llama-bench.cpp 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. #include "ggml-sycl.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T, typename F>
  53. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  54. std::vector<std::string> str_values;
  55. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  56. return str_values;
  57. }
  58. template<typename T>
  59. static T avg(const std::vector<T> & v) {
  60. if (v.empty()) {
  61. return 0;
  62. }
  63. T sum = std::accumulate(v.begin(), v.end(), T(0));
  64. return sum / (T)v.size();
  65. }
  66. template<typename T>
  67. static T stdev(const std::vector<T> & v) {
  68. if (v.size() <= 1) {
  69. return 0;
  70. }
  71. T mean = avg(v);
  72. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  73. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  74. return stdev;
  75. }
  76. static std::string get_cpu_info() {
  77. std::string id;
  78. #ifdef __linux__
  79. FILE * f = fopen("/proc/cpuinfo", "r");
  80. if (f) {
  81. char buf[1024];
  82. while (fgets(buf, sizeof(buf), f)) {
  83. if (strncmp(buf, "model name", 10) == 0) {
  84. char * p = strchr(buf, ':');
  85. if (p) {
  86. p++;
  87. while (std::isspace(*p)) {
  88. p++;
  89. }
  90. while (std::isspace(p[strlen(p) - 1])) {
  91. p[strlen(p) - 1] = '\0';
  92. }
  93. id = p;
  94. break;
  95. }
  96. }
  97. }
  98. }
  99. #endif
  100. // TODO: other platforms
  101. return id;
  102. }
  103. static std::string get_gpu_info() {
  104. std::string id;
  105. #ifdef GGML_USE_CUBLAS
  106. int count = ggml_cuda_get_device_count();
  107. for (int i = 0; i < count; i++) {
  108. char buf[128];
  109. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  110. id += buf;
  111. if (i < count - 1) {
  112. id += "/";
  113. }
  114. }
  115. #endif
  116. #ifdef GGML_USE_SYCL
  117. int count = ggml_backend_sycl_get_device_count();
  118. for (int i = 0; i < count; i++) {
  119. char buf[128];
  120. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  121. id += buf;
  122. if (i < count - 1) {
  123. id += "/";
  124. }
  125. }
  126. #endif
  127. // TODO: other backends
  128. return id;
  129. }
  130. // command line params
  131. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  132. static const char * output_format_str(output_formats format) {
  133. switch (format) {
  134. case CSV: return "csv";
  135. case JSON: return "json";
  136. case MARKDOWN: return "md";
  137. case SQL: return "sql";
  138. default: GGML_ASSERT(!"invalid output format");
  139. }
  140. }
  141. static const char * split_mode_str(llama_split_mode mode) {
  142. switch (mode) {
  143. case LLAMA_SPLIT_MODE_NONE: return "none";
  144. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  145. case LLAMA_SPLIT_MODE_ROW: return "row";
  146. default: GGML_ASSERT(!"invalid split mode");
  147. }
  148. }
  149. struct cmd_params {
  150. std::vector<std::string> model;
  151. std::vector<int> n_prompt;
  152. std::vector<int> n_gen;
  153. std::vector<int> n_batch;
  154. std::vector<ggml_type> type_k;
  155. std::vector<ggml_type> type_v;
  156. std::vector<int> n_threads;
  157. std::vector<int> n_gpu_layers;
  158. std::vector<llama_split_mode> split_mode;
  159. std::vector<int> main_gpu;
  160. std::vector<bool> no_kv_offload;
  161. std::vector<std::vector<float>> tensor_split;
  162. std::vector<bool> use_mmap;
  163. int reps;
  164. bool verbose;
  165. output_formats output_format;
  166. };
  167. static const cmd_params cmd_params_defaults = {
  168. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  169. /* n_prompt */ {512},
  170. /* n_gen */ {128},
  171. /* n_batch */ {512},
  172. /* type_k */ {GGML_TYPE_F16},
  173. /* type_v */ {GGML_TYPE_F16},
  174. /* n_threads */ {get_num_physical_cores()},
  175. /* n_gpu_layers */ {99},
  176. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  177. /* main_gpu */ {0},
  178. /* no_kv_offload */ {false},
  179. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  180. /* use_mmap */ {true},
  181. /* reps */ 5,
  182. /* verbose */ false,
  183. /* output_format */ MARKDOWN
  184. };
  185. static void print_usage(int /* argc */, char ** argv) {
  186. printf("usage: %s [options]\n", argv[0]);
  187. printf("\n");
  188. printf("options:\n");
  189. printf(" -h, --help\n");
