ggml-alloc.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. #include "ggml-alloc.h"
  2. #include "ggml-backend-impl.h"
  3. #include "ggml.h"
  4. #include "ggml-impl.h"
  5. #include <assert.h>
  6. #include <limits.h>
  7. #include <stdarg.h>
  8. #include <stdio.h>
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  12. #define MAX_FREE_BLOCKS 256
  13. //#define GGML_ALLOCATOR_DEBUG
  14. //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
  15. #define AT_PRINTF(...)
  16. static bool ggml_is_view(const struct ggml_tensor * t) {
  17. return t->view_src != NULL;
  18. }
  19. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  20. if (a->type != b->type) {
  21. return false;
  22. }
  23. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  24. if (a->ne[i] != b->ne[i]) {
  25. return false;
  26. }
  27. if (a->nb[i] != b->nb[i]) {
  28. return false;
  29. }
  30. }
  31. return true;
  32. }
  33. static bool ggml_op_can_inplace(enum ggml_op op) {
  34. switch (op) {
  35. case GGML_OP_SCALE:
  36. case GGML_OP_DIAG_MASK_ZERO:
  37. case GGML_OP_DIAG_MASK_INF:
  38. case GGML_OP_ADD:
  39. case GGML_OP_ADD1:
  40. case GGML_OP_SUB:
  41. case GGML_OP_MUL:
  42. case GGML_OP_DIV:
  43. case GGML_OP_SQR:
  44. case GGML_OP_SQRT:
  45. case GGML_OP_LOG:
  46. case GGML_OP_UNARY:
  47. case GGML_OP_ROPE:
  48. case GGML_OP_RMS_NORM:
  49. case GGML_OP_SOFT_MAX:
  50. return true;
  51. default:
  52. return false;
  53. }
  54. }
  55. // TODO: GGML_PAD ?
  56. static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
  57. assert(alignment && !(alignment & (alignment - 1))); // power of 2
  58. size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
  59. return offset + align;
  60. }
  61. // tallocr
  62. struct ggml_tallocr {
  63. ggml_backend_buffer_t buffer;
  64. void * base;
  65. size_t alignment;
  66. size_t offset;
  67. };
  68. ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
  69. ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr));
  70. if (talloc == NULL) {
  71. return NULL;
  72. }
  73. void * base = ggml_backend_buffer_get_base(buffer);
  74. size_t align = ggml_backend_buffer_get_alignment(buffer);
  75. assert(align && !(align & (align - 1))); // power of 2
  76. *talloc = (struct ggml_tallocr) {
  77. /*.buffer = */ buffer,
  78. /*.base = */ base,
  79. /*.alignment = */ align,
  80. /*.offset = */ aligned_offset(base, 0, align),
  81. };
  82. return talloc;
  83. }
  84. void ggml_tallocr_free(ggml_tallocr_t talloc) {
  85. free(talloc);
  86. }
  87. void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) {
  88. size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
  89. size = GGML_PAD(size, talloc->alignment);
  90. if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
  91. fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
  92. __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
  93. GGML_ASSERT(!"not enough space in the buffer");
  94. return;
  95. }
  96. void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
  97. talloc->offset += size;
  98. assert(((uintptr_t)addr % talloc->alignment) == 0);
  99. ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
  100. }
  101. // dynamic tensor allocator
  102. struct free_block {
  103. size_t offset;
  104. size_t size;
  105. };
  106. struct ggml_dyn_tallocr {
  107. size_t alignment;
  108. int n_free_blocks;
  109. struct free_block free_blocks[MAX_FREE_BLOCKS];
  110. size_t max_size;
  111. #ifdef GGML_ALLOCATOR_DEBUG
  112. struct {
  113. const struct ggml_tensor * tensor;
  114. size_t offset;
  115. } allocated_tensors[1024];
  116. #endif
  117. };
  118. #ifdef GGML_ALLOCATOR_DEBUG
  119. static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  120. for (int i = 0; i < 1024; i++) {
  121. if (alloc->allocated_tensors[i].tensor == NULL) {
  122. alloc->allocated_tensors[i].tensor = tensor;
  123. alloc->allocated_tensors[i].offset = offset;
  124. return;
  125. }
  126. }
  127. GGML_ASSERT(!"out of allocated_tensors");
  128. }
  129. static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  130. for (int i = 0; i < 1024; i++) {
  131. if (alloc->allocated_tensors[i].offset == offset) {
  132. alloc->allocated_tensors[i].tensor = NULL;
  133. return;
  134. }
  135. }
  136. fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
  137. GGML_ASSERT(!"tensor not found");
  138. }
  139. #endif
  140. static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
  141. size = aligned_offset(NULL, size, alloc->alignment);
