ggml.c 637 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #include "ggml-quants.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. #include <stdarg.h>
  21. #include <signal.h>
  22. #ifdef GGML_USE_METAL
  23. #include <unistd.h>
  24. #endif
  25. // static_assert should be a #define, but if it's not,
  26. // fall back to the _Static_assert C11 keyword.
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  31. #define static_assert(cond, msg) _Static_assert(cond, msg)
  32. #else
  33. #define static_assert(cond, msg) struct global_scope_noop_trick
  34. #endif
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnigns
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. int ret = (int) WaitForSingleObject(thread, INFINITE);
  75. CloseHandle(thread);
  76. return ret;
  77. }
  78. static int sched_yield (void) {
  79. Sleep (0);
  80. return 0;
  81. }
  82. #else
  83. #include <pthread.h>
  84. #include <stdatomic.h>
  85. typedef void * thread_ret_t;
  86. #include <sys/types.h>
  87. #include <sys/stat.h>
  88. #include <unistd.h>
  89. #endif
  90. #ifdef GGML_USE_CPU_HBM
  91. #include <hbwmalloc.h>
  92. #endif
  93. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  94. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  95. #ifndef __FMA__
  96. #define __FMA__
  97. #endif
  98. #ifndef __F16C__
  99. #define __F16C__
  100. #endif
  101. #ifndef __SSE3__
  102. #define __SSE3__
  103. #endif
  104. #endif
  105. /*#define GGML_PERF*/
  106. #define GGML_DEBUG 0
  107. #define GGML_GELU_FP16
  108. #define GGML_GELU_QUICK_FP16
  109. #define GGML_SILU_FP16
  110. // #define GGML_CROSS_ENTROPY_EXP_FP16
  111. // #define GGML_FLASH_ATTN_EXP_FP16
  112. #define GGML_SOFT_MAX_UNROLL 4
  113. #define GGML_VEC_DOT_UNROLL 2
  114. #define GGML_VEC_MAD_UNROLL 32
  115. //
  116. // logging
  117. //
  118. #if (GGML_DEBUG >= 1)
  119. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  120. #else
  121. #define GGML_PRINT_DEBUG(...)
  122. #endif
  123. #if (GGML_DEBUG >= 5)
  124. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  125. #else
  126. #define GGML_PRINT_DEBUG_5(...)
  127. #endif
  128. #if (GGML_DEBUG >= 10)
  129. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  130. #else
  131. #define GGML_PRINT_DEBUG_10(...)
  132. #endif
  133. #define GGML_PRINT(...) printf(__VA_ARGS__)
  134. //
  135. // end of logging block
  136. //
  137. #ifdef GGML_USE_ACCELERATE
  138. // uncomment to use vDSP for soft max computation
  139. // note: not sure if it is actually faster
  140. //#define GGML_SOFT_MAX_ACCELERATE
  141. #endif
  142. #if defined(_MSC_VER) || defined(__MINGW32__)
  143. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  144. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  145. #else
  146. inline static void * ggml_aligned_malloc(size_t size) {
  147. if (size == 0) {
  148. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  149. return NULL;
  150. }
  151. void * aligned_memory = NULL;
  152. #ifdef GGML_USE_CPU_HBM
  153. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  154. #elif GGML_USE_METAL
  155. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  156. #else
  157. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  158. #endif
  159. if (result != 0) {
  160. // Handle allocation failure
  161. const char *error_desc = "unknown allocation error";
  162. switch (result) {
  163. case EINVAL:
  164. error_desc = "invalid alignment value";
  165. break;
  166. case ENOMEM:
  167. error_desc = "insufficient memory";
  168. break;
  169. }
  170. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  171. return NULL;
  172. }
  173. return aligned_memory;
  174. }
  175. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  176. #ifdef GGML_USE_CPU_HBM
  177. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  178. #else
  179. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  180. #endif
  181. #endif
  182. #define UNUSED GGML_UNUSED
  183. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  184. //
  185. // tensor access macros
  186. //
  187. #define GGML_TENSOR_UNARY_OP_LOCALS \
  188. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  189. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  190. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  191. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  192. #define GGML_TENSOR_BINARY_OP_LOCALS \
  193. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  194. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  195. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  196. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  199. #if defined(GGML_USE_ACCELERATE)
  200. #include <Accelerate/Accelerate.h>
  201. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  202. #include "ggml-opencl.h"
  203. #endif
  204. #elif defined(GGML_USE_OPENBLAS)
  205. #if defined(GGML_BLAS_USE_MKL)
  206. #include <mkl.h>
  207. #else
  208. #include <cblas.h>
  209. #endif
  210. #elif defined(GGML_USE_CUBLAS)
  211. #include "ggml-cuda.h"
  212. #elif defined(GGML_USE_CLBLAST)
  213. #include "ggml-opencl.h"
  214. #endif
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. // floating point type used to accumulate sums
  220. typedef double ggml_float;
  221. // 16-bit float
  222. // on Arm, we use __fp16
  223. // on x86, we use uint16_t
  224. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  225. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  226. //
  227. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  228. //
  229. #include <arm_neon.h>
  230. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  231. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  232. #define GGML_FP16_TO_FP32(x) ((float) (x))
  233. #define GGML_FP32_TO_FP16(x) (x)
  234. #else
  235. #ifdef __wasm_simd128__
  236. #include <wasm_simd128.h>
  237. #else
  238. #ifdef __POWER9_VECTOR__
  239. #include <altivec.h>
  240. #undef bool
  241. #define bool _Bool
  242. #else
  243. #if defined(_MSC_VER) || defined(__MINGW32__)
  244. #include <intrin.h>
  245. #else
  246. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  247. #if !defined(__riscv)
  248. #include <immintrin.h>
  249. #endif
  250. #endif
  251. #endif
  252. #endif
  253. #endif
  254. #ifdef __riscv_v_intrinsic
  255. #include <riscv_vector.h>
  256. #endif
  257. #ifdef __F16C__
  258. #ifdef _MSC_VER
  259. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  260. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  261. #else
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  264. #endif
  265. #elif defined(__POWER9_VECTOR__)
  266. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  267. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  268. /* the inline asm below is about 12% faster than the lookup method */
  269. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  270. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  271. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  272. register float f;
  273. register double d;
  274. __asm__(
  275. "mtfprd %0,%2\n"
  276. "xscvhpdp %0,%0\n"
  277. "frsp %1,%0\n" :
  278. /* temp */ "=d"(d),
  279. /* out */ "=f"(f):
  280. /* in */ "r"(h));
  281. return f;
  282. }
  283. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  284. register double d;
  285. register ggml_fp16_t r;
  286. __asm__( /* xscvdphp can work on double or single precision */
  287. "xscvdphp %0,%2\n"
  288. "mffprd %1,%0\n" :
  289. /* temp */ "=d"(d),
  290. /* out */ "=r"(r):
  291. /* in */ "f"(f));
  292. return r;
  293. }
  294. #else
  295. // FP16 <-> FP32
  296. // ref: https://github.com/Maratyszcza/FP16
  297. static inline float fp32_from_bits(uint32_t w) {
  298. union {
  299. uint32_t as_bits;
  300. float as_value;
  301. } fp32;
  302. fp32.as_bits = w;
  303. return fp32.as_value;
  304. }
  305. static inline uint32_t fp32_to_bits(float f) {
  306. union {
  307. float as_value;
  308. uint32_t as_bits;
  309. } fp32;
  310. fp32.as_value = f;
  311. return fp32.as_bits;
  312. }
  313. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  314. const uint32_t w = (uint32_t) h << 16;
  315. const uint32_t sign = w & UINT32_C(0x80000000);
  316. const uint32_t two_w = w + w;
  317. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  318. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  319. const float exp_scale = 0x1.0p-112f;
  320. #else
  321. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  322. #endif
  323. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  324. const uint32_t magic_mask = UINT32_C(126) << 23;
  325. const float magic_bias = 0.5f;
  326. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  327. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  328. const uint32_t result = sign |
  329. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  330. return fp32_from_bits(result);
  331. }
  332. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  333. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  334. const float scale_to_inf = 0x1.0p+112f;
  335. const float scale_to_zero = 0x1.0p-110f;
  336. #else
  337. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  338. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  339. #endif
  340. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  341. const uint32_t w = fp32_to_bits(f);
  342. const uint32_t shl1_w = w + w;
  343. const uint32_t sign = w & UINT32_C(0x80000000);
  344. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  345. if (bias < UINT32_C(0x71000000)) {
  346. bias = UINT32_C(0x71000000);
  347. }
  348. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  349. const uint32_t bits = fp32_to_bits(base);
  350. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  351. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  352. const uint32_t nonsign = exp_bits + mantissa_bits;
  353. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  354. }
  355. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  356. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  357. #endif // __F16C__
  358. #endif // __ARM_NEON
  359. //
  360. // global data
  361. //
  362. // precomputed gelu table for f16 (128 KB)
  363. static ggml_fp16_t table_gelu_f16[1 << 16];
  364. // precomputed quick gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  366. // precomputed silu table for f16 (128 KB)
  367. static ggml_fp16_t table_silu_f16[1 << 16];
  368. // precomputed exp table for f16 (128 KB)
  369. static ggml_fp16_t table_exp_f16[1 << 16];
  370. // precomputed f32 table for f16 (256 KB)
  371. static float table_f32_f16[1 << 16];
  372. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  373. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  374. // This is also true for POWER9.
  375. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  376. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  377. uint16_t s;
  378. memcpy(&s, &f, sizeof(uint16_t));
  379. return table_f32_f16[s];
  380. }
  381. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  382. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  383. #endif
  384. // note: do not use these inside ggml.c
  385. // these are meant to be used via the ggml.h API
  386. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  387. return (float) GGML_FP16_TO_FP32(x);
  388. }
  389. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  390. return GGML_FP32_TO_FP16(x);
  391. }
  392. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  393. for (int i = 0; i < n; i++) {
  394. y[i] = GGML_FP16_TO_FP32(x[i]);
  395. }
  396. }
  397. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  398. int i = 0;
  399. #if defined(__F16C__)
  400. for (; i + 7 < n; i += 8) {
  401. __m256 x_vec = _mm256_loadu_ps(x + i);
  402. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  403. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  404. }
  405. for(; i + 3 < n; i += 4) {
  406. __m128 x_vec = _mm_loadu_ps(x + i);
  407. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  408. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  409. }
  410. #endif
  411. for (; i < n; i++) {
  412. y[i] = GGML_FP32_TO_FP16(x[i]);
  413. }
  414. }
  415. //
  416. // timing
  417. //
  418. #if defined(_MSC_VER) || defined(__MINGW32__)
  419. static int64_t timer_freq, timer_start;
  420. void ggml_time_init(void) {
  421. LARGE_INTEGER t;
  422. QueryPerformanceFrequency(&t);
  423. timer_freq = t.QuadPart;
  424. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  425. // and the uptime is high enough.
  426. // We subtract the program start time to reduce the likelihood of that happening.
  427. QueryPerformanceCounter(&t);
  428. timer_start = t.QuadPart;
  429. }
  430. int64_t ggml_time_ms(void) {
  431. LARGE_INTEGER t;
  432. QueryPerformanceCounter(&t);
  433. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  434. }
  435. int64_t ggml_time_us(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceCounter(&t);
  438. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  439. }
  440. #else
  441. void ggml_time_init(void) {}
  442. int64_t ggml_time_ms(void) {
  443. struct timespec ts;
  444. clock_gettime(CLOCK_MONOTONIC, &ts);
  445. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  446. }
  447. int64_t ggml_time_us(void) {
  448. struct timespec ts;
  449. clock_gettime(CLOCK_MONOTONIC, &ts);
  450. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  451. }
  452. #endif
  453. int64_t ggml_cycles(void) {
  454. return clock();
  455. }
  456. int64_t ggml_cycles_per_ms(void) {
  457. return CLOCKS_PER_SEC/1000;
  458. }
  459. #ifdef GGML_PERF
  460. #define ggml_perf_time_ms() ggml_time_ms()
  461. #define ggml_perf_time_us() ggml_time_us()
  462. #define ggml_perf_cycles() ggml_cycles()
  463. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  464. #else
  465. #define ggml_perf_time_ms() 0
  466. #define ggml_perf_time_us() 0
  467. #define ggml_perf_cycles() 0
  468. #define ggml_perf_cycles_per_ms() 0
  469. #endif
  470. //
  471. // cache line
  472. //
  473. #if defined(__cpp_lib_hardware_interference_size)
  474. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  475. #else
  476. #if defined(__POWER9_VECTOR__)
  477. #define CACHE_LINE_SIZE 128
  478. #else
  479. #define CACHE_LINE_SIZE 64
  480. #endif
  481. #endif
  482. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  483. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  484. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  485. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  486. [GGML_TYPE_I8] = {
  487. .type_name = "i8",
  488. .blck_size = 1,
  489. .type_size = sizeof(int8_t),
  490. .is_quantized = false,
  491. },
  492. [GGML_TYPE_I16] = {
  493. .type_name = "i16",
  494. .blck_size = 1,
  495. .type_size = sizeof(int16_t),
  496. .is_quantized = false,
  497. },
  498. [GGML_TYPE_I32] = {
  499. .type_name = "i32",
  500. .blck_size = 1,
  501. .type_size = sizeof(int32_t),
  502. .is_quantized = false,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. },
  512. [GGML_TYPE_F16] = {
  513. .type_name = "f16",
  514. .blck_size = 1,
  515. .type_size = sizeof(ggml_fp16_t),
  516. .is_quantized = false,
  517. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  518. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  519. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  521. .vec_dot_type = GGML_TYPE_F16,
  522. },
  523. [GGML_TYPE_Q4_0] = {
  524. .type_name = "q4_0",
  525. .blck_size = QK4_0,
  526. .type_size = sizeof(block_q4_0),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  529. .from_float = quantize_row_q4_0,
  530. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  531. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  532. .vec_dot_type = GGML_TYPE_Q8_0,
  533. },
  534. [GGML_TYPE_Q4_1] = {
  535. .type_name = "q4_1",
  536. .blck_size = QK4_1,
  537. .type_size = sizeof(block_q4_1),
  538. .is_quantized = true,
  539. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  540. .from_float = quantize_row_q4_1,
  541. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  542. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  543. .vec_dot_type = GGML_TYPE_Q8_1,
  544. },
  545. [GGML_TYPE_Q5_0] = {
  546. .type_name = "q5_0",
  547. .blck_size = QK5_0,
  548. .type_size = sizeof(block_q5_0),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  551. .from_float = quantize_row_q5_0,
  552. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  553. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  554. .vec_dot_type = GGML_TYPE_Q8_0,
  555. },
  556. [GGML_TYPE_Q5_1] = {
  557. .type_name = "q5_1",
  558. .blck_size = QK5_1,
  559. .type_size = sizeof(block_q5_1),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  562. .from_float = quantize_row_q5_1,
  563. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  564. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  565. .vec_dot_type = GGML_TYPE_Q8_1,
  566. },
  567. [GGML_TYPE_Q8_0] = {
  568. .type_name = "q8_0",
  569. .blck_size = QK8_0,
  570. .type_size = sizeof(block_q8_0),
  571. .is_quantized = true,
  572. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  573. .from_float = quantize_row_q8_0,
  574. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  575. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  576. .vec_dot_type = GGML_TYPE_Q8_0,
  577. },
  578. [GGML_TYPE_Q8_1] = {
  579. .type_name = "q8_1",
  580. .blck_size = QK8_1,
  581. .type_size = sizeof(block_q8_1),
  582. .is_quantized = true,
  583. .from_float = quantize_row_q8_1,
  584. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  585. .vec_dot_type = GGML_TYPE_Q8_1,
  586. },
  587. [GGML_TYPE_Q2_K] = {
  588. .type_name = "q2_K",
  589. .blck_size = QK_K,
  590. .type_size = sizeof(block_q2_K),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  593. .from_float = quantize_row_q2_K,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  595. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  596. .vec_dot_type = GGML_TYPE_Q8_K,
  597. },
  598. [GGML_TYPE_Q3_K] = {
  599. .type_name = "q3_K",
  600. .blck_size = QK_K,
  601. .type_size = sizeof(block_q3_K),
  602. .is_quantized = true,
  603. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  604. .from_float = quantize_row_q3_K,
  605. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  606. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  607. .vec_dot_type = GGML_TYPE_Q8_K,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. },
  620. [GGML_TYPE_Q5_K] = {
  621. .type_name = "q5_K",
  622. .blck_size = QK_K,
  623. .type_size = sizeof(block_q5_K),
  624. .is_quantized = true,
  625. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  626. .from_float = quantize_row_q5_K,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  628. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  629. .vec_dot_type = GGML_TYPE_Q8_K,
  630. },
  631. [GGML_TYPE_Q6_K] = {
  632. .type_name = "q6_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q6_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  637. .from_float = quantize_row_q6_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  639. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. },
  642. [GGML_TYPE_Q8_K] = {
  643. .type_name = "q8_K",
  644. .blck_size = QK_K,
  645. .type_size = sizeof(block_q8_K),
  646. .is_quantized = true,
  647. .from_float = quantize_row_q8_K,
  648. }
  649. };
  650. // For internal test use
  651. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  652. GGML_ASSERT(type < GGML_TYPE_COUNT);
  653. return type_traits[type];
  654. }
  655. //
  656. // simd mappings
  657. //
  658. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  659. // we then implement the fundamental computation operations below using only these macros
  660. // adding support for new architectures requires to define the corresponding SIMD macros
  661. //
  662. // GGML_F32_STEP / GGML_F16_STEP
  663. // number of elements to process in a single step
  664. //
  665. // GGML_F32_EPR / GGML_F16_EPR
  666. // number of elements to fit in a single register
  667. //
  668. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  669. #define GGML_SIMD
  670. // F32 NEON
  671. #define GGML_F32_STEP 16
  672. #define GGML_F32_EPR 4
  673. #define GGML_F32x4 float32x4_t
  674. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  675. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  676. #define GGML_F32x4_LOAD vld1q_f32
  677. #define GGML_F32x4_STORE vst1q_f32
  678. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  679. #define GGML_F32x4_ADD vaddq_f32
  680. #define GGML_F32x4_MUL vmulq_f32
  681. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  682. #define GGML_F32x4_REDUCE(res, x) \
  683. { \
  684. int offset = GGML_F32_ARR >> 1; \
  685. for (int i = 0; i < offset; ++i) { \
  686. x[i] = vaddq_f32(x[i], x[offset+i]); \
  687. } \
  688. offset >>= 1; \
  689. for (int i = 0; i < offset; ++i) { \
  690. x[i] = vaddq_f32(x[i], x[offset+i]); \
  691. } \
  692. offset >>= 1; \
  693. for (int i = 0; i < offset; ++i) { \
  694. x[i] = vaddq_f32(x[i], x[offset+i]); \
  695. } \
  696. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  697. }
  698. #define GGML_F32_VEC GGML_F32x4
  699. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  700. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  701. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  702. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  703. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  704. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  705. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  706. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  707. // F16 NEON
  708. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  709. #define GGML_F16_STEP 32
  710. #define GGML_F16_EPR 8
  711. #define GGML_F16x8 float16x8_t
  712. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  713. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  714. #define GGML_F16x8_LOAD vld1q_f16
  715. #define GGML_F16x8_STORE vst1q_f16
  716. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  717. #define GGML_F16x8_ADD vaddq_f16
  718. #define GGML_F16x8_MUL vmulq_f16
  719. #define GGML_F16x8_REDUCE(res, x) \
  720. do { \
  721. int offset = GGML_F16_ARR >> 1; \
  722. for (int i = 0; i < offset; ++i) { \
  723. x[i] = vaddq_f16(x[i], x[offset+i]); \
  724. } \
  725. offset >>= 1; \
  726. for (int i = 0; i < offset; ++i) { \
  727. x[i] = vaddq_f16(x[i], x[offset+i]); \
  728. } \
  729. offset >>= 1; \
  730. for (int i = 0; i < offset; ++i) { \
  731. x[i] = vaddq_f16(x[i], x[offset+i]); \
  732. } \
  733. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  734. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  735. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  736. } while (0)
  737. #define GGML_F16_VEC GGML_F16x8
  738. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  739. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  740. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  741. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  742. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  743. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  744. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  745. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  746. #else
  747. // if FP16 vector arithmetic is not supported, we use FP32 instead
  748. // and take advantage of the vcvt_ functions to convert to/from FP16
  749. #define GGML_F16_STEP 16
  750. #define GGML_F16_EPR 4
  751. #define GGML_F32Cx4 float32x4_t
  752. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  753. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  754. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  755. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  756. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  757. #define GGML_F32Cx4_ADD vaddq_f32
  758. #define GGML_F32Cx4_MUL vmulq_f32
  759. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  760. #define GGML_F16_VEC GGML_F32Cx4
  761. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  762. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  763. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  764. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  765. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  766. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  767. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  768. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  769. #endif
  770. #elif defined(__AVX__)
  771. #define GGML_SIMD
  772. // F32 AVX
  773. #define GGML_F32_STEP 32
  774. #define GGML_F32_EPR 8
  775. #define GGML_F32x8 __m256
  776. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  777. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  778. #define GGML_F32x8_LOAD _mm256_loadu_ps
  779. #define GGML_F32x8_STORE _mm256_storeu_ps
  780. #if defined(__FMA__)
  781. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  782. #else
  783. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  784. #endif
  785. #define GGML_F32x8_ADD _mm256_add_ps
  786. #define GGML_F32x8_MUL _mm256_mul_ps
  787. #define GGML_F32x8_REDUCE(res, x) \
  788. do { \
  789. int offset = GGML_F32_ARR >> 1; \
  790. for (int i = 0; i < offset; ++i) { \
  791. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  792. } \
  793. offset >>= 1; \
  794. for (int i = 0; i < offset; ++i) { \
  795. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  796. } \
  797. offset >>= 1; \
  798. for (int i = 0; i < offset; ++i) { \
  799. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  800. } \
  801. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  802. _mm256_extractf128_ps(x[0], 1)); \
  803. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  804. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  805. } while (0)
  806. // TODO: is this optimal ?
