\n", __func__);
  1674. }
  1675. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1681. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1682. }
  1683. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1684. size_t nbytes;
  1685. size_t blck_size = ggml_blck_size(tensor->type);
  1686. if (blck_size == 1) {
  1687. nbytes = ggml_type_size(tensor->type);
  1688. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1689. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1690. }
  1691. }
  1692. else {
  1693. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1694. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1695. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1696. }
  1697. }
  1698. return nbytes;
  1699. }
  1700. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1701. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1702. }
  1703. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1705. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1706. }
  1707. int ggml_blck_size(enum ggml_type type) {
  1708. return type_traits[type].blck_size;
  1709. }
  1710. size_t ggml_type_size(enum ggml_type type) {
  1711. return type_traits[type].type_size;
  1712. }
  1713. float ggml_type_sizef(enum ggml_type type) {
  1714. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1715. }
  1716. const char * ggml_type_name(enum ggml_type type) {
  1717. return type_traits[type].type_name;
  1718. }
  1719. bool ggml_is_quantized(enum ggml_type type) {
  1720. return type_traits[type].is_quantized;
  1721. }
  1722. const char * ggml_op_name(enum ggml_op op) {
  1723. return GGML_OP_NAME[op];
  1724. }
  1725. const char * ggml_op_symbol(enum ggml_op op) {
  1726. return GGML_OP_SYMBOL[op];
  1727. }
  1728. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1729. return GGML_UNARY_OP_NAME[op];
  1730. }
  1731. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1732. if (t->op == GGML_OP_UNARY) {
  1733. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1734. return ggml_unary_op_name(uop);
  1735. }
  1736. else {
  1737. return ggml_op_name(t->op);
  1738. }
  1739. }
  1740. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1741. return ggml_type_size(tensor->type);
  1742. }
  1743. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1744. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1745. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1746. }
  1747. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1748. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1749. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1750. }
  1751. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1752. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1753. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1754. }
  1755. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1756. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1757. return (t0->ne[0] == t1->ne[0]) &&
  1758. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1759. (t1->ne[3]%t0->ne[3] == 0);
  1760. }
  1761. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return (t0->ne[1] == t1->ne[1]) &&
  1764. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1765. (t1->ne[3]%t0->ne[3] == 0);
  1766. }
  1767. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1768. enum ggml_type wtype = GGML_TYPE_COUNT;
  1769. switch (ftype) {
  1770. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1771. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1772. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1773. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1774. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1775. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1776. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1777. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1778. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1779. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1780. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1781. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1782. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1783. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1784. }
  1785. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1786. return wtype;
  1787. }
  1788. size_t ggml_tensor_overhead(void) {
  1789. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1790. }
  1791. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1792. return tensor->nb[0] > tensor->nb[1];
  1793. }
  1794. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1795. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1796. return
  1797. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1798. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1799. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1800. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1801. }
  1802. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1804. return
  1805. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1806. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1807. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1808. }
  1809. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1810. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1811. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1812. }
  1813. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1815. return
  1816. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1817. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1818. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1819. }
  1820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1822. return
  1823. (t0->ne[0] == t1->ne[0] ) &&
  1824. (t0->ne[1] == t1->ne[1] ) &&
  1825. (t0->ne[2] == t1->ne[2] ) &&
  1826. (t0->ne[3] == t1->ne[3] );
  1827. }
  1828. // check if t1 can be represented as a repeatition of t0
  1829. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1831. return
  1832. (t1->ne[0]%t0->ne[0] == 0) &&
  1833. (t1->ne[1]%t0->ne[1] == 0) &&
  1834. (t1->ne[2]%t0->ne[2] == 0) &&
  1835. (t1->ne[3]%t0->ne[3] == 0);
  1836. }
  1837. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1839. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1840. }
  1841. static inline int ggml_up32(int n) {
  1842. return (n + 31) & ~31;
  1843. }
  1844. //static inline int ggml_up64(int n) {
  1845. // return (n + 63) & ~63;
  1846. //}
  1847. static inline int ggml_up(int n, int m) {
  1848. // assert m is a power of 2
  1849. GGML_ASSERT((m & (m - 1)) == 0);
  1850. return (n + m - 1) & ~(m - 1);
  1851. }
  1852. // assert that pointer is aligned to GGML_MEM_ALIGN
  1853. #define ggml_assert_aligned(ptr) \
  1854. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1855. ////////////////////////////////////////////////////////////////////////////////
  1856. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1857. // make this function thread safe
  1858. ggml_critical_section_start();
  1859. static bool is_first_call = true;
  1860. if (is_first_call) {
  1861. // initialize time system (required on Windows)
  1862. ggml_time_init();
  1863. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1864. {
  1865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1866. ggml_fp16_t ii;
  1867. for (int i = 0; i < (1 << 16); ++i) {
  1868. uint16_t ui = i;
  1869. memcpy(&ii, &ui, sizeof(ii));
  1870. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1871. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1872. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1873. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1874. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1875. }
  1876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1877. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1878. }
  1879. // initialize g_state
  1880. {
  1881. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1882. g_state = (struct ggml_state) {
  1883. /*.contexts =*/ { { 0 } },
  1884. /*.numa =*/ {
  1885. .n_nodes = 0,
  1886. .total_cpus = 0,
  1887. },
  1888. };
  1889. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1890. g_state.contexts[i].used = false;
  1891. }
  1892. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1893. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1894. }
  1895. #if defined(GGML_USE_CUBLAS)
  1896. ggml_init_cublas();
  1897. #elif defined(GGML_USE_CLBLAST)
  1898. ggml_cl_init();
  1899. #endif
  1900. ggml_setup_op_has_task_pass();
  1901. is_first_call = false;
  1902. }
  1903. // find non-used context in g_state
  1904. struct ggml_context * ctx = NULL;
  1905. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1906. if (!g_state.contexts[i].used) {
  1907. g_state.contexts[i].used = true;
  1908. ctx = &g_state.contexts[i].context;
  1909. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1910. break;
  1911. }
  1912. }
  1913. if (ctx == NULL) {
  1914. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1915. ggml_critical_section_end();
  1916. return NULL;
  1917. }
  1918. // allow to call ggml_init with 0 size
  1919. if (params.mem_size == 0) {
  1920. params.mem_size = GGML_MEM_ALIGN;
  1921. }
  1922. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1923. *ctx = (struct ggml_context) {
  1924. /*.mem_size =*/ mem_size,
  1925. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1926. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1927. /*.no_alloc =*/ params.no_alloc,
  1928. /*.no_alloc_save =*/ params.no_alloc,
  1929. /*.n_objects =*/ 0,
  1930. /*.objects_begin =*/ NULL,
  1931. /*.objects_end =*/ NULL,
  1932. /*.scratch =*/ { 0, 0, NULL, },
  1933. /*.scratch_save =*/ { 0, 0, NULL, },
  1934. };
  1935. GGML_ASSERT(ctx->mem_buffer != NULL);
  1936. ggml_assert_aligned(ctx->mem_buffer);
  1937. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1938. ggml_critical_section_end();
  1939. return ctx;
  1940. }
  1941. void ggml_free(struct ggml_context * ctx) {
  1942. // make this function thread safe
  1943. ggml_critical_section_start();
  1944. bool found = false;
  1945. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1946. if (&g_state.contexts[i].context == ctx) {
  1947. g_state.contexts[i].used = false;
  1948. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1949. __func__, i, ggml_used_mem(ctx));
  1950. if (ctx->mem_buffer_owned) {
  1951. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1952. }
  1953. found = true;
  1954. break;
  1955. }
  1956. }
  1957. if (!found) {
  1958. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1959. }
  1960. ggml_critical_section_end();
  1961. }
  1962. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1963. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1964. }
  1965. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1966. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1967. ctx->scratch = scratch;
  1968. return result;
  1969. }
  1970. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1971. return ctx->no_alloc;
  1972. }
  1973. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1974. ctx->no_alloc = no_alloc;
  1975. }
  1976. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1977. return ctx->mem_buffer;
  1978. }
  1979. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1980. return ctx->mem_size;
  1981. }
  1982. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1983. size_t max_size = 0;
  1984. struct ggml_object * obj = ctx->objects_begin;
  1985. while (obj != NULL) {
  1986. if (obj->type == GGML_OBJECT_TENSOR) {
  1987. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1988. const size_t size = ggml_nbytes(tensor);
  1989. if (max_size < size) {
  1990. max_size = size;
  1991. }
  1992. }
  1993. obj = obj->next;
  1994. }
  1995. return max_size;
  1996. }
  1997. // IMPORTANT:
  1998. // when creating "opt" tensors, always save and load the scratch buffer
  1999. // this is an error prone process, but it is necessary to support inplace
  2000. // operators when using scratch buffers
  2001. // TODO: implement a better way
  2002. static void ggml_scratch_save(struct ggml_context * ctx) {
  2003. // this is needed to allow opt tensors to store their data
  2004. // TODO: again, need to find a better way
  2005. ctx->no_alloc_save = ctx->no_alloc;
  2006. ctx->no_alloc = false;
  2007. ctx->scratch_save = ctx->scratch;
  2008. ctx->scratch.data = NULL;
  2009. }
  2010. static void ggml_scratch_load(struct ggml_context * ctx) {
  2011. ctx->no_alloc = ctx->no_alloc_save;
  2012. ctx->scratch = ctx->scratch_save;
  2013. }
  2014. ////////////////////////////////////////////////////////////////////////////////
  2015. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2016. // always insert objects at the end of the context's memory pool
  2017. struct ggml_object * obj_cur = ctx->objects_end;
  2018. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2019. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2020. const size_t cur_end = cur_offs + cur_size;
  2021. // align to GGML_MEM_ALIGN
  2022. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2023. char * const mem_buffer = ctx->mem_buffer;
  2024. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2025. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2026. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2027. __func__, cur_end + size_needed, ctx->mem_size);
  2028. assert(false);
  2029. return NULL;
  2030. }
  2031. *obj_new = (struct ggml_object) {
  2032. .offs = cur_end + GGML_OBJECT_SIZE,
  2033. .size = size_needed,
  2034. .next = NULL,
  2035. .type = type,
  2036. };
  2037. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2038. if (obj_cur != NULL) {
  2039. obj_cur->next = obj_new;
  2040. } else {
  2041. // this is the first object in this context
  2042. ctx->objects_begin = obj_new;
  2043. }
  2044. ctx->objects_end = obj_new;
  2045. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2046. return obj_new;
  2047. }
  2048. static struct ggml_tensor * ggml_new_tensor_impl(
  2049. struct ggml_context * ctx,
  2050. enum ggml_type type,
  2051. int n_dims,
  2052. const int64_t * ne,
  2053. struct ggml_tensor * view_src,
  2054. size_t view_offs) {
  2055. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2056. // find the base tensor and absolute offset
  2057. if (view_src != NULL && view_src->view_src != NULL) {
  2058. view_offs += view_src->view_offs;
  2059. view_src = view_src->view_src;
  2060. }
  2061. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2062. for (int i = 1; i < n_dims; i++) {
  2063. data_size *= ne[i];
  2064. }
  2065. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2066. void * data = view_src != NULL ? view_src->data : NULL;
  2067. if (data != NULL) {
  2068. data = (char *) data + view_offs;
  2069. }
  2070. size_t obj_alloc_size = 0;
  2071. if (view_src == NULL && !ctx->no_alloc) {
  2072. if (ctx->scratch.data != NULL) {
  2073. // allocate tensor data in the scratch buffer
  2074. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2075. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2076. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2077. assert(false);
  2078. return NULL;
  2079. }
  2080. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2081. ctx->scratch.offs += data_size;
  2082. } else {
  2083. // allocate tensor data in the context's memory pool
  2084. obj_alloc_size = data_size;
  2085. }
  2086. }
  2087. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2088. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2089. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2090. *result = (struct ggml_tensor) {
  2091. /*.type =*/ type,
  2092. /*.backend =*/ GGML_BACKEND_CPU,
  2093. /*.buffer =*/ NULL,
  2094. /*.n_dims =*/ n_dims,
  2095. /*.ne =*/ { 1, 1, 1, 1 },
  2096. /*.nb =*/ { 0, 0, 0, 0 },
  2097. /*.op =*/ GGML_OP_NONE,
  2098. /*.op_params =*/ { 0 },
  2099. /*.is_param =*/ false,
  2100. /*.grad =*/ NULL,
  2101. /*.src =*/ { NULL },
  2102. /*.perf_runs =*/ 0,
  2103. /*.perf_cycles =*/ 0,
  2104. /*.perf_time_us =*/ 0,
  2105. /*.view_src =*/ view_src,
  2106. /*.view_offs =*/ view_offs,
  2107. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2108. /*.name =*/ { 0 },
  2109. /*.extra =*/ NULL,
  2110. /*.padding =*/ { 0 },
  2111. };
  2112. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2113. //ggml_assert_aligned(result->data);
  2114. for (int i = 0; i < n_dims; i++) {
  2115. result->ne[i] = ne[i];
  2116. }
  2117. result->nb[0] = ggml_type_size(type);
  2118. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2119. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2120. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2121. }
  2122. ctx->n_objects++;
  2123. return result;
  2124. }
  2125. struct ggml_tensor * ggml_new_tensor(
  2126. struct ggml_context * ctx,
  2127. enum ggml_type type,
  2128. int n_dims,
  2129. const int64_t * ne) {
  2130. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2131. }
  2132. struct ggml_tensor * ggml_new_tensor_1d(
  2133. struct ggml_context * ctx,
  2134. enum ggml_type type,
  2135. int64_t ne0) {
  2136. return ggml_new_tensor(ctx, type, 1, &ne0);
  2137. }
  2138. struct ggml_tensor * ggml_new_tensor_2d(
  2139. struct ggml_context * ctx,
  2140. enum ggml_type type,
  2141. int64_t ne0,
  2142. int64_t ne1) {
  2143. const int64_t ne[2] = { ne0, ne1 };
  2144. return ggml_new_tensor(ctx, type, 2, ne);
  2145. }
  2146. struct ggml_tensor * ggml_new_tensor_3d(
  2147. struct ggml_context * ctx,
  2148. enum ggml_type type,
  2149. int64_t ne0,
  2150. int64_t ne1,
  2151. int64_t ne2) {
  2152. const int64_t ne[3] = { ne0, ne1, ne2 };
  2153. return ggml_new_tensor(ctx, type, 3, ne);
  2154. }
  2155. struct ggml_tensor * ggml_new_tensor_4d(
  2156. struct ggml_context * ctx,
  2157. enum ggml_type type,
  2158. int64_t ne0,
  2159. int64_t ne1,
  2160. int64_t ne2,
  2161. int64_t ne3) {
  2162. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2163. return ggml_new_tensor(ctx, type, 4, ne);
  2164. }
  2165. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2166. ggml_scratch_save(ctx);
  2167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2168. ggml_scratch_load(ctx);
  2169. ggml_set_i32(result, value);
  2170. return result;
  2171. }
  2172. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2173. ggml_scratch_save(ctx);
  2174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2175. ggml_scratch_load(ctx);
  2176. ggml_set_f32(result, value);
  2177. return result;
  2178. }
  2179. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2180. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2181. }
  2182. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2183. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2184. assert(params_size <= GGML_MAX_OP_PARAMS);
  2185. memcpy(tensor->op_params, params, params_size);
  2186. }
  2187. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2188. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2189. return ((const int32_t *)(tensor->op_params))[i];
  2190. }
  2191. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2192. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2193. ((int32_t *)(tensor->op_params))[i] = value;
  2194. }
  2195. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2196. memset(tensor->data, 0, ggml_nbytes(tensor));
  2197. return tensor;
  2198. }
  2199. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2200. const int n = ggml_nrows(tensor);
  2201. const int nc = tensor->ne[0];
  2202. const size_t n1 = tensor->nb[1];
  2203. char * const data = tensor->data;
  2204. switch (tensor->type) {
  2205. case GGML_TYPE_I8:
  2206. {
  2207. assert(tensor->nb[0] == sizeof(int8_t));
  2208. for (int i = 0; i < n; i++) {
  2209. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2210. }
  2211. } break;
  2212. case GGML_TYPE_I16:
  2213. {
  2214. assert(tensor->nb[0] == sizeof(int16_t));
  2215. for (int i = 0; i < n; i++) {
  2216. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2217. }
  2218. } break;
  2219. case GGML_TYPE_I32:
  2220. {
  2221. assert(tensor->nb[0] == sizeof(int32_t));
  2222. for (int i = 0; i < n; i++) {
  2223. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2224. }
  2225. } break;
  2226. case GGML_TYPE_F16:
  2227. {
  2228. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2229. for (int i = 0; i < n; i++) {
  2230. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2231. }
  2232. } break;
  2233. case GGML_TYPE_F32:
  2234. {
  2235. assert(tensor->nb[0] == sizeof(float));
  2236. for (int i = 0; i < n; i++) {
  2237. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2238. }
  2239. } break;
  2240. default:
  2241. {
  2242. GGML_ASSERT(false);
  2243. } break;
  2244. }
  2245. return tensor;
  2246. }
  2247. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2248. const int n = ggml_nrows(tensor);
  2249. const int nc = tensor->ne[0];
  2250. const size_t n1 = tensor->nb[1];
  2251. char * const data = tensor->data;
  2252. switch (tensor->type) {
  2253. case GGML_TYPE_I8:
  2254. {
  2255. assert(tensor->nb[0] == sizeof(int8_t));
  2256. for (int i = 0; i < n; i++) {
  2257. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2258. }
  2259. } break;
  2260. case GGML_TYPE_I16:
  2261. {
  2262. assert(tensor->nb[0] == sizeof(int16_t));
  2263. for (int i = 0; i < n; i++) {
  2264. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2265. }
  2266. } break;
  2267. case GGML_TYPE_I32:
  2268. {
  2269. assert(tensor->nb[0] == sizeof(int32_t));
  2270. for (int i = 0; i < n; i++) {
  2271. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2272. }
  2273. } break;
  2274. case GGML_TYPE_F16:
  2275. {
  2276. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2277. for (int i = 0; i < n; i++) {
  2278. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2279. }
  2280. } break;
  2281. case GGML_TYPE_F32:
  2282. {
  2283. assert(tensor->nb[0] == sizeof(float));
  2284. for (int i = 0; i < n; i++) {
  2285. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2286. }
  2287. } break;
  2288. default:
  2289. {
  2290. GGML_ASSERT(false);
  2291. } break;
  2292. }
  2293. return tensor;
  2294. }
  2295. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2296. const int64_t ne2 = tensor->ne[2];
  2297. const int64_t ne1 = tensor->ne[1];
  2298. const int64_t ne0 = tensor->ne[0];
  2299. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2300. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2301. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2302. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2303. if (i0) {
  2304. * i0 = i0_;
  2305. }
  2306. if (i1) {
  2307. * i1 = i1_;
  2308. }
  2309. if (i2) {
  2310. * i2 = i2_;
  2311. }
  2312. if (i3) {
  2313. * i3 = i3_;
  2314. }
  2315. }
  2316. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2317. if (!ggml_is_contiguous(tensor)) {
  2318. int64_t id[4] = { 0, 0, 0, 0 };
  2319. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2320. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2321. }
  2322. switch (tensor->type) {
  2323. case GGML_TYPE_I8:
  2324. {
  2325. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2326. return ((int8_t *)(tensor->data))[i];
  2327. }
  2328. case GGML_TYPE_I16:
  2329. {
  2330. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2331. return ((int16_t *)(tensor->data))[i];
  2332. }
  2333. case GGML_TYPE_I32:
  2334. {
  2335. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2336. return ((int32_t *)(tensor->data))[i];
  2337. }
  2338. case GGML_TYPE_F16:
  2339. {
  2340. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2341. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2342. }
  2343. case GGML_TYPE_F32:
  2344. {
  2345. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2346. return ((float *)(tensor->data))[i];
  2347. }
  2348. default:
  2349. {
  2350. GGML_ASSERT(false);
  2351. }
  2352. }
  2353. return 0.0f;
  2354. }
  2355. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2356. if (!ggml_is_contiguous(tensor)) {
  2357. int64_t id[4] = { 0, 0, 0, 0 };
  2358. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2359. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2360. return;
  2361. }
  2362. switch (tensor->type) {
  2363. case GGML_TYPE_I8:
  2364. {
  2365. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2366. ((int8_t *)(tensor->data))[i] = value;
  2367. } break;
  2368. case GGML_TYPE_I16:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2371. ((int16_t *)(tensor->data))[i] = value;
  2372. } break;
  2373. case GGML_TYPE_I32:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2376. ((int32_t *)(tensor->data))[i] = value;
  2377. } break;
  2378. case GGML_TYPE_F16:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2381. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2382. } break;
  2383. case GGML_TYPE_F32:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2386. ((float *)(tensor->data))[i] = value;
  2387. } break;
  2388. default:
  2389. {
  2390. GGML_ASSERT(false);
  2391. } break;
  2392. }
  2393. }
  2394. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2395. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2396. switch (tensor->type) {
  2397. case GGML_TYPE_I8:
  2398. return ((int8_t *) data)[0];
  2399. case GGML_TYPE_I16:
  2400. return ((int16_t *) data)[0];
  2401. case GGML_TYPE_I32:
  2402. return ((int32_t *) data)[0];
  2403. case GGML_TYPE_F16:
  2404. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2405. case GGML_TYPE_F32:
  2406. return ((float *) data)[0];
  2407. default:
  2408. GGML_ASSERT(false);
  2409. }
  2410. return 0.0f;
  2411. }
  2412. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2413. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2414. switch (tensor->type) {
  2415. case GGML_TYPE_I8:
  2416. {
  2417. ((int8_t *)(data))[0] = value;
  2418. } break;
  2419. case GGML_TYPE_I16:
  2420. {
  2421. ((int16_t *)(data))[0] = value;
  2422. } break;
  2423. case GGML_TYPE_I32:
  2424. {
  2425. ((int32_t *)(data))[0] = value;
  2426. } break;
  2427. case GGML_TYPE_F16:
  2428. {
  2429. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2430. } break;
  2431. case GGML_TYPE_F32:
  2432. {
  2433. ((float *)(data))[0] = value;
  2434. } break;
  2435. default:
  2436. {
  2437. GGML_ASSERT(false);
  2438. } break;
  2439. }
  2440. }
  2441. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2442. if (!ggml_is_contiguous(tensor)) {
  2443. int64_t id[4] = { 0, 0, 0, 0 };
  2444. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2445. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2446. }
  2447. switch (tensor->type) {
  2448. case GGML_TYPE_I8:
  2449. {
  2450. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2451. return ((int8_t *)(tensor->data))[i];
  2452. }
  2453. case GGML_TYPE_I16:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2456. return ((int16_t *)(tensor->data))[i];
  2457. }
  2458. case GGML_TYPE_I32:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2461. return ((int32_t *)(tensor->data))[i];
  2462. }
  2463. case GGML_TYPE_F16:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2466. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2467. }
  2468. case GGML_TYPE_F32:
  2469. {
  2470. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2471. return ((float *)(tensor->data))[i];
  2472. }
  2473. default:
  2474. {
  2475. GGML_ASSERT(false);
  2476. }
  2477. }
  2478. return 0.0f;
  2479. }
  2480. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2481. if (!ggml_is_contiguous(tensor)) {
  2482. int64_t id[4] = { 0, 0, 0, 0 };
  2483. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2484. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2485. return;
  2486. }
  2487. switch (tensor->type) {
  2488. case GGML_TYPE_I8:
  2489. {
  2490. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2491. ((int8_t *)(tensor->data))[i] = value;
  2492. } break;
  2493. case GGML_TYPE_I16:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2496. ((int16_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_I32:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2501. ((int32_t *)(tensor->data))[i] = value;
  2502. } break;
  2503. case GGML_TYPE_F16:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2506. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2507. } break;
  2508. case GGML_TYPE_F32:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2511. ((float *)(tensor->data))[i] = value;
  2512. } break;
  2513. default:
  2514. {
  2515. GGML_ASSERT(false);
  2516. } break;
  2517. }
  2518. }
  2519. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2520. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2521. switch (tensor->type) {
  2522. case GGML_TYPE_I8:
  2523. return ((int8_t *) data)[0];
  2524. case GGML_TYPE_I16:
  2525. return ((int16_t *) data)[0];
  2526. case GGML_TYPE_I32:
  2527. return ((int32_t *) data)[0];
  2528. case GGML_TYPE_F16:
  2529. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2530. case GGML_TYPE_F32:
  2531. return ((float *) data)[0];
  2532. default:
  2533. GGML_ASSERT(false);
  2534. }
  2535. return 0.0f;
  2536. }
  2537. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2538. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2539. switch (tensor->type) {
  2540. case GGML_TYPE_I8:
  2541. {
  2542. ((int8_t *)(data))[0] = value;
  2543. } break;
  2544. case GGML_TYPE_I16:
  2545. {
  2546. ((int16_t *)(data))[0] = value;
  2547. } break;
  2548. case GGML_TYPE_I32:
  2549. {
  2550. ((int32_t *)(data))[0] = value;
  2551. } break;
  2552. case GGML_TYPE_F16:
  2553. {
  2554. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2555. } break;
  2556. case GGML_TYPE_F32:
  2557. {
  2558. ((float *)(data))[0] = value;
  2559. } break;
  2560. default:
  2561. {
  2562. GGML_ASSERT(false);
  2563. } break;
  2564. }
  2565. }
  2566. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2567. return tensor->data;
  2568. }
  2569. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2570. assert(tensor->type == GGML_TYPE_F32);
  2571. return (float *)(tensor->data);
  2572. }
  2573. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2574. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2575. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2576. }
  2577. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2578. return tensor->name;
  2579. }
  2580. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2581. strncpy(tensor->name, name, sizeof(tensor->name));
  2582. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2583. return tensor;
  2584. }
  2585. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2586. va_list args;
  2587. va_start(args, fmt);
  2588. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2589. va_end(args);
  2590. return tensor;
  2591. }
  2592. struct ggml_tensor * ggml_view_tensor(
  2593. struct ggml_context * ctx,
  2594. struct ggml_tensor * src) {
  2595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2596. ggml_format_name(result, "%s (view)", src->name);
  2597. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2598. result->nb[i] = src->nb[i];
  2599. }
  2600. return result;
  2601. }
  2602. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2603. struct ggml_object * obj = ctx->objects_begin;
  2604. char * const mem_buffer = ctx->mem_buffer;
  2605. while (obj != NULL) {
  2606. if (obj->type == GGML_OBJECT_TENSOR) {
  2607. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2608. }
  2609. obj = obj->next;
  2610. }
  2611. return NULL;
  2612. }
  2613. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2614. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2615. obj = obj->next;
  2616. char * const mem_buffer = ctx->mem_buffer;
  2617. while (obj != NULL) {
  2618. if (obj->type == GGML_OBJECT_TENSOR) {
  2619. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2620. }
  2621. obj = obj->next;
  2622. }
  2623. return NULL;
  2624. }
  2625. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2626. struct ggml_object * obj = ctx->objects_begin;
  2627. char * const mem_buffer = ctx->mem_buffer;
  2628. while (obj != NULL) {
  2629. if (obj->type == GGML_OBJECT_TENSOR) {
  2630. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2631. if (strcmp(cur->name, name) == 0) {
  2632. return cur;
  2633. }
  2634. }
  2635. obj = obj->next;
  2636. }
  2637. return NULL;
  2638. }
  2639. ////////////////////////////////////////////////////////////////////////////////
  2640. // ggml_dup
  2641. static struct ggml_tensor * ggml_dup_impl(
  2642. struct ggml_context * ctx,
  2643. struct ggml_tensor * a,
  2644. bool inplace) {
  2645. bool is_node = false;
  2646. if (!inplace && (a->grad)) {
  2647. is_node = true;
  2648. }
  2649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2650. result->op = GGML_OP_DUP;
  2651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2652. result->src[0] = a;
  2653. return result;
  2654. }
  2655. struct ggml_tensor * ggml_dup(
  2656. struct ggml_context * ctx,
  2657. struct ggml_tensor * a) {
  2658. return ggml_dup_impl(ctx, a, false);
  2659. }
  2660. struct ggml_tensor * ggml_dup_inplace(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, true);
  2664. }
  2665. // ggml_add
  2666. static struct ggml_tensor * ggml_add_impl(
  2667. struct ggml_context * ctx,
  2668. struct ggml_tensor * a,
  2669. struct ggml_tensor * b,
  2670. bool inplace) {
  2671. GGML_ASSERT(ggml_can_repeat(b, a));
  2672. bool is_node = false;
  2673. if (!inplace && (a->grad || b->grad)) {
  2674. // TODO: support backward pass for broadcasting
  2675. GGML_ASSERT(ggml_are_same_shape(a, b));
  2676. is_node = true;
  2677. }
  2678. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2679. result->op = GGML_OP_ADD;
  2680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2681. result->src[0] = a;
  2682. result->src[1] = b;
  2683. return result;
  2684. }
  2685. struct ggml_tensor * ggml_add(
  2686. struct ggml_context * ctx,
  2687. struct ggml_tensor * a,
  2688. struct ggml_tensor * b) {
  2689. return ggml_add_impl(ctx, a, b, false);
  2690. }
  2691. struct ggml_tensor * ggml_add_inplace(
  2692. struct ggml_context * ctx,
  2693. struct ggml_tensor * a,
  2694. struct ggml_tensor * b) {
  2695. return ggml_add_impl(ctx, a, b, true);
  2696. }
  2697. // ggml_add_cast
  2698. static struct ggml_tensor * ggml_add_cast_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. struct ggml_tensor * b,
  2702. enum ggml_type type) {
  2703. // TODO: support less-strict constraint
  2704. // GGML_ASSERT(ggml_can_repeat(b, a));
  2705. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2706. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2707. bool is_node = false;
  2708. if (a->grad || b->grad) {
  2709. // TODO: support backward pass for broadcasting
  2710. GGML_ASSERT(ggml_are_same_shape(a, b));
  2711. is_node = true;
  2712. }
  2713. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2714. result->op = GGML_OP_ADD;
  2715. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2716. result->src[0] = a;
  2717. result->src[1] = b;
  2718. return result;
  2719. }
  2720. struct ggml_tensor * ggml_add_cast(
  2721. struct ggml_context * ctx,
  2722. struct ggml_tensor * a,
  2723. struct ggml_tensor * b,
  2724. enum ggml_type type) {
  2725. return ggml_add_cast_impl(ctx, a, b, type);
  2726. }
  2727. // ggml_add1
  2728. static struct ggml_tensor * ggml_add1_impl(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a,
  2731. struct ggml_tensor * b,
  2732. bool inplace) {
  2733. GGML_ASSERT(ggml_is_scalar(b));
  2734. GGML_ASSERT(ggml_is_padded_1d(a));
  2735. bool is_node = false;
  2736. if (a->grad || b->grad) {
  2737. is_node = true;
  2738. }
  2739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2740. result->op = GGML_OP_ADD1;
  2741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2742. result->src[0] = a;
  2743. result->src[1] = b;
  2744. return result;
  2745. }
  2746. struct ggml_tensor * ggml_add1(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a,
  2749. struct ggml_tensor * b) {
  2750. return ggml_add1_impl(ctx, a, b, false);
  2751. }
  2752. struct ggml_tensor * ggml_add1_inplace(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b) {
  2756. return ggml_add1_impl(ctx, a, b, true);
  2757. }
  2758. // ggml_acc
  2759. static struct ggml_tensor * ggml_acc_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. size_t nb1,
  2764. size_t nb2,
  2765. size_t nb3,
  2766. size_t offset,
  2767. bool inplace) {
  2768. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2769. GGML_ASSERT(ggml_is_contiguous(a));
  2770. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2771. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2772. bool is_node = false;
  2773. if (!inplace && (a->grad || b->grad)) {
  2774. is_node = true;
  2775. }
  2776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2777. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2778. ggml_set_op_params(result, params, sizeof(params));
  2779. result->op = GGML_OP_ACC;
  2780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2781. result->src[0] = a;
  2782. result->src[1] = b;
  2783. return result;
  2784. }
  2785. struct ggml_tensor * ggml_acc(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b,
  2789. size_t nb1,
  2790. size_t nb2,
  2791. size_t nb3,
  2792. size_t offset) {
  2793. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2794. }
  2795. struct ggml_tensor * ggml_acc_inplace(
  2796. struct ggml_context * ctx,
  2797. struct ggml_tensor * a,
  2798. struct ggml_tensor * b,
  2799. size_t nb1,
  2800. size_t nb2,
  2801. size_t nb3,
  2802. size_t offset) {
  2803. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2804. }
  2805. // ggml_sub
  2806. static struct ggml_tensor * ggml_sub_impl(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b,
  2810. bool inplace) {
  2811. GGML_ASSERT(ggml_are_same_shape(a, b));
  2812. bool is_node = false;
  2813. if (!inplace && (a->grad || b->grad)) {
  2814. is_node = true;
  2815. }
  2816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2817. result->op = GGML_OP_SUB;
  2818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2819. result->src[0] = a;
  2820. result->src[1] = b;
  2821. return result;
  2822. }
  2823. struct ggml_tensor * ggml_sub(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b) {
  2827. return ggml_sub_impl(ctx, a, b, false);
  2828. }
  2829. struct ggml_tensor * ggml_sub_inplace(
  2830. struct ggml_context * ctx,
  2831. struct ggml_tensor * a,
  2832. struct ggml_tensor * b) {
  2833. return ggml_sub_impl(ctx, a, b, true);
  2834. }
  2835. // ggml_mul
  2836. static struct ggml_tensor * ggml_mul_impl(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * a,
  2839. struct ggml_tensor * b,
  2840. bool inplace) {
  2841. GGML_ASSERT(ggml_can_repeat(b, a));
  2842. bool is_node = false;
  2843. if (!inplace && (a->grad || b->grad)) {
  2844. // TODO: support backward pass for broadcasting
  2845. GGML_ASSERT(ggml_are_same_shape(a, b));
  2846. is_node = true;
  2847. }
  2848. if (inplace) {
  2849. GGML_ASSERT(!is_node);
  2850. }
  2851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2852. result->op = GGML_OP_MUL;
  2853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2854. result->src[0] = a;
  2855. result->src[1] = b;
  2856. return result;
  2857. }
  2858. struct ggml_tensor * ggml_mul(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a,
  2861. struct ggml_tensor * b) {
  2862. return ggml_mul_impl(ctx, a, b, false);
  2863. }
  2864. struct ggml_tensor * ggml_mul_inplace(
  2865. struct ggml_context * ctx,
  2866. struct ggml_tensor * a,
  2867. struct ggml_tensor * b) {
  2868. return ggml_mul_impl(ctx, a, b, true);
  2869. }
  2870. // ggml_div
  2871. static struct ggml_tensor * ggml_div_impl(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b,
  2875. bool inplace) {
  2876. GGML_ASSERT(ggml_can_repeat(b, a));
  2877. bool is_node = false;
  2878. if (!inplace && (a->grad || b->grad)) {
  2879. is_node = true;
  2880. }
  2881. if (inplace) {
  2882. GGML_ASSERT(!is_node);
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. result->op = GGML_OP_DIV;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src[0] = a;
  2888. result->src[1] = b;
  2889. return result;
  2890. }
  2891. struct ggml_tensor * ggml_div(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a,
  2894. struct ggml_tensor * b) {
  2895. return ggml_div_impl(ctx, a, b, false);
  2896. }
  2897. struct ggml_tensor * ggml_div_inplace(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. struct ggml_tensor * b) {
  2901. return ggml_div_impl(ctx, a, b, true);
  2902. }
  2903. // ggml_sqr
  2904. static struct ggml_tensor * ggml_sqr_impl(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a,
  2907. bool inplace) {
  2908. bool is_node = false;
  2909. if (!inplace && (a->grad)) {
  2910. is_node = true;
  2911. }
  2912. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2913. result->op = GGML_OP_SQR;
  2914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2915. result->src[0] = a;
  2916. return result;
  2917. }
  2918. struct ggml_tensor * ggml_sqr(
  2919. struct ggml_context * ctx,
  2920. struct ggml_tensor * a) {
  2921. return ggml_sqr_impl(ctx, a, false);
  2922. }
  2923. struct ggml_tensor * ggml_sqr_inplace(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_sqr_impl(ctx, a, true);
  2927. }
  2928. // ggml_sqrt
  2929. static struct ggml_tensor * ggml_sqrt_impl(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a,
  2932. bool inplace) {
  2933. bool is_node = false;
  2934. if (!inplace && (a->grad)) {
  2935. is_node = true;
  2936. }
  2937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2938. result->op = GGML_OP_SQRT;
  2939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2940. result->src[0] = a;
  2941. return result;
  2942. }
  2943. struct ggml_tensor * ggml_sqrt(
  2944. struct ggml_context * ctx,
  2945. struct ggml_tensor * a) {
  2946. return ggml_sqrt_impl(ctx, a, false);
  2947. }
  2948. struct ggml_tensor * ggml_sqrt_inplace(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_sqrt_impl(ctx, a, true);
  2952. }
  2953. // ggml_log
  2954. static struct ggml_tensor * ggml_log_impl(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a,
  2957. bool inplace) {
  2958. bool is_node = false;
  2959. if (!inplace && (a->grad)) {
  2960. is_node = true;
  2961. }
  2962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2963. result->op = GGML_OP_LOG;
  2964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2965. result->src[0] = a;
  2966. return result;
  2967. }
  2968. struct ggml_tensor * ggml_log(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a) {
  2971. return ggml_log_impl(ctx, a, false);
  2972. }
  2973. struct ggml_tensor * ggml_log_inplace(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a) {
  2976. return ggml_log_impl(ctx, a, true);
  2977. }
  2978. // ggml_sum
  2979. struct ggml_tensor * ggml_sum(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. bool is_node = false;
  2983. if (a->grad) {
  2984. is_node = true;
  2985. }
  2986. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2987. result->op = GGML_OP_SUM;
  2988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2989. result->src[0] = a;
  2990. return result;
  2991. }
  2992. // ggml_sum_rows
  2993. struct ggml_tensor * ggml_sum_rows(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a) {
  2996. bool is_node = false;
  2997. if (a->grad) {
  2998. is_node = true;
  2999. }
  3000. int64_t ne[4] = {1,1,1,1};
  3001. for (int i=1; i<a->n_dims; ++i) {
  3002. ne[i] = a->ne[i];
  3003. }
  3004. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3005. result->op = GGML_OP_SUM_ROWS;
  3006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3007. result->src[0] = a;
  3008. return result;
  3009. }
  3010. // ggml_mean
  3011. struct ggml_tensor * ggml_mean(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a) {
  3014. bool is_node = false;
  3015. if (a->grad) {
  3016. GGML_ASSERT(false); // TODO: implement
  3017. is_node = true;
  3018. }
  3019. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3021. result->op = GGML_OP_MEAN;
  3022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3023. result->src[0] = a;
  3024. return result;
  3025. }
  3026. // ggml_argmax
  3027. struct ggml_tensor * ggml_argmax(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a) {
  3030. GGML_ASSERT(ggml_is_matrix(a));
  3031. bool is_node = false;
  3032. if (a->grad) {
  3033. GGML_ASSERT(false);
  3034. is_node = true;
  3035. }
  3036. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3038. result->op = GGML_OP_ARGMAX;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_repeat
  3044. struct ggml_tensor * ggml_repeat(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. struct ggml_tensor * b) {
  3048. GGML_ASSERT(ggml_can_repeat(a, b));
  3049. bool is_node = false;
  3050. if (a->grad) {
  3051. is_node = true;
  3052. }
  3053. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3054. result->op = GGML_OP_REPEAT;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_repeat_back
  3060. struct ggml_tensor * ggml_repeat_back(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a,
  3063. struct ggml_tensor * b) {
  3064. GGML_ASSERT(ggml_can_repeat(b, a));
  3065. bool is_node = false;
  3066. if (a->grad) {
  3067. is_node = true;
  3068. }
  3069. if (ggml_are_same_shape(a, b) && !is_node) {
  3070. return a;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3073. result->op = GGML_OP_REPEAT_BACK;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_concat
  3079. struct ggml_tensor * ggml_concat(
  3080. struct ggml_context* ctx,
  3081. struct ggml_tensor* a,
  3082. struct ggml_tensor* b) {
  3083. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3084. bool is_node = false;
  3085. if (a->grad || b->grad) {
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3089. result->op = GGML_OP_CONCAT;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. result->src[1] = b;
  3093. return result;
  3094. }
  3095. // ggml_abs
  3096. struct ggml_tensor * ggml_abs(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3100. }
  3101. struct ggml_tensor * ggml_abs_inplace(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3105. }
  3106. // ggml_sgn
  3107. struct ggml_tensor * ggml_sgn(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3111. }
  3112. struct ggml_tensor * ggml_sgn_inplace(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3116. }
  3117. // ggml_neg
  3118. struct ggml_tensor * ggml_neg(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3122. }
  3123. struct ggml_tensor * ggml_neg_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3127. }
  3128. // ggml_step
  3129. struct ggml_tensor * ggml_step(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3133. }
  3134. struct ggml_tensor * ggml_step_inplace(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3138. }
  3139. // ggml_tanh
  3140. struct ggml_tensor * ggml_tanh(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3144. }
  3145. struct ggml_tensor * ggml_tanh_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3149. }
  3150. // ggml_elu
  3151. struct ggml_tensor * ggml_elu(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3155. }
  3156. struct ggml_tensor * ggml_elu_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3160. }
  3161. // ggml_relu
  3162. struct ggml_tensor * ggml_relu(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3166. }
  3167. struct ggml_tensor * ggml_relu_inplace(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3171. }
  3172. // ggml_leaky
  3173. struct ggml_tensor * ggml_leaky(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3177. }
  3178. // ggml_gelu
  3179. struct ggml_tensor * ggml_gelu(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a) {
  3182. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3183. }
  3184. struct ggml_tensor * ggml_gelu_inplace(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3188. }
  3189. // ggml_gelu_quick
  3190. struct ggml_tensor * ggml_gelu_quick(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3194. }
  3195. struct ggml_tensor * ggml_gelu_quick_inplace(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3199. }
  3200. // ggml_silu
  3201. struct ggml_tensor * ggml_silu(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3205. }
  3206. struct ggml_tensor * ggml_silu_inplace(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3210. }
  3211. // ggml_silu_back
  3212. struct ggml_tensor * ggml_silu_back(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a,
  3215. struct ggml_tensor * b) {
  3216. bool is_node = false;
  3217. if (a->grad || b->grad) {
  3218. // TODO: implement backward
  3219. is_node = true;
  3220. }
  3221. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3222. result->op = GGML_OP_SILU_BACK;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src[0] = a;
  3225. result->src[1] = b;
  3226. return result;
  3227. }
  3228. // ggml_norm
  3229. static struct ggml_tensor * ggml_norm_impl(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. float eps,
  3233. bool inplace) {
  3234. bool is_node = false;
  3235. if (!inplace && (a->grad)) {
  3236. GGML_ASSERT(false); // TODO: implement backward
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. ggml_set_op_params(result, &eps, sizeof(eps));
  3241. result->op = GGML_OP_NORM;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src[0] = a;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_norm(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a,
  3249. float eps) {
  3250. return ggml_norm_impl(ctx, a, eps, false);
  3251. }
  3252. struct ggml_tensor * ggml_norm_inplace(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. float eps) {
  3256. return ggml_norm_impl(ctx, a, eps, true);
  3257. }
  3258. // ggml_rms_norm
  3259. static struct ggml_tensor * ggml_rms_norm_impl(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. float eps,
  3263. bool inplace) {
  3264. bool is_node = false;
  3265. if (!inplace && (a->grad)) {
  3266. is_node = true;
  3267. }
  3268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3269. ggml_set_op_params(result, &eps, sizeof(eps));
  3270. result->op = GGML_OP_RMS_NORM;
  3271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3272. result->src[0] = a;
  3273. return result;
  3274. }
  3275. struct ggml_tensor * ggml_rms_norm(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. float eps) {
  3279. return ggml_rms_norm_impl(ctx, a, eps, false);
  3280. }
  3281. struct ggml_tensor * ggml_rms_norm_inplace(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. float eps) {
  3285. return ggml_rms_norm_impl(ctx, a, eps, true);
  3286. }
  3287. // ggml_rms_norm_back
  3288. struct ggml_tensor * ggml_rms_norm_back(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b,
  3292. float eps) {
  3293. bool is_node = false;
  3294. if (a->grad) {
  3295. // TODO: implement backward
  3296. is_node = true;
  3297. }
  3298. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3299. ggml_set_op_params(result, &eps, sizeof(eps));
  3300. result->op = GGML_OP_RMS_NORM_BACK;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src[0] = a;
  3303. result->src[1] = b;
  3304. return result;
  3305. }
  3306. // ggml_group_norm
  3307. static struct ggml_tensor * ggml_group_norm_impl(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. int n_groups,
  3311. bool inplace) {
  3312. bool is_node = false;
  3313. if (!inplace && (a->grad)) {
  3314. GGML_ASSERT(false); // TODO: implement backward
  3315. is_node = true;
  3316. }
  3317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3318. result->op = GGML_OP_GROUP_NORM;
  3319. result->op_params[0] = n_groups;
  3320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3321. result->src[0] = a;
  3322. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3323. return result;
  3324. }
  3325. struct ggml_tensor * ggml_group_norm(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. int n_groups) {
  3329. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3330. }
  3331. struct ggml_tensor * ggml_group_norm_inplace(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. int n_groups) {
  3335. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3336. }
  3337. // ggml_mul_mat
  3338. struct ggml_tensor * ggml_mul_mat(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. struct ggml_tensor * b) {
  3342. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3343. GGML_ASSERT(!ggml_is_transposed(a));
  3344. bool is_node = false;
  3345. if (a->grad || b->grad) {
  3346. is_node = true;
  3347. }
  3348. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3349. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3350. result->op = GGML_OP_MUL_MAT;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src[0] = a;
  3353. result->src[1] = b;
  3354. return result;
  3355. }
  3356. // ggml_mul_mat_id
  3357. struct ggml_tensor * ggml_mul_mat_id(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * const as[],
  3360. int n_as,
  3361. struct ggml_tensor * ids,
  3362. int id,
  3363. struct ggml_tensor * b) {
  3364. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3365. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3366. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3367. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3368. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3369. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3370. bool is_node = false;
  3371. if (as[0]->grad || b->grad) {
  3372. is_node = true;
  3373. }
  3374. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3375. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
  3376. ggml_set_op_params_i32(result, 0, id);
  3377. ggml_set_op_params_i32(result, 1, n_as);
  3378. result->op = GGML_OP_MUL_MAT_ID;
  3379. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3380. result->src[0] = ids;
  3381. result->src[1] = b;
  3382. for (int i = 0; i < n_as; i++) {
  3383. struct ggml_tensor * a = as[i];
  3384. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3385. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3386. GGML_ASSERT(!ggml_is_transposed(a));
  3387. result->src[i + 2] = a;
  3388. }
  3389. return result;
  3390. }
  3391. // ggml_out_prod
  3392. struct ggml_tensor * ggml_out_prod(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a,
  3395. struct ggml_tensor * b) {
  3396. GGML_ASSERT(ggml_can_out_prod(a, b));
  3397. GGML_ASSERT(!ggml_is_transposed(a));
  3398. bool is_node = false;
  3399. if (a->grad || b->grad) {
  3400. is_node = true;
  3401. }
  3402. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3403. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3404. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3405. result->op = GGML_OP_OUT_PROD;
  3406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3407. result->src[0] = a;
  3408. result->src[1] = b;
  3409. return result;
  3410. }
  3411. // ggml_scale
  3412. static struct ggml_tensor * ggml_scale_impl(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a,
  3415. struct ggml_tensor * b,
  3416. bool inplace) {
  3417. GGML_ASSERT(ggml_is_scalar(b));
  3418. GGML_ASSERT(ggml_is_padded_1d(a));
  3419. bool is_node = false;
  3420. if (a->grad || b->grad) {
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3424. result->op = GGML_OP_SCALE;
  3425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3426. result->src[0] = a;
  3427. result->src[1] = b;
  3428. return result;
  3429. }
  3430. struct ggml_tensor * ggml_scale(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b) {
  3434. return ggml_scale_impl(ctx, a, b, false);
  3435. }
  3436. struct ggml_tensor * ggml_scale_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. struct ggml_tensor * b) {
  3440. return ggml_scale_impl(ctx, a, b, true);
  3441. }
  3442. // ggml_set
  3443. static struct ggml_tensor * ggml_set_impl(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a,
  3446. struct ggml_tensor * b,
  3447. size_t nb1,
  3448. size_t nb2,
  3449. size_t nb3,
  3450. size_t offset,
  3451. bool inplace) {
  3452. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3453. bool is_node = false;
  3454. if (a->grad || b->grad) {
  3455. is_node = true;
  3456. }
  3457. // make a view of the destination
  3458. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3459. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3460. ggml_set_op_params(result, params, sizeof(params));
  3461. result->op = GGML_OP_SET;
  3462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3463. result->src[0] = a;
  3464. result->src[1] = b;
  3465. return result;
  3466. }
  3467. struct ggml_tensor * ggml_set(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. struct ggml_tensor * b,
  3471. size_t nb1,
  3472. size_t nb2,
  3473. size_t nb3,
  3474. size_t offset) {
  3475. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3476. }
  3477. struct ggml_tensor * ggml_set_inplace(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b,
  3481. size_t nb1,
  3482. size_t nb2,
  3483. size_t nb3,
  3484. size_t offset) {
  3485. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3486. }
  3487. struct ggml_tensor * ggml_set_1d(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. size_t offset) {
  3492. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3493. }
  3494. struct ggml_tensor * ggml_set_1d_inplace(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b,
  3498. size_t offset) {
  3499. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3500. }
  3501. struct ggml_tensor * ggml_set_2d(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. struct ggml_tensor * b,
  3505. size_t nb1,
  3506. size_t offset) {
  3507. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3508. }
  3509. struct ggml_tensor * ggml_set_2d_inplace(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b,
  3513. size_t nb1,
  3514. size_t offset) {
  3515. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3516. }
  3517. // ggml_cpy
  3518. static struct ggml_tensor * ggml_cpy_impl(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a,
  3521. struct ggml_tensor * b,
  3522. bool inplace) {
  3523. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3524. bool is_node = false;
  3525. if (!inplace && (a->grad || b->grad)) {
  3526. is_node = true;
  3527. }
  3528. // make a view of the destination
  3529. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3530. if (strlen(b->name) > 0) {
  3531. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3532. } else {
  3533. ggml_format_name(result, "%s (copy)", a->name);
  3534. }
  3535. result->op = GGML_OP_CPY;
  3536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3537. result->src[0] = a;
  3538. result->src[1] = b;
  3539. return result;
  3540. }
  3541. struct ggml_tensor * ggml_cpy(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. struct ggml_tensor * b) {
  3545. return ggml_cpy_impl(ctx, a, b, false);
  3546. }
  3547. struct ggml_tensor * ggml_cpy_inplace(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. struct ggml_tensor * b) {
  3551. return ggml_cpy_impl(ctx, a, b, true);
  3552. }
  3553. // ggml_cont
  3554. static struct ggml_tensor * ggml_cont_impl(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. bool inplace) {
  3558. bool is_node = false;
  3559. if (!inplace && a->grad) {
  3560. is_node = true;
  3561. }
  3562. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3563. ggml_format_name(result, "%s (cont)", a->name);
  3564. result->op = GGML_OP_CONT;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. return result;
  3568. }
  3569. struct ggml_tensor * ggml_cont(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_cont_impl(ctx, a, false);
  3573. }
  3574. struct ggml_tensor * ggml_cont_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_cont_impl(ctx, a, true);
  3578. }
  3579. // make contiguous, with new shape
  3580. GGML_API struct ggml_tensor * ggml_cont_1d(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. int64_t ne0) {
  3584. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3585. }
  3586. GGML_API struct ggml_tensor * ggml_cont_2d(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. int64_t ne0,
  3590. int64_t ne1) {
  3591. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3592. }
  3593. GGML_API struct ggml_tensor * ggml_cont_3d(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int64_t ne0,
  3597. int64_t ne1,
  3598. int64_t ne2) {
  3599. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3600. }
  3601. struct ggml_tensor * ggml_cont_4d(
  3602. struct ggml_context * ctx,
  3603. struct ggml_tensor * a,
  3604. int64_t ne0,
  3605. int64_t ne1,
  3606. int64_t ne2,
  3607. int64_t ne3) {
  3608. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3609. bool is_node = false;
  3610. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3611. ggml_format_name(result, "%s (cont)", a->name);
  3612. result->op = GGML_OP_CONT;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src[0] = a;
  3615. return result;
  3616. }
  3617. // ggml_reshape
  3618. struct ggml_tensor * ggml_reshape(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. struct ggml_tensor * b) {
  3622. GGML_ASSERT(ggml_is_contiguous(a));
  3623. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3624. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3625. bool is_node = false;
  3626. if (a->grad) {
  3627. is_node = true;
  3628. }
  3629. if (b->grad) {
  3630. // gradient propagation is not supported
  3631. //GGML_ASSERT(false);
  3632. }
  3633. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3634. ggml_format_name(result, "%s (reshaped)", a->name);
  3635. result->op = GGML_OP_RESHAPE;
  3636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3637. result->src[0] = a;
  3638. return result;
  3639. }
  3640. struct ggml_tensor * ggml_reshape_1d(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a,
  3643. int64_t ne0) {
  3644. GGML_ASSERT(ggml_is_contiguous(a));
  3645. GGML_ASSERT(ggml_nelements(a) == ne0);
  3646. bool is_node = false;
  3647. if (a->grad) {
  3648. is_node = true;
  3649. }
  3650. const int64_t ne[1] = { ne0 };
  3651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3652. ggml_format_name(result, "%s (reshaped)", a->name);
  3653. result->op = GGML_OP_RESHAPE;
  3654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3655. result->src[0] = a;
  3656. return result;
  3657. }
  3658. struct ggml_tensor * ggml_reshape_2d(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. int64_t ne0,
  3662. int64_t ne1) {
  3663. GGML_ASSERT(ggml_is_contiguous(a));
  3664. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3665. bool is_node = false;
  3666. if (a->grad) {
  3667. is_node = true;
  3668. }
  3669. const int64_t ne[2] = { ne0, ne1 };
  3670. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3671. ggml_format_name(result, "%s (reshaped)", a->name);
  3672. result->op = GGML_OP_RESHAPE;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src[0] = a;
  3675. return result;
  3676. }
  3677. struct ggml_tensor * ggml_reshape_3d(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. int64_t ne0,
  3681. int64_t ne1,
  3682. int64_t ne2) {
  3683. GGML_ASSERT(ggml_is_contiguous(a));
  3684. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3685. bool is_node = false;
  3686. if (a->grad) {
  3687. is_node = true;
  3688. }
  3689. const int64_t ne[3] = { ne0, ne1, ne2 };
  3690. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3691. ggml_format_name(result, "%s (reshaped)", a->name);
  3692. result->op = GGML_OP_RESHAPE;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src[0] = a;
  3695. return result;
  3696. }
  3697. struct ggml_tensor * ggml_reshape_4d(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. int64_t ne0,
  3701. int64_t ne1,
  3702. int64_t ne2,
  3703. int64_t ne3) {
  3704. GGML_ASSERT(ggml_is_contiguous(a));
  3705. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3706. bool is_node = false;
  3707. if (a->grad) {
  3708. is_node = true;
  3709. }
  3710. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3711. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3712. ggml_format_name(result, "%s (reshaped)", a->name);
  3713. result->op = GGML_OP_RESHAPE;
  3714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3715. result->src[0] = a;
  3716. return result;
  3717. }
  3718. static struct ggml_tensor * ggml_view_impl(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. int n_dims,
  3722. const int64_t * ne,
  3723. size_t offset) {
  3724. bool is_node = false;
  3725. if (a->grad) {
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3729. ggml_format_name(result, "%s (view)", a->name);
  3730. ggml_set_op_params(result, &offset, sizeof(offset));
  3731. result->op = GGML_OP_VIEW;
  3732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3733. result->src[0] = a;
  3734. return result;
  3735. }
  3736. // ggml_view_1d
  3737. struct ggml_tensor * ggml_view_1d(
  3738. struct ggml_context * ctx,
  3739. struct ggml_tensor * a,
  3740. int64_t ne0,
  3741. size_t offset) {
  3742. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3743. return result;
  3744. }
  3745. // ggml_view_2d
  3746. struct ggml_tensor * ggml_view_2d(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. int64_t ne0,
  3750. int64_t ne1,
  3751. size_t nb1,
  3752. size_t offset) {
  3753. const int64_t ne[2] = { ne0, ne1 };
  3754. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3755. result->nb[1] = nb1;
  3756. result->nb[2] = result->nb[1]*ne1;
  3757. result->nb[3] = result->nb[2];
  3758. return result;
  3759. }
  3760. // ggml_view_3d
  3761. struct ggml_tensor * ggml_view_3d(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. int64_t ne0,
  3765. int64_t ne1,
  3766. int64_t ne2,
  3767. size_t nb1,
  3768. size_t nb2,
  3769. size_t offset) {
  3770. const int64_t ne[3] = { ne0, ne1, ne2 };
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3772. result->nb[1] = nb1;
  3773. result->nb[2] = nb2;
  3774. result->nb[3] = result->nb[2]*ne2;
  3775. return result;
  3776. }
  3777. // ggml_view_4d
  3778. struct ggml_tensor * ggml_view_4d(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. int64_t ne0,
  3782. int64_t ne1,
  3783. int64_t ne2,
  3784. int64_t ne3,
  3785. size_t nb1,
  3786. size_t nb2,
  3787. size_t nb3,
  3788. size_t offset) {
  3789. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3790. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3791. result->nb[1] = nb1;
  3792. result->nb[2] = nb2;
  3793. result->nb[3] = nb3;
  3794. return result;
  3795. }
  3796. // ggml_permute
  3797. struct ggml_tensor * ggml_permute(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. int axis0,
  3801. int axis1,
  3802. int axis2,
  3803. int axis3) {
  3804. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3805. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3806. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3807. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3808. GGML_ASSERT(axis0 != axis1);
  3809. GGML_ASSERT(axis0 != axis2);
  3810. GGML_ASSERT(axis0 != axis3);
  3811. GGML_ASSERT(axis1 != axis2);
  3812. GGML_ASSERT(axis1 != axis3);
  3813. GGML_ASSERT(axis2 != axis3);
  3814. bool is_node = false;
  3815. if (a->grad) {
  3816. is_node = true;
  3817. }
  3818. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3819. ggml_format_name(result, "%s (permuted)", a->name);
  3820. int ne[GGML_MAX_DIMS];
  3821. int nb[GGML_MAX_DIMS];
  3822. ne[axis0] = a->ne[0];
  3823. ne[axis1] = a->ne[1];
  3824. ne[axis2] = a->ne[2];
  3825. ne[axis3] = a->ne[3];
  3826. nb[axis0] = a->nb[0];
  3827. nb[axis1] = a->nb[1];
  3828. nb[axis2] = a->nb[2];
  3829. nb[axis3] = a->nb[3];
  3830. result->ne[0] = ne[0];
  3831. result->ne[1] = ne[1];
  3832. result->ne[2] = ne[2];
  3833. result->ne[3] = ne[3];
  3834. result->nb[0] = nb[0];
  3835. result->nb[1] = nb[1];
  3836. result->nb[2] = nb[2];
  3837. result->nb[3] = nb[3];
  3838. result->op = GGML_OP_PERMUTE;
  3839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3840. result->src[0] = a;
  3841. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3842. ggml_set_op_params(result, params, sizeof(params));
  3843. return result;
  3844. }
  3845. // ggml_transpose
  3846. struct ggml_tensor * ggml_transpose(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a) {
  3849. bool is_node = false;
  3850. if (a->grad) {
  3851. is_node = true;
  3852. }
  3853. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3854. ggml_format_name(result, "%s (transposed)", a->name);
  3855. result->ne[0] = a->ne[1];
  3856. result->ne[1] = a->ne[0];
  3857. result->nb[0] = a->nb[1];
  3858. result->nb[1] = a->nb[0];
  3859. result->op = GGML_OP_TRANSPOSE;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src[0] = a;
  3862. return result;
  3863. }
  3864. // ggml_get_rows
  3865. struct ggml_tensor * ggml_get_rows(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. struct ggml_tensor * b) {
  3869. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3870. GGML_ASSERT(b->ne[3] == 1);
  3871. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3872. bool is_node = false;
  3873. if (a->grad || b->grad) {
  3874. is_node = true;
  3875. }
  3876. // TODO: implement non F32 return
  3877. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3878. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3879. result->op = GGML_OP_GET_ROWS;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src[0] = a;
  3882. result->src[1] = b;
  3883. return result;
  3884. }
  3885. // ggml_get_rows_back
  3886. struct ggml_tensor * ggml_get_rows_back(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b,
  3890. struct ggml_tensor * c) {
  3891. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3892. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3893. bool is_node = false;
  3894. if (a->grad || b->grad) {
  3895. is_node = true;
  3896. }
  3897. // TODO: implement non F32 return
  3898. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3899. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3900. result->op = GGML_OP_GET_ROWS_BACK;
  3901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3902. result->src[0] = a;
  3903. result->src[1] = b;
  3904. return result;
  3905. }
  3906. // ggml_diag
  3907. struct ggml_tensor * ggml_diag(
  3908. struct ggml_context * ctx,
  3909. struct ggml_tensor * a) {
  3910. GGML_ASSERT(a->ne[1] == 1);
  3911. bool is_node = false;
  3912. if (a->grad) {
  3913. is_node = true;
  3914. }
  3915. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3916. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3917. result->op = GGML_OP_DIAG;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. return result;
  3921. }
  3922. // ggml_diag_mask_inf
  3923. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. int n_past,
  3927. bool inplace) {
  3928. bool is_node = false;
  3929. if (a->grad) {
  3930. is_node = true;
  3931. }