  142. AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
  143. size_t max_avail = 0;
  144. // find the best fitting free block besides the last block
  145. int best_fit_block = -1;
  146. size_t best_fit_size = SIZE_MAX;
  147. for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
  148. struct free_block * block = &alloc->free_blocks[i];
  149. max_avail = MAX(max_avail, block->size);
  150. if (block->size >= size && block->size <= best_fit_size) {
  151. best_fit_block = i;
  152. best_fit_size = block->size;
  153. }
  154. }
  155. if (best_fit_block == -1) {
  156. // the last block is our last resort
  157. struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
  158. max_avail = MAX(max_avail, block->size);
  159. if (block->size >= size) {
  160. best_fit_block = alloc->n_free_blocks - 1;
  161. } else {
  162. // this should never happen
  163. fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
  164. __func__, size, max_avail);
  165. GGML_ASSERT(!"not enough space in the buffer");
  166. GGML_UNREACHABLE();
  167. }
  168. }
  169. struct free_block * block = &alloc->free_blocks[best_fit_block];
  170. size_t offset = block->offset;
  171. block->offset = offset + size;
  172. block->size -= size;
  173. if (block->size == 0) {
  174. // remove block if empty
  175. alloc->n_free_blocks--;
  176. for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
  177. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  178. }
  179. }
  180. AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
  181. #ifdef GGML_ALLOCATOR_DEBUG
  182. add_allocated_tensor(alloc, offset, tensor);
  183. size_t cur_max = offset + size;
  184. if (cur_max > alloc->max_size) {
  185. // sort allocated_tensors by offset
  186. for (int i = 0; i < 1024; i++) {
  187. for (int j = i + 1; j < 1024; j++) {
  188. if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
  189. const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
  190. size_t tmp_offset = alloc->allocated_tensors[i].offset;
  191. alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
  192. alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
  193. alloc->allocated_tensors[j].tensor = tmp_tensor;
  194. alloc->allocated_tensors[j].offset = tmp_offset;
  195. }
  196. }
  197. }
  198. fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
  199. for (int i = 0; i < 1024; i++) {
  200. if (alloc->allocated_tensors[i].tensor) {
  201. fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
  202. alloc->allocated_tensors[i].offset,
  203. alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
  204. ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
  205. }
  206. }
  207. fprintf(stderr, "\n");
  208. }
  209. #endif
  210. alloc->max_size = MAX(alloc->max_size, offset + size);
  211. return offset;
  212. GGML_UNUSED(tensor);
  213. }
  214. // this is a very naive implementation, but for our case the number of free blocks should be very small
  215. static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
  216. size = aligned_offset(NULL, size, alloc->alignment);
  217. AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
  218. #ifdef GGML_ALLOCATOR_DEBUG
  219. remove_allocated_tensor(alloc, offset, tensor);
  220. #endif
  221. // see if we can merge with an existing block
  222. for (int i = 0; i < alloc->n_free_blocks; i++) {
  223. struct free_block * block = &alloc->free_blocks[i];
  224. // check if ptr is at the end of the block
  225. if (block->offset + block->size == offset) {
  226. block->size += size;
  227. // check if we can merge with the next block
  228. if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
  229. block->size += alloc->free_blocks[i+1].size;
  230. alloc->n_free_blocks--;
  231. for (int j = i+1; j < alloc->n_free_blocks; j++) {
  232. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  233. }
  234. }
  235. return;
  236. }
  237. // check if ptr is at the beginning of the block
  238. if (offset + size == block->offset) {
  239. block->offset = offset;
  240. block->size += size;
  241. // check if we can merge with the previous block
  242. if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
  243. alloc->free_blocks[i-1].size += block->size;
  244. alloc->n_free_blocks--;
  245. for (int j = i; j < alloc->n_free_blocks; j++) {
  246. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  247. }
  248. }
  249. return;
  250. }
  251. }
  252. // otherwise, add a new block