  807. #define GGML_F32_VEC GGML_F32x8
  808. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  809. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  810. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  811. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  812. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  813. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  814. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  815. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  816. // F16 AVX
  817. #define GGML_F16_STEP 32
  818. #define GGML_F16_EPR 8
  819. // F16 arithmetic is not supported by AVX, so we use F32 instead
  820. #define GGML_F32Cx8 __m256
  821. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  822. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  823. #if defined(__F16C__)
  824. // the _mm256_cvt intrinsics require F16C
  825. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  826. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  827. #else
  828. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  829. float tmp[8];
  830. for (int i = 0; i < 8; i++) {
  831. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  832. }
  833. return _mm256_loadu_ps(tmp);
  834. }
  835. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  836. float arr[8];
  837. _mm256_storeu_ps(arr, y);
  838. for (int i = 0; i < 8; i++)
  839. x[i] = GGML_FP32_TO_FP16(arr[i]);
  840. }
  841. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  842. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  843. #endif
  844. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  845. #define GGML_F32Cx8_ADD _mm256_add_ps
  846. #define GGML_F32Cx8_MUL _mm256_mul_ps
  847. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  848. #define GGML_F16_VEC GGML_F32Cx8
  849. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  850. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  851. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  852. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  853. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  854. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  855. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  856. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  857. #elif defined(__POWER9_VECTOR__)
  858. #define GGML_SIMD
  859. // F32 POWER9
  860. #define GGML_F32_STEP 32
  861. #define GGML_F32_EPR 4
  862. #define GGML_F32x4 vector float
  863. #define GGML_F32x4_ZERO 0.0f
  864. #define GGML_F32x4_SET1 vec_splats
  865. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  866. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  867. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  868. #define GGML_F32x4_ADD vec_add
  869. #define GGML_F32x4_MUL vec_mul
  870. #define GGML_F32x4_REDUCE(res, x) \
  871. { \
  872. int offset = GGML_F32_ARR >> 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = vec_add(x[i], x[offset+i]); \
  875. } \
  876. offset >>= 1; \
  877. for (int i = 0; i < offset; ++i) { \
  878. x[i] = vec_add(x[i], x[offset+i]); \
  879. } \
  880. offset >>= 1; \
  881. for (int i = 0; i < offset; ++i) { \
  882. x[i] = vec_add(x[i], x[offset+i]); \
  883. } \
  884. res = vec_extract(x[0], 0) + \
  885. vec_extract(x[0], 1) + \
  886. vec_extract(x[0], 2) + \
  887. vec_extract(x[0], 3); \
  888. }
  889. #define GGML_F32_VEC GGML_F32x4
  890. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  891. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  892. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  893. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  894. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  895. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  896. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  897. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  898. // F16 POWER9
  899. #define GGML_F16_STEP GGML_F32_STEP
  900. #define GGML_F16_EPR GGML_F32_EPR
  901. #define GGML_F16_VEC GGML_F32x4
  902. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  903. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  904. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  905. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  906. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  907. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  908. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  909. vec_extract_fp32_from_shortl(vec_xl(0, p))
  910. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  911. #define GGML_F16_VEC_STORE(p, r, i) \
  912. if (i & 0x1) \
  913. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  914. r[i - GGML_ENDIAN_BYTE(0)]), \
  915. 0, p - GGML_F16_EPR)
  916. #elif defined(__wasm_simd128__)
  917. #define GGML_SIMD
  918. // F32 WASM
  919. #define GGML_F32_STEP 16
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 v128_t
  922. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  923. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  924. #define GGML_F32x4_LOAD wasm_v128_load
  925. #define GGML_F32x4_STORE wasm_v128_store
  926. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  927. #define GGML_F32x4_ADD wasm_f32x4_add
  928. #define GGML_F32x4_MUL wasm_f32x4_mul
  929. #define GGML_F32x4_REDUCE(res, x) \
  930. { \
  931. int offset = GGML_F32_ARR >> 1; \
  932. for (int i = 0; i < offset; ++i) { \
  933. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  934. } \
  935. offset >>= 1; \
  936. for (int i = 0; i < offset; ++i) { \
  937. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  938. } \
  939. offset >>= 1; \
  940. for (int i = 0; i < offset; ++i) { \
  941. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  942. } \
  943. res = wasm_f32x4_extract_lane(x[0], 0) + \
  944. wasm_f32x4_extract_lane(x[0], 1) + \
  945. wasm_f32x4_extract_lane(x[0], 2) + \
  946. wasm_f32x4_extract_lane(x[0], 3); \
  947. }
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 WASM
  958. #define GGML_F16_STEP 16
  959. #define GGML_F16_EPR 4
  960. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  961. float tmp[4];
  962. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  963. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  964. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  965. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  966. return wasm_v128_load(tmp);
  967. }
  968. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  969. float tmp[4];
  970. wasm_v128_store(tmp, x);
  971. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  972. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  973. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  974. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  975. }
  976. #define GGML_F16x4 v128_t
  977. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  978. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  979. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  980. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  981. #define GGML_F16x4_FMA GGML_F32x4_FMA
  982. #define GGML_F16x4_ADD wasm_f32x4_add
  983. #define GGML_F16x4_MUL wasm_f32x4_mul
  984. #define GGML_F16x4_REDUCE(res, x) \
  985. { \
  986. int offset = GGML_F16_ARR >> 1; \
  987. for (int i = 0; i < offset; ++i) { \
  988. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  989. } \
  990. offset >>= 1; \
  991. for (int i = 0; i < offset; ++i) { \
  992. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  993. } \
  994. offset >>= 1; \
  995. for (int i = 0; i < offset; ++i) { \
  996. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  997. } \
  998. res = wasm_f32x4_extract_lane(x[0], 0) + \
  999. wasm_f32x4_extract_lane(x[0], 1) + \
  1000. wasm_f32x4_extract_lane(x[0], 2) + \
  1001. wasm_f32x4_extract_lane(x[0], 3); \
  1002. }
  1003. #define GGML_F16_VEC GGML_F16x4
  1004. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1005. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1006. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1007. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1008. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1009. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1010. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1011. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1012. #elif defined(__SSE3__)
  1013. #define GGML_SIMD
  1014. // F32 SSE
  1015. #define GGML_F32_STEP 32
  1016. #define GGML_F32_EPR 4
  1017. #define GGML_F32x4 __m128
  1018. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1019. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1020. #define GGML_F32x4_LOAD _mm_loadu_ps
  1021. #define GGML_F32x4_STORE _mm_storeu_ps
  1022. #if defined(__FMA__)
  1023. // TODO: Does this work?
  1024. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1025. #else
  1026. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1027. #endif
  1028. #define GGML_F32x4_ADD _mm_add_ps
  1029. #define GGML_F32x4_MUL _mm_mul_ps
  1030. #define GGML_F32x4_REDUCE(res, x) \
  1031. { \
  1032. int offset = GGML_F32_ARR >> 1; \
  1033. for (int i = 0; i < offset; ++i) { \
  1034. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1035. } \
  1036. offset >>= 1; \
  1037. for (int i = 0; i < offset; ++i) { \
  1038. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1039. } \
  1040. offset >>= 1; \
  1041. for (int i = 0; i < offset; ++i) { \
  1042. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1043. } \
  1044. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1045. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1046. }
  1047. // TODO: is this optimal ?
  1048. #define GGML_F32_VEC GGML_F32x4
  1049. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1050. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1051. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1052. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1053. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1054. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1055. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1056. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1057. // F16 SSE
  1058. #define GGML_F16_STEP 32
  1059. #define GGML_F16_EPR 4
  1060. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1061. float tmp[4];
  1062. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1063. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1064. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1065. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1066. return _mm_loadu_ps(tmp);
  1067. }
  1068. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1069. float arr[4];
  1070. _mm_storeu_ps(arr, y);
  1071. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1072. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1073. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1074. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1075. }
  1076. #define GGML_F32Cx4 __m128
  1077. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1078. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1079. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1080. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1081. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1082. #define GGML_F32Cx4_ADD _mm_add_ps
  1083. #define GGML_F32Cx4_MUL _mm_mul_ps
  1084. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1085. #define GGML_F16_VEC GGML_F32Cx4
  1086. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1087. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1088. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1089. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1090. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1091. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1092. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1093. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1094. #endif
  1095. // GGML_F32_ARR / GGML_F16_ARR
  1096. // number of registers to use per step
  1097. #ifdef GGML_SIMD
  1098. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1099. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1100. #endif
  1101. //
  1102. // fundamental operations
  1103. //
  1104. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1105. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1106. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1107. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1108. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1109. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1110. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1111. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1112. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1113. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1114. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1115. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1116. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1117. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1118. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1119. #ifdef GGML_SIMD
  1120. float sumf = 0.0f;
  1121. const int np = (n & ~(GGML_F32_STEP - 1));
  1122. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1123. GGML_F32_VEC ax[GGML_F32_ARR];
  1124. GGML_F32_VEC ay[GGML_F32_ARR];
  1125. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1126. for (int j = 0; j < GGML_F32_ARR; j++) {
  1127. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1128. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1129. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1130. }
  1131. }
  1132. // reduce sum0..sum3 to sum0
  1133. GGML_F32_VEC_REDUCE(sumf, sum);
  1134. // leftovers
  1135. for (int i = np; i < n; ++i) {
  1136. sumf += x[i]*y[i];
  1137. }
  1138. #else
  1139. // scalar
  1140. ggml_float sumf = 0.0;
  1141. for (int i = 0; i < n; ++i) {
  1142. sumf += (ggml_float)(x[i]*y[i]);
  1143. }
  1144. #endif
  1145. *s = sumf;
  1146. }
  1147. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1148. ggml_float sumf = 0.0;
  1149. #if defined(GGML_SIMD)
  1150. const int np = (n & ~(GGML_F16_STEP - 1));
  1151. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1152. GGML_F16_VEC ax[GGML_F16_ARR];
  1153. GGML_F16_VEC ay[GGML_F16_ARR];
  1154. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1155. for (int j = 0; j < GGML_F16_ARR; j++) {
  1156. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1157. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1158. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1159. }
  1160. }
  1161. // reduce sum0..sum3 to sum0
  1162. GGML_F16_VEC_REDUCE(sumf, sum);
  1163. // leftovers
  1164. for (int i = np; i < n; ++i) {
  1165. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1166. }
  1167. #else
  1168. for (int i = 0; i < n; ++i) {
  1169. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1170. }
  1171. #endif
  1172. *s = sumf;
  1173. }
  1174. // compute GGML_VEC_DOT_UNROLL dot products at once
  1175. // xs - x row stride in bytes
  1176. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1177. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1178. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1179. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1180. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1181. }
  1182. #if defined(GGML_SIMD)
  1183. const int np = (n & ~(GGML_F16_STEP - 1));
  1184. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1185. GGML_F16_VEC ax[GGML_F16_ARR];
  1186. GGML_F16_VEC ay[GGML_F16_ARR];
  1187. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1188. for (int j = 0; j < GGML_F16_ARR; j++) {
  1189. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1190. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1191. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1192. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1193. }
  1194. }
  1195. }
  1196. // reduce sum0..sum3 to sum0
  1197. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1198. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1199. }
  1200. // leftovers
  1201. for (int i = np; i < n; ++i) {
  1202. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1203. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1204. }
  1205. }
  1206. #else
  1207. for (int i = 0; i < n; ++i) {
  1208. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1209. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1210. }
  1211. }
  1212. #endif
  1213. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1214. s[i] = sumf[i];
  1215. }
  1216. }
  1217. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1218. #if defined(GGML_SIMD)
  1219. const int np = (n & ~(GGML_F32_STEP - 1));
  1220. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1221. GGML_F32_VEC ax[GGML_F32_ARR];
  1222. GGML_F32_VEC ay[GGML_F32_ARR];
  1223. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1224. for (int j = 0; j < GGML_F32_ARR; j++) {
  1225. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1226. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1227. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1228. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1229. }
  1230. }
  1231. // leftovers
  1232. for (int i = np; i < n; ++i) {
  1233. y[i] += x[i]*v;
  1234. }
  1235. #else
  1236. // scalar
  1237. for (int i = 0; i < n; ++i) {
  1238. y[i] += x[i]*v;
  1239. }
  1240. #endif
  1241. }
  1242. // xs and vs are byte strides of x and v
  1243. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1244. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1245. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1246. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1247. x[i] = (const float *) ((const char *) xv + i*xs);
  1248. v[i] = (const float *) ((const char *) vv + i*vs);
  1249. }
  1250. #if defined(GGML_SIMD)
  1251. const int np = (n & ~(GGML_F32_STEP - 1));
  1252. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1253. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1254. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1255. }
  1256. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1257. GGML_F32_VEC ay[GGML_F32_ARR];
  1258. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1259. for (int j = 0; j < GGML_F32_ARR; j++) {
  1260. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1261. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1262. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1263. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1264. }
  1265. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1266. }
  1267. }
  1268. // leftovers
  1269. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1270. for (int i = np; i < n; ++i) {
  1271. y[i] += x[k][i]*v[k][0];
  1272. }
  1273. }
  1274. #else
  1275. // scalar
  1276. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1277. for (int i = 0; i < n; ++i) {
  1278. y[i] += x[k][i]*v[k][0];
  1279. }
  1280. }
  1281. #endif
  1282. }
  1283. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1284. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1285. #if defined(GGML_USE_ACCELERATE)
  1286. vDSP_vsmul(y, 1, &v, y, 1, n);
  1287. #elif defined(GGML_SIMD)
  1288. const int np = (n & ~(GGML_F32_STEP - 1));
  1289. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1290. GGML_F32_VEC ay[GGML_F32_ARR];
  1291. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1292. for (int j = 0; j < GGML_F32_ARR; j++) {
  1293. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1294. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1295. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1296. }
  1297. }
  1298. // leftovers
  1299. for (int i = np; i < n; ++i) {
  1300. y[i] *= v;
  1301. }
  1302. #else
  1303. // scalar
  1304. for (int i = 0; i < n; ++i) {
  1305. y[i] *= v;
  1306. }
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1310. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1311. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1312. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1313. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1314. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1315. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1316. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1317. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1318. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1319. static const float GELU_COEF_A = 0.044715f;
  1320. static const float GELU_QUICK_COEF = -1.702f;
  1321. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1322. inline static float ggml_gelu_f32(float x) {
  1323. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1324. }
  1325. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1326. const uint16_t * i16 = (const uint16_t *) x;
  1327. for (int i = 0; i < n; ++i) {
  1328. y[i] = table_gelu_f16[i16[i]];
  1329. }
  1330. }
  1331. #ifdef GGML_GELU_FP16
  1332. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1333. uint16_t t;
  1334. for (int i = 0; i < n; ++i) {
  1335. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1336. memcpy(&t, &fp16, sizeof(uint16_t));
  1337. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1338. }
  1339. }
  1340. #else
  1341. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1342. for (int i = 0; i < n; ++i) {
  1343. y[i] = ggml_gelu_f32(x[i]);
  1344. }
  1345. }
  1346. #endif
  1347. inline static float ggml_gelu_quick_f32(float x) {
  1348. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1349. }
  1350. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1351. // const uint16_t * i16 = (const uint16_t *) x;
  1352. // for (int i = 0; i < n; ++i) {
  1353. // y[i] = table_gelu_quick_f16[i16[i]];
  1354. // }
  1355. //}
  1356. #ifdef GGML_GELU_QUICK_FP16
  1357. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1358. uint16_t t;
  1359. for (int i = 0; i < n; ++i) {
  1360. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1361. memcpy(&t, &fp16, sizeof(uint16_t));
  1362. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  1363. }
  1364. }
  1365. #else
  1366. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1367. for (int i = 0; i < n; ++i) {
  1368. y[i] = ggml_gelu_quick_f32(x[i]);
  1369. }
  1370. }
  1371. #endif
  1372. // Sigmoid Linear Unit (SiLU) function
  1373. inline static float ggml_silu_f32(float x) {
  1374. return x/(1.0f + expf(-x));
  1375. }
  1376. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1377. // const uint16_t * i16 = (const uint16_t *) x;
  1378. // for (int i = 0; i < n; ++i) {
  1379. // y[i] = table_silu_f16[i16[i]];
  1380. // }
  1381. //}
  1382. #ifdef GGML_SILU_FP16
  1383. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1384. uint16_t t;
  1385. for (int i = 0; i < n; ++i) {
  1386. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1387. memcpy(&t, &fp16, sizeof(uint16_t));
  1388. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1389. }
  1390. }
  1391. #else
  1392. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1393. for (int i = 0; i < n; ++i) {
  1394. y[i] = ggml_silu_f32(x[i]);
  1395. }
  1396. }
  1397. #endif
  1398. inline static float ggml_silu_backward_f32(float x, float dy) {
  1399. const float s = 1.0f/(1.0f + expf(-x));
  1400. return dy*s*(1.0f + x*(1.0f - s));
  1401. }
  1402. #ifdef GGML_SILU_FP16
  1403. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1404. for (int i = 0; i < n; ++i) {
  1405. // we did not use x[i] to compute forward silu but its f16 equivalent
  1406. // take derivative at f16 of x[i]:
  1407. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1408. float usedx = GGML_FP16_TO_FP32(fp16);
  1409. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1410. }
  1411. }
  1412. #else
  1413. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1414. for (int i = 0; i < n; ++i) {
  1415. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1416. }
  1417. }
  1418. #endif
  1419. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1420. #ifndef GGML_USE_ACCELERATE
  1421. ggml_float sum = 0.0;
  1422. for (int i = 0; i < n; ++i) {
  1423. sum += (ggml_float)x[i];
  1424. }
  1425. *s = sum;
  1426. #else
  1427. vDSP_sve(x, 1, s, n);
  1428. #endif
  1429. }
  1430. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1431. ggml_float sum = 0.0;
  1432. for (int i = 0; i < n; ++i) {
  1433. sum += (ggml_float)x[i];
  1434. }
  1435. *s = sum;
  1436. }
  1437. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1438. float sum = 0.0f;
  1439. for (int i = 0; i < n; ++i) {
  1440. sum += GGML_FP16_TO_FP32(x[i]);
  1441. }
  1442. *s = sum;
  1443. }
  1444. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1445. #ifndef GGML_USE_ACCELERATE
  1446. float max = -INFINITY;
  1447. for (int i = 0; i < n; ++i) {
  1448. max = MAX(max, x[i]);
  1449. }
  1450. *s = max;
  1451. #else
  1452. vDSP_maxv(x, 1, s, n);
  1453. #endif
  1454. }
  1455. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1456. ggml_vec_norm_f32(n, s, x);
  1457. *s = 1.f/(*s);
  1458. }
  1459. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1460. float max = -INFINITY;
  1461. int idx = 0;
  1462. for (int i = 0; i < n; ++i) {
  1463. max = MAX(max, x[i]);
  1464. if (max == x[i]) { idx = i; }
  1465. }
  1466. *s = idx;
  1467. }
  1468. //
  1469. // data types
  1470. //
  1471. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1472. "NONE",
  1473. "DUP",
  1474. "ADD",
  1475. "ADD1",
  1476. "ACC",
  1477. "SUB",
  1478. "MUL",
  1479. "DIV",
  1480. "SQR",
  1481. "SQRT",
  1482. "LOG",
  1483. "SUM",
  1484. "SUM_ROWS",
  1485. "MEAN",
  1486. "ARGMAX",
  1487. "REPEAT",
  1488. "REPEAT_BACK",
  1489. "CONCAT",
  1490. "SILU_BACK",
  1491. "NORM",
  1492. "RMS_NORM",
  1493. "RMS_NORM_BACK",
  1494. "GROUP_NORM",
  1495. "MUL_MAT",
  1496. "OUT_PROD",
  1497. "SCALE",
  1498. "SET",
  1499. "CPY",
  1500. "CONT",
  1501. "RESHAPE",
  1502. "VIEW",
  1503. "PERMUTE",
  1504. "TRANSPOSE",
  1505. "GET_ROWS",
  1506. "GET_ROWS_BACK",
  1507. "DIAG",
  1508. "DIAG_MASK_INF",
  1509. "DIAG_MASK_ZERO",
  1510. "SOFT_MAX",
  1511. "SOFT_MAX_BACK",
  1512. "ROPE",
  1513. "ROPE_BACK",
  1514. "ALIBI",
  1515. "CLAMP",
  1516. "CONV_1D",
  1517. "CONV_1D_STAGE_0",
  1518. "CONV_1D_STAGE_1",
  1519. "CONV_TRANSPOSE_1D",
  1520. "CONV_2D",
  1521. "CONV_2D_STAGE_0",
  1522. "CONV_2D_STAGE_1",
  1523. "CONV_TRANSPOSE_2D",
  1524. "POOL_1D",
  1525. "POOL_2D",
  1526. "UPSCALE",
  1527. "FLASH_ATTN",
  1528. "FLASH_FF",
  1529. "FLASH_ATTN_BACK",
  1530. "WIN_PART",
  1531. "WIN_UNPART",
  1532. "GET_REL_POS",
  1533. "ADD_REL_POS",
  1534. "UNARY",
  1535. "MAP_UNARY",
  1536. "MAP_BINARY",
  1537. "MAP_CUSTOM1_F32",
  1538. "MAP_CUSTOM2_F32",
  1539. "MAP_CUSTOM3_F32",
  1540. "MAP_CUSTOM1",
  1541. "MAP_CUSTOM2",
  1542. "MAP_CUSTOM3",
  1543. "CROSS_ENTROPY_LOSS",
  1544. "CROSS_ENTROPY_LOSS_BACK",
  1545. };
  1546. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1547. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1548. "none",
  1549. "x",
  1550. "x+y",
  1551. "x+y",
  1552. "view(x,nb,offset)+=y->x",
  1553. "x-y",
  1554. "x*y",
  1555. "x/y",
  1556. "x^2",
  1557. "√x",
  1558. "log(x)",
  1559. "Σx",
  1560. "Σx_k",
  1561. "Σx/n",
  1562. "argmax(x)",
  1563. "repeat(x)",
  1564. "repeat_back(x)",
  1565. "concat(x, y)",
  1566. "silu_back(x)",
  1567. "norm(x)",
  1568. "rms_norm(x)",
  1569. "rms_norm_back(x)",
  1570. "group_norm(x)",
  1571. "X*Y",
  1572. "X*Y",
  1573. "x*v",
  1574. "y-\\>view(x)",
  1575. "x-\\>y",
  1576. "cont(x)",
  1577. "reshape(x)",
  1578. "view(x)",
  1579. "permute(x)",
  1580. "transpose(x)",
  1581. "get_rows(x)",
  1582. "get_rows_back(x)",
  1583. "diag(x)",
  1584. "diag_mask_inf(x)",
  1585. "diag_mask_zero(x)",
  1586. "soft_max(x)",
  1587. "soft_max_back(x)",
  1588. "rope(x)",
  1589. "rope_back(x)",
  1590. "alibi(x)",
  1591. "clamp(x)",
  1592. "conv_1d(x)",
  1593. "conv_1d_stage_0(x)",
  1594. "conv_1d_stage_1(x)",
  1595. "conv_transpose_1d(x)",
  1596. "conv_2d(x)",
  1597. "conv_2d_stage_0(x)",
  1598. "conv_2d_stage_1(x)",
  1599. "conv_transpose_2d(x)",
  1600. "pool_1d(x)",
  1601. "pool_2d(x)",
  1602. "upscale(x)",
  1603. "flash_attn(x)",
  1604. "flash_ff(x)",
  1605. "flash_attn_back(x)",
  1606. "win_part(x)",
  1607. "win_unpart(x)",
  1608. "get_rel_pos(x)",
  1609. "add_rel_pos(x)",
  1610. "unary(x)",
  1611. "f(x)",
  1612. "f(x,y)",
  1613. "custom_f32(x)",
  1614. "custom_f32(x,y)",
  1615. "custom_f32(x,y,z)",
  1616. "custom(x)",
  1617. "custom(x,y)",
  1618. "custom(x,y,z)",
  1619. "cross_entropy_loss(x,y)",
  1620. "cross_entropy_loss_back(x,y)",
  1621. };
  1622. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1623. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1624. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1625. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1626. // WARN:
  1627. // Mis-confguration can lead to problem that's hard to reason about:
  1628. // * At best it crash or talks nosense.
  1629. // * At worst it talks slightly difference but hard to perceive.
  1630. //
  1631. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1632. // Take care about compile options (e.g., GGML_USE_xxx).