  190. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  191. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  192. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  193. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  194. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  195. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  196. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  197. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  198. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  199. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  200. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  201. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  202. printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
  203. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  204. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  205. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  206. printf("\n");
  207. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  208. }
  209. static ggml_type ggml_type_from_name(const std::string & s) {
  210. if (s == "f16") {
  211. return GGML_TYPE_F16;
  212. }
  213. if (s == "q8_0") {
  214. return GGML_TYPE_Q8_0;
  215. }
  216. if (s == "q4_0") {
  217. return GGML_TYPE_Q4_0;
  218. }
  219. if (s == "q4_1") {
  220. return GGML_TYPE_Q4_1;
  221. }
  222. if (s == "q5_0") {
  223. return GGML_TYPE_Q5_0;
  224. }
  225. if (s == "q5_1") {
  226. return GGML_TYPE_Q5_1;
  227. }
  228. return GGML_TYPE_COUNT;
  229. }
  230. static cmd_params parse_cmd_params(int argc, char ** argv) {
  231. cmd_params params;
  232. std::string arg;
  233. bool invalid_param = false;
  234. const std::string arg_prefix = "--";
  235. const char split_delim = ',';
  236. params.verbose = cmd_params_defaults.verbose;
  237. params.output_format = cmd_params_defaults.output_format;
  238. params.reps = cmd_params_defaults.reps;
  239. for (int i = 1; i < argc; i++) {
  240. arg = argv[i];
  241. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  242. std::replace(arg.begin(), arg.end(), '_', '-');
  243. }
  244. if (arg == "-h" || arg == "--help") {
  245. print_usage(argc, argv);
  246. exit(0);
  247. } else if (arg == "-m" || arg == "--model") {
  248. if (++i >= argc) {
  249. invalid_param = true;
  250. break;
  251. }
  252. auto p = split<std::string>(argv[i], split_delim);
  253. params.model.insert(params.model.end(), p.begin(), p.end());
  254. } else if (arg == "-p" || arg == "--n-prompt") {
  255. if (++i >= argc) {
  256. invalid_param = true;
  257. break;
  258. }
  259. auto p = split<int>(argv[i], split_delim);
  260. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  261. } else if (arg == "-n" || arg == "--n-gen") {
  262. if (++i >= argc) {
  263. invalid_param = true;
  264. break;
  265. }
  266. auto p = split<int>(argv[i], split_delim);
  267. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  268. } else if (arg == "-b" || arg == "--batch-size") {
  269. if (++i >= argc) {
  270. invalid_param = true;
  271. break;
  272. }
  273. auto p = split<int>(argv[i], split_delim);
  274. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  275. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<std::string>(argv[i], split_delim);
  281. std::vector<ggml_type> types;
  282. for (const auto & t : p) {
  283. ggml_type gt = ggml_type_from_name(t);
  284. if (gt == GGML_TYPE_COUNT) {
  285. invalid_param = true;
  286. break;
  287. }
  288. types.push_back(gt);
  289. }
  290. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  291. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  292. if (++i >= argc) {
  293. invalid_param = true;
  294. break;
  295. }
  296. auto p = split<std::string>(argv[i], split_delim);
  297. std::vector<ggml_type> types;
  298. for (const auto & t : p) {
  299. ggml_type gt = ggml_type_from_name(t);
  300. if (gt == GGML_TYPE_COUNT) {
  301. invalid_param = true;
  302. break;
  303. }
  304. types.push_back(gt);
  305. }
  306. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  307. } else if (arg == "-t" || arg == "--threads") {
  308. if (++i >= argc) {
  309. invalid_param = true;
  310. break;
  311. }
  312. auto p = split<int>(argv[i], split_delim);
  313. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  314. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. auto p = split<int>(argv[i], split_delim);