  3932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3933. int32_t params[] = { n_past };
  3934. ggml_set_op_params(result, params, sizeof(params));
  3935. result->op = GGML_OP_DIAG_MASK_INF;
  3936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3937. result->src[0] = a;
  3938. return result;
  3939. }
  3940. struct ggml_tensor * ggml_diag_mask_inf(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a,
  3943. int n_past) {
  3944. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3945. }
  3946. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. int n_past) {
  3950. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3951. }
  3952. // ggml_diag_mask_zero
  3953. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. int n_past,
  3957. bool inplace) {
  3958. bool is_node = false;
  3959. if (a->grad) {
  3960. is_node = true;
  3961. }
  3962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3963. int32_t params[] = { n_past };
  3964. ggml_set_op_params(result, params, sizeof(params));
  3965. result->op = GGML_OP_DIAG_MASK_ZERO;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. return result;
  3969. }
  3970. struct ggml_tensor * ggml_diag_mask_zero(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. int n_past) {
  3974. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3975. }
  3976. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. int n_past) {
  3980. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3981. }
  3982. // ggml_soft_max
  3983. static struct ggml_tensor * ggml_soft_max_impl(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a,
  3986. struct ggml_tensor * mask,
  3987. float scale,
  3988. bool inplace) {
  3989. GGML_ASSERT(ggml_is_contiguous(a));
  3990. if (mask) {
  3991. GGML_ASSERT(ggml_is_contiguous(mask));
  3992. GGML_ASSERT(mask->ne[2] == 1);
  3993. GGML_ASSERT(mask->ne[3] == 1);
  3994. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  3995. }
  3996. bool is_node = false;
  3997. if (a->grad) {
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4001. float params[] = { scale };
  4002. ggml_set_op_params(result, params, sizeof(params));
  4003. result->op = GGML_OP_SOFT_MAX;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src[0] = a;
  4006. result->src[1] = mask;
  4007. return result;
  4008. }
  4009. struct ggml_tensor * ggml_soft_max(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4013. }
  4014. struct ggml_tensor * ggml_soft_max_inplace(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4018. }
  4019. struct ggml_tensor * ggml_soft_max_ext(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. struct ggml_tensor * mask,
  4023. float scale) {
  4024. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4025. }
  4026. // ggml_soft_max_back
  4027. static struct ggml_tensor * ggml_soft_max_back_impl(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a,
  4030. struct ggml_tensor * b,
  4031. bool inplace) {
  4032. bool is_node = false;
  4033. if (a->grad || b->grad) {
  4034. is_node = true; // TODO : implement backward pass
  4035. }
  4036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4037. result->op = GGML_OP_SOFT_MAX_BACK;
  4038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4039. result->src[0] = a;
  4040. result->src[1] = b;
  4041. return result;
  4042. }
  4043. struct ggml_tensor * ggml_soft_max_back(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. struct ggml_tensor * b) {
  4047. return ggml_soft_max_back_impl(ctx, a, b, false);
  4048. }
  4049. struct ggml_tensor * ggml_soft_max_back_inplace(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. struct ggml_tensor * b) {
  4053. return ggml_soft_max_back_impl(ctx, a, b, true);
  4054. }
  4055. // ggml_rope
  4056. static struct ggml_tensor * ggml_rope_impl(
  4057. struct ggml_context * ctx,
  4058. struct ggml_tensor * a,
  4059. struct ggml_tensor * b,
  4060. int n_dims,
  4061. int mode,
  4062. int n_ctx,
  4063. int n_orig_ctx,
  4064. float freq_base,
  4065. float freq_scale,
  4066. float ext_factor,
  4067. float attn_factor,
  4068. float beta_fast,
  4069. float beta_slow,
  4070. float xpos_base,
  4071. bool xpos_down,
  4072. bool inplace) {
  4073. GGML_ASSERT(ggml_is_vector(b));
  4074. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4075. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. is_node = true;
  4079. }
  4080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4081. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4082. memcpy(params + 5, &freq_base, sizeof(float));
  4083. memcpy(params + 6, &freq_scale, sizeof(float));
  4084. memcpy(params + 7, &ext_factor, sizeof(float));
  4085. memcpy(params + 8, &attn_factor, sizeof(float));
  4086. memcpy(params + 9, &beta_fast, sizeof(float));
  4087. memcpy(params + 10, &beta_slow, sizeof(float));
  4088. memcpy(params + 11, &xpos_base, sizeof(float));
  4089. memcpy(params + 12, &xpos_down, sizeof(bool));
  4090. ggml_set_op_params(result, params, sizeof(params));
  4091. result->op = GGML_OP_ROPE;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. result->src[1] = b;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_rope(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b,
  4101. int n_dims,
  4102. int mode,
  4103. int n_ctx) {
  4104. return ggml_rope_impl(
  4105. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4106. );
  4107. }
  4108. struct ggml_tensor * ggml_rope_inplace(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b,
  4112. int n_dims,
  4113. int mode,
  4114. int n_ctx) {
  4115. return ggml_rope_impl(
  4116. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4117. );
  4118. }
  4119. struct ggml_tensor * ggml_rope_custom(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a,
  4122. struct ggml_tensor * b,
  4123. int n_dims,
  4124. int mode,
  4125. int n_ctx,
  4126. int n_orig_ctx,
  4127. float freq_base,
  4128. float freq_scale,
  4129. float ext_factor,
  4130. float attn_factor,
  4131. float beta_fast,
  4132. float beta_slow) {
  4133. return ggml_rope_impl(
  4134. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4135. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4136. );
  4137. }
  4138. struct ggml_tensor * ggml_rope_custom_inplace(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * b,
  4142. int n_dims,
  4143. int mode,
  4144. int n_ctx,
  4145. int n_orig_ctx,
  4146. float freq_base,
  4147. float freq_scale,
  4148. float ext_factor,
  4149. float attn_factor,
  4150. float beta_fast,
  4151. float beta_slow) {
  4152. return ggml_rope_impl(
  4153. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4154. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4155. );
  4156. }
  4157. struct ggml_tensor * ggml_rope_xpos_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b,
  4161. int n_dims,
  4162. float base,
  4163. bool down) {
  4164. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4165. }
  4166. // ggml_rope_back
  4167. struct ggml_tensor * ggml_rope_back(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b,
  4171. int n_dims,
  4172. int mode,
  4173. int n_ctx,
  4174. int n_orig_ctx,
  4175. float freq_base,
  4176. float freq_scale,
  4177. float ext_factor,
  4178. float attn_factor,
  4179. float beta_fast,
  4180. float beta_slow,
  4181. float xpos_base,
  4182. bool xpos_down) {
  4183. GGML_ASSERT(ggml_is_vector(b));
  4184. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4185. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4186. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4187. bool is_node = false;
  4188. if (a->grad) {
  4189. is_node = false; // TODO: implement backward
  4190. }
  4191. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4192. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4193. memcpy(params + 5, &freq_base, sizeof(float));
  4194. memcpy(params + 6, &freq_scale, sizeof(float));
  4195. memcpy(params + 7, &ext_factor, sizeof(float));
  4196. memcpy(params + 8, &attn_factor, sizeof(float));
  4197. memcpy(params + 9, &beta_fast, sizeof(float));
  4198. memcpy(params + 10, &beta_slow, sizeof(float));
  4199. memcpy(params + 11, &xpos_base, sizeof(float));
  4200. memcpy(params + 12, &xpos_down, sizeof(bool));
  4201. ggml_set_op_params(result, params, sizeof(params));
  4202. result->op = GGML_OP_ROPE_BACK;
  4203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4204. result->src[0] = a;
  4205. result->src[1] = b;
  4206. return result;
  4207. }
  4208. // ggml_alibi
  4209. struct ggml_tensor * ggml_alibi(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. int n_past,
  4213. int n_head,
  4214. float bias_max) {
  4215. GGML_ASSERT(n_past >= 0);
  4216. bool is_node = false;
  4217. if (a->grad) {
  4218. GGML_ASSERT(false); // TODO: implement backward
  4219. is_node = true;
  4220. }
  4221. // TODO: when implement backward, fix this:
  4222. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4223. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4224. int32_t op_params[3] = { n_past, n_head };
  4225. memcpy(op_params + 2, &bias_max, sizeof(float));
  4226. ggml_set_op_params(result, op_params, sizeof(op_params));
  4227. result->op = GGML_OP_ALIBI;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src[0] = a;
  4230. return result;
  4231. }
  4232. // ggml_clamp
  4233. struct ggml_tensor * ggml_clamp(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. float min,
  4237. float max) {
  4238. bool is_node = false;
  4239. if (a->grad) {
  4240. GGML_ASSERT(false); // TODO: implement backward
  4241. is_node = true;
  4242. }
  4243. // TODO: when implement backward, fix this:
  4244. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4245. float params[] = { min, max };
  4246. ggml_set_op_params(result, params, sizeof(params));
  4247. result->op = GGML_OP_CLAMP;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. return result;
  4251. }
  4252. // ggml_conv_1d
  4253. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4254. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4255. }
  4256. GGML_API struct ggml_tensor * ggml_conv_1d(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b,
  4260. int s0,
  4261. int p0,
  4262. int d0) {
  4263. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4264. struct ggml_tensor * result =
  4265. ggml_mul_mat(ctx,
  4266. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4267. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4268. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4269. return result;
  4270. }
  4271. // ggml_conv_1d_ph
  4272. struct ggml_tensor* ggml_conv_1d_ph(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b,
  4276. int s,
  4277. int d) {
  4278. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4279. }
  4280. // ggml_conv_transpose_1d
  4281. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4282. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4283. }
  4284. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. struct ggml_tensor * b,
  4288. int s0,
  4289. int p0,
  4290. int d0) {
  4291. GGML_ASSERT(ggml_is_matrix(b));
  4292. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4293. GGML_ASSERT(a->ne[3] == 1);
  4294. GGML_ASSERT(p0 == 0);
  4295. GGML_ASSERT(d0 == 1);
  4296. bool is_node = false;
  4297. if (a->grad || b->grad) {
  4298. GGML_ASSERT(false); // TODO: implement backward
  4299. is_node = true;
  4300. }
  4301. const int64_t ne[4] = {
  4302. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4303. a->ne[1], b->ne[2], 1,
  4304. };
  4305. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4306. int32_t params[] = { s0, p0, d0 };
  4307. ggml_set_op_params(result, params, sizeof(params));
  4308. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4310. result->src[0] = a;
  4311. result->src[1] = b;
  4312. return result;
  4313. }
  4314. // ggml_conv_2d
  4315. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4316. // a: [OC,IC, KH, KW]
  4317. // b: [N, IC, IH, IW]
  4318. // result: [N, OH, OW, IC*KH*KW]
  4319. struct ggml_tensor * ggml_im2col(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a,
  4322. struct ggml_tensor * b,
  4323. int s0,
  4324. int s1,
  4325. int p0,
  4326. int p1,
  4327. int d0,
  4328. int d1,
  4329. bool is_2D) {
  4330. if(is_2D) {
  4331. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4332. } else {
  4333. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4334. }
  4335. bool is_node = false;
  4336. if (a->grad || b->grad) {
  4337. GGML_ASSERT(false); // TODO: implement backward
  4338. is_node = true;
  4339. }
  4340. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4341. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4342. const int64_t ne[4] = {
  4343. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4344. OW,
  4345. is_2D ? OH : b->ne[2],
  4346. is_2D ? b->ne[3] : 1,
  4347. };
  4348. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4349. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4350. ggml_set_op_params(result, params, sizeof(params));
  4351. result->op = GGML_OP_IM2COL;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. // a: [OC,IC, KH, KW]
  4358. // b: [N, IC, IH, IW]
  4359. // result: [N, OC, OH, OW]
  4360. struct ggml_tensor * ggml_conv_2d(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b,
  4364. int s0,
  4365. int s1,
  4366. int p0,
  4367. int p1,
  4368. int d0,
  4369. int d1) {
  4370. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4371. struct ggml_tensor * result =
  4372. ggml_mul_mat(ctx,
  4373. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4374. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4375. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4376. return result;
  4377. }
  4378. // ggml_conv_2d_sk_p0
  4379. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b) {
  4383. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4384. }
  4385. // ggml_conv_2d_s1_ph
  4386. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. struct ggml_tensor * b) {
  4390. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4391. }
  4392. // ggml_conv_transpose_2d_p0
  4393. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4394. return (ins - 1) * s - 2 * p + ks;
  4395. }
  4396. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. struct ggml_tensor * b,
  4400. int stride) {
  4401. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4402. bool is_node = false;
  4403. if (a->grad || b->grad) {
  4404. GGML_ASSERT(false); // TODO: implement backward
  4405. is_node = true;
  4406. }
  4407. const int64_t ne[4] = {
  4408. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4409. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4410. a->ne[2], b->ne[3],
  4411. };
  4412. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4413. ggml_set_op_params_i32(result, 0, stride);
  4414. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src[0] = a;
  4417. result->src[1] = b;
  4418. return result;
  4419. }
  4420. // ggml_pool_*
  4421. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4422. return (ins + 2 * p - ks) / s + 1;
  4423. }
  4424. // ggml_pool_1d
  4425. struct ggml_tensor * ggml_pool_1d(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. enum ggml_op_pool op,
  4429. int k0,
  4430. int s0,
  4431. int p0) {
  4432. bool is_node = false;
  4433. if (a->grad) {
  4434. GGML_ASSERT(false); // TODO: implement backward
  4435. is_node = true;
  4436. }
  4437. const int64_t ne[3] = {
  4438. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4439. a->ne[1],
  4440. };
  4441. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4442. int32_t params[] = { op, k0, s0, p0 };
  4443. ggml_set_op_params(result, params, sizeof(params));
  4444. result->op = GGML_OP_POOL_1D;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. return result;
  4448. }
  4449. // ggml_pool_2d
  4450. struct ggml_tensor * ggml_pool_2d(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. enum ggml_op_pool op,
  4454. int k0,
  4455. int k1,
  4456. int s0,
  4457. int s1,
  4458. float p0,
  4459. float p1) {
  4460. bool is_node = false;
  4461. if (a->grad) {
  4462. GGML_ASSERT(false); // TODO: implement backward
  4463. is_node = true;
  4464. }
  4465. const int64_t ne[3] = {
  4466. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4467. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4468. a->ne[2],
  4469. };
  4470. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4471. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4472. ggml_set_op_params(result, params, sizeof(params));
  4473. result->op = GGML_OP_POOL_2D;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src[0] = a;
  4476. return result;
  4477. }
  4478. // ggml_upscale
  4479. static struct ggml_tensor * ggml_upscale_impl(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. int scale_factor) {
  4483. bool is_node = false;
  4484. if (a->grad) {
  4485. GGML_ASSERT(false); // TODO: implement backward
  4486. is_node = true;
  4487. }
  4488. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4489. a->ne[0] * scale_factor,
  4490. a->ne[1] * scale_factor,
  4491. a->ne[2], a->ne[3]);
  4492. result->op = GGML_OP_UPSCALE;
  4493. result->op_params[0] = scale_factor;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. result->src[1] = NULL;
  4497. return result;
  4498. }
  4499. struct ggml_tensor * ggml_upscale(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. int scale_factor) {
  4503. return ggml_upscale_impl(ctx, a, scale_factor);
  4504. }
  4505. // ggml_argsort
  4506. struct ggml_tensor * ggml_argsort(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. enum ggml_sort_order order) {
  4510. bool is_node = false;
  4511. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, a->ne);
  4512. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4513. result->op = GGML_OP_ARGSORT;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. return result;
  4517. }
  4518. // ggml_top_k
  4519. struct ggml_tensor * ggml_top_k(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. int k) {
  4523. GGML_ASSERT(a->ne[0] >= k);
  4524. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4525. result = ggml_view_4d(ctx, result,
  4526. k, result->ne[1], result->ne[2], result->ne[3],
  4527. result->nb[1], result->nb[2], result->nb[3],
  4528. 0);
  4529. return result;
  4530. }
  4531. // ggml_flash_attn
  4532. struct ggml_tensor * ggml_flash_attn(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * q,
  4535. struct ggml_tensor * k,
  4536. struct ggml_tensor * v,
  4537. bool masked) {
  4538. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4539. // TODO: check if vT can be multiplied by (k*qT)
  4540. bool is_node = false;
  4541. if (q->grad || k->grad || v->grad) {
  4542. is_node = true;
  4543. }
  4544. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4545. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4546. int32_t t = masked ? 1 : 0;
  4547. ggml_set_op_params(result, &t, sizeof(t));
  4548. result->op = GGML_OP_FLASH_ATTN;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src[0] = q;
  4551. result->src[1] = k;
  4552. result->src[2] = v;
  4553. return result;
  4554. }
  4555. // ggml_flash_ff
  4556. struct ggml_tensor * ggml_flash_ff(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b0,
  4560. struct ggml_tensor * b1,
  4561. struct ggml_tensor * c0,
  4562. struct ggml_tensor * c1) {
  4563. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4564. // TODO: more checks
  4565. bool is_node = false;
  4566. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4567. is_node = true;
  4568. }
  4569. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4570. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4571. result->op = GGML_OP_FLASH_FF;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src[0] = a;
  4574. result->src[1] = b0;
  4575. result->src[2] = b1;
  4576. result->src[3] = c0;
  4577. result->src[4] = c1;
  4578. return result;
  4579. }
  4580. // ggml_flash_attn_back
  4581. struct ggml_tensor * ggml_flash_attn_back(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * q,
  4584. struct ggml_tensor * k,
  4585. struct ggml_tensor * v,
  4586. struct ggml_tensor * d,
  4587. bool masked) {
  4588. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4589. // TODO: check if vT can be multiplied by (k*qT)
  4590. // d shape [D,N,ne2,ne3]
  4591. // q shape [D,N,ne2,ne3]
  4592. // k shape [D,M,kvne2,ne3]
  4593. // v shape [M,D,kvne2,ne3]
  4594. const int64_t D = q->ne[0];
  4595. const int64_t N = q->ne[1];
  4596. const int64_t M = k->ne[1];
  4597. const int64_t ne2 = q->ne[2];
  4598. const int64_t ne3 = q->ne[3];
  4599. const int64_t kvne2 = k->ne[2];
  4600. GGML_ASSERT(k->ne[0] == D);
  4601. GGML_ASSERT(v->ne[0] == M);
  4602. GGML_ASSERT(v->ne[1] == D);
  4603. GGML_ASSERT(d->ne[0] == D);
  4604. GGML_ASSERT(d->ne[1] == N);
  4605. GGML_ASSERT(k->ne[2] == kvne2);
  4606. GGML_ASSERT(k->ne[3] == ne3);
  4607. GGML_ASSERT(v->ne[2] == kvne2);
  4608. GGML_ASSERT(v->ne[3] == ne3);
  4609. GGML_ASSERT(d->ne[2] == ne2);
  4610. GGML_ASSERT(d->ne[3] == ne3);
  4611. GGML_ASSERT(ne2 % kvne2 == 0);
  4612. bool is_node = false;
  4613. if (q->grad || k->grad || v->grad) {
  4614. // when using this operation (in backwards pass) these grads are set.
  4615. // we don't want to create (big) grad of our result, so is_node is false.
  4616. is_node = false;
  4617. }
  4618. // store gradients of q, k and v as continuous tensors concatenated in result.
  4619. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4620. const int64_t elem_q = ggml_nelements(q);
  4621. const int64_t elem_k = ggml_nelements(k);
  4622. const int64_t elem_v = ggml_nelements(v);
  4623. enum ggml_type result_type = GGML_TYPE_F32;
  4624. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4625. const size_t tsize = ggml_type_size(result_type);
  4626. const size_t offs_q = 0;
  4627. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4628. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4629. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4630. const size_t nelements = (end + tsize - 1)/tsize;
  4631. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4632. int32_t masked_i = masked ? 1 : 0;
  4633. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4634. result->op = GGML_OP_FLASH_ATTN_BACK;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src[0] = q;
  4637. result->src[1] = k;
  4638. result->src[2] = v;
  4639. result->src[3] = d;
  4640. return result;
  4641. }
  4642. // ggml_win_part
  4643. struct ggml_tensor * ggml_win_part(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. int w) {
  4647. GGML_ASSERT(a->ne[3] == 1);
  4648. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4649. bool is_node = false;
  4650. if (a->grad) {
  4651. GGML_ASSERT(false); // TODO: implement backward
  4652. is_node = true;
  4653. }
  4654. // padding
  4655. const int px = (w - a->ne[1]%w)%w;
  4656. const int py = (w - a->ne[2]%w)%w;
  4657. const int npx = (px + a->ne[1])/w;
  4658. const int npy = (py + a->ne[2])/w;
  4659. const int np = npx*npy;
  4660. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4661. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4662. int32_t params[] = { npx, npy, w };
  4663. ggml_set_op_params(result, params, sizeof(params));
  4664. result->op = GGML_OP_WIN_PART;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. return result;
  4668. }
  4669. // ggml_win_unpart
  4670. struct ggml_tensor * ggml_win_unpart(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a,
  4673. int w0,
  4674. int h0,
  4675. int w) {
  4676. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. GGML_ASSERT(false); // TODO: implement backward
  4680. is_node = true;
  4681. }
  4682. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4683. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4684. int32_t params[] = { w };
  4685. ggml_set_op_params(result, params, sizeof(params));
  4686. result->op = GGML_OP_WIN_UNPART;
  4687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4688. result->src[0] = a;
  4689. return result;
  4690. }
  4691. // ggml_get_rel_pos
  4692. struct ggml_tensor * ggml_get_rel_pos(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. int qh,
  4696. int kh) {
  4697. GGML_ASSERT(qh == kh);
  4698. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4699. bool is_node = false;
  4700. if (a->grad) {
  4701. GGML_ASSERT(false); // TODO: implement backward
  4702. is_node = true;
  4703. }
  4704. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4705. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4706. result->op = GGML_OP_GET_REL_POS;
  4707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4708. result->src[0] = a;
  4709. result->src[1] = NULL;
  4710. return result;
  4711. }
  4712. // ggml_add_rel_pos
  4713. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * pw,
  4717. struct ggml_tensor * ph,
  4718. bool inplace) {
  4719. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4720. GGML_ASSERT(ggml_is_contiguous(a));
  4721. GGML_ASSERT(ggml_is_contiguous(pw));
  4722. GGML_ASSERT(ggml_is_contiguous(ph));
  4723. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4724. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4725. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4726. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4727. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4728. bool is_node = false;
  4729. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4730. is_node = true;
  4731. }
  4732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4733. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4734. result->op = GGML_OP_ADD_REL_POS;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src[0] = a;
  4737. result->src[1] = pw;
  4738. result->src[2] = ph;
  4739. return result;
  4740. }
  4741. struct ggml_tensor * ggml_add_rel_pos(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * pw,
  4745. struct ggml_tensor * ph) {
  4746. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4747. }
  4748. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. struct ggml_tensor * pw,
  4752. struct ggml_tensor * ph) {
  4753. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4754. }
  4755. // gmml_unary
  4756. static struct ggml_tensor * ggml_unary_impl(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. enum ggml_unary_op op,
  4760. bool inplace) {
  4761. bool is_node = false;
  4762. if (!inplace && (a->grad)) {
  4763. is_node = true;
  4764. }
  4765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4766. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4767. result->op = GGML_OP_UNARY;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src[0] = a;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_unary(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. enum ggml_unary_op op) {
  4776. return ggml_unary_impl(ctx, a, op, false);
  4777. }
  4778. struct ggml_tensor * ggml_unary_inplace(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. enum ggml_unary_op op) {
  4782. return ggml_unary_impl(ctx, a, op, true);
  4783. }
  4784. // ggml_map_unary
  4785. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. const ggml_unary_op_f32_t fun,
  4789. bool inplace) {
  4790. bool is_node = false;
  4791. if (!inplace && a->grad) {
  4792. is_node = true;
  4793. }
  4794. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4795. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4796. result->op = GGML_OP_MAP_UNARY;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src[0] = a;
  4799. return result;
  4800. }
  4801. struct ggml_tensor * ggml_map_unary_f32(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. const ggml_unary_op_f32_t fun) {
  4805. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4806. }
  4807. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. const ggml_unary_op_f32_t fun) {
  4811. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4812. }
  4813. // ggml_map_binary
  4814. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. struct ggml_tensor * b,
  4818. const ggml_binary_op_f32_t fun,
  4819. bool inplace) {
  4820. GGML_ASSERT(ggml_are_same_shape(a, b));
  4821. bool is_node = false;
  4822. if (!inplace && (a->grad || b->grad)) {
  4823. is_node = true;
  4824. }
  4825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4826. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4827. result->op = GGML_OP_MAP_BINARY;
  4828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4829. result->src[0] = a;
  4830. result->src[1] = b;
  4831. return result;
  4832. }
  4833. struct ggml_tensor * ggml_map_binary_f32(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. struct ggml_tensor * b,
  4837. const ggml_binary_op_f32_t fun) {
  4838. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4839. }
  4840. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. struct ggml_tensor * b,
  4844. const ggml_binary_op_f32_t fun) {
  4845. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4846. }
  4847. // ggml_map_custom1_f32
  4848. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. const ggml_custom1_op_f32_t fun,
  4852. bool inplace) {
  4853. bool is_node = false;
  4854. if (!inplace && a->grad) {
  4855. is_node = true;
  4856. }
  4857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4858. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4859. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4861. result->src[0] = a;
  4862. return result;
  4863. }
  4864. struct ggml_tensor * ggml_map_custom1_f32(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. const ggml_custom1_op_f32_t fun) {
  4868. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4869. }
  4870. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. const ggml_custom1_op_f32_t fun) {
  4874. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4875. }
  4876. // ggml_map_custom2_f32
  4877. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. const ggml_custom2_op_f32_t fun,
  4882. bool inplace) {
  4883. bool is_node = false;
  4884. if (!inplace && (a->grad || b->grad)) {
  4885. is_node = true;
  4886. }
  4887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4888. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4889. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4891. result->src[0] = a;
  4892. result->src[1] = b;
  4893. return result;
  4894. }
  4895. struct ggml_tensor * ggml_map_custom2_f32(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * b,
  4899. const ggml_custom2_op_f32_t fun) {
  4900. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4901. }
  4902. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b,
  4906. const ggml_custom2_op_f32_t fun) {
  4907. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4908. }
  4909. // ggml_map_custom3_f32
  4910. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. struct ggml_tensor * b,
  4914. struct ggml_tensor * c,
  4915. const ggml_custom3_op_f32_t fun,
  4916. bool inplace) {
  4917. bool is_node = false;
  4918. if (!inplace && (a->grad || b->grad || c->grad)) {
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4922. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4923. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src[0] = a;
  4926. result->src[1] = b;
  4927. result->src[2] = c;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_map_custom3_f32(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. struct ggml_tensor * c,
  4935. const ggml_custom3_op_f32_t fun) {
  4936. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4937. }
  4938. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b,
  4942. struct ggml_tensor * c,
  4943. const ggml_custom3_op_f32_t fun) {
  4944. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4945. }
  4946. // ggml_map_custom1
  4947. struct ggml_map_custom1_op_params {
  4948. ggml_custom1_op_t fun;
  4949. int n_tasks;
  4950. void * userdata;
  4951. };
  4952. static struct ggml_tensor * ggml_map_custom1_impl(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. const ggml_custom1_op_t fun,
  4956. int n_tasks,
  4957. void * userdata,
  4958. bool inplace) {
  4959. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4960. bool is_node = false;
  4961. if (!inplace && a->grad) {
  4962. is_node = true;
  4963. }
  4964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4965. struct ggml_map_custom1_op_params params = {
  4966. /*.fun =*/ fun,
  4967. /*.n_tasks =*/ n_tasks,
  4968. /*.userdata =*/ userdata
  4969. };
  4970. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4971. result->op = GGML_OP_MAP_CUSTOM1;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src[0] = a;
  4974. return result;
  4975. }
  4976. struct ggml_tensor * ggml_map_custom1(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. const ggml_custom1_op_t fun,
  4980. int n_tasks,
  4981. void * userdata) {
  4982. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4983. }
  4984. struct ggml_tensor * ggml_map_custom1_inplace(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. const ggml_custom1_op_t fun,
  4988. int n_tasks,
  4989. void * userdata) {
  4990. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4991. }
  4992. // ggml_map_custom2
  4993. struct ggml_map_custom2_op_params {
  4994. ggml_custom2_op_t fun;
  4995. int n_tasks;
  4996. void * userdata;
  4997. };
  4998. static struct ggml_tensor * ggml_map_custom2_impl(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. struct ggml_tensor * b,
  5002. const ggml_custom2_op_t fun,
  5003. int n_tasks,
  5004. void * userdata,
  5005. bool inplace) {
  5006. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5007. bool is_node = false;
  5008. if (!inplace && (a->grad || b->grad)) {
  5009. is_node = true;
  5010. }
  5011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5012. struct ggml_map_custom2_op_params params = {
  5013. /*.fun =*/ fun,
  5014. /*.n_tasks =*/ n_tasks,
  5015. /*.userdata =*/ userdata
  5016. };
  5017. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5018. result->op = GGML_OP_MAP_CUSTOM2;
  5019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5020. result->src[0] = a;
  5021. result->src[1] = b;
  5022. return result;
  5023. }
  5024. struct ggml_tensor * ggml_map_custom2(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. struct ggml_tensor * b,
  5028. const ggml_custom2_op_t fun,
  5029. int n_tasks,
  5030. void * userdata) {
  5031. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5032. }
  5033. struct ggml_tensor * ggml_map_custom2_inplace(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. struct ggml_tensor * b,
  5037. const ggml_custom2_op_t fun,
  5038. int n_tasks,
  5039. void * userdata) {
  5040. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5041. }
  5042. // ggml_map_custom3
  5043. struct ggml_map_custom3_op_params {
  5044. ggml_custom3_op_t fun;
  5045. int n_tasks;
  5046. void * userdata;
  5047. };
  5048. static struct ggml_tensor * ggml_map_custom3_impl(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b,
  5052. struct ggml_tensor * c,
  5053. const ggml_custom3_op_t fun,
  5054. int n_tasks,
  5055. void * userdata,
  5056. bool inplace) {
  5057. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5058. bool is_node = false;
  5059. if (!inplace && (a->grad || b->grad || c->grad)) {
  5060. is_node = true;
  5061. }
  5062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5063. struct ggml_map_custom3_op_params params = {
  5064. /*.fun =*/ fun,
  5065. /*.n_tasks =*/ n_tasks,
  5066. /*.userdata =*/ userdata
  5067. };
  5068. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5069. result->op = GGML_OP_MAP_CUSTOM3;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. result->src[1] = b;
  5073. result->src[2] = c;
  5074. return result;
  5075. }
  5076. struct ggml_tensor * ggml_map_custom3(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. struct ggml_tensor * b,
  5080. struct ggml_tensor * c,
  5081. const ggml_custom3_op_t fun,
  5082. int n_tasks,
  5083. void * userdata) {
  5084. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5085. }
  5086. struct ggml_tensor * ggml_map_custom3_inplace(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. struct ggml_tensor * b,
  5090. struct ggml_tensor * c,
  5091. const ggml_custom3_op_t fun,
  5092. int n_tasks,
  5093. void * userdata) {
  5094. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5095. }
  5096. // ggml_cross_entropy_loss
  5097. struct ggml_tensor * ggml_cross_entropy_loss(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b) {
  5101. GGML_ASSERT(ggml_are_same_shape(a, b));
  5102. bool is_node = false;
  5103. if (a->grad || b->grad) {
  5104. is_node = true;
  5105. }
  5106. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5107. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src[0] = a;
  5110. result->src[1] = b;
  5111. return result;
  5112. }
  5113. // ggml_cross_entropy_loss_back
  5114. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. struct ggml_tensor * b,
  5118. struct ggml_tensor * c) {
  5119. GGML_ASSERT(ggml_are_same_shape(a, b));
  5120. GGML_ASSERT(ggml_is_scalar(c));
  5121. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5122. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5123. result->grad = NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b;
  5126. result->src[2] = c;
  5127. return result;
  5128. }
  5129. ////////////////////////////////////////////////////////////////////////////////
  5130. void ggml_set_param(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * tensor) {
  5133. tensor->is_param = true;
  5134. GGML_ASSERT(tensor->grad == NULL);
  5135. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5136. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5137. }
  5138. // ggml_compute_forward_dup
  5139. static void ggml_compute_forward_dup_same_cont(
  5140. const struct ggml_compute_params * params,
  5141. const struct ggml_tensor * src0,
  5142. struct ggml_tensor * dst) {
  5143. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5144. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5145. GGML_ASSERT(src0->type == dst->type);
  5146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5147. return;
  5148. }
  5149. const size_t nb00 = src0->nb[0];
  5150. const size_t nb0 = dst->nb[0];
  5151. const int ith = params->ith; // thread index
  5152. const int nth = params->nth; // number of threads
  5153. // parallelize by elements
  5154. const int ne = ggml_nelements(dst);
  5155. const int dr = (ne + nth - 1) / nth;
  5156. const int ie0 = dr * ith;
  5157. const int ie1 = MIN(ie0 + dr, ne);
  5158. if (ie0 < ie1) {
  5159. memcpy(
  5160. ((char *) dst->data + ie0*nb0),
  5161. ((char *) src0->data + ie0*nb00),
  5162. (ie1 - ie0) * ggml_type_size(src0->type));
  5163. }
  5164. }
  5165. static void ggml_compute_forward_dup_f16(
  5166. const struct ggml_compute_params * params,
  5167. const struct ggml_tensor * src0,
  5168. struct ggml_tensor * dst) {
  5169. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5171. return;
  5172. }
  5173. GGML_TENSOR_UNARY_OP_LOCALS
  5174. const int ith = params->ith; // thread index
  5175. const int nth = params->nth; // number of threads
  5176. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5177. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5178. return;
  5179. }
  5180. // parallelize by rows
  5181. const int nr = ne01;
  5182. // number of rows per thread
  5183. const int dr = (nr + nth - 1) / nth;
  5184. // row range for this thread
  5185. const int ir0 = dr * ith;
  5186. const int ir1 = MIN(ir0 + dr, nr);
  5187. if (src0->type == dst->type &&
  5188. ne00 == ne0 &&
  5189. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5190. // copy by rows
  5191. const size_t rs = ne00*nb00;
  5192. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5194. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5195. memcpy(
  5196. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5197. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5198. rs);
  5199. }
  5200. }
  5201. }
  5202. return;
  5203. }
  5204. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5205. if (ggml_is_contiguous(dst)) {
  5206. if (nb00 == sizeof(ggml_fp16_t)) {
  5207. if (dst->type == GGML_TYPE_F16) {
  5208. size_t id = 0;
  5209. const size_t rs = ne00 * nb00;
  5210. char * dst_ptr = (char *) dst->data;
  5211. for (int i03 = 0; i03 < ne03; i03++) {
  5212. for (int i02 = 0; i02 < ne02; i02++) {
  5213. id += rs * ir0;
  5214. for (int i01 = ir0; i01 < ir1; i01++) {
  5215. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5216. memcpy(dst_ptr + id, src0_ptr, rs);
  5217. id += rs;
  5218. }
  5219. id += rs * (ne01 - ir1);
  5220. }
  5221. }
  5222. } else if (dst->type == GGML_TYPE_F32) {
  5223. size_t id = 0;
  5224. float * dst_ptr = (float *) dst->data;
  5225. for (int i03 = 0; i03 < ne03; i03++) {
  5226. for (int i02 = 0; i02 < ne02; i02++) {
  5227. id += ne00 * ir0;
  5228. for (int i01 = ir0; i01 < ir1; i01++) {
  5229. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5230. for (int i00 = 0; i00 < ne00; i00++) {
  5231. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5232. id++;
  5233. }
  5234. }
  5235. id += ne00 * (ne01 - ir1);
  5236. }
  5237. }
  5238. } else if (type_traits[dst->type].from_float) {
  5239. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5240. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5241. size_t id = 0;
  5242. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5243. char * dst_ptr = (char *) dst->data;
  5244. for (int i03 = 0; i03 < ne03; i03++) {
  5245. for (int i02 = 0; i02 < ne02; i02++) {
  5246. id += rs * ir0;
  5247. for (int i01 = ir0; i01 < ir1; i01++) {
  5248. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5249. for (int i00 = 0; i00 < ne00; i00++) {
  5250. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5251. }
  5252. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5253. id += rs;
  5254. }
  5255. id += rs * (ne01 - ir1);
  5256. }
  5257. }
  5258. } else {
  5259. GGML_ASSERT(false); // TODO: implement
  5260. }
  5261. } else {
  5262. //printf("%s: this is not optimal - fix me\n", __func__);
  5263. if (dst->type == GGML_TYPE_F32) {
  5264. size_t id = 0;
  5265. float * dst_ptr = (float *) dst->data;
  5266. for (int i03 = 0; i03 < ne03; i03++) {
  5267. for (int i02 = 0; i02 < ne02; i02++) {
  5268. id += ne00 * ir0;
  5269. for (int i01 = ir0; i01 < ir1; i01++) {
  5270. for (int i00 = 0; i00 < ne00; i00++) {
  5271. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5272. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5273. id++;
  5274. }
  5275. }
  5276. id += ne00 * (ne01 - ir1);
  5277. }
  5278. }
  5279. } else if (dst->type == GGML_TYPE_F16) {
  5280. size_t id = 0;
  5281. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5282. for (int i03 = 0; i03 < ne03; i03++) {
  5283. for (int i02 = 0; i02 < ne02; i02++) {
  5284. id += ne00 * ir0;
  5285. for (int i01 = ir0; i01 < ir1; i01++) {
  5286. for (int i00 = 0; i00 < ne00; i00++) {
  5287. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5288. dst_ptr[id] = *src0_ptr;
  5289. id++;
  5290. }
  5291. }
  5292. id += ne00 * (ne01 - ir1);
  5293. }
  5294. }
  5295. } else {
  5296. GGML_ASSERT(false); // TODO: implement
  5297. }
  5298. }
  5299. return;
  5300. }
  5301. // dst counters
  5302. int64_t i10 = 0;
  5303. int64_t i11 = 0;
  5304. int64_t i12 = 0;
  5305. int64_t i13 = 0;
  5306. if (dst->type == GGML_TYPE_F16) {
  5307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5309. i10 += ne00 * ir0;
  5310. while (i10 >= ne0) {
  5311. i10 -= ne0;
  5312. if (++i11 == ne1) {
  5313. i11 = 0;
  5314. if (++i12 == ne2) {
  5315. i12 = 0;
  5316. if (++i13 == ne3) {
  5317. i13 = 0;
  5318. }
  5319. }
  5320. }
  5321. }
  5322. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5324. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5325. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5326. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5327. if (++i10 == ne00) {
  5328. i10 = 0;
  5329. if (++i11 == ne01) {
  5330. i11 = 0;
  5331. if (++i12 == ne02) {
  5332. i12 = 0;
  5333. if (++i13 == ne03) {
  5334. i13 = 0;
  5335. }
  5336. }
  5337. }
  5338. }
  5339. }
  5340. }
  5341. i10 += ne00 * (ne01 - ir1);
  5342. while (i10 >= ne0) {
  5343. i10 -= ne0;
  5344. if (++i11 == ne1) {
  5345. i11 = 0;
  5346. if (++i12 == ne2) {
  5347. i12 = 0;
  5348. if (++i13 == ne3) {
  5349. i13 = 0;
  5350. }
  5351. }
  5352. }
  5353. }
  5354. }
  5355. }
  5356. } else if (dst->type == GGML_TYPE_F32) {
  5357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5359. i10 += ne00 * ir0;
  5360. while (i10 >= ne0) {
  5361. i10 -= ne0;
  5362. if (++i11 == ne1) {
  5363. i11 = 0;
  5364. if (++i12 == ne2) {
  5365. i12 = 0;
  5366. if (++i13 == ne3) {
  5367. i13 = 0;
  5368. }
  5369. }
  5370. }
  5371. }
  5372. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5374. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5375. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5376. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5377. if (++i10 == ne0) {
  5378. i10 = 0;
  5379. if (++i11 == ne1) {
  5380. i11 = 0;
  5381. if (++i12 == ne2) {
  5382. i12 = 0;
  5383. if (++i13 == ne3) {
  5384. i13 = 0;
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. }
  5391. i10 += ne00 * (ne01 - ir1);
  5392. while (i10 >= ne0) {
  5393. i10 -= ne0;
  5394. if (++i11 == ne1) {
  5395. i11 = 0;
  5396. if (++i12 == ne2) {
  5397. i12 = 0;
  5398. if (++i13 == ne3) {
  5399. i13 = 0;
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. }
  5406. } else {
  5407. GGML_ASSERT(false); // TODO: implement
  5408. }
  5409. }
  5410. static void ggml_compute_forward_dup_f32(
  5411. const struct ggml_compute_params * params,
  5412. const struct ggml_tensor * src0,
  5413. struct ggml_tensor * dst) {
  5414. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5416. return;
  5417. }
  5418. GGML_TENSOR_UNARY_OP_LOCALS
  5419. const int ith = params->ith; // thread index
  5420. const int nth = params->nth; // number of threads
  5421. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5422. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5423. return;
  5424. }
  5425. // parallelize by rows
  5426. const int nr = ne01;
  5427. // number of rows per thread
  5428. const int dr = (nr + nth - 1) / nth;
  5429. // row range for this thread
  5430. const int ir0 = dr * ith;
  5431. const int ir1 = MIN(ir0 + dr, nr);
  5432. if (src0->type == dst->type &&
  5433. ne00 == ne0 &&
  5434. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5435. // copy by rows
  5436. const size_t rs = ne00*nb00;
  5437. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5438. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5439. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5440. memcpy(
  5441. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5442. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5443. rs);
  5444. }
  5445. }
  5446. }
  5447. return;
  5448. }
  5449. if (ggml_is_contiguous(dst)) {
  5450. // TODO: simplify
  5451. if (nb00 == sizeof(float)) {
  5452. if (dst->type == GGML_TYPE_F32) {
  5453. size_t id = 0;
  5454. const size_t rs = ne00 * nb00;
  5455. char * dst_ptr = (char *) dst->data;
  5456. for (int i03 = 0; i03 < ne03; i03++) {
  5457. for (int i02 = 0; i02 < ne02; i02++) {
  5458. id += rs * ir0;
  5459. for (int i01 = ir0; i01 < ir1; i01++) {
  5460. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5461. memcpy(dst_ptr + id, src0_ptr, rs);
  5462. id += rs;
  5463. }
  5464. id += rs * (ne01 - ir1);
  5465. }
  5466. }
  5467. } else if (type_traits[dst->type].from_float) {
  5468. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5469. size_t id = 0;
  5470. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5471. char * dst_ptr = (char *) dst->data;
  5472. for (int i03 = 0; i03 < ne03; i03++) {
  5473. for (int i02 = 0; i02 < ne02; i02++) {
  5474. id += rs * ir0;
  5475. for (int i01 = ir0; i01 < ir1; i01++) {
  5476. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5477. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5478. id += rs;
  5479. }
  5480. id += rs * (ne01 - ir1);
  5481. }
  5482. }
  5483. } else {
  5484. GGML_ASSERT(false); // TODO: implement
  5485. }
  5486. } else {
  5487. //printf("%s: this is not optimal - fix me\n", __func__);
  5488. if (dst->type == GGML_TYPE_F32) {
  5489. size_t id = 0;
  5490. float * dst_ptr = (float *) dst->data;
  5491. for (int i03 = 0; i03 < ne03; i03++) {
  5492. for (int i02 = 0; i02 < ne02; i02++) {
  5493. id += ne00 * ir0;
  5494. for (int i01 = ir0; i01 < ir1; i01++) {
  5495. for (int i00 = 0; i00 < ne00; i00++) {
  5496. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5497. dst_ptr[id] = *src0_ptr;
  5498. id++;
  5499. }
  5500. }
  5501. id += ne00 * (ne01 - ir1);
  5502. }
  5503. }
  5504. } else if (dst->type == GGML_TYPE_F16) {
  5505. size_t id = 0;
  5506. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5507. for (int i03 = 0; i03 < ne03; i03++) {
  5508. for (int i02 = 0; i02 < ne02; i02++) {
  5509. id += ne00 * ir0;
  5510. for (int i01 = ir0; i01 < ir1; i01++) {
  5511. for (int i00 = 0; i00 < ne00; i00++) {
  5512. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5513. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5514. id++;
  5515. }
  5516. }
  5517. id += ne00 * (ne01 - ir1);
  5518. }
  5519. }
  5520. } else {
  5521. GGML_ASSERT(false); // TODO: implement
  5522. }
  5523. }
  5524. return;
  5525. }
  5526. // dst counters
  5527. int64_t i10 = 0;
  5528. int64_t i11 = 0;
  5529. int64_t i12 = 0;
  5530. int64_t i13 = 0;
  5531. if (dst->type == GGML_TYPE_F32) {
  5532. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5533. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5534. i10 += ne00 * ir0;
  5535. while (i10 >= ne0) {
  5536. i10 -= ne0;
  5537. if (++i11 == ne1) {
  5538. i11 = 0;
  5539. if (++i12 == ne2) {
  5540. i12 = 0;
  5541. if (++i13 == ne3) {
  5542. i13 = 0;
  5543. }
  5544. }
  5545. }
  5546. }
  5547. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5548. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5549. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5550. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5551. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5552. if (++i10 == ne0) {
  5553. i10 = 0;
  5554. if (++i11 == ne1) {
  5555. i11 = 0;
  5556. if (++i12 == ne2) {
  5557. i12 = 0;
  5558. if (++i13 == ne3) {
  5559. i13 = 0;
  5560. }
  5561. }
  5562. }
  5563. }
  5564. }
  5565. }
  5566. i10 += ne00 * (ne01 - ir1);
  5567. while (i10 >= ne0) {
  5568. i10 -= ne0;
  5569. if (++i11 == ne1) {
  5570. i11 = 0;
  5571. if (++i12 == ne2) {
  5572. i12 = 0;
  5573. if (++i13 == ne3) {
  5574. i13 = 0;
  5575. }
  5576. }
  5577. }
  5578. }
  5579. }
  5580. }
  5581. } else if (dst->type == GGML_TYPE_F16) {
  5582. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5583. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5584. i10 += ne00 * ir0;
  5585. while (i10 >= ne0) {
  5586. i10 -= ne0;
  5587. if (++i11 == ne1) {
  5588. i11 = 0;
  5589. if (++i12 == ne2) {
  5590. i12 = 0;
  5591. if (++i13 == ne3) {
  5592. i13 = 0;
  5593. }
  5594. }
  5595. }
  5596. }
  5597. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5598. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5599. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5600. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5601. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5602. if (++i10 == ne0) {
  5603. i10 = 0;
  5604. if (++i11 == ne1) {
  5605. i11 = 0;
  5606. if (++i12 == ne2) {
  5607. i12 = 0;
  5608. if (++i13 == ne3) {
  5609. i13 = 0;
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. }
  5616. i10 += ne00 * (ne01 - ir1);
  5617. while (i10 >= ne0) {
  5618. i10 -= ne0;
  5619. if (++i11 == ne1) {
  5620. i11 = 0;
  5621. if (++i12 == ne2) {
  5622. i12 = 0;
  5623. if (++i13 == ne3) {
  5624. i13 = 0;
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. } else {
  5632. GGML_ASSERT(false); // TODO: implement
  5633. }
  5634. }
  5635. static void ggml_compute_forward_dup(
  5636. const struct ggml_compute_params * params,
  5637. const struct ggml_tensor * src0,
  5638. struct ggml_tensor * dst) {
  5639. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5640. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5641. return;
  5642. }
  5643. switch (src0->type) {
  5644. case GGML_TYPE_F16:
  5645. {
  5646. ggml_compute_forward_dup_f16(params, src0, dst);
  5647. } break;
  5648. case GGML_TYPE_F32:
  5649. {
  5650. ggml_compute_forward_dup_f32(params, src0, dst);
  5651. } break;
  5652. default:
  5653. {
  5654. GGML_ASSERT(false);
  5655. } break;
  5656. }
  5657. }
  5658. // ggml_compute_forward_add
  5659. static void ggml_compute_forward_add_f32(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5666. return;
  5667. }
  5668. const int ith = params->ith;
  5669. const int nth = params->nth;
  5670. const int nr = ggml_nrows(src0);
  5671. GGML_TENSOR_BINARY_OP_LOCALS
  5672. GGML_ASSERT( nb0 == sizeof(float));
  5673. GGML_ASSERT(nb00 == sizeof(float));
  5674. // rows per thread
  5675. const int dr = (nr + nth - 1)/nth;
  5676. // row range for this thread
  5677. const int ir0 = dr*ith;
  5678. const int ir1 = MIN(ir0 + dr, nr);
  5679. if (nb10 == sizeof(float)) {
  5680. for (int ir = ir0; ir < ir1; ++ir) {
  5681. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5682. const int64_t i03 = ir/(ne02*ne01);
  5683. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5684. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5685. const int64_t i13 = i03 % ne13;
  5686. const int64_t i12 = i02 % ne12;
  5687. const int64_t i11 = i01 % ne11;
  5688. const int64_t nr0 = ne00 / ne10;
  5689. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5690. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5691. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5692. for (int64_t r = 0; r < nr0; ++r) {
  5693. #ifdef GGML_USE_ACCELERATE
  5694. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5695. #else
  5696. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5697. #endif
  5698. }
  5699. }
  5700. } else {
  5701. // src1 is not contiguous
  5702. for (int ir = ir0; ir < ir1; ++ir) {
  5703. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5704. const int64_t i03 = ir/(ne02*ne01);
  5705. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5706. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5707. const int64_t i13 = i03 % ne13;
  5708. const int64_t i12 = i02 % ne12;
  5709. const int64_t i11 = i01 % ne11;
  5710. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5711. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5712. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5713. const int64_t i10 = i0 % ne10;
  5714. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5715. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5716. }
  5717. }
  5718. }
  5719. }
  5720. static void ggml_compute_forward_add_f16_f32(
  5721. const struct ggml_compute_params * params,
  5722. const struct ggml_tensor * src0,
  5723. const struct ggml_tensor * src1,
  5724. struct ggml_tensor * dst) {
  5725. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5727. return;
  5728. }
  5729. const int ith = params->ith;
  5730. const int nth = params->nth;
  5731. const int nr = ggml_nrows(src0);
  5732. GGML_TENSOR_BINARY_OP_LOCALS
  5733. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5734. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5735. if (dst->type == GGML_TYPE_F32) {
  5736. GGML_ASSERT( nb0 == sizeof(float));
  5737. }
  5738. else {
  5739. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5740. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5741. }
  5742. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5743. // rows per thread
  5744. const int dr = (nr + nth - 1)/nth;
  5745. // row range for this thread
  5746. const int ir0 = dr*ith;
  5747. const int ir1 = MIN(ir0 + dr, nr);
  5748. if (nb10 == sizeof(float)) {
  5749. if (dst->type == GGML_TYPE_F16) {
  5750. for (int ir = ir0; ir < ir1; ++ir) {
  5751. // src0, src1 and dst are same shape => same indices
  5752. const int i3 = ir/(ne2*ne1);
  5753. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5754. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5755. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5756. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5757. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5758. for (int i = 0; i < ne0; i++) {
  5759. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5760. }
  5761. }
  5762. } else {
  5763. for (int ir = ir0; ir < ir1; ++ir) {
  5764. // src0, src1 and dst are same shape => same indices
  5765. const int i3 = ir/(ne2*ne1);
  5766. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5767. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5768. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5769. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5770. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5771. for (int i = 0; i < ne0; i++) {
  5772. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5773. }
  5774. }
  5775. }
  5776. }
  5777. else {
  5778. // src1 is not contiguous
  5779. GGML_ASSERT(false);
  5780. }
  5781. }
  5782. static void ggml_compute_forward_add_f16_f16(
  5783. const struct ggml_compute_params * params,
  5784. const struct ggml_tensor * src0,
  5785. const struct ggml_tensor * src1,
  5786. struct ggml_tensor * dst) {
  5787. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5789. return;
  5790. }
  5791. const int ith = params->ith;
  5792. const int nth = params->nth;
  5793. const int nr = ggml_nrows(src0);
  5794. GGML_TENSOR_BINARY_OP_LOCALS
  5795. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5796. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5797. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5798. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5799. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5800. // rows per thread
  5801. const int dr = (nr + nth - 1)/nth;
  5802. // row range for this thread
  5803. const int ir0 = dr*ith;
  5804. const int ir1 = MIN(ir0 + dr, nr);
  5805. if (nb10 == sizeof(ggml_fp16_t)) {
  5806. for (int ir = ir0; ir < ir1; ++ir) {
  5807. // src0, src1 and dst are same shape => same indices
  5808. const int i3 = ir/(ne2*ne1);
  5809. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5810. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5811. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5812. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5813. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5814. for (int i = 0; i < ne0; i++) {
  5815. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5816. }
  5817. }
  5818. }
  5819. else {
  5820. // src1 is not contiguous
  5821. GGML_ASSERT(false);
  5822. }
  5823. }
  5824. static void ggml_compute_forward_add_q_f32(
  5825. const struct ggml_compute_params * params,
  5826. const struct ggml_tensor * src0,
  5827. const struct ggml_tensor * src1,
  5828. struct ggml_tensor * dst) {
  5829. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5831. return;
  5832. }
  5833. const int nr = ggml_nrows(src0);
  5834. GGML_TENSOR_BINARY_OP_LOCALS
  5835. const int ith = params->ith;
  5836. const int nth = params->nth;
  5837. const enum ggml_type type = src0->type;
  5838. const enum ggml_type dtype = dst->type;
  5839. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5840. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5841. // we don't support permuted src0 or src1
  5842. GGML_ASSERT(nb00 == ggml_type_size(type));
  5843. GGML_ASSERT(nb10 == sizeof(float));
  5844. // dst cannot be transposed or permuted
  5845. GGML_ASSERT(nb0 <= nb1);
  5846. GGML_ASSERT(nb1 <= nb2);
  5847. GGML_ASSERT(nb2 <= nb3);
  5848. GGML_ASSERT(ggml_is_quantized(src0->type));
  5849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5850. // rows per thread
  5851. const int dr = (nr + nth - 1)/nth;
  5852. // row range for this thread
  5853. const int ir0 = dr*ith;
  5854. const int ir1 = MIN(ir0 + dr, nr);
  5855. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5856. for (int ir = ir0; ir < ir1; ++ir) {
  5857. // src0 indices
  5858. const int i03 = ir/(ne02*ne01);
  5859. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5860. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5861. // src1 and dst are same shape as src0 => same indices
  5862. const int i13 = i03;
  5863. const int i12 = i02;
  5864. const int i11 = i01;
  5865. const int i3 = i03;
  5866. const int i2 = i02;
  5867. const int i1 = i01;
  5868. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5869. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5870. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5871. assert(ne00 % 32 == 0);
  5872. // unquantize row from src0 to temp buffer
  5873. dequantize_row_q(src0_row, wdata, ne00);
  5874. // add src1
  5875. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5876. // quantize row to dst
  5877. if (quantize_row_q != NULL) {
  5878. quantize_row_q(wdata, dst_row, ne00);
  5879. } else {
  5880. memcpy(dst_row, wdata, ne0*nb0);
  5881. }
  5882. }
  5883. }
  5884. static void ggml_compute_forward_add(
  5885. const struct ggml_compute_params * params,
  5886. const struct ggml_tensor * src0,
  5887. const struct ggml_tensor * src1,
  5888. struct ggml_tensor * dst) {
  5889. switch (src0->type) {
  5890. case GGML_TYPE_F32:
  5891. {
  5892. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5893. } break;
  5894. case GGML_TYPE_F16:
  5895. {
  5896. if (src1->type == GGML_TYPE_F16) {
  5897. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5898. }
  5899. else if (src1->type == GGML_TYPE_F32) {
  5900. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5901. }
  5902. else {
  5903. GGML_ASSERT(false);
  5904. }
  5905. } break;
  5906. case GGML_TYPE_Q4_0:
  5907. case GGML_TYPE_Q4_1:
  5908. case GGML_TYPE_Q5_0:
  5909. case GGML_TYPE_Q5_1:
  5910. case GGML_TYPE_Q8_0:
  5911. case GGML_TYPE_Q2_K:
  5912. case GGML_TYPE_Q3_K:
  5913. case GGML_TYPE_Q4_K:
  5914. case GGML_TYPE_Q5_K:
  5915. case GGML_TYPE_Q6_K:
  5916. {
  5917. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5918. } break;
  5919. default:
  5920. {
  5921. GGML_ASSERT(false);
  5922. } break;
  5923. }
  5924. }
  5925. // ggml_compute_forward_add1
  5926. static void ggml_compute_forward_add1_f32(
  5927. const struct ggml_compute_params * params,
  5928. const struct ggml_tensor * src0,
  5929. const struct ggml_tensor * src1,
  5930. struct ggml_tensor * dst) {
  5931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5932. GGML_ASSERT(ggml_is_scalar(src1));
  5933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5934. return;
  5935. }
  5936. const int ith = params->ith;
  5937. const int nth = params->nth;
  5938. const int nr = ggml_nrows(src0);
  5939. GGML_TENSOR_UNARY_OP_LOCALS
  5940. GGML_ASSERT( nb0 == sizeof(float));
  5941. GGML_ASSERT(nb00 == sizeof(float));
  5942. // rows per thread
  5943. const int dr = (nr + nth - 1)/nth;
  5944. // row range for this thread
  5945. const int ir0 = dr*ith;
  5946. const int ir1 = MIN(ir0 + dr, nr);
  5947. for (int ir = ir0; ir < ir1; ++ir) {
  5948. // src0 and dst are same shape => same indices
  5949. const int i3 = ir/(ne2*ne1);
  5950. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5951. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5952. #ifdef GGML_USE_ACCELERATE
  5953. UNUSED(ggml_vec_add1_f32);
  5954. vDSP_vadd(
  5955. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5956. (float *) ((char *) src1->data), 0,
  5957. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5958. ne0);
  5959. #else
  5960. ggml_vec_add1_f32(ne0,
  5961. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5962. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5963. *(float *) src1->data);
  5964. #endif
  5965. }
  5966. }
  5967. static void ggml_compute_forward_add1_f16_f32(
  5968. const struct ggml_compute_params * params,
  5969. const struct ggml_tensor * src0,
  5970. const struct ggml_tensor * src1,
  5971. struct ggml_tensor * dst) {
  5972. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5973. GGML_ASSERT(ggml_is_scalar(src1));
  5974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5975. return;
  5976. }
  5977. // scalar to add
  5978. const float v = *(float *) src1->data;
  5979. const int ith = params->ith;
  5980. const int nth = params->nth;
  5981. const int nr = ggml_nrows(src0);
  5982. GGML_TENSOR_UNARY_OP_LOCALS
  5983. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5984. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5985. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5986. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5987. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5988. // rows per thread
  5989. const int dr = (nr + nth - 1)/nth;
  5990. // row range for this thread
  5991. const int ir0 = dr*ith;
  5992. const int ir1 = MIN(ir0 + dr, nr);
  5993. for (int ir = ir0; ir < ir1; ++ir) {
  5994. // src0 and dst are same shape => same indices
  5995. const int i3 = ir/(ne2*ne1);
  5996. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5997. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5998. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5999. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6000. for (int i = 0; i < ne0; i++) {
  6001. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6002. }
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add1_f16_f16(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6011. GGML_ASSERT(ggml_is_scalar(src1));
  6012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6013. return;
  6014. }
  6015. // scalar to add
  6016. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6017. const int ith = params->ith;
  6018. const int nth = params->nth;
  6019. const int nr = ggml_nrows(src0);
  6020. GGML_TENSOR_UNARY_OP_LOCALS
  6021. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6022. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6023. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6024. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6026. // rows per thread
  6027. const int dr = (nr + nth - 1)/nth;
  6028. // row range for this thread
  6029. const int ir0 = dr*ith;
  6030. const int ir1 = MIN(ir0 + dr, nr);
  6031. for (int ir = ir0; ir < ir1; ++ir) {
  6032. // src0 and dst are same shape => same indices
  6033. const int i3 = ir/(ne2*ne1);
  6034. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6035. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6036. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6037. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6038. for (int i = 0; i < ne0; i++) {
  6039. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6040. }
  6041. }
  6042. }
  6043. static void ggml_compute_forward_add1_q_f32(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. const struct ggml_tensor * src1,
  6047. struct ggml_tensor * dst) {
  6048. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6049. GGML_ASSERT(ggml_is_scalar(src1));
  6050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6051. return;
  6052. }
  6053. // scalar to add
  6054. const float v = *(float *) src1->data;
  6055. const int ith = params->ith;
  6056. const int nth = params->nth;
  6057. const int nr = ggml_nrows(src0);
  6058. GGML_TENSOR_UNARY_OP_LOCALS
  6059. const enum ggml_type type = src0->type;
  6060. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6061. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6062. // we don't support permuted src0
  6063. GGML_ASSERT(nb00 == ggml_type_size(type));
  6064. // dst cannot be transposed or permuted
  6065. GGML_ASSERT(nb0 <= nb1);
  6066. GGML_ASSERT(nb1 <= nb2);
  6067. GGML_ASSERT(nb2 <= nb3);
  6068. GGML_ASSERT(ggml_is_quantized(src0->type));
  6069. GGML_ASSERT(dst->type == src0->type);
  6070. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6071. // rows per thread
  6072. const int dr = (nr + nth - 1)/nth;
  6073. // row range for this thread
  6074. const int ir0 = dr*ith;
  6075. const int ir1 = MIN(ir0 + dr, nr);
  6076. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6077. for (int ir = ir0; ir < ir1; ++ir) {
  6078. // src0 and dst are same shape => same indices
  6079. const int i3 = ir/(ne2*ne1);
  6080. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6081. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6082. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6083. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6084. assert(ne0 % 32 == 0);
  6085. // unquantize row from src0 to temp buffer
  6086. dequantize_row_q(src0_row, wdata, ne0);
  6087. // add src1
  6088. ggml_vec_acc1_f32(ne0, wdata, v);
  6089. // quantize row to dst
  6090. quantize_row_q(wdata, dst_row, ne0);
  6091. }
  6092. }
  6093. static void ggml_compute_forward_add1(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. const struct ggml_tensor * src1,
  6097. struct ggml_tensor * dst) {
  6098. switch (src0->type) {
  6099. case GGML_TYPE_F32:
  6100. {
  6101. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6102. } break;
  6103. case GGML_TYPE_F16:
  6104. {
  6105. if (src1->type == GGML_TYPE_F16) {
  6106. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6107. }
  6108. else if (src1->type == GGML_TYPE_F32) {
  6109. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6110. }
  6111. else {
  6112. GGML_ASSERT(false);
  6113. }
  6114. } break;
  6115. case GGML_TYPE_Q4_0:
  6116. case GGML_TYPE_Q4_1:
  6117. case GGML_TYPE_Q5_0:
  6118. case GGML_TYPE_Q5_1:
  6119. case GGML_TYPE_Q8_0:
  6120. case GGML_TYPE_Q8_1:
  6121. case GGML_TYPE_Q2_K:
  6122. case GGML_TYPE_Q3_K:
  6123. case GGML_TYPE_Q4_K:
  6124. case GGML_TYPE_Q5_K:
  6125. case GGML_TYPE_Q6_K:
  6126. {
  6127. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6128. } break;
  6129. default:
  6130. {
  6131. GGML_ASSERT(false);
  6132. } break;
  6133. }
  6134. }
  6135. // ggml_compute_forward_acc
  6136. static void ggml_compute_forward_acc_f32(
  6137. const struct ggml_compute_params * params,
  6138. const struct ggml_tensor * src0,
  6139. const struct ggml_tensor * src1,
  6140. struct ggml_tensor * dst) {
  6141. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6142. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6143. // view src0 and dst with these strides and data offset inbytes during acc
  6144. // nb0 is implicitly element_size because src0 and dst are contiguous
  6145. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6146. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6147. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6148. size_t offset = ((int32_t *) dst->op_params)[3];
  6149. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6150. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6151. // memcpy needs to be synchronized across threads to avoid race conditions.