  1633. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1634. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1635. static void ggml_setup_op_has_task_pass(void) {
  1636. { // INIT
  1637. bool * p = GGML_OP_HAS_INIT;
  1638. p[GGML_OP_ACC ] = true;
  1639. p[GGML_OP_MUL_MAT ] = true;
  1640. p[GGML_OP_OUT_PROD ] = true;
  1641. p[GGML_OP_SET ] = true;
  1642. p[GGML_OP_GET_ROWS_BACK ] = true;
  1643. p[GGML_OP_DIAG_MASK_INF ] = true;
  1644. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1645. p[GGML_OP_CONV_1D ] = true;
  1646. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1647. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1648. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1649. p[GGML_OP_CONV_2D ] = true;
  1650. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1651. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1652. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1653. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1654. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1655. p[GGML_OP_ADD_REL_POS ] = true;
  1656. }
  1657. { // FINALIZE
  1658. bool * p = GGML_OP_HAS_FINALIZE;
  1659. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1660. }
  1661. }
  1662. //
  1663. // ggml context
  1664. //
  1665. struct ggml_context {
  1666. size_t mem_size;
  1667. void * mem_buffer;
  1668. bool mem_buffer_owned;
  1669. bool no_alloc;
  1670. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1671. int n_objects;
  1672. struct ggml_object * objects_begin;
  1673. struct ggml_object * objects_end;
  1674. struct ggml_scratch scratch;
  1675. struct ggml_scratch scratch_save;
  1676. };
  1677. struct ggml_context_container {
  1678. bool used;
  1679. struct ggml_context context;
  1680. };
  1681. //
  1682. // NUMA support
  1683. //
  1684. #define GGML_NUMA_MAX_NODES 8
  1685. #define GGML_NUMA_MAX_CPUS 512
  1686. struct ggml_numa_node {
  1687. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1688. uint32_t n_cpus;
  1689. };
  1690. struct ggml_numa_nodes {
  1691. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1692. uint32_t n_nodes;
  1693. uint32_t total_cpus; // hardware threads on system
  1694. };
  1695. //
  1696. // ggml state
  1697. //
  1698. struct ggml_state {
  1699. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1700. struct ggml_numa_nodes numa;
  1701. };
  1702. // global state
  1703. static struct ggml_state g_state;
  1704. static atomic_int g_state_barrier = 0;
  1705. // barrier via spin lock
  1706. inline static void ggml_critical_section_start(void) {
  1707. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1708. while (processing > 0) {
  1709. // wait for other threads to finish
  1710. atomic_fetch_sub(&g_state_barrier, 1);
  1711. sched_yield(); // TODO: reconsider this
  1712. processing = atomic_fetch_add(&g_state_barrier, 1);
  1713. }
  1714. }
  1715. // TODO: make this somehow automatically executed
  1716. // some sort of "sentry" mechanism
  1717. inline static void ggml_critical_section_end(void) {
  1718. atomic_fetch_sub(&g_state_barrier, 1);
  1719. }
  1720. void ggml_numa_init(void) {
  1721. if (g_state.numa.n_nodes > 0) {
  1722. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1723. return;
  1724. }
  1725. #ifdef __linux__
  1726. struct stat st;
  1727. char path[256];
  1728. int rv;
  1729. // enumerate nodes
  1730. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1731. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1732. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1733. if (stat(path, &st) != 0) { break; }
  1734. ++g_state.numa.n_nodes;
  1735. }
  1736. // enumerate CPUs
  1737. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1738. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1739. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1740. if (stat(path, &st) != 0) { break; }
  1741. ++g_state.numa.total_cpus;
  1742. }
  1743. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1744. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1745. g_state.numa.n_nodes = 0;
  1746. return;
  1747. }
  1748. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1749. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1750. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1751. node->n_cpus = 0;
  1752. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1753. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1754. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1755. if (stat(path, &st) == 0) {
  1756. node->cpus[node->n_cpus++] = c;
  1757. GGML_PRINT_DEBUG(" %u", c);
  1758. }
  1759. }
  1760. GGML_PRINT_DEBUG("\n");
  1761. }
  1762. if (ggml_is_numa()) {
  1763. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1764. if (fptr != NULL) {
  1765. char buf[42];
  1766. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1767. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1768. }
  1769. fclose(fptr);
  1770. }
  1771. }
  1772. #else
  1773. // TODO
  1774. #endif
  1775. }
  1776. bool ggml_is_numa(void) {
  1777. return g_state.numa.n_nodes > 1;
  1778. }
  1779. ////////////////////////////////////////////////////////////////////////////////
  1780. void ggml_print_object(const struct ggml_object * obj) {
  1781. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1782. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1783. }
  1784. void ggml_print_objects(const struct ggml_context * ctx) {
  1785. struct ggml_object * obj = ctx->objects_begin;
  1786. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1787. while (obj != NULL) {
  1788. ggml_print_object(obj);
  1789. obj = obj->next;
  1790. }
  1791. GGML_PRINT("%s: --- end ---\n", __func__);
  1792. }
  1793. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1795. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1796. }
  1797. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1800. }
  1801. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1802. size_t nbytes;
  1803. size_t blck_size = ggml_blck_size(tensor->type);
  1804. if (blck_size == 1) {
  1805. nbytes = ggml_type_size(tensor->type);
  1806. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1807. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1808. }
  1809. }
  1810. else {
  1811. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1812. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1813. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1814. }
  1815. }
  1816. return nbytes;
  1817. }
  1818. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1819. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1820. }
  1821. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1824. }
  1825. int ggml_blck_size(enum ggml_type type) {
  1826. return type_traits[type].blck_size;
  1827. }
  1828. size_t ggml_type_size(enum ggml_type type) {
  1829. return type_traits[type].type_size;
  1830. }
  1831. float ggml_type_sizef(enum ggml_type type) {
  1832. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1833. }
  1834. const char * ggml_type_name(enum ggml_type type) {
  1835. return type_traits[type].type_name;
  1836. }
  1837. bool ggml_is_quantized(enum ggml_type type) {
  1838. return type_traits[type].is_quantized;
  1839. }
  1840. const char * ggml_op_name(enum ggml_op op) {
  1841. return GGML_OP_NAME[op];
  1842. }
  1843. const char * ggml_op_symbol(enum ggml_op op) {
  1844. return GGML_OP_SYMBOL[op];
  1845. }
  1846. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1847. return ggml_type_size(tensor->type);
  1848. }
  1849. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1850. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1851. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1852. }
  1853. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1854. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1855. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1856. }
  1857. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1858. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1859. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1860. }
  1861. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1862. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1863. return (t0->ne[0] == t1->ne[0]) &&
  1864. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1865. (t1->ne[3]%t0->ne[3] == 0);
  1866. }
  1867. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1869. return (t0->ne[1] == t1->ne[1]) &&
  1870. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1871. (t1->ne[3]%t0->ne[3] == 0);
  1872. }
  1873. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1874. enum ggml_type wtype = GGML_TYPE_COUNT;
  1875. switch (ftype) {
  1876. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1877. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1878. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1879. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1880. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1881. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1882. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1883. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1884. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1885. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1886. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1887. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1888. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1889. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1890. }
  1891. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1892. return wtype;
  1893. }
  1894. size_t ggml_tensor_overhead(void) {
  1895. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1896. }
  1897. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1898. return tensor->nb[0] > tensor->nb[1];
  1899. }
  1900. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1901. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1902. return
  1903. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1904. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1905. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1906. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1907. }
  1908. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1909. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1910. return
  1911. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1912. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1913. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1914. }
  1915. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1916. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1917. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1918. }
  1919. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1920. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1921. return
  1922. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1923. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1924. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1925. }
  1926. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1927. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1928. return
  1929. (t0->ne[0] == t1->ne[0] ) &&
  1930. (t0->ne[1] == t1->ne[1] ) &&
  1931. (t0->ne[2] == t1->ne[2] ) &&
  1932. (t0->ne[3] == t1->ne[3] );
  1933. }
  1934. // check if t1 can be represented as a repeatition of t0
  1935. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1936. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1937. return
  1938. (t1->ne[0]%t0->ne[0] == 0) &&
  1939. (t1->ne[1]%t0->ne[1] == 0) &&
  1940. (t1->ne[2]%t0->ne[2] == 0) &&
  1941. (t1->ne[3]%t0->ne[3] == 0);
  1942. }
  1943. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1944. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1945. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1946. }
  1947. static inline int ggml_up32(int n) {
  1948. return (n + 31) & ~31;
  1949. }
  1950. //static inline int ggml_up64(int n) {
  1951. // return (n + 63) & ~63;
  1952. //}
  1953. static inline int ggml_up(int n, int m) {
  1954. // assert m is a power of 2
  1955. GGML_ASSERT((m & (m - 1)) == 0);
  1956. return (n + m - 1) & ~(m - 1);
  1957. }
  1958. // assert that pointer is aligned to GGML_MEM_ALIGN
  1959. #define ggml_assert_aligned(ptr) \
  1960. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1961. ////////////////////////////////////////////////////////////////////////////////
  1962. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1963. // make this function thread safe
  1964. ggml_critical_section_start();
  1965. static bool is_first_call = true;
  1966. if (is_first_call) {
  1967. // initialize time system (required on Windows)
  1968. ggml_time_init();
  1969. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1970. {
  1971. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1972. ggml_fp16_t ii;
  1973. for (int i = 0; i < (1 << 16); ++i) {
  1974. uint16_t ui = i;
  1975. memcpy(&ii, &ui, sizeof(ii));
  1976. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1977. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1978. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1979. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1980. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1981. }
  1982. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1983. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1984. }
  1985. // initialize g_state
  1986. {
  1987. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1988. g_state = (struct ggml_state) {
  1989. /*.contexts =*/ { { 0 } },
  1990. /*.numa =*/ {
  1991. .n_nodes = 0,
  1992. .total_cpus = 0,
  1993. },
  1994. };
  1995. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1996. g_state.contexts[i].used = false;
  1997. }
  1998. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1999. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2000. }
  2001. #if defined(GGML_USE_CUBLAS)
  2002. ggml_init_cublas();
  2003. #elif defined(GGML_USE_CLBLAST)
  2004. ggml_cl_init();
  2005. #endif
  2006. ggml_setup_op_has_task_pass();
  2007. is_first_call = false;
  2008. }
  2009. // find non-used context in g_state
  2010. struct ggml_context * ctx = NULL;
  2011. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2012. if (!g_state.contexts[i].used) {
  2013. g_state.contexts[i].used = true;
  2014. ctx = &g_state.contexts[i].context;
  2015. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2016. break;
  2017. }
  2018. }
  2019. if (ctx == NULL) {
  2020. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2021. ggml_critical_section_end();
  2022. return NULL;
  2023. }
  2024. // allow to call ggml_init with 0 size
  2025. if (params.mem_size == 0) {
  2026. params.mem_size = GGML_MEM_ALIGN;
  2027. }
  2028. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2029. *ctx = (struct ggml_context) {
  2030. /*.mem_size =*/ mem_size,
  2031. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2032. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2033. /*.no_alloc =*/ params.no_alloc,
  2034. /*.no_alloc_save =*/ params.no_alloc,
  2035. /*.n_objects =*/ 0,
  2036. /*.objects_begin =*/ NULL,
  2037. /*.objects_end =*/ NULL,
  2038. /*.scratch =*/ { 0, 0, NULL, },
  2039. /*.scratch_save =*/ { 0, 0, NULL, },
  2040. };
  2041. GGML_ASSERT(ctx->mem_buffer != NULL);
  2042. ggml_assert_aligned(ctx->mem_buffer);
  2043. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2044. ggml_critical_section_end();
  2045. return ctx;
  2046. }
  2047. void ggml_free(struct ggml_context * ctx) {
  2048. // make this function thread safe
  2049. ggml_critical_section_start();
  2050. bool found = false;
  2051. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2052. if (&g_state.contexts[i].context == ctx) {
  2053. g_state.contexts[i].used = false;
  2054. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2055. __func__, i, ggml_used_mem(ctx));
  2056. if (ctx->mem_buffer_owned) {
  2057. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2058. }
  2059. found = true;
  2060. break;
  2061. }
  2062. }
  2063. if (!found) {
  2064. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2065. }
  2066. ggml_critical_section_end();
  2067. }
  2068. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2069. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2070. }
  2071. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2072. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2073. ctx->scratch = scratch;
  2074. return result;
  2075. }
  2076. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2077. return ctx->no_alloc;
  2078. }
  2079. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2080. ctx->no_alloc = no_alloc;
  2081. }
  2082. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2083. return ctx->mem_buffer;
  2084. }
  2085. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2086. return ctx->mem_size;
  2087. }
  2088. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2089. size_t max_size = 0;
  2090. struct ggml_object * obj = ctx->objects_begin;
  2091. while (obj != NULL) {
  2092. if (obj->type == GGML_OBJECT_TENSOR) {
  2093. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  2094. const size_t size = ggml_nbytes(tensor);
  2095. if (max_size < size) {
  2096. max_size = size;
  2097. }
  2098. }
  2099. obj = obj->next;
  2100. }
  2101. return max_size;
  2102. }
  2103. // IMPORTANT:
  2104. // when creating "opt" tensors, always save and load the scratch buffer
  2105. // this is an error prone process, but it is necessary to support inplace
  2106. // operators when using scratch buffers
  2107. // TODO: implement a better way
  2108. static void ggml_scratch_save(struct ggml_context * ctx) {
  2109. // this is needed to allow opt tensors to store their data
  2110. // TODO: again, need to find a better way
  2111. ctx->no_alloc_save = ctx->no_alloc;
  2112. ctx->no_alloc = false;
  2113. ctx->scratch_save = ctx->scratch;
  2114. ctx->scratch.data = NULL;
  2115. }
  2116. static void ggml_scratch_load(struct ggml_context * ctx) {
  2117. ctx->no_alloc = ctx->no_alloc_save;
  2118. ctx->scratch = ctx->scratch_save;
  2119. }
  2120. ////////////////////////////////////////////////////////////////////////////////
  2121. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2122. // always insert objects at the end of the context's memory pool
  2123. struct ggml_object * obj_cur = ctx->objects_end;
  2124. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2125. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2126. const size_t cur_end = cur_offs + cur_size;
  2127. // align to GGML_MEM_ALIGN
  2128. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2129. char * const mem_buffer = ctx->mem_buffer;
  2130. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2131. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2132. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2133. __func__, cur_end + size_needed, ctx->mem_size);
  2134. assert(false);
  2135. return NULL;
  2136. }
  2137. *obj_new = (struct ggml_object) {
  2138. .offs = cur_end + GGML_OBJECT_SIZE,
  2139. .size = size_needed,
  2140. .next = NULL,
  2141. .type = type,
  2142. };
  2143. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2144. if (obj_cur != NULL) {
  2145. obj_cur->next = obj_new;
  2146. } else {
  2147. // this is the first object in this context
  2148. ctx->objects_begin = obj_new;
  2149. }
  2150. ctx->objects_end = obj_new;
  2151. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2152. return obj_new;
  2153. }
  2154. static struct ggml_tensor * ggml_new_tensor_impl(
  2155. struct ggml_context * ctx,
  2156. enum ggml_type type,
  2157. int n_dims,
  2158. const int64_t * ne,
  2159. struct ggml_tensor * view_src,
  2160. size_t view_offs) {
  2161. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2162. // find the base tensor and absolute offset
  2163. if (view_src != NULL && view_src->view_src != NULL) {
  2164. view_offs += view_src->view_offs;
  2165. view_src = view_src->view_src;
  2166. }
  2167. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2168. for (int i = 1; i < n_dims; i++) {
  2169. data_size *= ne[i];
  2170. }
  2171. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2172. void * data = view_src != NULL ? view_src->data : NULL;
  2173. if (data != NULL) {
  2174. data = (char *) data + view_offs;
  2175. }
  2176. size_t obj_alloc_size = 0;
  2177. if (view_src == NULL && !ctx->no_alloc) {
  2178. if (ctx->scratch.data != NULL) {
  2179. // allocate tensor data in the scratch buffer
  2180. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2181. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2182. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2183. assert(false);
  2184. return NULL;
  2185. }
  2186. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2187. ctx->scratch.offs += data_size;
  2188. } else {
  2189. // allocate tensor data in the context's memory pool
  2190. obj_alloc_size = data_size;
  2191. }
  2192. }
  2193. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2194. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2195. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2196. *result = (struct ggml_tensor) {
  2197. /*.type =*/ type,
  2198. /*.backend =*/ GGML_BACKEND_CPU,
  2199. /*.buffer =*/ NULL,
  2200. /*.n_dims =*/ n_dims,
  2201. /*.ne =*/ { 1, 1, 1, 1 },
  2202. /*.nb =*/ { 0, 0, 0, 0 },
  2203. /*.op =*/ GGML_OP_NONE,
  2204. /*.op_params =*/ { 0 },
  2205. /*.is_param =*/ false,
  2206. /*.grad =*/ NULL,
  2207. /*.src =*/ { NULL },
  2208. /*.perf_runs =*/ 0,
  2209. /*.perf_cycles =*/ 0,
  2210. /*.perf_time_us =*/ 0,
  2211. /*.view_src =*/ view_src,
  2212. /*.view_offs =*/ view_offs,
  2213. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2214. /*.name =*/ { 0 },
  2215. /*.extra =*/ NULL,
  2216. /*.padding =*/ { 0 },
  2217. };
  2218. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2219. //ggml_assert_aligned(result->data);
  2220. for (int i = 0; i < n_dims; i++) {
  2221. result->ne[i] = ne[i];
  2222. }
  2223. result->nb[0] = ggml_type_size(type);
  2224. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2225. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2226. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2227. }
  2228. ctx->n_objects++;
  2229. return result;
  2230. }
  2231. struct ggml_tensor * ggml_new_tensor(
  2232. struct ggml_context * ctx,
  2233. enum ggml_type type,
  2234. int n_dims,
  2235. const int64_t * ne) {
  2236. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2237. }
  2238. struct ggml_tensor * ggml_new_tensor_1d(
  2239. struct ggml_context * ctx,
  2240. enum ggml_type type,
  2241. int64_t ne0) {
  2242. return ggml_new_tensor(ctx, type, 1, &ne0);
  2243. }
  2244. struct ggml_tensor * ggml_new_tensor_2d(
  2245. struct ggml_context * ctx,
  2246. enum ggml_type type,
  2247. int64_t ne0,
  2248. int64_t ne1) {
  2249. const int64_t ne[2] = { ne0, ne1 };
  2250. return ggml_new_tensor(ctx, type, 2, ne);
  2251. }
  2252. struct ggml_tensor * ggml_new_tensor_3d(
  2253. struct ggml_context * ctx,
  2254. enum ggml_type type,
  2255. int64_t ne0,
  2256. int64_t ne1,
  2257. int64_t ne2) {
  2258. const int64_t ne[3] = { ne0, ne1, ne2 };
  2259. return ggml_new_tensor(ctx, type, 3, ne);
  2260. }
  2261. struct ggml_tensor * ggml_new_tensor_4d(
  2262. struct ggml_context * ctx,
  2263. enum ggml_type type,
  2264. int64_t ne0,
  2265. int64_t ne1,
  2266. int64_t ne2,
  2267. int64_t ne3) {
  2268. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2269. return ggml_new_tensor(ctx, type, 4, ne);
  2270. }
  2271. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2272. ggml_scratch_save(ctx);
  2273. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2274. ggml_scratch_load(ctx);
  2275. ggml_set_i32(result, value);
  2276. return result;
  2277. }
  2278. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2279. ggml_scratch_save(ctx);
  2280. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2281. ggml_scratch_load(ctx);
  2282. ggml_set_f32(result, value);
  2283. return result;
  2284. }
  2285. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2286. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2287. }
  2288. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2289. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2290. assert(params_size <= GGML_MAX_OP_PARAMS);
  2291. memcpy(tensor->op_params, params, params_size);
  2292. }
  2293. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2294. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2295. return ((const int32_t *)(tensor->op_params))[i];
  2296. }
  2297. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2298. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2299. ((int32_t *)(tensor->op_params))[i] = value;
  2300. }
  2301. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2302. memset(tensor->data, 0, ggml_nbytes(tensor));
  2303. return tensor;
  2304. }
  2305. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2306. const int n = ggml_nrows(tensor);
  2307. const int nc = tensor->ne[0];
  2308. const size_t n1 = tensor->nb[1];
  2309. char * const data = tensor->data;
  2310. switch (tensor->type) {
  2311. case GGML_TYPE_I8:
  2312. {
  2313. assert(tensor->nb[0] == sizeof(int8_t));
  2314. for (int i = 0; i < n; i++) {
  2315. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2316. }
  2317. } break;
  2318. case GGML_TYPE_I16:
  2319. {
  2320. assert(tensor->nb[0] == sizeof(int16_t));
  2321. for (int i = 0; i < n; i++) {
  2322. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2323. }
  2324. } break;
  2325. case GGML_TYPE_I32:
  2326. {
  2327. assert(tensor->nb[0] == sizeof(int32_t));
  2328. for (int i = 0; i < n; i++) {
  2329. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2330. }
  2331. } break;
  2332. case GGML_TYPE_F16:
  2333. {
  2334. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2335. for (int i = 0; i < n; i++) {
  2336. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2337. }
  2338. } break;
  2339. case GGML_TYPE_F32:
  2340. {
  2341. assert(tensor->nb[0] == sizeof(float));
  2342. for (int i = 0; i < n; i++) {
  2343. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2344. }
  2345. } break;
  2346. default:
  2347. {
  2348. GGML_ASSERT(false);
  2349. } break;
  2350. }
  2351. return tensor;
  2352. }
  2353. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2354. const int n = ggml_nrows(tensor);
  2355. const int nc = tensor->ne[0];
  2356. const size_t n1 = tensor->nb[1];
  2357. char * const data = tensor->data;
  2358. switch (tensor->type) {
  2359. case GGML_TYPE_I8:
  2360. {
  2361. assert(tensor->nb[0] == sizeof(int8_t));
  2362. for (int i = 0; i < n; i++) {