  320. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  321. } else if (arg == "-sm" || arg == "--split-mode") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. auto p = split<std::string>(argv[i], split_delim);
  327. std::vector<llama_split_mode> modes;
  328. for (const auto & m : p) {
  329. llama_split_mode mode;
  330. if (m == "none") {
  331. mode = LLAMA_SPLIT_MODE_NONE;
  332. } else if (m == "layer") {
  333. mode = LLAMA_SPLIT_MODE_LAYER;
  334. } else if (m == "row") {
  335. mode = LLAMA_SPLIT_MODE_ROW;
  336. } else {
  337. invalid_param = true;
  338. break;
  339. }
  340. modes.push_back(mode);
  341. }
  342. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  343. } else if (arg == "-mg" || arg == "--main-gpu") {
  344. if (++i >= argc) {
  345. invalid_param = true;
  346. break;
  347. }
  348. params.main_gpu = split<int>(argv[i], split_delim);
  349. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  350. if (++i >= argc) {
  351. invalid_param = true;
  352. break;
  353. }
  354. auto p = split<bool>(argv[i], split_delim);
  355. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  356. } else if (arg == "-mmp" || arg == "--mmap") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. auto p = split<bool>(argv[i], split_delim);
  362. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  363. } else if (arg == "-ts" || arg == "--tensor-split") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. for (auto ts : split<std::string>(argv[i], split_delim)) {
  369. // split string by ; and /
  370. const std::regex regex{R"([;/]+)"};
  371. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  372. std::vector<std::string> split_arg{it, {}};
  373. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  374. std::vector<float> tensor_split(llama_max_devices());
  375. for (size_t i = 0; i < llama_max_devices(); ++i) {
  376. if (i < split_arg.size()) {
  377. tensor_split[i] = std::stof(split_arg[i]);
  378. } else {
  379. tensor_split[i] = 0.0f;
  380. }
  381. }
  382. params.tensor_split.push_back(tensor_split);
  383. }
  384. } else if (arg == "-r" || arg == "--repetitions") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. params.reps = std::stoi(argv[i]);
  390. } else if (arg == "-o" || arg == "--output") {
  391. if (++i >= argc) {
  392. invalid_param = true;
  393. break;
  394. }
  395. if (argv[i] == std::string("csv")) {
  396. params.output_format = CSV;
  397. } else if (argv[i] == std::string("json")) {
  398. params.output_format = JSON;
  399. } else if (argv[i] == std::string("md")) {
  400. params.output_format = MARKDOWN;
  401. } else if (argv[i] == std::string("sql")) {
  402. params.output_format = SQL;
  403. } else {
  404. invalid_param = true;
  405. break;
  406. }
  407. } else if (arg == "-v" || arg == "--verbose") {
  408. params.verbose = true;
  409. } else {
  410. invalid_param = true;
  411. break;
  412. }
  413. }
  414. if (invalid_param) {
  415. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  416. print_usage(argc, argv);
  417. exit(1);
  418. }
  419. // set defaults
  420. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  421. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  422. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  423. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  424. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  425. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  426. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  427. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  428. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  429. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  430. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  431. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  432. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  433. return params;
  434. }
  435. struct cmd_params_instance {
  436. std::string model;
  437. int n_prompt;
  438. int n_gen;
  439. int n_batch;
  440. ggml_type type_k;
  441. ggml_type type_v;
  442. int n_threads;
  443. int n_gpu_layers;
  444. llama_split_mode split_mode;
  445. int main_gpu;
  446. bool no_kv_offload;
  447. std::vector<float> tensor_split;
  448. bool use_mmap;
  449. llama_model_params to_llama_mparams() const {