  6152. // => do it in INIT phase
  6153. memcpy(
  6154. ((char *) dst->data),
  6155. ((char *) src0->data),
  6156. ggml_nbytes(dst));
  6157. }
  6158. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6159. return;
  6160. }
  6161. const int ith = params->ith;
  6162. const int nth = params->nth;
  6163. const int nr = ggml_nrows(src1);
  6164. const int nc = src1->ne[0];
  6165. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6166. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6167. // src0 and dst as viewed during acc
  6168. const size_t nb0 = ggml_element_size(src0);
  6169. const size_t nb00 = nb0;
  6170. const size_t nb01 = nb1;
  6171. const size_t nb02 = nb2;
  6172. const size_t nb03 = nb3;
  6173. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6174. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6175. GGML_ASSERT(nb10 == sizeof(float));
  6176. // rows per thread
  6177. const int dr = (nr + nth - 1)/nth;
  6178. // row range for this thread
  6179. const int ir0 = dr*ith;
  6180. const int ir1 = MIN(ir0 + dr, nr);
  6181. for (int ir = ir0; ir < ir1; ++ir) {
  6182. // src0 and dst are viewed with shape of src1 and offset
  6183. // => same indices
  6184. const int i3 = ir/(ne12*ne11);
  6185. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6186. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6187. #ifdef GGML_USE_ACCELERATE
  6188. vDSP_vadd(
  6189. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6190. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6191. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6192. #else
  6193. ggml_vec_add_f32(nc,
  6194. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6195. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6196. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6197. #endif
  6198. }
  6199. }
  6200. static void ggml_compute_forward_acc(
  6201. const struct ggml_compute_params * params,
  6202. const struct ggml_tensor * src0,
  6203. const struct ggml_tensor * src1,
  6204. struct ggml_tensor * dst) {
  6205. switch (src0->type) {
  6206. case GGML_TYPE_F32:
  6207. {
  6208. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6209. } break;
  6210. case GGML_TYPE_F16:
  6211. case GGML_TYPE_Q4_0:
  6212. case GGML_TYPE_Q4_1:
  6213. case GGML_TYPE_Q5_0:
  6214. case GGML_TYPE_Q5_1:
  6215. case GGML_TYPE_Q8_0:
  6216. case GGML_TYPE_Q8_1:
  6217. case GGML_TYPE_Q2_K:
  6218. case GGML_TYPE_Q3_K:
  6219. case GGML_TYPE_Q4_K:
  6220. case GGML_TYPE_Q5_K:
  6221. case GGML_TYPE_Q6_K:
  6222. default:
  6223. {
  6224. GGML_ASSERT(false);
  6225. } break;
  6226. }
  6227. }
  6228. // ggml_compute_forward_sub
  6229. static void ggml_compute_forward_sub_f32(
  6230. const struct ggml_compute_params * params,
  6231. const struct ggml_tensor * src0,
  6232. const struct ggml_tensor * src1,
  6233. struct ggml_tensor * dst) {
  6234. assert(params->ith == 0);
  6235. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6237. return;
  6238. }
  6239. const int nr = ggml_nrows(src0);
  6240. GGML_TENSOR_BINARY_OP_LOCALS
  6241. GGML_ASSERT( nb0 == sizeof(float));
  6242. GGML_ASSERT(nb00 == sizeof(float));
  6243. if (nb10 == sizeof(float)) {
  6244. for (int ir = 0; ir < nr; ++ir) {
  6245. // src0, src1 and dst are same shape => same indices
  6246. const int i3 = ir/(ne2*ne1);
  6247. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6248. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6249. #ifdef GGML_USE_ACCELERATE
  6250. vDSP_vsub(
  6251. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6252. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6253. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6254. ne0);
  6255. #else
  6256. ggml_vec_sub_f32(ne0,
  6257. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6258. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6259. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6260. #endif
  6261. // }
  6262. // }
  6263. }
  6264. } else {
  6265. // src1 is not contiguous
  6266. for (int ir = 0; ir < nr; ++ir) {
  6267. // src0, src1 and dst are same shape => same indices
  6268. const int i3 = ir/(ne2*ne1);
  6269. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6270. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6271. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6272. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6273. for (int i0 = 0; i0 < ne0; i0++) {
  6274. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6275. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6276. }
  6277. }
  6278. }
  6279. }
  6280. static void ggml_compute_forward_sub(
  6281. const struct ggml_compute_params * params,
  6282. const struct ggml_tensor * src0,
  6283. const struct ggml_tensor * src1,
  6284. struct ggml_tensor * dst) {
  6285. switch (src0->type) {
  6286. case GGML_TYPE_F32:
  6287. {
  6288. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6289. } break;
  6290. default:
  6291. {
  6292. GGML_ASSERT(false);
  6293. } break;
  6294. }
  6295. }
  6296. // ggml_compute_forward_mul
  6297. static void ggml_compute_forward_mul_f32(
  6298. const struct ggml_compute_params * params,
  6299. const struct ggml_tensor * src0,
  6300. const struct ggml_tensor * src1,
  6301. struct ggml_tensor * dst) {
  6302. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6304. return;
  6305. }
  6306. const int ith = params->ith;
  6307. const int nth = params->nth;
  6308. #ifdef GGML_USE_CLBLAST
  6309. if (src1->backend == GGML_BACKEND_GPU) {
  6310. if (ith == 0) {
  6311. ggml_cl_mul(src0, src1, dst);
  6312. }
  6313. return;
  6314. }
  6315. #endif
  6316. const int64_t nr = ggml_nrows(src0);
  6317. GGML_TENSOR_BINARY_OP_LOCALS
  6318. GGML_ASSERT( nb0 == sizeof(float));
  6319. GGML_ASSERT(nb00 == sizeof(float));
  6320. if (nb10 == sizeof(float)) {
  6321. for (int64_t ir = ith; ir < nr; ir += nth) {
  6322. // src0 and dst are same shape => same indices
  6323. const int64_t i03 = ir/(ne02*ne01);
  6324. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6325. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6326. const int64_t i13 = i03 % ne13;
  6327. const int64_t i12 = i02 % ne12;
  6328. const int64_t i11 = i01 % ne11;
  6329. const int64_t nr0 = ne00 / ne10;
  6330. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6331. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6332. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6333. for (int64_t r = 0 ; r < nr0; ++r) {
  6334. #ifdef GGML_USE_ACCELERATE
  6335. UNUSED(ggml_vec_mul_f32);
  6336. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6337. #else
  6338. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6339. #endif
  6340. }
  6341. }
  6342. } else {
  6343. // src1 is not contiguous
  6344. for (int64_t ir = ith; ir < nr; ir += nth) {
  6345. // src0 and dst are same shape => same indices
  6346. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6347. const int64_t i03 = ir/(ne02*ne01);
  6348. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6349. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6350. const int64_t i13 = i03 % ne13;
  6351. const int64_t i12 = i02 % ne12;
  6352. const int64_t i11 = i01 % ne11;
  6353. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6354. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6355. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6356. const int64_t i10 = i0 % ne10;
  6357. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6358. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6359. }
  6360. }
  6361. }
  6362. }
  6363. static void ggml_compute_forward_mul(
  6364. const struct ggml_compute_params * params,
  6365. const struct ggml_tensor * src0,
  6366. const struct ggml_tensor * src1,
  6367. struct ggml_tensor * dst) {
  6368. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6369. switch (src0->type) {
  6370. case GGML_TYPE_F32:
  6371. {
  6372. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6373. } break;
  6374. default:
  6375. {
  6376. GGML_ASSERT(false);
  6377. } break;
  6378. }
  6379. }
  6380. // ggml_compute_forward_div
  6381. static void ggml_compute_forward_div_f32(
  6382. const struct ggml_compute_params * params,
  6383. const struct ggml_tensor * src0,
  6384. const struct ggml_tensor * src1,
  6385. struct ggml_tensor * dst) {
  6386. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6388. return;
  6389. }
  6390. const int ith = params->ith;
  6391. const int nth = params->nth;
  6392. const int64_t nr = ggml_nrows(src0);
  6393. GGML_TENSOR_BINARY_OP_LOCALS
  6394. GGML_ASSERT( nb0 == sizeof(float));
  6395. GGML_ASSERT(nb00 == sizeof(float));
  6396. if (nb10 == sizeof(float)) {
  6397. for (int64_t ir = ith; ir < nr; ir += nth) {
  6398. // src0 and dst are same shape => same indices
  6399. const int64_t i03 = ir/(ne02*ne01);
  6400. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6401. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6402. const int64_t i13 = i03 % ne13;
  6403. const int64_t i12 = i02 % ne12;
  6404. const int64_t i11 = i01 % ne11;
  6405. const int64_t nr0 = ne00 / ne10;
  6406. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6407. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6408. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6409. for (int64_t r = 0; r < nr0; ++r) {
  6410. #ifdef GGML_USE_ACCELERATE
  6411. UNUSED(ggml_vec_div_f32);
  6412. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6413. #else
  6414. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6415. #endif
  6416. }
  6417. }
  6418. } else {
  6419. // src1 is not contiguous
  6420. for (int64_t ir = ith; ir < nr; ir += nth) {
  6421. // src0 and dst are same shape => same indices
  6422. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6423. const int64_t i03 = ir/(ne02*ne01);
  6424. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6425. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6426. const int64_t i13 = i03 % ne13;
  6427. const int64_t i12 = i02 % ne12;
  6428. const int64_t i11 = i01 % ne11;
  6429. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6430. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6431. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6432. const int64_t i10 = i0 % ne10;
  6433. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6434. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6435. }
  6436. }
  6437. }
  6438. }
  6439. static void ggml_compute_forward_div(
  6440. const struct ggml_compute_params * params,
  6441. const struct ggml_tensor * src0,
  6442. const struct ggml_tensor * src1,
  6443. struct ggml_tensor * dst) {
  6444. switch (src0->type) {
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_sqr
  6456. static void ggml_compute_forward_sqr_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. struct ggml_tensor * dst) {
  6460. assert(params->ith == 0);
  6461. assert(ggml_are_same_shape(src0, dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. const int n = ggml_nrows(src0);
  6466. const int nc = src0->ne[0];
  6467. assert( dst->nb[0] == sizeof(float));
  6468. assert(src0->nb[0] == sizeof(float));
  6469. for (int i = 0; i < n; i++) {
  6470. ggml_vec_sqr_f32(nc,
  6471. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6472. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6473. }
  6474. }
  6475. static void ggml_compute_forward_sqr(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. struct ggml_tensor * dst) {
  6479. switch (src0->type) {
  6480. case GGML_TYPE_F32:
  6481. {
  6482. ggml_compute_forward_sqr_f32(params, src0, dst);
  6483. } break;
  6484. default:
  6485. {
  6486. GGML_ASSERT(false);
  6487. } break;
  6488. }
  6489. }
  6490. // ggml_compute_forward_sqrt
  6491. static void ggml_compute_forward_sqrt_f32(
  6492. const struct ggml_compute_params * params,
  6493. const struct ggml_tensor * src0,
  6494. struct ggml_tensor * dst) {
  6495. assert(params->ith == 0);
  6496. assert(ggml_are_same_shape(src0, dst));
  6497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6498. return;
  6499. }
  6500. const int n = ggml_nrows(src0);
  6501. const int nc = src0->ne[0];
  6502. assert( dst->nb[0] == sizeof(float));
  6503. assert(src0->nb[0] == sizeof(float));
  6504. for (int i = 0; i < n; i++) {
  6505. ggml_vec_sqrt_f32(nc,
  6506. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6507. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6508. }
  6509. }
  6510. static void ggml_compute_forward_sqrt(
  6511. const struct ggml_compute_params * params,
  6512. const struct ggml_tensor * src0,
  6513. struct ggml_tensor * dst) {
  6514. switch (src0->type) {
  6515. case GGML_TYPE_F32:
  6516. {
  6517. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6518. } break;
  6519. default:
  6520. {
  6521. GGML_ASSERT(false);
  6522. } break;
  6523. }
  6524. }
  6525. // ggml_compute_forward_log
  6526. static void ggml_compute_forward_log_f32(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. struct ggml_tensor * dst) {
  6530. GGML_ASSERT(params->ith == 0);
  6531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6533. return;
  6534. }
  6535. const int n = ggml_nrows(src0);
  6536. const int nc = src0->ne[0];
  6537. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6538. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6539. for (int i = 0; i < n; i++) {
  6540. ggml_vec_log_f32(nc,
  6541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6542. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6543. }
  6544. }
  6545. static void ggml_compute_forward_log(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. struct ggml_tensor * dst) {
  6549. switch (src0->type) {
  6550. case GGML_TYPE_F32:
  6551. {
  6552. ggml_compute_forward_log_f32(params, src0, dst);
  6553. } break;
  6554. default:
  6555. {
  6556. GGML_ASSERT(false);
  6557. } break;
  6558. }
  6559. }
  6560. // ggml_compute_forward_sum
  6561. static void ggml_compute_forward_sum_f32(
  6562. const struct ggml_compute_params * params,
  6563. const struct ggml_tensor * src0,
  6564. struct ggml_tensor * dst) {
  6565. assert(params->ith == 0);
  6566. assert(ggml_is_scalar(dst));
  6567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6568. return;
  6569. }
  6570. assert(ggml_is_scalar(dst));
  6571. assert(src0->nb[0] == sizeof(float));
  6572. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6573. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6574. ggml_float sum = 0;
  6575. ggml_float row_sum = 0;
  6576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6578. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6579. ggml_vec_sum_f32_ggf(ne00,
  6580. &row_sum,
  6581. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6582. sum += row_sum;
  6583. }
  6584. }
  6585. }
  6586. ((float *) dst->data)[0] = sum;
  6587. }
  6588. static void ggml_compute_forward_sum_f16(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. struct ggml_tensor * dst) {
  6592. assert(params->ith == 0);
  6593. assert(ggml_is_scalar(dst));
  6594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6595. return;
  6596. }
  6597. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6598. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6599. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6600. float sum = 0;
  6601. float row_sum = 0;
  6602. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6604. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6605. ggml_vec_sum_f16_ggf(ne00,
  6606. &row_sum,
  6607. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6608. sum += row_sum;
  6609. }
  6610. }
  6611. }
  6612. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6613. }
  6614. static void ggml_compute_forward_sum(
  6615. const struct ggml_compute_params * params,
  6616. const struct ggml_tensor * src0,
  6617. struct ggml_tensor * dst) {
  6618. switch (src0->type) {
  6619. case GGML_TYPE_F32:
  6620. {
  6621. ggml_compute_forward_sum_f32(params, src0, dst);
  6622. } break;
  6623. case GGML_TYPE_F16:
  6624. {
  6625. ggml_compute_forward_sum_f16(params, src0, dst);
  6626. } break;
  6627. default:
  6628. {
  6629. GGML_ASSERT(false);
  6630. } break;
  6631. }
  6632. }
  6633. // ggml_compute_forward_sum_rows
  6634. static void ggml_compute_forward_sum_rows_f32(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. struct ggml_tensor * dst) {
  6638. GGML_ASSERT(params->ith == 0);
  6639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6640. return;
  6641. }
  6642. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6643. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6644. GGML_TENSOR_UNARY_OP_LOCALS
  6645. GGML_ASSERT(ne0 == 1);
  6646. GGML_ASSERT(ne1 == ne01);
  6647. GGML_ASSERT(ne2 == ne02);
  6648. GGML_ASSERT(ne3 == ne03);
  6649. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6650. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6651. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6652. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6653. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6654. float row_sum = 0;
  6655. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6656. dst_row[0] = row_sum;
  6657. }
  6658. }
  6659. }
  6660. }
  6661. static void ggml_compute_forward_sum_rows(
  6662. const struct ggml_compute_params * params,
  6663. const struct ggml_tensor * src0,
  6664. struct ggml_tensor * dst) {
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6669. } break;
  6670. default:
  6671. {
  6672. GGML_ASSERT(false);
  6673. } break;
  6674. }
  6675. }
  6676. // ggml_compute_forward_mean
  6677. static void ggml_compute_forward_mean_f32(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. struct ggml_tensor * dst) {
  6681. assert(params->ith == 0);
  6682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6683. return;
  6684. }
  6685. assert(src0->nb[0] == sizeof(float));
  6686. GGML_TENSOR_UNARY_OP_LOCALS
  6687. assert(ne0 == 1);
  6688. assert(ne1 == ne01);
  6689. assert(ne2 == ne02);
  6690. assert(ne3 == ne03);
  6691. UNUSED(ne0);
  6692. UNUSED(ne1);
  6693. UNUSED(ne2);
  6694. UNUSED(ne3);
  6695. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6696. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6697. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6698. ggml_vec_sum_f32(ne00,
  6699. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6700. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6701. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. static void ggml_compute_forward_mean(
  6707. const struct ggml_compute_params * params,
  6708. const struct ggml_tensor * src0,
  6709. struct ggml_tensor * dst) {
  6710. switch (src0->type) {
  6711. case GGML_TYPE_F32:
  6712. {
  6713. ggml_compute_forward_mean_f32(params, src0, dst);
  6714. } break;
  6715. default:
  6716. {
  6717. GGML_ASSERT(false);
  6718. } break;
  6719. }
  6720. }
  6721. // ggml_compute_forward_argmax
  6722. static void ggml_compute_forward_argmax_f32(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. struct ggml_tensor * dst) {
  6726. assert(params->ith == 0);
  6727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6728. return;
  6729. }
  6730. assert(src0->nb[0] == sizeof(float));
  6731. assert(dst->nb[0] == sizeof(float));
  6732. const int64_t ne00 = src0->ne[0];
  6733. const int64_t ne01 = src0->ne[1];
  6734. const size_t nb01 = src0->nb[1];
  6735. const size_t nb0 = dst->nb[0];
  6736. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6737. float * src = (float *) ((char *) src0->data + i1*nb01);
  6738. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6739. int v = 0;
  6740. ggml_vec_argmax_f32(ne00, &v, src);
  6741. dst_[0] = v;
  6742. }
  6743. }
  6744. static void ggml_compute_forward_argmax(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * src0,
  6747. struct ggml_tensor * dst) {
  6748. switch (src0->type) {
  6749. case GGML_TYPE_F32:
  6750. {
  6751. ggml_compute_forward_argmax_f32(params, src0, dst);
  6752. } break;
  6753. default:
  6754. {
  6755. GGML_ASSERT(false);
  6756. } break;
  6757. }
  6758. }
  6759. // ggml_compute_forward_repeat
  6760. static void ggml_compute_forward_repeat_f32(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. struct ggml_tensor * dst) {
  6764. GGML_ASSERT(params->ith == 0);
  6765. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6767. return;
  6768. }
  6769. GGML_TENSOR_UNARY_OP_LOCALS
  6770. // guaranteed to be an integer due to the check in ggml_can_repeat
  6771. const int nr0 = (int)(ne0/ne00);
  6772. const int nr1 = (int)(ne1/ne01);
  6773. const int nr2 = (int)(ne2/ne02);
  6774. const int nr3 = (int)(ne3/ne03);
  6775. // TODO: support for transposed / permuted tensors
  6776. GGML_ASSERT(nb0 == sizeof(float));
  6777. GGML_ASSERT(nb00 == sizeof(float));
  6778. // TODO: maybe this is not optimal?
  6779. for (int i3 = 0; i3 < nr3; i3++) {
  6780. for (int k3 = 0; k3 < ne03; k3++) {
  6781. for (int i2 = 0; i2 < nr2; i2++) {
  6782. for (int k2 = 0; k2 < ne02; k2++) {
  6783. for (int i1 = 0; i1 < nr1; i1++) {
  6784. for (int k1 = 0; k1 < ne01; k1++) {
  6785. for (int i0 = 0; i0 < nr0; i0++) {
  6786. ggml_vec_cpy_f32(ne00,
  6787. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6788. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6789. }
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. }
  6796. }
  6797. static void ggml_compute_forward_repeat_f16(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. struct ggml_tensor * dst) {
  6801. GGML_ASSERT(params->ith == 0);
  6802. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6804. return;
  6805. }
  6806. GGML_TENSOR_UNARY_OP_LOCALS
  6807. // guaranteed to be an integer due to the check in ggml_can_repeat
  6808. const int nr0 = (int)(ne0/ne00);
  6809. const int nr1 = (int)(ne1/ne01);
  6810. const int nr2 = (int)(ne2/ne02);
  6811. const int nr3 = (int)(ne3/ne03);
  6812. // TODO: support for transposed / permuted tensors
  6813. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6814. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6815. // TODO: maybe this is not optimal?
  6816. for (int i3 = 0; i3 < nr3; i3++) {
  6817. for (int k3 = 0; k3 < ne03; k3++) {
  6818. for (int i2 = 0; i2 < nr2; i2++) {
  6819. for (int k2 = 0; k2 < ne02; k2++) {
  6820. for (int i1 = 0; i1 < nr1; i1++) {
  6821. for (int k1 = 0; k1 < ne01; k1++) {
  6822. for (int i0 = 0; i0 < nr0; i0++) {
  6823. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6824. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6825. // ggml_vec_cpy_f16(ne00, y, x)
  6826. for (int i = 0; i < ne00; ++i) {
  6827. y[i] = x[i];
  6828. }
  6829. }
  6830. }
  6831. }
  6832. }
  6833. }
  6834. }
  6835. }
  6836. }
  6837. static void ggml_compute_forward_repeat(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. struct ggml_tensor * dst) {
  6841. switch (src0->type) {
  6842. case GGML_TYPE_F16:
  6843. {
  6844. ggml_compute_forward_repeat_f16(params, src0, dst);
  6845. } break;
  6846. case GGML_TYPE_F32:
  6847. {
  6848. ggml_compute_forward_repeat_f32(params, src0, dst);
  6849. } break;
  6850. default:
  6851. {
  6852. GGML_ASSERT(false);
  6853. } break;
  6854. }
  6855. }
  6856. // ggml_compute_forward_repeat_back
  6857. static void ggml_compute_forward_repeat_back_f32(
  6858. const struct ggml_compute_params * params,
  6859. const struct ggml_tensor * src0,
  6860. struct ggml_tensor * dst) {
  6861. GGML_ASSERT(params->ith == 0);
  6862. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6864. return;
  6865. }
  6866. GGML_TENSOR_UNARY_OP_LOCALS
  6867. // guaranteed to be an integer due to the check in ggml_can_repeat
  6868. const int nr0 = (int)(ne00/ne0);
  6869. const int nr1 = (int)(ne01/ne1);
  6870. const int nr2 = (int)(ne02/ne2);
  6871. const int nr3 = (int)(ne03/ne3);
  6872. // TODO: support for transposed / permuted tensors
  6873. GGML_ASSERT(nb0 == sizeof(float));
  6874. GGML_ASSERT(nb00 == sizeof(float));
  6875. if (ggml_is_contiguous(dst)) {
  6876. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6877. } else {
  6878. for (int k3 = 0; k3 < ne3; k3++) {
  6879. for (int k2 = 0; k2 < ne2; k2++) {
  6880. for (int k1 = 0; k1 < ne1; k1++) {
  6881. ggml_vec_set_f32(ne0,
  6882. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6883. 0);
  6884. }
  6885. }
  6886. }
  6887. }
  6888. // TODO: maybe this is not optimal?
  6889. for (int i3 = 0; i3 < nr3; i3++) {
  6890. for (int k3 = 0; k3 < ne3; k3++) {
  6891. for (int i2 = 0; i2 < nr2; i2++) {
  6892. for (int k2 = 0; k2 < ne2; k2++) {
  6893. for (int i1 = 0; i1 < nr1; i1++) {
  6894. for (int k1 = 0; k1 < ne1; k1++) {
  6895. for (int i0 = 0; i0 < nr0; i0++) {
  6896. ggml_vec_acc_f32(ne0,
  6897. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6898. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6899. }
  6900. }
  6901. }
  6902. }
  6903. }
  6904. }
  6905. }
  6906. }
  6907. static void ggml_compute_forward_repeat_back(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. switch (src0->type) {
  6912. case GGML_TYPE_F32:
  6913. {
  6914. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6915. } break;
  6916. default:
  6917. {
  6918. GGML_ASSERT(false);
  6919. } break;
  6920. }
  6921. }
  6922. // ggml_compute_forward_concat
  6923. static void ggml_compute_forward_concat_f32(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. const struct ggml_tensor * src1,
  6927. struct ggml_tensor * dst) {
  6928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6929. return;
  6930. }
  6931. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6932. const int ith = params->ith;
  6933. const int nth = params->nth;
  6934. GGML_TENSOR_BINARY_OP_LOCALS
  6935. // TODO: support for transposed / permuted tensors
  6936. GGML_ASSERT(nb0 == sizeof(float));
  6937. GGML_ASSERT(nb00 == sizeof(float));
  6938. GGML_ASSERT(nb10 == sizeof(float));
  6939. for (int i3 = 0; i3 < ne3; i3++) {
  6940. for (int i2 = ith; i2 < ne2; i2 += nth) {
  6941. if (i2 < ne02) { // src0
  6942. for (int i1 = 0; i1 < ne1; i1++) {
  6943. for (int i0 = 0; i0 < ne0; i0++) {
  6944. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6945. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6946. *y = *x;
  6947. }
  6948. }
  6949. } // src1
  6950. else {
  6951. for (int i1 = 0; i1 < ne1; i1++) {
  6952. for (int i0 = 0; i0 < ne0; i0++) {
  6953. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6954. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6955. *y = *x;
  6956. }
  6957. }
  6958. }
  6959. }
  6960. }
  6961. }
  6962. static void ggml_compute_forward_concat(
  6963. const struct ggml_compute_params* params,
  6964. const struct ggml_tensor* src0,
  6965. const struct ggml_tensor* src1,
  6966. struct ggml_tensor* dst) {
  6967. switch (src0->type) {
  6968. case GGML_TYPE_F32:
  6969. {
  6970. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6971. } break;
  6972. default:
  6973. {
  6974. GGML_ASSERT(false);
  6975. } break;
  6976. }
  6977. }
  6978. // ggml_compute_forward_abs
  6979. static void ggml_compute_forward_abs_f32(
  6980. const struct ggml_compute_params * params,
  6981. const struct ggml_tensor * src0,
  6982. struct ggml_tensor * dst) {
  6983. assert(params->ith == 0);
  6984. assert(ggml_are_same_shape(src0, dst));
  6985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6986. return;
  6987. }
  6988. const int n = ggml_nrows(src0);
  6989. const int nc = src0->ne[0];
  6990. assert(dst->nb[0] == sizeof(float));
  6991. assert(src0->nb[0] == sizeof(float));
  6992. for (int i = 0; i < n; i++) {
  6993. ggml_vec_abs_f32(nc,
  6994. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6995. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6996. }
  6997. }
  6998. static void ggml_compute_forward_abs(
  6999. const struct ggml_compute_params * params,
  7000. const struct ggml_tensor * src0,
  7001. struct ggml_tensor * dst) {
  7002. switch (src0->type) {
  7003. case GGML_TYPE_F32:
  7004. {
  7005. ggml_compute_forward_abs_f32(params, src0, dst);
  7006. } break;
  7007. default:
  7008. {
  7009. GGML_ASSERT(false);
  7010. } break;
  7011. }
  7012. }
  7013. // ggml_compute_forward_sgn
  7014. static void ggml_compute_forward_sgn_f32(
  7015. const struct ggml_compute_params * params,
  7016. const struct ggml_tensor * src0,
  7017. struct ggml_tensor * dst) {
  7018. assert(params->ith == 0);
  7019. assert(ggml_are_same_shape(src0, dst));
  7020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7021. return;
  7022. }
  7023. const int n = ggml_nrows(src0);
  7024. const int nc = src0->ne[0];
  7025. assert(dst->nb[0] == sizeof(float));
  7026. assert(src0->nb[0] == sizeof(float));
  7027. for (int i = 0; i < n; i++) {
  7028. ggml_vec_sgn_f32(nc,
  7029. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7030. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7031. }
  7032. }
  7033. static void ggml_compute_forward_sgn(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * src0,
  7036. struct ggml_tensor * dst) {
  7037. switch (src0->type) {
  7038. case GGML_TYPE_F32:
  7039. {
  7040. ggml_compute_forward_sgn_f32(params, src0, dst);
  7041. } break;
  7042. default:
  7043. {
  7044. GGML_ASSERT(false);
  7045. } break;
  7046. }
  7047. }
  7048. // ggml_compute_forward_neg
  7049. static void ggml_compute_forward_neg_f32(
  7050. const struct ggml_compute_params * params,
  7051. const struct ggml_tensor * src0,
  7052. struct ggml_tensor * dst) {
  7053. assert(params->ith == 0);
  7054. assert(ggml_are_same_shape(src0, dst));
  7055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7056. return;
  7057. }
  7058. const int n = ggml_nrows(src0);
  7059. const int nc = src0->ne[0];
  7060. assert(dst->nb[0] == sizeof(float));
  7061. assert(src0->nb[0] == sizeof(float));
  7062. for (int i = 0; i < n; i++) {
  7063. ggml_vec_neg_f32(nc,
  7064. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7065. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7066. }
  7067. }
  7068. static void ggml_compute_forward_neg(
  7069. const struct ggml_compute_params * params,
  7070. const struct ggml_tensor * src0,
  7071. struct ggml_tensor * dst) {
  7072. switch (src0->type) {
  7073. case GGML_TYPE_F32:
  7074. {
  7075. ggml_compute_forward_neg_f32(params, src0, dst);
  7076. } break;
  7077. default:
  7078. {
  7079. GGML_ASSERT(false);
  7080. } break;
  7081. }
  7082. }
  7083. // ggml_compute_forward_step
  7084. static void ggml_compute_forward_step_f32(
  7085. const struct ggml_compute_params * params,
  7086. const struct ggml_tensor * src0,
  7087. struct ggml_tensor * dst) {
  7088. assert(params->ith == 0);
  7089. assert(ggml_are_same_shape(src0, dst));
  7090. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7091. return;
  7092. }
  7093. const int n = ggml_nrows(src0);
  7094. const int nc = src0->ne[0];
  7095. assert(dst->nb[0] == sizeof(float));
  7096. assert(src0->nb[0] == sizeof(float));
  7097. for (int i = 0; i < n; i++) {
  7098. ggml_vec_step_f32(nc,
  7099. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7100. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7101. }
  7102. }
  7103. static void ggml_compute_forward_step(
  7104. const struct ggml_compute_params * params,
  7105. const struct ggml_tensor * src0,
  7106. struct ggml_tensor * dst) {
  7107. switch (src0->type) {
  7108. case GGML_TYPE_F32:
  7109. {
  7110. ggml_compute_forward_step_f32(params, src0, dst);
  7111. } break;
  7112. default:
  7113. {
  7114. GGML_ASSERT(false);
  7115. } break;
  7116. }
  7117. }
  7118. // ggml_compute_forward_tanh
  7119. static void ggml_compute_forward_tanh_f32(
  7120. const struct ggml_compute_params * params,
  7121. const struct ggml_tensor * src0,
  7122. struct ggml_tensor * dst) {
  7123. assert(params->ith == 0);
  7124. assert(ggml_are_same_shape(src0, dst));
  7125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. const int n = ggml_nrows(src0);
  7129. const int nc = src0->ne[0];
  7130. assert(dst->nb[0] == sizeof(float));
  7131. assert(src0->nb[0] == sizeof(float));
  7132. for (int i = 0; i < n; i++) {
  7133. ggml_vec_tanh_f32(nc,
  7134. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7135. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7136. }
  7137. }
  7138. static void ggml_compute_forward_tanh(
  7139. const struct ggml_compute_params * params,
  7140. const struct ggml_tensor * src0,
  7141. struct ggml_tensor * dst) {
  7142. switch (src0->type) {
  7143. case GGML_TYPE_F32:
  7144. {
  7145. ggml_compute_forward_tanh_f32(params, src0, dst);
  7146. } break;
  7147. default:
  7148. {
  7149. GGML_ASSERT(false);
  7150. } break;
  7151. }
  7152. }
  7153. // ggml_compute_forward_elu
  7154. static void ggml_compute_forward_elu_f32(
  7155. const struct ggml_compute_params * params,
  7156. const struct ggml_tensor * src0,
  7157. struct ggml_tensor * dst) {
  7158. assert(params->ith == 0);
  7159. assert(ggml_are_same_shape(src0, dst));
  7160. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7161. return;
  7162. }
  7163. const int n = ggml_nrows(src0);
  7164. const int nc = src0->ne[0];
  7165. assert(dst->nb[0] == sizeof(float));
  7166. assert(src0->nb[0] == sizeof(float));
  7167. for (int i = 0; i < n; i++) {
  7168. ggml_vec_elu_f32(nc,
  7169. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7170. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7171. }
  7172. }
  7173. static void ggml_compute_forward_elu(
  7174. const struct ggml_compute_params * params,
  7175. const struct ggml_tensor * src0,
  7176. struct ggml_tensor * dst) {
  7177. switch (src0->type) {
  7178. case GGML_TYPE_F32:
  7179. {
  7180. ggml_compute_forward_elu_f32(params, src0, dst);
  7181. } break;
  7182. default:
  7183. {
  7184. GGML_ASSERT(false);
  7185. } break;
  7186. }
  7187. }
  7188. // ggml_compute_forward_relu
  7189. static void ggml_compute_forward_relu_f32(
  7190. const struct ggml_compute_params * params,
  7191. const struct ggml_tensor * src0,
  7192. struct ggml_tensor * dst) {
  7193. assert(params->ith == 0);
  7194. assert(ggml_are_same_shape(src0, dst));
  7195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7196. return;
  7197. }
  7198. const int n = ggml_nrows(src0);
  7199. const int nc = src0->ne[0];
  7200. assert(dst->nb[0] == sizeof(float));
  7201. assert(src0->nb[0] == sizeof(float));
  7202. for (int i = 0; i < n; i++) {
  7203. ggml_vec_relu_f32(nc,
  7204. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7205. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7206. }
  7207. }
  7208. static void ggml_compute_forward_relu(
  7209. const struct ggml_compute_params * params,
  7210. const struct ggml_tensor * src0,
  7211. struct ggml_tensor * dst) {
  7212. switch (src0->type) {
  7213. case GGML_TYPE_F32:
  7214. {
  7215. ggml_compute_forward_relu_f32(params, src0, dst);
  7216. } break;
  7217. default:
  7218. {
  7219. GGML_ASSERT(false);
  7220. } break;
  7221. }
  7222. }
  7223. // ggml_compute_forward_gelu
  7224. static void ggml_compute_forward_gelu_f32(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. struct ggml_tensor * dst) {
  7228. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7229. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7232. return;
  7233. }
  7234. const int ith = params->ith;
  7235. const int nth = params->nth;
  7236. const int nc = src0->ne[0];
  7237. const int nr = ggml_nrows(src0);
  7238. // rows per thread
  7239. const int dr = (nr + nth - 1)/nth;
  7240. // row range for this thread
  7241. const int ir0 = dr*ith;
  7242. const int ir1 = MIN(ir0 + dr, nr);
  7243. for (int i1 = ir0; i1 < ir1; i1++) {
  7244. ggml_vec_gelu_f32(nc,
  7245. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7246. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7247. #ifndef NDEBUG
  7248. for (int k = 0; k < nc; k++) {
  7249. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7250. UNUSED(x);
  7251. assert(!isnan(x));
  7252. assert(!isinf(x));
  7253. }
  7254. #endif
  7255. }
  7256. }
  7257. static void ggml_compute_forward_gelu(
  7258. const struct ggml_compute_params * params,
  7259. const struct ggml_tensor * src0,
  7260. struct ggml_tensor * dst) {
  7261. switch (src0->type) {
  7262. case GGML_TYPE_F32:
  7263. {
  7264. ggml_compute_forward_gelu_f32(params, src0, dst);
  7265. } break;
  7266. default:
  7267. {
  7268. GGML_ASSERT(false);
  7269. } break;
  7270. }
  7271. }
  7272. // ggml_compute_forward_gelu_quick
  7273. static void ggml_compute_forward_gelu_quick_f32(
  7274. const struct ggml_compute_params * params,
  7275. const struct ggml_tensor * src0,
  7276. struct ggml_tensor * dst) {
  7277. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7278. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7279. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7281. return;
  7282. }
  7283. const int ith = params->ith;
  7284. const int nth = params->nth;
  7285. const int nc = src0->ne[0];
  7286. const int nr = ggml_nrows(src0);
  7287. // rows per thread
  7288. const int dr = (nr + nth - 1)/nth;
  7289. // row range for this thread
  7290. const int ir0 = dr*ith;
  7291. const int ir1 = MIN(ir0 + dr, nr);
  7292. for (int i1 = ir0; i1 < ir1; i1++) {
  7293. ggml_vec_gelu_quick_f32(nc,
  7294. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7295. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7296. #ifndef NDEBUG
  7297. for (int k = 0; k < nc; k++) {
  7298. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7299. UNUSED(x);
  7300. assert(!isnan(x));
  7301. assert(!isinf(x));
  7302. }
  7303. #endif
  7304. }
  7305. }
  7306. static void ggml_compute_forward_gelu_quick(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. struct ggml_tensor * dst) {
  7310. switch (src0->type) {
  7311. case GGML_TYPE_F32:
  7312. {
  7313. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7314. } break;
  7315. default:
  7316. {
  7317. GGML_ASSERT(false);
  7318. } break;
  7319. }
  7320. }
  7321. // ggml_compute_forward_silu
  7322. static void ggml_compute_forward_silu_f32(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. struct ggml_tensor * dst) {
  7326. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7327. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7328. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7330. return;
  7331. }
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. const int nc = src0->ne[0];
  7335. const int nr = ggml_nrows(src0);
  7336. // rows per thread
  7337. const int dr = (nr + nth - 1)/nth;
  7338. // row range for this thread
  7339. const int ir0 = dr*ith;
  7340. const int ir1 = MIN(ir0 + dr, nr);
  7341. for (int i1 = ir0; i1 < ir1; i1++) {
  7342. ggml_vec_silu_f32(nc,
  7343. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7345. #ifndef NDEBUG
  7346. for (int k = 0; k < nc; k++) {
  7347. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7348. UNUSED(x);
  7349. assert(!isnan(x));
  7350. assert(!isinf(x));
  7351. }
  7352. #endif
  7353. }
  7354. }
  7355. static void ggml_compute_forward_silu(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. struct ggml_tensor * dst) {
  7359. switch (src0->type) {
  7360. case GGML_TYPE_F32:
  7361. {
  7362. ggml_compute_forward_silu_f32(params, src0, dst);
  7363. } break;
  7364. default:
  7365. {
  7366. GGML_ASSERT(false);
  7367. } break;
  7368. }
  7369. }
  7370. // ggml_compute_forward_leaky
  7371. static void ggml_compute_forward_leaky_f32(
  7372. const struct ggml_compute_params * params,
  7373. const struct ggml_tensor * src0,
  7374. struct ggml_tensor * dst) {
  7375. assert(params->ith == 0);
  7376. assert(ggml_are_same_shape(src0, dst));
  7377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7378. return;
  7379. }
  7380. const int n = ggml_nrows(src0);
  7381. const int nc = src0->ne[0];
  7382. assert(dst->nb[0] == sizeof(float));
  7383. assert(src0->nb[0] == sizeof(float));
  7384. for (int i = 0; i < n; i++) {
  7385. ggml_vec_leaky_f32(nc,
  7386. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7387. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7388. }
  7389. }
  7390. static void ggml_compute_forward_leaky(
  7391. const struct ggml_compute_params * params,
  7392. const struct ggml_tensor * src0,
  7393. struct ggml_tensor * dst) {
  7394. switch (src0->type) {
  7395. case GGML_TYPE_F32:
  7396. {
  7397. ggml_compute_forward_leaky_f32(params, src0, dst);
  7398. } break;
  7399. default:
  7400. {
  7401. GGML_ASSERT(false);
  7402. } break;
  7403. }
  7404. }
  7405. // ggml_compute_forward_silu_back
  7406. static void ggml_compute_forward_silu_back_f32(
  7407. const struct ggml_compute_params * params,
  7408. const struct ggml_tensor * src0,
  7409. const struct ggml_tensor * grad,
  7410. struct ggml_tensor * dst) {
  7411. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7412. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7413. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7414. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7415. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7417. return;
  7418. }
  7419. const int ith = params->ith;
  7420. const int nth = params->nth;
  7421. const int nc = src0->ne[0];
  7422. const int nr = ggml_nrows(src0);
  7423. // rows per thread
  7424. const int dr = (nr + nth - 1)/nth;
  7425. // row range for this thread
  7426. const int ir0 = dr*ith;
  7427. const int ir1 = MIN(ir0 + dr, nr);
  7428. for (int i1 = ir0; i1 < ir1; i1++) {
  7429. ggml_vec_silu_backward_f32(nc,
  7430. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7431. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7432. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7433. #ifndef NDEBUG
  7434. for (int k = 0; k < nc; k++) {
  7435. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7436. UNUSED(x);
  7437. assert(!isnan(x));
  7438. assert(!isinf(x));
  7439. }
  7440. #endif
  7441. }
  7442. }
  7443. static void ggml_compute_forward_silu_back(
  7444. const struct ggml_compute_params * params,
  7445. const struct ggml_tensor * src0,
  7446. const struct ggml_tensor * grad,
  7447. struct ggml_tensor * dst) {
  7448. switch (src0->type) {
  7449. case GGML_TYPE_F32:
  7450. {
  7451. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7452. } break;
  7453. default:
  7454. {
  7455. GGML_ASSERT(false);
  7456. } break;
  7457. }
  7458. }
  7459. // ggml_compute_forward_norm
  7460. static void ggml_compute_forward_norm_f32(
  7461. const struct ggml_compute_params * params,
  7462. const struct ggml_tensor * src0,
  7463. struct ggml_tensor * dst) {
  7464. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7466. return;
  7467. }
  7468. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7469. const int ith = params->ith;
  7470. const int nth = params->nth;
  7471. GGML_TENSOR_UNARY_OP_LOCALS
  7472. float eps;
  7473. memcpy(&eps, dst->op_params, sizeof(float));
  7474. // TODO: optimize
  7475. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7476. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7477. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7478. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7479. ggml_float sum = 0.0;
  7480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7481. sum += (ggml_float)x[i00];
  7482. }
  7483. float mean = sum/ne00;
  7484. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7485. ggml_float sum2 = 0.0;
  7486. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7487. float v = x[i00] - mean;
  7488. y[i00] = v;
  7489. sum2 += (ggml_float)(v*v);
  7490. }
  7491. float variance = sum2/ne00;
  7492. const float scale = 1.0f/sqrtf(variance + eps);
  7493. ggml_vec_scale_f32(ne00, y, scale);
  7494. }
  7495. }
  7496. }
  7497. }
  7498. static void ggml_compute_forward_norm(
  7499. const struct ggml_compute_params * params,
  7500. const struct ggml_tensor * src0,
  7501. struct ggml_tensor * dst) {
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_norm_f32(params, src0, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_group_rms_norm
  7514. static void ggml_compute_forward_rms_norm_f32(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. struct ggml_tensor * dst) {
  7518. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7520. return;
  7521. }
  7522. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7523. const int ith = params->ith;
  7524. const int nth = params->nth;
  7525. GGML_TENSOR_UNARY_OP_LOCALS
  7526. float eps;
  7527. memcpy(&eps, dst->op_params, sizeof(float));
  7528. // TODO: optimize
  7529. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7530. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7531. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7532. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7533. ggml_float sum = 0.0;
  7534. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7535. sum += (ggml_float)(x[i00] * x[i00]);
  7536. }
  7537. const float mean = sum/ne00;
  7538. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7539. memcpy(y, x, ne00 * sizeof(float));
  7540. // for (int i00 = 0; i00 < ne00; i00++) {
  7541. // y[i00] = x[i00];
  7542. // }
  7543. const float scale = 1.0f/sqrtf(mean + eps);
  7544. ggml_vec_scale_f32(ne00, y, scale);
  7545. }
  7546. }
  7547. }
  7548. }
  7549. static void ggml_compute_forward_rms_norm(
  7550. const struct ggml_compute_params * params,
  7551. const struct ggml_tensor * src0,
  7552. struct ggml_tensor * dst) {
  7553. switch (src0->type) {
  7554. case GGML_TYPE_F32:
  7555. {
  7556. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7557. } break;
  7558. default:
  7559. {
  7560. GGML_ASSERT(false);
  7561. } break;
  7562. }
  7563. }
  7564. static void ggml_compute_forward_rms_norm_back_f32(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. const struct ggml_tensor * src1,
  7568. struct ggml_tensor * dst) {
  7569. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7571. return;
  7572. }
  7573. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7574. const int ith = params->ith;
  7575. const int nth = params->nth;
  7576. GGML_TENSOR_BINARY_OP_LOCALS
  7577. float eps;
  7578. memcpy(&eps, dst->op_params, sizeof(float));
  7579. // TODO: optimize
  7580. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7581. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7582. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7583. // src1 is same shape as src0 => same indices
  7584. const int64_t i11 = i01;
  7585. const int64_t i12 = i02;
  7586. const int64_t i13 = i03;
  7587. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7588. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7589. ggml_float sum_xx = 0.0;
  7590. ggml_float sum_xdz = 0.0;
  7591. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7592. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7593. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7594. }
  7595. //const float mean = (float)(sum_xx)/ne00;
  7596. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7597. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7598. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7599. // we could cache rms from forward pass to improve performance.