  2363. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2364. }
  2365. } break;
  2366. case GGML_TYPE_I16:
  2367. {
  2368. assert(tensor->nb[0] == sizeof(int16_t));
  2369. for (int i = 0; i < n; i++) {
  2370. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2371. }
  2372. } break;
  2373. case GGML_TYPE_I32:
  2374. {
  2375. assert(tensor->nb[0] == sizeof(int32_t));
  2376. for (int i = 0; i < n; i++) {
  2377. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2378. }
  2379. } break;
  2380. case GGML_TYPE_F16:
  2381. {
  2382. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2383. for (int i = 0; i < n; i++) {
  2384. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2385. }
  2386. } break;
  2387. case GGML_TYPE_F32:
  2388. {
  2389. assert(tensor->nb[0] == sizeof(float));
  2390. for (int i = 0; i < n; i++) {
  2391. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2392. }
  2393. } break;
  2394. default:
  2395. {
  2396. GGML_ASSERT(false);
  2397. } break;
  2398. }
  2399. return tensor;
  2400. }
  2401. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2402. const int64_t ne2 = tensor->ne[2];
  2403. const int64_t ne1 = tensor->ne[1];
  2404. const int64_t ne0 = tensor->ne[0];
  2405. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2406. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2407. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2408. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2409. if (i0) {
  2410. * i0 = i0_;
  2411. }
  2412. if (i1) {
  2413. * i1 = i1_;
  2414. }
  2415. if (i2) {
  2416. * i2 = i2_;
  2417. }
  2418. if (i3) {
  2419. * i3 = i3_;
  2420. }
  2421. }
  2422. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2423. if (!ggml_is_contiguous(tensor)) {
  2424. int64_t id[4] = { 0, 0, 0, 0 };
  2425. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2426. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2427. }
  2428. switch (tensor->type) {
  2429. case GGML_TYPE_I8:
  2430. {
  2431. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2432. return ((int8_t *)(tensor->data))[i];
  2433. }
  2434. case GGML_TYPE_I16:
  2435. {
  2436. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2437. return ((int16_t *)(tensor->data))[i];
  2438. }
  2439. case GGML_TYPE_I32:
  2440. {
  2441. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2442. return ((int32_t *)(tensor->data))[i];
  2443. }
  2444. case GGML_TYPE_F16:
  2445. {
  2446. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2447. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2448. }
  2449. case GGML_TYPE_F32:
  2450. {
  2451. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2452. return ((float *)(tensor->data))[i];
  2453. }
  2454. default:
  2455. {
  2456. GGML_ASSERT(false);
  2457. }
  2458. }
  2459. return 0.0f;
  2460. }
  2461. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2462. if (!ggml_is_contiguous(tensor)) {
  2463. int64_t id[4] = { 0, 0, 0, 0 };
  2464. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2465. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2466. return;
  2467. }
  2468. switch (tensor->type) {
  2469. case GGML_TYPE_I8:
  2470. {
  2471. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2472. ((int8_t *)(tensor->data))[i] = value;
  2473. } break;
  2474. case GGML_TYPE_I16:
  2475. {
  2476. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2477. ((int16_t *)(tensor->data))[i] = value;
  2478. } break;
  2479. case GGML_TYPE_I32:
  2480. {
  2481. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2482. ((int32_t *)(tensor->data))[i] = value;
  2483. } break;
  2484. case GGML_TYPE_F16:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2487. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2488. } break;
  2489. case GGML_TYPE_F32:
  2490. {
  2491. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2492. ((float *)(tensor->data))[i] = value;
  2493. } break;
  2494. default:
  2495. {
  2496. GGML_ASSERT(false);
  2497. } break;
  2498. }
  2499. }
  2500. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2501. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2502. switch (tensor->type) {
  2503. case GGML_TYPE_I8:
  2504. return ((int8_t *) data)[0];
  2505. case GGML_TYPE_I16:
  2506. return ((int16_t *) data)[0];
  2507. case GGML_TYPE_I32:
  2508. return ((int32_t *) data)[0];
  2509. case GGML_TYPE_F16:
  2510. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2511. case GGML_TYPE_F32:
  2512. return ((float *) data)[0];
  2513. default:
  2514. GGML_ASSERT(false);
  2515. }
  2516. return 0.0f;
  2517. }
  2518. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2519. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2520. switch (tensor->type) {
  2521. case GGML_TYPE_I8:
  2522. {
  2523. ((int8_t *)(data))[0] = value;
  2524. } break;
  2525. case GGML_TYPE_I16:
  2526. {
  2527. ((int16_t *)(data))[0] = value;
  2528. } break;
  2529. case GGML_TYPE_I32:
  2530. {
  2531. ((int32_t *)(data))[0] = value;
  2532. } break;
  2533. case GGML_TYPE_F16:
  2534. {
  2535. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2536. } break;
  2537. case GGML_TYPE_F32:
  2538. {
  2539. ((float *)(data))[0] = value;
  2540. } break;
  2541. default:
  2542. {
  2543. GGML_ASSERT(false);
  2544. } break;
  2545. }
  2546. }
  2547. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2548. if (!ggml_is_contiguous(tensor)) {
  2549. int64_t id[4] = { 0, 0, 0, 0 };
  2550. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2551. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2552. }
  2553. switch (tensor->type) {
  2554. case GGML_TYPE_I8:
  2555. {
  2556. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2557. return ((int8_t *)(tensor->data))[i];
  2558. }
  2559. case GGML_TYPE_I16:
  2560. {
  2561. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2562. return ((int16_t *)(tensor->data))[i];
  2563. }
  2564. case GGML_TYPE_I32:
  2565. {
  2566. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2567. return ((int32_t *)(tensor->data))[i];
  2568. }
  2569. case GGML_TYPE_F16:
  2570. {
  2571. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2572. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2573. }
  2574. case GGML_TYPE_F32:
  2575. {
  2576. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2577. return ((float *)(tensor->data))[i];
  2578. }
  2579. default:
  2580. {
  2581. GGML_ASSERT(false);
  2582. }
  2583. }
  2584. return 0.0f;
  2585. }
  2586. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2587. if (!ggml_is_contiguous(tensor)) {
  2588. int64_t id[4] = { 0, 0, 0, 0 };
  2589. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2590. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2591. return;
  2592. }
  2593. switch (tensor->type) {
  2594. case GGML_TYPE_I8:
  2595. {
  2596. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2597. ((int8_t *)(tensor->data))[i] = value;
  2598. } break;
  2599. case GGML_TYPE_I16:
  2600. {
  2601. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2602. ((int16_t *)(tensor->data))[i] = value;
  2603. } break;
  2604. case GGML_TYPE_I32:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2607. ((int32_t *)(tensor->data))[i] = value;
  2608. } break;
  2609. case GGML_TYPE_F16:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2612. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2613. } break;
  2614. case GGML_TYPE_F32:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2617. ((float *)(tensor->data))[i] = value;
  2618. } break;
  2619. default:
  2620. {
  2621. GGML_ASSERT(false);
  2622. } break;
  2623. }
  2624. }
  2625. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2626. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2627. switch (tensor->type) {
  2628. case GGML_TYPE_I8:
  2629. return ((int8_t *) data)[0];
  2630. case GGML_TYPE_I16:
  2631. return ((int16_t *) data)[0];
  2632. case GGML_TYPE_I32:
  2633. return ((int32_t *) data)[0];
  2634. case GGML_TYPE_F16:
  2635. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2636. case GGML_TYPE_F32:
  2637. return ((float *) data)[0];
  2638. default:
  2639. GGML_ASSERT(false);
  2640. }
  2641. return 0.0f;
  2642. }
  2643. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2644. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2645. switch (tensor->type) {
  2646. case GGML_TYPE_I8:
  2647. {
  2648. ((int8_t *)(data))[0] = value;
  2649. } break;
  2650. case GGML_TYPE_I16:
  2651. {
  2652. ((int16_t *)(data))[0] = value;
  2653. } break;
  2654. case GGML_TYPE_I32:
  2655. {
  2656. ((int32_t *)(data))[0] = value;
  2657. } break;
  2658. case GGML_TYPE_F16:
  2659. {
  2660. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2661. } break;
  2662. case GGML_TYPE_F32:
  2663. {
  2664. ((float *)(data))[0] = value;
  2665. } break;
  2666. default:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. }
  2672. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2673. return tensor->data;
  2674. }
  2675. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2676. assert(tensor->type == GGML_TYPE_F32);
  2677. return (float *)(tensor->data);
  2678. }
  2679. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2680. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2681. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2682. }
  2683. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2684. return tensor->name;
  2685. }
  2686. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2687. strncpy(tensor->name, name, sizeof(tensor->name));
  2688. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2689. return tensor;
  2690. }
  2691. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2692. va_list args;
  2693. va_start(args, fmt);
  2694. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2695. va_end(args);
  2696. return tensor;
  2697. }
  2698. struct ggml_tensor * ggml_view_tensor(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * src) {
  2701. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2702. ggml_format_name(result, "%s (view)", src->name);
  2703. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2704. result->nb[i] = src->nb[i];
  2705. }
  2706. return result;
  2707. }
  2708. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2709. struct ggml_object * obj = ctx->objects_begin;
  2710. char * const mem_buffer = ctx->mem_buffer;
  2711. while (obj != NULL) {
  2712. if (obj->type == GGML_OBJECT_TENSOR) {
  2713. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2714. }
  2715. obj = obj->next;
  2716. }
  2717. return NULL;
  2718. }
  2719. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2720. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2721. obj = obj->next;
  2722. char * const mem_buffer = ctx->mem_buffer;
  2723. while (obj != NULL) {
  2724. if (obj->type == GGML_OBJECT_TENSOR) {
  2725. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2726. }
  2727. obj = obj->next;
  2728. }
  2729. return NULL;
  2730. }
  2731. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2732. struct ggml_object * obj = ctx->objects_begin;
  2733. char * const mem_buffer = ctx->mem_buffer;
  2734. while (obj != NULL) {
  2735. if (obj->type == GGML_OBJECT_TENSOR) {
  2736. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2737. if (strcmp(cur->name, name) == 0) {
  2738. return cur;
  2739. }
  2740. }
  2741. obj = obj->next;
  2742. }
  2743. return NULL;
  2744. }
  2745. ////////////////////////////////////////////////////////////////////////////////
  2746. // ggml_dup
  2747. static struct ggml_tensor * ggml_dup_impl(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a,
  2750. bool inplace) {
  2751. bool is_node = false;
  2752. if (!inplace && (a->grad)) {
  2753. is_node = true;
  2754. }
  2755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2756. result->op = GGML_OP_DUP;
  2757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2758. result->src[0] = a;
  2759. return result;
  2760. }
  2761. struct ggml_tensor * ggml_dup(
  2762. struct ggml_context * ctx,
  2763. struct ggml_tensor * a) {
  2764. return ggml_dup_impl(ctx, a, false);
  2765. }
  2766. struct ggml_tensor * ggml_dup_inplace(
  2767. struct ggml_context * ctx,
  2768. struct ggml_tensor * a) {
  2769. return ggml_dup_impl(ctx, a, true);
  2770. }
  2771. // ggml_add
  2772. static struct ggml_tensor * ggml_add_impl(
  2773. struct ggml_context * ctx,
  2774. struct ggml_tensor * a,
  2775. struct ggml_tensor * b,
  2776. bool inplace) {
  2777. // TODO: support less-strict constraint
  2778. // GGML_ASSERT(ggml_can_repeat(b, a));
  2779. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2780. bool is_node = false;
  2781. if (!inplace && (a->grad || b->grad)) {
  2782. // TODO: support backward pass for broadcasting
  2783. GGML_ASSERT(ggml_are_same_shape(a, b));
  2784. is_node = true;
  2785. }
  2786. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2787. result->op = GGML_OP_ADD;
  2788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2789. result->src[0] = a;
  2790. result->src[1] = b;
  2791. return result;
  2792. }
  2793. struct ggml_tensor * ggml_add(
  2794. struct ggml_context * ctx,
  2795. struct ggml_tensor * a,
  2796. struct ggml_tensor * b) {
  2797. return ggml_add_impl(ctx, a, b, false);
  2798. }
  2799. struct ggml_tensor * ggml_add_inplace(
  2800. struct ggml_context * ctx,
  2801. struct ggml_tensor * a,
  2802. struct ggml_tensor * b) {
  2803. return ggml_add_impl(ctx, a, b, true);
  2804. }
  2805. // ggml_add_cast
  2806. static struct ggml_tensor * ggml_add_cast_impl(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b,
  2810. enum ggml_type type) {
  2811. // TODO: support less-strict constraint
  2812. // GGML_ASSERT(ggml_can_repeat(b, a));
  2813. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2814. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  2815. bool is_node = false;
  2816. if (a->grad || b->grad) {
  2817. // TODO: support backward pass for broadcasting
  2818. GGML_ASSERT(ggml_are_same_shape(a, b));
  2819. is_node = true;
  2820. }
  2821. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2822. result->op = GGML_OP_ADD;
  2823. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2824. result->src[0] = a;
  2825. result->src[1] = b;
  2826. return result;
  2827. }
  2828. struct ggml_tensor * ggml_add_cast(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a,
  2831. struct ggml_tensor * b,
  2832. enum ggml_type type) {
  2833. return ggml_add_cast_impl(ctx, a, b, type);
  2834. }
  2835. // ggml_add1
  2836. static struct ggml_tensor * ggml_add1_impl(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * a,
  2839. struct ggml_tensor * b,
  2840. bool inplace) {
  2841. GGML_ASSERT(ggml_is_scalar(b));
  2842. GGML_ASSERT(ggml_is_padded_1d(a));
  2843. bool is_node = false;
  2844. if (a->grad || b->grad) {
  2845. is_node = true;
  2846. }
  2847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2848. result->op = GGML_OP_ADD1;
  2849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2850. result->src[0] = a;
  2851. result->src[1] = b;
  2852. return result;
  2853. }
  2854. struct ggml_tensor * ggml_add1(
  2855. struct ggml_context * ctx,
  2856. struct ggml_tensor * a,
  2857. struct ggml_tensor * b) {
  2858. return ggml_add1_impl(ctx, a, b, false);
  2859. }
  2860. struct ggml_tensor * ggml_add1_inplace(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a,
  2863. struct ggml_tensor * b) {
  2864. return ggml_add1_impl(ctx, a, b, true);
  2865. }
  2866. // ggml_acc
  2867. static struct ggml_tensor * ggml_acc_impl(
  2868. struct ggml_context * ctx,
  2869. struct ggml_tensor * a,
  2870. struct ggml_tensor * b,
  2871. size_t nb1,
  2872. size_t nb2,
  2873. size_t nb3,
  2874. size_t offset,
  2875. bool inplace) {
  2876. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2877. GGML_ASSERT(ggml_is_contiguous(a));
  2878. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2879. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2880. bool is_node = false;
  2881. if (!inplace && (a->grad || b->grad)) {
  2882. is_node = true;
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2886. ggml_set_op_params(result, params, sizeof(params));
  2887. result->op = GGML_OP_ACC;
  2888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2889. result->src[0] = a;
  2890. result->src[1] = b;
  2891. return result;
  2892. }
  2893. struct ggml_tensor * ggml_acc(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. struct ggml_tensor * b,
  2897. size_t nb1,
  2898. size_t nb2,
  2899. size_t nb3,
  2900. size_t offset) {
  2901. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2902. }
  2903. struct ggml_tensor * ggml_acc_inplace(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b,
  2907. size_t nb1,
  2908. size_t nb2,
  2909. size_t nb3,
  2910. size_t offset) {
  2911. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2912. }
  2913. // ggml_sub
  2914. static struct ggml_tensor * ggml_sub_impl(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a,
  2917. struct ggml_tensor * b,
  2918. bool inplace) {
  2919. GGML_ASSERT(ggml_are_same_shape(a, b));
  2920. bool is_node = false;
  2921. if (!inplace && (a->grad || b->grad)) {
  2922. is_node = true;
  2923. }
  2924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2925. result->op = GGML_OP_SUB;
  2926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2927. result->src[0] = a;
  2928. result->src[1] = b;
  2929. return result;
  2930. }
  2931. struct ggml_tensor * ggml_sub(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. struct ggml_tensor * b) {
  2935. return ggml_sub_impl(ctx, a, b, false);
  2936. }
  2937. struct ggml_tensor * ggml_sub_inplace(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a,
  2940. struct ggml_tensor * b) {
  2941. return ggml_sub_impl(ctx, a, b, true);
  2942. }
  2943. // ggml_mul
  2944. static struct ggml_tensor * ggml_mul_impl(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b,
  2948. bool inplace) {
  2949. // TODO: support less-strict constraint
  2950. // GGML_ASSERT(ggml_can_repeat(b, a));
  2951. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2952. bool is_node = false;
  2953. if (!inplace && (a->grad || b->grad)) {
  2954. // TODO: support backward pass for broadcasting
  2955. GGML_ASSERT(ggml_are_same_shape(a, b));
  2956. is_node = true;
  2957. }
  2958. if (inplace) {
  2959. GGML_ASSERT(!is_node);
  2960. }
  2961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2962. result->op = GGML_OP_MUL;
  2963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2964. result->src[0] = a;
  2965. result->src[1] = b;
  2966. return result;
  2967. }
  2968. struct ggml_tensor * ggml_mul(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a,
  2971. struct ggml_tensor * b) {
  2972. return ggml_mul_impl(ctx, a, b, false);
  2973. }
  2974. struct ggml_tensor * ggml_mul_inplace(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. struct ggml_tensor * b) {
  2978. return ggml_mul_impl(ctx, a, b, true);
  2979. }
  2980. // ggml_div
  2981. static struct ggml_tensor * ggml_div_impl(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a,
  2984. struct ggml_tensor * b,
  2985. bool inplace) {
  2986. GGML_ASSERT(ggml_are_same_shape(a, b));
  2987. bool is_node = false;
  2988. if (!inplace && (a->grad || b->grad)) {
  2989. is_node = true;
  2990. }
  2991. if (inplace) {
  2992. GGML_ASSERT(!is_node);
  2993. }
  2994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2995. result->op = GGML_OP_DIV;
  2996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2997. result->src[0] = a;
  2998. result->src[1] = b;
  2999. return result;
  3000. }
  3001. struct ggml_tensor * ggml_div(
  3002. struct ggml_context * ctx,
  3003. struct ggml_tensor * a,
  3004. struct ggml_tensor * b) {
  3005. return ggml_div_impl(ctx, a, b, false);
  3006. }
  3007. struct ggml_tensor * ggml_div_inplace(
  3008. struct ggml_context * ctx,
  3009. struct ggml_tensor * a,
  3010. struct ggml_tensor * b) {
  3011. return ggml_div_impl(ctx, a, b, true);
  3012. }
  3013. // ggml_sqr
  3014. static struct ggml_tensor * ggml_sqr_impl(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. bool inplace) {
  3018. bool is_node = false;
  3019. if (!inplace && (a->grad)) {
  3020. is_node = true;
  3021. }
  3022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3023. result->op = GGML_OP_SQR;
  3024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3025. result->src[0] = a;
  3026. return result;
  3027. }
  3028. struct ggml_tensor * ggml_sqr(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a) {
  3031. return ggml_sqr_impl(ctx, a, false);
  3032. }
  3033. struct ggml_tensor * ggml_sqr_inplace(
  3034. struct ggml_context * ctx,
  3035. struct ggml_tensor * a) {
  3036. return ggml_sqr_impl(ctx, a, true);
  3037. }
  3038. // ggml_sqrt
  3039. static struct ggml_tensor * ggml_sqrt_impl(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. bool inplace) {
  3043. bool is_node = false;
  3044. if (!inplace && (a->grad)) {
  3045. is_node = true;
  3046. }
  3047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3048. result->op = GGML_OP_SQRT;
  3049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3050. result->src[0] = a;
  3051. return result;
  3052. }
  3053. struct ggml_tensor * ggml_sqrt(
  3054. struct ggml_context * ctx,
  3055. struct ggml_tensor * a) {
  3056. return ggml_sqrt_impl(ctx, a, false);
  3057. }
  3058. struct ggml_tensor * ggml_sqrt_inplace(
  3059. struct ggml_context * ctx,
  3060. struct ggml_tensor * a) {
  3061. return ggml_sqrt_impl(ctx, a, true);
  3062. }
  3063. // ggml_log
  3064. static struct ggml_tensor * ggml_log_impl(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. bool inplace) {
  3068. bool is_node = false;
  3069. if (!inplace && (a->grad)) {
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3073. result->op = GGML_OP_LOG;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. struct ggml_tensor * ggml_log(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_log_impl(ctx, a, false);
  3082. }
  3083. struct ggml_tensor * ggml_log_inplace(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a) {
  3086. return ggml_log_impl(ctx, a, true);
  3087. }
  3088. // ggml_sum
  3089. struct ggml_tensor * ggml_sum(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. bool is_node = false;
  3093. if (a->grad) {
  3094. is_node = true;
  3095. }
  3096. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3097. result->op = GGML_OP_SUM;
  3098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3099. result->src[0] = a;
  3100. return result;
  3101. }
  3102. // ggml_sum_rows
  3103. struct ggml_tensor * ggml_sum_rows(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a) {
  3106. bool is_node = false;
  3107. if (a->grad) {
  3108. is_node = true;
  3109. }
  3110. int64_t ne[4] = {1,1,1,1};
  3111. for (int i=1; i<a->n_dims; ++i) {
  3112. ne[i] = a->ne[i];
  3113. }
  3114. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3115. result->op = GGML_OP_SUM_ROWS;
  3116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3117. result->src[0] = a;
  3118. return result;
  3119. }
  3120. // ggml_mean
  3121. struct ggml_tensor * ggml_mean(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a) {
  3124. bool is_node = false;
  3125. if (a->grad) {
  3126. GGML_ASSERT(false); // TODO: implement
  3127. is_node = true;
  3128. }
  3129. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3130. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3131. result->op = GGML_OP_MEAN;
  3132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3133. result->src[0] = a;
  3134. return result;
  3135. }
  3136. // ggml_argmax
  3137. struct ggml_tensor * ggml_argmax(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. GGML_ASSERT(ggml_is_matrix(a));
  3141. bool is_node = false;
  3142. if (a->grad) {
  3143. GGML_ASSERT(false);
  3144. is_node = true;
  3145. }
  3146. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3147. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3148. result->op = GGML_OP_ARGMAX;
  3149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3150. result->src[0] = a;
  3151. return result;
  3152. }
  3153. // ggml_repeat
  3154. struct ggml_tensor * ggml_repeat(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a,
  3157. struct ggml_tensor * b) {
  3158. GGML_ASSERT(ggml_can_repeat(a, b));
  3159. bool is_node = false;
  3160. if (a->grad) {
  3161. is_node = true;
  3162. }
  3163. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3164. result->op = GGML_OP_REPEAT;
  3165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3166. result->src[0] = a;
  3167. return result;
  3168. }
  3169. // ggml_repeat_back
  3170. struct ggml_tensor * ggml_repeat_back(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. struct ggml_tensor * b) {
  3174. GGML_ASSERT(ggml_can_repeat(b, a));
  3175. bool is_node = false;
  3176. if (a->grad) {
  3177. is_node = true;
  3178. }
  3179. if (ggml_are_same_shape(a, b) && !is_node) {
  3180. return a;
  3181. }
  3182. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3183. result->op = GGML_OP_REPEAT_BACK;
  3184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3185. result->src[0] = a;
  3186. return result;
  3187. }
  3188. // ggml_concat
  3189. struct ggml_tensor * ggml_concat(
  3190. struct ggml_context* ctx,
  3191. struct ggml_tensor* a,
  3192. struct ggml_tensor* b) {
  3193. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3194. bool is_node = false;
  3195. if (a->grad || b->grad) {
  3196. is_node = true;
  3197. }
  3198. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3199. result->op = GGML_OP_CONCAT;
  3200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3201. result->src[0] = a;
  3202. result->src[1] = b;
  3203. return result;
  3204. }
  3205. // ggml_abs
  3206. struct ggml_tensor * ggml_abs(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3210. }
  3211. struct ggml_tensor * ggml_abs_inplace(
  3212. struct ggml_context * ctx,
  3213. struct ggml_tensor * a) {
  3214. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3215. }
  3216. // ggml_sgn
  3217. struct ggml_tensor * ggml_sgn(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a) {
  3220. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3221. }
  3222. struct ggml_tensor * ggml_sgn_inplace(
  3223. struct ggml_context * ctx,
  3224. struct ggml_tensor * a) {
  3225. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3226. }
  3227. // ggml_neg
  3228. struct ggml_tensor * ggml_neg(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a) {
  3231. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3232. }