  253. GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
  254. // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
  255. int insert_pos = 0;
  256. while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
  257. insert_pos++;
  258. }
  259. // shift all blocks from insert_pos onward to make room for the new block
  260. for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
  261. alloc->free_blocks[i] = alloc->free_blocks[i-1];
  262. }
  263. // insert the new block
  264. alloc->free_blocks[insert_pos].offset = offset;
  265. alloc->free_blocks[insert_pos].size = size;
  266. alloc->n_free_blocks++;
  267. GGML_UNUSED(tensor);
  268. }
  269. static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
  270. alloc->n_free_blocks = 1;
  271. alloc->free_blocks[0].offset = 0;
  272. alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
  273. alloc->max_size = 0;
  274. }
  275. static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
  276. struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
  277. *alloc = (struct ggml_dyn_tallocr) {
  278. /*.alignment = */ alignment,
  279. /*.n_free_blocks = */ 0,
  280. /*.free_blocks = */ {{0}},
  281. /*.max_size = */ 0,
  282. #ifdef GGML_ALLOCATOR_DEBUG
  283. /*.allocated_tensors = */ {{0}},
  284. #endif
  285. };
  286. ggml_dyn_tallocr_reset(alloc);
  287. return alloc;
  288. }
  289. static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
  290. free(alloc);
  291. }
  292. static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
  293. return alloc->max_size;
  294. }
  295. /////////////////////////////////////
  296. // graph allocator
  297. struct hash_node {
  298. int n_children;
  299. int n_views;
  300. int buffer_id;
  301. size_t offset; // offset within the buffer
  302. bool allocated;
  303. };
  304. //
  305. struct tensor_alloc {
  306. size_t offset;
  307. size_t size_max; // 0 = pre-allocated, unused, or view
  308. };
  309. struct node_alloc {
  310. int buffer_id;
  311. struct tensor_alloc dst;
  312. struct tensor_alloc src[GGML_MAX_SRC];
  313. };
  314. struct ggml_gallocr {
  315. ggml_backend_buffer_type_t * bufts; // [n_buffers]
  316. ggml_backend_buffer_t * buffers; // [n_buffers]
  317. struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
  318. int n_buffers;
  319. struct ggml_hash_set hash_set;
  320. struct hash_node * hash_values; // [hash_set.size]
  321. struct node_alloc * node_allocs; // [n_nodes]
  322. int n_nodes;
  323. struct tensor_alloc * leaf_allocs; // [n_leafs]
  324. int n_leafs;
  325. };
  326. ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
  327. ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
  328. GGML_ASSERT(galloc != NULL);
  329. galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1);
  330. GGML_ASSERT(galloc->bufts != NULL);
  331. galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1);
  332. GGML_ASSERT(galloc->buffers != NULL);
  333. galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1);
  334. GGML_ASSERT(galloc->buf_tallocs != NULL);
  335. for (int i = 0; i < n_bufs; i++) {
  336. galloc->bufts[i] = bufts[i];
  337. galloc->buffers[i] = NULL;
  338. size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
  339. galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
  340. }
  341. galloc->n_buffers = n_bufs;
  342. return galloc;
  343. }
  344. ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
  345. return ggml_gallocr_new_n(&buft, 1);
  346. }
  347. void ggml_gallocr_free(ggml_gallocr_t galloc) {
  348. if (galloc == NULL) {
  349. return;
  350. }
  351. for (int i = 0; i < galloc->n_buffers; i++) {
  352. if (galloc->buffers != NULL) {
  353. ggml_backend_buffer_free(galloc->buffers[i]);
  354. }
  355. if (galloc->buf_tallocs != NULL) {
  356. ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
  357. }
  358. }
  359. free(galloc->hash_set.keys);
  360. free(galloc->hash_values);
  361. free(galloc->bufts);
  362. free(galloc->buffers);
  363. free(galloc->buf_tallocs);
  364. free(galloc->node_allocs);
  365. free(galloc->leaf_allocs);
  366. free(galloc);
  367. }
  368. typedef struct ggml_gallocr * ggml_gallocr_t;
  369. static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  370. size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
  371. return &galloc->hash_values[i];
  372. }
  373. static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  374. return ggml_gallocr_hash_get(galloc, t)->allocated;
  375. }
  376. static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