  7600. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7601. //const float rms = sqrtf(mean_eps);
  7602. const float rrms = 1.0f / sqrtf(mean_eps);
  7603. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7604. {
  7605. // z = rms_norm(x)
  7606. //
  7607. // rms_norm(src0) =
  7608. // scale(
  7609. // src0,
  7610. // div(
  7611. // 1,
  7612. // sqrt(
  7613. // add(
  7614. // scale(
  7615. // sum(
  7616. // sqr(
  7617. // src0)),
  7618. // (1.0/N)),
  7619. // eps))));
  7620. // postorder:
  7621. // ## op args grad
  7622. // 00 param src0 grad[#00]
  7623. // 01 const 1
  7624. // 02 sqr (#00) grad[#02]
  7625. // 03 sum (#02) grad[#03]
  7626. // 04 const 1/N
  7627. // 05 scale (#03, #04) grad[#05]
  7628. // 06 const eps
  7629. // 07 add (#05, #06) grad[#07]
  7630. // 08 sqrt (#07) grad[#08]
  7631. // 09 div (#01,#08) grad[#09]
  7632. // 10 scale (#00,#09) grad[#10]
  7633. //
  7634. // backward pass, given grad[#10]
  7635. // #10: scale
  7636. // grad[#00] += scale(grad[#10],#09)
  7637. // grad[#09] += sum(mul(grad[#10],#00))
  7638. // #09: div
  7639. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7640. // #08: sqrt
  7641. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7642. // #07: add
  7643. // grad[#05] += grad[#07]
  7644. // #05: scale
  7645. // grad[#03] += scale(grad[#05],#04)
  7646. // #03: sum
  7647. // grad[#02] += repeat(grad[#03], #02)
  7648. // #02:
  7649. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7650. //
  7651. // substitute and simplify:
  7652. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7653. // grad[#02] = repeat(grad[#03], #02)
  7654. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7655. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7656. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7657. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7658. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7659. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7660. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7661. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7662. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7663. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7664. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7665. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7666. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7667. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7668. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7669. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7670. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7671. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7672. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7673. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7674. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7675. // a = b*c + d*e
  7676. // a = b*c*f/f + d*e*f/f
  7677. // a = (b*c*f + d*e*f)*(1/f)
  7678. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7679. // a = (b + d*e/c)*c
  7680. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7681. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7682. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7683. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7684. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7685. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7686. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7687. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7688. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7689. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7690. }
  7691. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7692. // post-order:
  7693. // dx := x
  7694. // dx := scale(dx,-mean_xdz/mean_eps)
  7695. // dx := add(dx, dz)
  7696. // dx := scale(dx, rrms)
  7697. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7698. ggml_vec_cpy_f32 (ne00, dx, x);
  7699. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7700. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7701. ggml_vec_acc_f32 (ne00, dx, dz);
  7702. ggml_vec_scale_f32(ne00, dx, rrms);
  7703. }
  7704. }
  7705. }
  7706. }
  7707. static void ggml_compute_forward_rms_norm_back(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * src0,
  7710. const struct ggml_tensor * src1,
  7711. struct ggml_tensor * dst) {
  7712. switch (src0->type) {
  7713. case GGML_TYPE_F32:
  7714. {
  7715. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7716. } break;
  7717. default:
  7718. {
  7719. GGML_ASSERT(false);
  7720. } break;
  7721. }
  7722. }
  7723. // ggml_compute_forward_group_norm
  7724. static void ggml_compute_forward_group_norm_f32(
  7725. const struct ggml_compute_params * params,
  7726. const struct ggml_tensor * src0,
  7727. struct ggml_tensor * dst) {
  7728. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7729. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7730. return;
  7731. }
  7732. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7733. const int ith = params->ith;
  7734. const int nth = params->nth;
  7735. GGML_TENSOR_UNARY_OP_LOCALS
  7736. const float eps = 1e-6f; // TODO: make this a parameter
  7737. // TODO: optimize
  7738. int n_channels = src0->ne[2];
  7739. int n_groups = dst->op_params[0];
  7740. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7741. for (int i = ith; i < n_groups; i+=nth) {
  7742. int start = i * n_channels_per_group;
  7743. int end = start + n_channels_per_group;
  7744. if (end > n_channels) {
  7745. end = n_channels;
  7746. }
  7747. int step = end - start;
  7748. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7749. ggml_float sum = 0.0;
  7750. for (int64_t i02 = start; i02 < end; i02++) {
  7751. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7752. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7753. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7754. sum += (ggml_float)x[i00];
  7755. }
  7756. }
  7757. }
  7758. float mean = sum / (ne00 * ne01 * step);
  7759. ggml_float sum2 = 0.0;
  7760. for (int64_t i02 = start; i02 < end; i02++) {
  7761. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7762. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7763. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7764. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7765. float v = x[i00] - mean;
  7766. y[i00] = v;
  7767. sum2 += (ggml_float)(v * v);
  7768. }
  7769. }
  7770. }
  7771. float variance = sum2 / (ne00 * ne01 * step);
  7772. const float scale = 1.0f / sqrtf(variance + eps);
  7773. for (int64_t i02 = start; i02 < end; i02++) {
  7774. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7775. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7776. ggml_vec_scale_f32(ne00, y, scale);
  7777. }
  7778. }
  7779. }
  7780. }
  7781. }
  7782. static void ggml_compute_forward_group_norm(
  7783. const struct ggml_compute_params * params,
  7784. const struct ggml_tensor * src0,
  7785. struct ggml_tensor * dst) {
  7786. switch (src0->type) {
  7787. case GGML_TYPE_F32:
  7788. {
  7789. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7790. } break;
  7791. default:
  7792. {
  7793. GGML_ASSERT(false);
  7794. } break;
  7795. }
  7796. }
  7797. // ggml_compute_forward_mul_mat
  7798. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7799. // helper function to determine if it is better to use BLAS or not
  7800. // for large matrices, BLAS is faster
  7801. static bool ggml_compute_forward_mul_mat_use_blas(
  7802. const struct ggml_tensor * src0,
  7803. const struct ggml_tensor * src1,
  7804. struct ggml_tensor * dst) {
  7805. //const int64_t ne00 = src0->ne[0];
  7806. //const int64_t ne01 = src0->ne[1];
  7807. const int64_t ne10 = src1->ne[0];
  7808. const int64_t ne0 = dst->ne[0];
  7809. const int64_t ne1 = dst->ne[1];
  7810. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7811. // all the experts for each batch element and the processing would become incredibly slow
  7812. // TODO: find the optimal values for these
  7813. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7814. ggml_is_contiguous(src0) &&
  7815. ggml_is_contiguous(src1) &&
  7816. //src0->type == GGML_TYPE_F32 &&
  7817. src1->type == GGML_TYPE_F32 &&
  7818. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7819. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7820. return true;
  7821. }
  7822. return false;
  7823. }
  7824. #endif
  7825. // off1 = offset in i11 and i1
  7826. // cne1 = ne11 and ne1
  7827. // in a normal matrix multiplication, off1 = 0 and cne1 = ne1
  7828. // during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
  7829. static void ggml_compute_forward_mul_mat(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. const struct ggml_tensor * src1,
  7833. struct ggml_tensor * dst,
  7834. int64_t off1, int64_t cne1) {
  7835. int64_t t0 = ggml_perf_time_us();
  7836. UNUSED(t0);
  7837. GGML_TENSOR_BINARY_OP_LOCALS
  7838. const int ith = params->ith;
  7839. const int nth = params->nth;
  7840. const enum ggml_type type = src0->type;
  7841. const bool src1_cont = ggml_is_contiguous(src1);
  7842. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7843. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7844. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7845. GGML_ASSERT(ne0 == ne01);
  7846. GGML_ASSERT(ne1 == ne11);
  7847. GGML_ASSERT(ne2 == ne12);
  7848. GGML_ASSERT(ne3 == ne13);
  7849. // we don't support permuted src0 or src1
  7850. GGML_ASSERT(nb00 == ggml_type_size(type));
  7851. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7852. // dst cannot be transposed or permuted
  7853. GGML_ASSERT(nb0 == sizeof(float));
  7854. GGML_ASSERT(nb0 <= nb1);
  7855. GGML_ASSERT(nb1 <= nb2);
  7856. GGML_ASSERT(nb2 <= nb3);
  7857. // broadcast factors
  7858. const int64_t r2 = ne12/ne02;
  7859. const int64_t r3 = ne13/ne03;
  7860. // nb01 >= nb00 - src0 is not transposed
  7861. // compute by src0 rows
  7862. #if defined(GGML_USE_CLBLAST)
  7863. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7864. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7865. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7866. }
  7867. return;
  7868. }
  7869. #endif
  7870. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7871. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7872. if (params->ith != 0) {
  7873. return;
  7874. }
  7875. if (params->type == GGML_TASK_INIT) {
  7876. return;
  7877. }
  7878. if (params->type == GGML_TASK_FINALIZE) {
  7879. return;
  7880. }
  7881. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7882. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7883. // broadcast src0 into src1 across 2nd,3rd dimension
  7884. const int64_t i03 = i13/r3;
  7885. const int64_t i02 = i12/r2;
  7886. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7887. const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13);
  7888. float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3);
  7889. if (type != GGML_TYPE_F32) {
  7890. float * const wdata = params->wdata;
  7891. ggml_to_float_t const to_float = type_traits[type].to_float;
  7892. size_t id = 0;
  7893. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7894. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7895. id += ne00;
  7896. }
  7897. assert(id*sizeof(float) <= params->wsize);
  7898. x = wdata;
  7899. }
  7900. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7901. cne1, ne01, ne10,
  7902. 1.0f, y, ne10,
  7903. x, ne00,
  7904. 0.0f, d, ne01);
  7905. }
  7906. }
  7907. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7908. return;
  7909. }
  7910. #endif
  7911. if (params->type == GGML_TASK_INIT) {
  7912. if (src1->type != vec_dot_type) {
  7913. char * wdata = params->wdata;
  7914. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7915. assert(params->wsize >= ne11*ne12*ne13*row_size);
  7916. assert(src1->type == GGML_TYPE_F32);
  7917. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7918. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7919. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7920. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7921. wdata += row_size;
  7922. }
  7923. }
  7924. }
  7925. }
  7926. return;
  7927. }
  7928. if (params->type == GGML_TASK_FINALIZE) {
  7929. return;
  7930. }
  7931. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7932. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7933. const int64_t nr0 = ne01; // src0 rows
  7934. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  7935. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7936. // distribute the thread work across the inner or outer loop based on which one is larger
  7937. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7938. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7939. const int64_t ith0 = ith % nth0;
  7940. const int64_t ith1 = ith / nth0;
  7941. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7942. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7943. const int64_t ir010 = dr0*ith0;
  7944. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7945. const int64_t ir110 = dr1*ith1;
  7946. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7947. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7948. // threads with no work simply yield (not sure if it helps)
  7949. if (ir010 >= ir011 || ir110 >= ir111) {
  7950. sched_yield();
  7951. return;
  7952. }
  7953. assert(ne12 % ne02 == 0);
  7954. assert(ne13 % ne03 == 0);
  7955. // block-tiling attempt
  7956. const int64_t blck_0 = 16;
  7957. const int64_t blck_1 = 16;
  7958. // attempt to reduce false-sharing (does not seem to make a difference)
  7959. float tmp[16];
  7960. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7961. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7962. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7963. const int64_t i13 = (ir1/(ne12*cne1));
  7964. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  7965. const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1;
  7966. // broadcast src0 into src1
  7967. const int64_t i03 = i13/r3;
  7968. const int64_t i02 = i12/r2;
  7969. const int64_t i1 = i11;
  7970. const int64_t i2 = i12;
  7971. const int64_t i3 = i13;
  7972. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7973. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7974. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7975. // the original src1 data pointer, so we should index using the indices directly
  7976. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7977. const char * src1_col = (const char *) wdata +
  7978. (src1_cont || src1->type != vec_dot_type
  7979. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7980. : (i11*nb11 + i12*nb12 + i13*nb13));
  7981. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7982. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7983. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7984. //}
  7985. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7986. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7987. }
  7988. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7989. }
  7990. }
  7991. }
  7992. }
  7993. // ggml_compute_forward_mul_mat_id
  7994. static void ggml_compute_forward_mul_mat_id(
  7995. const struct ggml_compute_params * params,
  7996. const struct ggml_tensor * src0,
  7997. const struct ggml_tensor * src1,
  7998. struct ggml_tensor * dst) {
  7999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8000. // during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
  8001. ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
  8002. return;
  8003. }
  8004. const struct ggml_tensor * ids = src0;
  8005. const int id = ggml_get_op_params_i32(dst, 0);
  8006. const int n_as = ggml_get_op_params_i32(dst, 1);
  8007. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8008. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8009. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8010. const struct ggml_tensor * src0_row = dst->src[row_id + 2];
  8011. ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
  8012. }
  8013. }
  8014. // ggml_compute_forward_out_prod
  8015. static void ggml_compute_forward_out_prod_f32(
  8016. const struct ggml_compute_params * params,
  8017. const struct ggml_tensor * src0,
  8018. const struct ggml_tensor * src1,
  8019. struct ggml_tensor * dst) {
  8020. // int64_t t0 = ggml_perf_time_us();
  8021. // UNUSED(t0);
  8022. GGML_TENSOR_BINARY_OP_LOCALS
  8023. const int ith = params->ith;
  8024. const int nth = params->nth;
  8025. GGML_ASSERT(ne0 == ne00);
  8026. GGML_ASSERT(ne1 == ne10);
  8027. GGML_ASSERT(ne2 == ne02);
  8028. GGML_ASSERT(ne02 == ne12);
  8029. GGML_ASSERT(ne3 == ne13);
  8030. GGML_ASSERT(ne03 == ne13);
  8031. // we don't support permuted src0 or src1
  8032. GGML_ASSERT(nb00 == sizeof(float));
  8033. // dst cannot be transposed or permuted
  8034. GGML_ASSERT(nb0 == sizeof(float));
  8035. // GGML_ASSERT(nb0 <= nb1);
  8036. // GGML_ASSERT(nb1 <= nb2);
  8037. // GGML_ASSERT(nb2 <= nb3);
  8038. // nb01 >= nb00 - src0 is not transposed
  8039. // compute by src0 rows
  8040. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8041. // TODO: #if defined(GGML_USE_CLBLAST)
  8042. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8043. bool use_blas = ggml_is_matrix(src0) &&
  8044. ggml_is_matrix(src1) &&
  8045. ggml_is_contiguous(src0) &&
  8046. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8047. #endif
  8048. if (params->type == GGML_TASK_INIT) {
  8049. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8050. if (use_blas) {
  8051. return;
  8052. }
  8053. #endif
  8054. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8055. return;
  8056. }
  8057. if (params->type == GGML_TASK_FINALIZE) {
  8058. return;
  8059. }
  8060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8061. if (use_blas) {
  8062. if (params->ith != 0) { // All threads other than the first do no work.
  8063. return;
  8064. }
  8065. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8066. // src0: (k,n)
  8067. // src1: (k,m)
  8068. // dst: (m,n)
  8069. //
  8070. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8071. // Also expressed as (major,minor)
  8072. // a: (m,k): so src1 transposed
  8073. // b: (k,n): so src0
  8074. // c: (m,n)
  8075. //
  8076. // However, if ggml_is_transposed(src1) is true, then
  8077. // src1->data already contains a transposed version, so sgemm mustn't
  8078. // transpose it further.
  8079. int n = src0->ne[0];
  8080. int k = src0->ne[1];
  8081. int m = src1->ne[0];
  8082. int transposeA, lda;
  8083. if (!ggml_is_transposed(src1)) {
  8084. transposeA = CblasTrans;
  8085. lda = m;
  8086. } else {
  8087. transposeA = CblasNoTrans;
  8088. lda = k;
  8089. }
  8090. float * a = (float *) ((char *) src1->data);
  8091. float * b = (float *) ((char *) src0->data);
  8092. float * c = (float *) ((char *) dst->data);
  8093. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8094. return;
  8095. }
  8096. #endif
  8097. // dst[:,:,:,:] = 0
  8098. // for i2,i3:
  8099. // for i1:
  8100. // for i01:
  8101. // for i0:
  8102. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8103. // parallelize by last three dimensions
  8104. // total rows in dst
  8105. const int64_t nr = ne1*ne2*ne3;
  8106. // rows per thread
  8107. const int64_t dr = (nr + nth - 1)/nth;
  8108. // row range for this thread
  8109. const int64_t ir0 = dr*ith;
  8110. const int64_t ir1 = MIN(ir0 + dr, nr);
  8111. // block-tiling attempt
  8112. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8113. const int64_t blck_1 = 16;
  8114. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8115. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8116. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8117. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8118. for (int64_t ir = bir; ir < bir1; ++ir) {
  8119. // dst indices
  8120. const int64_t i3 = ir/(ne2*ne1);
  8121. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8122. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8123. const int64_t i02 = i2;
  8124. const int64_t i03 = i3;
  8125. //const int64_t i10 = i1;
  8126. const int64_t i12 = i2;
  8127. const int64_t i13 = i3;
  8128. #if GGML_VEC_MAD_UNROLL > 2
  8129. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8130. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8131. const int64_t i11 = i01;
  8132. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8133. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8134. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8135. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8136. }
  8137. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8138. const int64_t i11 = i01;
  8139. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8140. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8141. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8142. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8143. }
  8144. #else
  8145. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8146. const int64_t i11 = i01;
  8147. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8148. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8149. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8150. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8151. }
  8152. #endif
  8153. }
  8154. }
  8155. }
  8156. //int64_t t1 = ggml_perf_time_us();
  8157. //static int64_t acc = 0;
  8158. //acc += t1 - t0;
  8159. //if (t1 - t0 > 10) {
  8160. // printf("\n");
  8161. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8162. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8163. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8164. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8165. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8166. //}
  8167. }
  8168. static void ggml_compute_forward_out_prod_q_f32(
  8169. const struct ggml_compute_params * params,
  8170. const struct ggml_tensor * src0,
  8171. const struct ggml_tensor * src1,
  8172. struct ggml_tensor * dst) {
  8173. // int64_t t0 = ggml_perf_time_us();
  8174. // UNUSED(t0);
  8175. GGML_TENSOR_BINARY_OP_LOCALS;
  8176. const int ith = params->ith;
  8177. const int nth = params->nth;
  8178. const enum ggml_type type = src0->type;
  8179. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8180. GGML_ASSERT(ne02 == ne12);
  8181. GGML_ASSERT(ne03 == ne13);
  8182. GGML_ASSERT(ne2 == ne12);
  8183. GGML_ASSERT(ne3 == ne13);
  8184. // we don't support permuted src0 dim0
  8185. GGML_ASSERT(nb00 == ggml_type_size(type));
  8186. // dst dim0 cannot be transposed or permuted
  8187. GGML_ASSERT(nb0 == sizeof(float));
  8188. // GGML_ASSERT(nb0 <= nb1);
  8189. // GGML_ASSERT(nb1 <= nb2);
  8190. // GGML_ASSERT(nb2 <= nb3);
  8191. GGML_ASSERT(ne0 == ne00);
  8192. GGML_ASSERT(ne1 == ne10);
  8193. GGML_ASSERT(ne2 == ne02);
  8194. GGML_ASSERT(ne3 == ne03);
  8195. // nb01 >= nb00 - src0 is not transposed
  8196. // compute by src0 rows
  8197. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8198. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8199. if (params->type == GGML_TASK_INIT) {
  8200. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8201. return;
  8202. }
  8203. if (params->type == GGML_TASK_FINALIZE) {
  8204. return;
  8205. }
  8206. // parallelize by last three dimensions
  8207. // total rows in dst
  8208. const int64_t nr = ne1*ne2*ne3;
  8209. // rows per thread
  8210. const int64_t dr = (nr + nth - 1)/nth;
  8211. // row range for this thread
  8212. const int64_t ir0 = dr*ith;
  8213. const int64_t ir1 = MIN(ir0 + dr, nr);
  8214. // dst[:,:,:,:] = 0
  8215. // for i2,i3:
  8216. // for i1:
  8217. // for i01:
  8218. // for i0:
  8219. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8220. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8221. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8222. // dst indices
  8223. const int64_t i3 = ir/(ne2*ne1);
  8224. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8225. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8226. const int64_t i02 = i2;
  8227. const int64_t i03 = i3;
  8228. //const int64_t i10 = i1;
  8229. const int64_t i12 = i2;
  8230. const int64_t i13 = i3;
  8231. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8232. const int64_t i11 = i01;
  8233. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8234. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8235. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8236. dequantize_row_q(s0, wdata, ne0);
  8237. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8238. }
  8239. }
  8240. //int64_t t1 = ggml_perf_time_us();
  8241. //static int64_t acc = 0;
  8242. //acc += t1 - t0;
  8243. //if (t1 - t0 > 10) {
  8244. // printf("\n");
  8245. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8246. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8247. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8248. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8249. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8250. //}
  8251. }
  8252. static void ggml_compute_forward_out_prod(
  8253. const struct ggml_compute_params * params,
  8254. const struct ggml_tensor * src0,
  8255. const struct ggml_tensor * src1,
  8256. struct ggml_tensor * dst) {
  8257. switch (src0->type) {
  8258. case GGML_TYPE_Q4_0:
  8259. case GGML_TYPE_Q4_1:
  8260. case GGML_TYPE_Q5_0:
  8261. case GGML_TYPE_Q5_1:
  8262. case GGML_TYPE_Q8_0:
  8263. case GGML_TYPE_Q2_K:
  8264. case GGML_TYPE_Q3_K:
  8265. case GGML_TYPE_Q4_K:
  8266. case GGML_TYPE_Q5_K:
  8267. case GGML_TYPE_Q6_K:
  8268. {
  8269. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8270. } break;
  8271. case GGML_TYPE_F16:
  8272. {
  8273. GGML_ASSERT(false); // todo
  8274. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8275. } break;
  8276. case GGML_TYPE_F32:
  8277. {
  8278. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8279. } break;
  8280. default:
  8281. {
  8282. GGML_ASSERT(false);
  8283. } break;
  8284. }
  8285. }
  8286. // ggml_compute_forward_scale
  8287. static void ggml_compute_forward_scale_f32(
  8288. const struct ggml_compute_params * params,
  8289. const struct ggml_tensor * src0,
  8290. const struct ggml_tensor * src1,
  8291. struct ggml_tensor * dst) {
  8292. GGML_ASSERT(ggml_is_contiguous(src0));
  8293. GGML_ASSERT(ggml_is_contiguous(dst));
  8294. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8295. GGML_ASSERT(ggml_is_scalar(src1));
  8296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8297. return;
  8298. }
  8299. // scale factor
  8300. const float v = *(float *) src1->data;
  8301. const int ith = params->ith;
  8302. const int nth = params->nth;
  8303. const int nc = src0->ne[0];
  8304. const int nr = ggml_nrows(src0);
  8305. // rows per thread
  8306. const int dr = (nr + nth - 1)/nth;
  8307. // row range for this thread
  8308. const int ir0 = dr*ith;
  8309. const int ir1 = MIN(ir0 + dr, nr);
  8310. const size_t nb01 = src0->nb[1];
  8311. const size_t nb1 = dst->nb[1];
  8312. for (int i1 = ir0; i1 < ir1; i1++) {
  8313. if (dst->data != src0->data) {
  8314. // src0 is same shape as dst => same indices
  8315. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8316. }
  8317. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8318. }
  8319. }
  8320. static void ggml_compute_forward_scale(
  8321. const struct ggml_compute_params * params,
  8322. const struct ggml_tensor * src0,
  8323. const struct ggml_tensor * src1,
  8324. struct ggml_tensor * dst) {
  8325. switch (src0->type) {
  8326. case GGML_TYPE_F32:
  8327. {
  8328. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8329. } break;
  8330. default:
  8331. {
  8332. GGML_ASSERT(false);
  8333. } break;
  8334. }
  8335. }
  8336. // ggml_compute_forward_set
  8337. static void ggml_compute_forward_set_f32(
  8338. const struct ggml_compute_params * params,
  8339. const struct ggml_tensor * src0,
  8340. const struct ggml_tensor * src1,
  8341. struct ggml_tensor * dst) {
  8342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8343. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8344. // view src0 and dst with these strides and data offset inbytes during set
  8345. // nb0 is implicitly element_size because src0 and dst are contiguous
  8346. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8347. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8348. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8349. size_t offset = ((int32_t *) dst->op_params)[3];
  8350. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8351. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8352. // memcpy needs to be synchronized across threads to avoid race conditions.
  8353. // => do it in INIT phase
  8354. memcpy(
  8355. ((char *) dst->data),
  8356. ((char *) src0->data),
  8357. ggml_nbytes(dst));
  8358. }
  8359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8360. return;
  8361. }
  8362. const int ith = params->ith;
  8363. const int nth = params->nth;
  8364. const int nr = ggml_nrows(src1);
  8365. const int nc = src1->ne[0];
  8366. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8367. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8368. // src0 and dst as viewed during set
  8369. const size_t nb0 = ggml_element_size(src0);
  8370. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8371. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8372. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8373. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8374. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8375. GGML_ASSERT(nb10 == sizeof(float));
  8376. // rows per thread
  8377. const int dr = (nr + nth - 1)/nth;
  8378. // row range for this thread
  8379. const int ir0 = dr*ith;
  8380. const int ir1 = MIN(ir0 + dr, nr);
  8381. for (int ir = ir0; ir < ir1; ++ir) {
  8382. // src0 and dst are viewed with shape of src1 and offset
  8383. // => same indices
  8384. const int i3 = ir/(ne12*ne11);
  8385. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8386. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8387. ggml_vec_cpy_f32(nc,
  8388. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8389. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8390. }
  8391. }
  8392. static void ggml_compute_forward_set(
  8393. const struct ggml_compute_params * params,
  8394. const struct ggml_tensor * src0,
  8395. const struct ggml_tensor * src1,
  8396. struct ggml_tensor * dst) {
  8397. switch (src0->type) {
  8398. case GGML_TYPE_F32:
  8399. {
  8400. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8401. } break;
  8402. case GGML_TYPE_F16:
  8403. case GGML_TYPE_Q4_0:
  8404. case GGML_TYPE_Q4_1:
  8405. case GGML_TYPE_Q5_0:
  8406. case GGML_TYPE_Q5_1:
  8407. case GGML_TYPE_Q8_0:
  8408. case GGML_TYPE_Q8_1:
  8409. case GGML_TYPE_Q2_K:
  8410. case GGML_TYPE_Q3_K:
  8411. case GGML_TYPE_Q4_K:
  8412. case GGML_TYPE_Q5_K:
  8413. case GGML_TYPE_Q6_K:
  8414. default:
  8415. {
  8416. GGML_ASSERT(false);
  8417. } break;
  8418. }
  8419. }
  8420. // ggml_compute_forward_cpy
  8421. static void ggml_compute_forward_cpy(
  8422. const struct ggml_compute_params * params,
  8423. const struct ggml_tensor * src0,
  8424. struct ggml_tensor * dst) {
  8425. ggml_compute_forward_dup(params, src0, dst);
  8426. }
  8427. // ggml_compute_forward_cont
  8428. static void ggml_compute_forward_cont(
  8429. const struct ggml_compute_params * params,
  8430. const struct ggml_tensor * src0,
  8431. struct ggml_tensor * dst) {
  8432. ggml_compute_forward_dup(params, src0, dst);
  8433. }
  8434. // ggml_compute_forward_reshape
  8435. static void ggml_compute_forward_reshape(
  8436. const struct ggml_compute_params * params,
  8437. const struct ggml_tensor * src0,
  8438. struct ggml_tensor * dst) {
  8439. // NOP
  8440. UNUSED(params);
  8441. UNUSED(src0);
  8442. UNUSED(dst);
  8443. }
  8444. // ggml_compute_forward_view
  8445. static void ggml_compute_forward_view(
  8446. const struct ggml_compute_params * params,
  8447. const struct ggml_tensor * src0) {
  8448. // NOP
  8449. UNUSED(params);
  8450. UNUSED(src0);
  8451. }
  8452. // ggml_compute_forward_permute
  8453. static void ggml_compute_forward_permute(
  8454. const struct ggml_compute_params * params,
  8455. const struct ggml_tensor * src0) {
  8456. // NOP
  8457. UNUSED(params);
  8458. UNUSED(src0);
  8459. }
  8460. // ggml_compute_forward_transpose
  8461. static void ggml_compute_forward_transpose(
  8462. const struct ggml_compute_params * params,
  8463. const struct ggml_tensor * src0) {
  8464. // NOP
  8465. UNUSED(params);
  8466. UNUSED(src0);
  8467. }
  8468. // ggml_compute_forward_get_rows
  8469. static void ggml_compute_forward_get_rows_q(
  8470. const struct ggml_compute_params * params,
  8471. const struct ggml_tensor * src0,
  8472. const struct ggml_tensor * src1,
  8473. struct ggml_tensor * dst) {
  8474. assert(params->ith == 0);
  8475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8476. return;
  8477. }
  8478. GGML_TENSOR_BINARY_OP_LOCALS
  8479. const int64_t nc = ne00;
  8480. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8481. const enum ggml_type type = src0->type;
  8482. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8483. assert(ne0 == nc);
  8484. assert(ne02 == ne11);
  8485. assert(nb00 == ggml_type_size(type));
  8486. assert(ggml_nrows(dst) == nr);
  8487. // TODO: multi-thread
  8488. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8489. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8490. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8491. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8492. dequantize_row_q(
  8493. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8494. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8495. }
  8496. }
  8497. }
  8498. }
  8499. static void ggml_compute_forward_get_rows_f16(
  8500. const struct ggml_compute_params * params,
  8501. const struct ggml_tensor * src0,
  8502. const struct ggml_tensor * src1,
  8503. struct ggml_tensor * dst) {
  8504. assert(params->ith == 0);
  8505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8506. return;
  8507. }
  8508. GGML_TENSOR_BINARY_OP_LOCALS
  8509. const int64_t nc = ne00;
  8510. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8511. assert(ne0 == nc);
  8512. assert(ne02 == ne11);
  8513. assert(nb00 == sizeof(ggml_fp16_t));
  8514. assert(ggml_nrows(dst) == nr);
  8515. // TODO: multi-thread
  8516. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8517. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8518. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8519. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8520. ggml_fp16_to_fp32_row(
  8521. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8522. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8523. }
  8524. }
  8525. }
  8526. }
  8527. static void ggml_compute_forward_get_rows_f32(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. const struct ggml_tensor * src1,
  8531. struct ggml_tensor * dst) {
  8532. assert(params->ith == 0);
  8533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8534. return;
  8535. }
  8536. GGML_TENSOR_BINARY_OP_LOCALS
  8537. const int64_t nc = ne00;
  8538. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8539. assert(ne0 == nc);
  8540. assert(ne02 == ne11);
  8541. assert(nb00 == sizeof(float));
  8542. assert(ggml_nrows(dst) == nr);
  8543. // TODO: multi-thread
  8544. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8545. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8546. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8547. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8548. ggml_vec_cpy_f32(nc,
  8549. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8550. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8551. }
  8552. }
  8553. }
  8554. }
  8555. static void ggml_compute_forward_get_rows(
  8556. const struct ggml_compute_params * params,
  8557. const struct ggml_tensor * src0,
  8558. const struct ggml_tensor * src1,
  8559. struct ggml_tensor * dst) {
  8560. switch (src0->type) {
  8561. case GGML_TYPE_Q4_0:
  8562. case GGML_TYPE_Q4_1:
  8563. case GGML_TYPE_Q5_0:
  8564. case GGML_TYPE_Q5_1:
  8565. case GGML_TYPE_Q8_0:
  8566. case GGML_TYPE_Q8_1:
  8567. case GGML_TYPE_Q2_K:
  8568. case GGML_TYPE_Q3_K:
  8569. case GGML_TYPE_Q4_K:
  8570. case GGML_TYPE_Q5_K:
  8571. case GGML_TYPE_Q6_K:
  8572. {
  8573. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8574. } break;
  8575. case GGML_TYPE_F16:
  8576. {
  8577. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8578. } break;
  8579. case GGML_TYPE_F32:
  8580. {
  8581. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8582. } break;
  8583. default:
  8584. {
  8585. GGML_ASSERT(false);
  8586. } break;
  8587. }
  8588. //static bool first = true;
  8589. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8590. //if (first) {
  8591. // first = false;
  8592. //} else {
  8593. // for (int k = 0; k < dst->ne[1]; ++k) {
  8594. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8595. // for (int i = 0; i < 16; ++i) {
  8596. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8597. // }
  8598. // printf("\n");
  8599. // }
  8600. // printf("\n");
  8601. // }
  8602. // printf("\n");
  8603. // exit(0);
  8604. //}
  8605. }
  8606. // ggml_compute_forward_get_rows_back
  8607. static void ggml_compute_forward_get_rows_back_f32_f16(
  8608. const struct ggml_compute_params * params,
  8609. const struct ggml_tensor * src0,
  8610. const struct ggml_tensor * src1,
  8611. struct ggml_tensor * dst) {
  8612. GGML_ASSERT(params->ith == 0);
  8613. GGML_ASSERT(ggml_is_contiguous(dst));
  8614. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8615. if (params->type == GGML_TASK_INIT) {
  8616. memset(dst->data, 0, ggml_nbytes(dst));
  8617. }
  8618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8619. return;
  8620. }
  8621. const int nc = src0->ne[0];
  8622. const int nr = ggml_nelements(src1);
  8623. GGML_ASSERT( dst->ne[0] == nc);
  8624. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8625. for (int i = 0; i < nr; ++i) {
  8626. const int r = ((int32_t *) src1->data)[i];
  8627. for (int j = 0; j < nc; ++j) {
  8628. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8629. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8630. }
  8631. }
  8632. }
  8633. static void ggml_compute_forward_get_rows_back_f32(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. const struct ggml_tensor * src1,
  8637. struct ggml_tensor * dst) {
  8638. GGML_ASSERT(params->ith == 0);
  8639. GGML_ASSERT(ggml_is_contiguous(dst));
  8640. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8641. if (params->type == GGML_TASK_INIT) {
  8642. memset(dst->data, 0, ggml_nbytes(dst));
  8643. }
  8644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8645. return;
  8646. }
  8647. const int nc = src0->ne[0];
  8648. const int nr = ggml_nelements(src1);
  8649. GGML_ASSERT( dst->ne[0] == nc);
  8650. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8651. for (int i = 0; i < nr; ++i) {
  8652. const int r = ((int32_t *) src1->data)[i];
  8653. ggml_vec_add_f32(nc,
  8654. (float *) ((char *) dst->data + r*dst->nb[1]),
  8655. (float *) ((char *) dst->data + r*dst->nb[1]),
  8656. (float *) ((char *) src0->data + i*src0->nb[1]));
  8657. }
  8658. }
  8659. static void ggml_compute_forward_get_rows_back(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * src0,
  8662. const struct ggml_tensor * src1,
  8663. struct ggml_tensor * dst) {
  8664. switch (src0->type) {
  8665. case GGML_TYPE_F16:
  8666. {
  8667. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8668. } break;
  8669. case GGML_TYPE_F32:
  8670. {
  8671. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8672. } break;
  8673. default:
  8674. {
  8675. GGML_ASSERT(false);
  8676. } break;
  8677. }
  8678. //static bool first = true;
  8679. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8680. //if (first) {
  8681. // first = false;
  8682. //} else {
  8683. // for (int k = 0; k < dst->ne[1]; ++k) {
  8684. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8685. // for (int i = 0; i < 16; ++i) {
  8686. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8687. // }
  8688. // printf("\n");
  8689. // }
  8690. // printf("\n");
  8691. // }
  8692. // printf("\n");
  8693. // exit(0);
  8694. //}
  8695. }
  8696. // ggml_compute_forward_diag
  8697. static void ggml_compute_forward_diag_f32(
  8698. const struct ggml_compute_params * params,
  8699. const struct ggml_tensor * src0,
  8700. struct ggml_tensor * dst) {
  8701. GGML_ASSERT(params->ith == 0);
  8702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8703. return;
  8704. }
  8705. // TODO: handle transposed/permuted matrices
  8706. GGML_TENSOR_UNARY_OP_LOCALS
  8707. GGML_ASSERT(ne00 == ne0);
  8708. GGML_ASSERT(ne00 == ne1);
  8709. GGML_ASSERT(ne01 == 1);
  8710. GGML_ASSERT(ne02 == ne2);
  8711. GGML_ASSERT(ne03 == ne3);
  8712. GGML_ASSERT(nb00 == sizeof(float));
  8713. GGML_ASSERT(nb0 == sizeof(float));
  8714. for (int i3 = 0; i3 < ne3; i3++) {
  8715. for (int i2 = 0; i2 < ne2; i2++) {
  8716. for (int i1 = 0; i1 < ne1; i1++) {
  8717. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8718. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8719. for (int i0 = 0; i0 < i1; i0++) {
  8720. d[i0] = 0;
  8721. }
  8722. d[i1] = s[i1];
  8723. for (int i0 = i1+1; i0 < ne0; i0++) {
  8724. d[i0] = 0;
  8725. }
  8726. }
  8727. }
  8728. }
  8729. }
  8730. static void ggml_compute_forward_diag(
  8731. const struct ggml_compute_params * params,
  8732. const struct ggml_tensor * src0,
  8733. struct ggml_tensor * dst) {
  8734. switch (src0->type) {
  8735. case GGML_TYPE_F32:
  8736. {
  8737. ggml_compute_forward_diag_f32(params, src0, dst);
  8738. } break;
  8739. default:
  8740. {
  8741. GGML_ASSERT(false);
  8742. } break;
  8743. }
  8744. }
  8745. // ggml_compute_forward_diag_mask_inf
  8746. static void ggml_compute_forward_diag_mask_f32(
  8747. const struct ggml_compute_params * params,
  8748. const struct ggml_tensor * src0,
  8749. struct ggml_tensor * dst,
  8750. const float value) {
  8751. const int ith = params->ith;
  8752. const int nth = params->nth;
  8753. const int n_past = ((int32_t *) dst->op_params)[0];
  8754. const bool inplace = src0->data == dst->data;
  8755. GGML_ASSERT(n_past >= 0);
  8756. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8757. // memcpy needs to be synchronized across threads to avoid race conditions.
  8758. // => do it in INIT phase
  8759. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8760. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8761. memcpy(
  8762. ((char *) dst->data),
  8763. ((char *) src0->data),
  8764. ggml_nbytes(dst));
  8765. }
  8766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8767. return;
  8768. }
  8769. // TODO: handle transposed/permuted matrices
  8770. const int n = ggml_nrows(src0);
  8771. const int nc = src0->ne[0];
  8772. const int nr = src0->ne[1];
  8773. const int nz = n/nr;
  8774. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8775. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8776. for (int k = 0; k < nz; k++) {
  8777. for (int j = ith; j < nr; j += nth) {
  8778. for (int i = n_past; i < nc; i++) {
  8779. if (i > n_past + j) {
  8780. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8781. }
  8782. }
  8783. }
  8784. }
  8785. }
  8786. static void ggml_compute_forward_diag_mask_inf(
  8787. const struct ggml_compute_params * params,
  8788. const struct ggml_tensor * src0,
  8789. struct ggml_tensor * dst) {
  8790. switch (src0->type) {
  8791. case GGML_TYPE_F32:
  8792. {
  8793. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8794. } break;
  8795. default:
  8796. {
  8797. GGML_ASSERT(false);
  8798. } break;
  8799. }
  8800. }
  8801. static void ggml_compute_forward_diag_mask_zero(
  8802. const struct ggml_compute_params * params,
  8803. const struct ggml_tensor * src0,
  8804. struct ggml_tensor * dst) {
  8805. switch (src0->type) {
  8806. case GGML_TYPE_F32:
  8807. {
  8808. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8809. } break;
  8810. default:
  8811. {
  8812. GGML_ASSERT(false);
  8813. } break;
  8814. }
  8815. }
  8816. // ggml_compute_forward_soft_max
  8817. static void ggml_compute_forward_soft_max_f32(
  8818. const struct ggml_compute_params * params,
  8819. const struct ggml_tensor * src0,
  8820. const struct ggml_tensor * src1,
  8821. struct ggml_tensor * dst) {
  8822. assert(ggml_is_contiguous(dst));
  8823. assert(ggml_are_same_shape(src0, dst));
  8824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8825. return;
  8826. }
  8827. float scale = 1.0f;
  8828. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8829. // TODO: handle transposed/permuted matrices
  8830. const int ith = params->ith;
  8831. const int nth = params->nth;
  8832. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8833. const int nc = src0->ne[0];
  8834. const int nr = ggml_nrows(src0);
  8835. // rows per thread
  8836. const int dr = (nr + nth - 1)/nth;
  8837. // row range for this thread
  8838. const int ir0 = dr*ith;
  8839. const int ir1 = MIN(ir0 + dr, nr);
  8840. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  8841. for (int i1 = ir0; i1 < ir1; i1++) {
  8842. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8843. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8844. // broadcast the mask across rows
  8845. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  8846. ggml_vec_cpy_f32 (nc, wp, sp);
  8847. ggml_vec_scale_f32(nc, wp, scale);
  8848. if (mp) {
  8849. ggml_vec_acc_f32(nc, wp, mp);
  8850. }
  8851. #ifndef NDEBUG
  8852. for (int i = 0; i < nc; ++i) {
  8853. //printf("p[%d] = %f\n", i, p[i]);
  8854. assert(!isnan(wp[i]));
  8855. }
  8856. #endif
  8857. float max = -INFINITY;
  8858. ggml_vec_max_f32(nc, &max, wp);
  8859. ggml_float sum = 0.0;
  8860. uint16_t scvt;
  8861. for (int i = 0; i < nc; i++) {
  8862. if (wp[i] == -INFINITY) {
  8863. dp[i] = 0.0f;
  8864. } else {
  8865. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  8866. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  8867. memcpy(&scvt, &s, sizeof(scvt));
  8868. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8869. sum += (ggml_float)val;
  8870. dp[i] = val;
  8871. }
  8872. }
  8873. assert(sum > 0.0);
  8874. sum = 1.0/sum;
  8875. ggml_vec_scale_f32(nc, dp, sum);
  8876. #ifndef NDEBUG
  8877. for (int i = 0; i < nc; ++i) {
  8878. assert(!isnan(dp[i]));
  8879. assert(!isinf(dp[i]));
  8880. }
  8881. #endif
  8882. }
  8883. }
  8884. static void ggml_compute_forward_soft_max(
  8885. const struct ggml_compute_params * params,
  8886. const struct ggml_tensor * src0,
  8887. const struct ggml_tensor * src1,
  8888. struct ggml_tensor * dst) {
  8889. switch (src0->type) {
  8890. case GGML_TYPE_F32:
  8891. {
  8892. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  8893. } break;
  8894. default:
  8895. {
  8896. GGML_ASSERT(false);
  8897. } break;
  8898. }
  8899. }
  8900. // ggml_compute_forward_soft_max_back
  8901. static void ggml_compute_forward_soft_max_back_f32(
  8902. const struct ggml_compute_params * params,
  8903. const struct ggml_tensor * src0,
  8904. const struct ggml_tensor * src1,
  8905. struct ggml_tensor * dst) {
  8906. GGML_ASSERT(ggml_is_contiguous(src0));
  8907. GGML_ASSERT(ggml_is_contiguous(src1));
  8908. GGML_ASSERT(ggml_is_contiguous(dst));
  8909. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8910. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8912. return;
  8913. }
  8914. // TODO: handle transposed/permuted matrices
  8915. const int ith = params->ith;
  8916. const int nth = params->nth;
  8917. const int nc = src0->ne[0];
  8918. const int nr = ggml_nrows(src0);
  8919. // rows per thread
  8920. const int dr = (nr + nth - 1)/nth;
  8921. // row range for this thread
  8922. const int ir0 = dr*ith;
  8923. const int ir1 = MIN(ir0 + dr, nr);
  8924. for (int i1 = ir0; i1 < ir1; i1++) {
  8925. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8926. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8927. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8928. #ifndef NDEBUG
  8929. for (int i = 0; i < nc; ++i) {
  8930. //printf("p[%d] = %f\n", i, p[i]);
  8931. assert(!isnan(dy[i]));
  8932. assert(!isnan(y[i]));
  8933. }
  8934. #endif
  8935. // Jii = yi - yi*yi
  8936. // Jij = -yi*yj
  8937. // J = diag(y)-y.T*y
  8938. // dx = J * dy
  8939. // dxk = sum_i(Jki * dyi)
  8940. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8941. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8942. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8943. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8944. // dxk = -yk * dot(y, dy) + yk*dyk
  8945. // dxk = yk * (- dot(y, dy) + dyk)
  8946. // dxk = yk * (dyk - dot(y, dy))
  8947. //
  8948. // post-order:
  8949. // dot_y_dy := dot(y, dy)
  8950. // dx := dy
  8951. // dx := dx - dot_y_dy
  8952. // dx := dx * y
  8953. // linear runtime, no additional memory
  8954. float dot_y_dy = 0;
  8955. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8956. ggml_vec_cpy_f32 (nc, dx, dy);
  8957. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8958. ggml_vec_mul_f32 (nc, dx, dx, y);
  8959. #ifndef NDEBUG
  8960. for (int i = 0; i < nc; ++i) {
  8961. assert(!isnan(dx[i]));
  8962. assert(!isinf(dx[i]));
  8963. }
  8964. #endif
  8965. }
  8966. }
  8967. static void ggml_compute_forward_soft_max_back(
  8968. const struct ggml_compute_params * params,
  8969. const struct ggml_tensor * src0,
  8970. const struct ggml_tensor * src1,
  8971. struct ggml_tensor * dst) {
  8972. switch (src0->type) {
  8973. case GGML_TYPE_F32:
  8974. {
  8975. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8976. } break;
  8977. default:
  8978. {
  8979. GGML_ASSERT(false);
  8980. } break;
  8981. }
  8982. }
  8983. // ggml_compute_forward_alibi
  8984. static void ggml_compute_forward_alibi_f32(
  8985. const struct ggml_compute_params * params,
  8986. const struct ggml_tensor * src0,
  8987. struct ggml_tensor * dst) {
  8988. assert(params->ith == 0);
  8989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8990. return;
  8991. }
  8992. //const int n_past = ((int32_t *) dst->op_params)[0];
  8993. const int n_head = ((int32_t *) dst->op_params)[1];
  8994. float max_bias;
  8995. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8996. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8997. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8998. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8999. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9000. const int64_t n = ggml_nrows(src0);
  9001. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9002. const size_t nb0 = src0->nb[0];
  9003. const size_t nb1 = src0->nb[1];
  9004. const size_t nb2 = src0->nb[2];
  9005. //const int nb3 = src0->nb[3];
  9006. GGML_ASSERT(nb0 == sizeof(float));
  9007. GGML_ASSERT(n_head == ne2);
  9008. // add alibi to src0 (KQ_scaled)
  9009. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9010. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9011. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9012. for (int64_t i = 0; i < ne0; i++) {
  9013. for (int64_t j = 0; j < ne1; j++) {
  9014. for (int64_t k = 0; k < ne2_ne3; k++) {
  9015. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9016. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9017. // TODO: k*nb2 or k*nb3
  9018. float m_k;
  9019. if (k < n_heads_log2_floor) {
  9020. m_k = powf(m0, k + 1);
  9021. } else {
  9022. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9023. }
  9024. pdst[0] = i * m_k + src[0];
  9025. }
  9026. }
  9027. }
  9028. }
  9029. static void ggml_compute_forward_alibi_f16(
  9030. const struct ggml_compute_params * params,
  9031. const struct ggml_tensor * src0,
  9032. struct ggml_tensor * dst) {
  9033. assert(params->ith == 0);
  9034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9035. return;
  9036. }
  9037. //const int n_past = ((int32_t *) dst->op_params)[0];
  9038. const int n_head = ((int32_t *) dst->op_params)[1];
  9039. float max_bias;
  9040. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9041. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9042. const int ne1 = src0->ne[1]; // seq_len_without_past
  9043. const int ne2 = src0->ne[2]; // n_head -> this is k
  9044. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9045. const int n = ggml_nrows(src0);
  9046. const int ne2_ne3 = n/ne1; // ne2*ne3
  9047. const int nb0 = src0->nb[0];
  9048. const int nb1 = src0->nb[1];
  9049. const int nb2 = src0->nb[2];
  9050. //const int nb3 = src0->nb[3];
  9051. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9052. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9053. GGML_ASSERT(n_head == ne2);
  9054. // add alibi to src0 (KQ_scaled)
  9055. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9056. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9057. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9058. for (int i = 0; i < ne0; i++) {
  9059. for (int j = 0; j < ne1; j++) {
  9060. for (int k = 0; k < ne2_ne3; k++) {
  9061. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9062. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9063. // TODO: k*nb2 or k*nb3
  9064. float m_k;
  9065. if (k < n_heads_log2_floor) {
  9066. m_k = powf(m0, k + 1);
  9067. } else {
  9068. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9069. }
  9070. // we return F32
  9071. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9072. }
  9073. }
  9074. }
  9075. }
  9076. static void ggml_compute_forward_alibi(
  9077. const struct ggml_compute_params * params,
  9078. const struct ggml_tensor * src0,
  9079. struct ggml_tensor * dst) {
  9080. switch (src0->type) {
  9081. case GGML_TYPE_F16:
  9082. {
  9083. ggml_compute_forward_alibi_f16(params, src0, dst);
  9084. } break;
  9085. case GGML_TYPE_F32:
  9086. {
  9087. ggml_compute_forward_alibi_f32(params, src0, dst);
  9088. } break;
  9089. case GGML_TYPE_Q4_0:
  9090. case GGML_TYPE_Q4_1:
  9091. case GGML_TYPE_Q5_0:
  9092. case GGML_TYPE_Q5_1:
  9093. case GGML_TYPE_Q8_0:
  9094. case GGML_TYPE_Q8_1:
  9095. case GGML_TYPE_Q2_K:
  9096. case GGML_TYPE_Q3_K:
  9097. case GGML_TYPE_Q4_K:
  9098. case GGML_TYPE_Q5_K:
  9099. case GGML_TYPE_Q6_K:
  9100. case GGML_TYPE_Q8_K:
  9101. case GGML_TYPE_I8:
  9102. case GGML_TYPE_I16:
  9103. case GGML_TYPE_I32:
  9104. case GGML_TYPE_COUNT:
  9105. {
  9106. GGML_ASSERT(false);
  9107. } break;
  9108. }
  9109. }
  9110. // ggml_compute_forward_clamp
  9111. static void ggml_compute_forward_clamp_f32(
  9112. const struct ggml_compute_params * params,
  9113. const struct ggml_tensor * src0,
  9114. struct ggml_tensor * dst) {
  9115. assert(params->ith == 0);
  9116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9117. return;
  9118. }
  9119. float min;
  9120. float max;
  9121. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9122. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9123. const int ith = params->ith;
  9124. const int nth = params->nth;
  9125. const int n = ggml_nrows(src0);
  9126. const int nc = src0->ne[0];
  9127. const size_t nb00 = src0->nb[0];
  9128. const size_t nb01 = src0->nb[1];
  9129. const size_t nb0 = dst->nb[0];
  9130. const size_t nb1 = dst->nb[1];
  9131. GGML_ASSERT( nb0 == sizeof(float));
  9132. GGML_ASSERT(nb00 == sizeof(float));
  9133. for (int j = ith; j < n; j += nth) {
  9134. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9135. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9136. for (int i = 0; i < nc; i++) {
  9137. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9138. }
  9139. }
  9140. }
  9141. static void ggml_compute_forward_clamp(
  9142. const struct ggml_compute_params * params,
  9143. const struct ggml_tensor * src0,
  9144. struct ggml_tensor * dst) {
  9145. switch (src0->type) {
  9146. case GGML_TYPE_F32:
  9147. {
  9148. ggml_compute_forward_clamp_f32(params, src0, dst);
  9149. } break;
  9150. case GGML_TYPE_F16:
  9151. case GGML_TYPE_Q4_0:
  9152. case GGML_TYPE_Q4_1:
  9153. case GGML_TYPE_Q5_0:
  9154. case GGML_TYPE_Q5_1:
  9155. case GGML_TYPE_Q8_0:
  9156. case GGML_TYPE_Q8_1:
  9157. case GGML_TYPE_Q2_K:
  9158. case GGML_TYPE_Q3_K:
  9159. case GGML_TYPE_Q4_K:
  9160. case GGML_TYPE_Q5_K:
  9161. case GGML_TYPE_Q6_K:
  9162. case GGML_TYPE_Q8_K:
  9163. case GGML_TYPE_I8:
  9164. case GGML_TYPE_I16:
  9165. case GGML_TYPE_I32:
  9166. case GGML_TYPE_COUNT:
  9167. {
  9168. GGML_ASSERT(false);
  9169. } break;
  9170. }
  9171. }
  9172. // ggml_compute_forward_rope
  9173. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9174. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9175. return 1 - MIN(1, MAX(0, y));
  9176. }
  9177. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9178. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9179. static void rope_yarn(
  9180. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9181. float * cos_theta, float * sin_theta
  9182. ) {
  9183. // Get n-d rotational scaling corrected for extrapolation
  9184. float theta_interp = freq_scale * theta_extrap;
  9185. float theta = theta_interp;
  9186. if (ext_factor != 0.0f) {
  9187. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9188. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9189. // Get n-d magnitude scaling corrected for interpolation
  9190. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9191. }
  9192. *cos_theta = cosf(theta) * mscale;
  9193. *sin_theta = sinf(theta) * mscale;
  9194. }
  9195. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9196. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9197. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9198. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9199. }
  9200. void ggml_rope_yarn_corr_dims(
  9201. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9202. ) {
  9203. // start and end correction dims
  9204. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9205. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9206. }
  9207. static void ggml_compute_forward_rope_f32(
  9208. const struct ggml_compute_params * params,
  9209. const struct ggml_tensor * src0,
  9210. const struct ggml_tensor * src1,
  9211. struct ggml_tensor * dst,
  9212. const bool forward) {
  9213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9214. return;
  9215. }
  9216. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9217. // these two only relevant for xPos RoPE:
  9218. float xpos_base;
  9219. bool xpos_down;
  9220. //const int n_past = ((int32_t *) dst->op_params)[0];
  9221. const int n_dims = ((int32_t *) dst->op_params)[1];
  9222. const int mode = ((int32_t *) dst->op_params)[2];
  9223. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9224. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9225. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9226. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9227. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9228. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9229. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9230. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9231. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9232. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9233. GGML_TENSOR_UNARY_OP_LOCALS
  9234. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9235. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9236. GGML_ASSERT(nb00 == sizeof(float));
  9237. const int ith = params->ith;
  9238. const int nth = params->nth;
  9239. const int nr = ggml_nrows(dst);
  9240. GGML_ASSERT(n_dims <= ne0);
  9241. GGML_ASSERT(n_dims % 2 == 0);
  9242. // rows per thread
  9243. const int dr = (nr + nth - 1)/nth;
  9244. // row range for this thread
  9245. const int ir0 = dr*ith;
  9246. const int ir1 = MIN(ir0 + dr, nr);
  9247. // row index used to determine which thread to use
  9248. int ir = 0;
  9249. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9250. const float inv_ndims = -1.f/n_dims;
  9251. float corr_dims[2];
  9252. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9253. const bool is_neox = mode & 2;
  9254. const bool is_glm = mode & 4;
  9255. // backward process uses inverse rotation by cos and sin.