  3233. struct ggml_tensor * ggml_neg_inplace(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a) {
  3236. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3237. }
  3238. // ggml_step
  3239. struct ggml_tensor * ggml_step(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a) {
  3242. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3243. }
  3244. struct ggml_tensor * ggml_step_inplace(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3248. }
  3249. // ggml_tanh
  3250. struct ggml_tensor * ggml_tanh(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a) {
  3253. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3254. }
  3255. struct ggml_tensor * ggml_tanh_inplace(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a) {
  3258. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3259. }
  3260. // ggml_elu
  3261. struct ggml_tensor * ggml_elu(
  3262. struct ggml_context * ctx,
  3263. struct ggml_tensor * a) {
  3264. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3265. }
  3266. struct ggml_tensor * ggml_elu_inplace(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a) {
  3269. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3270. }
  3271. // ggml_relu
  3272. struct ggml_tensor * ggml_relu(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a) {
  3275. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3276. }
  3277. struct ggml_tensor * ggml_relu_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3281. }
  3282. // ggml_gelu
  3283. struct ggml_tensor * ggml_gelu(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a) {
  3286. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3287. }
  3288. struct ggml_tensor * ggml_gelu_inplace(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a) {
  3291. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3292. }
  3293. // ggml_gelu_quick
  3294. struct ggml_tensor * ggml_gelu_quick(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a) {
  3297. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3298. }
  3299. struct ggml_tensor * ggml_gelu_quick_inplace(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a) {
  3302. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3303. }
  3304. // ggml_silu
  3305. struct ggml_tensor * ggml_silu(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a) {
  3308. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3309. }
  3310. struct ggml_tensor * ggml_silu_inplace(
  3311. struct ggml_context * ctx,
  3312. struct ggml_tensor * a) {
  3313. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3314. }
  3315. // ggml_silu_back
  3316. struct ggml_tensor * ggml_silu_back(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. struct ggml_tensor * b) {
  3320. bool is_node = false;
  3321. if (a->grad || b->grad) {
  3322. // TODO: implement backward
  3323. is_node = true;
  3324. }
  3325. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3326. result->op = GGML_OP_SILU_BACK;
  3327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3328. result->src[0] = a;
  3329. result->src[1] = b;
  3330. return result;
  3331. }
  3332. // ggml_norm
  3333. static struct ggml_tensor * ggml_norm_impl(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. float eps,
  3337. bool inplace) {
  3338. bool is_node = false;
  3339. if (!inplace && (a->grad)) {
  3340. GGML_ASSERT(false); // TODO: implement backward
  3341. is_node = true;
  3342. }
  3343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3344. ggml_set_op_params(result, &eps, sizeof(eps));
  3345. result->op = GGML_OP_NORM;
  3346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3347. result->src[0] = a;
  3348. return result;
  3349. }
  3350. struct ggml_tensor * ggml_norm(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. float eps) {
  3354. return ggml_norm_impl(ctx, a, eps, false);
  3355. }
  3356. struct ggml_tensor * ggml_norm_inplace(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. float eps) {
  3360. return ggml_norm_impl(ctx, a, eps, true);
  3361. }
  3362. // ggml_rms_norm
  3363. static struct ggml_tensor * ggml_rms_norm_impl(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. float eps,
  3367. bool inplace) {
  3368. bool is_node = false;
  3369. if (!inplace && (a->grad)) {
  3370. is_node = true;
  3371. }
  3372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3373. ggml_set_op_params(result, &eps, sizeof(eps));
  3374. result->op = GGML_OP_RMS_NORM;
  3375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3376. result->src[0] = a;
  3377. return result;
  3378. }
  3379. struct ggml_tensor * ggml_rms_norm(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a,
  3382. float eps) {
  3383. return ggml_rms_norm_impl(ctx, a, eps, false);
  3384. }
  3385. struct ggml_tensor * ggml_rms_norm_inplace(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a,
  3388. float eps) {
  3389. return ggml_rms_norm_impl(ctx, a, eps, true);
  3390. }
  3391. // ggml_rms_norm_back
  3392. struct ggml_tensor * ggml_rms_norm_back(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a,
  3395. struct ggml_tensor * b,
  3396. float eps) {
  3397. bool is_node = false;
  3398. if (a->grad) {
  3399. // TODO: implement backward
  3400. is_node = true;
  3401. }
  3402. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3403. ggml_set_op_params(result, &eps, sizeof(eps));
  3404. result->op = GGML_OP_RMS_NORM_BACK;
  3405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3406. result->src[0] = a;
  3407. result->src[1] = b;
  3408. return result;
  3409. }
  3410. // ggml_group_norm
  3411. static struct ggml_tensor * ggml_group_norm_impl(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a,
  3414. int n_groups,
  3415. bool inplace) {
  3416. bool is_node = false;
  3417. if (!inplace && (a->grad)) {
  3418. GGML_ASSERT(false); // TODO: implement backward
  3419. is_node = true;
  3420. }
  3421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3422. result->op = GGML_OP_GROUP_NORM;
  3423. result->op_params[0] = n_groups;
  3424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3425. result->src[0] = a;
  3426. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3427. return result;
  3428. }
  3429. struct ggml_tensor * ggml_group_norm(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. int n_groups) {
  3433. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3434. }
  3435. struct ggml_tensor * ggml_group_norm_inplace(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a,
  3438. int n_groups) {
  3439. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3440. }
  3441. // ggml_mul_mat
  3442. struct ggml_tensor * ggml_mul_mat(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a,
  3445. struct ggml_tensor * b) {
  3446. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3447. GGML_ASSERT(!ggml_is_transposed(a));
  3448. bool is_node = false;
  3449. if (a->grad || b->grad) {
  3450. is_node = true;
  3451. }
  3452. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3454. result->op = GGML_OP_MUL_MAT;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src[0] = a;
  3457. result->src[1] = b;
  3458. return result;
  3459. }
  3460. // ggml_out_prod
  3461. struct ggml_tensor * ggml_out_prod(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. GGML_ASSERT(ggml_can_out_prod(a, b));
  3466. GGML_ASSERT(!ggml_is_transposed(a));
  3467. bool is_node = false;
  3468. if (a->grad || b->grad) {
  3469. is_node = true;
  3470. }
  3471. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3472. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3473. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3474. result->op = GGML_OP_OUT_PROD;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src[0] = a;
  3477. result->src[1] = b;
  3478. return result;
  3479. }
  3480. // ggml_scale
  3481. static struct ggml_tensor * ggml_scale_impl(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a,
  3484. struct ggml_tensor * b,
  3485. bool inplace) {
  3486. GGML_ASSERT(ggml_is_scalar(b));
  3487. GGML_ASSERT(ggml_is_padded_1d(a));
  3488. bool is_node = false;
  3489. if (a->grad || b->grad) {
  3490. is_node = true;
  3491. }
  3492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3493. result->op = GGML_OP_SCALE;
  3494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3495. result->src[0] = a;
  3496. result->src[1] = b;
  3497. return result;
  3498. }
  3499. struct ggml_tensor * ggml_scale(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. struct ggml_tensor * b) {
  3503. return ggml_scale_impl(ctx, a, b, false);
  3504. }
  3505. struct ggml_tensor * ggml_scale_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a,
  3508. struct ggml_tensor * b) {
  3509. return ggml_scale_impl(ctx, a, b, true);
  3510. }
  3511. // ggml_set
  3512. static struct ggml_tensor * ggml_set_impl(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. struct ggml_tensor * b,
  3516. size_t nb1,
  3517. size_t nb2,
  3518. size_t nb3,
  3519. size_t offset,
  3520. bool inplace) {
  3521. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3522. bool is_node = false;
  3523. if (a->grad || b->grad) {
  3524. is_node = true;
  3525. }
  3526. // make a view of the destination
  3527. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3528. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3529. ggml_set_op_params(result, params, sizeof(params));
  3530. result->op = GGML_OP_SET;
  3531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3532. result->src[0] = a;
  3533. result->src[1] = b;
  3534. return result;
  3535. }
  3536. struct ggml_tensor * ggml_set(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. struct ggml_tensor * b,
  3540. size_t nb1,
  3541. size_t nb2,
  3542. size_t nb3,
  3543. size_t offset) {
  3544. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3545. }
  3546. struct ggml_tensor * ggml_set_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b,
  3550. size_t nb1,
  3551. size_t nb2,
  3552. size_t nb3,
  3553. size_t offset) {
  3554. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3555. }
  3556. struct ggml_tensor * ggml_set_1d(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a,
  3559. struct ggml_tensor * b,
  3560. size_t offset) {
  3561. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3562. }
  3563. struct ggml_tensor * ggml_set_1d_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. struct ggml_tensor * b,
  3567. size_t offset) {
  3568. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3569. }
  3570. struct ggml_tensor * ggml_set_2d(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b,
  3574. size_t nb1,
  3575. size_t offset) {
  3576. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3577. }
  3578. struct ggml_tensor * ggml_set_2d_inplace(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a,
  3581. struct ggml_tensor * b,
  3582. size_t nb1,
  3583. size_t offset) {
  3584. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3585. }
  3586. // ggml_cpy
  3587. static struct ggml_tensor * ggml_cpy_impl(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. struct ggml_tensor * b,
  3591. bool inplace) {
  3592. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3593. bool is_node = false;
  3594. if (!inplace && (a->grad || b->grad)) {
  3595. is_node = true;
  3596. }
  3597. // make a view of the destination
  3598. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3599. if (strlen(b->name) > 0) {
  3600. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3601. } else {
  3602. ggml_format_name(result, "%s (copy)", a->name);
  3603. }
  3604. result->op = GGML_OP_CPY;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src[0] = a;
  3607. result->src[1] = b;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_cpy(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. struct ggml_tensor * b) {
  3614. return ggml_cpy_impl(ctx, a, b, false);
  3615. }
  3616. struct ggml_tensor * ggml_cpy_inplace(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. struct ggml_tensor * b) {
  3620. return ggml_cpy_impl(ctx, a, b, true);
  3621. }
  3622. // ggml_cont
  3623. static struct ggml_tensor * ggml_cont_impl(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a,
  3626. bool inplace) {
  3627. bool is_node = false;
  3628. if (!inplace && a->grad) {
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3632. ggml_format_name(result, "%s (cont)", a->name);
  3633. result->op = GGML_OP_CONT;
  3634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3635. result->src[0] = a;
  3636. return result;
  3637. }
  3638. struct ggml_tensor * ggml_cont(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a) {
  3641. return ggml_cont_impl(ctx, a, false);
  3642. }
  3643. struct ggml_tensor * ggml_cont_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a) {
  3646. return ggml_cont_impl(ctx, a, true);
  3647. }
  3648. // make contiguous, with new shape
  3649. GGML_API struct ggml_tensor * ggml_cont_1d(
  3650. struct ggml_context * ctx,
  3651. struct ggml_tensor * a,
  3652. int64_t ne0) {
  3653. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3654. }
  3655. GGML_API struct ggml_tensor * ggml_cont_2d(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. int64_t ne0,
  3659. int64_t ne1) {
  3660. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3661. }
  3662. GGML_API struct ggml_tensor * ggml_cont_3d(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a,
  3665. int64_t ne0,
  3666. int64_t ne1,
  3667. int64_t ne2) {
  3668. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3669. }
  3670. struct ggml_tensor * ggml_cont_4d(
  3671. struct ggml_context * ctx,
  3672. struct ggml_tensor * a,
  3673. int64_t ne0,
  3674. int64_t ne1,
  3675. int64_t ne2,
  3676. int64_t ne3) {
  3677. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3678. bool is_node = false;
  3679. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3680. ggml_format_name(result, "%s (cont)", a->name);
  3681. result->op = GGML_OP_CONT;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src[0] = a;
  3684. return result;
  3685. }
  3686. // ggml_reshape
  3687. struct ggml_tensor * ggml_reshape(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. struct ggml_tensor * b) {
  3691. GGML_ASSERT(ggml_is_contiguous(a));
  3692. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3693. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3694. bool is_node = false;
  3695. if (a->grad) {
  3696. is_node = true;
  3697. }
  3698. if (b->grad) {
  3699. // gradient propagation is not supported
  3700. //GGML_ASSERT(false);
  3701. }
  3702. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3703. ggml_format_name(result, "%s (reshaped)", a->name);
  3704. result->op = GGML_OP_RESHAPE;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src[0] = a;
  3707. return result;
  3708. }
  3709. struct ggml_tensor * ggml_reshape_1d(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. int64_t ne0) {
  3713. GGML_ASSERT(ggml_is_contiguous(a));
  3714. GGML_ASSERT(ggml_nelements(a) == ne0);
  3715. bool is_node = false;
  3716. if (a->grad) {
  3717. is_node = true;
  3718. }
  3719. const int64_t ne[1] = { ne0 };
  3720. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3721. ggml_format_name(result, "%s (reshaped)", a->name);
  3722. result->op = GGML_OP_RESHAPE;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src[0] = a;
  3725. return result;
  3726. }
  3727. struct ggml_tensor * ggml_reshape_2d(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. int64_t ne0,
  3731. int64_t ne1) {
  3732. GGML_ASSERT(ggml_is_contiguous(a));
  3733. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3734. bool is_node = false;
  3735. if (a->grad) {
  3736. is_node = true;
  3737. }
  3738. const int64_t ne[2] = { ne0, ne1 };
  3739. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3740. ggml_format_name(result, "%s (reshaped)", a->name);
  3741. result->op = GGML_OP_RESHAPE;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src[0] = a;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_reshape_3d(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. int64_t ne0,
  3750. int64_t ne1,
  3751. int64_t ne2) {
  3752. GGML_ASSERT(ggml_is_contiguous(a));
  3753. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3754. bool is_node = false;
  3755. if (a->grad) {
  3756. is_node = true;
  3757. }
  3758. const int64_t ne[3] = { ne0, ne1, ne2 };
  3759. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3760. ggml_format_name(result, "%s (reshaped)", a->name);
  3761. result->op = GGML_OP_RESHAPE;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src[0] = a;
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_reshape_4d(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. int64_t ne0,
  3770. int64_t ne1,
  3771. int64_t ne2,
  3772. int64_t ne3) {
  3773. GGML_ASSERT(ggml_is_contiguous(a));
  3774. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3775. bool is_node = false;
  3776. if (a->grad) {
  3777. is_node = true;
  3778. }
  3779. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3780. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3781. ggml_format_name(result, "%s (reshaped)", a->name);
  3782. result->op = GGML_OP_RESHAPE;
  3783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3784. result->src[0] = a;
  3785. return result;
  3786. }
  3787. static struct ggml_tensor * ggml_view_impl(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. int n_dims,
  3791. const int64_t * ne,
  3792. size_t offset) {
  3793. bool is_node = false;
  3794. if (a->grad) {
  3795. is_node = true;
  3796. }
  3797. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3798. ggml_format_name(result, "%s (view)", a->name);
  3799. ggml_set_op_params(result, &offset, sizeof(offset));
  3800. result->op = GGML_OP_VIEW;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src[0] = a;
  3803. return result;
  3804. }
  3805. // ggml_view_1d
  3806. struct ggml_tensor * ggml_view_1d(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. int64_t ne0,
  3810. size_t offset) {
  3811. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3812. return result;
  3813. }
  3814. // ggml_view_2d
  3815. struct ggml_tensor * ggml_view_2d(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. int64_t ne0,
  3819. int64_t ne1,
  3820. size_t nb1,
  3821. size_t offset) {
  3822. const int64_t ne[2] = { ne0, ne1 };
  3823. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3824. result->nb[1] = nb1;
  3825. result->nb[2] = result->nb[1]*ne1;
  3826. result->nb[3] = result->nb[2];
  3827. return result;
  3828. }
  3829. // ggml_view_3d
  3830. struct ggml_tensor * ggml_view_3d(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. int64_t ne0,
  3834. int64_t ne1,
  3835. int64_t ne2,
  3836. size_t nb1,
  3837. size_t nb2,
  3838. size_t offset) {
  3839. const int64_t ne[3] = { ne0, ne1, ne2 };
  3840. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3841. result->nb[1] = nb1;
  3842. result->nb[2] = nb2;
  3843. result->nb[3] = result->nb[2]*ne2;
  3844. return result;
  3845. }
  3846. // ggml_view_4d
  3847. struct ggml_tensor * ggml_view_4d(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. int64_t ne0,
  3851. int64_t ne1,
  3852. int64_t ne2,
  3853. int64_t ne3,
  3854. size_t nb1,
  3855. size_t nb2,
  3856. size_t nb3,
  3857. size_t offset) {
  3858. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3859. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3860. result->nb[1] = nb1;
  3861. result->nb[2] = nb2;
  3862. result->nb[3] = nb3;
  3863. return result;
  3864. }
  3865. // ggml_permute
  3866. struct ggml_tensor * ggml_permute(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. int axis0,
  3870. int axis1,
  3871. int axis2,
  3872. int axis3) {
  3873. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3874. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3875. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3876. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3877. GGML_ASSERT(axis0 != axis1);
  3878. GGML_ASSERT(axis0 != axis2);
  3879. GGML_ASSERT(axis0 != axis3);
  3880. GGML_ASSERT(axis1 != axis2);
  3881. GGML_ASSERT(axis1 != axis3);
  3882. GGML_ASSERT(axis2 != axis3);
  3883. bool is_node = false;
  3884. if (a->grad) {
  3885. is_node = true;
  3886. }
  3887. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3888. ggml_format_name(result, "%s (permuted)", a->name);
  3889. int ne[GGML_MAX_DIMS];
  3890. int nb[GGML_MAX_DIMS];
  3891. ne[axis0] = a->ne[0];
  3892. ne[axis1] = a->ne[1];
  3893. ne[axis2] = a->ne[2];
  3894. ne[axis3] = a->ne[3];
  3895. nb[axis0] = a->nb[0];
  3896. nb[axis1] = a->nb[1];
  3897. nb[axis2] = a->nb[2];
  3898. nb[axis3] = a->nb[3];
  3899. result->ne[0] = ne[0];
  3900. result->ne[1] = ne[1];
  3901. result->ne[2] = ne[2];
  3902. result->ne[3] = ne[3];
  3903. result->nb[0] = nb[0];
  3904. result->nb[1] = nb[1];
  3905. result->nb[2] = nb[2];
  3906. result->nb[3] = nb[3];
  3907. result->op = GGML_OP_PERMUTE;
  3908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3909. result->src[0] = a;
  3910. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3911. ggml_set_op_params(result, params, sizeof(params));
  3912. return result;
  3913. }
  3914. // ggml_transpose
  3915. struct ggml_tensor * ggml_transpose(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a) {
  3918. bool is_node = false;
  3919. if (a->grad) {
  3920. is_node = true;
  3921. }
  3922. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3923. ggml_format_name(result, "%s (transposed)", a->name);
  3924. result->ne[0] = a->ne[1];
  3925. result->ne[1] = a->ne[0];
  3926. result->nb[0] = a->nb[1];
  3927. result->nb[1] = a->nb[0];
  3928. result->op = GGML_OP_TRANSPOSE;
  3929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3930. result->src[0] = a;
  3931. return result;
  3932. }
  3933. // ggml_get_rows
  3934. struct ggml_tensor * ggml_get_rows(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b) {
  3938. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3939. bool is_node = false;
  3940. if (a->grad || b->grad) {
  3941. is_node = true;
  3942. }
  3943. // TODO: implement non F32 return
  3944. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3945. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3946. result->op = GGML_OP_GET_ROWS;
  3947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3948. result->src[0] = a;
  3949. result->src[1] = b;
  3950. return result;
  3951. }
  3952. // ggml_get_rows_back
  3953. struct ggml_tensor * ggml_get_rows_back(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b,
  3957. struct ggml_tensor * c) {
  3958. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3959. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3960. bool is_node = false;
  3961. if (a->grad || b->grad) {
  3962. is_node = true;
  3963. }
  3964. // TODO: implement non F32 return
  3965. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3966. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3967. result->op = GGML_OP_GET_ROWS_BACK;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src[0] = a;
  3970. result->src[1] = b;
  3971. return result;
  3972. }
  3973. // ggml_diag
  3974. struct ggml_tensor * ggml_diag(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a) {
  3977. GGML_ASSERT(a->ne[1] == 1);
  3978. bool is_node = false;
  3979. if (a->grad) {
  3980. is_node = true;
  3981. }
  3982. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3983. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3984. result->op = GGML_OP_DIAG;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src[0] = a;
  3987. return result;
  3988. }
  3989. // ggml_diag_mask_inf
  3990. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. int n_past,
  3994. bool inplace) {
  3995. bool is_node = false;
  3996. if (a->grad) {
  3997. is_node = true;
  3998. }
  3999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4000. int32_t params[] = { n_past };
  4001. ggml_set_op_params(result, params, sizeof(params));
  4002. result->op = GGML_OP_DIAG_MASK_INF;
  4003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4004. result->src[0] = a;
  4005. return result;
  4006. }
  4007. struct ggml_tensor * ggml_diag_mask_inf(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. int n_past) {
  4011. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4012. }
  4013. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. int n_past) {
  4017. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4018. }
  4019. // ggml_diag_mask_zero
  4020. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a,
  4023. int n_past,
  4024. bool inplace) {
  4025. bool is_node = false;
  4026. if (a->grad) {
  4027. is_node = true;
  4028. }
  4029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4030. int32_t params[] = { n_past };
  4031. ggml_set_op_params(result, params, sizeof(params));
  4032. result->op = GGML_OP_DIAG_MASK_ZERO;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src[0] = a;
  4035. return result;
  4036. }
  4037. struct ggml_tensor * ggml_diag_mask_zero(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. int n_past) {
  4041. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4042. }
  4043. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. int n_past) {
  4047. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4048. }
  4049. // ggml_soft_max
  4050. static struct ggml_tensor * ggml_soft_max_impl(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. bool inplace) {
  4054. bool is_node = false;
  4055. if (a->grad) {
  4056. is_node = true;
  4057. }
  4058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4059. result->op = GGML_OP_SOFT_MAX;
  4060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4061. result->src[0] = a;
  4062. return result;
  4063. }
  4064. struct ggml_tensor * ggml_soft_max(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. return ggml_soft_max_impl(ctx, a, false);
  4068. }
  4069. struct ggml_tensor * ggml_soft_max_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. return ggml_soft_max_impl(ctx, a, true);
  4073. }
  4074. // ggml_soft_max_back
  4075. static struct ggml_tensor * ggml_soft_max_back_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. bool inplace) {
  4080. bool is_node = false;
  4081. if (a->grad || b->grad) {
  4082. is_node = true; // TODO : implement backward pass
  4083. }
  4084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4085. result->op = GGML_OP_SOFT_MAX_BACK;
  4086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4087. result->src[0] = a;
  4088. result->src[1] = b;
  4089. return result;
  4090. }
  4091. struct ggml_tensor * ggml_soft_max_back(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. struct ggml_tensor * b) {