  377. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  378. hn->buffer_id = buffer_id;
  379. hn->offset = offset;
  380. hn->allocated = true;
  381. }
  382. static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  383. return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
  384. }
  385. static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
  386. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  387. if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
  388. hn->allocated = true;
  389. assert(hn->offset == 0);
  390. // try to reuse a parent's buffer (inplace)
  391. if (ggml_op_can_inplace(node->op)) {
  392. for (int i = 0; i < GGML_MAX_SRC; i++) {
  393. struct ggml_tensor * parent = node->src[i];
  394. if (parent == NULL) {
  395. continue;
  396. }
  397. // if the node's data is external, then we cannot re-use it
  398. if (!ggml_gallocr_is_own(galloc, parent)) {
  399. AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
  400. continue;
  401. }
  402. // outputs cannot be reused
  403. if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
  404. AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
  405. continue;
  406. }
  407. if (!ggml_are_same_layout(node, parent)) {
  408. AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
  409. continue;
  410. }
  411. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  412. if (p_hn->n_children == 1 && p_hn->n_views == 0) {
  413. if (ggml_is_view(parent)) {
  414. struct ggml_tensor * view_src = parent->view_src;
  415. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  416. if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
  417. AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
  418. assert(view_src_hn->offset == p_hn->offset);
  419. hn->buffer_id = p_hn->buffer_id;
  420. hn->offset = p_hn->offset;
  421. p_hn->allocated = false; // avoid freeing the parent
  422. view_src_hn->allocated = false;
  423. return;
  424. }
  425. } else {
  426. AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
  427. hn->buffer_id = p_hn->buffer_id;
  428. hn->offset = p_hn->offset;
  429. p_hn->allocated = false; // avoid freeing the parent
  430. return;
  431. }
  432. }
  433. }
  434. }
  435. // allocate tensor from the buffer
  436. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  437. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  438. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  439. size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
  440. hn->buffer_id = buffer_id;
  441. hn->offset = offset;
  442. return;
  443. }
  444. }
  445. static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
  446. // graph outputs are never freed
  447. if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
  448. AT_PRINTF("not freeing output %s\n", node->name);
  449. return;
  450. }
  451. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  452. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  453. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  454. size_t offset = hn->offset;
  455. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  456. ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
  457. hn->allocated = false;
  458. }
  459. static int get_node_buffer_id(const int * node_buffer_ids, int i) {
  460. return node_buffer_ids ? node_buffer_ids[i] : 0;
  461. }
  462. static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
  463. // clear hash tables
  464. memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
  465. memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
  466. // count number of children and views
  467. // allocate all graph inputs and leafs first to avoid overwriting them
  468. for (int i = 0; i < graph->n_nodes; i++) {
  469. struct ggml_tensor * node = graph->nodes[i];
  470. if (ggml_is_view(node)) {
  471. struct ggml_tensor * view_src = node->view_src;
  472. ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
  473. }
  474. if (node->flags & GGML_TENSOR_FLAG_INPUT) {
  475. ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
  476. }
  477. for (int j = 0; j < GGML_MAX_SRC; j++) {
  478. struct ggml_tensor * src = node->src[j];
  479. if (src == NULL) {
  480. continue;
  481. }
  482. ggml_gallocr_hash_get(galloc, src)->n_children += 1;
  483. // allocate explicit inputs and leafs
  484. if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
  485. ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
  486. }
  487. }
  488. }