  9256. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9257. // this essentially just switches the sign of sin.
  9258. const float sin_sign = forward ? 1.0f : -1.0f;
  9259. const int32_t * pos = (const int32_t *) src1->data;
  9260. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9261. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9262. const int64_t p = pos[i2];
  9263. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9264. if (ir++ < ir0) continue;
  9265. if (ir > ir1) break;
  9266. float theta_base = (float)p;
  9267. if (is_glm) {
  9268. theta_base = MIN(p, n_ctx - 2);
  9269. float block_theta = MAX(p - (n_ctx - 2), 0);
  9270. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9271. const float cos_theta = cosf(theta_base);
  9272. const float sin_theta = sinf(theta_base) * sin_sign;
  9273. const float cos_block_theta = cosf(block_theta);
  9274. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9275. theta_base *= theta_scale;
  9276. block_theta *= theta_scale;
  9277. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9278. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9279. const float x0 = src[0];
  9280. const float x1 = src[n_dims/2];
  9281. const float x2 = src[n_dims];
  9282. const float x3 = src[n_dims/2*3];
  9283. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9284. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9285. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9286. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9287. }
  9288. } else if (!is_neox) {
  9289. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9290. float cos_theta, sin_theta;
  9291. rope_yarn(
  9292. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9293. );
  9294. sin_theta *= sin_sign;
  9295. // zeta scaling for xPos only:
  9296. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9297. if (xpos_down) zeta = 1.0f / zeta;
  9298. theta_base *= theta_scale;
  9299. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9300. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9301. const float x0 = src[0];
  9302. const float x1 = src[1];
  9303. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9304. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9305. }
  9306. } else {
  9307. // TODO: this might be wrong for ne0 != n_dims - need double check
  9308. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9309. theta_base *= freq_scale;
  9310. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9311. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9312. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9313. float cur_rot = inv_ndims * ic - ib;
  9314. float cos_theta, sin_theta;
  9315. rope_yarn(
  9316. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9317. &cos_theta, &sin_theta
  9318. );
  9319. sin_theta *= sin_sign;
  9320. theta_base *= theta_scale;
  9321. const int64_t i0 = ib*n_dims + ic/2;
  9322. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9323. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9324. const float x0 = src[0];
  9325. const float x1 = src[n_dims/2];
  9326. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9327. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9328. }
  9329. }
  9330. }
  9331. }
  9332. }
  9333. }
  9334. }
  9335. static void ggml_compute_forward_rope_f16(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. const struct ggml_tensor * src1,
  9339. struct ggml_tensor * dst,
  9340. const bool forward) {
  9341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9342. return;
  9343. }
  9344. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9345. //const int n_past = ((int32_t *) dst->op_params)[0];
  9346. const int n_dims = ((int32_t *) dst->op_params)[1];
  9347. const int mode = ((int32_t *) dst->op_params)[2];
  9348. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9349. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9350. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9351. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9352. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9353. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9354. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9355. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9356. GGML_TENSOR_UNARY_OP_LOCALS
  9357. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9358. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9359. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9360. const int ith = params->ith;
  9361. const int nth = params->nth;
  9362. const int nr = ggml_nrows(dst);
  9363. GGML_ASSERT(n_dims <= ne0);
  9364. GGML_ASSERT(n_dims % 2 == 0);
  9365. // rows per thread
  9366. const int dr = (nr + nth - 1)/nth;
  9367. // row range for this thread
  9368. const int ir0 = dr*ith;
  9369. const int ir1 = MIN(ir0 + dr, nr);
  9370. // row index used to determine which thread to use
  9371. int ir = 0;
  9372. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9373. const float inv_ndims = -1.f/n_dims;
  9374. float corr_dims[2];
  9375. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9376. const bool is_neox = mode & 2;
  9377. const bool is_glm = mode & 4;
  9378. // backward process uses inverse rotation by cos and sin.
  9379. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9380. // this essentially just switches the sign of sin.
  9381. const float sin_sign = forward ? 1.0f : -1.0f;
  9382. const int32_t * pos = (const int32_t *) src1->data;
  9383. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9384. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9385. const int64_t p = pos[i2];
  9386. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9387. if (ir++ < ir0) continue;
  9388. if (ir > ir1) break;
  9389. float theta_base = (float)p;
  9390. if (is_glm) {
  9391. theta_base = MIN(p, n_ctx - 2);
  9392. float block_theta = MAX(p - (n_ctx - 2), 0);
  9393. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9394. const float cos_theta = cosf(theta_base);
  9395. const float sin_theta = sinf(theta_base) * sin_sign;
  9396. const float cos_block_theta = cosf(block_theta);
  9397. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9398. theta_base *= theta_scale;
  9399. block_theta *= theta_scale;
  9400. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9401. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9402. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9403. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9404. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9405. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9406. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9407. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9408. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9409. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9410. }
  9411. } else if (!is_neox) {
  9412. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9413. float cos_theta, sin_theta;
  9414. rope_yarn(
  9415. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9416. );
  9417. sin_theta *= sin_sign;
  9418. theta_base *= theta_scale;
  9419. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9420. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9421. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9422. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9423. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9424. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9425. }
  9426. } else {
  9427. // TODO: this might be wrong for ne0 != n_dims - need double check
  9428. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9429. theta_base *= freq_scale;
  9430. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9431. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9432. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9433. float cur_rot = inv_ndims * ic - ib;
  9434. float cos_theta, sin_theta;
  9435. rope_yarn(
  9436. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9437. &cos_theta, &sin_theta
  9438. );
  9439. sin_theta *= sin_sign;
  9440. theta_base *= theta_scale;
  9441. const int64_t i0 = ib*n_dims + ic/2;
  9442. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9443. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9444. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9445. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9446. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9447. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9448. }
  9449. }
  9450. }
  9451. }
  9452. }
  9453. }
  9454. }
  9455. static void ggml_compute_forward_rope(
  9456. const struct ggml_compute_params * params,
  9457. const struct ggml_tensor * src0,
  9458. const struct ggml_tensor * src1,
  9459. struct ggml_tensor * dst) {
  9460. switch (src0->type) {
  9461. case GGML_TYPE_F16:
  9462. {
  9463. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9464. } break;
  9465. case GGML_TYPE_F32:
  9466. {
  9467. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9468. } break;
  9469. default:
  9470. {
  9471. GGML_ASSERT(false);
  9472. } break;
  9473. }
  9474. }
  9475. // ggml_compute_forward_rope_back
  9476. static void ggml_compute_forward_rope_back(
  9477. const struct ggml_compute_params * params,
  9478. const struct ggml_tensor * src0,
  9479. const struct ggml_tensor * src1,
  9480. struct ggml_tensor * dst) {
  9481. switch (src0->type) {
  9482. case GGML_TYPE_F16:
  9483. {
  9484. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9485. } break;
  9486. case GGML_TYPE_F32:
  9487. {
  9488. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9489. } break;
  9490. default:
  9491. {
  9492. GGML_ASSERT(false);
  9493. } break;
  9494. }
  9495. }
  9496. // ggml_compute_forward_conv_transpose_1d
  9497. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9498. const struct ggml_compute_params * params,
  9499. const struct ggml_tensor * src0,
  9500. const struct ggml_tensor * src1,
  9501. struct ggml_tensor * dst) {
  9502. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9503. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9504. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9505. int64_t t0 = ggml_perf_time_us();
  9506. UNUSED(t0);
  9507. GGML_TENSOR_BINARY_OP_LOCALS
  9508. const int ith = params->ith;
  9509. const int nth = params->nth;
  9510. const int nk = ne00*ne01*ne02;
  9511. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9512. GGML_ASSERT(nb10 == sizeof(float));
  9513. if (params->type == GGML_TASK_INIT) {
  9514. memset(params->wdata, 0, params->wsize);
  9515. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9516. {
  9517. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9518. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9519. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9520. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9521. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9522. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9523. dst_data[i00*ne02 + i02] = src[i00];
  9524. }
  9525. }
  9526. }
  9527. }
  9528. // permute source data (src1) from (L x Cin) to (Cin x L)
  9529. {
  9530. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9531. ggml_fp16_t * dst_data = wdata;
  9532. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9533. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9534. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9535. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9536. }
  9537. }
  9538. }
  9539. // need to zero dst since we are accumulating into it
  9540. memset(dst->data, 0, ggml_nbytes(dst));
  9541. return;
  9542. }
  9543. if (params->type == GGML_TASK_FINALIZE) {
  9544. return;
  9545. }
  9546. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9547. // total rows in dst
  9548. const int nr = ne1;
  9549. // rows per thread
  9550. const int dr = (nr + nth - 1)/nth;
  9551. // row range for this thread
  9552. const int ir0 = dr*ith;
  9553. const int ir1 = MIN(ir0 + dr, nr);
  9554. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9555. ggml_fp16_t * const wdata_src = wdata + nk;
  9556. for (int i1 = ir0; i1 < ir1; i1++) {
  9557. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9558. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9559. for (int i10 = 0; i10 < ne10; i10++) {
  9560. const int i1n = i10*ne11;
  9561. for (int i00 = 0; i00 < ne00; i00++) {
  9562. float v = 0;
  9563. ggml_vec_dot_f16(ne02, &v,
  9564. (ggml_fp16_t *) wdata_src + i1n,
  9565. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9566. dst_data[i10*s0 + i00] += v;
  9567. }
  9568. }
  9569. }
  9570. }
  9571. static void ggml_compute_forward_conv_transpose_1d_f32(
  9572. const struct ggml_compute_params * params,
  9573. const struct ggml_tensor * src0,
  9574. const struct ggml_tensor * src1,
  9575. struct ggml_tensor * dst) {
  9576. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9577. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9578. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9579. int64_t t0 = ggml_perf_time_us();
  9580. UNUSED(t0);
  9581. GGML_TENSOR_BINARY_OP_LOCALS
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. const int nk = ne00*ne01*ne02;
  9585. GGML_ASSERT(nb00 == sizeof(float));
  9586. GGML_ASSERT(nb10 == sizeof(float));
  9587. if (params->type == GGML_TASK_INIT) {
  9588. memset(params->wdata, 0, params->wsize);
  9589. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9590. {
  9591. float * const wdata = (float *) params->wdata + 0;
  9592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9593. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9594. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9595. float * dst_data = wdata + i01*ne00*ne02;
  9596. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9597. dst_data[i00*ne02 + i02] = src[i00];
  9598. }
  9599. }
  9600. }
  9601. }
  9602. // prepare source data (src1)
  9603. {
  9604. float * const wdata = (float *) params->wdata + nk;
  9605. float * dst_data = wdata;
  9606. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9607. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9608. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9609. dst_data[i10*ne11 + i11] = src[i10];
  9610. }
  9611. }
  9612. }
  9613. // need to zero dst since we are accumulating into it
  9614. memset(dst->data, 0, ggml_nbytes(dst));
  9615. return;
  9616. }
  9617. if (params->type == GGML_TASK_FINALIZE) {
  9618. return;
  9619. }
  9620. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9621. // total rows in dst
  9622. const int nr = ne1;
  9623. // rows per thread
  9624. const int dr = (nr + nth - 1)/nth;
  9625. // row range for this thread
  9626. const int ir0 = dr*ith;
  9627. const int ir1 = MIN(ir0 + dr, nr);
  9628. float * const wdata = (float *) params->wdata + 0;
  9629. float * const wdata_src = wdata + nk;
  9630. for (int i1 = ir0; i1 < ir1; i1++) {
  9631. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9632. float * wdata_kernel = wdata + i1*ne02*ne00;
  9633. for (int i10 = 0; i10 < ne10; i10++) {
  9634. const int i1n = i10*ne11;
  9635. for (int i00 = 0; i00 < ne00; i00++) {
  9636. float v = 0;
  9637. ggml_vec_dot_f32(ne02, &v,
  9638. wdata_src + i1n,
  9639. wdata_kernel + i00*ne02);
  9640. dst_data[i10*s0 + i00] += v;
  9641. }
  9642. }
  9643. }
  9644. }
  9645. static void ggml_compute_forward_conv_transpose_1d(
  9646. const struct ggml_compute_params * params,
  9647. const struct ggml_tensor * src0,
  9648. const struct ggml_tensor * src1,
  9649. struct ggml_tensor * dst) {
  9650. switch (src0->type) {
  9651. case GGML_TYPE_F16:
  9652. {
  9653. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9654. } break;
  9655. case GGML_TYPE_F32:
  9656. {
  9657. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9658. } break;
  9659. default:
  9660. {
  9661. GGML_ASSERT(false);
  9662. } break;
  9663. }
  9664. }
  9665. // src0: kernel [OC, IC, KH, KW]
  9666. // src1: image [N, IC, IH, IW]
  9667. // dst: result [N, OH, OW, IC*KH*KW]
  9668. static void ggml_compute_forward_im2col_f16(
  9669. const struct ggml_compute_params * params,
  9670. const struct ggml_tensor * src0,
  9671. const struct ggml_tensor * src1,
  9672. struct ggml_tensor * dst) {
  9673. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9674. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9675. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9676. int64_t t0 = ggml_perf_time_us();
  9677. UNUSED(t0);
  9678. GGML_TENSOR_BINARY_OP_LOCALS;
  9679. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9680. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9681. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9682. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9683. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9684. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9685. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9686. const int ith = params->ith;
  9687. const int nth = params->nth;
  9688. const int64_t N = is_2D ? ne13 : ne12;
  9689. const int64_t IC = is_2D ? ne12 : ne11;
  9690. const int64_t IH = is_2D ? ne11 : 1;
  9691. const int64_t IW = ne10;
  9692. const int64_t KH = is_2D ? ne01 : 1;
  9693. const int64_t KW = ne00;
  9694. const int64_t OH = is_2D ? ne2 : 1;
  9695. const int64_t OW = ne1;
  9696. int ofs0 = is_2D ? nb13 : nb12;
  9697. int ofs1 = is_2D ? nb12 : nb11;
  9698. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9699. GGML_ASSERT(nb10 == sizeof(float));
  9700. if (params->type == GGML_TASK_INIT) {
  9701. return;
  9702. }
  9703. if (params->type == GGML_TASK_FINALIZE) {
  9704. return;
  9705. }
  9706. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9707. {
  9708. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9709. for (int64_t in = 0; in < N; in++) {
  9710. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9711. for (int64_t iow = 0; iow < OW; iow++) {
  9712. for (int64_t iic = ith; iic < IC; iic += nth) {
  9713. // micro kernel
  9714. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9715. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9716. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9717. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9718. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9719. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9720. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9721. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9722. } else {
  9723. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9724. }
  9725. }
  9726. }
  9727. }
  9728. }
  9729. }
  9730. }
  9731. }
  9732. }
  9733. static void ggml_compute_forward_im2col(
  9734. const struct ggml_compute_params * params,
  9735. const struct ggml_tensor * src0,
  9736. const struct ggml_tensor * src1,
  9737. struct ggml_tensor * dst) {
  9738. switch (src0->type) {
  9739. case GGML_TYPE_F16:
  9740. {
  9741. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9742. } break;
  9743. case GGML_TYPE_F32:
  9744. {
  9745. GGML_ASSERT(false);
  9746. } break;
  9747. default:
  9748. {
  9749. GGML_ASSERT(false);
  9750. } break;
  9751. }
  9752. }
  9753. // ggml_compute_forward_conv_transpose_2d
  9754. static void ggml_compute_forward_conv_transpose_2d(
  9755. const struct ggml_compute_params * params,
  9756. const struct ggml_tensor * src0,
  9757. const struct ggml_tensor * src1,
  9758. struct ggml_tensor * dst) {
  9759. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9760. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9761. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9762. int64_t t0 = ggml_perf_time_us();
  9763. UNUSED(t0);
  9764. GGML_TENSOR_BINARY_OP_LOCALS
  9765. const int ith = params->ith;
  9766. const int nth = params->nth;
  9767. const int nk = ne00*ne01*ne02*ne03;
  9768. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9769. GGML_ASSERT(nb10 == sizeof(float));
  9770. if (params->type == GGML_TASK_INIT) {
  9771. memset(params->wdata, 0, params->wsize);
  9772. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9773. {
  9774. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9777. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9778. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9779. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9780. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9781. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9782. }
  9783. }
  9784. }
  9785. }
  9786. }
  9787. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9788. {
  9789. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9790. for (int i12 = 0; i12 < ne12; i12++) {
  9791. for (int i11 = 0; i11 < ne11; i11++) {
  9792. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9793. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9794. for (int i10 = 0; i10 < ne10; i10++) {
  9795. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9796. }
  9797. }
  9798. }
  9799. }
  9800. memset(dst->data, 0, ggml_nbytes(dst));
  9801. return;
  9802. }
  9803. if (params->type == GGML_TASK_FINALIZE) {
  9804. return;
  9805. }
  9806. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9807. // total patches in dst
  9808. const int np = ne2;
  9809. // patches per thread
  9810. const int dp = (np + nth - 1)/nth;
  9811. // patch range for this thread
  9812. const int ip0 = dp*ith;
  9813. const int ip1 = MIN(ip0 + dp, np);
  9814. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9815. ggml_fp16_t * const wdata_src = wdata + nk;
  9816. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9817. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9818. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9819. for (int i11 = 0; i11 < ne11; i11++) {
  9820. for (int i10 = 0; i10 < ne10; i10++) {
  9821. const int i1n = i11*ne10*ne12 + i10*ne12;
  9822. for (int i01 = 0; i01 < ne01; i01++) {
  9823. for (int i00 = 0; i00 < ne00; i00++) {
  9824. float v = 0;
  9825. ggml_vec_dot_f16(ne03, &v,
  9826. wdata_src + i1n,
  9827. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9828. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9829. }
  9830. }
  9831. }
  9832. }
  9833. }
  9834. }
  9835. // ggml_compute_forward_pool_1d_sk_p0
  9836. static void ggml_compute_forward_pool_1d_sk_p0(
  9837. const struct ggml_compute_params * params,
  9838. const enum ggml_op_pool op,
  9839. const struct ggml_tensor * src,
  9840. const int k,
  9841. struct ggml_tensor * dst) {
  9842. assert(src->type == GGML_TYPE_F32);
  9843. assert(params->ith == 0);
  9844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9845. return;
  9846. }
  9847. const char * cdata = (const char *)src->data;
  9848. const char * const data_end = cdata + ggml_nbytes(src);
  9849. float * drow = (float *)dst->data;
  9850. const int64_t rs = dst->ne[0];
  9851. while (cdata < data_end) {
  9852. const float * const srow = (const float *)cdata;
  9853. int j = 0;
  9854. for (int64_t i = 0; i < rs; ++i) {
  9855. switch (op) {
  9856. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9857. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9858. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9859. }
  9860. for (int ki = 0; ki < k; ++ki) {
  9861. switch (op) {
  9862. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9863. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9864. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9865. }
  9866. ++j;
  9867. }
  9868. switch (op) {
  9869. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9870. case GGML_OP_POOL_MAX: break;
  9871. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9872. }
  9873. }
  9874. cdata += src->nb[1];
  9875. drow += rs;
  9876. }
  9877. }
  9878. // ggml_compute_forward_pool_1d
  9879. static void ggml_compute_forward_pool_1d(
  9880. const struct ggml_compute_params * params,
  9881. const struct ggml_tensor * src0,
  9882. struct ggml_tensor * dst) {
  9883. const int32_t * opts = (const int32_t *)dst->op_params;
  9884. enum ggml_op_pool op = opts[0];
  9885. const int k0 = opts[1];
  9886. const int s0 = opts[2];
  9887. const int p0 = opts[3];
  9888. GGML_ASSERT(p0 == 0); // padding not supported
  9889. GGML_ASSERT(k0 == s0); // only s = k supported
  9890. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9891. }
  9892. // ggml_compute_forward_pool_2d
  9893. static void ggml_compute_forward_pool_2d(
  9894. const struct ggml_compute_params * params,
  9895. const struct ggml_tensor * src,
  9896. struct ggml_tensor * dst) {
  9897. assert(src->type == GGML_TYPE_F32);
  9898. assert(params->ith == 0);
  9899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9900. return;
  9901. }
  9902. const int32_t * opts = (const int32_t *)dst->op_params;
  9903. enum ggml_op_pool op = opts[0];
  9904. const int k0 = opts[1];
  9905. const int k1 = opts[2];
  9906. const int s0 = opts[3];
  9907. const int s1 = opts[4];
  9908. const int p0 = opts[5];
  9909. const int p1 = opts[6];
  9910. const char * cdata = (const char*)src->data;
  9911. const char * const data_end = cdata + ggml_nbytes(src);
  9912. const int64_t px = dst->ne[0];
  9913. const int64_t py = dst->ne[1];
  9914. const int64_t pa = px * py;
  9915. float * dplane = (float *)dst->data;
  9916. const int ka = k0 * k1;
  9917. const int offset0 = -p0;
  9918. const int offset1 = -p1;
  9919. while (cdata < data_end) {
  9920. for (int oy = 0; oy < py; ++oy) {
  9921. float * const drow = dplane + oy * px;
  9922. for (int ox = 0; ox < px; ++ox) {
  9923. float * const out = drow + ox;
  9924. switch (op) {
  9925. case GGML_OP_POOL_AVG: *out = 0; break;
  9926. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9927. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9928. }
  9929. const int ix = offset0 + ox * s0;
  9930. const int iy = offset1 + oy * s1;
  9931. for (int ky = 0; ky < k1; ++ky) {
  9932. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9933. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9934. for (int kx = 0; kx < k0; ++kx) {
  9935. int j = ix + kx;
  9936. if (j < 0 || j >= src->ne[0]) continue;
  9937. switch (op) {
  9938. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9939. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9940. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9941. }
  9942. }
  9943. }
  9944. switch (op) {
  9945. case GGML_OP_POOL_AVG: *out /= ka; break;
  9946. case GGML_OP_POOL_MAX: break;
  9947. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9948. }
  9949. }
  9950. }
  9951. cdata += src->nb[2];
  9952. dplane += pa;
  9953. }
  9954. }
  9955. // ggml_compute_forward_upscale
  9956. static void ggml_compute_forward_upscale_f32(
  9957. const struct ggml_compute_params * params,
  9958. const struct ggml_tensor * src0,
  9959. struct ggml_tensor * dst) {
  9960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9961. return;
  9962. }
  9963. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9964. const int ith = params->ith;
  9965. GGML_TENSOR_UNARY_OP_LOCALS
  9966. const int scale_factor = dst->op_params[0];
  9967. // TODO: optimize
  9968. for (int i03 = 0; i03 < ne03; i03++) {
  9969. for (int i02 = ith; i02 < ne02; i02++) {
  9970. for (int m = 0; m < dst->ne[1]; m++) {
  9971. int i01 = m / scale_factor;
  9972. for (int n = 0; n < dst->ne[0]; n++) {
  9973. int i00 = n / scale_factor;
  9974. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  9975. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  9976. *y = *x;
  9977. }
  9978. }
  9979. }
  9980. }
  9981. }
  9982. static void ggml_compute_forward_upscale(
  9983. const struct ggml_compute_params * params,
  9984. const struct ggml_tensor * src0,
  9985. struct ggml_tensor * dst) {
  9986. switch (src0->type) {
  9987. case GGML_TYPE_F32:
  9988. {
  9989. ggml_compute_forward_upscale_f32(params, src0, dst);
  9990. } break;
  9991. default:
  9992. {
  9993. GGML_ASSERT(false);
  9994. } break;
  9995. }
  9996. }
  9997. // ggml_compute_forward_argsort
  9998. static void ggml_compute_forward_argsort_f32(
  9999. const struct ggml_compute_params * params,
  10000. const struct ggml_tensor * src0,
  10001. struct ggml_tensor * dst) {
  10002. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10003. return;
  10004. }
  10005. GGML_TENSOR_UNARY_OP_LOCALS
  10006. GGML_ASSERT(nb0 == sizeof(float));
  10007. const int ith = params->ith;
  10008. const int nth = params->nth;
  10009. const int64_t nr = ggml_nrows(src0);
  10010. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10011. for (int64_t i = ith; i < nr; i += nth) {
  10012. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10013. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10014. for (int64_t j = 0; j < ne0; j++) {
  10015. dst_data[j] = j;
  10016. }
  10017. // C doesn't have a functional sort, so we do a bubble sort instead
  10018. for (int64_t j = 0; j < ne0; j++) {
  10019. for (int64_t k = j + 1; k < ne0; k++) {
  10020. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10021. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10022. int32_t tmp = dst_data[j];
  10023. dst_data[j] = dst_data[k];
  10024. dst_data[k] = tmp;
  10025. }
  10026. }
  10027. }
  10028. }
  10029. }
  10030. static void ggml_compute_forward_argsort(
  10031. const struct ggml_compute_params * params,
  10032. const struct ggml_tensor * src0,
  10033. struct ggml_tensor * dst) {
  10034. switch (src0->type) {
  10035. case GGML_TYPE_F32:
  10036. {
  10037. ggml_compute_forward_argsort_f32(params, src0, dst);
  10038. } break;
  10039. default:
  10040. {
  10041. GGML_ASSERT(false);
  10042. } break;
  10043. }
  10044. }
  10045. // ggml_compute_forward_flash_attn
  10046. static void ggml_compute_forward_flash_attn_f32(
  10047. const struct ggml_compute_params * params,
  10048. const struct ggml_tensor * q,
  10049. const struct ggml_tensor * k,
  10050. const struct ggml_tensor * v,
  10051. const bool masked,
  10052. struct ggml_tensor * dst) {
  10053. int64_t t0 = ggml_perf_time_us();
  10054. UNUSED(t0);
  10055. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10056. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10057. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10058. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10059. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10060. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10061. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10062. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10063. const int ith = params->ith;
  10064. const int nth = params->nth;
  10065. const int64_t D = neq0;
  10066. const int64_t N = neq1;
  10067. const int64_t P = nek1 - N;
  10068. const int64_t M = P + N;
  10069. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10070. GGML_ASSERT(ne0 == D);
  10071. GGML_ASSERT(ne1 == N);
  10072. GGML_ASSERT(P >= 0);
  10073. GGML_ASSERT(nbq0 == sizeof(float));
  10074. GGML_ASSERT(nbk0 == sizeof(float));
  10075. GGML_ASSERT(nbv0 == sizeof(float));
  10076. GGML_ASSERT(neq0 == D);
  10077. GGML_ASSERT(nek0 == D);
  10078. GGML_ASSERT(nev1 == D);
  10079. GGML_ASSERT(neq1 == N);
  10080. GGML_ASSERT(nek1 == N + P);
  10081. GGML_ASSERT(nev1 == D);
  10082. // dst cannot be transposed or permuted
  10083. GGML_ASSERT(nb0 == sizeof(float));
  10084. GGML_ASSERT(nb0 <= nb1);
  10085. GGML_ASSERT(nb1 <= nb2);
  10086. GGML_ASSERT(nb2 <= nb3);
  10087. if (params->type == GGML_TASK_INIT) {
  10088. return;
  10089. }
  10090. if (params->type == GGML_TASK_FINALIZE) {
  10091. return;
  10092. }
  10093. // parallelize by q rows using ggml_vec_dot_f32
  10094. // total rows in q
  10095. const int nr = neq1*neq2*neq3;
  10096. // rows per thread
  10097. const int dr = (nr + nth - 1)/nth;
  10098. // row range for this thread
  10099. const int ir0 = dr*ith;
  10100. const int ir1 = MIN(ir0 + dr, nr);
  10101. const float scale = 1.0f/sqrtf(D);
  10102. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10103. for (int ir = ir0; ir < ir1; ++ir) {
  10104. // q indices
  10105. const int iq3 = ir/(neq2*neq1);
  10106. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10107. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10108. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10109. for (int i = M; i < Mup; ++i) {
  10110. S[i] = -INFINITY;
  10111. }
  10112. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10113. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10114. // k indices
  10115. const int ik3 = iq3;
  10116. const int ik2 = iq2 % nek2;
  10117. const int ik1 = ic;
  10118. // S indices
  10119. const int i1 = ik1;
  10120. ggml_vec_dot_f32(neq0,
  10121. S + i1,
  10122. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10123. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10124. }
  10125. // scale
  10126. ggml_vec_scale_f32(masked_begin, S, scale);
  10127. for (int64_t i = masked_begin; i < M; i++) {
  10128. S[i] = -INFINITY;
  10129. }
  10130. // softmax
  10131. // exclude known -INF S[..] values from max and loop
  10132. // dont forget to set their SW values to zero
  10133. {
  10134. float max = -INFINITY;
  10135. ggml_vec_max_f32(masked_begin, &max, S);
  10136. ggml_float sum = 0.0;
  10137. {
  10138. #ifdef GGML_SOFT_MAX_ACCELERATE
  10139. max = -max;
  10140. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10141. vvexpf(S, S, &Mup);
  10142. ggml_vec_sum_f32(Mup, &sum, S);
  10143. #else
  10144. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10145. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10146. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10147. if (i >= masked_begin) {
  10148. break;
  10149. }
  10150. float * SS = S + i;
  10151. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10152. if (i + j >= masked_begin) {
  10153. break;
  10154. } else if (SS[j] == -INFINITY) {
  10155. SS[j] = 0.0f;
  10156. } else {
  10157. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10158. const float val = expf(SS[j] - max);
  10159. #else
  10160. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10161. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10162. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10163. #endif
  10164. sump[j] += (ggml_float)val;
  10165. SS[j] = val;
  10166. }
  10167. }
  10168. }
  10169. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10170. sum += sump[i];
  10171. }
  10172. #endif
  10173. }
  10174. assert(sum > 0.0);
  10175. sum = 1.0/sum;
  10176. ggml_vec_scale_f32(masked_begin, S, sum);
  10177. #ifndef NDEBUG
  10178. for (int i = 0; i < masked_begin; ++i) {
  10179. assert(!isnan(S[i]));
  10180. assert(!isinf(S[i]));
  10181. }
  10182. #endif
  10183. }
  10184. for (int64_t ic = 0; ic < nev1; ++ic) {
  10185. // dst indices
  10186. const int i1 = iq1;
  10187. const int i2 = iq2;
  10188. const int i3 = iq3;
  10189. // v indices
  10190. const int iv2 = iq2 % nev2;
  10191. const int iv3 = iq3;
  10192. ggml_vec_dot_f32(masked_begin,
  10193. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10194. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10195. S);
  10196. }
  10197. }
  10198. }
  10199. static void ggml_compute_forward_flash_attn_f16(
  10200. const struct ggml_compute_params * params,
  10201. const struct ggml_tensor * q,
  10202. const struct ggml_tensor * k,
  10203. const struct ggml_tensor * v,
  10204. const bool masked,
  10205. struct ggml_tensor * dst) {
  10206. int64_t t0 = ggml_perf_time_us();
  10207. UNUSED(t0);
  10208. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10209. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10210. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10211. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10212. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10213. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10214. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10215. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10216. const int ith = params->ith;
  10217. const int nth = params->nth;
  10218. const int64_t D = neq0;
  10219. const int64_t N = neq1;
  10220. const int64_t P = nek1 - N;
  10221. const int64_t M = P + N;
  10222. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10223. GGML_ASSERT(ne0 == D);
  10224. GGML_ASSERT(ne1 == N);
  10225. GGML_ASSERT(P >= 0);
  10226. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10227. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10228. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10229. GGML_ASSERT(neq0 == D);
  10230. GGML_ASSERT(nek0 == D);
  10231. GGML_ASSERT(nev1 == D);
  10232. GGML_ASSERT(neq1 == N);
  10233. GGML_ASSERT(nek1 == N + P);
  10234. GGML_ASSERT(nev1 == D);
  10235. // dst cannot be transposed or permuted
  10236. GGML_ASSERT(nb0 == sizeof(float));
  10237. GGML_ASSERT(nb0 <= nb1);
  10238. GGML_ASSERT(nb1 <= nb2);
  10239. GGML_ASSERT(nb2 <= nb3);
  10240. if (params->type == GGML_TASK_INIT) {
  10241. return;
  10242. }
  10243. if (params->type == GGML_TASK_FINALIZE) {
  10244. return;
  10245. }
  10246. // parallelize by q rows using ggml_vec_dot_f32
  10247. // total rows in q
  10248. const int nr = neq1*neq2*neq3;
  10249. // rows per thread
  10250. const int dr = (nr + nth - 1)/nth;
  10251. // row range for this thread
  10252. const int ir0 = dr*ith;
  10253. const int ir1 = MIN(ir0 + dr, nr);
  10254. const float scale = 1.0f/sqrtf(D);
  10255. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10256. for (int ir = ir0; ir < ir1; ++ir) {
  10257. // q indices
  10258. const int iq3 = ir/(neq2*neq1);
  10259. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10260. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10261. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10262. for (int i = M; i < Mup; ++i) {
  10263. S[i] = -INFINITY;
  10264. }
  10265. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10266. for (int64_t ic = 0; ic < nek1; ++ic) {
  10267. // k indices
  10268. const int ik3 = iq3;
  10269. const int ik2 = iq2 % nek2;
  10270. const int ik1 = ic;
  10271. // S indices
  10272. const int i1 = ik1;
  10273. ggml_vec_dot_f16(neq0,
  10274. S + i1,
  10275. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10276. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10277. }
  10278. } else {
  10279. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10280. // k indices
  10281. const int ik3 = iq3;
  10282. const int ik2 = iq2 % nek2;
  10283. const int ik1 = ic;
  10284. // S indices
  10285. const int i1 = ik1;
  10286. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10287. S + i1,
  10288. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10289. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10290. }
  10291. }
  10292. // scale
  10293. ggml_vec_scale_f32(nek1, S, scale);
  10294. if (masked) {
  10295. for (int64_t i = P; i < M; i++) {
  10296. if (i > P + iq1) {
  10297. S[i] = -INFINITY;
  10298. }
  10299. }
  10300. }
  10301. // softmax
  10302. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10303. // dont forget to set their S values to zero
  10304. {
  10305. float max = -INFINITY;
  10306. ggml_vec_max_f32(M, &max, S);
  10307. ggml_float sum = 0.0;
  10308. {
  10309. #ifdef GGML_SOFT_MAX_ACCELERATE
  10310. max = -max;
  10311. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10312. vvexpf(S, S, &Mup);
  10313. ggml_vec_sum_f32(Mup, &sum, S);
  10314. #else
  10315. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10316. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10317. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10318. float * SS = S + i;
  10319. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10320. if (SS[j] == -INFINITY) {
  10321. SS[j] = 0.0f;
  10322. } else {
  10323. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10324. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10325. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10326. sump[j] += (ggml_float)val;
  10327. SS[j] = val;
  10328. }
  10329. }
  10330. }
  10331. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10332. sum += sump[i];
  10333. }
  10334. #endif
  10335. }
  10336. assert(sum > 0.0);
  10337. sum = 1.0/sum;
  10338. ggml_vec_scale_f32(M, S, sum);
  10339. #ifndef NDEBUG
  10340. for (int i = 0; i < M; ++i) {
  10341. assert(!isnan(S[i]));
  10342. assert(!isinf(S[i]));
  10343. }
  10344. #endif
  10345. }
  10346. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10347. for (int64_t i = 0; i < M; i++) {
  10348. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10349. }
  10350. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10351. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10352. for (int64_t ic = 0; ic < nev1; ++ic) {
  10353. // dst indices
  10354. const int i1 = iq1;
  10355. const int i2 = iq2;
  10356. const int i3 = iq3;
  10357. // v indices
  10358. const int iv2 = iq2 % nev2;
  10359. const int iv3 = iq3;
  10360. ggml_vec_dot_f16(nev0,
  10361. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10362. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10363. S16);
  10364. }
  10365. } else {
  10366. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10367. // dst indices
  10368. const int i1 = iq1;
  10369. const int i2 = iq2;
  10370. const int i3 = iq3;
  10371. // v indices
  10372. const int iv2 = iq2 % nev2;
  10373. const int iv3 = iq3;
  10374. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10375. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10376. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10377. S16);
  10378. }
  10379. }
  10380. }
  10381. }
  10382. static void ggml_compute_forward_flash_attn(
  10383. const struct ggml_compute_params * params,
  10384. const struct ggml_tensor * q,
  10385. const struct ggml_tensor * k,
  10386. const struct ggml_tensor * v,
  10387. const bool masked,
  10388. struct ggml_tensor * dst) {
  10389. switch (q->type) {
  10390. case GGML_TYPE_F16:
  10391. {
  10392. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10393. } break;
  10394. case GGML_TYPE_F32:
  10395. {
  10396. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10397. } break;
  10398. default:
  10399. {
  10400. GGML_ASSERT(false);
  10401. } break;
  10402. }
  10403. }
  10404. // ggml_compute_forward_flash_ff
  10405. static void ggml_compute_forward_flash_ff_f16(
  10406. const struct ggml_compute_params * params,
  10407. const struct ggml_tensor * a, // F16
  10408. const struct ggml_tensor * b0, // F16 fc_w
  10409. const struct ggml_tensor * b1, // F32 fc_b
  10410. const struct ggml_tensor * c0, // F16 proj_w
  10411. const struct ggml_tensor * c1, // F32 proj_b
  10412. struct ggml_tensor * dst) {
  10413. int64_t t0 = ggml_perf_time_us();
  10414. UNUSED(t0);
  10415. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10416. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10417. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10418. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10419. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10420. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10421. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10422. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10423. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10424. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10425. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10426. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10427. const int ith = params->ith;
  10428. const int nth = params->nth;
  10429. const int64_t D = nea0;
  10430. //const int64_t N = nea1;
  10431. const int64_t M = neb01;
  10432. GGML_ASSERT(ne0 == nea0);
  10433. GGML_ASSERT(ne1 == nea1);
  10434. GGML_ASSERT(ne2 == nea2);
  10435. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10436. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10437. GGML_ASSERT(nbb10 == sizeof(float));
  10438. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10439. GGML_ASSERT(nbc10 == sizeof(float));
  10440. GGML_ASSERT(neb00 == D);
  10441. GGML_ASSERT(neb01 == M);
  10442. GGML_ASSERT(neb10 == M);
  10443. GGML_ASSERT(neb11 == 1);
  10444. GGML_ASSERT(nec00 == M);
  10445. GGML_ASSERT(nec01 == D);
  10446. GGML_ASSERT(nec10 == D);
  10447. GGML_ASSERT(nec11 == 1);
  10448. // dst cannot be transposed or permuted
  10449. GGML_ASSERT(nb0 == sizeof(float));
  10450. GGML_ASSERT(nb0 <= nb1);
  10451. GGML_ASSERT(nb1 <= nb2);
  10452. GGML_ASSERT(nb2 <= nb3);
  10453. if (params->type == GGML_TASK_INIT) {
  10454. return;
  10455. }
  10456. if (params->type == GGML_TASK_FINALIZE) {
  10457. return;
  10458. }
  10459. // parallelize by a rows using ggml_vec_dot_f32
  10460. // total rows in a
  10461. const int nr = nea1*nea2*nea3;
  10462. // rows per thread
  10463. const int dr = (nr + nth - 1)/nth;
  10464. // row range for this thread
  10465. const int ir0 = dr*ith;
  10466. const int ir1 = MIN(ir0 + dr, nr);
  10467. for (int ir = ir0; ir < ir1; ++ir) {
  10468. // a indices
  10469. const int ia3 = ir/(nea2*nea1);
  10470. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10471. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10472. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10473. for (int64_t ic = 0; ic < neb01; ++ic) {
  10474. // b0 indices
  10475. const int ib03 = ia3;
  10476. const int ib02 = ia2;
  10477. const int ib01 = ic;
  10478. // S indices
  10479. const int i1 = ib01;
  10480. ggml_vec_dot_f16(nea0,
  10481. S + i1,
  10482. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10483. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10484. }
  10485. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10486. //ggml_vec_gelu_f32(neb01, S, S);
  10487. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10488. for (int64_t i = 0; i < M; i++) {
  10489. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10490. }
  10491. ggml_vec_gelu_f16(neb01, S16, S16);
  10492. {
  10493. // dst indices
  10494. const int i1 = ia1;
  10495. const int i2 = ia2;
  10496. const int i3 = ia3;
  10497. for (int64_t ic = 0; ic < nec01; ++ic) {
  10498. ggml_vec_dot_f16(neb01,
  10499. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10500. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10501. S16);
  10502. }
  10503. ggml_vec_add_f32(nec01,
  10504. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10505. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10506. (float *) c1->data);
  10507. }
  10508. }
  10509. }
  10510. static void ggml_compute_forward_flash_ff(
  10511. const struct ggml_compute_params * params,
  10512. const struct ggml_tensor * a,
  10513. const struct ggml_tensor * b0,
  10514. const struct ggml_tensor * b1,
  10515. const struct ggml_tensor * c0,
  10516. const struct ggml_tensor * c1,
  10517. struct ggml_tensor * dst) {
  10518. switch (b0->type) {
  10519. case GGML_TYPE_F16:
  10520. {
  10521. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10522. } break;
  10523. case GGML_TYPE_F32:
  10524. {
  10525. GGML_ASSERT(false); // TODO
  10526. } break;
  10527. default:
  10528. {
  10529. GGML_ASSERT(false);
  10530. } break;
  10531. }
  10532. }
  10533. // ggml_compute_forward_flash_attn_back
  10534. static void ggml_compute_forward_flash_attn_back_f32(
  10535. const struct ggml_compute_params * params,
  10536. const struct ggml_tensor * q,
  10537. const struct ggml_tensor * k,
  10538. const struct ggml_tensor * v,
  10539. const struct ggml_tensor * d,
  10540. const bool masked,
  10541. struct ggml_tensor * dst) {
  10542. int64_t t0 = ggml_perf_time_us();
  10543. UNUSED(t0);
  10544. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10545. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10546. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10547. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10548. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10549. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10550. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10551. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10552. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10553. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10554. const int ith = params->ith;
  10555. const int nth = params->nth;
  10556. const int64_t D = neq0;
  10557. const int64_t N = neq1;
  10558. const int64_t P = nek1 - N;
  10559. const int64_t M = P + N;
  10560. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10561. const int mxDM = MAX(D, Mup);
  10562. // GGML_ASSERT(ne0 == D);
  10563. // GGML_ASSERT(ne1 == N);
  10564. GGML_ASSERT(P >= 0);
  10565. GGML_ASSERT(nbq0 == sizeof(float));
  10566. GGML_ASSERT(nbk0 == sizeof(float));
  10567. GGML_ASSERT(nbv0 == sizeof(float));
  10568. GGML_ASSERT(neq0 == D);
  10569. GGML_ASSERT(nek0 == D);
  10570. GGML_ASSERT(nev1 == D);
  10571. GGML_ASSERT(ned0 == D);
  10572. GGML_ASSERT(neq1 == N);
  10573. GGML_ASSERT(nek1 == N + P);
  10574. GGML_ASSERT(nev1 == D);
  10575. GGML_ASSERT(ned1 == N);
  10576. // dst cannot be transposed or permuted
  10577. GGML_ASSERT(nb0 == sizeof(float));
  10578. GGML_ASSERT(nb0 <= nb1);
  10579. GGML_ASSERT(nb1 <= nb2);
  10580. GGML_ASSERT(nb2 <= nb3);
  10581. if (params->type == GGML_TASK_INIT) {
  10582. if (ith == 0) {
  10583. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10584. }
  10585. return;
  10586. }
  10587. if (params->type == GGML_TASK_FINALIZE) {
  10588. return;
  10589. }
  10590. const int64_t elem_q = ggml_nelements(q);
  10591. const int64_t elem_k = ggml_nelements(k);
  10592. enum ggml_type result_type = dst->type;
  10593. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10594. const size_t tsize = ggml_type_size(result_type);
  10595. const size_t offs_q = 0;
  10596. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10597. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10598. void * grad_q = (char *) dst->data;
  10599. void * grad_k = (char *) dst->data + offs_k;
  10600. void * grad_v = (char *) dst->data + offs_v;
  10601. const size_t nbgq1 = nb0*neq0;
  10602. const size_t nbgq2 = nb0*neq0*neq1;
  10603. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10604. const size_t nbgk1 = nb0*nek0;
  10605. const size_t nbgk2 = nb0*nek0*nek1;
  10606. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10607. const size_t nbgv1 = nb0*nev0;
  10608. const size_t nbgv2 = nb0*nev0*nev1;
  10609. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10610. // parallelize by k rows using ggml_vec_dot_f32
  10611. // total rows in k
  10612. const int nr = nek2*nek3;
  10613. // rows per thread
  10614. const int dr = (nr + nth - 1)/nth;
  10615. // row range for this thread
  10616. const int ir0 = dr*ith;
  10617. const int ir1 = MIN(ir0 + dr, nr);
  10618. const float scale = 1.0f/sqrtf(D);
  10619. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10620. // how often k2 (and v2) is repeated in q2
  10621. int nrep = neq2/nek2;
  10622. for (int ir = ir0; ir < ir1; ++ir) {
  10623. // q indices
  10624. const int ik3 = ir/(nek2);
  10625. const int ik2 = ir - ik3*nek2;
  10626. const int iq3 = ik3;
  10627. const int id3 = ik3;
  10628. const int iv3 = ik3;
  10629. const int iv2 = ik2;
  10630. for (int irep = 0; irep < nrep; ++irep) {
  10631. const int iq2 = ik2 + irep*nek2;
  10632. const int id2 = iq2;
  10633. // (ik2 + irep*nek2) % nek2 == ik2
  10634. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10635. const int id1 = iq1;
  10636. // not sure about CACHE_LINE_SIZE_F32..