  4095. return ggml_soft_max_back_impl(ctx, a, b, false);
  4096. }
  4097. struct ggml_tensor * ggml_soft_max_back_inplace(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b) {
  4101. return ggml_soft_max_back_impl(ctx, a, b, true);
  4102. }
  4103. // ggml_rope
  4104. static struct ggml_tensor * ggml_rope_impl(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a,
  4107. struct ggml_tensor * b,
  4108. int n_dims,
  4109. int mode,
  4110. int n_ctx,
  4111. float freq_base,
  4112. float freq_scale,
  4113. float xpos_base,
  4114. bool xpos_down,
  4115. bool inplace) {
  4116. GGML_ASSERT(ggml_is_vector(b));
  4117. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4118. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4119. bool is_node = false;
  4120. if (a->grad) {
  4121. is_node = true;
  4122. }
  4123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4124. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  4125. memcpy(params + 4, &freq_base, sizeof(float));
  4126. memcpy(params + 5, &freq_scale, sizeof(float));
  4127. memcpy(params + 6, &xpos_base, sizeof(float));
  4128. memcpy(params + 7, &xpos_down, sizeof(bool));
  4129. ggml_set_op_params(result, params, sizeof(params));
  4130. result->op = GGML_OP_ROPE;
  4131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4132. result->src[0] = a;
  4133. result->src[1] = b;
  4134. return result;
  4135. }
  4136. struct ggml_tensor * ggml_rope(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. int n_dims,
  4141. int mode,
  4142. int n_ctx) {
  4143. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  4144. }
  4145. struct ggml_tensor * ggml_rope_inplace(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b,
  4149. int n_dims,
  4150. int mode,
  4151. int n_ctx) {
  4152. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  4153. }
  4154. struct ggml_tensor * ggml_rope_custom(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b,
  4158. int n_dims,
  4159. int mode,
  4160. int n_ctx,
  4161. float freq_base,
  4162. float freq_scale) {
  4163. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  4164. }
  4165. struct ggml_tensor * ggml_rope_custom_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. struct ggml_tensor * b,
  4169. int n_dims,
  4170. int mode,
  4171. int n_ctx,
  4172. float freq_base,
  4173. float freq_scale) {
  4174. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  4175. }
  4176. struct ggml_tensor * ggml_rope_xpos_inplace(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b,
  4180. int n_dims,
  4181. float base,
  4182. bool down) {
  4183. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  4184. }
  4185. // ggml_rope_back
  4186. struct ggml_tensor * ggml_rope_back(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. int n_dims,
  4191. int mode,
  4192. int n_ctx,
  4193. float freq_base,
  4194. float freq_scale,
  4195. float xpos_base,
  4196. bool xpos_down) {
  4197. GGML_ASSERT(ggml_is_vector(b));
  4198. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4199. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4200. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4201. bool is_node = false;
  4202. if (a->grad) {
  4203. is_node = false; // TODO: implement backward
  4204. }
  4205. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4206. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  4207. memcpy(params + 4, &freq_base, sizeof(float));
  4208. memcpy(params + 5, &freq_scale, sizeof(float));
  4209. memcpy(params + 6, &xpos_base, sizeof(float));
  4210. memcpy(params + 7, &xpos_down, sizeof(bool));
  4211. ggml_set_op_params(result, params, sizeof(params));
  4212. result->op = GGML_OP_ROPE_BACK;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src[0] = a;
  4215. result->src[1] = b;
  4216. return result;
  4217. }
  4218. // ggml_alibi
  4219. struct ggml_tensor * ggml_alibi(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. int n_past,
  4223. int n_head,
  4224. float bias_max) {
  4225. GGML_ASSERT(n_past >= 0);
  4226. bool is_node = false;
  4227. if (a->grad) {
  4228. GGML_ASSERT(false); // TODO: implement backward
  4229. is_node = true;
  4230. }
  4231. // TODO: when implement backward, fix this:
  4232. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4234. int32_t op_params[3] = { n_past, n_head };
  4235. memcpy(op_params + 2, &bias_max, sizeof(float));
  4236. ggml_set_op_params(result, op_params, sizeof(op_params));
  4237. result->op = GGML_OP_ALIBI;
  4238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4239. result->src[0] = a;
  4240. return result;
  4241. }
  4242. // ggml_clamp
  4243. struct ggml_tensor * ggml_clamp(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. float min,
  4247. float max) {
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. GGML_ASSERT(false); // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. // TODO: when implement backward, fix this:
  4254. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4255. float params[] = { min, max };
  4256. ggml_set_op_params(result, params, sizeof(params));
  4257. result->op = GGML_OP_CLAMP;
  4258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4259. result->src[0] = a;
  4260. return result;
  4261. }
  4262. // ggml_conv_1d
  4263. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4264. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4265. }
  4266. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4267. // a: [OC,IC, K]
  4268. // b: [N, IC, IL]
  4269. // result: [N, OL, IC*K]
  4270. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b,
  4274. int s0,
  4275. int p0,
  4276. int d0) {
  4277. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4278. bool is_node = false;
  4279. if (a->grad || b->grad) {
  4280. GGML_ASSERT(false); // TODO: implement backward
  4281. is_node = true;
  4282. }
  4283. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4284. const int64_t ne[4] = {
  4285. a->ne[1] * a->ne[0],
  4286. OL,
  4287. b->ne[2],
  4288. 1,
  4289. };
  4290. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4291. int32_t params[] = { s0, p0, d0 };
  4292. ggml_set_op_params(result, params, sizeof(params));
  4293. result->op = GGML_OP_CONV_1D_STAGE_0;
  4294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4295. result->src[0] = a;
  4296. result->src[1] = b;
  4297. return result;
  4298. }
  4299. // ggml_conv_1d_stage_1
  4300. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4301. // a: [OC, IC, K]
  4302. // b: [N, OL, IC * K]
  4303. // result: [N, OC, OL]
  4304. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. bool is_node = false;
  4309. if (a->grad || b->grad) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. const int64_t ne[4] = {
  4314. b->ne[1],
  4315. a->ne[2],
  4316. b->ne[2],
  4317. 1,
  4318. };
  4319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4320. result->op = GGML_OP_CONV_1D_STAGE_1;
  4321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4322. result->src[0] = a;
  4323. result->src[1] = b;
  4324. return result;
  4325. }
  4326. // ggml_conv_1d
  4327. GGML_API struct ggml_tensor * ggml_conv_1d(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b,
  4331. int s0,
  4332. int p0,
  4333. int d0) {
  4334. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4335. result = ggml_conv_1d_stage_1(ctx, a, result);
  4336. return result;
  4337. }
  4338. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4339. // struct ggml_context * ctx,
  4340. // struct ggml_tensor * a,
  4341. // struct ggml_tensor * b,
  4342. // int s0,
  4343. // int p0,
  4344. // int d0) {
  4345. // GGML_ASSERT(ggml_is_matrix(b));
  4346. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4347. // bool is_node = false;
  4348. // if (a->grad || b->grad) {
  4349. // GGML_ASSERT(false); // TODO: implement backward
  4350. // is_node = true;
  4351. // }
  4352. // const int64_t ne[4] = {
  4353. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4354. // a->ne[2], 1, 1,
  4355. // };
  4356. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4357. // int32_t params[] = { s0, p0, d0 };
  4358. // ggml_set_op_params(result, params, sizeof(params));
  4359. // result->op = GGML_OP_CONV_1D;
  4360. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. // result->src[0] = a;
  4362. // result->src[1] = b;
  4363. // return result;
  4364. // }
  4365. // ggml_conv_1d_ph
  4366. struct ggml_tensor* ggml_conv_1d_ph(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a,
  4369. struct ggml_tensor * b,
  4370. int s,
  4371. int d) {
  4372. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4373. }
  4374. // ggml_conv_transpose_1d
  4375. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4376. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4377. }
  4378. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. struct ggml_tensor * b,
  4382. int s0,
  4383. int p0,
  4384. int d0) {
  4385. GGML_ASSERT(ggml_is_matrix(b));
  4386. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4387. GGML_ASSERT(a->ne[3] == 1);
  4388. GGML_ASSERT(p0 == 0);
  4389. GGML_ASSERT(d0 == 1);
  4390. bool is_node = false;
  4391. if (a->grad || b->grad) {
  4392. GGML_ASSERT(false); // TODO: implement backward
  4393. is_node = true;
  4394. }
  4395. const int64_t ne[4] = {
  4396. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4397. a->ne[1], b->ne[2], 1,
  4398. };
  4399. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4400. int32_t params[] = { s0, p0, d0 };
  4401. ggml_set_op_params(result, params, sizeof(params));
  4402. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. result->src[1] = b;
  4406. return result;
  4407. }
  4408. // ggml_conv_2d
  4409. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4410. // a: [OC,IC, KH, KW]
  4411. // b: [N, IC, IH, IW]
  4412. // result: [N, OH, OW, IC*KH*KW]
  4413. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b,
  4417. int s0,
  4418. int s1,
  4419. int p0,
  4420. int p1,
  4421. int d0,
  4422. int d1) {
  4423. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4424. bool is_node = false;
  4425. if (a->grad || b->grad) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4430. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4431. const int64_t ne[4] = {
  4432. a->ne[2] * a->ne[1] * a->ne[0],
  4433. OW,
  4434. OH,
  4435. b->ne[3],
  4436. };
  4437. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4438. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4439. ggml_set_op_params(result, params, sizeof(params));
  4440. result->op = GGML_OP_CONV_2D_STAGE_0;
  4441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4442. result->src[0] = a;
  4443. result->src[1] = b;
  4444. return result;
  4445. }
  4446. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4447. // a: [OC, IC, KH, KW]
  4448. // b: [N, OH, OW, IC * KH * KW]
  4449. // result: [N, OC, OH, OW]
  4450. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. struct ggml_tensor * b) {
  4454. bool is_node = false;
  4455. if (a->grad || b->grad) {
  4456. GGML_ASSERT(false); // TODO: implement backward
  4457. is_node = true;
  4458. }
  4459. const int64_t ne[4] = {
  4460. b->ne[1],
  4461. b->ne[2],
  4462. a->ne[3],
  4463. b->ne[3],
  4464. };
  4465. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4466. result->op = GGML_OP_CONV_2D_STAGE_1;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src[0] = a;
  4469. result->src[1] = b;
  4470. return result;
  4471. }
  4472. // a: [OC,IC, KH, KW]
  4473. // b: [N, IC, IH, IW]
  4474. // result: [N, OC, OH, OW]
  4475. struct ggml_tensor * ggml_conv_2d(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. int s0,
  4480. int s1,
  4481. int p0,
  4482. int p1,
  4483. int d0,
  4484. int d1) {
  4485. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4486. result = ggml_conv_2d_stage_1(ctx, a, result);
  4487. return result;
  4488. }
  4489. // ggml_conv_2d_sk_p0
  4490. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b) {
  4494. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4495. }
  4496. // ggml_conv_2d_s1_ph
  4497. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b) {
  4501. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4502. }
  4503. // ggml_conv_transpose_2d_p0
  4504. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4505. return (ins - 1) * s - 2 * p + ks;
  4506. }
  4507. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. struct ggml_tensor * b,
  4511. int stride) {
  4512. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4513. bool is_node = false;
  4514. if (a->grad || b->grad) {
  4515. GGML_ASSERT(false); // TODO: implement backward
  4516. is_node = true;
  4517. }
  4518. const int64_t ne[4] = {
  4519. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4520. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4521. a->ne[2], b->ne[3],
  4522. };
  4523. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4524. ggml_set_op_params_i32(result, 0, stride);
  4525. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. result->src[1] = b;
  4529. return result;
  4530. }
  4531. // ggml_pool_*
  4532. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  4533. return (ins + 2 * p - ks) / s + 1;
  4534. }
  4535. // ggml_pool_1d
  4536. struct ggml_tensor * ggml_pool_1d(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. enum ggml_op_pool op,
  4540. int k0,
  4541. int s0,
  4542. int p0) {
  4543. bool is_node = false;
  4544. if (a->grad) {
  4545. GGML_ASSERT(false); // TODO: implement backward
  4546. is_node = true;
  4547. }
  4548. const int64_t ne[3] = {
  4549. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4550. a->ne[1],
  4551. };
  4552. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4553. int32_t params[] = { op, k0, s0, p0 };
  4554. ggml_set_op_params(result, params, sizeof(params));
  4555. result->op = GGML_OP_POOL_1D;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. return result;
  4559. }
  4560. // ggml_pool_2d
  4561. struct ggml_tensor * ggml_pool_2d(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. enum ggml_op_pool op,
  4565. int k0,
  4566. int k1,
  4567. int s0,
  4568. int s1,
  4569. int p0,
  4570. int p1) {
  4571. bool is_node = false;
  4572. if (a->grad) {
  4573. GGML_ASSERT(false); // TODO: implement backward
  4574. is_node = true;
  4575. }
  4576. const int64_t ne[3] = {
  4577. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4578. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4579. a->ne[2],
  4580. };
  4581. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4582. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4583. ggml_set_op_params(result, params, sizeof(params));
  4584. result->op = GGML_OP_POOL_2D;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src[0] = a;
  4587. return result;
  4588. }
  4589. // ggml_upscale
  4590. static struct ggml_tensor * ggml_upscale_impl(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. int scale_factor) {
  4594. bool is_node = false;
  4595. if (a->grad) {
  4596. GGML_ASSERT(false); // TODO: implement backward
  4597. is_node = true;
  4598. }
  4599. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4600. a->ne[0] * scale_factor,
  4601. a->ne[1] * scale_factor,
  4602. a->ne[2], a->ne[3]);
  4603. result->op = GGML_OP_UPSCALE;
  4604. result->op_params[0] = scale_factor;
  4605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4606. result->src[0] = a;
  4607. result->src[1] = NULL;
  4608. return result;
  4609. }
  4610. struct ggml_tensor * ggml_upscale(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. int scale_factor) {
  4614. return ggml_upscale_impl(ctx, a, scale_factor);
  4615. }
  4616. // ggml_flash_attn
  4617. struct ggml_tensor * ggml_flash_attn(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * q,
  4620. struct ggml_tensor * k,
  4621. struct ggml_tensor * v,
  4622. bool masked) {
  4623. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4624. // TODO: check if vT can be multiplied by (k*qT)
  4625. bool is_node = false;
  4626. if (q->grad || k->grad || v->grad) {
  4627. is_node = true;
  4628. }
  4629. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4630. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4631. int32_t t = masked ? 1 : 0;
  4632. ggml_set_op_params(result, &t, sizeof(t));
  4633. result->op = GGML_OP_FLASH_ATTN;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = q;
  4636. result->src[1] = k;
  4637. result->src[2] = v;
  4638. return result;
  4639. }
  4640. // ggml_flash_ff
  4641. struct ggml_tensor * ggml_flash_ff(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b0,
  4645. struct ggml_tensor * b1,
  4646. struct ggml_tensor * c0,
  4647. struct ggml_tensor * c1) {
  4648. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4649. // TODO: more checks
  4650. bool is_node = false;
  4651. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4652. is_node = true;
  4653. }
  4654. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4655. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4656. result->op = GGML_OP_FLASH_FF;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src[0] = a;
  4659. result->src[1] = b0;
  4660. result->src[2] = b1;
  4661. result->src[3] = c0;
  4662. result->src[4] = c1;
  4663. return result;
  4664. }
  4665. // ggml_flash_attn_back
  4666. struct ggml_tensor * ggml_flash_attn_back(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * q,
  4669. struct ggml_tensor * k,
  4670. struct ggml_tensor * v,
  4671. struct ggml_tensor * d,
  4672. bool masked) {
  4673. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4674. // TODO: check if vT can be multiplied by (k*qT)
  4675. // d shape [D,N,ne2,ne3]
  4676. // q shape [D,N,ne2,ne3]
  4677. // k shape [D,M,kvne2,ne3]
  4678. // v shape [M,D,kvne2,ne3]
  4679. const int64_t D = q->ne[0];
  4680. const int64_t N = q->ne[1];
  4681. const int64_t M = k->ne[1];
  4682. const int64_t ne2 = q->ne[2];
  4683. const int64_t ne3 = q->ne[3];
  4684. const int64_t kvne2 = k->ne[2];
  4685. GGML_ASSERT(k->ne[0] == D);
  4686. GGML_ASSERT(v->ne[0] == M);
  4687. GGML_ASSERT(v->ne[1] == D);
  4688. GGML_ASSERT(d->ne[0] == D);
  4689. GGML_ASSERT(d->ne[1] == N);
  4690. GGML_ASSERT(k->ne[2] == kvne2);
  4691. GGML_ASSERT(k->ne[3] == ne3);
  4692. GGML_ASSERT(v->ne[2] == kvne2);
  4693. GGML_ASSERT(v->ne[3] == ne3);
  4694. GGML_ASSERT(d->ne[2] == ne2);
  4695. GGML_ASSERT(d->ne[3] == ne3);
  4696. GGML_ASSERT(ne2 % kvne2 == 0);
  4697. bool is_node = false;
  4698. if (q->grad || k->grad || v->grad) {
  4699. // when using this operation (in backwards pass) these grads are set.
  4700. // we don't want to create (big) grad of our result, so is_node is false.
  4701. is_node = false;
  4702. }
  4703. // store gradients of q, k and v as continuous tensors concatenated in result.
  4704. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4705. const int64_t elem_q = ggml_nelements(q);
  4706. const int64_t elem_k = ggml_nelements(k);
  4707. const int64_t elem_v = ggml_nelements(v);
  4708. enum ggml_type result_type = GGML_TYPE_F32;
  4709. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4710. const size_t tsize = ggml_type_size(result_type);
  4711. const size_t offs_q = 0;
  4712. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4713. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4714. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4715. const size_t nelements = (end + tsize - 1)/tsize;
  4716. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4717. int32_t masked_i = masked ? 1 : 0;
  4718. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4719. result->op = GGML_OP_FLASH_ATTN_BACK;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = q;
  4722. result->src[1] = k;
  4723. result->src[2] = v;
  4724. result->src[3] = d;
  4725. return result;
  4726. }
  4727. // ggml_win_part
  4728. struct ggml_tensor * ggml_win_part(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. int w) {
  4732. GGML_ASSERT(a->ne[3] == 1);
  4733. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4734. bool is_node = false;
  4735. if (a->grad) {
  4736. GGML_ASSERT(false); // TODO: implement backward
  4737. is_node = true;
  4738. }
  4739. // padding
  4740. const int px = (w - a->ne[1]%w)%w;
  4741. const int py = (w - a->ne[2]%w)%w;
  4742. const int npx = (px + a->ne[1])/w;
  4743. const int npy = (py + a->ne[2])/w;
  4744. const int np = npx*npy;
  4745. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4746. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4747. int32_t params[] = { npx, npy, w };
  4748. ggml_set_op_params(result, params, sizeof(params));
  4749. result->op = GGML_OP_WIN_PART;
  4750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4751. result->src[0] = a;
  4752. return result;
  4753. }
  4754. // ggml_win_unpart
  4755. struct ggml_tensor * ggml_win_unpart(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. int w0,
  4759. int h0,
  4760. int w) {
  4761. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4762. bool is_node = false;
  4763. if (a->grad) {
  4764. GGML_ASSERT(false); // TODO: implement backward
  4765. is_node = true;
  4766. }
  4767. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4769. int32_t params[] = { w };
  4770. ggml_set_op_params(result, params, sizeof(params));
  4771. result->op = GGML_OP_WIN_UNPART;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. return result;
  4775. }
  4776. // ggml_get_rel_pos
  4777. struct ggml_tensor * ggml_get_rel_pos(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. int qh,
  4781. int kh) {
  4782. GGML_ASSERT(qh == kh);
  4783. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4784. bool is_node = false;
  4785. if (a->grad) {
  4786. GGML_ASSERT(false); // TODO: implement backward
  4787. is_node = true;
  4788. }
  4789. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4790. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4791. result->op = GGML_OP_GET_REL_POS;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. result->src[1] = NULL;
  4795. return result;
  4796. }
  4797. // ggml_add_rel_pos
  4798. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a,
  4801. struct ggml_tensor * pw,
  4802. struct ggml_tensor * ph,
  4803. bool inplace) {
  4804. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4805. GGML_ASSERT(ggml_is_contiguous(a));
  4806. GGML_ASSERT(ggml_is_contiguous(pw));
  4807. GGML_ASSERT(ggml_is_contiguous(ph));
  4808. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4809. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4810. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4811. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4812. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4813. bool is_node = false;
  4814. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4815. is_node = true;
  4816. }
  4817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4818. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4819. result->op = GGML_OP_ADD_REL_POS;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. result->src[1] = pw;
  4823. result->src[2] = ph;
  4824. return result;
  4825. }
  4826. struct ggml_tensor * ggml_add_rel_pos(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. struct ggml_tensor * pw,
  4830. struct ggml_tensor * ph) {
  4831. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4832. }
  4833. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. struct ggml_tensor * pw,
  4837. struct ggml_tensor * ph) {
  4838. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4839. }
  4840. // gmml_unary
  4841. static struct ggml_tensor * ggml_unary_impl(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. enum ggml_unary_op op,
  4845. bool inplace) {
  4846. bool is_node = false;
  4847. if (!inplace && (a->grad)) {
  4848. is_node = true;
  4849. }
  4850. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4851. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4852. result->op = GGML_OP_UNARY;
  4853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4854. result->src[0] = a;
  4855. return result;
  4856. }
  4857. struct ggml_tensor * ggml_unary(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. enum ggml_unary_op op) {
  4861. return ggml_unary_impl(ctx, a, op, false);
  4862. }
  4863. struct ggml_tensor * ggml_unary_inplace(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. enum ggml_unary_op op) {
  4867. return ggml_unary_impl(ctx, a, op, true);
  4868. }
  4869. // ggml_map_unary
  4870. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. const ggml_unary_op_f32_t fun,
  4874. bool inplace) {
  4875. bool is_node = false;
  4876. if (!inplace && a->grad) {
  4877. is_node = true;
  4878. }
  4879. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4880. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4881. result->op = GGML_OP_MAP_UNARY;
  4882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4883. result->src[0] = a;
  4884. return result;
  4885. }
  4886. struct ggml_tensor * ggml_map_unary_f32(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. const ggml_unary_op_f32_t fun) {
  4890. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4891. }
  4892. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. const ggml_unary_op_f32_t fun) {
  4896. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4897. }
  4898. // ggml_map_binary
  4899. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b,
  4903. const ggml_binary_op_f32_t fun,
  4904. bool inplace) {
  4905. GGML_ASSERT(ggml_are_same_shape(a, b));
  4906. bool is_node = false;
  4907. if (!inplace && (a->grad || b->grad)) {
  4908. is_node = true;
  4909. }
  4910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4911. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4912. result->op = GGML_OP_MAP_BINARY;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. result->src[1] = b;
  4916. return result;
  4917. }
  4918. struct ggml_tensor * ggml_map_binary_f32(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b,
  4922. const ggml_binary_op_f32_t fun) {
  4923. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4924. }
  4925. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b,
  4929. const ggml_binary_op_f32_t fun) {
  4930. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4931. }
  4932. // ggml_map_custom1_f32
  4933. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. const ggml_custom1_op_f32_t fun,
  4937. bool inplace) {
  4938. bool is_node = false;
  4939. if (!inplace && a->grad) {
  4940. is_node = true;
  4941. }
  4942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4943. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4944. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src[0] = a;