  450. llama_model_params mparams = llama_model_default_params();
  451. mparams.n_gpu_layers = n_gpu_layers;
  452. mparams.split_mode = split_mode;
  453. mparams.main_gpu = main_gpu;
  454. mparams.tensor_split = tensor_split.data();
  455. mparams.use_mmap = use_mmap;
  456. return mparams;
  457. }
  458. bool equal_mparams(const cmd_params_instance & other) const {
  459. return model == other.model &&
  460. n_gpu_layers == other.n_gpu_layers &&
  461. split_mode == other.split_mode &&
  462. main_gpu == other.main_gpu &&
  463. use_mmap == other.use_mmap &&
  464. tensor_split == other.tensor_split;
  465. }
  466. llama_context_params to_llama_cparams() const {
  467. llama_context_params cparams = llama_context_default_params();
  468. cparams.n_ctx = n_prompt + n_gen;
  469. cparams.n_batch = n_batch;
  470. cparams.type_k = type_k;
  471. cparams.type_v = type_v;
  472. cparams.offload_kqv = !no_kv_offload;
  473. return cparams;
  474. }
  475. };
  476. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  477. std::vector<cmd_params_instance> instances;
  478. // this ordering minimizes the number of times that each model needs to be reloaded
  479. for (const auto & m : params.model)
  480. for (const auto & nl : params.n_gpu_layers)
  481. for (const auto & sm : params.split_mode)
  482. for (const auto & mg : params.main_gpu)
  483. for (const auto & ts : params.tensor_split)
  484. for (const auto & mmp : params.use_mmap)
  485. for (const auto & nb : params.n_batch)
  486. for (const auto & tk : params.type_k)
  487. for (const auto & tv : params.type_v)
  488. for (const auto & nkvo : params.no_kv_offload)
  489. for (const auto & nt : params.n_threads) {
  490. for (const auto & n_prompt : params.n_prompt) {
  491. if (n_prompt == 0) {
  492. continue;
  493. }
  494. cmd_params_instance instance = {
  495. /* .model = */ m,
  496. /* .n_prompt = */ n_prompt,
  497. /* .n_gen = */ 0,
  498. /* .n_batch = */ nb,
  499. /* .type_k = */ tk,
  500. /* .type_v = */ tv,
  501. /* .n_threads = */ nt,
  502. /* .n_gpu_layers = */ nl,
  503. /* .split_mode = */ sm,
  504. /* .main_gpu = */ mg,
  505. /* .no_kv_offload= */ nkvo,
  506. /* .tensor_split = */ ts,
  507. /* .use_mmap = */ mmp,
  508. };
  509. instances.push_back(instance);
  510. }
  511. for (const auto & n_gen : params.n_gen) {
  512. if (n_gen == 0) {
  513. continue;
  514. }
  515. cmd_params_instance instance = {
  516. /* .model = */ m,
  517. /* .n_prompt = */ 0,
  518. /* .n_gen = */ n_gen,
  519. /* .n_batch = */ nb,
  520. /* .type_k = */ tk,
  521. /* .type_v = */ tv,
  522. /* .n_threads = */ nt,
  523. /* .n_gpu_layers = */ nl,
  524. /* .split_mode = */ sm,
  525. /* .main_gpu = */ mg,
  526. /* .no_kv_offload= */ nkvo,
  527. /* .tensor_split = */ ts,
  528. /* .use_mmap = */ mmp,
  529. };
  530. instances.push_back(instance);
  531. }
  532. }
  533. return instances;
  534. }
  535. struct test {
  536. static const std::string build_commit;
  537. static const int build_number;
  538. static const bool cuda;
  539. static const bool opencl;
  540. static const bool vulkan;
  541. static const bool kompute;
  542. static const bool metal;
  543. static const bool sycl;
  544. static const bool gpu_blas;
  545. static const bool blas;
  546. static const std::string cpu_info;
  547. static const std::string gpu_info;
  548. std::string model_filename;
  549. std::string model_type;
  550. uint64_t model_size;
  551. uint64_t model_n_params;
  552. int n_batch;
  553. int n_threads;
  554. ggml_type type_k;
  555. ggml_type type_v;
  556. int n_gpu_layers;
  557. llama_split_mode split_mode;
  558. int main_gpu;
  559. bool no_kv_offload;
  560. std::vector<float> tensor_split;
  561. bool use_mmap;
  562. int n_prompt;
  563. int n_gen;
  564. std::string test_time;
  565. std::vector<uint64_t> samples_ns;
  566. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  567. model_filename = inst.model;
  568. char buf[128];
  569. llama_model_desc(lmodel, buf, sizeof(buf));
  570. model_type = buf;
  571. model_size = llama_model_size(lmodel);
  572. model_n_params = llama_model_n_params(lmodel);
  573. n_batch = inst.n_batch;
  574. n_threads = inst.n_threads;
  575. type_k = inst.type_k;
  576. type_v = inst.type_v;
  577. n_gpu_layers = inst.n_gpu_layers;
  578. split_mode = inst.split_mode;