  489. // allocate the remaining leafs that are unused on the graph
  490. // these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
  491. for (int i = 0; i < graph->n_leafs; i++) {
  492. struct ggml_tensor * leaf = graph->leafs[i];
  493. struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
  494. if (hn->n_children == 0) {
  495. assert(!hn->allocated);
  496. // since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
  497. ggml_gallocr_allocate_node(galloc, leaf, 0);
  498. }
  499. }
  500. // allocate tensors
  501. for (int i = 0; i < graph->n_nodes; i++) {
  502. struct ggml_tensor * node = graph->nodes[i];
  503. int buffer_id = get_node_buffer_id(node_buffer_ids, i);
  504. // allocate parents (only leafs need to be allocated at this point)
  505. for (int j = 0; j < GGML_MAX_SRC; j++) {
  506. struct ggml_tensor * parent = node->src[j];
  507. if (parent == NULL) {
  508. continue;
  509. }
  510. ggml_gallocr_allocate_node(galloc, parent, buffer_id);
  511. }
  512. // allocate node
  513. ggml_gallocr_allocate_node(galloc, node, buffer_id);
  514. AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
  515. for (int j = 0; j < GGML_MAX_SRC; j++) {
  516. struct ggml_tensor * parent = node->src[j];
  517. if (parent == NULL) {
  518. continue;
  519. }
  520. AT_PRINTF("%s", parent->name);
  521. if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
  522. AT_PRINTF(", ");
  523. }
  524. }
  525. AT_PRINTF("\n");
  526. // update parents
  527. for (int j = 0; j < GGML_MAX_SRC; j++) {
  528. struct ggml_tensor * parent = node->src[j];
  529. if (parent == NULL) {
  530. continue;
  531. }
  532. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  533. p_hn->n_children -= 1;
  534. AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
  535. parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
  536. if (p_hn->n_children == 0 && p_hn->n_views == 0) {
  537. if (ggml_is_view(parent)) {
  538. struct ggml_tensor * view_src = parent->view_src;
  539. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  540. view_src_hn->n_views -= 1;
  541. AT_PRINTF("view_src %s: %d children, %d views\n",
  542. view_src->name, view_src_hn->n_children, view_src_hn->n_views);
  543. if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
  544. ggml_gallocr_free_node(galloc, view_src, buffer_id);
  545. }
  546. }
  547. else if (p_hn->allocated) {
  548. ggml_gallocr_free_node(galloc, parent, buffer_id);
  549. }
  550. }
  551. AT_PRINTF("\n");
  552. }
  553. }
  554. }
  555. bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
  556. size_t hash_size = graph->visited_hash_table.size;
  557. // initialize hash table
  558. if (galloc->hash_set.size < hash_size) {
  559. free(galloc->hash_set.keys);
  560. free(galloc->hash_values);
  561. galloc->hash_set.size = hash_size;
  562. galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size);
  563. galloc->hash_values = calloc(sizeof(struct hash_node), hash_size);
  564. GGML_ASSERT(galloc->hash_set.keys != NULL);
  565. GGML_ASSERT(galloc->hash_values != NULL);
  566. } else {
  567. // reset hash table
  568. memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
  569. memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
  570. }
  571. // reset allocators
  572. for (int i = 0; i < galloc->n_buffers; i++) {
  573. ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
  574. }
  575. // allocate in hash table
  576. ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids);
  577. // set the node_allocs from the hash table
  578. if (galloc->n_nodes < graph->n_nodes) {
  579. free(galloc->node_allocs);
  580. galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes);
  581. GGML_ASSERT(galloc->node_allocs != NULL);
  582. }
  583. galloc->n_nodes = graph->n_nodes;
  584. for (int i = 0; i < graph->n_nodes; i++) {
  585. struct ggml_tensor * node = graph->nodes[i];
  586. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  587. node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i);
  588. if (node->view_src || node->data) {
  589. node_alloc->dst.offset = SIZE_MAX;
  590. node_alloc->dst.size_max = 0;
  591. } else {
  592. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  593. node_alloc->dst.offset = hn->offset;
  594. node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
  595. }
  596. for (int j = 0; j < GGML_MAX_SRC; j++) {
  597. struct ggml_tensor * src = node->src[j];
  598. if (!src || src->view_src || src->data) {
  599. node_alloc->src[j].offset = SIZE_MAX;