  10637. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10638. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10639. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10640. for (int i = M; i < Mup; ++i) {
  10641. S[i] = -INFINITY;
  10642. }
  10643. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10644. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10645. // k indices
  10646. const int ik1 = ic;
  10647. // S indices
  10648. const int i1 = ik1;
  10649. ggml_vec_dot_f32(neq0,
  10650. S + i1,
  10651. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10652. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10653. }
  10654. // scale
  10655. ggml_vec_scale_f32(masked_begin, S, scale);
  10656. for (int64_t i = masked_begin; i < M; i++) {
  10657. S[i] = -INFINITY;
  10658. }
  10659. // softmax
  10660. // exclude known -INF S[..] values from max and loop
  10661. // dont forget to set their SM values to zero
  10662. {
  10663. float max = -INFINITY;
  10664. ggml_vec_max_f32(masked_begin, &max, S);
  10665. ggml_float sum = 0.0;
  10666. {
  10667. #ifdef GGML_SOFT_MAX_ACCELERATE
  10668. max = -max;
  10669. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10670. vvexpf(SM, SM, &Mup);
  10671. ggml_vec_sum_f32(Mup, &sum, SM);
  10672. #else
  10673. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10674. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10675. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10676. if (i >= masked_begin) {
  10677. break;
  10678. }
  10679. float * SR = S + i;
  10680. float * SW = SM + i;
  10681. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10682. if (i + j >= masked_begin) {
  10683. break;
  10684. } else if (SR[j] == -INFINITY) {
  10685. SW[j] = 0.0f;
  10686. } else {
  10687. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10688. const float val = expf(SR[j] - max);
  10689. #else
  10690. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10691. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10692. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10693. #endif
  10694. sump[j] += (ggml_float)val;
  10695. SW[j] = val;
  10696. }
  10697. }
  10698. }
  10699. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10700. sum += sump[i];
  10701. }
  10702. #endif
  10703. }
  10704. assert(sum > 0.0);
  10705. sum = 1.0/sum;
  10706. ggml_vec_scale_f32(masked_begin, SM, sum);
  10707. }
  10708. // step-by-step explanation
  10709. {
  10710. // forward-process shape grads from backward process
  10711. // parallel_for ik2,ik3:
  10712. // for irep:
  10713. // iq2 = ik2 + irep*nek2
  10714. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10715. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10716. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10717. // for iq1:
  10718. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10719. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10720. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10721. // S0 = -Inf [D,1,1,1]
  10722. // ~S1[i] = dot(kcur[:D,i], qcur)
  10723. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10724. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10725. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10726. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10727. // ~S5[i] = dot(vcur[:,i], S4)
  10728. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10729. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10730. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10731. // dst backward-/ grad[dst] = d
  10732. //
  10733. // output gradients with their dependencies:
  10734. //
  10735. // grad[kcur] = grad[S1].T @ qcur
  10736. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10737. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10738. // grad[S4] = grad[S5] @ vcur
  10739. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10740. // grad[qcur] = grad[S1] @ kcur
  10741. // grad[vcur] = grad[S5].T @ S4
  10742. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10743. //
  10744. // in post-order:
  10745. //
  10746. // S1 = qcur @ kcur.T
  10747. // S2 = S1 * scale
  10748. // S3 = diag_mask_inf(S2, P)
  10749. // S4 = softmax(S3)
  10750. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10751. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10752. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10753. // grad[qcur] = grad[S1] @ kcur
  10754. // grad[kcur] = grad[S1].T @ qcur
  10755. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10756. //
  10757. // using less variables (SM=S4):
  10758. //
  10759. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10760. // SM = softmax(S)
  10761. // S = d[:D,iq1,iq2,iq3] @ vcur
  10762. // dot_SM_gradSM = dot(SM, S)
  10763. // S = SM * (S - dot(SM, S))
  10764. // S = diag_mask_zero(S, P) * scale
  10765. //
  10766. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10767. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10768. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10769. }
  10770. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10771. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10772. // for ic:
  10773. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10774. // exclude known future zero S[..] values from operation
  10775. ggml_vec_set_f32(masked_begin, S, 0);
  10776. for (int64_t ic = 0; ic < D; ++ic) {
  10777. ggml_vec_mad_f32(masked_begin,
  10778. S,
  10779. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10780. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10781. }
  10782. // S = SM * (S - dot(SM, S))
  10783. float dot_SM_gradSM = 0;
  10784. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10785. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10786. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10787. // S = diag_mask_zero(S, P) * scale
  10788. // already done by above ggml_vec_set_f32
  10789. // exclude known zero S[..] values from operation
  10790. ggml_vec_scale_f32(masked_begin, S, scale);
  10791. // S shape [M,1]
  10792. // SM shape [M,1]
  10793. // kcur shape [D,M]
  10794. // qcur shape [D,1]
  10795. // vcur shape [M,D]
  10796. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10797. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10798. // for ic:
  10799. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10800. // exclude known zero S[..] values from loop
  10801. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10802. ggml_vec_mad_f32(D,
  10803. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10804. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10805. S[ic]);
  10806. }
  10807. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10808. // for ic:
  10809. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10810. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10811. // exclude known zero S[..] values from loop
  10812. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10813. ggml_vec_mad_f32(D,
  10814. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10815. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10816. S[ic]);
  10817. }
  10818. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10819. // for ic:
  10820. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10821. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10822. // exclude known zero SM[..] values from mad
  10823. for (int64_t ic = 0; ic < D; ++ic) {
  10824. ggml_vec_mad_f32(masked_begin,
  10825. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10826. SM,
  10827. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10828. }
  10829. }
  10830. }
  10831. }
  10832. }
  10833. static void ggml_compute_forward_flash_attn_back(
  10834. const struct ggml_compute_params * params,
  10835. const struct ggml_tensor * q,
  10836. const struct ggml_tensor * k,
  10837. const struct ggml_tensor * v,
  10838. const struct ggml_tensor * d,
  10839. const bool masked,
  10840. struct ggml_tensor * dst) {
  10841. switch (q->type) {
  10842. case GGML_TYPE_F32:
  10843. {
  10844. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10845. } break;
  10846. default:
  10847. {
  10848. GGML_ASSERT(false);
  10849. } break;
  10850. }
  10851. }
  10852. // ggml_compute_forward_win_part
  10853. static void ggml_compute_forward_win_part_f32(
  10854. const struct ggml_compute_params * params,
  10855. const struct ggml_tensor * src0,
  10856. struct ggml_tensor * dst) {
  10857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10858. return;
  10859. }
  10860. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10861. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10862. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10863. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10864. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10865. assert(ne00 == ne0);
  10866. assert(ne3 == nep0*nep1);
  10867. // TODO: optimize / multi-thread
  10868. for (int py = 0; py < nep1; ++py) {
  10869. for (int px = 0; px < nep0; ++px) {
  10870. const int64_t i3 = py*nep0 + px;
  10871. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10872. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10873. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10874. const int64_t i02 = py*w + i2;
  10875. const int64_t i01 = px*w + i1;
  10876. const int64_t i00 = i0;
  10877. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10878. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10879. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10880. ((float *) dst->data)[i] = 0.0f;
  10881. } else {
  10882. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10883. }
  10884. }
  10885. }
  10886. }
  10887. }
  10888. }
  10889. }
  10890. static void ggml_compute_forward_win_part(
  10891. const struct ggml_compute_params * params,
  10892. const struct ggml_tensor * src0,
  10893. struct ggml_tensor * dst) {
  10894. switch (src0->type) {
  10895. case GGML_TYPE_F32:
  10896. {
  10897. ggml_compute_forward_win_part_f32(params, src0, dst);
  10898. } break;
  10899. default:
  10900. {
  10901. GGML_ASSERT(false);
  10902. } break;
  10903. }
  10904. }
  10905. // ggml_compute_forward_win_unpart
  10906. static void ggml_compute_forward_win_unpart_f32(
  10907. const struct ggml_compute_params * params,
  10908. const struct ggml_tensor * src0,
  10909. struct ggml_tensor * dst) {
  10910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10911. return;
  10912. }
  10913. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10914. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10915. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  10916. // padding
  10917. const int px = (w - ne1%w)%w;
  10918. //const int py = (w - ne2%w)%w;
  10919. const int npx = (px + ne1)/w;
  10920. //const int npy = (py + ne2)/w;
  10921. assert(ne0 == ne00);
  10922. // TODO: optimize / multi-thread
  10923. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10924. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10925. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10926. const int ip2 = i2/w;
  10927. const int ip1 = i1/w;
  10928. const int64_t i02 = i2%w;
  10929. const int64_t i01 = i1%w;
  10930. const int64_t i00 = i0;
  10931. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  10932. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  10933. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  10934. }
  10935. }
  10936. }
  10937. }
  10938. static void ggml_compute_forward_win_unpart(
  10939. const struct ggml_compute_params * params,
  10940. const struct ggml_tensor * src0,
  10941. struct ggml_tensor * dst) {
  10942. switch (src0->type) {
  10943. case GGML_TYPE_F32:
  10944. {
  10945. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  10946. } break;
  10947. default:
  10948. {
  10949. GGML_ASSERT(false);
  10950. } break;
  10951. }
  10952. }
  10953. //gmml_compute_forward_unary
  10954. static void ggml_compute_forward_unary(
  10955. const struct ggml_compute_params * params,
  10956. const struct ggml_tensor * src0,
  10957. struct ggml_tensor * dst) {
  10958. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  10959. switch (op) {
  10960. case GGML_UNARY_OP_ABS:
  10961. {
  10962. ggml_compute_forward_abs(params, src0, dst);
  10963. } break;
  10964. case GGML_UNARY_OP_SGN:
  10965. {
  10966. ggml_compute_forward_sgn(params, src0, dst);
  10967. } break;
  10968. case GGML_UNARY_OP_NEG:
  10969. {
  10970. ggml_compute_forward_neg(params, src0, dst);
  10971. } break;
  10972. case GGML_UNARY_OP_STEP:
  10973. {
  10974. ggml_compute_forward_step(params, src0, dst);
  10975. } break;
  10976. case GGML_UNARY_OP_TANH:
  10977. {
  10978. ggml_compute_forward_tanh(params, src0, dst);
  10979. } break;
  10980. case GGML_UNARY_OP_ELU:
  10981. {
  10982. ggml_compute_forward_elu(params, src0, dst);
  10983. } break;
  10984. case GGML_UNARY_OP_RELU:
  10985. {
  10986. ggml_compute_forward_relu(params, src0, dst);
  10987. } break;
  10988. case GGML_UNARY_OP_GELU:
  10989. {
  10990. ggml_compute_forward_gelu(params, src0, dst);
  10991. } break;
  10992. case GGML_UNARY_OP_GELU_QUICK:
  10993. {
  10994. ggml_compute_forward_gelu_quick(params, src0, dst);
  10995. } break;
  10996. case GGML_UNARY_OP_SILU:
  10997. {
  10998. ggml_compute_forward_silu(params, src0, dst);
  10999. } break;
  11000. case GGML_UNARY_OP_LEAKY:
  11001. {
  11002. ggml_compute_forward_leaky(params, src0, dst);
  11003. } break;
  11004. default:
  11005. {
  11006. GGML_ASSERT(false);
  11007. } break;
  11008. }
  11009. }
  11010. // ggml_compute_forward_get_rel_pos
  11011. static void ggml_compute_forward_get_rel_pos_f16(
  11012. const struct ggml_compute_params * params,
  11013. const struct ggml_tensor * src0,
  11014. struct ggml_tensor * dst) {
  11015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11016. return;
  11017. }
  11018. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11019. GGML_TENSOR_UNARY_OP_LOCALS
  11020. const int64_t w = ne1;
  11021. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11022. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11023. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11024. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11025. const int64_t pos = (w - i1 - 1) + i2;
  11026. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11027. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11028. }
  11029. }
  11030. }
  11031. }
  11032. static void ggml_compute_forward_get_rel_pos(
  11033. const struct ggml_compute_params * params,
  11034. const struct ggml_tensor * src0,
  11035. struct ggml_tensor * dst) {
  11036. switch (src0->type) {
  11037. case GGML_TYPE_F16:
  11038. {
  11039. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11040. } break;
  11041. default:
  11042. {
  11043. GGML_ASSERT(false);
  11044. } break;
  11045. }
  11046. }
  11047. // ggml_compute_forward_add_rel_pos
  11048. static void ggml_compute_forward_add_rel_pos_f32(
  11049. const struct ggml_compute_params * params,
  11050. const struct ggml_tensor * src0,
  11051. const struct ggml_tensor * src1,
  11052. const struct ggml_tensor * src2,
  11053. struct ggml_tensor * dst) {
  11054. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11055. if (!inplace && params->type == GGML_TASK_INIT) {
  11056. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11057. return;
  11058. }
  11059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11060. return;
  11061. }
  11062. int64_t t0 = ggml_perf_time_us();
  11063. UNUSED(t0);
  11064. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11065. float * src1_data = (float *) src1->data;
  11066. float * src2_data = (float *) src2->data;
  11067. float * dst_data = (float *) dst->data;
  11068. const int64_t ne10 = src1->ne[0];
  11069. const int64_t ne11 = src1->ne[1];
  11070. const int64_t ne12 = src1->ne[2];
  11071. const int64_t ne13 = src1->ne[3];
  11072. const int ith = params->ith;
  11073. const int nth = params->nth;
  11074. // total patches in dst
  11075. const int np = ne13;
  11076. // patches per thread
  11077. const int dp = (np + nth - 1)/nth;
  11078. // patch range for this thread
  11079. const int ip0 = dp*ith;
  11080. const int ip1 = MIN(ip0 + dp, np);
  11081. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11082. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11083. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11084. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11085. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11086. const int64_t jp0 = jp1 + i10;
  11087. const float src1_e = src1_data[jp0];
  11088. const float src2_e = src2_data[jp0];
  11089. const int64_t jdh = jp0 * ne10;
  11090. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11091. for (int64_t j = 0; j < ne10; ++j) {
  11092. dst_data[jdh + j ] += src2_e;
  11093. dst_data[jdw + j*ne10] += src1_e;
  11094. }
  11095. }
  11096. }
  11097. }
  11098. }
  11099. }
  11100. static void ggml_compute_forward_add_rel_pos(
  11101. const struct ggml_compute_params * params,
  11102. const struct ggml_tensor * src0,
  11103. const struct ggml_tensor * src1,
  11104. const struct ggml_tensor * src2,
  11105. struct ggml_tensor * dst) {
  11106. switch (src0->type) {
  11107. case GGML_TYPE_F32:
  11108. {
  11109. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11110. } break;
  11111. default:
  11112. {
  11113. GGML_ASSERT(false);
  11114. } break;
  11115. }
  11116. }
  11117. // ggml_compute_forward_map_unary
  11118. static void ggml_compute_forward_map_unary_f32(
  11119. const struct ggml_compute_params * params,
  11120. const struct ggml_tensor * src0,
  11121. struct ggml_tensor * dst,
  11122. const ggml_unary_op_f32_t fun) {
  11123. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11125. return;
  11126. }
  11127. const int n = ggml_nrows(src0);
  11128. const int nc = src0->ne[0];
  11129. assert( dst->nb[0] == sizeof(float));
  11130. assert(src0->nb[0] == sizeof(float));
  11131. for (int i = 0; i < n; i++) {
  11132. fun(nc,
  11133. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11134. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11135. }
  11136. }
  11137. static void ggml_compute_forward_map_unary(
  11138. const struct ggml_compute_params * params,
  11139. const struct ggml_tensor * src0,
  11140. struct ggml_tensor * dst,
  11141. const ggml_unary_op_f32_t fun) {
  11142. switch (src0->type) {
  11143. case GGML_TYPE_F32:
  11144. {
  11145. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11146. } break;
  11147. default:
  11148. {
  11149. GGML_ASSERT(false);
  11150. } break;
  11151. }
  11152. }
  11153. // ggml_compute_forward_map_binary
  11154. static void ggml_compute_forward_map_binary_f32(
  11155. const struct ggml_compute_params * params,
  11156. const struct ggml_tensor * src0,
  11157. const struct ggml_tensor * src1,
  11158. struct ggml_tensor * dst,
  11159. const ggml_binary_op_f32_t fun) {
  11160. assert(params->ith == 0);
  11161. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11163. return;
  11164. }
  11165. const int n = ggml_nrows(src0);
  11166. const int nc = src0->ne[0];
  11167. assert( dst->nb[0] == sizeof(float));
  11168. assert(src0->nb[0] == sizeof(float));
  11169. assert(src1->nb[0] == sizeof(float));
  11170. for (int i = 0; i < n; i++) {
  11171. fun(nc,
  11172. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11173. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11174. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11175. }
  11176. }
  11177. static void ggml_compute_forward_map_binary(
  11178. const struct ggml_compute_params * params,
  11179. const struct ggml_tensor * src0,
  11180. const struct ggml_tensor * src1,
  11181. struct ggml_tensor * dst,
  11182. const ggml_binary_op_f32_t fun) {
  11183. switch (src0->type) {
  11184. case GGML_TYPE_F32:
  11185. {
  11186. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11187. } break;
  11188. default:
  11189. {
  11190. GGML_ASSERT(false);
  11191. } break;
  11192. }
  11193. }
  11194. // ggml_compute_forward_map_custom1
  11195. static void ggml_compute_forward_map_custom1_f32(
  11196. const struct ggml_compute_params * params,
  11197. const struct ggml_tensor * a,
  11198. struct ggml_tensor * dst,
  11199. const ggml_custom1_op_f32_t fun) {
  11200. assert(params->ith == 0);
  11201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11202. return;
  11203. }
  11204. fun(dst, a);
  11205. }
  11206. // ggml_compute_forward_map_custom2
  11207. static void ggml_compute_forward_map_custom2_f32(
  11208. const struct ggml_compute_params * params,
  11209. const struct ggml_tensor * a,
  11210. const struct ggml_tensor * b,
  11211. struct ggml_tensor * dst,
  11212. const ggml_custom2_op_f32_t fun) {
  11213. assert(params->ith == 0);
  11214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11215. return;
  11216. }
  11217. fun(dst, a, b);
  11218. }
  11219. // ggml_compute_forward_map_custom3
  11220. static void ggml_compute_forward_map_custom3_f32(
  11221. const struct ggml_compute_params * params,
  11222. const struct ggml_tensor * a,
  11223. const struct ggml_tensor * b,
  11224. const struct ggml_tensor * c,
  11225. struct ggml_tensor * dst,
  11226. const ggml_custom3_op_f32_t fun) {
  11227. assert(params->ith == 0);
  11228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11229. return;
  11230. }
  11231. fun(dst, a, b, c);
  11232. }
  11233. // ggml_compute_forward_map_custom1
  11234. static void ggml_compute_forward_map_custom1(
  11235. const struct ggml_compute_params * params,
  11236. const struct ggml_tensor * a,
  11237. struct ggml_tensor * dst) {
  11238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11239. return;
  11240. }
  11241. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11242. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11243. }
  11244. // ggml_compute_forward_map_custom2
  11245. static void ggml_compute_forward_map_custom2(
  11246. const struct ggml_compute_params * params,
  11247. const struct ggml_tensor * a,
  11248. const struct ggml_tensor * b,
  11249. struct ggml_tensor * dst) {
  11250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11251. return;
  11252. }
  11253. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11254. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11255. }
  11256. // ggml_compute_forward_map_custom3
  11257. static void ggml_compute_forward_map_custom3(
  11258. const struct ggml_compute_params * params,
  11259. const struct ggml_tensor * a,
  11260. const struct ggml_tensor * b,
  11261. const struct ggml_tensor * c,
  11262. struct ggml_tensor * dst) {
  11263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11264. return;
  11265. }
  11266. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11267. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11268. }
  11269. // ggml_compute_forward_cross_entropy_loss
  11270. static void ggml_compute_forward_cross_entropy_loss_f32(
  11271. const struct ggml_compute_params * params,
  11272. const struct ggml_tensor * src0,
  11273. const struct ggml_tensor * src1,
  11274. struct ggml_tensor * dst) {
  11275. GGML_ASSERT(ggml_is_contiguous(src0));
  11276. GGML_ASSERT(ggml_is_contiguous(src1));
  11277. GGML_ASSERT(ggml_is_scalar(dst));
  11278. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11279. const int ith = params->ith;
  11280. const int nth = params->nth;
  11281. float * sums = (float *) params->wdata;
  11282. // TODO: handle transposed/permuted matrices
  11283. const int nc = src0->ne[0];
  11284. const int nr = ggml_nrows(src0);
  11285. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11286. if (params->type == GGML_TASK_INIT) {
  11287. if (ith == 0) {
  11288. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11289. }
  11290. return;
  11291. }
  11292. if (params->type == GGML_TASK_FINALIZE) {
  11293. if (ith == 0) {
  11294. float * dp = (float *) dst->data;
  11295. ggml_vec_sum_f32(nth, dp, sums);
  11296. dp[0] *= -1.0f / (float) nr;
  11297. }
  11298. return;
  11299. }
  11300. const double eps = 1e-9;
  11301. // rows per thread
  11302. const int dr = (nr + nth - 1)/nth;
  11303. // row range for this thread
  11304. const int ir0 = dr*ith;
  11305. const int ir1 = MIN(ir0 + dr, nr);
  11306. for (int i1 = ir0; i1 < ir1; i1++) {
  11307. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11308. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11309. float * st = ((float *) params->wdata) + nth + ith*nc;
  11310. #ifndef NDEBUG
  11311. for (int i = 0; i < nc; ++i) {
  11312. //printf("p[%d] = %f\n", i, p[i]);
  11313. assert(!isnan(s0[i]));
  11314. assert(!isnan(s1[i]));
  11315. }
  11316. #endif
  11317. // soft_max
  11318. ggml_float sum = 0.0;
  11319. {
  11320. float max = -INFINITY;
  11321. ggml_vec_max_f32(nc, &max, s0);
  11322. uint16_t scvt; UNUSED(scvt);
  11323. for (int i = 0; i < nc; i++) {
  11324. if (s0[i] == -INFINITY) {
  11325. st[i] = 0.0f;
  11326. } else {
  11327. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11328. const float s = s0[i] - max;
  11329. const float val = expf(s);
  11330. #else
  11331. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11332. memcpy(&scvt, &s, sizeof(scvt));
  11333. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11334. #endif
  11335. sum += (ggml_float)val;
  11336. st[i] = val;
  11337. }
  11338. }
  11339. assert(sum > 0.0);
  11340. // sum = 1.0/sum;
  11341. }
  11342. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11343. sum = (1.0 - eps) / sum;
  11344. ggml_vec_scale_f32(nc, st, sum);
  11345. ggml_vec_add1_f32(nc, st, st, eps);
  11346. ggml_vec_log_f32(nc, st, st);
  11347. ggml_vec_mul_f32(nc, st, st, s1);
  11348. float st_sum = 0;
  11349. ggml_vec_sum_f32(nc, &st_sum, st);
  11350. sums[ith] += st_sum;
  11351. #ifndef NDEBUG
  11352. for (int i = 0; i < nc; ++i) {
  11353. assert(!isnan(st[i]));
  11354. assert(!isinf(st[i]));
  11355. }
  11356. #endif
  11357. }
  11358. }
  11359. static void ggml_compute_forward_cross_entropy_loss(
  11360. const struct ggml_compute_params * params,
  11361. const struct ggml_tensor * src0,
  11362. const struct ggml_tensor * src1,
  11363. struct ggml_tensor * dst) {
  11364. switch (src0->type) {
  11365. case GGML_TYPE_F32:
  11366. {
  11367. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11368. } break;
  11369. default:
  11370. {
  11371. GGML_ASSERT(false);
  11372. } break;
  11373. }
  11374. }
  11375. // ggml_compute_forward_cross_entropy_loss_back
  11376. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11377. const struct ggml_compute_params * params,
  11378. const struct ggml_tensor * src0,
  11379. const struct ggml_tensor * src1,
  11380. const struct ggml_tensor * opt0,
  11381. struct ggml_tensor * dst) {
  11382. GGML_ASSERT(ggml_is_contiguous(dst));
  11383. GGML_ASSERT(ggml_is_contiguous(src0));
  11384. GGML_ASSERT(ggml_is_contiguous(src1));
  11385. GGML_ASSERT(ggml_is_contiguous(opt0));
  11386. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11387. const int64_t ith = params->ith;
  11388. const int64_t nth = params->nth;
  11389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11390. return;
  11391. }
  11392. const double eps = 1e-9;
  11393. // TODO: handle transposed/permuted matrices
  11394. const int64_t nc = src0->ne[0];
  11395. const int64_t nr = ggml_nrows(src0);
  11396. // rows per thread
  11397. const int64_t dr = (nr + nth - 1)/nth;
  11398. // row range for this thread
  11399. const int64_t ir0 = dr*ith;
  11400. const int64_t ir1 = MIN(ir0 + dr, nr);
  11401. float * d = (float *) opt0->data;
  11402. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11403. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11404. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11405. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11406. #ifndef NDEBUG
  11407. for (int i = 0; i < nc; ++i) {
  11408. //printf("p[%d] = %f\n", i, p[i]);
  11409. assert(!isnan(s0[i]));
  11410. assert(!isnan(s1[i]));
  11411. }
  11412. #endif
  11413. // soft_max
  11414. ggml_float sum = 0.0;
  11415. {
  11416. float max = -INFINITY;
  11417. ggml_vec_max_f32(nc, &max, s0);
  11418. uint16_t scvt; UNUSED(scvt);
  11419. for (int i = 0; i < nc; i++) {
  11420. if (s0[i] == -INFINITY) {
  11421. ds0[i] = 0.0f;
  11422. } else {
  11423. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11424. const float s = s0[i] - max;
  11425. const float val = expf(s);
  11426. #else
  11427. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11428. memcpy(&scvt, &s, sizeof(scvt));
  11429. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11430. #endif
  11431. sum += (ggml_float)val;
  11432. ds0[i] = val;
  11433. }
  11434. }
  11435. assert(sum > 0.0);
  11436. sum = (1.0 - eps)/sum;
  11437. }
  11438. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11439. ggml_vec_scale_f32(nc, ds0, sum);
  11440. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11441. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11442. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11443. #ifndef NDEBUG
  11444. for (int i = 0; i < nc; ++i) {
  11445. assert(!isnan(ds0[i]));
  11446. assert(!isinf(ds0[i]));
  11447. }
  11448. #endif
  11449. }
  11450. }
  11451. static void ggml_compute_forward_cross_entropy_loss_back(
  11452. const struct ggml_compute_params * params,
  11453. const struct ggml_tensor * src0,
  11454. const struct ggml_tensor * src1,
  11455. const struct ggml_tensor * opt0,
  11456. struct ggml_tensor * dst) {
  11457. switch (src0->type) {
  11458. case GGML_TYPE_F32:
  11459. {
  11460. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11461. } break;
  11462. default:
  11463. {
  11464. GGML_ASSERT(false);
  11465. } break;
  11466. }
  11467. }
  11468. /////////////////////////////////
  11469. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11470. GGML_ASSERT(params);
  11471. if (tensor->op == GGML_OP_NONE) {
  11472. return;
  11473. }
  11474. #ifdef GGML_USE_CUBLAS
  11475. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11476. if (skip_cpu) {
  11477. return;
  11478. }
  11479. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11480. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11481. #endif // GGML_USE_CUBLAS
  11482. switch (tensor->op) {
  11483. case GGML_OP_DUP:
  11484. {
  11485. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11486. } break;
  11487. case GGML_OP_ADD:
  11488. {
  11489. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11490. } break;
  11491. case GGML_OP_ADD1:
  11492. {
  11493. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11494. } break;
  11495. case GGML_OP_ACC:
  11496. {
  11497. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11498. } break;
  11499. case GGML_OP_SUB:
  11500. {
  11501. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11502. } break;
  11503. case GGML_OP_MUL:
  11504. {
  11505. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11506. } break;
  11507. case GGML_OP_DIV:
  11508. {
  11509. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11510. } break;
  11511. case GGML_OP_SQR:
  11512. {
  11513. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11514. } break;
  11515. case GGML_OP_SQRT:
  11516. {
  11517. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11518. } break;
  11519. case GGML_OP_LOG:
  11520. {
  11521. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11522. } break;
  11523. case GGML_OP_SUM:
  11524. {
  11525. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11526. } break;
  11527. case GGML_OP_SUM_ROWS:
  11528. {
  11529. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11530. } break;
  11531. case GGML_OP_MEAN:
  11532. {
  11533. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11534. } break;
  11535. case GGML_OP_ARGMAX:
  11536. {
  11537. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11538. } break;
  11539. case GGML_OP_REPEAT:
  11540. {
  11541. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11542. } break;
  11543. case GGML_OP_REPEAT_BACK:
  11544. {
  11545. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11546. } break;
  11547. case GGML_OP_CONCAT:
  11548. {
  11549. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11550. } break;
  11551. case GGML_OP_SILU_BACK:
  11552. {
  11553. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11554. } break;
  11555. case GGML_OP_NORM:
  11556. {
  11557. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11558. } break;
  11559. case GGML_OP_RMS_NORM:
  11560. {
  11561. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11562. } break;
  11563. case GGML_OP_RMS_NORM_BACK:
  11564. {
  11565. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11566. } break;
  11567. case GGML_OP_GROUP_NORM:
  11568. {
  11569. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11570. } break;
  11571. case GGML_OP_MUL_MAT:
  11572. {
  11573. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]);
  11574. } break;
  11575. case GGML_OP_MUL_MAT_ID:
  11576. {
  11577. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11578. } break;
  11579. case GGML_OP_OUT_PROD:
  11580. {
  11581. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11582. } break;
  11583. case GGML_OP_SCALE:
  11584. {
  11585. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11586. } break;
  11587. case GGML_OP_SET:
  11588. {
  11589. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11590. } break;
  11591. case GGML_OP_CPY:
  11592. {
  11593. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11594. } break;
  11595. case GGML_OP_CONT:
  11596. {
  11597. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11598. } break;
  11599. case GGML_OP_RESHAPE:
  11600. {
  11601. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11602. } break;
  11603. case GGML_OP_VIEW:
  11604. {
  11605. ggml_compute_forward_view(params, tensor->src[0]);
  11606. } break;
  11607. case GGML_OP_PERMUTE:
  11608. {
  11609. ggml_compute_forward_permute(params, tensor->src[0]);
  11610. } break;
  11611. case GGML_OP_TRANSPOSE:
  11612. {
  11613. ggml_compute_forward_transpose(params, tensor->src[0]);
  11614. } break;
  11615. case GGML_OP_GET_ROWS:
  11616. {
  11617. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11618. } break;
  11619. case GGML_OP_GET_ROWS_BACK:
  11620. {
  11621. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11622. } break;
  11623. case GGML_OP_DIAG:
  11624. {
  11625. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11626. } break;
  11627. case GGML_OP_DIAG_MASK_INF:
  11628. {
  11629. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11630. } break;
  11631. case GGML_OP_DIAG_MASK_ZERO:
  11632. {
  11633. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11634. } break;
  11635. case GGML_OP_SOFT_MAX:
  11636. {
  11637. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11638. } break;
  11639. case GGML_OP_SOFT_MAX_BACK:
  11640. {
  11641. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11642. } break;
  11643. case GGML_OP_ROPE:
  11644. {
  11645. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11646. } break;
  11647. case GGML_OP_ROPE_BACK:
  11648. {
  11649. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11650. } break;
  11651. case GGML_OP_ALIBI:
  11652. {
  11653. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11654. } break;
  11655. case GGML_OP_CLAMP:
  11656. {
  11657. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11658. } break;
  11659. case GGML_OP_CONV_TRANSPOSE_1D:
  11660. {
  11661. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11662. } break;
  11663. case GGML_OP_IM2COL:
  11664. {
  11665. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11666. } break;
  11667. case GGML_OP_CONV_TRANSPOSE_2D:
  11668. {
  11669. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11670. } break;
  11671. case GGML_OP_POOL_1D:
  11672. {
  11673. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11674. } break;
  11675. case GGML_OP_POOL_2D:
  11676. {
  11677. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11678. } break;
  11679. case GGML_OP_UPSCALE:
  11680. {
  11681. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11682. } break;
  11683. case GGML_OP_ARGSORT:
  11684. {
  11685. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  11686. } break;
  11687. case GGML_OP_FLASH_ATTN:
  11688. {
  11689. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11690. GGML_ASSERT(t == 0 || t == 1);
  11691. const bool masked = t != 0;
  11692. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11693. } break;
  11694. case GGML_OP_FLASH_FF:
  11695. {
  11696. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11697. } break;
  11698. case GGML_OP_FLASH_ATTN_BACK:
  11699. {
  11700. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11701. GGML_ASSERT(t == 0 || t == 1);
  11702. bool masked = t != 0;
  11703. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11704. } break;
  11705. case GGML_OP_WIN_PART:
  11706. {
  11707. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11708. } break;
  11709. case GGML_OP_WIN_UNPART:
  11710. {
  11711. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11712. } break;
  11713. case GGML_OP_UNARY:
  11714. {
  11715. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11716. } break;
  11717. case GGML_OP_GET_REL_POS:
  11718. {
  11719. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11720. } break;
  11721. case GGML_OP_ADD_REL_POS:
  11722. {
  11723. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11724. } break;
  11725. case GGML_OP_MAP_UNARY:
  11726. {
  11727. ggml_unary_op_f32_t fun;
  11728. memcpy(&fun, tensor->op_params, sizeof(fun));
  11729. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11730. }
  11731. break;
  11732. case GGML_OP_MAP_BINARY:
  11733. {
  11734. ggml_binary_op_f32_t fun;
  11735. memcpy(&fun, tensor->op_params, sizeof(fun));
  11736. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11737. }
  11738. break;
  11739. case GGML_OP_MAP_CUSTOM1_F32:
  11740. {
  11741. ggml_custom1_op_f32_t fun;
  11742. memcpy(&fun, tensor->op_params, sizeof(fun));
  11743. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11744. }
  11745. break;
  11746. case GGML_OP_MAP_CUSTOM2_F32:
  11747. {
  11748. ggml_custom2_op_f32_t fun;
  11749. memcpy(&fun, tensor->op_params, sizeof(fun));
  11750. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11751. }
  11752. break;
  11753. case GGML_OP_MAP_CUSTOM3_F32:
  11754. {
  11755. ggml_custom3_op_f32_t fun;
  11756. memcpy(&fun, tensor->op_params, sizeof(fun));
  11757. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11758. }
  11759. break;
  11760. case GGML_OP_MAP_CUSTOM1:
  11761. {
  11762. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11763. }
  11764. break;
  11765. case GGML_OP_MAP_CUSTOM2:
  11766. {
  11767. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11768. }
  11769. break;
  11770. case GGML_OP_MAP_CUSTOM3:
  11771. {
  11772. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11773. }
  11774. break;
  11775. case GGML_OP_CROSS_ENTROPY_LOSS:
  11776. {
  11777. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11778. }
  11779. break;
  11780. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11781. {
  11782. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11783. }
  11784. break;
  11785. case GGML_OP_NONE:
  11786. {
  11787. // nop
  11788. } break;
  11789. case GGML_OP_COUNT:
  11790. {
  11791. GGML_ASSERT(false);
  11792. } break;
  11793. }
  11794. }
  11795. ////////////////////////////////////////////////////////////////////////////////
  11796. static size_t ggml_hash_size(size_t min_sz) {
  11797. // next primes after powers of two
  11798. static const size_t primes[] = {
  11799. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11800. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11801. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11802. 16777259, 33554467, 67108879, 134217757, 268435459,
  11803. 536870923, 1073741827, 2147483659
  11804. };
  11805. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11806. // find the smallest prime that is larger or equal to min_sz
  11807. size_t l = 0;
  11808. size_t r = n_primes;
  11809. while (l < r) {
  11810. size_t m = (l + r)/2;
  11811. if (primes[m] < min_sz) {
  11812. l = m + 1;
  11813. } else {
  11814. r = m;
  11815. }
  11816. }
  11817. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11818. return sz;
  11819. }
  11820. static size_t ggml_hash(const void * p) {
  11821. return (size_t)p;
  11822. }
  11823. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11824. size_t h = ggml_hash(key) % hash_set.size;
  11825. // linear probing
  11826. size_t i = h;
  11827. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11828. i = (i + 1) % hash_set.size;
  11829. if (i == h) {
  11830. // visited all hash table entries -> not found
  11831. return GGML_HASHTABLE_FULL;
  11832. }
  11833. }
  11834. return i;
  11835. }
  11836. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11837. size_t i = ggml_hash_find(hash_set, key);
  11838. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11839. }
  11840. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11841. size_t i = ggml_hash_find(hash_set, key);
  11842. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11843. if (hash_set.keys[i] == key) {
  11844. return GGML_HASHTABLE_ALREADY_EXISTS;
  11845. }
  11846. // insert
  11847. GGML_ASSERT(hash_set.keys[i] == NULL);
  11848. hash_set.keys[i] = key;
  11849. return i;
  11850. }
  11851. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11852. size_t i = ggml_hash_find(hash_set, key);
  11853. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11854. hash_set.keys[i] = key;
  11855. return i;
  11856. }
  11857. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11858. size = ggml_hash_size(size);
  11859. struct ggml_hash_set result;
  11860. result.size = size;
  11861. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11862. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11863. return result;
  11864. }
  11865. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11866. free(hash_set.keys);
  11867. }
  11868. struct hash_map {
  11869. struct ggml_hash_set set;
  11870. struct ggml_tensor ** vals;
  11871. };
  11872. static struct hash_map * ggml_new_hash_map(size_t size) {
  11873. struct hash_map * result = malloc(sizeof(struct hash_map));
  11874. result->set = ggml_hash_set_new(size);
  11875. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11876. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11877. return result;
  11878. }
  11879. static void ggml_hash_map_free(struct hash_map * map) {
  11880. ggml_hash_set_free(map->set);
  11881. free(map->vals);
  11882. free(map);
  11883. }
  11884. // gradient checkpointing
  11885. static struct ggml_tensor * ggml_recompute_graph_node(
  11886. struct ggml_context * ctx,
  11887. struct ggml_cgraph * graph,
  11888. struct hash_map * replacements,
  11889. struct ggml_tensor * node) {
  11890. if (node == NULL) {
  11891. return NULL;
  11892. }
  11893. if (node->is_param) {
  11894. return node;
  11895. }
  11896. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11897. return node;
  11898. }
  11899. int count_children = 0;
  11900. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11901. if (node->src[k]) {
  11902. ++count_children;
  11903. }
  11904. }
  11905. if (count_children == 0) {
  11906. return node;
  11907. }
  11908. size_t i = ggml_hash_find(replacements->set, node);
  11909. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  11910. if (replacements->set.keys[i] == node) {
  11911. return replacements->vals[i];
  11912. }
  11913. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  11914. // insert clone into replacements
  11915. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  11916. replacements->set.keys[i] = node;
  11917. replacements->vals[i] = clone;
  11918. clone->op = node->op;
  11919. clone->grad = node->grad;
  11920. clone->is_param = node->is_param;
  11921. clone->extra = node->extra;
  11922. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  11923. clone->nb[k] = node->nb[k];
  11924. }
  11925. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11926. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  11927. }
  11928. if (node->view_src != NULL) {
  11929. clone->data = (node->view_src->data == NULL)
  11930. ? NULL // view_src not yet allocated
  11931. : (char *) node->view_src->data // view_src already allocated
  11932. + node->view_offs;
  11933. clone->view_src = node->view_src;
  11934. clone->view_offs = node->view_offs;
  11935. }
  11936. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  11937. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  11938. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  11939. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  11940. return clone;
  11941. }
  11942. void ggml_build_backward_gradient_checkpointing(
  11943. struct ggml_context * ctx,
  11944. struct ggml_cgraph * gf,
  11945. struct ggml_cgraph * gb,
  11946. struct ggml_cgraph * gb_tmp,
  11947. struct ggml_tensor * * checkpoints,
  11948. int n_checkpoints) {
  11949. ggml_graph_cpy(gf, gb_tmp);
  11950. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  11951. if (n_checkpoints <= 0) {
  11952. ggml_graph_cpy(gb_tmp, gb);
  11953. return;
  11954. }
  11955. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  11956. // insert checkpoints in replacements
  11957. for (int i = 0; i < n_checkpoints; ++i) {
  11958. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  11959. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  11960. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  11961. replacements->set.keys[k] = checkpoints[i];
  11962. replacements->vals[k] = checkpoints[i];
  11963. }
  11964. ggml_graph_cpy(gf, gb);
  11965. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  11966. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  11967. // by recomputing them from checkpoints
  11968. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  11969. struct ggml_tensor * node = gb_tmp->nodes[i];
  11970. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11971. // insert new tensors recomputing src, reusing already made replacements,
  11972. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  11973. // recurse for input tensors,
  11974. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  11975. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  11976. }
  11977. // insert rewritten backward node with replacements made into resulting backward graph gb
  11978. ggml_build_forward_expand(gb, node);
  11979. }
  11980. ggml_hash_map_free(replacements);
  11981. }
  11982. // functions to change gradients considering the case that input a might be initial gradient with zero value
  11983. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11984. if (ggml_hash_contains(zero_table, a)) {
  11985. return b;
  11986. } else {
  11987. return ggml_add_impl(ctx, a, b, false);
  11988. }
  11989. }
  11990. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  11991. if (ggml_hash_contains(zero_table, a)) {
  11992. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  11993. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  11994. } else {
  11995. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  11996. }
  11997. }
  11998. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11999. if (ggml_hash_contains(zero_table, a)) {
  12000. return ggml_repeat(ctx, b, a);
  12001. } else {
  12002. return ggml_add1_impl(ctx, a, b, false);
  12003. }
  12004. }
  12005. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12006. if (ggml_hash_contains(zero_table, a)) {
  12007. return ggml_neg(ctx, b);
  12008. } else {
  12009. return ggml_sub_impl(ctx, a, b, false);
  12010. }
  12011. }
  12012. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12013. struct ggml_tensor * src0 = tensor->src[0];
  12014. struct ggml_tensor * src1 = tensor->src[1];
  12015. switch (tensor->op) {
  12016. case GGML_OP_DUP:
  12017. {
  12018. if (src0->grad) {
  12019. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12020. }
  12021. } break;
  12022. case GGML_OP_ADD:
  12023. {
  12024. if (src0->grad) {
  12025. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12026. }
  12027. if (src1->grad) {
  12028. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12029. }
  12030. } break;
  12031. case GGML_OP_ADD1:
  12032. {
  12033. if (src0->grad) {
  12034. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12035. }
  12036. if (src1->grad) {
  12037. src1->grad = ggml_add_or_set(ctx,
  12038. src1->grad,
  12039. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12040. zero_table);
  12041. }
  12042. } break;
  12043. case GGML_OP_ACC:
  12044. {
  12045. if (src0->grad) {
  12046. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12047. }
  12048. if (src1->grad) {
  12049. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12050. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12051. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12052. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12053. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12054. tensor->grad,
  12055. src1->grad->ne[0],
  12056. src1->grad->ne[1],
  12057. src1->grad->ne[2],
  12058. src1->grad->ne[3],
  12059. nb1, nb2, nb3, offset);
  12060. src1->grad =
  12061. ggml_add_or_set(ctx,
  12062. src1->grad,
  12063. ggml_reshape(ctx,
  12064. ggml_cont(ctx, tensor_grad_view),
  12065. src1->grad),
  12066. zero_table);
  12067. }
  12068. } break;
  12069. case GGML_OP_SUB:
  12070. {
  12071. if (src0->grad) {
  12072. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12073. }
  12074. if (src1->grad) {
  12075. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12076. }
  12077. } break;
  12078. case GGML_OP_MUL:
  12079. {
  12080. if (src0->grad) {
  12081. src0->grad =
  12082. ggml_add_or_set(ctx,
  12083. src0->grad,
  12084. ggml_mul(ctx, src1, tensor->grad),
  12085. zero_table);
  12086. }
  12087. if (src1->grad) {
  12088. src1->grad =
  12089. ggml_add_or_set(ctx,
  12090. src1->grad,
  12091. ggml_mul(ctx, src0, tensor->grad),
  12092. zero_table);
  12093. }
  12094. } break;
  12095. case GGML_OP_DIV:
  12096. {
  12097. if (src0->grad) {
  12098. src0->grad =
  12099. ggml_add_or_set(ctx,
  12100. src0->grad,
  12101. ggml_div(ctx, tensor->grad, src1),
  12102. zero_table);
  12103. }
  12104. if (src1->grad) {
  12105. src1->grad =
  12106. ggml_sub_or_set(ctx,
  12107. src1->grad,
  12108. ggml_mul(ctx,
  12109. tensor->grad,
  12110. ggml_div(ctx, tensor, src1)),
  12111. zero_table);
  12112. }
  12113. } break;
  12114. case GGML_OP_SQR:
  12115. {
  12116. if (src0->grad) {
  12117. src0->grad =
  12118. ggml_add_or_set(ctx,
  12119. src0->grad,
  12120. ggml_scale(ctx,
  12121. ggml_mul(ctx, src0, tensor->grad),
  12122. ggml_new_f32(ctx, 2.0f)),
  12123. zero_table);
  12124. }
  12125. } break;
  12126. case GGML_OP_SQRT:
  12127. {
  12128. if (src0->grad) {
  12129. src0->grad =
  12130. ggml_add_or_set(ctx,
  12131. src0->grad,
  12132. ggml_scale(ctx,
  12133. ggml_div(ctx,
  12134. tensor->grad,
  12135. tensor),
  12136. ggml_new_f32(ctx, 0.5f)),
  12137. zero_table);
  12138. }
  12139. } break;
  12140. case GGML_OP_LOG:
  12141. {
  12142. if (src0->grad) {
  12143. src0->grad =
  12144. ggml_add_or_set(ctx,
  12145. src0->grad,
  12146. ggml_div(ctx,
  12147. tensor->grad,
  12148. src0),
  12149. zero_table);
  12150. }
  12151. } break;
  12152. case GGML_OP_SUM:
  12153. {
  12154. if (src0->grad) {
  12155. src0->grad =
  12156. ggml_add1_or_set(ctx,
  12157. src0->grad,
  12158. tensor->grad,
  12159. zero_table);
  12160. }
  12161. } break;
  12162. case GGML_OP_SUM_ROWS:
  12163. {
  12164. if (src0->grad) {
  12165. src0->grad =
  12166. ggml_add_or_set(ctx,
  12167. src0->grad,
  12168. ggml_repeat(ctx,
  12169. tensor->grad,
  12170. src0->grad),
  12171. zero_table);
  12172. }
  12173. } break;
  12174. case GGML_OP_MEAN:
  12175. case GGML_OP_ARGMAX:
  12176. {
  12177. GGML_ASSERT(false); // TODO: implement
  12178. } break;
  12179. case GGML_OP_REPEAT:
  12180. {
  12181. // necessary for llama
  12182. if (src0->grad) {
  12183. src0->grad = ggml_add_or_set(ctx,
  12184. src0->grad,
  12185. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12186. zero_table);
  12187. }
  12188. } break;
  12189. case GGML_OP_REPEAT_BACK:
  12190. {
  12191. if (src0->grad) {
  12192. // TODO: test this
  12193. src0->grad = ggml_add_or_set(ctx,
  12194. src0->grad,
  12195. ggml_repeat(ctx, tensor->grad, src0->grad),
  12196. zero_table);
  12197. }
  12198. } break;
  12199. case GGML_OP_CONCAT:
  12200. {
  12201. GGML_ASSERT(false); // TODO: implement
  12202. } break;
  12203. case GGML_OP_SILU_BACK:
  12204. {
  12205. GGML_ASSERT(false); // TODO: not implemented
  12206. } break;
  12207. case GGML_OP_NORM:
  12208. {
  12209. GGML_ASSERT(false); // TODO: not implemented
  12210. } break;
  12211. case GGML_OP_RMS_NORM:
  12212. {
  12213. // necessary for llama
  12214. if (src0->grad) {
  12215. float eps;
  12216. memcpy(&eps, tensor->op_params, sizeof(float));
  12217. src0->grad = ggml_add_or_set(ctx,
  12218. src0->grad,
  12219. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12220. zero_table);
  12221. }
  12222. } break;
  12223. case GGML_OP_RMS_NORM_BACK:
  12224. {
  12225. GGML_ASSERT(false); // TODO: not implemented
  12226. } break;
  12227. case GGML_OP_GROUP_NORM:
  12228. {
  12229. GGML_ASSERT(false); // TODO: not implemented
  12230. } break;
  12231. case GGML_OP_MUL_MAT:
  12232. {
  12233. // https://cs231n.github.io/optimization-2/#staged
  12234. // # forward pass
  12235. // s0 = np.random.randn(5, 10)
  12236. // s1 = np.random.randn(10, 3)
  12237. // t = s0.dot(s1)
  12238. // # now suppose we had the gradient on t from above in the circuit
  12239. // dt = np.random.randn(*t.shape) # same shape as t
  12240. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12241. // ds1 = t.T.dot(dt)
  12242. // tensor.shape [m,p,qq,rr]
  12243. // src0.shape [n,m,q1,r1]
  12244. // src1.shape [n,p,qq,rr]
  12245. // necessary for llama
  12246. if (src0->grad) {
  12247. struct ggml_tensor * s1_tg =
  12248. ggml_out_prod(ctx, // [n,m,qq,rr]
  12249. src1, // [n,p,qq,rr]
  12250. tensor->grad); // [m,p,qq,rr]
  12251. const int64_t qq = s1_tg->ne[2];
  12252. const int64_t rr = s1_tg->ne[3];
  12253. const int64_t q1 = src0->ne[2];
  12254. const int64_t r1 = src0->ne[3];
  12255. const bool ne2_broadcasted = qq > q1;
  12256. const bool ne3_broadcasted = rr > r1;
  12257. if (ne2_broadcasted || ne3_broadcasted) {
  12258. // sum broadcast repetitions of s1_tg into shape of src0
  12259. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12260. }
  12261. src0->grad =
  12262. ggml_add_or_set(ctx,
  12263. src0->grad, // [n,m,q1,r1]
  12264. s1_tg, // [n,m,q1,r1]
  12265. zero_table);
  12266. }
  12267. if (src1->grad) {
  12268. src1->grad =
  12269. ggml_add_or_set(ctx,
  12270. src1->grad, // [n,p,qq,rr]
  12271. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12272. // ggml_cont(ctx, // [m,n,q1,r1]
  12273. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12274. // tensor->grad), // [m,p,qq,rr]
  12275. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12276. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12277. // // and then use ggml_out_prod
  12278. ggml_out_prod(ctx, // [n,p,qq,rr]
  12279. src0, // [n,m,q1,r1]
  12280. ggml_transpose(ctx, // [p,m,qq,rr]
  12281. tensor->grad)), // [m,p,qq,rr]
  12282. zero_table);
  12283. }
  12284. } break;
  12285. case GGML_OP_MUL_MAT_ID:
  12286. {
  12287. GGML_ASSERT(false); // TODO: not implemented
  12288. } break;
  12289. case GGML_OP_OUT_PROD:
  12290. {
  12291. GGML_ASSERT(false); // TODO: not implemented
  12292. } break;
  12293. case GGML_OP_SCALE:
  12294. {
  12295. // necessary for llama
  12296. if (src0->grad) {
  12297. src0->grad =
  12298. ggml_add_or_set(ctx,
  12299. src0->grad,
  12300. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12301. zero_table);
  12302. }
  12303. if (src1->grad) {
  12304. src1->grad =
  12305. ggml_add_or_set(ctx,
  12306. src1->grad,
  12307. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12308. zero_table);
  12309. }
  12310. } break;
  12311. case GGML_OP_SET:
  12312. {
  12313. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12314. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12315. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12316. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12317. struct ggml_tensor * tensor_grad_view = NULL;
  12318. if (src0->grad || src1->grad) {
  12319. GGML_ASSERT(src0->type == tensor->type);
  12320. GGML_ASSERT(tensor->grad->type == tensor->type);
  12321. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12322. tensor_grad_view = ggml_view_4d(ctx,
  12323. tensor->grad,
  12324. src1->grad->ne[0],
  12325. src1->grad->ne[1],
  12326. src1->grad->ne[2],
  12327. src1->grad->ne[3],
  12328. nb1, nb2, nb3, offset);
  12329. }
  12330. if (src0->grad) {
  12331. src0->grad = ggml_add_or_set(ctx,
  12332. src0->grad,
  12333. ggml_acc_impl(ctx,
  12334. tensor->grad,
  12335. ggml_neg(ctx, tensor_grad_view),
  12336. nb1, nb2, nb3, offset, false),
  12337. zero_table);
  12338. }
  12339. if (src1->grad) {
  12340. src1->grad =
  12341. ggml_add_or_set(ctx,
  12342. src1->grad,
  12343. ggml_reshape(ctx,
  12344. ggml_cont(ctx, tensor_grad_view),
  12345. src1->grad),
  12346. zero_table);
  12347. }
  12348. } break;
  12349. case GGML_OP_CPY:
  12350. {
  12351. // necessary for llama
  12352. // cpy overwrites value of src1 by src0 and returns view(src1)
  12353. // the overwriting is mathematically equivalent to:
  12354. // tensor = src0 * 1 + src1 * 0
  12355. if (src0->grad) {
  12356. // dsrc0 = dtensor * 1
  12357. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12358. }
  12359. if (src1->grad) {
  12360. // dsrc1 = dtensor * 0 -> noop
  12361. }
  12362. } break;
  12363. case GGML_OP_CONT:
  12364. {
  12365. // same as cpy
  12366. if (src0->grad) {
  12367. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12368. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12369. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12370. }
  12371. } break;
  12372. case GGML_OP_RESHAPE:
  12373. {
  12374. // necessary for llama
  12375. if (src0->grad) {
  12376. src0->grad =
  12377. ggml_add_or_set(ctx, src0->grad,
  12378. ggml_reshape(ctx,
  12379. ggml_is_contiguous(tensor->grad)
  12380. ? tensor->grad
  12381. : ggml_cont(ctx, tensor->grad),
  12382. src0->grad),
  12383. zero_table);
  12384. }
  12385. } break;
  12386. case GGML_OP_VIEW:
  12387. {
  12388. // necessary for llama
  12389. if (src0->grad) {
  12390. size_t offset;
  12391. memcpy(&offset, tensor->op_params, sizeof(offset));
  12392. size_t nb1 = tensor->nb[1];
  12393. size_t nb2 = tensor->nb[2];
  12394. size_t nb3 = tensor->nb[3];
  12395. if (src0->type != src0->grad->type) {
  12396. // gradient is typically F32, but src0 could be other type
  12397. size_t ng = ggml_element_size(src0->grad);
  12398. size_t n0 = ggml_element_size(src0);
  12399. GGML_ASSERT(offset % n0 == 0);
  12400. GGML_ASSERT(nb1 % n0 == 0);
  12401. GGML_ASSERT(nb2 % n0 == 0);
  12402. GGML_ASSERT(nb3 % n0 == 0);
  12403. offset = (offset / n0) * ng;
  12404. nb1 = (nb1 / n0) * ng;
  12405. nb2 = (nb2 / n0) * ng;
  12406. nb3 = (nb3 / n0) * ng;
  12407. }
  12408. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12409. }
  12410. } break;
  12411. case GGML_OP_PERMUTE:
  12412. {
  12413. // necessary for llama
  12414. if (src0->grad) {
  12415. int32_t * axes = (int32_t *) tensor->op_params;
  12416. int axis0 = axes[0] & 0x3;
  12417. int axis1 = axes[1] & 0x3;
  12418. int axis2 = axes[2] & 0x3;
  12419. int axis3 = axes[3] & 0x3;
  12420. int axes_backward[4] = {0,0,0,0};
  12421. axes_backward[axis0] = 0;
  12422. axes_backward[axis1] = 1;
  12423. axes_backward[axis2] = 2;
  12424. axes_backward[axis3] = 3;
  12425. src0->grad =
  12426. ggml_add_or_set(ctx, src0->grad,
  12427. ggml_permute(ctx,
  12428. tensor->grad,
  12429. axes_backward[0],
  12430. axes_backward[1],
  12431. axes_backward[2],
  12432. axes_backward[3]),
  12433. zero_table);
  12434. }
  12435. } break;
  12436. case GGML_OP_TRANSPOSE:
  12437. {
  12438. // necessary for llama
  12439. if (src0->grad) {
  12440. src0->grad =
  12441. ggml_add_or_set(ctx, src0->grad,
  12442. ggml_transpose(ctx, tensor->grad),
  12443. zero_table);
  12444. }
  12445. } break;
  12446. case GGML_OP_GET_ROWS:
  12447. {
  12448. // necessary for llama (only for tokenizer)
  12449. if (src0->grad) {
  12450. src0->grad =
  12451. ggml_add_or_set(ctx, src0->grad,
  12452. // last ggml_get_rows_back argument src0->grad is only
  12453. // necessary to setup correct output shape
  12454. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12455. zero_table);
  12456. }
  12457. if (src1->grad) {
  12458. // noop
  12459. }
  12460. } break;
  12461. case GGML_OP_GET_ROWS_BACK:
  12462. {
  12463. GGML_ASSERT(false); // TODO: not implemented
  12464. } break;
  12465. case GGML_OP_DIAG:
  12466. {
  12467. GGML_ASSERT(false); // TODO: not implemented
  12468. } break;
  12469. case GGML_OP_DIAG_MASK_INF:
  12470. {
  12471. // necessary for llama
  12472. if (src0->grad) {
  12473. const int n_past = ((int32_t *) tensor->op_params)[0];
  12474. src0->grad =
  12475. ggml_add_or_set(ctx, src0->grad,
  12476. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12477. zero_table);
  12478. }
  12479. } break;
  12480. case GGML_OP_DIAG_MASK_ZERO:
  12481. {
  12482. // necessary for llama
  12483. if (src0->grad) {
  12484. const int n_past = ((int32_t *) tensor->op_params)[0];
  12485. src0->grad =
  12486. ggml_add_or_set(ctx, src0->grad,
  12487. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12488. zero_table);
  12489. }
  12490. } break;
  12491. case GGML_OP_SOFT_MAX:
  12492. {
  12493. // necessary for llama
  12494. if (src0->grad) {
  12495. src0->grad =
  12496. ggml_add_or_set(ctx, src0->grad,
  12497. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12498. zero_table);
  12499. }
  12500. } break;
  12501. case GGML_OP_SOFT_MAX_BACK:
  12502. {
  12503. GGML_ASSERT(false); // TODO: not implemented
  12504. } break;
  12505. case GGML_OP_ROPE:
  12506. {
  12507. // necessary for llama
  12508. if (src0->grad) {
  12509. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12510. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12511. const int mode = ((int32_t *) tensor->op_params)[2];
  12512. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12513. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12514. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12515. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12516. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12517. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12518. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12519. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12520. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12521. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12522. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12523. src0->grad = ggml_add_or_set(ctx,
  12524. src0->grad,
  12525. ggml_rope_back(ctx,
  12526. tensor->grad,
  12527. src1,
  12528. n_dims,
  12529. mode,
  12530. n_ctx,
  12531. n_orig_ctx,
  12532. freq_base,
  12533. freq_scale,
  12534. ext_factor,
  12535. attn_factor,
  12536. beta_fast,
  12537. beta_slow,
  12538. xpos_base,
  12539. xpos_down),
  12540. zero_table);
  12541. }
  12542. } break;
  12543. case GGML_OP_ROPE_BACK:
  12544. {
  12545. if (src0->grad) {
  12546. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12547. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12548. const int mode = ((int32_t *) tensor->op_params)[2];
  12549. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12550. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12551. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12552. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12553. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12554. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12555. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12556. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12557. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12558. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12559. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12560. src0->grad = ggml_add_or_set(ctx,
  12561. src0->grad,
  12562. ggml_rope_impl(ctx,
  12563. tensor->grad,
  12564. src1,
  12565. n_dims,
  12566. mode,
  12567. n_ctx,
  12568. n_orig_ctx,
  12569. freq_base,
  12570. freq_scale,
  12571. ext_factor,
  12572. attn_factor,
  12573. beta_fast,
  12574. beta_slow,
  12575. xpos_base,
  12576. xpos_down,
  12577. false),
  12578. zero_table);
  12579. }
  12580. } break;
  12581. case GGML_OP_ALIBI:
  12582. {
  12583. GGML_ASSERT(false); // TODO: not implemented
  12584. } break;
  12585. case GGML_OP_CLAMP:
  12586. {
  12587. GGML_ASSERT(false); // TODO: not implemented
  12588. } break;
  12589. case GGML_OP_CONV_TRANSPOSE_1D:
  12590. {
  12591. GGML_ASSERT(false); // TODO: not implemented
  12592. } break;
  12593. case GGML_OP_IM2COL:
  12594. {
  12595. GGML_ASSERT(false); // TODO: not implemented
  12596. } break;
  12597. case GGML_OP_CONV_TRANSPOSE_2D:
  12598. {
  12599. GGML_ASSERT(false); // TODO: not implemented
  12600. } break;
  12601. case GGML_OP_POOL_1D:
  12602. {
  12603. GGML_ASSERT(false); // TODO: not implemented
  12604. } break;
  12605. case GGML_OP_POOL_2D:
  12606. {
  12607. GGML_ASSERT(false); // TODO: not implemented
  12608. } break;
  12609. case GGML_OP_UPSCALE:
  12610. {
  12611. GGML_ASSERT(false); // TODO: not implemented
  12612. } break;
  12613. case GGML_OP_ARGSORT:
  12614. {
  12615. GGML_ASSERT(false); // TODO: not implemented
  12616. } break;
  12617. case GGML_OP_FLASH_ATTN:
  12618. {
  12619. struct ggml_tensor * flash_grad = NULL;
  12620. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12621. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12622. GGML_ASSERT(t == 0 || t == 1);
  12623. bool masked = t != 0;
  12624. flash_grad =
  12625. ggml_flash_attn_back(ctx,
  12626. src0,
  12627. src1,
  12628. tensor->src[2],
  12629. tensor->grad,
  12630. masked);
  12631. }
  12632. struct ggml_tensor * src2 = tensor->src[2];
  12633. const int64_t elem_q = ggml_nelements(src0);
  12634. const int64_t elem_k = ggml_nelements(src1);
  12635. const int64_t elem_v = ggml_nelements(src2);
  12636. enum ggml_type result_type = flash_grad->type;
  12637. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12638. const size_t tsize = ggml_type_size(result_type);
  12639. const size_t offs_q = 0;
  12640. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12641. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12642. if (src0->grad) {
  12643. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12644. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12645. src0->grad = ggml_add_or_set(ctx,
  12646. src0->grad,
  12647. grad_q,
  12648. zero_table);
  12649. }
  12650. if (src1->grad) {
  12651. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12652. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12653. src1->grad = ggml_add_or_set(ctx,
  12654. src1->grad,
  12655. grad_k,
  12656. zero_table);
  12657. }
  12658. if (src2->grad) {
  12659. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12660. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12661. src2->grad = ggml_add_or_set(ctx,
  12662. src2->grad,
  12663. grad_v,
  12664. zero_table);
  12665. }
  12666. } break;
  12667. case GGML_OP_FLASH_FF:
  12668. {
  12669. GGML_ASSERT(false); // not supported
  12670. } break;
  12671. case GGML_OP_FLASH_ATTN_BACK:
  12672. {
  12673. GGML_ASSERT(false); // not supported
  12674. } break;
  12675. case GGML_OP_WIN_PART:
  12676. case GGML_OP_WIN_UNPART:
  12677. case GGML_OP_UNARY:
  12678. {
  12679. switch (ggml_get_unary_op(tensor)) {
  12680. case GGML_UNARY_OP_ABS:
  12681. {
  12682. if (src0->grad) {
  12683. src0->grad =
  12684. ggml_add_or_set(ctx,
  12685. src0->grad,
  12686. ggml_mul(ctx,
  12687. ggml_sgn(ctx, src0),
  12688. tensor->grad),
  12689. zero_table);
  12690. }
  12691. } break;
  12692. case GGML_UNARY_OP_SGN:
  12693. {
  12694. if (src0->grad) {
  12695. // noop
  12696. }
  12697. } break;
  12698. case GGML_UNARY_OP_NEG:
  12699. {
  12700. if (src0->grad) {
  12701. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12702. }
  12703. } break;
  12704. case GGML_UNARY_OP_STEP:
  12705. {
  12706. if (src0->grad) {
  12707. // noop
  12708. }
  12709. } break;
  12710. case GGML_UNARY_OP_TANH:
  12711. {
  12712. GGML_ASSERT(false); // TODO: not implemented
  12713. } break;
  12714. case GGML_UNARY_OP_ELU:
  12715. {
  12716. GGML_ASSERT(false); // TODO: not implemented
  12717. } break;
  12718. case GGML_UNARY_OP_RELU:
  12719. {
  12720. if (src0->grad) {
  12721. src0->grad = ggml_add_or_set(ctx,
  12722. src0->grad,
  12723. ggml_mul(ctx,
  12724. ggml_step(ctx, src0),
  12725. tensor->grad),
  12726. zero_table);
  12727. }
  12728. } break;
  12729. case GGML_UNARY_OP_GELU:
  12730. {
  12731. GGML_ASSERT(false); // TODO: not implemented
  12732. } break;
  12733. case GGML_UNARY_OP_GELU_QUICK:
  12734. {
  12735. GGML_ASSERT(false); // TODO: not implemented
  12736. } break;
  12737. case GGML_UNARY_OP_SILU:
  12738. {
  12739. // necessary for llama
  12740. if (src0->grad) {
  12741. src0->grad = ggml_add_or_set(ctx,
  12742. src0->grad,
  12743. ggml_silu_back(ctx, src0, tensor->grad),
  12744. zero_table);
  12745. }
  12746. } break;
  12747. default:
  12748. GGML_ASSERT(false);
  12749. }
  12750. } break;
  12751. case GGML_OP_GET_REL_POS:
  12752. case GGML_OP_ADD_REL_POS:
  12753. case GGML_OP_MAP_UNARY:
  12754. case GGML_OP_MAP_BINARY:
  12755. case GGML_OP_MAP_CUSTOM1_F32:
  12756. case GGML_OP_MAP_CUSTOM2_F32:
  12757. case GGML_OP_MAP_CUSTOM3_F32:
  12758. case GGML_OP_MAP_CUSTOM1:
  12759. case GGML_OP_MAP_CUSTOM2:
  12760. case GGML_OP_MAP_CUSTOM3:
  12761. {
  12762. GGML_ASSERT(false); // not supported
  12763. } break;
  12764. case GGML_OP_CROSS_ENTROPY_LOSS:
  12765. {
  12766. if (src0->grad) {
  12767. src0->grad = ggml_add_or_set(ctx,
  12768. src0->grad,
  12769. ggml_cross_entropy_loss_back(ctx,
  12770. src0,
  12771. src1,
  12772. tensor->grad),
  12773. zero_table);
  12774. }
  12775. } break;
  12776. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12777. {
  12778. GGML_ASSERT(false); // not supported
  12779. } break;
  12780. case GGML_OP_NONE:
  12781. {
  12782. // nop
  12783. } break;
  12784. case GGML_OP_COUNT:
  12785. {
  12786. GGML_ASSERT(false);
  12787. } break;
  12788. }
  12789. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12790. if (tensor->src[i] && tensor->src[i]->grad) {
  12791. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12792. }
  12793. }
  12794. }
  12795. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12796. if (node->grad == NULL) {
  12797. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12798. // it can also happen during forward pass, if the user performs computations with constants
  12799. if (node->op != GGML_OP_NONE) {
  12800. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12801. }
  12802. }
  12803. // check if already visited
  12804. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12805. return;
  12806. }
  12807. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12808. const int k =
  12809. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12810. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12811. /* unknown order, just fall back to using i*/ i;
  12812. if (node->src[k]) {
  12813. ggml_visit_parents(cgraph, node->src[k]);
  12814. }
  12815. }
  12816. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12817. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12818. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12819. if (strlen(node->name) == 0) {
  12820. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12821. }
  12822. cgraph->leafs[cgraph->n_leafs] = node;
  12823. cgraph->n_leafs++;
  12824. } else {
  12825. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12826. if (strlen(node->name) == 0) {
  12827. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12828. }
  12829. cgraph->nodes[cgraph->n_nodes] = node;
  12830. if (cgraph->grads) {
  12831. cgraph->grads[cgraph->n_nodes] = node->grad;
  12832. }
  12833. cgraph->n_nodes++;
  12834. }
  12835. }
  12836. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12837. if (!expand) {
  12838. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12839. ggml_graph_clear(cgraph);
  12840. }
  12841. const int n0 = cgraph->n_nodes;
  12842. UNUSED(n0);
  12843. ggml_visit_parents(cgraph, tensor);
  12844. const int n_new = cgraph->n_nodes - n0;
  12845. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12846. if (n_new > 0) {
  12847. // the last added node should always be starting point
  12848. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12849. }
  12850. }
  12851. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12852. ggml_build_forward_impl(cgraph, tensor, true);
  12853. }
  12854. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12855. GGML_ASSERT(gf->n_nodes > 0);
  12856. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12857. if (keep) {
  12858. for (int i = 0; i < gf->n_nodes; i++) {
  12859. struct ggml_tensor * node = gf->nodes[i];
  12860. if (node->grad) {
  12861. node->grad = ggml_dup_tensor(ctx, node);
  12862. gf->grads[i] = node->grad;
  12863. }
  12864. }
  12865. }
  12866. // remember original gradients which start with zero values
  12867. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12868. for (int i = 0; i < gf->n_nodes; i++) {
  12869. if (gf->grads[i]) {
  12870. ggml_hash_insert(zero_table, gf->grads[i]);
  12871. }
  12872. }
  12873. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12874. struct ggml_tensor * node = gf->nodes[i];
  12875. // inplace operations to add gradients are not created by ggml_compute_backward
  12876. // use allocator to automatically make inplace operations
  12877. if (node->grad) {
  12878. ggml_compute_backward(ctx, node, zero_table);
  12879. }
  12880. }
  12881. for (int i = 0; i < gf->n_nodes; i++) {
  12882. struct ggml_tensor * node = gf->nodes[i];
  12883. if (node->is_param) {
  12884. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12885. ggml_build_forward_expand(gb, node->grad);
  12886. }
  12887. }
  12888. ggml_hash_set_free(zero_table);
  12889. }
  12890. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  12891. size_t nbytes = sizeof(struct ggml_cgraph);
  12892. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  12893. if (grads) {
  12894. nbytes += size * sizeof(struct ggml_tensor *); // grads
  12895. }
  12896. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  12897. return nbytes;
  12898. }
  12899. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  12900. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  12901. }
  12902. size_t ggml_graph_overhead(void) {
  12903. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  12904. }
  12905. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  12906. const size_t obj_size = ggml_graph_nbytes(size, grads);
  12907. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12908. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12909. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  12910. size_t hash_size = ggml_hash_size(size * 2);
  12911. struct ggml_tensor ** nodes_ptr = data_start;
  12912. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  12913. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  12914. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  12915. // check that we allocated the correct amount of memory
  12916. assert(obj_size == (size_t) (
  12917. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  12918. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  12919. *cgraph = (struct ggml_cgraph) {
  12920. /*.size =*/ size,
  12921. /*.n_nodes =*/ 0,
  12922. /*.n_leafs =*/ 0,
  12923. /*.nodes =*/ nodes_ptr,
  12924. /*.grads =*/ grads_ptr,
  12925. /*.leafs =*/ leafs_ptr,
  12926. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  12927. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  12928. /*.perf_runs =*/ 0,
  12929. /*.perf_cycles =*/ 0,
  12930. /*.perf_time_us =*/ 0,
  12931. };
  12932. return cgraph;
  12933. }
  12934. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  12935. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  12936. }
  12937. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  12938. struct ggml_cgraph cgraph = {
  12939. /*.size =*/ 0,
  12940. /*.n_nodes =*/ i1 - i0,
  12941. /*.n_leafs =*/ 0,
  12942. /*.nodes =*/ cgraph0->nodes + i0,
  12943. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  12944. /*.leafs =*/ NULL,
  12945. /*.hash_table =*/ { 0, NULL },
  12946. /*.order =*/ cgraph0->order,
  12947. /*.perf_runs =*/ 0,
  12948. /*.perf_cycles =*/ 0,
  12949. /*.perf_time_us =*/ 0,
  12950. };
  12951. return cgraph;
  12952. }
  12953. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  12954. GGML_ASSERT(dst->size >= src->n_leafs);
  12955. GGML_ASSERT(dst->size >= src->n_nodes);
  12956. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  12957. dst->n_leafs = src->n_leafs;
  12958. dst->n_nodes = src->n_nodes;
  12959. dst->order = src->order;
  12960. for (int i = 0; i < src->n_leafs; ++i) {
  12961. dst->leafs[i] = src->leafs[i];
  12962. }
  12963. for (int i = 0; i < src->n_nodes; ++i) {
  12964. dst->nodes[i] = src->nodes[i];
  12965. }
  12966. if (src->grads) {
  12967. GGML_ASSERT(dst->grads != NULL);
  12968. for (int i = 0; i < src->n_nodes; ++i) {
  12969. dst->grads[i] = src->grads[i];
  12970. }
  12971. }
  12972. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  12973. if (src->visited_hash_table.keys[i]) {
  12974. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  12975. }
  12976. }
  12977. }
  12978. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12979. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  12980. ggml_graph_cpy(cgraph, result);
  12981. return result;
  12982. }
  12983. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12984. GGML_ASSERT(cgraph->grads != NULL);
  12985. for (int i = 0; i < cgraph->n_nodes; i++) {
  12986. struct ggml_tensor * grad = cgraph->grads[i];
  12987. if (grad) {
  12988. ggml_set_zero(grad);
  12989. }
  12990. }
  12991. }
  12992. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  12993. cgraph->n_leafs = 0;
  12994. cgraph->n_nodes = 0;
  12995. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  12996. }
  12997. //
  12998. // thread data
  12999. //
  13000. // synchronization is done via busy loops
  13001. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13002. //
  13003. #ifdef __APPLE__
  13004. //#include <os/lock.h>
  13005. //
  13006. //typedef os_unfair_lock ggml_lock_t;
  13007. //
  13008. //#define ggml_lock_init(x) UNUSED(x)
  13009. //#define ggml_lock_destroy(x) UNUSED(x)
  13010. //#define ggml_lock_lock os_unfair_lock_lock
  13011. //#define ggml_lock_unlock os_unfair_lock_unlock
  13012. //
  13013. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13014. typedef int ggml_lock_t;
  13015. #define ggml_lock_init(x) UNUSED(x)
  13016. #define ggml_lock_destroy(x) UNUSED(x)
  13017. #define ggml_lock_lock(x) UNUSED(x)
  13018. #define ggml_lock_unlock(x) UNUSED(x)
  13019. #define GGML_LOCK_INITIALIZER 0
  13020. typedef pthread_t ggml_thread_t;
  13021. #define ggml_thread_create pthread_create
  13022. #define ggml_thread_join pthread_join
  13023. #else
  13024. //typedef pthread_spinlock_t ggml_lock_t;
  13025. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13026. //#define ggml_lock_destroy pthread_spin_destroy
  13027. //#define ggml_lock_lock pthread_spin_lock
  13028. //#define ggml_lock_unlock pthread_spin_unlock
  13029. typedef int ggml_lock_t;
  13030. #define ggml_lock_init(x) UNUSED(x)
  13031. #define ggml_lock_destroy(x) UNUSED(x)
  13032. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13033. #define ggml_lock_lock(x) _mm_pause()
  13034. #else
  13035. #define ggml_lock_lock(x) UNUSED(x)
  13036. #endif
  13037. #define ggml_lock_unlock(x) UNUSED(x)
  13038. #define GGML_LOCK_INITIALIZER 0
  13039. typedef pthread_t ggml_thread_t;
  13040. #define ggml_thread_create pthread_create
  13041. #define ggml_thread_join pthread_join
  13042. #endif
  13043. // Android's libc implementation "bionic" does not support setting affinity
  13044. #if defined(__linux__) && !defined(__BIONIC__)
  13045. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13046. if (!ggml_is_numa()) {
  13047. return;
  13048. }
  13049. // run thread on node_num thread_n / (threads per node)
  13050. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13051. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13052. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13053. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13054. CPU_ZERO_S(setsize, cpus);
  13055. for (size_t i = 0; i < node->n_cpus; ++i) {
  13056. CPU_SET_S(node->cpus[i], setsize, cpus);
  13057. }
  13058. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13059. if (rv) {
  13060. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13061. strerror(rv));
  13062. }
  13063. CPU_FREE(cpus);
  13064. }
  13065. static void clear_numa_thread_affinity(void) {
  13066. if (!ggml_is_numa()) {
  13067. return;
  13068. }
  13069. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13070. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13071. CPU_ZERO_S(setsize, cpus);
  13072. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13073. CPU_SET_S(i, setsize, cpus);
  13074. }
  13075. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13076. if (rv) {
  13077. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13078. strerror(rv));
  13079. }
  13080. CPU_FREE(cpus);
  13081. }
  13082. #else
  13083. // TODO: Windows etc.