  579. main_gpu = inst.main_gpu;
  580. no_kv_offload = inst.no_kv_offload;
  581. tensor_split = inst.tensor_split;
  582. use_mmap = inst.use_mmap;
  583. n_prompt = inst.n_prompt;
  584. n_gen = inst.n_gen;
  585. // RFC 3339 date-time format
  586. time_t t = time(NULL);
  587. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  588. test_time = buf;
  589. (void) ctx;
  590. }
  591. uint64_t avg_ns() const {
  592. return ::avg(samples_ns);
  593. }
  594. uint64_t stdev_ns() const {
  595. return ::stdev(samples_ns);
  596. }
  597. std::vector<double> get_ts() const {
  598. int n_tokens = n_prompt + n_gen;
  599. std::vector<double> ts;
  600. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  601. return ts;
  602. }
  603. double avg_ts() const {
  604. return ::avg(get_ts());
  605. }
  606. double stdev_ts() const {
  607. return ::stdev(get_ts());
  608. }
  609. static std::string get_backend() {
  610. if (cuda) {
  611. return GGML_CUDA_NAME;
  612. }
  613. if (opencl) {
  614. return "OpenCL";
  615. }
  616. if (vulkan) {
  617. return "Vulkan";
  618. }
  619. if (kompute) {
  620. return "Kompute";
  621. }
  622. if (metal) {
  623. return "Metal";
  624. }
  625. if (sycl) {
  626. return GGML_SYCL_NAME;
  627. }
  628. if (gpu_blas) {
  629. return "GPU BLAS";
  630. }
  631. if (blas) {
  632. return "BLAS";
  633. }
  634. return "CPU";
  635. }
  636. static const std::vector<std::string> & get_fields() {
  637. static const std::vector<std::string> fields = {
  638. "build_commit", "build_number",
  639. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  640. "cpu_info", "gpu_info",
  641. "model_filename", "model_type", "model_size", "model_n_params",
  642. "n_batch", "n_threads", "type_k", "type_v",
  643. "n_gpu_layers", "split_mode",
  644. "main_gpu", "no_kv_offload",
  645. "tensor_split", "use_mmap",
  646. "n_prompt", "n_gen", "test_time",
  647. "avg_ns", "stddev_ns",
  648. "avg_ts", "stddev_ts"
  649. };
  650. return fields;
  651. }
  652. enum field_type {STRING, BOOL, INT, FLOAT};
  653. static field_type get_field_type(const std::string & field) {
  654. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  655. field == "model_size" || field == "model_n_params" ||
  656. field == "n_gpu_layers" || field == "main_gpu" ||
  657. field == "n_prompt" || field == "n_gen" ||
  658. field == "avg_ns" || field == "stddev_ns") {
  659. return INT;
  660. }
  661. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  662. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  663. field == "use_mmap") {
  664. return BOOL;
  665. }
  666. if (field == "avg_ts" || field == "stddev_ts") {
  667. return FLOAT;
  668. }
  669. return STRING;
  670. }
  671. std::vector<std::string> get_values() const {
  672. std::string tensor_split_str;
  673. int max_nonzero = 0;
  674. for (size_t i = 0; i < llama_max_devices(); i++) {
  675. if (tensor_split[i] > 0) {
  676. max_nonzero = i;
  677. }
  678. }
  679. for (int i = 0; i <= max_nonzero; i++) {
  680. char buf[32];
  681. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  682. tensor_split_str += buf;
  683. if (i < max_nonzero) {
  684. tensor_split_str += "/";
  685. }
  686. }
  687. std::vector<std::string> values = {
  688. build_commit, std::to_string(build_number),
  689. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  690. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  691. cpu_info, gpu_info,
  692. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  693. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  694. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  695. std::to_string(main_gpu), std::to_string(no_kv_offload),
  696. tensor_split_str, std::to_string(use_mmap),
  697. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  698. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  699. std::to_string(avg_ts()), std::to_string(stdev_ts())
  700. };
  701. return values;
  702. }
  703. std::map<std::string, std::string> get_map() const {
  704. std::map<std::string, std::string> map;
  705. auto fields = get_fields();
  706. auto values = get_values();
  707. std::transform(fields.begin(), fields.end(), values.begin(),
  708. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  709. return map;
  710. }
  711. };