  4947. return result;
  4948. }
  4949. struct ggml_tensor * ggml_map_custom1_f32(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a,
  4952. const ggml_custom1_op_f32_t fun) {
  4953. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4954. }
  4955. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. const ggml_custom1_op_f32_t fun) {
  4959. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4960. }
  4961. // ggml_map_custom2_f32
  4962. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b,
  4966. const ggml_custom2_op_f32_t fun,
  4967. bool inplace) {
  4968. bool is_node = false;
  4969. if (!inplace && (a->grad || b->grad)) {
  4970. is_node = true;
  4971. }
  4972. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4973. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4974. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src[0] = a;
  4977. result->src[1] = b;
  4978. return result;
  4979. }
  4980. struct ggml_tensor * ggml_map_custom2_f32(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. struct ggml_tensor * b,
  4984. const ggml_custom2_op_f32_t fun) {
  4985. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4986. }
  4987. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b,
  4991. const ggml_custom2_op_f32_t fun) {
  4992. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4993. }
  4994. // ggml_map_custom3_f32
  4995. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. struct ggml_tensor * c,
  5000. const ggml_custom3_op_f32_t fun,
  5001. bool inplace) {
  5002. bool is_node = false;
  5003. if (!inplace && (a->grad || b->grad || c->grad)) {
  5004. is_node = true;
  5005. }
  5006. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5007. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5008. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src[0] = a;
  5011. result->src[1] = b;
  5012. result->src[2] = c;
  5013. return result;
  5014. }
  5015. struct ggml_tensor * ggml_map_custom3_f32(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. struct ggml_tensor * b,
  5019. struct ggml_tensor * c,
  5020. const ggml_custom3_op_f32_t fun) {
  5021. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5022. }
  5023. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b,
  5027. struct ggml_tensor * c,
  5028. const ggml_custom3_op_f32_t fun) {
  5029. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5030. }
  5031. // ggml_map_custom1
  5032. struct ggml_map_custom1_op_params {
  5033. ggml_custom1_op_t fun;
  5034. int n_tasks;
  5035. void * userdata;
  5036. };
  5037. static struct ggml_tensor * ggml_map_custom1_impl(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. const ggml_custom1_op_t fun,
  5041. int n_tasks,
  5042. void * userdata,
  5043. bool inplace) {
  5044. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5045. bool is_node = false;
  5046. if (!inplace && a->grad) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5050. struct ggml_map_custom1_op_params params = {
  5051. /*.fun =*/ fun,
  5052. /*.n_tasks =*/ n_tasks,
  5053. /*.userdata =*/ userdata
  5054. };
  5055. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5056. result->op = GGML_OP_MAP_CUSTOM1;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_map_custom1(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. const ggml_custom1_op_t fun,
  5065. int n_tasks,
  5066. void * userdata) {
  5067. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5068. }
  5069. struct ggml_tensor * ggml_map_custom1_inplace(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. const ggml_custom1_op_t fun,
  5073. int n_tasks,
  5074. void * userdata) {
  5075. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5076. }
  5077. // ggml_map_custom2
  5078. struct ggml_map_custom2_op_params {
  5079. ggml_custom2_op_t fun;
  5080. int n_tasks;
  5081. void * userdata;
  5082. };
  5083. static struct ggml_tensor * ggml_map_custom2_impl(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. struct ggml_tensor * b,
  5087. const ggml_custom2_op_t fun,
  5088. int n_tasks,
  5089. void * userdata,
  5090. bool inplace) {
  5091. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5092. bool is_node = false;
  5093. if (!inplace && (a->grad || b->grad)) {
  5094. is_node = true;
  5095. }
  5096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5097. struct ggml_map_custom2_op_params params = {
  5098. /*.fun =*/ fun,
  5099. /*.n_tasks =*/ n_tasks,
  5100. /*.userdata =*/ userdata
  5101. };
  5102. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5103. result->op = GGML_OP_MAP_CUSTOM2;
  5104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5105. result->src[0] = a;
  5106. result->src[1] = b;
  5107. return result;
  5108. }
  5109. struct ggml_tensor * ggml_map_custom2(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. struct ggml_tensor * b,
  5113. const ggml_custom2_op_t fun,
  5114. int n_tasks,
  5115. void * userdata) {
  5116. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5117. }
  5118. struct ggml_tensor * ggml_map_custom2_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. struct ggml_tensor * b,
  5122. const ggml_custom2_op_t fun,
  5123. int n_tasks,
  5124. void * userdata) {
  5125. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5126. }
  5127. // ggml_map_custom3
  5128. struct ggml_map_custom3_op_params {
  5129. ggml_custom3_op_t fun;
  5130. int n_tasks;
  5131. void * userdata;
  5132. };
  5133. static struct ggml_tensor * ggml_map_custom3_impl(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a,
  5136. struct ggml_tensor * b,
  5137. struct ggml_tensor * c,
  5138. const ggml_custom3_op_t fun,
  5139. int n_tasks,
  5140. void * userdata,
  5141. bool inplace) {
  5142. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5143. bool is_node = false;
  5144. if (!inplace && (a->grad || b->grad || c->grad)) {
  5145. is_node = true;
  5146. }
  5147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5148. struct ggml_map_custom3_op_params params = {
  5149. /*.fun =*/ fun,
  5150. /*.n_tasks =*/ n_tasks,
  5151. /*.userdata =*/ userdata
  5152. };
  5153. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5154. result->op = GGML_OP_MAP_CUSTOM3;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src[0] = a;
  5157. result->src[1] = b;
  5158. result->src[2] = c;
  5159. return result;
  5160. }
  5161. struct ggml_tensor * ggml_map_custom3(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. struct ggml_tensor * b,
  5165. struct ggml_tensor * c,
  5166. const ggml_custom3_op_t fun,
  5167. int n_tasks,
  5168. void * userdata) {
  5169. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5170. }
  5171. struct ggml_tensor * ggml_map_custom3_inplace(
  5172. struct ggml_context * ctx,
  5173. struct ggml_tensor * a,
  5174. struct ggml_tensor * b,
  5175. struct ggml_tensor * c,
  5176. const ggml_custom3_op_t fun,
  5177. int n_tasks,
  5178. void * userdata) {
  5179. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5180. }
  5181. // ggml_cross_entropy_loss
  5182. struct ggml_tensor * ggml_cross_entropy_loss(
  5183. struct ggml_context * ctx,
  5184. struct ggml_tensor * a,
  5185. struct ggml_tensor * b) {
  5186. GGML_ASSERT(ggml_are_same_shape(a, b));
  5187. bool is_node = false;
  5188. if (a->grad || b->grad) {
  5189. is_node = true;
  5190. }
  5191. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5192. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5194. result->src[0] = a;
  5195. result->src[1] = b;
  5196. return result;
  5197. }
  5198. // ggml_cross_entropy_loss_back
  5199. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. struct ggml_tensor * b,
  5203. struct ggml_tensor * c) {
  5204. GGML_ASSERT(ggml_are_same_shape(a, b));
  5205. GGML_ASSERT(ggml_is_scalar(c));
  5206. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5207. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5208. result->grad = NULL;
  5209. result->src[0] = a;
  5210. result->src[1] = b;
  5211. result->src[2] = c;
  5212. return result;
  5213. }
  5214. ////////////////////////////////////////////////////////////////////////////////
  5215. void ggml_set_param(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * tensor) {
  5218. tensor->is_param = true;
  5219. GGML_ASSERT(tensor->grad == NULL);
  5220. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5221. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5222. }
  5223. // ggml_compute_forward_dup
  5224. static void ggml_compute_forward_dup_same_cont(
  5225. const struct ggml_compute_params * params,
  5226. const struct ggml_tensor * src0,
  5227. struct ggml_tensor * dst) {
  5228. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5229. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5230. GGML_ASSERT(src0->type == dst->type);
  5231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5232. return;
  5233. }
  5234. const size_t nb00 = src0->nb[0];
  5235. const size_t nb0 = dst->nb[0];
  5236. const int ith = params->ith; // thread index
  5237. const int nth = params->nth; // number of threads
  5238. // parallelize by elements
  5239. const int ne = ggml_nelements(dst);
  5240. const int dr = (ne + nth - 1) / nth;
  5241. const int ie0 = dr * ith;
  5242. const int ie1 = MIN(ie0 + dr, ne);
  5243. if (ie0 < ie1) {
  5244. memcpy(
  5245. ((char *) dst->data + ie0*nb0),
  5246. ((char *) src0->data + ie0*nb00),
  5247. (ie1 - ie0) * ggml_type_size(src0->type));
  5248. }
  5249. }
  5250. static void ggml_compute_forward_dup_f16(
  5251. const struct ggml_compute_params * params,
  5252. const struct ggml_tensor * src0,
  5253. struct ggml_tensor * dst) {
  5254. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5256. return;
  5257. }
  5258. GGML_TENSOR_UNARY_OP_LOCALS
  5259. const int ith = params->ith; // thread index
  5260. const int nth = params->nth; // number of threads
  5261. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5262. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5263. return;
  5264. }
  5265. // parallelize by rows
  5266. const int nr = ne01;
  5267. // number of rows per thread
  5268. const int dr = (nr + nth - 1) / nth;
  5269. // row range for this thread
  5270. const int ir0 = dr * ith;
  5271. const int ir1 = MIN(ir0 + dr, nr);
  5272. if (src0->type == dst->type &&
  5273. ne00 == ne0 &&
  5274. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5275. // copy by rows
  5276. const size_t rs = ne00*nb00;
  5277. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5278. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5279. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5280. memcpy(
  5281. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5282. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5283. rs);
  5284. }
  5285. }
  5286. }
  5287. return;
  5288. }
  5289. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5290. if (ggml_is_contiguous(dst)) {
  5291. if (nb00 == sizeof(ggml_fp16_t)) {
  5292. if (dst->type == GGML_TYPE_F16) {
  5293. size_t id = 0;
  5294. const size_t rs = ne00 * nb00;
  5295. char * dst_ptr = (char *) dst->data;
  5296. for (int i03 = 0; i03 < ne03; i03++) {
  5297. for (int i02 = 0; i02 < ne02; i02++) {
  5298. id += rs * ir0;
  5299. for (int i01 = ir0; i01 < ir1; i01++) {
  5300. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5301. memcpy(dst_ptr + id, src0_ptr, rs);
  5302. id += rs;
  5303. }
  5304. id += rs * (ne01 - ir1);
  5305. }
  5306. }
  5307. } else if (dst->type == GGML_TYPE_F32) {
  5308. size_t id = 0;
  5309. float * dst_ptr = (float *) dst->data;
  5310. for (int i03 = 0; i03 < ne03; i03++) {
  5311. for (int i02 = 0; i02 < ne02; i02++) {
  5312. id += ne00 * ir0;
  5313. for (int i01 = ir0; i01 < ir1; i01++) {
  5314. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5315. for (int i00 = 0; i00 < ne00; i00++) {
  5316. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5317. id++;
  5318. }
  5319. }
  5320. id += ne00 * (ne01 - ir1);
  5321. }
  5322. }
  5323. } else if (type_traits[dst->type].from_float) {
  5324. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5325. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5326. size_t id = 0;
  5327. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5328. char * dst_ptr = (char *) dst->data;
  5329. for (int i03 = 0; i03 < ne03; i03++) {
  5330. for (int i02 = 0; i02 < ne02; i02++) {
  5331. id += rs * ir0;
  5332. for (int i01 = ir0; i01 < ir1; i01++) {
  5333. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5334. for (int i00 = 0; i00 < ne00; i00++) {
  5335. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5336. }
  5337. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5338. id += rs;
  5339. }
  5340. id += rs * (ne01 - ir1);
  5341. }
  5342. }
  5343. } else {
  5344. GGML_ASSERT(false); // TODO: implement
  5345. }
  5346. } else {
  5347. //printf("%s: this is not optimal - fix me\n", __func__);
  5348. if (dst->type == GGML_TYPE_F32) {
  5349. size_t id = 0;
  5350. float * dst_ptr = (float *) dst->data;
  5351. for (int i03 = 0; i03 < ne03; i03++) {
  5352. for (int i02 = 0; i02 < ne02; i02++) {
  5353. id += ne00 * ir0;
  5354. for (int i01 = ir0; i01 < ir1; i01++) {
  5355. for (int i00 = 0; i00 < ne00; i00++) {
  5356. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5357. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5358. id++;
  5359. }
  5360. }
  5361. id += ne00 * (ne01 - ir1);
  5362. }
  5363. }
  5364. } else if (dst->type == GGML_TYPE_F16) {
  5365. size_t id = 0;
  5366. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5367. for (int i03 = 0; i03 < ne03; i03++) {
  5368. for (int i02 = 0; i02 < ne02; i02++) {
  5369. id += ne00 * ir0;
  5370. for (int i01 = ir0; i01 < ir1; i01++) {
  5371. for (int i00 = 0; i00 < ne00; i00++) {
  5372. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5373. dst_ptr[id] = *src0_ptr;
  5374. id++;
  5375. }
  5376. }
  5377. id += ne00 * (ne01 - ir1);
  5378. }
  5379. }
  5380. } else {
  5381. GGML_ASSERT(false); // TODO: implement
  5382. }
  5383. }
  5384. return;
  5385. }
  5386. // dst counters
  5387. int64_t i10 = 0;
  5388. int64_t i11 = 0;
  5389. int64_t i12 = 0;
  5390. int64_t i13 = 0;
  5391. if (dst->type == GGML_TYPE_F16) {
  5392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5394. i10 += ne00 * ir0;
  5395. while (i10 >= ne0) {
  5396. i10 -= ne0;
  5397. if (++i11 == ne1) {
  5398. i11 = 0;
  5399. if (++i12 == ne2) {
  5400. i12 = 0;
  5401. if (++i13 == ne3) {
  5402. i13 = 0;
  5403. }
  5404. }
  5405. }
  5406. }
  5407. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5408. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5409. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5410. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5411. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5412. if (++i10 == ne00) {
  5413. i10 = 0;
  5414. if (++i11 == ne01) {
  5415. i11 = 0;
  5416. if (++i12 == ne02) {
  5417. i12 = 0;
  5418. if (++i13 == ne03) {
  5419. i13 = 0;
  5420. }
  5421. }
  5422. }
  5423. }
  5424. }
  5425. }
  5426. i10 += ne00 * (ne01 - ir1);
  5427. while (i10 >= ne0) {
  5428. i10 -= ne0;
  5429. if (++i11 == ne1) {
  5430. i11 = 0;
  5431. if (++i12 == ne2) {
  5432. i12 = 0;
  5433. if (++i13 == ne3) {
  5434. i13 = 0;
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. }
  5441. } else if (dst->type == GGML_TYPE_F32) {
  5442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5444. i10 += ne00 * ir0;
  5445. while (i10 >= ne0) {
  5446. i10 -= ne0;
  5447. if (++i11 == ne1) {
  5448. i11 = 0;
  5449. if (++i12 == ne2) {
  5450. i12 = 0;
  5451. if (++i13 == ne3) {
  5452. i13 = 0;
  5453. }
  5454. }
  5455. }
  5456. }
  5457. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5459. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5460. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5461. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5462. if (++i10 == ne0) {
  5463. i10 = 0;
  5464. if (++i11 == ne1) {
  5465. i11 = 0;
  5466. if (++i12 == ne2) {
  5467. i12 = 0;
  5468. if (++i13 == ne3) {
  5469. i13 = 0;
  5470. }
  5471. }
  5472. }
  5473. }
  5474. }
  5475. }
  5476. i10 += ne00 * (ne01 - ir1);
  5477. while (i10 >= ne0) {
  5478. i10 -= ne0;
  5479. if (++i11 == ne1) {
  5480. i11 = 0;
  5481. if (++i12 == ne2) {
  5482. i12 = 0;
  5483. if (++i13 == ne3) {
  5484. i13 = 0;
  5485. }
  5486. }
  5487. }
  5488. }
  5489. }
  5490. }
  5491. } else {
  5492. GGML_ASSERT(false); // TODO: implement
  5493. }
  5494. }
  5495. static void ggml_compute_forward_dup_f32(
  5496. const struct ggml_compute_params * params,
  5497. const struct ggml_tensor * src0,
  5498. struct ggml_tensor * dst) {
  5499. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5501. return;
  5502. }
  5503. GGML_TENSOR_UNARY_OP_LOCALS
  5504. const int ith = params->ith; // thread index
  5505. const int nth = params->nth; // number of threads
  5506. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5507. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5508. return;
  5509. }
  5510. // parallelize by rows
  5511. const int nr = ne01;
  5512. // number of rows per thread
  5513. const int dr = (nr + nth - 1) / nth;
  5514. // row range for this thread
  5515. const int ir0 = dr * ith;
  5516. const int ir1 = MIN(ir0 + dr, nr);
  5517. if (src0->type == dst->type &&
  5518. ne00 == ne0 &&
  5519. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5520. // copy by rows
  5521. const size_t rs = ne00*nb00;
  5522. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5524. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5525. memcpy(
  5526. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5527. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5528. rs);
  5529. }
  5530. }
  5531. }
  5532. return;
  5533. }
  5534. if (ggml_is_contiguous(dst)) {
  5535. // TODO: simplify
  5536. if (nb00 == sizeof(float)) {
  5537. if (dst->type == GGML_TYPE_F32) {
  5538. size_t id = 0;
  5539. const size_t rs = ne00 * nb00;
  5540. char * dst_ptr = (char *) dst->data;
  5541. for (int i03 = 0; i03 < ne03; i03++) {
  5542. for (int i02 = 0; i02 < ne02; i02++) {
  5543. id += rs * ir0;
  5544. for (int i01 = ir0; i01 < ir1; i01++) {
  5545. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5546. memcpy(dst_ptr + id, src0_ptr, rs);
  5547. id += rs;
  5548. }
  5549. id += rs * (ne01 - ir1);
  5550. }
  5551. }
  5552. } else if (type_traits[dst->type].from_float) {
  5553. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5554. size_t id = 0;
  5555. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5556. char * dst_ptr = (char *) dst->data;
  5557. for (int i03 = 0; i03 < ne03; i03++) {
  5558. for (int i02 = 0; i02 < ne02; i02++) {
  5559. id += rs * ir0;
  5560. for (int i01 = ir0; i01 < ir1; i01++) {
  5561. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5562. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5563. id += rs;
  5564. }
  5565. id += rs * (ne01 - ir1);
  5566. }
  5567. }
  5568. } else {
  5569. GGML_ASSERT(false); // TODO: implement
  5570. }
  5571. } else {
  5572. //printf("%s: this is not optimal - fix me\n", __func__);
  5573. if (dst->type == GGML_TYPE_F32) {
  5574. size_t id = 0;
  5575. float * dst_ptr = (float *) dst->data;
  5576. for (int i03 = 0; i03 < ne03; i03++) {
  5577. for (int i02 = 0; i02 < ne02; i02++) {
  5578. id += ne00 * ir0;
  5579. for (int i01 = ir0; i01 < ir1; i01++) {
  5580. for (int i00 = 0; i00 < ne00; i00++) {
  5581. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5582. dst_ptr[id] = *src0_ptr;
  5583. id++;
  5584. }
  5585. }
  5586. id += ne00 * (ne01 - ir1);
  5587. }
  5588. }
  5589. } else if (dst->type == GGML_TYPE_F16) {
  5590. size_t id = 0;
  5591. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5592. for (int i03 = 0; i03 < ne03; i03++) {
  5593. for (int i02 = 0; i02 < ne02; i02++) {
  5594. id += ne00 * ir0;
  5595. for (int i01 = ir0; i01 < ir1; i01++) {
  5596. for (int i00 = 0; i00 < ne00; i00++) {
  5597. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5598. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5599. id++;
  5600. }
  5601. }
  5602. id += ne00 * (ne01 - ir1);
  5603. }
  5604. }
  5605. } else {
  5606. GGML_ASSERT(false); // TODO: implement
  5607. }
  5608. }
  5609. return;
  5610. }
  5611. // dst counters
  5612. int64_t i10 = 0;
  5613. int64_t i11 = 0;
  5614. int64_t i12 = 0;
  5615. int64_t i13 = 0;
  5616. if (dst->type == GGML_TYPE_F32) {
  5617. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5618. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5619. i10 += ne00 * ir0;
  5620. while (i10 >= ne0) {
  5621. i10 -= ne0;
  5622. if (++i11 == ne1) {
  5623. i11 = 0;
  5624. if (++i12 == ne2) {
  5625. i12 = 0;
  5626. if (++i13 == ne3) {
  5627. i13 = 0;
  5628. }
  5629. }
  5630. }
  5631. }
  5632. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5633. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5634. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5635. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5636. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5637. if (++i10 == ne0) {
  5638. i10 = 0;
  5639. if (++i11 == ne1) {
  5640. i11 = 0;
  5641. if (++i12 == ne2) {
  5642. i12 = 0;
  5643. if (++i13 == ne3) {
  5644. i13 = 0;
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. }
  5651. i10 += ne00 * (ne01 - ir1);
  5652. while (i10 >= ne0) {
  5653. i10 -= ne0;
  5654. if (++i11 == ne1) {
  5655. i11 = 0;
  5656. if (++i12 == ne2) {
  5657. i12 = 0;
  5658. if (++i13 == ne3) {
  5659. i13 = 0;
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. }
  5666. } else if (dst->type == GGML_TYPE_F16) {
  5667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5669. i10 += ne00 * ir0;
  5670. while (i10 >= ne0) {
  5671. i10 -= ne0;
  5672. if (++i11 == ne1) {
  5673. i11 = 0;
  5674. if (++i12 == ne2) {
  5675. i12 = 0;
  5676. if (++i13 == ne3) {
  5677. i13 = 0;
  5678. }
  5679. }
  5680. }
  5681. }
  5682. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5683. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5684. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5685. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5686. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5687. if (++i10 == ne0) {
  5688. i10 = 0;
  5689. if (++i11 == ne1) {
  5690. i11 = 0;
  5691. if (++i12 == ne2) {
  5692. i12 = 0;
  5693. if (++i13 == ne3) {
  5694. i13 = 0;
  5695. }
  5696. }
  5697. }
  5698. }
  5699. }
  5700. }
  5701. i10 += ne00 * (ne01 - ir1);
  5702. while (i10 >= ne0) {
  5703. i10 -= ne0;
  5704. if (++i11 == ne1) {
  5705. i11 = 0;
  5706. if (++i12 == ne2) {
  5707. i12 = 0;
  5708. if (++i13 == ne3) {
  5709. i13 = 0;
  5710. }
  5711. }
  5712. }
  5713. }
  5714. }
  5715. }
  5716. } else {
  5717. GGML_ASSERT(false); // TODO: implement
  5718. }
  5719. }
  5720. static void ggml_compute_forward_dup(
  5721. const struct ggml_compute_params * params,
  5722. const struct ggml_tensor * src0,
  5723. struct ggml_tensor * dst) {
  5724. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5725. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5726. return;
  5727. }
  5728. switch (src0->type) {
  5729. case GGML_TYPE_F16:
  5730. {
  5731. ggml_compute_forward_dup_f16(params, src0, dst);
  5732. } break;
  5733. case GGML_TYPE_F32:
  5734. {
  5735. ggml_compute_forward_dup_f32(params, src0, dst);
  5736. } break;
  5737. default:
  5738. {
  5739. GGML_ASSERT(false);
  5740. } break;
  5741. }
  5742. }
  5743. // ggml_compute_forward_add
  5744. static void ggml_compute_forward_add_f32(
  5745. const struct ggml_compute_params * params,
  5746. const struct ggml_tensor * src0,
  5747. const struct ggml_tensor * src1,
  5748. struct ggml_tensor * dst) {
  5749. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5751. return;
  5752. }
  5753. const int ith = params->ith;
  5754. const int nth = params->nth;
  5755. const int nr = ggml_nrows(src0);
  5756. GGML_TENSOR_BINARY_OP_LOCALS
  5757. GGML_ASSERT( nb0 == sizeof(float));
  5758. GGML_ASSERT(nb00 == sizeof(float));
  5759. // rows per thread
  5760. const int dr = (nr + nth - 1)/nth;
  5761. // row range for this thread
  5762. const int ir0 = dr*ith;
  5763. const int ir1 = MIN(ir0 + dr, nr);
  5764. if (nb10 == sizeof(float)) {
  5765. for (int ir = ir0; ir < ir1; ++ir) {
  5766. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5767. const int64_t i03 = ir/(ne02*ne01);
  5768. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5769. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5770. const int64_t i13 = i03 % ne13;
  5771. const int64_t i12 = i02 % ne12;
  5772. const int64_t i11 = i01 % ne11;
  5773. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5774. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5775. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5776. #ifdef GGML_USE_ACCELERATE
  5777. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5778. #else
  5779. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5780. #endif
  5781. }
  5782. } else {
  5783. // src1 is not contiguous
  5784. for (int ir = ir0; ir < ir1; ++ir) {
  5785. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5786. const int64_t i03 = ir/(ne02*ne01);
  5787. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5788. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5789. const int64_t i13 = i03 % ne13;
  5790. const int64_t i12 = i02 % ne12;
  5791. const int64_t i11 = i01 % ne11;
  5792. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5793. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5794. for (int i0 = 0; i0 < ne0; i0++) {
  5795. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5796. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. static void ggml_compute_forward_add_f16_f32(
  5802. const struct ggml_compute_params * params,
  5803. const struct ggml_tensor * src0,
  5804. const struct ggml_tensor * src1,
  5805. struct ggml_tensor * dst) {
  5806. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5808. return;
  5809. }
  5810. const int ith = params->ith;
  5811. const int nth = params->nth;
  5812. const int nr = ggml_nrows(src0);
  5813. GGML_TENSOR_BINARY_OP_LOCALS
  5814. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5815. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5816. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5817. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5818. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5819. // rows per thread
  5820. const int dr = (nr + nth - 1)/nth;
  5821. // row range for this thread
  5822. const int ir0 = dr*ith;