  600. node_alloc->src[j].size_max = 0;
  601. } else {
  602. struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
  603. node_alloc->src[j].offset = hn->offset;
  604. node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
  605. }
  606. }
  607. }
  608. if (galloc->n_leafs < graph->n_leafs) {
  609. free(galloc->leaf_allocs);
  610. galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
  611. GGML_ASSERT(galloc->leaf_allocs != NULL);
  612. }
  613. galloc->n_leafs = graph->n_leafs;
  614. for (int i = 0; i < graph->n_leafs; i++) {
  615. struct ggml_tensor * leaf = graph->leafs[i];
  616. struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
  617. galloc->leaf_allocs[i].offset = hn->offset;
  618. galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
  619. }
  620. // reallocate buffers if needed
  621. for (int i = 0; i < galloc->n_buffers; i++) {
  622. size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
  623. size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
  624. if (new_size > cur_size) {
  625. #ifndef NDEBUG
  626. fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  627. #endif
  628. ggml_backend_buffer_free(galloc->buffers[i]);
  629. galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
  630. if (galloc->buffers[i] == NULL) {
  631. fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
  632. return false;
  633. }
  634. }
  635. }
  636. return true;
  637. }
  638. bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
  639. return ggml_gallocr_reserve_n(galloc, graph, NULL);
  640. }
  641. static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
  642. assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
  643. if (node->view_src != NULL) {
  644. if (node->buffer == NULL) {
  645. assert(tensor_alloc->offset == SIZE_MAX);
  646. if (node->view_src->buffer == NULL) {
  647. // this tensor was allocated without ggml-backend
  648. return;
  649. }
  650. ggml_backend_view_init(galloc->buffers[buffer_id], node);
  651. }
  652. } else {
  653. if (node->data == NULL) {
  654. assert(tensor_alloc->offset != SIZE_MAX);
  655. assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
  656. void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
  657. void * addr = (char *)base + tensor_alloc->offset;
  658. ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
  659. } else {
  660. if (node->buffer == NULL) {
  661. // this tensor was allocated without ggml-backend
  662. return;
  663. }
  664. }
  665. }
  666. }
  667. static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) {
  668. ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id];
  669. size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
  670. return talloc->size_max >= node_size;
  671. }
  672. static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  673. if (galloc->n_nodes != graph->n_nodes) {
  674. #ifndef NDEBUG
  675. fprintf(stderr, "%s: graph has different number of nodes\n", __func__);
  676. #endif
  677. return true;
  678. }
  679. if (galloc->n_leafs != graph->n_leafs) {
  680. #ifndef NDEBUG
  681. fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
  682. #endif
  683. return true;
  684. }
  685. for (int i = 0; i < graph->n_nodes; i++) {
  686. struct ggml_tensor * node = graph->nodes[i];
  687. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  688. if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) {
  689. #ifndef NDEBUG
  690. fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
  691. #endif
  692. return true;
  693. }
  694. for (int j = 0; j < GGML_MAX_SRC; j++) {
  695. struct ggml_tensor * src = node->src[j];
  696. if (src == NULL) {
  697. continue;
  698. }
  699. if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
  700. #ifndef NDEBUG
  701. fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
  702. #endif
  703. return true;
  704. }
  705. }
  706. }
  707. return false;
  708. }
  709. bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  710. if (ggml_gallocr_needs_realloc(galloc, graph)) {
  711. if (galloc->n_buffers == 1) {
  712. #ifndef NDEBUG
  713. fprintf(stderr, "%s: reallocating buffers automatically\n", __func__);
  714. #endif
  715. if (!ggml_gallocr_reserve(galloc, graph)) {
  716. return false;
  717. }
  718. } else {
  719. #ifndef NDEBUG
  720. fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
  721. #endif
  722. return false;
  723. }
  724. }
  725. // reset buffers
  726. for (int i = 0; i < galloc->n_buffers; i++) {