  13084. // (the linux implementation may also work on BSD, someone should test)
  13085. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13086. static void clear_numa_thread_affinity(void) {}
  13087. #endif
  13088. struct ggml_compute_state_shared {
  13089. const struct ggml_cgraph * cgraph;
  13090. const struct ggml_cplan * cplan;
  13091. int64_t perf_node_start_cycles;
  13092. int64_t perf_node_start_time_us;
  13093. const int n_threads;
  13094. // synchronization primitives
  13095. atomic_int n_active; // num active threads
  13096. atomic_int node_n; // active graph node
  13097. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13098. void * abort_callback_data;
  13099. };
  13100. struct ggml_compute_state {
  13101. ggml_thread_t thrd;
  13102. int ith;
  13103. struct ggml_compute_state_shared * shared;
  13104. };
  13105. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13106. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13107. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13108. node->perf_runs++;
  13109. node->perf_cycles += cycles_cur;
  13110. node->perf_time_us += time_us_cur;
  13111. }
  13112. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13113. int n_tasks = 0;
  13114. switch (node->op) {
  13115. case GGML_OP_CPY:
  13116. case GGML_OP_DUP:
  13117. case GGML_OP_ADD:
  13118. case GGML_OP_ADD1:
  13119. case GGML_OP_ACC:
  13120. {
  13121. n_tasks = n_threads;
  13122. } break;
  13123. case GGML_OP_SUB:
  13124. case GGML_OP_SQR:
  13125. case GGML_OP_SQRT:
  13126. case GGML_OP_LOG:
  13127. case GGML_OP_SUM:
  13128. case GGML_OP_SUM_ROWS:
  13129. case GGML_OP_MEAN:
  13130. case GGML_OP_ARGMAX:
  13131. case GGML_OP_REPEAT:
  13132. case GGML_OP_REPEAT_BACK:
  13133. {
  13134. n_tasks = 1;
  13135. } break;
  13136. case GGML_OP_UNARY:
  13137. switch (ggml_get_unary_op(node)) {
  13138. case GGML_UNARY_OP_ABS:
  13139. case GGML_UNARY_OP_SGN:
  13140. case GGML_UNARY_OP_NEG:
  13141. case GGML_UNARY_OP_STEP:
  13142. case GGML_UNARY_OP_TANH:
  13143. case GGML_UNARY_OP_ELU:
  13144. case GGML_UNARY_OP_RELU:
  13145. case GGML_UNARY_OP_LEAKY:
  13146. {
  13147. n_tasks = 1;
  13148. } break;
  13149. case GGML_UNARY_OP_GELU:
  13150. case GGML_UNARY_OP_GELU_QUICK:
  13151. case GGML_UNARY_OP_SILU:
  13152. {
  13153. n_tasks = n_threads;
  13154. } break;
  13155. default:
  13156. GGML_ASSERT(false);
  13157. }
  13158. break;
  13159. case GGML_OP_SILU_BACK:
  13160. case GGML_OP_MUL:
  13161. case GGML_OP_DIV:
  13162. case GGML_OP_NORM:
  13163. case GGML_OP_RMS_NORM:
  13164. case GGML_OP_RMS_NORM_BACK:
  13165. case GGML_OP_GROUP_NORM:
  13166. case GGML_OP_CONCAT:
  13167. {
  13168. n_tasks = n_threads;
  13169. } break;
  13170. case GGML_OP_MUL_MAT:
  13171. {
  13172. n_tasks = n_threads;
  13173. // TODO: use different scheduling for different matrix sizes
  13174. //const int nr0 = ggml_nrows(node->src[0]);
  13175. //const int nr1 = ggml_nrows(node->src[1]);
  13176. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13177. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13178. #if defined(GGML_USE_CUBLAS)
  13179. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13180. n_tasks = 1; // TODO: this actually is doing nothing
  13181. // the threads are still spinning
  13182. }
  13183. #elif defined(GGML_USE_CLBLAST)
  13184. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13185. n_tasks = 1; // TODO: this actually is doing nothing
  13186. // the threads are still spinning
  13187. }
  13188. #endif
  13189. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13190. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13191. n_tasks = 1; // TODO: this actually is doing nothing
  13192. // the threads are still spinning
  13193. }
  13194. #endif
  13195. } break;
  13196. case GGML_OP_MUL_MAT_ID:
  13197. {
  13198. // FIXME: blas
  13199. n_tasks = n_threads;
  13200. } break;
  13201. case GGML_OP_OUT_PROD:
  13202. {
  13203. n_tasks = n_threads;
  13204. } break;
  13205. case GGML_OP_SCALE:
  13206. case GGML_OP_SET:
  13207. case GGML_OP_CONT:
  13208. case GGML_OP_RESHAPE:
  13209. case GGML_OP_VIEW:
  13210. case GGML_OP_PERMUTE:
  13211. case GGML_OP_TRANSPOSE:
  13212. case GGML_OP_GET_ROWS:
  13213. case GGML_OP_GET_ROWS_BACK:
  13214. case GGML_OP_DIAG:
  13215. {
  13216. n_tasks = 1;
  13217. } break;
  13218. case GGML_OP_DIAG_MASK_ZERO:
  13219. case GGML_OP_DIAG_MASK_INF:
  13220. case GGML_OP_SOFT_MAX_BACK:
  13221. case GGML_OP_ROPE:
  13222. case GGML_OP_ROPE_BACK:
  13223. case GGML_OP_ADD_REL_POS:
  13224. {
  13225. n_tasks = n_threads;
  13226. } break;
  13227. case GGML_OP_ALIBI:
  13228. {
  13229. n_tasks = 1; //TODO
  13230. } break;
  13231. case GGML_OP_CLAMP:
  13232. {
  13233. n_tasks = 1; //TODO
  13234. } break;
  13235. case GGML_OP_SOFT_MAX:
  13236. {
  13237. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13238. } break;
  13239. case GGML_OP_CONV_TRANSPOSE_1D:
  13240. {
  13241. n_tasks = n_threads;
  13242. } break;
  13243. case GGML_OP_IM2COL:
  13244. {
  13245. n_tasks = n_threads;
  13246. } break;
  13247. case GGML_OP_CONV_TRANSPOSE_2D:
  13248. {
  13249. n_tasks = n_threads;
  13250. } break;
  13251. case GGML_OP_POOL_1D:
  13252. case GGML_OP_POOL_2D:
  13253. {
  13254. n_tasks = 1;
  13255. } break;
  13256. case GGML_OP_UPSCALE:
  13257. {
  13258. n_tasks = n_threads;
  13259. } break;
  13260. case GGML_OP_ARGSORT:
  13261. {
  13262. n_tasks = n_threads;
  13263. } break;
  13264. case GGML_OP_FLASH_ATTN:
  13265. {
  13266. n_tasks = n_threads;
  13267. } break;
  13268. case GGML_OP_FLASH_FF:
  13269. {
  13270. n_tasks = n_threads;
  13271. } break;
  13272. case GGML_OP_FLASH_ATTN_BACK:
  13273. {
  13274. n_tasks = n_threads;
  13275. } break;
  13276. case GGML_OP_WIN_PART:
  13277. case GGML_OP_WIN_UNPART:
  13278. case GGML_OP_GET_REL_POS:
  13279. case GGML_OP_MAP_UNARY:
  13280. case GGML_OP_MAP_BINARY:
  13281. case GGML_OP_MAP_CUSTOM1_F32:
  13282. case GGML_OP_MAP_CUSTOM2_F32:
  13283. case GGML_OP_MAP_CUSTOM3_F32:
  13284. {
  13285. n_tasks = 1;
  13286. } break;
  13287. case GGML_OP_MAP_CUSTOM1:
  13288. {
  13289. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13290. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13291. n_tasks = n_threads;
  13292. } else {
  13293. n_tasks = MIN(p->n_tasks, n_threads);
  13294. }
  13295. } break;
  13296. case GGML_OP_MAP_CUSTOM2:
  13297. {
  13298. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13299. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13300. n_tasks = n_threads;
  13301. } else {
  13302. n_tasks = MIN(p->n_tasks, n_threads);
  13303. }
  13304. } break;
  13305. case GGML_OP_MAP_CUSTOM3:
  13306. {
  13307. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13308. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13309. n_tasks = n_threads;
  13310. } else {
  13311. n_tasks = MIN(p->n_tasks, n_threads);
  13312. }
  13313. } break;
  13314. case GGML_OP_CROSS_ENTROPY_LOSS:
  13315. {
  13316. n_tasks = n_threads;
  13317. } break;
  13318. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13319. {
  13320. n_tasks = n_threads;
  13321. } break;
  13322. case GGML_OP_NONE:
  13323. {
  13324. n_tasks = 1;
  13325. } break;
  13326. case GGML_OP_COUNT:
  13327. {
  13328. GGML_ASSERT(false);
  13329. } break;
  13330. default:
  13331. {
  13332. fprintf(stderr, "%s: op not implemented: ", __func__);
  13333. if (node->op < GGML_OP_COUNT) {
  13334. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13335. } else {
  13336. fprintf(stderr, "%d\n", node->op);
  13337. }
  13338. GGML_ASSERT(false);
  13339. } break;
  13340. }
  13341. assert(n_tasks > 0);
  13342. return n_tasks;
  13343. }
  13344. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13345. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13346. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13347. const struct ggml_cplan * cplan = state->shared->cplan;
  13348. const int n_threads = state->shared->n_threads;
  13349. set_numa_thread_affinity(state->ith, n_threads);
  13350. int node_n = -1;
  13351. while (true) {
  13352. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13353. state->shared->node_n += 1;
  13354. return (thread_ret_t) GGML_EXIT_ABORTED;
  13355. }
  13356. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13357. // all other threads are finished and spinning
  13358. // do finalize and init here so we don't have synchronize again
  13359. struct ggml_compute_params params = {
  13360. /*.type =*/ GGML_TASK_FINALIZE,
  13361. /*.ith =*/ 0,
  13362. /*.nth =*/ 0,
  13363. /*.wsize =*/ cplan->work_size,
  13364. /*.wdata =*/ cplan->work_data,
  13365. };
  13366. if (node_n != -1) {
  13367. /* FINALIZE */
  13368. struct ggml_tensor * node = cgraph->nodes[node_n];
  13369. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13370. params.nth = ggml_get_n_tasks(node, n_threads);
  13371. ggml_compute_forward(&params, node);
  13372. }
  13373. ggml_graph_compute_perf_stats_node(node, state->shared);
  13374. }
  13375. // distribute new work or execute it direct if 1T
  13376. while (++node_n < cgraph->n_nodes) {
  13377. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13378. struct ggml_tensor * node = cgraph->nodes[node_n];
  13379. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13380. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13381. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13382. params.nth = n_tasks;
  13383. /* INIT */
  13384. if (GGML_OP_HAS_INIT[node->op]) {
  13385. params.type = GGML_TASK_INIT;
  13386. ggml_compute_forward(&params, node);
  13387. }
  13388. if (n_tasks == 1) {
  13389. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13390. // they do something more efficient than spinning (?)
  13391. params.type = GGML_TASK_COMPUTE;
  13392. ggml_compute_forward(&params, node);
  13393. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13394. params.type = GGML_TASK_FINALIZE;
  13395. ggml_compute_forward(&params, node);
  13396. }
  13397. ggml_graph_compute_perf_stats_node(node, state->shared);
  13398. } else {
  13399. break;
  13400. }
  13401. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13402. break;
  13403. }
  13404. }
  13405. atomic_store(&state->shared->n_active, n_threads);
  13406. atomic_store(&state->shared->node_n, node_n);
  13407. } else {
  13408. // wait for other threads to finish
  13409. const int last = node_n;
  13410. while (true) {
  13411. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13412. // depending on the workload and the operating system.
  13413. // since it is not clear what is the best approach, it should potentially become user-configurable
  13414. // ref: https://github.com/ggerganov/ggml/issues/291
  13415. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13416. sched_yield();
  13417. #endif
  13418. node_n = atomic_load(&state->shared->node_n);
  13419. if (node_n != last) break;
  13420. };
  13421. }
  13422. // check if we should stop
  13423. if (node_n >= cgraph->n_nodes) break;
  13424. /* COMPUTE */
  13425. struct ggml_tensor * node = cgraph->nodes[node_n];
  13426. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13427. struct ggml_compute_params params = {
  13428. /*.type =*/ GGML_TASK_COMPUTE,
  13429. /*.ith =*/ state->ith,
  13430. /*.nth =*/ n_tasks,
  13431. /*.wsize =*/ cplan->work_size,
  13432. /*.wdata =*/ cplan->work_data,
  13433. };
  13434. if (state->ith < n_tasks) {
  13435. ggml_compute_forward(&params, node);
  13436. }
  13437. }
  13438. return GGML_EXIT_SUCCESS;
  13439. }
  13440. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13441. if (n_threads <= 0) {
  13442. n_threads = GGML_DEFAULT_N_THREADS;
  13443. }
  13444. size_t work_size = 0;
  13445. struct ggml_cplan cplan;
  13446. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13447. // thread scheduling for the different operations + work buffer size estimation
  13448. for (int i = 0; i < cgraph->n_nodes; i++) {
  13449. struct ggml_tensor * node = cgraph->nodes[i];
  13450. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13451. size_t cur = 0;
  13452. switch (node->op) {
  13453. case GGML_OP_CPY:
  13454. case GGML_OP_DUP:
  13455. {
  13456. if (ggml_is_quantized(node->type)) {
  13457. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13458. }
  13459. } break;
  13460. case GGML_OP_ADD:
  13461. case GGML_OP_ADD1:
  13462. {
  13463. if (ggml_is_quantized(node->src[0]->type)) {
  13464. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13465. }
  13466. } break;
  13467. case GGML_OP_ACC:
  13468. {
  13469. if (ggml_is_quantized(node->src[0]->type)) {
  13470. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13471. }
  13472. } break;
  13473. case GGML_OP_MUL_MAT:
  13474. {
  13475. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13476. #if defined(GGML_USE_CLBLAST)
  13477. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13478. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13479. } else
  13480. #endif
  13481. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13482. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13483. if (node->src[0]->type != GGML_TYPE_F32) {
  13484. // here we need memory just for single 2D matrix from src0
  13485. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13486. }
  13487. } else
  13488. #endif
  13489. if (node->src[1]->type != vec_dot_type) {
  13490. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13491. }
  13492. } break;
  13493. case GGML_OP_MUL_MAT_ID:
  13494. {
  13495. const struct ggml_tensor * a = node->src[2];
  13496. const struct ggml_tensor * b = node->src[1];
  13497. const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
  13498. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13499. if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
  13500. if (a->type != GGML_TYPE_F32) {
  13501. // here we need memory just for single 2D matrix from src0
  13502. cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
  13503. }
  13504. } else
  13505. #endif
  13506. if (b->type != vec_dot_type) {
  13507. cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
  13508. }
  13509. } break;
  13510. case GGML_OP_OUT_PROD:
  13511. {
  13512. if (ggml_is_quantized(node->src[0]->type)) {
  13513. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13514. }
  13515. } break;
  13516. case GGML_OP_SOFT_MAX:
  13517. {
  13518. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13519. } break;
  13520. case GGML_OP_CONV_TRANSPOSE_1D:
  13521. {
  13522. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13523. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13524. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13525. const int64_t ne00 = node->src[0]->ne[0]; // K
  13526. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13527. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13528. const int64_t ne10 = node->src[1]->ne[0]; // L
  13529. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13530. if (node->src[0]->type == GGML_TYPE_F16 &&
  13531. node->src[1]->type == GGML_TYPE_F32) {
  13532. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13533. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13534. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13535. node->src[1]->type == GGML_TYPE_F32) {
  13536. cur += sizeof(float)*ne00*ne01*ne02;
  13537. cur += sizeof(float)*ne10*ne11;
  13538. } else {
  13539. GGML_ASSERT(false);
  13540. }
  13541. } break;
  13542. case GGML_OP_CONV_TRANSPOSE_2D:
  13543. {
  13544. const int64_t ne00 = node->src[0]->ne[0]; // W
  13545. const int64_t ne01 = node->src[0]->ne[1]; // H
  13546. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13547. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13548. const int64_t ne10 = node->src[1]->ne[0]; // W
  13549. const int64_t ne11 = node->src[1]->ne[1]; // H
  13550. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13551. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13552. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13553. } break;
  13554. case GGML_OP_FLASH_ATTN:
  13555. {
  13556. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13557. if (node->src[1]->type == GGML_TYPE_F32) {
  13558. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13559. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13560. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13561. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13562. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13563. }
  13564. } break;
  13565. case GGML_OP_FLASH_FF:
  13566. {
  13567. if (node->src[1]->type == GGML_TYPE_F32) {
  13568. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13569. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13570. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13571. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13572. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13573. }
  13574. } break;
  13575. case GGML_OP_FLASH_ATTN_BACK:
  13576. {
  13577. const int64_t D = node->src[0]->ne[0];
  13578. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13579. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13580. if (node->src[1]->type == GGML_TYPE_F32) {
  13581. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13582. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13583. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13584. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13585. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13586. }
  13587. } break;
  13588. case GGML_OP_CROSS_ENTROPY_LOSS:
  13589. {
  13590. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13591. } break;
  13592. case GGML_OP_COUNT:
  13593. {
  13594. GGML_ASSERT(false);
  13595. } break;
  13596. default:
  13597. break;
  13598. }
  13599. work_size = MAX(work_size, cur);
  13600. }
  13601. if (work_size > 0) {
  13602. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13603. }
  13604. cplan.n_threads = n_threads;
  13605. cplan.work_size = work_size;
  13606. cplan.work_data = NULL;
  13607. return cplan;
  13608. }
  13609. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13610. {
  13611. GGML_ASSERT(cplan);
  13612. GGML_ASSERT(cplan->n_threads > 0);
  13613. if (cplan->work_size > 0) {
  13614. GGML_ASSERT(cplan->work_data);
  13615. }
  13616. }
  13617. const int n_threads = cplan->n_threads;
  13618. struct ggml_compute_state_shared state_shared = {
  13619. /*.cgraph =*/ cgraph,
  13620. /*.cgraph_plan =*/ cplan,
  13621. /*.perf_node_start_cycles =*/ 0,
  13622. /*.perf_node_start_time_us =*/ 0,
  13623. /*.n_threads =*/ n_threads,
  13624. /*.n_active =*/ n_threads,
  13625. /*.node_n =*/ -1,
  13626. /*.abort_callback =*/ NULL,
  13627. /*.abort_callback_data =*/ NULL,
  13628. };
  13629. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13630. // create thread pool
  13631. if (n_threads > 1) {
  13632. for (int j = 1; j < n_threads; ++j) {
  13633. workers[j] = (struct ggml_compute_state) {
  13634. .thrd = 0,
  13635. .ith = j,
  13636. .shared = &state_shared,
  13637. };
  13638. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13639. GGML_ASSERT(rc == 0);
  13640. UNUSED(rc);
  13641. }
  13642. }
  13643. workers[0].ith = 0;
  13644. workers[0].shared = &state_shared;
  13645. const int64_t perf_start_cycles = ggml_perf_cycles();
  13646. const int64_t perf_start_time_us = ggml_perf_time_us();
  13647. // this is a work thread too
  13648. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13649. // don't leave affinity set on the main thread
  13650. clear_numa_thread_affinity();
  13651. // join or kill thread pool
  13652. if (n_threads > 1) {
  13653. for (int j = 1; j < n_threads; j++) {
  13654. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13655. GGML_ASSERT(rc == 0);
  13656. }
  13657. }
  13658. // performance stats (graph)
  13659. {
  13660. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13661. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13662. cgraph->perf_runs++;
  13663. cgraph->perf_cycles += perf_cycles_cur;
  13664. cgraph->perf_time_us += perf_time_us_cur;
  13665. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13666. __func__, cgraph->perf_runs,
  13667. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13668. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13669. (double) perf_time_us_cur / 1000.0,
  13670. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13671. }
  13672. return compute_status;
  13673. }
  13674. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13675. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13676. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13677. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13678. ggml_graph_compute(cgraph, &cplan);
  13679. }
  13680. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13681. for (int i = 0; i < cgraph->n_leafs; i++) {
  13682. struct ggml_tensor * leaf = cgraph->leafs[i];
  13683. if (strcmp(leaf->name, name) == 0) {
  13684. return leaf;
  13685. }
  13686. }
  13687. for (int i = 0; i < cgraph->n_nodes; i++) {
  13688. struct ggml_tensor * node = cgraph->nodes[i];
  13689. if (strcmp(node->name, name) == 0) {
  13690. return node;
  13691. }
  13692. }
  13693. return NULL;
  13694. }
  13695. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13696. const int64_t * ne = tensor->ne;
  13697. const size_t * nb = tensor->nb;
  13698. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13699. ggml_type_name(tensor->type),
  13700. ggml_op_name (tensor->op),
  13701. tensor->n_dims,
  13702. ne[0], ne[1], ne[2], ne[3],
  13703. nb[0], nb[1], nb[2], nb[3],
  13704. tensor->data,
  13705. tensor->name);
  13706. }
  13707. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13708. const int64_t * ne = tensor->ne;
  13709. const size_t * nb = tensor->nb;
  13710. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13711. arg,
  13712. ggml_type_name(tensor->type),
  13713. ggml_op_name (tensor->op),
  13714. tensor->n_dims,
  13715. ne[0], ne[1], ne[2], ne[3],
  13716. nb[0], nb[1], nb[2], nb[3],
  13717. tensor->data,
  13718. tensor->name);
  13719. }
  13720. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13721. uint64_t size_eval = 0;
  13722. // compute size of intermediate results
  13723. // TODO: does not take into account scratch buffers !!!!
  13724. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13725. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13726. }
  13727. // print
  13728. {
  13729. FILE * fout = stdout;
  13730. fprintf(fout, "\n");
  13731. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13732. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13733. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13734. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13735. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13736. // header
  13737. fprintf(fout, "\n");
  13738. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13739. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13740. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13741. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13742. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13743. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13744. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13745. }
  13746. // header
  13747. fprintf(fout, "\n");
  13748. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13749. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13750. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13751. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13752. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13753. if (cgraph->nodes[i]->src[j]) {
  13754. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13755. }
  13756. }
  13757. fprintf(fout, "\n");
  13758. }
  13759. fprintf(fout, "\n");
  13760. }
  13761. // write binary data
  13762. {
  13763. FILE * fout = fopen(fname, "wb");
  13764. if (!fout) {
  13765. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13766. return;
  13767. }
  13768. // header
  13769. {
  13770. const uint32_t magic = GGML_FILE_MAGIC;
  13771. const uint32_t version = GGML_FILE_VERSION;
  13772. const uint32_t n_leafs = cgraph->n_leafs;
  13773. const uint32_t n_nodes = cgraph->n_nodes;
  13774. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13775. fwrite(&version, sizeof(uint32_t), 1, fout);
  13776. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13777. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13778. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13779. }
  13780. // leafs
  13781. {
  13782. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13783. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13784. const uint32_t type = tensor->type;
  13785. const uint32_t op = tensor->op;
  13786. const uint32_t n_dims = tensor->n_dims;
  13787. fwrite(&type, sizeof(uint32_t), 1, fout);
  13788. fwrite(&op, sizeof(uint32_t), 1, fout);
  13789. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13790. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13791. const uint64_t ne = tensor->ne[j];
  13792. const uint64_t nb = tensor->nb[j];
  13793. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13794. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13795. }
  13796. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13797. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13798. // dump the data
  13799. // TODO: pad this to 32 byte boundary
  13800. {
  13801. const size_t size = ggml_nbytes(tensor);
  13802. fwrite(tensor->data, sizeof(char), size, fout);
  13803. }
  13804. }
  13805. }
  13806. // nodes
  13807. {
  13808. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13809. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13810. const uint32_t type = tensor->type;
  13811. const uint32_t op = tensor->op;
  13812. const uint32_t n_dims = tensor->n_dims;
  13813. fwrite(&type, sizeof(uint32_t), 1, fout);
  13814. fwrite(&op, sizeof(uint32_t), 1, fout);
  13815. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13816. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13817. const uint64_t ne = tensor->ne[j];
  13818. const uint64_t nb = tensor->nb[j];
  13819. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13820. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13821. }
  13822. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13823. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13824. // output the op arguments
  13825. {
  13826. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13827. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13828. args[j] = tensor->src[j];
  13829. }
  13830. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13831. if (args[j]) {
  13832. int32_t idx = -1;
  13833. // check if leaf
  13834. {
  13835. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13836. if (args[j] == cgraph->leafs[k]) {
  13837. idx = k;
  13838. break;
  13839. }
  13840. }
  13841. }
  13842. // check if node
  13843. if (idx == -1) {
  13844. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13845. if (args[j] == cgraph->nodes[k]) {
  13846. idx = cgraph->n_leafs + k;
  13847. break;
  13848. }
  13849. }
  13850. }
  13851. if (idx == -1) {
  13852. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13853. fclose(fout);
  13854. return;
  13855. }
  13856. fwrite(&idx, sizeof(int32_t), 1, fout);
  13857. } else {
  13858. const int32_t nul = -1;
  13859. fwrite(&nul, sizeof(int32_t), 1, fout);
  13860. }
  13861. }
  13862. }
  13863. }
  13864. }
  13865. fclose(fout);
  13866. }
  13867. }
  13868. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13869. assert(*ctx_data == NULL);
  13870. assert(*ctx_eval == NULL);
  13871. struct ggml_cgraph * result = NULL;
  13872. struct ggml_tensor * data = NULL;
  13873. // read file into data
  13874. {
  13875. FILE * fin = fopen(fname, "rb");
  13876. if (!fin) {
  13877. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13878. return result;
  13879. }
  13880. size_t fsize = 0;
  13881. fseek(fin, 0, SEEK_END);
  13882. fsize = ftell(fin);
  13883. fseek(fin, 0, SEEK_SET);
  13884. // create the data context
  13885. {
  13886. const size_t overhead = 1*ggml_tensor_overhead();
  13887. struct ggml_init_params params = {
  13888. .mem_size = fsize + overhead,
  13889. .mem_buffer = NULL,
  13890. .no_alloc = false,
  13891. };
  13892. *ctx_data = ggml_init(params);
  13893. if (!*ctx_data) {
  13894. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13895. fclose(fin);
  13896. return result;
  13897. }
  13898. }
  13899. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13900. {
  13901. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13902. if (ret != fsize) {
  13903. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13904. fclose(fin);
  13905. return result;
  13906. }
  13907. }
  13908. fclose(fin);
  13909. }
  13910. // populate result
  13911. {
  13912. char * ptr = (char *) data->data;
  13913. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13914. if (magic != GGML_FILE_MAGIC) {
  13915. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13916. return result;
  13917. }
  13918. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13919. if (version != GGML_FILE_VERSION) {
  13920. fprintf(stderr, "%s: invalid version number\n", __func__);
  13921. return result;
  13922. }
  13923. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13924. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13925. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13926. const int graph_size = MAX(n_leafs, n_nodes);
  13927. // create the data context
  13928. {
  13929. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  13930. struct ggml_init_params params = {
  13931. .mem_size = size_eval + overhead,
  13932. .mem_buffer = NULL,
  13933. .no_alloc = true,
  13934. };
  13935. *ctx_eval = ggml_init(params);
  13936. if (!*ctx_eval) {
  13937. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13938. return result;
  13939. }
  13940. }
  13941. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  13942. result->n_leafs = n_leafs;
  13943. result->n_nodes = n_nodes;
  13944. // leafs
  13945. {
  13946. uint32_t type;
  13947. uint32_t op;
  13948. uint32_t n_dims;
  13949. for (uint32_t i = 0; i < n_leafs; ++i) {
  13950. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13951. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13952. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13953. int64_t ne[GGML_MAX_DIMS];
  13954. size_t nb[GGML_MAX_DIMS];
  13955. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13956. uint64_t ne_cur;
  13957. uint64_t nb_cur;
  13958. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13959. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13960. ne[j] = ne_cur;
  13961. nb[j] = nb_cur;
  13962. }
  13963. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13964. tensor->op = (enum ggml_op) op;
  13965. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13966. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13967. tensor->data = (void *) ptr;
  13968. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13969. tensor->nb[j] = nb[j];
  13970. }
  13971. result->leafs[i] = tensor;
  13972. ptr += ggml_nbytes(tensor);
  13973. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13974. }
  13975. }
  13976. ggml_set_no_alloc(*ctx_eval, false);
  13977. // nodes
  13978. {
  13979. uint32_t type;
  13980. uint32_t op;
  13981. uint32_t n_dims;
  13982. for (uint32_t i = 0; i < n_nodes; ++i) {
  13983. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13984. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13985. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13986. enum ggml_op eop = (enum ggml_op) op;
  13987. int64_t ne[GGML_MAX_DIMS];
  13988. size_t nb[GGML_MAX_DIMS];
  13989. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13990. uint64_t ne_cur;
  13991. uint64_t nb_cur;
  13992. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13993. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13994. ne[j] = ne_cur;
  13995. nb[j] = nb_cur;
  13996. }
  13997. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13998. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13999. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14000. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14001. // parse args
  14002. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14003. const int32_t arg_idx = ptr_arg_idx[j];
  14004. if (arg_idx == -1) {
  14005. continue;
  14006. }
  14007. if (arg_idx < result->n_leafs) {
  14008. args[j] = result->leafs[arg_idx];
  14009. } else {
  14010. args[j] = result->nodes[arg_idx - result->n_leafs];
  14011. }
  14012. }
  14013. // create the tensor
  14014. // "view" operations are handled differently
  14015. // TODO: handle inplace ops - currently a copy is always made
  14016. struct ggml_tensor * tensor = NULL;
  14017. switch (eop) {
  14018. // TODO: implement other view ops
  14019. case GGML_OP_RESHAPE:
  14020. {
  14021. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14022. } break;
  14023. case GGML_OP_VIEW:
  14024. {
  14025. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14026. size_t offs;
  14027. memcpy(&offs, ptr_op_params, sizeof(offs));
  14028. tensor->data = ((char *) tensor->data) + offs;
  14029. } break;
  14030. case GGML_OP_TRANSPOSE:
  14031. {
  14032. tensor = ggml_transpose(*ctx_eval, args[0]);
  14033. } break;
  14034. case GGML_OP_PERMUTE:
  14035. {
  14036. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14037. } break;
  14038. default:
  14039. {
  14040. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14041. tensor->op = eop;
  14042. } break;
  14043. }
  14044. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14045. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14046. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14047. tensor->nb[j] = nb[j];
  14048. }
  14049. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14050. tensor->src[j] = args[j];
  14051. }
  14052. result->nodes[i] = tensor;
  14053. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14054. }
  14055. }
  14056. }
  14057. return result;
  14058. }
  14059. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14060. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14061. GGML_PRINT("=== GRAPH ===\n");
  14062. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14063. for (int i = 0; i < cgraph->n_nodes; i++) {
  14064. struct ggml_tensor * node = cgraph->nodes[i];
  14065. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14066. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14067. i,
  14068. node->ne[0], node->ne[1], node->ne[2],
  14069. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14070. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14071. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14072. (double) node->perf_time_us / 1000.0,
  14073. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14074. }
  14075. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14076. for (int i = 0; i < cgraph->n_leafs; i++) {
  14077. struct ggml_tensor * node = cgraph->leafs[i];
  14078. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14079. i,
  14080. node->ne[0], node->ne[1],
  14081. ggml_op_name(node->op),
  14082. ggml_get_name(node));
  14083. }
  14084. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14085. if (perf_total_per_op_us[i] == 0) {
  14086. continue;
  14087. }
  14088. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14089. }
  14090. GGML_PRINT("========================================\n");
  14091. }
  14092. // check if node is part of the graph
  14093. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14094. if (cgraph == NULL) {
  14095. return true;
  14096. }
  14097. for (int i = 0; i < cgraph->n_nodes; i++) {
  14098. if (cgraph->nodes[i] == node) {
  14099. return true;
  14100. }
  14101. }
  14102. return false;
  14103. }
  14104. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14105. for (int i = 0; i < cgraph->n_nodes; i++) {
  14106. struct ggml_tensor * parent = cgraph->nodes[i];
  14107. if (parent->grad == node) {
  14108. return parent;
  14109. }
  14110. }
  14111. return NULL;
  14112. }
  14113. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14114. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14115. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14116. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14117. gparent0 ? (void *) gparent0 : (void *) parent,
  14118. gparent0 ? "g" : "x",
  14119. gparent ? (void *) gparent : (void *) node,
  14120. gparent ? "g" : "x",
  14121. gparent ? "empty" : "vee",
  14122. gparent ? "dashed" : "solid",
  14123. label);
  14124. }
  14125. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14126. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14127. (void *) parent, "x",
  14128. (void *) node, "x",
  14129. label);
  14130. }
  14131. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14132. char color[16];
  14133. FILE * fp = fopen(filename, "w");
  14134. GGML_ASSERT(fp);
  14135. fprintf(fp, "digraph G {\n");
  14136. fprintf(fp, " newrank = true;\n");
  14137. fprintf(fp, " rankdir = LR;\n");
  14138. for (int i = 0; i < gb->n_nodes; i++) {
  14139. struct ggml_tensor * node = gb->nodes[i];
  14140. if (ggml_graph_get_parent(gb, node) != NULL) {
  14141. continue;
  14142. }
  14143. if (node->is_param) {
  14144. snprintf(color, sizeof(color), "yellow");
  14145. } else if (node->grad) {
  14146. if (ggml_graph_find(gf, node)) {
  14147. snprintf(color, sizeof(color), "green");
  14148. } else {
  14149. snprintf(color, sizeof(color), "lightblue");
  14150. }
  14151. } else {
  14152. snprintf(color, sizeof(color), "white");
  14153. }
  14154. fprintf(fp, " \"%p\" [ "
  14155. "style = filled; fillcolor = %s; shape = record; "
  14156. "label=\"",
  14157. (void *) node, color);
  14158. if (strlen(node->name) > 0) {
  14159. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14160. } else {
  14161. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14162. }
  14163. if (node->n_dims == 2) {
  14164. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14165. } else {
  14166. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14167. }
  14168. if (node->grad) {
  14169. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14170. } else {
  14171. fprintf(fp, "\"; ]\n");
  14172. }
  14173. }
  14174. for (int i = 0; i < gb->n_leafs; i++) {
  14175. struct ggml_tensor * node = gb->leafs[i];
  14176. snprintf(color, sizeof(color), "pink");
  14177. fprintf(fp, " \"%p\" [ "
  14178. "style = filled; fillcolor = %s; shape = record; "
  14179. "label=\"<x>",
  14180. (void *) node, color);
  14181. if (strlen(node->name) > 0) {
  14182. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14183. } else {
  14184. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14185. }
  14186. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14187. if (ggml_nelements(node) < 5) {
  14188. fprintf(fp, " | (");
  14189. for (int j = 0; j < ggml_nelements(node); j++) {
  14190. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14191. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14192. }
  14193. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14194. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14195. }
  14196. else {
  14197. fprintf(fp, "#");
  14198. }
  14199. if (j < ggml_nelements(node) - 1) {
  14200. fprintf(fp, ", ");
  14201. }
  14202. }
  14203. fprintf(fp, ")");
  14204. }
  14205. fprintf(fp, "\"; ]\n");
  14206. }
  14207. for (int i = 0; i < gb->n_nodes; i++) {
  14208. struct ggml_tensor * node = gb->nodes[i];
  14209. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14210. if (node->src[j]) {
  14211. char label[16];
  14212. snprintf(label, sizeof(label), "src %d", j);
  14213. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14214. }
  14215. }
  14216. }
  14217. for (int i = 0; i < gb->n_leafs; i++) {
  14218. struct ggml_tensor * node = gb->leafs[i];
  14219. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14220. if (node->src[j]) {
  14221. char label[16];
  14222. snprintf(label, sizeof(label), "src %d", j);
  14223. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14224. }
  14225. }
  14226. }
  14227. fprintf(fp, "}\n");
  14228. fclose(fp);
  14229. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14230. }
  14231. ////////////////////////////////////////////////////////////////////////////////
  14232. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14233. int i = 0;
  14234. for (int p = 0; p < np; ++p) {
  14235. const int64_t ne = ggml_nelements(ps[p]) ;
  14236. // TODO: add function to set tensor from array
  14237. for (int64_t j = 0; j < ne; ++j) {
  14238. ggml_set_f32_1d(ps[p], j, x[i++]);
  14239. }
  14240. }
  14241. }
  14242. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14243. int i = 0;
  14244. for (int p = 0; p < np; ++p) {
  14245. const int64_t ne = ggml_nelements(ps[p]) ;
  14246. // TODO: add function to get all elements at once
  14247. for (int64_t j = 0; j < ne; ++j) {
  14248. x[i++] = ggml_get_f32_1d(ps[p], j);
  14249. }
  14250. }
  14251. }
  14252. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14253. int64_t i = 0;
  14254. for (int p = 0; p < np; ++p) {
  14255. const int64_t ne = ggml_nelements(ps[p]) ;
  14256. // TODO: add function to get all elements at once
  14257. for (int64_t j = 0; j < ne; ++j) {
  14258. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14259. }
  14260. }
  14261. }
  14262. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14263. int64_t i = 0;
  14264. for (int p = 0; p < np; ++p) {
  14265. const int64_t ne = ggml_nelements(ps[p]) ;
  14266. // TODO: add function to get all elements at once
  14267. for (int64_t j = 0; j < ne; ++j) {
  14268. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14269. }
  14270. }
  14271. }
  14272. //
  14273. // ADAM
  14274. //
  14275. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14276. //
  14277. static enum ggml_opt_result ggml_opt_adam(
  14278. struct ggml_context * ctx,
  14279. struct ggml_opt_context * opt,
  14280. struct ggml_opt_params params,
  14281. struct ggml_tensor * f,
  14282. struct ggml_cgraph * gf,
  14283. struct ggml_cgraph * gb,
  14284. ggml_opt_callback callback,
  14285. void * callback_data) {
  14286. GGML_ASSERT(ggml_is_scalar(f));
  14287. // these will store the parameters we want to optimize
  14288. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14289. int np = 0;
  14290. int64_t nx = 0;
  14291. for (int i = 0; i < gf->n_nodes; ++i) {
  14292. if (gf->nodes[i]->is_param) {
  14293. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14294. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14295. ps[np++] = gf->nodes[i];
  14296. nx += ggml_nelements(gf->nodes[i]);
  14297. }
  14298. }
  14299. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14300. int iter = opt->iter;
  14301. ggml_opt_init(opt->ctx, opt, params, nx);
  14302. opt->iter = iter;
  14303. }
  14304. // constants
  14305. float sched = params.adam.sched;
  14306. const float alpha = params.adam.alpha;
  14307. const float decay = params.adam.decay * alpha;
  14308. const float beta1 = params.adam.beta1;
  14309. const float beta2 = params.adam.beta2;
  14310. const float eps = params.adam.eps;
  14311. const float gclip = params.adam.gclip;
  14312. const int decay_min_ndim = params.adam.decay_min_ndim;
  14313. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14314. const float accum_norm = 1.0f / (float) n_accum;
  14315. float * g = opt->adam.g->data; // gradients
  14316. float * m = opt->adam.m->data; // first moment
  14317. float * v = opt->adam.v->data; // second moment
  14318. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14319. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14320. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14321. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14322. bool cancel = false;
  14323. // compute the function value
  14324. float fx = 0;
  14325. ggml_set_zero(opt->adam.g);
  14326. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14327. if (callback) {
  14328. callback(callback_data, accum_step, &sched, &cancel);
  14329. if (cancel) {
  14330. return GGML_OPT_CANCEL;
  14331. }
  14332. }
  14333. // ggml_graph_reset (gf);
  14334. ggml_set_f32 (f->grad, 1.0f);
  14335. ggml_graph_compute(gb, &cplan);
  14336. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14337. fx += ggml_get_f32_1d(f, 0);
  14338. }
  14339. fx *= accum_norm;
  14340. opt->adam.fx_prev = fx;
  14341. opt->adam.fx_best = opt->adam.fx_prev;
  14342. if (pf) {
  14343. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14344. }
  14345. opt->loss_before = opt->adam.fx_prev;
  14346. opt->loss_after = opt->adam.fx_prev;
  14347. // initialize
  14348. if (opt->just_initialized) {
  14349. opt->adam.n_no_improvement = 0;
  14350. opt->just_initialized = false;
  14351. }
  14352. float * fx_best = &opt->adam.fx_best;
  14353. float * fx_prev = &opt->adam.fx_prev;
  14354. int * n_no_improvement = &opt->adam.n_no_improvement;
  14355. int iter0 = opt->iter;
  14356. // run the optimizer
  14357. for (int t = 0; t < params.adam.n_iter; ++t) {
  14358. opt->iter = iter0 + t + 1;
  14359. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14360. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14361. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14362. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14363. for (int i = 0; i < np; ++i) {
  14364. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14365. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14366. }
  14367. const int64_t t_start_wall = ggml_time_us();
  14368. const int64_t t_start_cpu = ggml_cycles();
  14369. UNUSED(t_start_wall);
  14370. UNUSED(t_start_cpu);
  14371. {
  14372. float gnorm = 1.0f;
  14373. if (gclip > 0.0f) {
  14374. // gradient clipping
  14375. ggml_float sum = 0.0;
  14376. for (int64_t i = 0; i < nx; ++i) {
  14377. sum += (ggml_float)(g[i]*g[i]);
  14378. }
  14379. ggml_float norm = sqrt(sum);
  14380. if (norm > (ggml_float) gclip) {
  14381. gnorm = (float) ((ggml_float) gclip / norm);
  14382. }
  14383. }
  14384. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14385. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14386. int64_t i = 0;
  14387. for (int p = 0; p < np; ++p) {
  14388. const int64_t ne = ggml_nelements(ps[p]);
  14389. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14390. for (int64_t j = 0; j < ne; ++j) {
  14391. float x = ggml_get_f32_1d(ps[p], j);
  14392. float g_ = g[i]*gnorm;
  14393. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14394. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14395. float mh = m[i]*beta1h;
  14396. float vh = v[i]*beta2h;
  14397. vh = sqrtf(vh) + eps;
  14398. x = x*(1.0f - p_decay) - mh/vh;
  14399. ggml_set_f32_1d(ps[p], j, x);
  14400. ++i;
  14401. }
  14402. }
  14403. }
  14404. fx = 0;
  14405. ggml_set_zero(opt->adam.g);
  14406. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14407. if (callback) {
  14408. callback(callback_data, accum_step, &sched, &cancel);
  14409. if (cancel) {
  14410. return GGML_OPT_CANCEL;;
  14411. }
  14412. }
  14413. // ggml_graph_reset (gf);
  14414. ggml_set_f32 (f->grad, 1.0f);
  14415. ggml_graph_compute(gb, &cplan);
  14416. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14417. fx += ggml_get_f32_1d(f, 0);
  14418. }
  14419. fx *= accum_norm;
  14420. opt->loss_after = fx;
  14421. // check convergence
  14422. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14423. GGML_PRINT_DEBUG("converged\n");
  14424. return GGML_OPT_OK;
  14425. }
  14426. // delta-based convergence test
  14427. if (pf != NULL) {
  14428. // need at least params.past iterations to start checking for convergence
  14429. if (params.past <= iter0 + t) {
  14430. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14431. if (fabsf(rate) < params.delta) {
  14432. return GGML_OPT_OK;
  14433. }
  14434. }
  14435. pf[(iter0 + t)%params.past] = fx;
  14436. }
  14437. // check for improvement
  14438. if (params.max_no_improvement > 0) {
  14439. if (fx_best[0] > fx) {
  14440. fx_best[0] = fx;
  14441. n_no_improvement[0] = 0;
  14442. } else {
  14443. ++n_no_improvement[0];
  14444. if (n_no_improvement[0] >= params.max_no_improvement) {
  14445. return GGML_OPT_OK;
  14446. }
  14447. }
  14448. }
  14449. fx_prev[0] = fx;
  14450. {
  14451. const int64_t t_end_cpu = ggml_cycles();
  14452. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14453. UNUSED(t_end_cpu);
  14454. const int64_t t_end_wall = ggml_time_us();
  14455. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14456. UNUSED(t_end_wall);
  14457. }
  14458. }
  14459. return GGML_OPT_DID_NOT_CONVERGE;
  14460. }
  14461. //
  14462. // L-BFGS
  14463. //
  14464. // the L-BFGS implementation below is based on the following implementation:
  14465. //
  14466. // https://github.com/chokkan/liblbfgs
  14467. //
  14468. struct ggml_lbfgs_iteration_data {
  14469. float alpha;
  14470. float ys;
  14471. float * s;
  14472. float * y;
  14473. };
  14474. static enum ggml_opt_result linesearch_backtracking(
  14475. const struct ggml_opt_params * params,
  14476. int nx,
  14477. float * x,
  14478. float * fx,
  14479. float * g,
  14480. float * d,
  14481. float * step,
  14482. const float * xp,
  14483. struct ggml_tensor * f,
  14484. struct ggml_cgraph * gb,
  14485. struct ggml_cplan * cplan,
  14486. const int np,
  14487. struct ggml_tensor * ps[],
  14488. bool * cancel,
  14489. ggml_opt_callback callback,
  14490. void * callback_data) {
  14491. int count = 0;
  14492. float width = 0.0f;
  14493. float dg = 0.0f;
  14494. float finit = 0.0f;
  14495. float dginit = 0.0f;
  14496. float dgtest = 0.0f;
  14497. const float dec = 0.5f;
  14498. const float inc = 2.1f;
  14499. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14500. const float accum_norm = 1.0f / (float) n_accum;
  14501. if (*step <= 0.f) {
  14502. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14503. }
  14504. // compute the initial gradient in the search direction
  14505. ggml_vec_dot_f32(nx, &dginit, g, d);
  14506. // make sure that d points to a descent direction
  14507. if (0 < dginit) {
  14508. return GGML_LINESEARCH_FAIL;
  14509. }
  14510. // initialize local variables
  14511. finit = *fx;
  14512. dgtest = params->lbfgs.ftol*dginit;
  14513. while (true) {
  14514. ggml_vec_cpy_f32(nx, x, xp);
  14515. ggml_vec_mad_f32(nx, x, d, *step);
  14516. // evaluate the function and gradient values
  14517. {
  14518. ggml_opt_set_params(np, ps, x);
  14519. *fx = 0;
  14520. memset(g, 0, sizeof(float)*nx);
  14521. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14522. if (callback) {
  14523. // LBFG-S does not support learning rate -> ignore learning schedule
  14524. float sched = 0;
  14525. callback(callback_data, accum_step, &sched, cancel);
  14526. if (*cancel) {
  14527. return GGML_OPT_CANCEL;
  14528. }
  14529. }
  14530. // ggml_graph_reset (gf);
  14531. ggml_set_f32 (f->grad, 1.0f);
  14532. ggml_graph_compute(gb, cplan);
  14533. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14534. *fx += ggml_get_f32_1d(f, 0);
  14535. }
  14536. *fx *= accum_norm;
  14537. }
  14538. ++count;
  14539. if (*fx > finit + (*step)*dgtest) {
  14540. width = dec;
  14541. } else {
  14542. // Armijo condition is satisfied
  14543. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14544. return count;
  14545. }
  14546. ggml_vec_dot_f32(nx, &dg, g, d);
  14547. // check the Wolfe condition
  14548. if (dg < params->lbfgs.wolfe * dginit) {
  14549. width = inc;
  14550. } else {
  14551. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14552. // regular Wolfe conditions
  14553. return count;
  14554. }
  14555. if(dg > -params->lbfgs.wolfe*dginit) {
  14556. width = dec;
  14557. } else {
  14558. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14559. return count;
  14560. }
  14561. }
  14562. }
  14563. if (*step < params->lbfgs.min_step) {
  14564. return GGML_LINESEARCH_MINIMUM_STEP;
  14565. }
  14566. if (*step > params->lbfgs.max_step) {
  14567. return GGML_LINESEARCH_MAXIMUM_STEP;
  14568. }
  14569. if (params->lbfgs.max_linesearch <= count) {
  14570. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14571. }
  14572. (*step) *= width;
  14573. }
  14574. GGML_UNREACHABLE();
  14575. }
  14576. static enum ggml_opt_result ggml_opt_lbfgs(
  14577. struct ggml_context * ctx,
  14578. struct ggml_opt_context * opt,
  14579. struct ggml_opt_params params,
  14580. struct ggml_tensor * f,
  14581. struct ggml_cgraph * gf,
  14582. struct ggml_cgraph * gb,
  14583. ggml_opt_callback callback,
  14584. void * callback_data) {
  14585. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14586. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14587. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14588. return GGML_OPT_INVALID_WOLFE;
  14589. }
  14590. }
  14591. const int m = params.lbfgs.m;
  14592. // these will store the parameters we want to optimize
  14593. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14594. int np = 0;
  14595. int nx = 0;
  14596. for (int i = 0; i < gf->n_nodes; ++i) {
  14597. if (gf->nodes[i]->is_param) {
  14598. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14599. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14600. ps[np++] = gf->nodes[i];
  14601. nx += ggml_nelements(gf->nodes[i]);
  14602. }
  14603. }
  14604. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14605. int iter = opt->iter;
  14606. ggml_opt_init(ctx, opt, params, nx);
  14607. opt->iter = iter;
  14608. }
  14609. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14610. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14611. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14612. float * x = opt->lbfgs.x->data; // current parameters
  14613. float * xp = opt->lbfgs.xp->data; // previous parameters
  14614. float * g = opt->lbfgs.g->data; // current gradient
  14615. float * gp = opt->lbfgs.gp->data; // previous gradient
  14616. float * d = opt->lbfgs.d->data; // search direction
  14617. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14618. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14619. const float accum_norm = 1.0f / (float) n_accum;
  14620. float fx = 0.0f; // cost function value
  14621. float xnorm = 0.0f; // ||x||
  14622. float gnorm = 0.0f; // ||g||
  14623. // initialize x from the graph nodes
  14624. ggml_opt_get_params(np, ps, x);
  14625. // the L-BFGS memory
  14626. float * lm_alpha = opt->lbfgs.lmal->data;
  14627. float * lm_ys = opt->lbfgs.lmys->data;
  14628. float * lm_s = opt->lbfgs.lms->data;
  14629. float * lm_y = opt->lbfgs.lmy->data;
  14630. bool cancel = false;
  14631. // evaluate the function value and its gradient
  14632. {
  14633. ggml_opt_set_params(np, ps, x);
  14634. fx = 0;
  14635. memset(g, 0, sizeof(float)*nx);
  14636. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14637. if (callback) {
  14638. // LBFG-S does not support learning rate -> ignore learning schedule
  14639. float sched = 0;
  14640. callback(callback_data, accum_step, &sched, &cancel);
  14641. if (cancel) {
  14642. return GGML_OPT_CANCEL;
  14643. }
  14644. }
  14645. // ggml_graph_reset (gf);
  14646. ggml_set_f32 (f->grad, 1.0f);
  14647. ggml_graph_compute(gb, &cplan);
  14648. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14649. fx += ggml_get_f32_1d(f, 0);
  14650. }
  14651. fx *= accum_norm;
  14652. opt->loss_before = fx;
  14653. opt->loss_after = fx;
  14654. }
  14655. // search direction = -gradient
  14656. ggml_vec_neg_f32(nx, d, g);
  14657. // ||x||, ||g||
  14658. ggml_vec_norm_f32(nx, &xnorm, x);
  14659. ggml_vec_norm_f32(nx, &gnorm, g);
  14660. if (xnorm < 1.0f) {
  14661. xnorm = 1.0f;
  14662. }
  14663. // already optimized
  14664. if (gnorm/xnorm <= params.lbfgs.eps) {
  14665. return GGML_OPT_OK;
  14666. }
  14667. if (opt->just_initialized) {
  14668. if (pf) {
  14669. pf[0] = fx;
  14670. }
  14671. opt->lbfgs.fx_best = fx;
  14672. // initial step
  14673. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14674. opt->lbfgs.j = 0;
  14675. opt->lbfgs.k = 1;
  14676. opt->lbfgs.end = 0;
  14677. opt->lbfgs.n_no_improvement = 0;
  14678. opt->just_initialized = false;
  14679. }
  14680. float * fx_best = &opt->lbfgs.fx_best;
  14681. float * step = &opt->lbfgs.step;
  14682. int * j = &opt->lbfgs.j;
  14683. int * k = &opt->lbfgs.k;
  14684. int * end = &opt->lbfgs.end;
  14685. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14686. int ls = 0;
  14687. int bound = 0;
  14688. float ys = 0.0f;
  14689. float yy = 0.0f;
  14690. float beta = 0.0f;
  14691. int it = 0;
  14692. while (true) {
  14693. // store the current position and gradient vectors
  14694. ggml_vec_cpy_f32(nx, xp, x);
  14695. ggml_vec_cpy_f32(nx, gp, g);
  14696. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14697. // to determine if the optimization should be cancelled
  14698. // this is a simple change, but not doing this atm, since I don't have a nice
  14699. // way to test and don't want to break something with so many changes lined up
  14700. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14701. if (cancel) {
  14702. return GGML_OPT_CANCEL;
  14703. }
  14704. if (ls < 0) {
  14705. // linesearch failed - go back to the previous point and return
  14706. ggml_vec_cpy_f32(nx, x, xp);
  14707. ggml_vec_cpy_f32(nx, g, gp);
  14708. return ls;
  14709. }
  14710. opt->loss_after = fx;
  14711. ggml_vec_norm_f32(nx, &xnorm, x);
  14712. ggml_vec_norm_f32(nx, &gnorm, g);
  14713. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14714. if (xnorm < 1.0f) {
  14715. xnorm = 1.0f;
  14716. }
  14717. if (gnorm/xnorm <= params.lbfgs.eps) {
  14718. // converged
  14719. return GGML_OPT_OK;
  14720. }
  14721. // delta-based convergence test
  14722. if (pf != NULL) {
  14723. // need at least params.past iterations to start checking for convergence
  14724. if (params.past <= k[0]) {
  14725. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14726. if (fabsf(rate) < params.delta) {
  14727. return GGML_OPT_OK;
  14728. }
  14729. }
  14730. pf[k[0]%params.past] = fx;
  14731. }
  14732. // check for improvement
  14733. if (params.max_no_improvement > 0) {
  14734. if (fx < fx_best[0]) {
  14735. fx_best[0] = fx;
  14736. n_no_improvement[0] = 0;
  14737. } else {
  14738. n_no_improvement[0]++;
  14739. if (n_no_improvement[0] >= params.max_no_improvement) {
  14740. return GGML_OPT_OK;
  14741. }
  14742. }
  14743. }
  14744. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14745. // reached the maximum number of iterations
  14746. return GGML_OPT_DID_NOT_CONVERGE;
  14747. }
  14748. // update vectors s and y:
  14749. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14750. // y_{k+1} = g_{k+1} - g_{k}.