  712. const std::string test::build_commit = LLAMA_COMMIT;
  713. const int test::build_number = LLAMA_BUILD_NUMBER;
  714. const bool test::cuda = !!ggml_cpu_has_cublas();
  715. const bool test::opencl = !!ggml_cpu_has_clblast();
  716. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  717. const bool test::kompute = !!ggml_cpu_has_kompute();
  718. const bool test::metal = !!ggml_cpu_has_metal();
  719. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  720. const bool test::blas = !!ggml_cpu_has_blas();
  721. const bool test::sycl = !!ggml_cpu_has_sycl();
  722. const std::string test::cpu_info = get_cpu_info();
  723. const std::string test::gpu_info = get_gpu_info();
  724. struct printer {
  725. virtual ~printer() {}
  726. FILE * fout;
  727. virtual void print_header(const cmd_params & params) { (void) params; }
  728. virtual void print_test(const test & t) = 0;
  729. virtual void print_footer() { }
  730. };
  731. struct csv_printer : public printer {
  732. static std::string escape_csv(const std::string & field) {
  733. std::string escaped = "\"";
  734. for (auto c : field) {
  735. if (c == '"') {
  736. escaped += "\"";
  737. }
  738. escaped += c;
  739. }
  740. escaped += "\"";
  741. return escaped;
  742. }
  743. void print_header(const cmd_params & params) override {
  744. std::vector<std::string> fields = test::get_fields();
  745. fprintf(fout, "%s\n", join(fields, ",").c_str());
  746. (void) params;
  747. }
  748. void print_test(const test & t) override {
  749. std::vector<std::string> values = t.get_values();
  750. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  751. fprintf(fout, "%s\n", join(values, ",").c_str());
  752. }
  753. };
  754. struct json_printer : public printer {
  755. bool first = true;
  756. static std::string escape_json(const std::string & value) {
  757. std::string escaped;
  758. for (auto c : value) {
  759. if (c == '"') {
  760. escaped += "\\\"";
  761. } else if (c == '\\') {
  762. escaped += "\\\\";
  763. } else if (c <= 0x1f) {
  764. char buf[8];
  765. snprintf(buf, sizeof(buf), "\\u%04x", c);
  766. escaped += buf;
  767. } else {
  768. escaped += c;
  769. }
  770. }
  771. return escaped;
  772. }
  773. static std::string format_value(const std::string & field, const std::string & value) {
  774. switch (test::get_field_type(field)) {
  775. case test::STRING:
  776. return "\"" + escape_json(value) + "\"";
  777. case test::BOOL:
  778. return value == "0" ? "false" : "true";
  779. default:
  780. return value;
  781. }
  782. }
  783. void print_header(const cmd_params & params) override {
  784. fprintf(fout, "[\n");
  785. (void) params;
  786. }
  787. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  788. assert(fields.size() == values.size());
  789. for (size_t i = 0; i < fields.size(); i++) {
  790. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  791. }
  792. }
  793. void print_test(const test & t) override {
  794. if (first) {
  795. first = false;
  796. } else {
  797. fprintf(fout, ",\n");
  798. }
  799. fprintf(fout, " {\n");
  800. print_fields(test::get_fields(), t.get_values());
  801. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  802. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  803. fprintf(fout, " }");
  804. fflush(fout);
  805. }
  806. void print_footer() override {
  807. fprintf(fout, "\n]\n");
  808. }
  809. };
  810. struct markdown_printer : public printer {
  811. std::vector<std::string> fields;
  812. static int get_field_width(const std::string & field) {
  813. if (field == "model") {
  814. return -30;
  815. }
  816. if (field == "t/s") {
  817. return 16;
  818. }
  819. if (field == "size" || field == "params") {
  820. return 10;
  821. }
  822. if (field == "n_gpu_layers") {
  823. return 3;
  824. }
  825. int width = std::max((int)field.length(), 10);
  826. if (test::get_field_type(field) == test::STRING) {
  827. return -width;
  828. }
  829. return width;
  830. }
  831. static std::string get_field_display_name(const std::string & field) {
  832. if (field == "n_gpu_layers") {
  833. return "ngl";
  834. }
  835. if (field == "split_mode") {
  836. return "sm";
  837. }
  838. if (field == "n_threads") {
  839. return "threads";
  840. }
  841. if (field == "no_kv_offload") {
  842. return "nkvo";
  843. }
  844. if (field == "use_mmap") {