  727. // zero size buffers are not allocated
  728. if (galloc->buffers[i] != NULL) {
  729. ggml_backend_buffer_reset(galloc->buffers[i]);
  730. }
  731. }
  732. // allocate the graph tensors from the previous assignments
  733. // nodes
  734. for (int i = 0; i < graph->n_nodes; i++) {
  735. struct ggml_tensor * node = graph->nodes[i];
  736. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  737. for (int j = 0; j < GGML_MAX_SRC; j++) {
  738. struct ggml_tensor * src = node->src[j];
  739. if (src == NULL) {
  740. continue;
  741. }
  742. ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
  743. }
  744. ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
  745. }
  746. // leafs
  747. for (int i = 0; i < graph->n_leafs; i++) {
  748. struct ggml_tensor * leaf = graph->leafs[i];
  749. struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
  750. ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
  751. }
  752. return true;
  753. }
  754. size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
  755. GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
  756. if (galloc->buffers[buffer_id] == NULL) {
  757. return 0;
  758. }
  759. return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
  760. }
  761. // utils
  762. static bool alloc_tensor_range(struct ggml_context * ctx,
  763. struct ggml_tensor * first, struct ggml_tensor * last,
  764. ggml_backend_buffer_type_t buft, size_t size,
  765. ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
  766. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  767. if (buffer == NULL) {
  768. #ifndef NDEBUG
  769. fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
  770. #endif
  771. for (size_t i = 0; i < *n_buffers; i++) {
  772. ggml_backend_buffer_free(*buffers[i]);
  773. }
  774. free(*buffers);
  775. return false;
  776. }
  777. struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer);
  778. for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
  779. if (t->data == NULL) {
  780. if (t->view_src == NULL) {
  781. ggml_tallocr_alloc(tallocr, t);
  782. } else if (t->buffer == NULL) {
  783. ggml_backend_view_init(buffer, t);
  784. }
  785. } else {
  786. if (t->view_src != NULL && t->buffer == NULL) {
  787. // view of a pre-allocated tensor
  788. ggml_backend_view_init(buffer, t);
  789. }
  790. }
  791. }
  792. ggml_tallocr_free(tallocr);
  793. *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
  794. (*buffers)[(*n_buffers)++] = buffer;
  795. return true;
  796. }
  797. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
  798. GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
  799. size_t alignment = ggml_backend_buft_get_alignment(buft);
  800. size_t max_size = ggml_backend_buft_get_max_size(buft);
  801. ggml_backend_buffer_t * buffers = NULL;
  802. size_t n_buffers = 0;
  803. size_t cur_buf_size = 0;
  804. struct ggml_tensor * first = ggml_get_first_tensor(ctx);
  805. for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  806. size_t this_size = 0;
  807. if (t->data == NULL && t->view_src == NULL) {
  808. this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
  809. }
  810. if (this_size > max_size) {
  811. fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
  812. __func__, t->name,
  813. ggml_backend_buft_name(buft),
  814. this_size, max_size);
  815. for (size_t i = 0; i < n_buffers; i++) {
  816. ggml_backend_buffer_free(buffers[i]);
  817. }
  818. free(buffers);
  819. return NULL;
  820. }
  821. if ((cur_buf_size + this_size) > max_size) {
  822. // allocate tensors in the current buffer
  823. if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
  824. return NULL;
  825. }
  826. first = t;
  827. cur_buf_size = this_size;
  828. } else {
  829. cur_buf_size += this_size;
  830. }
  831. }
  832. // allocate remaining tensors
  833. if (cur_buf_size > 0) {
  834. if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
  835. return NULL;
  836. }
  837. }
  838. if (n_buffers == 0) {
  839. #ifndef NDEBUG
  840. fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
  841. #endif
  842. return NULL;
  843. }
  844. ggml_backend_buffer_t buffer;
  845. if (n_buffers == 1) {
  846. buffer = buffers[0];
  847. } else {
  848. buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
  849. }
  850. free(buffers);
  851. return buffer;
  852. }
  853. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
  854. return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
  855. }