  14751. //
  14752. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14753. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14754. // compute scalars ys and yy:
  14755. // ys = y^t \cdot s -> 1 / \rho.
  14756. // yy = y^t \cdot y.
  14757. //
  14758. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14759. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14760. lm_ys[end[0]] = ys;
  14761. // find new search direction
  14762. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14763. bound = (m <= k[0]) ? m : k[0];
  14764. k[0]++;
  14765. it++;
  14766. end[0] = (end[0] + 1)%m;
  14767. // initialize search direction with -g
  14768. ggml_vec_neg_f32(nx, d, g);
  14769. j[0] = end[0];
  14770. for (int i = 0; i < bound; ++i) {
  14771. j[0] = (j[0] + m - 1) % m;
  14772. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14773. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14774. lm_alpha[j[0]] /= lm_ys[j[0]];
  14775. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14776. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14777. }
  14778. ggml_vec_scale_f32(nx, d, ys/yy);
  14779. for (int i = 0; i < bound; ++i) {
  14780. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14781. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14782. beta /= lm_ys[j[0]];
  14783. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14784. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14785. j[0] = (j[0] + 1)%m;
  14786. }
  14787. step[0] = 1.0;
  14788. }
  14789. GGML_UNREACHABLE();
  14790. }
  14791. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14792. struct ggml_opt_params result;
  14793. switch (type) {
  14794. case GGML_OPT_ADAM:
  14795. {
  14796. result = (struct ggml_opt_params) {
  14797. .type = GGML_OPT_ADAM,
  14798. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14799. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14800. .past = 0,
  14801. .delta = 1e-5f,
  14802. .max_no_improvement = 100,
  14803. .print_forward_graph = true,
  14804. .print_backward_graph = true,
  14805. .n_gradient_accumulation = 1,
  14806. .adam = {
  14807. .n_iter = 10000,
  14808. .sched = 1.000f,
  14809. .decay = 0.0f,
  14810. .decay_min_ndim = 2,
  14811. .alpha = 0.001f,
  14812. .beta1 = 0.9f,
  14813. .beta2 = 0.999f,
  14814. .eps = 1e-8f,
  14815. .eps_f = 1e-5f,
  14816. .eps_g = 1e-3f,
  14817. .gclip = 0.0f,
  14818. },
  14819. };
  14820. } break;
  14821. case GGML_OPT_LBFGS:
  14822. {
  14823. result = (struct ggml_opt_params) {
  14824. .type = GGML_OPT_LBFGS,
  14825. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14826. .n_threads = 1,
  14827. .past = 0,
  14828. .delta = 1e-5f,
  14829. .max_no_improvement = 0,
  14830. .print_forward_graph = true,
  14831. .print_backward_graph = true,
  14832. .n_gradient_accumulation = 1,
  14833. .lbfgs = {
  14834. .m = 6,
  14835. .n_iter = 100,
  14836. .max_linesearch = 20,
  14837. .eps = 1e-5f,
  14838. .ftol = 1e-4f,
  14839. .wolfe = 0.9f,
  14840. .min_step = 1e-20f,
  14841. .max_step = 1e+20f,
  14842. .linesearch = GGML_LINESEARCH_DEFAULT,
  14843. },
  14844. };
  14845. } break;
  14846. }
  14847. return result;
  14848. }
  14849. GGML_API void ggml_opt_init(
  14850. struct ggml_context * ctx,
  14851. struct ggml_opt_context * opt,
  14852. struct ggml_opt_params params,
  14853. int64_t nx) {
  14854. opt->ctx = ctx;
  14855. opt->params = params;
  14856. opt->iter = 0;
  14857. opt->nx = nx;
  14858. opt->just_initialized = true;
  14859. if (opt->ctx == NULL) {
  14860. struct ggml_init_params ctx_opt_params;
  14861. if (opt->params.type == GGML_OPT_ADAM) {
  14862. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14863. if (opt->params.past > 0) {
  14864. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14865. }
  14866. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14867. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14868. if (opt->params.past > 0) {
  14869. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14870. }
  14871. }
  14872. ctx_opt_params.mem_buffer = NULL;
  14873. ctx_opt_params.no_alloc = false;
  14874. opt->ctx = ggml_init(ctx_opt_params);
  14875. }
  14876. switch (opt->params.type) {
  14877. case GGML_OPT_ADAM:
  14878. {
  14879. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14880. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14881. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14882. opt->adam.pf = params.past > 0
  14883. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14884. : NULL;
  14885. ggml_set_zero(opt->adam.m);
  14886. ggml_set_zero(opt->adam.v);
  14887. if (opt->adam.pf) {
  14888. ggml_set_zero(opt->adam.pf);
  14889. }
  14890. } break;
  14891. case GGML_OPT_LBFGS:
  14892. {
  14893. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14894. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14895. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14896. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14897. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14898. opt->lbfgs.pf = params.past > 0
  14899. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14900. : NULL;
  14901. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14902. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14903. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14904. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14905. ggml_set_zero(opt->lbfgs.x);
  14906. ggml_set_zero(opt->lbfgs.xp);
  14907. ggml_set_zero(opt->lbfgs.g);
  14908. ggml_set_zero(opt->lbfgs.gp);
  14909. ggml_set_zero(opt->lbfgs.d);
  14910. if (opt->lbfgs.pf) {
  14911. ggml_set_zero(opt->lbfgs.pf);
  14912. }
  14913. ggml_set_zero(opt->lbfgs.lmal);
  14914. ggml_set_zero(opt->lbfgs.lmys);
  14915. ggml_set_zero(opt->lbfgs.lms);
  14916. ggml_set_zero(opt->lbfgs.lmy);
  14917. } break;
  14918. }
  14919. }
  14920. enum ggml_opt_result ggml_opt(
  14921. struct ggml_context * ctx,
  14922. struct ggml_opt_params params,
  14923. struct ggml_tensor * f) {
  14924. bool free_ctx = false;
  14925. if (ctx == NULL) {
  14926. struct ggml_init_params params_ctx = {
  14927. .mem_size = 16*1024*1024,
  14928. .mem_buffer = NULL,
  14929. .no_alloc = false,
  14930. };
  14931. ctx = ggml_init(params_ctx);
  14932. if (ctx == NULL) {
  14933. return GGML_OPT_NO_CONTEXT;
  14934. }
  14935. free_ctx = true;
  14936. }
  14937. enum ggml_opt_result result = GGML_OPT_OK;
  14938. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14939. ggml_opt_init(ctx, opt, params, 0);
  14940. result = ggml_opt_resume(ctx, opt, f);
  14941. if (free_ctx) {
  14942. ggml_free(ctx);
  14943. }
  14944. return result;
  14945. }
  14946. enum ggml_opt_result ggml_opt_resume(
  14947. struct ggml_context * ctx,
  14948. struct ggml_opt_context * opt,
  14949. struct ggml_tensor * f) {
  14950. // build forward + backward compute graphs
  14951. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  14952. ggml_build_forward_expand(gf, f);
  14953. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  14954. ggml_build_backward_expand(ctx, gf, gb, true);
  14955. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  14956. }
  14957. enum ggml_opt_result ggml_opt_resume_g(
  14958. struct ggml_context * ctx,
  14959. struct ggml_opt_context * opt,
  14960. struct ggml_tensor * f,
  14961. struct ggml_cgraph * gf,
  14962. struct ggml_cgraph * gb,
  14963. ggml_opt_callback callback,
  14964. void * callback_data) {
  14965. // build forward + backward compute graphs
  14966. enum ggml_opt_result result = GGML_OPT_OK;
  14967. switch (opt->params.type) {
  14968. case GGML_OPT_ADAM:
  14969. {
  14970. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14971. } break;
  14972. case GGML_OPT_LBFGS:
  14973. {
  14974. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14975. } break;
  14976. }
  14977. if (opt->params.print_forward_graph) {
  14978. ggml_graph_print (gf);
  14979. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14980. }
  14981. if (opt->params.print_backward_graph) {
  14982. ggml_graph_print (gb);
  14983. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14984. }
  14985. return result;
  14986. }
  14987. ////////////////////////////////////////////////////////////////////////////////
  14988. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14989. assert(k % QK4_0 == 0);
  14990. const int nb = k / QK4_0;
  14991. for (int b = 0; b < n; b += k) {
  14992. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14993. quantize_row_q4_0_reference(src + b, y, k);
  14994. for (int i = 0; i < nb; i++) {
  14995. for (int j = 0; j < QK4_0; j += 2) {
  14996. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14997. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14998. hist[vi0]++;
  14999. hist[vi1]++;
  15000. }
  15001. }
  15002. }
  15003. return (n/QK4_0*sizeof(block_q4_0));
  15004. }
  15005. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15006. assert(k % QK4_1 == 0);
  15007. const int nb = k / QK4_1;
  15008. for (int b = 0; b < n; b += k) {
  15009. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15010. quantize_row_q4_1_reference(src + b, y, k);
  15011. for (int i = 0; i < nb; i++) {
  15012. for (int j = 0; j < QK4_1; j += 2) {
  15013. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15014. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15015. hist[vi0]++;
  15016. hist[vi1]++;
  15017. }
  15018. }
  15019. }
  15020. return (n/QK4_1*sizeof(block_q4_1));
  15021. }
  15022. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15023. assert(k % QK5_0 == 0);
  15024. const int nb = k / QK5_0;
  15025. for (int b = 0; b < n; b += k) {
  15026. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15027. quantize_row_q5_0_reference(src + b, y, k);
  15028. for (int i = 0; i < nb; i++) {
  15029. uint32_t qh;
  15030. memcpy(&qh, &y[i].qh, sizeof(qh));
  15031. for (int j = 0; j < QK5_0; j += 2) {
  15032. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15033. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15034. // cast to 16 bins
  15035. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15036. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15037. hist[vi0]++;
  15038. hist[vi1]++;
  15039. }
  15040. }
  15041. }
  15042. return (n/QK5_0*sizeof(block_q5_0));
  15043. }
  15044. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15045. assert(k % QK5_1 == 0);
  15046. const int nb = k / QK5_1;
  15047. for (int b = 0; b < n; b += k) {
  15048. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15049. quantize_row_q5_1_reference(src + b, y, k);
  15050. for (int i = 0; i < nb; i++) {
  15051. uint32_t qh;
  15052. memcpy(&qh, &y[i].qh, sizeof(qh));
  15053. for (int j = 0; j < QK5_1; j += 2) {
  15054. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15055. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15056. // cast to 16 bins
  15057. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15058. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15059. hist[vi0]++;
  15060. hist[vi1]++;
  15061. }
  15062. }
  15063. }
  15064. return (n/QK5_1*sizeof(block_q5_1));
  15065. }
  15066. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15067. assert(k % QK8_0 == 0);
  15068. const int nb = k / QK8_0;
  15069. for (int b = 0; b < n; b += k) {
  15070. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15071. quantize_row_q8_0_reference(src + b, y, k);
  15072. for (int i = 0; i < nb; i++) {
  15073. for (int j = 0; j < QK8_0; ++j) {
  15074. const int8_t vi = y[i].qs[j];
  15075. hist[vi/16 + 8]++;
  15076. }
  15077. }
  15078. }
  15079. return (n/QK8_0*sizeof(block_q8_0));
  15080. }
  15081. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15082. size_t result = 0;
  15083. switch (type) {
  15084. case GGML_TYPE_Q4_0:
  15085. {
  15086. GGML_ASSERT(start % QK4_0 == 0);
  15087. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15088. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15089. } break;
  15090. case GGML_TYPE_Q4_1:
  15091. {
  15092. GGML_ASSERT(start % QK4_1 == 0);
  15093. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15094. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15095. } break;
  15096. case GGML_TYPE_Q5_0:
  15097. {
  15098. GGML_ASSERT(start % QK5_0 == 0);
  15099. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15100. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15101. } break;
  15102. case GGML_TYPE_Q5_1:
  15103. {
  15104. GGML_ASSERT(start % QK5_1 == 0);
  15105. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15106. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15107. } break;
  15108. case GGML_TYPE_Q8_0:
  15109. {
  15110. GGML_ASSERT(start % QK8_0 == 0);
  15111. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15112. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15113. } break;
  15114. case GGML_TYPE_Q2_K:
  15115. {
  15116. GGML_ASSERT(start % QK_K == 0);
  15117. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15118. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15119. } break;
  15120. case GGML_TYPE_Q3_K:
  15121. {
  15122. GGML_ASSERT(start % QK_K == 0);
  15123. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15124. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15125. } break;
  15126. case GGML_TYPE_Q4_K:
  15127. {
  15128. GGML_ASSERT(start % QK_K == 0);
  15129. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15130. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15131. } break;
  15132. case GGML_TYPE_Q5_K:
  15133. {
  15134. GGML_ASSERT(start % QK_K == 0);
  15135. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15136. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15137. } break;
  15138. case GGML_TYPE_Q6_K:
  15139. {
  15140. GGML_ASSERT(start % QK_K == 0);
  15141. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15142. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15143. } break;
  15144. case GGML_TYPE_F16:
  15145. {
  15146. int elemsize = sizeof(ggml_fp16_t);
  15147. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15148. result = n * elemsize;
  15149. } break;
  15150. case GGML_TYPE_F32:
  15151. {
  15152. int elemsize = sizeof(float);
  15153. result = n * elemsize;
  15154. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15155. } break;
  15156. default:
  15157. assert(false);
  15158. }
  15159. return result;
  15160. }
  15161. ////////////////////////////////////////////////////////////////////////////////
  15162. struct gguf_str {
  15163. uint64_t n; // GGUFv2
  15164. char * data;
  15165. };
  15166. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15167. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15168. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15169. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15170. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15171. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15172. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15173. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15174. [GGUF_TYPE_BOOL] = sizeof(bool),
  15175. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15176. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15177. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15178. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15179. [GGUF_TYPE_ARRAY] = 0, // undefined
  15180. };
  15181. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15182. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15183. [GGUF_TYPE_UINT8] = "u8",
  15184. [GGUF_TYPE_INT8] = "i8",
  15185. [GGUF_TYPE_UINT16] = "u16",
  15186. [GGUF_TYPE_INT16] = "i16",
  15187. [GGUF_TYPE_UINT32] = "u32",
  15188. [GGUF_TYPE_INT32] = "i32",
  15189. [GGUF_TYPE_FLOAT32] = "f32",
  15190. [GGUF_TYPE_BOOL] = "bool",
  15191. [GGUF_TYPE_STRING] = "str",
  15192. [GGUF_TYPE_ARRAY] = "arr",
  15193. [GGUF_TYPE_UINT64] = "u64",
  15194. [GGUF_TYPE_INT64] = "i64",
  15195. [GGUF_TYPE_FLOAT64] = "f64",
  15196. };
  15197. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15198. union gguf_value {
  15199. uint8_t uint8;
  15200. int8_t int8;
  15201. uint16_t uint16;
  15202. int16_t int16;
  15203. uint32_t uint32;
  15204. int32_t int32;
  15205. float float32;
  15206. uint64_t uint64;
  15207. int64_t int64;
  15208. double float64;
  15209. bool bool_;
  15210. struct gguf_str str;
  15211. struct {
  15212. enum gguf_type type;
  15213. uint64_t n; // GGUFv2
  15214. void * data;
  15215. } arr;
  15216. };
  15217. struct gguf_kv {
  15218. struct gguf_str key;
  15219. enum gguf_type type;
  15220. union gguf_value value;
  15221. };
  15222. struct gguf_header {
  15223. char magic[4];
  15224. uint32_t version;
  15225. uint64_t n_tensors; // GGUFv2
  15226. uint64_t n_kv; // GGUFv2
  15227. };
  15228. struct gguf_tensor_info {
  15229. struct gguf_str name;
  15230. uint32_t n_dims;
  15231. uint64_t ne[GGML_MAX_DIMS];
  15232. enum ggml_type type;
  15233. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15234. // for writing API
  15235. const void * data;
  15236. size_t size;
  15237. };
  15238. struct gguf_context {
  15239. struct gguf_header header;
  15240. struct gguf_kv * kv;
  15241. struct gguf_tensor_info * infos;
  15242. size_t alignment;
  15243. size_t offset; // offset of `data` from beginning of file
  15244. size_t size; // size of `data` in bytes
  15245. //uint8_t * padding;
  15246. void * data;
  15247. };
  15248. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15249. const size_t n = fread(dst, 1, size, file);
  15250. *offset += n;
  15251. return n == size;
  15252. }
  15253. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15254. p->n = 0;
  15255. p->data = NULL;
  15256. bool ok = true;
  15257. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15258. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15259. return ok;
  15260. }
  15261. struct gguf_context * gguf_init_empty(void) {
  15262. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15263. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15264. ctx->header.version = GGUF_VERSION;
  15265. ctx->header.n_tensors = 0;
  15266. ctx->header.n_kv = 0;
  15267. ctx->kv = NULL;
  15268. ctx->infos = NULL;
  15269. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15270. ctx->offset = 0;
  15271. ctx->size = 0;
  15272. ctx->data = NULL;
  15273. return ctx;
  15274. }
  15275. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15276. FILE * file = fopen(fname, "rb");
  15277. if (!file) {
  15278. return NULL;
  15279. }
  15280. // offset from start of file
  15281. size_t offset = 0;
  15282. char magic[4];
  15283. // check the magic before making allocations
  15284. {
  15285. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15286. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15287. if (magic[i] != GGUF_MAGIC[i]) {
  15288. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15289. fclose(file);
  15290. return NULL;
  15291. }
  15292. }
  15293. }
  15294. bool ok = true;
  15295. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15296. // read the header
  15297. {
  15298. strncpy(ctx->header.magic, magic, 4);
  15299. ctx->kv = NULL;
  15300. ctx->infos = NULL;
  15301. ctx->data = NULL;
  15302. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15303. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15304. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15305. if (ctx->header.version == 1) {
  15306. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15307. fclose(file);
  15308. gguf_free(ctx);
  15309. return NULL;
  15310. }
  15311. if (!ok) {
  15312. fprintf(stderr, "%s: failed to read header\n", __func__);
  15313. fclose(file);
  15314. gguf_free(ctx);
  15315. return NULL;
  15316. }
  15317. }
  15318. // read the kv pairs
  15319. {
  15320. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15321. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15322. struct gguf_kv * kv = &ctx->kv[i];
  15323. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15324. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15325. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15326. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15327. switch (kv->type) {
  15328. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15329. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15330. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15331. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15332. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15333. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15334. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15335. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15336. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15337. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15338. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15339. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15340. case GGUF_TYPE_ARRAY:
  15341. {
  15342. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15343. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15344. switch (kv->value.arr.type) {
  15345. case GGUF_TYPE_UINT8:
  15346. case GGUF_TYPE_INT8:
  15347. case GGUF_TYPE_UINT16:
  15348. case GGUF_TYPE_INT16:
  15349. case GGUF_TYPE_UINT32:
  15350. case GGUF_TYPE_INT32:
  15351. case GGUF_TYPE_FLOAT32:
  15352. case GGUF_TYPE_UINT64:
  15353. case GGUF_TYPE_INT64:
  15354. case GGUF_TYPE_FLOAT64:
  15355. case GGUF_TYPE_BOOL:
  15356. {
  15357. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15358. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15359. } break;
  15360. case GGUF_TYPE_STRING:
  15361. {
  15362. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15363. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15364. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15365. }
  15366. } break;
  15367. case GGUF_TYPE_ARRAY:
  15368. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15369. }
  15370. } break;
  15371. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15372. }
  15373. if (!ok) {
  15374. break;
  15375. }
  15376. }
  15377. if (!ok) {
  15378. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15379. fclose(file);
  15380. gguf_free(ctx);
  15381. return NULL;
  15382. }
  15383. }
  15384. // read the tensor infos
  15385. {
  15386. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15387. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15388. struct gguf_tensor_info * info = &ctx->infos[i];
  15389. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15390. info->ne[j] = 1;
  15391. }
  15392. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15393. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15394. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15395. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15396. }
  15397. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15398. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15399. if (!ok) {
  15400. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15401. fclose(file);
  15402. gguf_free(ctx);
  15403. return NULL;
  15404. }
  15405. }
  15406. }
  15407. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15408. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15409. if (alignment_idx != -1) {
  15410. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15411. }
  15412. // we require the data section to be aligned, so take into account any padding
  15413. {
  15414. const size_t offset_pad = offset % ctx->alignment;
  15415. if (offset_pad != 0) {
  15416. offset += ctx->alignment - offset_pad;
  15417. fseek(file, offset, SEEK_SET);
  15418. }
  15419. }
  15420. // store the current file offset - this is where the data section starts
  15421. ctx->offset = offset;
  15422. // compute the total size of the data section, taking into account the alignment
  15423. {
  15424. ctx->size = 0;
  15425. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15426. struct gguf_tensor_info * info = &ctx->infos[i];
  15427. const int64_t ne =
  15428. (int64_t) info->ne[0] *
  15429. (int64_t) info->ne[1] *
  15430. (int64_t) info->ne[2] *
  15431. (int64_t) info->ne[3];
  15432. if (ne % ggml_blck_size(info->type) != 0) {
  15433. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15434. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15435. fclose(file);
  15436. gguf_free(ctx);
  15437. return NULL;
  15438. }
  15439. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15440. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15441. }
  15442. }
  15443. // load the tensor data only if requested
  15444. if (params.ctx != NULL) {
  15445. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15446. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15447. // the ggml_tensor structs to the appropriate locations in the binary blob
  15448. // compute the exact size needed for the new ggml_context
  15449. const size_t mem_size =
  15450. params.no_alloc ?
  15451. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15452. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15453. struct ggml_init_params pdata = {
  15454. .mem_size = mem_size,
  15455. .mem_buffer = NULL,
  15456. .no_alloc = params.no_alloc,
  15457. };
  15458. *params.ctx = ggml_init(pdata);
  15459. struct ggml_context * ctx_data = *params.ctx;
  15460. struct ggml_tensor * data = NULL;
  15461. if (!params.no_alloc) {
  15462. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15463. ok = ok && data != NULL;
  15464. // read the binary blob with the tensor data
  15465. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15466. if (!ok) {
  15467. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15468. fclose(file);
  15469. ggml_free(ctx_data);
  15470. gguf_free(ctx);
  15471. return NULL;
  15472. }
  15473. ctx->data = data->data;
  15474. }
  15475. ggml_set_no_alloc(ctx_data, true);
  15476. // create the tensors
  15477. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15478. const int64_t ne[GGML_MAX_DIMS] = {
  15479. ctx->infos[i].ne[0],
  15480. ctx->infos[i].ne[1],
  15481. ctx->infos[i].ne[2],
  15482. ctx->infos[i].ne[3],
  15483. };
  15484. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15485. ok = ok && cur != NULL;
  15486. ggml_set_name(cur, ctx->infos[i].name.data);
  15487. if (!ok) {
  15488. break;
  15489. }
  15490. // point the data member to the appropriate location in the binary blob using the tensor infos
  15491. if (!params.no_alloc) {
  15492. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15493. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15494. }
  15495. }
  15496. if (!ok) {
  15497. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15498. fclose(file);
  15499. ggml_free(ctx_data);
  15500. gguf_free(ctx);
  15501. return NULL;
  15502. }
  15503. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15504. }
  15505. fclose(file);
  15506. return ctx;
  15507. }
  15508. void gguf_free(struct gguf_context * ctx) {
  15509. if (ctx == NULL) {
  15510. return;
  15511. }
  15512. if (ctx->kv) {
  15513. // free string memory - not great..
  15514. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15515. struct gguf_kv * kv = &ctx->kv[i];
  15516. if (kv->key.data) {
  15517. free(kv->key.data);
  15518. }
  15519. if (kv->type == GGUF_TYPE_STRING) {
  15520. if (kv->value.str.data) {
  15521. free(kv->value.str.data);
  15522. }
  15523. }
  15524. if (kv->type == GGUF_TYPE_ARRAY) {
  15525. if (kv->value.arr.data) {
  15526. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15527. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15528. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15529. if (str->data) {
  15530. free(str->data);
  15531. }
  15532. }
  15533. }
  15534. free(kv->value.arr.data);
  15535. }
  15536. }
  15537. }
  15538. free(ctx->kv);
  15539. }
  15540. if (ctx->infos) {
  15541. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15542. struct gguf_tensor_info * info = &ctx->infos[i];
  15543. if (info->name.data) {
  15544. free(info->name.data);
  15545. }
  15546. }
  15547. free(ctx->infos);
  15548. }
  15549. GGML_ALIGNED_FREE(ctx);
  15550. }
  15551. const char * gguf_type_name(enum gguf_type type) {
  15552. return GGUF_TYPE_NAME[type];
  15553. }
  15554. int gguf_get_version(const struct gguf_context * ctx) {
  15555. return ctx->header.version;
  15556. }
  15557. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15558. return ctx->alignment;
  15559. }
  15560. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15561. return ctx->offset;
  15562. }
  15563. void * gguf_get_data(const struct gguf_context * ctx) {
  15564. return ctx->data;
  15565. }
  15566. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15567. return ctx->header.n_kv;
  15568. }
  15569. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15570. // return -1 if key not found
  15571. int keyfound = -1;
  15572. const int n_kv = gguf_get_n_kv(ctx);
  15573. for (int i = 0; i < n_kv; ++i) {
  15574. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15575. keyfound = i;
  15576. break;
  15577. }
  15578. }
  15579. return keyfound;
  15580. }
  15581. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15582. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15583. return ctx->kv[key_id].key.data;
  15584. }
  15585. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15586. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15587. return ctx->kv[key_id].type;
  15588. }
  15589. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15590. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15591. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15592. return ctx->kv[key_id].value.arr.type;
  15593. }
  15594. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15595. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15596. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15597. return ctx->kv[key_id].value.arr.data;
  15598. }
  15599. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15600. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15601. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15602. struct gguf_kv * kv = &ctx->kv[key_id];
  15603. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15604. return str->data;
  15605. }
  15606. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15607. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15608. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15609. return ctx->kv[key_id].value.arr.n;
  15610. }
  15611. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15612. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15613. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15614. return ctx->kv[key_id].value.uint8;
  15615. }
  15616. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15617. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15618. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15619. return ctx->kv[key_id].value.int8;
  15620. }
  15621. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15622. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15623. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15624. return ctx->kv[key_id].value.uint16;
  15625. }
  15626. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15627. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15628. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15629. return ctx->kv[key_id].value.int16;
  15630. }
  15631. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15632. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15633. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15634. return ctx->kv[key_id].value.uint32;
  15635. }
  15636. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15637. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15638. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15639. return ctx->kv[key_id].value.int32;
  15640. }
  15641. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15642. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15643. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15644. return ctx->kv[key_id].value.float32;
  15645. }
  15646. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15647. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15648. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15649. return ctx->kv[key_id].value.uint64;
  15650. }
  15651. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15652. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15653. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15654. return ctx->kv[key_id].value.int64;
  15655. }
  15656. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15657. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15658. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15659. return ctx->kv[key_id].value.float64;
  15660. }
  15661. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15662. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15663. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15664. return ctx->kv[key_id].value.bool_;
  15665. }
  15666. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15667. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15668. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15669. return ctx->kv[key_id].value.str.data;
  15670. }
  15671. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15672. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15673. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15674. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15675. return &ctx->kv[key_id].value;
  15676. }
  15677. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15678. return ctx->header.n_tensors;
  15679. }
  15680. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15681. // return -1 if tensor not found
  15682. int tensorfound = -1;
  15683. const int n_tensors = gguf_get_n_tensors(ctx);
  15684. for (int i = 0; i < n_tensors; ++i) {
  15685. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15686. tensorfound = i;
  15687. break;
  15688. }
  15689. }
  15690. return tensorfound;
  15691. }
  15692. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15693. return ctx->infos[i].offset;
  15694. }
  15695. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15696. return ctx->infos[i].name.data;
  15697. }
  15698. // returns the index
  15699. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15700. const int idx = gguf_find_key(ctx, key);
  15701. if (idx >= 0) {
  15702. return idx;
  15703. }
  15704. const int n_kv = gguf_get_n_kv(ctx);
  15705. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15706. ctx->kv[n_kv].key.n = strlen(key);
  15707. ctx->kv[n_kv].key.data = strdup(key);
  15708. ctx->header.n_kv++;
  15709. return n_kv;
  15710. }
  15711. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15712. const int idx = gguf_get_or_add_key(ctx, key);
  15713. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15714. ctx->kv[idx].value.uint8 = val;
  15715. }
  15716. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15717. const int idx = gguf_get_or_add_key(ctx, key);
  15718. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15719. ctx->kv[idx].value.int8 = val;
  15720. }
  15721. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15722. const int idx = gguf_get_or_add_key(ctx, key);
  15723. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15724. ctx->kv[idx].value.uint16 = val;
  15725. }
  15726. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15727. const int idx = gguf_get_or_add_key(ctx, key);
  15728. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15729. ctx->kv[idx].value.int16 = val;
  15730. }
  15731. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15732. const int idx = gguf_get_or_add_key(ctx, key);
  15733. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15734. ctx->kv[idx].value.uint32 = val;
  15735. }
  15736. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15737. const int idx = gguf_get_or_add_key(ctx, key);
  15738. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15739. ctx->kv[idx].value.int32 = val;
  15740. }
  15741. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15742. const int idx = gguf_get_or_add_key(ctx, key);
  15743. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15744. ctx->kv[idx].value.float32 = val;
  15745. }
  15746. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15747. const int idx = gguf_get_or_add_key(ctx, key);
  15748. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15749. ctx->kv[idx].value.uint64 = val;
  15750. }
  15751. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15752. const int idx = gguf_get_or_add_key(ctx, key);
  15753. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15754. ctx->kv[idx].value.int64 = val;
  15755. }
  15756. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15757. const int idx = gguf_get_or_add_key(ctx, key);
  15758. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15759. ctx->kv[idx].value.float64 = val;
  15760. }
  15761. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15762. const int idx = gguf_get_or_add_key(ctx, key);
  15763. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15764. ctx->kv[idx].value.bool_ = val;
  15765. }
  15766. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15767. const int idx = gguf_get_or_add_key(ctx, key);
  15768. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15769. ctx->kv[idx].value.str.n = strlen(val);
  15770. ctx->kv[idx].value.str.data = strdup(val);
  15771. }
  15772. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15773. const int idx = gguf_get_or_add_key(ctx, key);
  15774. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15775. ctx->kv[idx].value.arr.type = type;
  15776. ctx->kv[idx].value.arr.n = n;
  15777. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15778. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15779. }
  15780. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15781. const int idx = gguf_get_or_add_key(ctx, key);
  15782. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15783. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15784. ctx->kv[idx].value.arr.n = n;
  15785. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15786. for (int i = 0; i < n; i++) {
  15787. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15788. str->n = strlen(data[i]);
  15789. str->data = strdup(data[i]);
  15790. }
  15791. }
  15792. // set or add KV pairs from another context
  15793. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15794. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15795. switch (src->kv[i].type) {
  15796. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15797. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15798. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15799. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15800. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15801. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15802. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15803. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15804. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15805. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15806. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15807. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15808. case GGUF_TYPE_ARRAY:
  15809. {
  15810. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15811. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15812. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15813. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15814. }
  15815. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15816. free(data);
  15817. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15818. GGML_ASSERT(false && "nested arrays not supported");
  15819. } else {
  15820. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15821. }
  15822. } break;
  15823. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15824. }
  15825. }
  15826. }
  15827. void gguf_add_tensor(
  15828. struct gguf_context * ctx,
  15829. const struct ggml_tensor * tensor) {
  15830. const int idx = ctx->header.n_tensors;
  15831. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15832. ctx->infos[idx].name.n = strlen(tensor->name);
  15833. ctx->infos[idx].name.data = strdup(tensor->name);
  15834. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15835. ctx->infos[idx].ne[i] = 1;
  15836. }
  15837. ctx->infos[idx].n_dims = tensor->n_dims;
  15838. for (int i = 0; i < tensor->n_dims; i++) {
  15839. ctx->infos[idx].ne[i] = tensor->ne[i];
  15840. }
  15841. ctx->infos[idx].type = tensor->type;
  15842. ctx->infos[idx].offset = 0;
  15843. ctx->infos[idx].data = tensor->data;
  15844. ctx->infos[idx].size = ggml_nbytes(tensor);
  15845. if (ctx->header.n_tensors > 0) {
  15846. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15847. }
  15848. ctx->header.n_tensors++;
  15849. }
  15850. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15851. const int idx = gguf_find_tensor(ctx, name);
  15852. if (idx < 0) {
  15853. GGML_ASSERT(false && "tensor not found");
  15854. }
  15855. ctx->infos[idx].type = type;
  15856. }
  15857. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15858. const int idx = gguf_find_tensor(ctx, name);
  15859. if (idx < 0) {
  15860. GGML_ASSERT(false && "tensor not found");
  15861. }
  15862. ctx->infos[idx].data = data;
  15863. ctx->infos[idx].size = size;
  15864. // update offsets
  15865. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15866. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15867. }
  15868. }
  15869. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15870. // fwrite(&val->n, sizeof(val->n), 1, file);
  15871. // fwrite(val->data, sizeof(char), val->n, file);
  15872. //}
  15873. //
  15874. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15875. // fwrite(val, sizeof(char), size, file);
  15876. //}
  15877. struct gguf_buf {
  15878. void * data;
  15879. size_t size;
  15880. size_t offset;
  15881. };
  15882. static struct gguf_buf gguf_buf_init(size_t size) {
  15883. struct gguf_buf buf = {
  15884. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15885. /*buf.size =*/ size,
  15886. /*buf.offset =*/ 0,
  15887. };
  15888. return buf;
  15889. }
  15890. static void gguf_buf_free(struct gguf_buf buf) {
  15891. if (buf.data) {
  15892. free(buf.data);
  15893. }
  15894. }
  15895. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15896. if (buf->offset + size > buf->size) {
  15897. buf->size = 1.5*(buf->offset + size);
  15898. if (buf->data) {
  15899. buf->data = realloc(buf->data, buf->size);
  15900. }
  15901. }
  15902. }
  15903. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15904. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15905. if (buf->data) {
  15906. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15907. }
  15908. buf->offset += sizeof(val->n);
  15909. if (buf->data) {
  15910. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15911. }
  15912. buf->offset += val->n;
  15913. }
  15914. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15915. gguf_buf_grow(buf, el_size);
  15916. if (buf->data) {
  15917. memcpy((char *) buf->data + buf->offset, val, el_size);
  15918. }
  15919. buf->offset += el_size;
  15920. }
  15921. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15922. // write header
  15923. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15924. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15925. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15926. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15927. // write key-value pairs
  15928. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15929. struct gguf_kv * kv = &ctx->kv[i];
  15930. gguf_bwrite_str(buf, &kv->key);
  15931. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15932. switch (kv->type) {
  15933. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15934. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15935. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15936. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15937. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15938. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15939. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15940. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  15941. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  15942. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  15943. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15944. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15945. case GGUF_TYPE_ARRAY:
  15946. {
  15947. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15948. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15949. switch (kv->value.arr.type) {
  15950. case GGUF_TYPE_UINT8:
  15951. case GGUF_TYPE_INT8:
  15952. case GGUF_TYPE_UINT16:
  15953. case GGUF_TYPE_INT16:
  15954. case GGUF_TYPE_UINT32:
  15955. case GGUF_TYPE_INT32:
  15956. case GGUF_TYPE_FLOAT32:
  15957. case GGUF_TYPE_UINT64:
  15958. case GGUF_TYPE_INT64:
  15959. case GGUF_TYPE_FLOAT64:
  15960. case GGUF_TYPE_BOOL:
  15961. {
  15962. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15963. } break;
  15964. case GGUF_TYPE_STRING:
  15965. {
  15966. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15967. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15968. }
  15969. } break;
  15970. case GGUF_TYPE_ARRAY:
  15971. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15972. }
  15973. } break;
  15974. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15975. }
  15976. }
  15977. // write tensor infos
  15978. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15979. struct gguf_tensor_info * info = &ctx->infos[i];
  15980. gguf_bwrite_str(buf, &info->name);
  15981. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15982. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15983. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15984. }
  15985. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15986. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15987. }
  15988. // we require the data section to be aligned, so take into account any padding
  15989. {
  15990. const size_t offset = buf->offset;
  15991. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15992. if (offset_pad != offset) {
  15993. uint8_t pad = 0;
  15994. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15995. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15996. }
  15997. }
  15998. }
  15999. if (only_meta) {
  16000. return;
  16001. }
  16002. size_t offset = 0;
  16003. // write tensor data
  16004. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16005. struct gguf_tensor_info * info = &ctx->infos[i];
  16006. const size_t size = info->size;
  16007. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16008. gguf_bwrite_el(buf, info->data, size);
  16009. if (size_pad != size) {
  16010. uint8_t pad = 0;
  16011. for (size_t j = 0; j < size_pad - size; ++j) {
  16012. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16013. }
  16014. }
  16015. GGML_ASSERT(offset == info->offset);
  16016. offset += size_pad;
  16017. }
  16018. }
  16019. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16020. FILE * file = fopen(fname, "wb");
  16021. if (!file) {
  16022. GGML_ASSERT(false && "failed to open file for writing");
  16023. }
  16024. struct gguf_buf buf = gguf_buf_init(16*1024);
  16025. gguf_write_to_buf(ctx, &buf, only_meta);
  16026. fwrite(buf.data, 1, buf.offset, file);
  16027. gguf_buf_free(buf);
  16028. fclose(file);
  16029. }
  16030. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16031. // no allocs - only compute size
  16032. struct gguf_buf buf = gguf_buf_init(0);
  16033. gguf_write_to_buf(ctx, &buf, true);
  16034. return buf.offset;
  16035. }
  16036. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16037. struct gguf_buf buf = gguf_buf_init(16*1024);
  16038. gguf_write_to_buf(ctx, &buf, true);
  16039. memcpy(data, buf.data, buf.offset);
  16040. gguf_buf_free(buf);
  16041. }
  16042. ////////////////////////////////////////////////////////////////////////////////
  16043. int ggml_cpu_has_avx(void) {
  16044. #if defined(__AVX__)
  16045. return 1;
  16046. #else
  16047. return 0;
  16048. #endif
  16049. }
  16050. int ggml_cpu_has_avx2(void) {
  16051. #if defined(__AVX2__)
  16052. return 1;
  16053. #else
  16054. return 0;
  16055. #endif
  16056. }
  16057. int ggml_cpu_has_avx512(void) {
  16058. #if defined(__AVX512F__)
  16059. return 1;
  16060. #else
  16061. return 0;
  16062. #endif
  16063. }
  16064. int ggml_cpu_has_avx512_vbmi(void) {
  16065. #if defined(__AVX512VBMI__)
  16066. return 1;
  16067. #else
  16068. return 0;
  16069. #endif
  16070. }
  16071. int ggml_cpu_has_avx512_vnni(void) {
  16072. #if defined(__AVX512VNNI__)
  16073. return 1;
  16074. #else
  16075. return 0;
  16076. #endif
  16077. }
  16078. int ggml_cpu_has_fma(void) {
  16079. #if defined(__FMA__)
  16080. return 1;
  16081. #else
  16082. return 0;
  16083. #endif
  16084. }
  16085. int ggml_cpu_has_neon(void) {
  16086. #if defined(__ARM_NEON)
  16087. return 1;
  16088. #else
  16089. return 0;
  16090. #endif
  16091. }
  16092. int ggml_cpu_has_arm_fma(void) {
  16093. #if defined(__ARM_FEATURE_FMA)
  16094. return 1;
  16095. #else
  16096. return 0;
  16097. #endif
  16098. }
  16099. int ggml_cpu_has_metal(void) {
  16100. #if defined(GGML_USE_METAL)
  16101. return 1;
  16102. #else
  16103. return 0;
  16104. #endif
  16105. }
  16106. int ggml_cpu_has_f16c(void) {
  16107. #if defined(__F16C__)
  16108. return 1;
  16109. #else
  16110. return 0;
  16111. #endif
  16112. }
  16113. int ggml_cpu_has_fp16_va(void) {
  16114. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16115. return 1;
  16116. #else
  16117. return 0;
  16118. #endif
  16119. }
  16120. int ggml_cpu_has_wasm_simd(void) {
  16121. #if defined(__wasm_simd128__)
  16122. return 1;
  16123. #else
  16124. return 0;
  16125. #endif
  16126. }
  16127. int ggml_cpu_has_blas(void) {
  16128. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16129. return 1;
  16130. #else
  16131. return 0;
  16132. #endif
  16133. }
  16134. int ggml_cpu_has_cublas(void) {
  16135. #if defined(GGML_USE_CUBLAS)
  16136. return 1;
  16137. #else
  16138. return 0;
  16139. #endif
  16140. }
  16141. int ggml_cpu_has_clblast(void) {
  16142. #if defined(GGML_USE_CLBLAST)
  16143. return 1;
  16144. #else
  16145. return 0;
  16146. #endif
  16147. }
  16148. int ggml_cpu_has_gpublas(void) {
  16149. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16150. }
  16151. int ggml_cpu_has_sse3(void) {
  16152. #if defined(__SSE3__)
  16153. return 1;
  16154. #else
  16155. return 0;
  16156. #endif
  16157. }
  16158. int ggml_cpu_has_ssse3(void) {
  16159. #if defined(__SSSE3__)
  16160. return 1;
  16161. #else
  16162. return 0;
  16163. #endif
  16164. }
  16165. int ggml_cpu_has_vsx(void) {
  16166. #if defined(__POWER9_VECTOR__)
  16167. return 1;
  16168. #else
  16169. return 0;
  16170. #endif
  16171. }
  16172. ////////////////////////////////////////////////////////////////////////////////