  845. return "mmap";
  846. }
  847. if (field == "tensor_split") {
  848. return "ts";
  849. }
  850. return field;
  851. }
  852. void print_header(const cmd_params & params) override {
  853. // select fields to print
  854. fields.emplace_back("model");
  855. fields.emplace_back("size");
  856. fields.emplace_back("params");
  857. fields.emplace_back("backend");
  858. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  859. if (!is_cpu_backend) {
  860. fields.emplace_back("n_gpu_layers");
  861. }
  862. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  863. fields.emplace_back("n_threads");
  864. }
  865. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  866. fields.emplace_back("n_batch");
  867. }
  868. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  869. fields.emplace_back("type_k");
  870. }
  871. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  872. fields.emplace_back("type_v");
  873. }
  874. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  875. fields.emplace_back("main_gpu");
  876. }
  877. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  878. fields.emplace_back("split_mode");
  879. }
  880. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  881. fields.emplace_back("no_kv_offload");
  882. }
  883. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  884. fields.emplace_back("tensor_split");
  885. }
  886. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  887. fields.emplace_back("use_mmap");
  888. }
  889. fields.emplace_back("test");
  890. fields.emplace_back("t/s");
  891. fprintf(fout, "|");
  892. for (const auto & field : fields) {
  893. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  894. }
  895. fprintf(fout, "\n");
  896. fprintf(fout, "|");
  897. for (const auto & field : fields) {
  898. int width = get_field_width(field);
  899. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  900. }
  901. fprintf(fout, "\n");
  902. }
  903. void print_test(const test & t) override {
  904. std::map<std::string, std::string> vmap = t.get_map();
  905. fprintf(fout, "|");
  906. for (const auto & field : fields) {
  907. std::string value;
  908. char buf[128];
  909. if (field == "model") {
  910. value = t.model_type;
  911. } else if (field == "size") {
  912. if (t.model_size < 1024*1024*1024) {
  913. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  914. } else {
  915. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  916. }
  917. value = buf;
  918. } else if (field == "params") {
  919. if (t.model_n_params < 1000*1000*1000) {
  920. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  921. } else {
  922. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  923. }
  924. value = buf;
  925. } else if (field == "backend") {
  926. value = test::get_backend();
  927. } else if (field == "test") {
  928. if (t.n_prompt > 0 && t.n_gen == 0) {
  929. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  930. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  931. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  932. } else {
  933. assert(false);
  934. exit(1);
  935. }
  936. value = buf;
  937. } else if (field == "t/s") {
  938. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  939. value = buf;
  940. } else if (vmap.find(field) != vmap.end()) {
  941. value = vmap.at(field);
  942. } else {
  943. assert(false);
  944. exit(1);
  945. }
  946. int width = get_field_width(field);
  947. if (field == "t/s") {
  948. // HACK: the utf-8 character is 2 bytes
  949. width += 1;
  950. }
  951. fprintf(fout, " %*s |", width, value.c_str());
  952. }
  953. fprintf(fout, "\n");
  954. }
  955. void print_footer() override {
  956. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  957. }
  958. };
  959. struct sql_printer : public printer {
  960. static std::string get_sql_field_type(const std::string & field) {
  961. switch (test::get_field_type(field)) {
  962. case test::STRING:
  963. return "TEXT";
  964. case test::BOOL:
  965. case test::INT:
  966. return "INTEGER";
  967. case test::FLOAT:
  968. return "REAL";
  969. default:
  970. assert(false);
  971. exit(1);
  972. }
  973. }
  974. void print_header(const cmd_params & params) override {
  975. std::vector<std::string> fields = test::get_fields();
  976. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  977. for (size_t i = 0; i < fields.size(); i++) {
  978. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  979. }
  980. fprintf(fout, ");\n");
  981. fprintf(fout, "\n");
  982. (void) params;
  983. }
  984. void print_test(const test & t) override {
  985. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  986. fprintf(fout, "VALUES (");
  987. std::vector<std::string> values = t.get_values();
  988. for (size_t i = 0; i < values.size(); i++) {
  989. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  990. }
  991. fprintf(fout, ");\n");
  992. }
  993. };
  994. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  995. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  996. int n_processed = 0;
  997. llama_set_n_threads(ctx, n_threads, n_threads);
  998. while (n_processed < n_prompt) {
  999. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1000. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1001. n_processed += n_tokens;
  1002. }
  1003. }
  1004. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1005. llama_token token = llama_token_bos(llama_get_model(ctx));
  1006. llama_set_n_threads(ctx, n_threads, n_threads);
  1007. for (int i = 0; i < n_gen; i++) {
  1008. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1009. }
  1010. }
  1011. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1012. (void) level;
  1013. (void) text;
  1014. (void) user_data;
  1015. }
  1016. int main(int argc, char ** argv) {
  1017. // try to set locale for unicode characters in markdown
  1018. setlocale(LC_CTYPE, ".UTF-8");
  1019. #if !defined(NDEBUG)
  1020. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1021. #endif
  1022. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1023. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1024. #endif
  1025. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1026. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1027. #endif
  1028. cmd_params params = parse_cmd_params(argc, argv);
  1029. // initialize llama.cpp
  1030. if (!params.verbose) {
  1031. llama_log_set(llama_null_log_callback, NULL);
  1032. }
  1033. llama_backend_init();
  1034. // initialize printer
  1035. std::unique_ptr<printer> p;
  1036. switch (params.output_format) {
  1037. case CSV:
  1038. p.reset(new csv_printer());
  1039. break;
  1040. case JSON:
  1041. p.reset(new json_printer());
  1042. break;
  1043. case MARKDOWN:
  1044. p.reset(new markdown_printer());
  1045. break;
  1046. case SQL:
  1047. p.reset(new sql_printer());
  1048. break;
  1049. default:
  1050. assert(false);
  1051. exit(1);
  1052. }
  1053. p->fout = stdout;
  1054. p->print_header(params);
  1055. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1056. llama_model * lmodel = nullptr;
  1057. const cmd_params_instance * prev_inst = nullptr;
  1058. for (const auto & inst : params_instances) {
  1059. // keep the same model between tests when possible
  1060. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1061. if (lmodel) {
  1062. llama_free_model(lmodel);
  1063. }
  1064. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1065. if (lmodel == NULL) {
  1066. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1067. return 1;
  1068. }
  1069. prev_inst = &inst;
  1070. }
  1071. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1072. if (ctx == NULL) {
  1073. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1074. llama_free_model(lmodel);
  1075. return 1;
  1076. }
  1077. test t(inst, lmodel, ctx);
  1078. llama_kv_cache_clear(ctx);
  1079. // warmup run
  1080. if (t.n_prompt > 0) {
  1081. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1082. }
  1083. if (t.n_gen > 0) {
  1084. test_gen(ctx, 1, 0, t.n_threads);
  1085. }
  1086. for (int i = 0; i < params.reps; i++) {
  1087. llama_kv_cache_clear(ctx);
  1088. uint64_t t_start = get_time_ns();
  1089. if (t.n_prompt > 0) {
  1090. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1091. }
  1092. if (t.n_gen > 0) {
  1093. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1094. }
  1095. uint64_t t_ns = get_time_ns() - t_start;
  1096. t.samples_ns.push_back(t_ns);
  1097. }
  1098. p->print_test(t);
  1099. llama_print_timings(ctx);
  1100. llama_free(ctx);
  1101. }
  1102. llama_free_model(lmodel);
  1103. p->print_footer();
  1104. llama_backend_free();
  1105. return 0;
  1106. }