  5823. const int ir1 = MIN(ir0 + dr, nr);
  5824. if (nb10 == sizeof(float)) {
  5825. for (int ir = ir0; ir < ir1; ++ir) {
  5826. // src0, src1 and dst are same shape => same indices
  5827. const int i3 = ir/(ne2*ne1);
  5828. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5829. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5830. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5831. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5832. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5833. for (int i = 0; i < ne0; i++) {
  5834. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5835. }
  5836. }
  5837. }
  5838. else {
  5839. // src1 is not contiguous
  5840. GGML_ASSERT(false);
  5841. }
  5842. }
  5843. static void ggml_compute_forward_add_f16_f16(
  5844. const struct ggml_compute_params * params,
  5845. const struct ggml_tensor * src0,
  5846. const struct ggml_tensor * src1,
  5847. struct ggml_tensor * dst) {
  5848. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5850. return;
  5851. }
  5852. const int ith = params->ith;
  5853. const int nth = params->nth;
  5854. const int nr = ggml_nrows(src0);
  5855. GGML_TENSOR_BINARY_OP_LOCALS
  5856. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5857. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5858. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5859. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5860. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5861. // rows per thread
  5862. const int dr = (nr + nth - 1)/nth;
  5863. // row range for this thread
  5864. const int ir0 = dr*ith;
  5865. const int ir1 = MIN(ir0 + dr, nr);
  5866. if (nb10 == sizeof(ggml_fp16_t)) {
  5867. for (int ir = ir0; ir < ir1; ++ir) {
  5868. // src0, src1 and dst are same shape => same indices
  5869. const int i3 = ir/(ne2*ne1);
  5870. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5871. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5872. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5873. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5874. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5875. for (int i = 0; i < ne0; i++) {
  5876. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5877. }
  5878. }
  5879. }
  5880. else {
  5881. // src1 is not contiguous
  5882. GGML_ASSERT(false);
  5883. }
  5884. }
  5885. static void ggml_compute_forward_add_q_f32(
  5886. const struct ggml_compute_params * params,
  5887. const struct ggml_tensor * src0,
  5888. const struct ggml_tensor * src1,
  5889. struct ggml_tensor * dst) {
  5890. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5892. return;
  5893. }
  5894. const int nr = ggml_nrows(src0);
  5895. GGML_TENSOR_BINARY_OP_LOCALS
  5896. const int ith = params->ith;
  5897. const int nth = params->nth;
  5898. const enum ggml_type type = src0->type;
  5899. const enum ggml_type dtype = dst->type;
  5900. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5901. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5902. // we don't support permuted src0 or src1
  5903. GGML_ASSERT(nb00 == ggml_type_size(type));
  5904. GGML_ASSERT(nb10 == sizeof(float));
  5905. // dst cannot be transposed or permuted
  5906. GGML_ASSERT(nb0 <= nb1);
  5907. GGML_ASSERT(nb1 <= nb2);
  5908. GGML_ASSERT(nb2 <= nb3);
  5909. GGML_ASSERT(ggml_is_quantized(src0->type));
  5910. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5911. // rows per thread
  5912. const int dr = (nr + nth - 1)/nth;
  5913. // row range for this thread
  5914. const int ir0 = dr*ith;
  5915. const int ir1 = MIN(ir0 + dr, nr);
  5916. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5917. for (int ir = ir0; ir < ir1; ++ir) {
  5918. // src0 indices
  5919. const int i03 = ir/(ne02*ne01);
  5920. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5921. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5922. // src1 and dst are same shape as src0 => same indices
  5923. const int i13 = i03;
  5924. const int i12 = i02;
  5925. const int i11 = i01;
  5926. const int i3 = i03;
  5927. const int i2 = i02;
  5928. const int i1 = i01;
  5929. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5930. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5931. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5932. assert(ne00 % 32 == 0);
  5933. // unquantize row from src0 to temp buffer
  5934. dequantize_row_q(src0_row, wdata, ne00);
  5935. // add src1
  5936. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5937. // quantize row to dst
  5938. if (quantize_row_q != NULL) {
  5939. quantize_row_q(wdata, dst_row, ne00);
  5940. } else {
  5941. memcpy(dst_row, wdata, ne0*nb0);
  5942. }
  5943. }
  5944. }
  5945. static void ggml_compute_forward_add(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. const struct ggml_tensor * src1,
  5949. struct ggml_tensor * dst) {
  5950. switch (src0->type) {
  5951. case GGML_TYPE_F32:
  5952. {
  5953. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5954. } break;
  5955. case GGML_TYPE_F16:
  5956. {
  5957. if (src1->type == GGML_TYPE_F16) {
  5958. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5959. }
  5960. else if (src1->type == GGML_TYPE_F32) {
  5961. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5962. }
  5963. else {
  5964. GGML_ASSERT(false);
  5965. }
  5966. } break;
  5967. case GGML_TYPE_Q4_0:
  5968. case GGML_TYPE_Q4_1:
  5969. case GGML_TYPE_Q5_0:
  5970. case GGML_TYPE_Q5_1:
  5971. case GGML_TYPE_Q8_0:
  5972. case GGML_TYPE_Q2_K:
  5973. case GGML_TYPE_Q3_K:
  5974. case GGML_TYPE_Q4_K:
  5975. case GGML_TYPE_Q5_K:
  5976. case GGML_TYPE_Q6_K:
  5977. {
  5978. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5979. } break;
  5980. default:
  5981. {
  5982. GGML_ASSERT(false);
  5983. } break;
  5984. }
  5985. }
  5986. // ggml_compute_forward_add1
  5987. static void ggml_compute_forward_add1_f32(
  5988. const struct ggml_compute_params * params,
  5989. const struct ggml_tensor * src0,
  5990. const struct ggml_tensor * src1,
  5991. struct ggml_tensor * dst) {
  5992. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5993. GGML_ASSERT(ggml_is_scalar(src1));
  5994. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5995. return;
  5996. }
  5997. const int ith = params->ith;
  5998. const int nth = params->nth;
  5999. const int nr = ggml_nrows(src0);
  6000. GGML_TENSOR_UNARY_OP_LOCALS
  6001. GGML_ASSERT( nb0 == sizeof(float));
  6002. GGML_ASSERT(nb00 == sizeof(float));
  6003. // rows per thread
  6004. const int dr = (nr + nth - 1)/nth;
  6005. // row range for this thread
  6006. const int ir0 = dr*ith;
  6007. const int ir1 = MIN(ir0 + dr, nr);
  6008. for (int ir = ir0; ir < ir1; ++ir) {
  6009. // src0 and dst are same shape => same indices
  6010. const int i3 = ir/(ne2*ne1);
  6011. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6012. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6013. #ifdef GGML_USE_ACCELERATE
  6014. UNUSED(ggml_vec_add1_f32);
  6015. vDSP_vadd(
  6016. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6017. (float *) ((char *) src1->data), 0,
  6018. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6019. ne0);
  6020. #else
  6021. ggml_vec_add1_f32(ne0,
  6022. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6023. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6024. *(float *) src1->data);
  6025. #endif
  6026. }
  6027. }
  6028. static void ggml_compute_forward_add1_f16_f32(
  6029. const struct ggml_compute_params * params,
  6030. const struct ggml_tensor * src0,
  6031. const struct ggml_tensor * src1,
  6032. struct ggml_tensor * dst) {
  6033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6034. GGML_ASSERT(ggml_is_scalar(src1));
  6035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6036. return;
  6037. }
  6038. // scalar to add
  6039. const float v = *(float *) src1->data;
  6040. const int ith = params->ith;
  6041. const int nth = params->nth;
  6042. const int nr = ggml_nrows(src0);
  6043. GGML_TENSOR_UNARY_OP_LOCALS
  6044. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6045. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6046. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6047. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6048. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6049. // rows per thread
  6050. const int dr = (nr + nth - 1)/nth;
  6051. // row range for this thread
  6052. const int ir0 = dr*ith;
  6053. const int ir1 = MIN(ir0 + dr, nr);
  6054. for (int ir = ir0; ir < ir1; ++ir) {
  6055. // src0 and dst are same shape => same indices
  6056. const int i3 = ir/(ne2*ne1);
  6057. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6058. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6059. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6060. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6061. for (int i = 0; i < ne0; i++) {
  6062. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6063. }
  6064. }
  6065. }
  6066. static void ggml_compute_forward_add1_f16_f16(
  6067. const struct ggml_compute_params * params,
  6068. const struct ggml_tensor * src0,
  6069. const struct ggml_tensor * src1,
  6070. struct ggml_tensor * dst) {
  6071. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6072. GGML_ASSERT(ggml_is_scalar(src1));
  6073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6074. return;
  6075. }
  6076. // scalar to add
  6077. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6078. const int ith = params->ith;
  6079. const int nth = params->nth;
  6080. const int nr = ggml_nrows(src0);
  6081. GGML_TENSOR_UNARY_OP_LOCALS
  6082. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6083. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6084. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6085. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6086. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6087. // rows per thread
  6088. const int dr = (nr + nth - 1)/nth;
  6089. // row range for this thread
  6090. const int ir0 = dr*ith;
  6091. const int ir1 = MIN(ir0 + dr, nr);
  6092. for (int ir = ir0; ir < ir1; ++ir) {
  6093. // src0 and dst are same shape => same indices
  6094. const int i3 = ir/(ne2*ne1);
  6095. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6096. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6097. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6098. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6099. for (int i = 0; i < ne0; i++) {
  6100. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6101. }
  6102. }
  6103. }
  6104. static void ggml_compute_forward_add1_q_f32(
  6105. const struct ggml_compute_params * params,
  6106. const struct ggml_tensor * src0,
  6107. const struct ggml_tensor * src1,
  6108. struct ggml_tensor * dst) {
  6109. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6110. GGML_ASSERT(ggml_is_scalar(src1));
  6111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6112. return;
  6113. }
  6114. // scalar to add
  6115. const float v = *(float *) src1->data;
  6116. const int ith = params->ith;
  6117. const int nth = params->nth;
  6118. const int nr = ggml_nrows(src0);
  6119. GGML_TENSOR_UNARY_OP_LOCALS
  6120. const enum ggml_type type = src0->type;
  6121. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6122. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6123. // we don't support permuted src0
  6124. GGML_ASSERT(nb00 == ggml_type_size(type));
  6125. // dst cannot be transposed or permuted
  6126. GGML_ASSERT(nb0 <= nb1);
  6127. GGML_ASSERT(nb1 <= nb2);
  6128. GGML_ASSERT(nb2 <= nb3);
  6129. GGML_ASSERT(ggml_is_quantized(src0->type));
  6130. GGML_ASSERT(dst->type == src0->type);
  6131. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6132. // rows per thread
  6133. const int dr = (nr + nth - 1)/nth;
  6134. // row range for this thread
  6135. const int ir0 = dr*ith;
  6136. const int ir1 = MIN(ir0 + dr, nr);
  6137. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6138. for (int ir = ir0; ir < ir1; ++ir) {
  6139. // src0 and dst are same shape => same indices
  6140. const int i3 = ir/(ne2*ne1);
  6141. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6142. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6143. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6144. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6145. assert(ne0 % 32 == 0);
  6146. // unquantize row from src0 to temp buffer
  6147. dequantize_row_q(src0_row, wdata, ne0);
  6148. // add src1
  6149. ggml_vec_acc1_f32(ne0, wdata, v);
  6150. // quantize row to dst
  6151. quantize_row_q(wdata, dst_row, ne0);
  6152. }
  6153. }
  6154. static void ggml_compute_forward_add1(
  6155. const struct ggml_compute_params * params,
  6156. const struct ggml_tensor * src0,
  6157. const struct ggml_tensor * src1,
  6158. struct ggml_tensor * dst) {
  6159. switch (src0->type) {
  6160. case GGML_TYPE_F32:
  6161. {
  6162. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6163. } break;
  6164. case GGML_TYPE_F16:
  6165. {
  6166. if (src1->type == GGML_TYPE_F16) {
  6167. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6168. }
  6169. else if (src1->type == GGML_TYPE_F32) {
  6170. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6171. }
  6172. else {
  6173. GGML_ASSERT(false);
  6174. }
  6175. } break;
  6176. case GGML_TYPE_Q4_0:
  6177. case GGML_TYPE_Q4_1:
  6178. case GGML_TYPE_Q5_0:
  6179. case GGML_TYPE_Q5_1:
  6180. case GGML_TYPE_Q8_0:
  6181. case GGML_TYPE_Q8_1:
  6182. case GGML_TYPE_Q2_K:
  6183. case GGML_TYPE_Q3_K:
  6184. case GGML_TYPE_Q4_K:
  6185. case GGML_TYPE_Q5_K:
  6186. case GGML_TYPE_Q6_K:
  6187. {
  6188. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6189. } break;
  6190. default:
  6191. {
  6192. GGML_ASSERT(false);
  6193. } break;
  6194. }
  6195. }
  6196. // ggml_compute_forward_acc
  6197. static void ggml_compute_forward_acc_f32(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. const struct ggml_tensor * src1,
  6201. struct ggml_tensor * dst) {
  6202. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6203. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6204. // view src0 and dst with these strides and data offset inbytes during acc
  6205. // nb0 is implicitely element_size because src0 and dst are contiguous
  6206. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6207. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6208. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6209. size_t offset = ((int32_t *) dst->op_params)[3];
  6210. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6211. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6212. // memcpy needs to be synchronized across threads to avoid race conditions.
  6213. // => do it in INIT phase
  6214. memcpy(
  6215. ((char *) dst->data),
  6216. ((char *) src0->data),
  6217. ggml_nbytes(dst));
  6218. }
  6219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6220. return;
  6221. }
  6222. const int ith = params->ith;
  6223. const int nth = params->nth;
  6224. const int nr = ggml_nrows(src1);
  6225. const int nc = src1->ne[0];
  6226. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6227. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6228. // src0 and dst as viewed during acc
  6229. const size_t nb0 = ggml_element_size(src0);
  6230. const size_t nb00 = nb0;
  6231. const size_t nb01 = nb1;
  6232. const size_t nb02 = nb2;
  6233. const size_t nb03 = nb3;
  6234. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6235. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6236. GGML_ASSERT(nb10 == sizeof(float));
  6237. // rows per thread
  6238. const int dr = (nr + nth - 1)/nth;
  6239. // row range for this thread
  6240. const int ir0 = dr*ith;
  6241. const int ir1 = MIN(ir0 + dr, nr);
  6242. for (int ir = ir0; ir < ir1; ++ir) {
  6243. // src0 and dst are viewed with shape of src1 and offset
  6244. // => same indices
  6245. const int i3 = ir/(ne12*ne11);
  6246. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6247. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6248. #ifdef GGML_USE_ACCELERATE
  6249. vDSP_vadd(
  6250. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6251. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6252. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6253. #else
  6254. ggml_vec_add_f32(nc,
  6255. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6256. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6257. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6258. #endif
  6259. }
  6260. }
  6261. static void ggml_compute_forward_acc(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. const struct ggml_tensor * src1,
  6265. struct ggml_tensor * dst) {
  6266. switch (src0->type) {
  6267. case GGML_TYPE_F32:
  6268. {
  6269. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6270. } break;
  6271. case GGML_TYPE_F16:
  6272. case GGML_TYPE_Q4_0:
  6273. case GGML_TYPE_Q4_1:
  6274. case GGML_TYPE_Q5_0:
  6275. case GGML_TYPE_Q5_1:
  6276. case GGML_TYPE_Q8_0:
  6277. case GGML_TYPE_Q8_1:
  6278. case GGML_TYPE_Q2_K:
  6279. case GGML_TYPE_Q3_K:
  6280. case GGML_TYPE_Q4_K:
  6281. case GGML_TYPE_Q5_K:
  6282. case GGML_TYPE_Q6_K:
  6283. default:
  6284. {
  6285. GGML_ASSERT(false);
  6286. } break;
  6287. }
  6288. }
  6289. // ggml_compute_forward_sub
  6290. static void ggml_compute_forward_sub_f32(
  6291. const struct ggml_compute_params * params,
  6292. const struct ggml_tensor * src0,
  6293. const struct ggml_tensor * src1,
  6294. struct ggml_tensor * dst) {
  6295. assert(params->ith == 0);
  6296. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6298. return;
  6299. }
  6300. const int nr = ggml_nrows(src0);
  6301. GGML_TENSOR_BINARY_OP_LOCALS
  6302. GGML_ASSERT( nb0 == sizeof(float));
  6303. GGML_ASSERT(nb00 == sizeof(float));
  6304. if (nb10 == sizeof(float)) {
  6305. for (int ir = 0; ir < nr; ++ir) {
  6306. // src0, src1 and dst are same shape => same indices
  6307. const int i3 = ir/(ne2*ne1);
  6308. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6309. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6310. #ifdef GGML_USE_ACCELERATE
  6311. vDSP_vsub(
  6312. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6313. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6314. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6315. ne0);
  6316. #else
  6317. ggml_vec_sub_f32(ne0,
  6318. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6319. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6320. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6321. #endif
  6322. // }
  6323. // }
  6324. }
  6325. } else {
  6326. // src1 is not contiguous
  6327. for (int ir = 0; ir < nr; ++ir) {
  6328. // src0, src1 and dst are same shape => same indices
  6329. const int i3 = ir/(ne2*ne1);
  6330. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6331. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6332. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6333. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6334. for (int i0 = 0; i0 < ne0; i0++) {
  6335. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6336. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6337. }
  6338. }
  6339. }
  6340. }
  6341. static void ggml_compute_forward_sub(
  6342. const struct ggml_compute_params * params,
  6343. const struct ggml_tensor * src0,
  6344. const struct ggml_tensor * src1,
  6345. struct ggml_tensor * dst) {
  6346. switch (src0->type) {
  6347. case GGML_TYPE_F32:
  6348. {
  6349. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6350. } break;
  6351. default:
  6352. {
  6353. GGML_ASSERT(false);
  6354. } break;
  6355. }
  6356. }
  6357. // ggml_compute_forward_mul
  6358. static void ggml_compute_forward_mul_f32(
  6359. const struct ggml_compute_params * params,
  6360. const struct ggml_tensor * src0,
  6361. const struct ggml_tensor * src1,
  6362. struct ggml_tensor * dst) {
  6363. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6365. return;
  6366. }
  6367. const int ith = params->ith;
  6368. const int nth = params->nth;
  6369. #ifdef GGML_USE_CLBLAST
  6370. if (src1->backend == GGML_BACKEND_GPU) {
  6371. if (ith == 0) {
  6372. ggml_cl_mul(src0, src1, dst);
  6373. }
  6374. return;
  6375. }
  6376. #endif
  6377. const int64_t nr = ggml_nrows(src0);
  6378. GGML_TENSOR_BINARY_OP_LOCALS
  6379. GGML_ASSERT( nb0 == sizeof(float));
  6380. GGML_ASSERT(nb00 == sizeof(float));
  6381. GGML_ASSERT(ne00 == ne10);
  6382. if (nb10 == sizeof(float)) {
  6383. for (int64_t ir = ith; ir < nr; ir += nth) {
  6384. // src0 and dst are same shape => same indices
  6385. const int64_t i03 = ir/(ne02*ne01);
  6386. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6387. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6388. const int64_t i13 = i03 % ne13;
  6389. const int64_t i12 = i02 % ne12;
  6390. const int64_t i11 = i01 % ne11;
  6391. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6392. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6393. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6394. #ifdef GGML_USE_ACCELERATE
  6395. UNUSED(ggml_vec_mul_f32);
  6396. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6397. #else
  6398. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6399. #endif
  6400. // }
  6401. // }
  6402. }
  6403. } else {
  6404. // src1 is not contiguous
  6405. for (int64_t ir = ith; ir < nr; ir += nth) {
  6406. // src0 and dst are same shape => same indices
  6407. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6408. const int64_t i03 = ir/(ne02*ne01);
  6409. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6410. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6411. const int64_t i13 = i03 % ne13;
  6412. const int64_t i12 = i02 % ne12;
  6413. const int64_t i11 = i01 % ne11;
  6414. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6415. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6416. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6417. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6418. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6419. }
  6420. }
  6421. }
  6422. }
  6423. static void ggml_compute_forward_mul(
  6424. const struct ggml_compute_params * params,
  6425. const struct ggml_tensor * src0,
  6426. const struct ggml_tensor * src1,
  6427. struct ggml_tensor * dst) {
  6428. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6429. switch (src0->type) {
  6430. case GGML_TYPE_F32:
  6431. {
  6432. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6433. } break;
  6434. default:
  6435. {
  6436. GGML_ASSERT(false);
  6437. } break;
  6438. }
  6439. }
  6440. // ggml_compute_forward_div
  6441. static void ggml_compute_forward_div_f32(
  6442. const struct ggml_compute_params * params,
  6443. const struct ggml_tensor * src0,
  6444. const struct ggml_tensor * src1,
  6445. struct ggml_tensor * dst) {
  6446. assert(params->ith == 0);
  6447. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6449. return;
  6450. }
  6451. const int nr = ggml_nrows(src0);
  6452. GGML_TENSOR_BINARY_OP_LOCALS
  6453. GGML_ASSERT( nb0 == sizeof(float));
  6454. GGML_ASSERT(nb00 == sizeof(float));
  6455. if (nb10 == sizeof(float)) {
  6456. for (int ir = 0; ir < nr; ++ir) {
  6457. // src0, src1 and dst are same shape => same indices
  6458. const int i3 = ir/(ne2*ne1);
  6459. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6460. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6461. #ifdef GGML_USE_ACCELERATE
  6462. UNUSED(ggml_vec_div_f32);
  6463. vDSP_vdiv(
  6464. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6465. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6466. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6467. ne0);
  6468. #else
  6469. ggml_vec_div_f32(ne0,
  6470. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6471. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6472. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6473. #endif
  6474. // }
  6475. // }
  6476. }
  6477. } else {
  6478. // src1 is not contiguous
  6479. for (int ir = 0; ir < nr; ++ir) {
  6480. // src0, src1 and dst are same shape => same indices
  6481. const int i3 = ir/(ne2*ne1);
  6482. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6483. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6484. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6485. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6486. for (int i0 = 0; i0 < ne0; i0++) {
  6487. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6488. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6489. }
  6490. }
  6491. }
  6492. }
  6493. static void ggml_compute_forward_div(
  6494. const struct ggml_compute_params * params,
  6495. const struct ggml_tensor * src0,
  6496. const struct ggml_tensor * src1,
  6497. struct ggml_tensor * dst) {
  6498. switch (src0->type) {
  6499. case GGML_TYPE_F32:
  6500. {
  6501. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6502. } break;
  6503. default:
  6504. {
  6505. GGML_ASSERT(false);
  6506. } break;
  6507. }
  6508. }
  6509. // ggml_compute_forward_sqr
  6510. static void ggml_compute_forward_sqr_f32(
  6511. const struct ggml_compute_params * params,
  6512. const struct ggml_tensor * src0,
  6513. struct ggml_tensor * dst) {
  6514. assert(params->ith == 0);
  6515. assert(ggml_are_same_shape(src0, dst));
  6516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6517. return;
  6518. }
  6519. const int n = ggml_nrows(src0);
  6520. const int nc = src0->ne[0];
  6521. assert( dst->nb[0] == sizeof(float));
  6522. assert(src0->nb[0] == sizeof(float));
  6523. for (int i = 0; i < n; i++) {
  6524. ggml_vec_sqr_f32(nc,
  6525. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6526. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6527. }
  6528. }
  6529. static void ggml_compute_forward_sqr(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. struct ggml_tensor * dst) {
  6533. switch (src0->type) {
  6534. case GGML_TYPE_F32:
  6535. {
  6536. ggml_compute_forward_sqr_f32(params, src0, dst);
  6537. } break;
  6538. default:
  6539. {
  6540. GGML_ASSERT(false);
  6541. } break;
  6542. }
  6543. }
  6544. // ggml_compute_forward_sqrt
  6545. static void ggml_compute_forward_sqrt_f32(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. struct ggml_tensor * dst) {
  6549. assert(params->ith == 0);
  6550. assert(ggml_are_same_shape(src0, dst));
  6551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6552. return;
  6553. }
  6554. const int n = ggml_nrows(src0);
  6555. const int nc = src0->ne[0];
  6556. assert( dst->nb[0] == sizeof(float));
  6557. assert(src0->nb[0] == sizeof(float));
  6558. for (int i = 0; i < n; i++) {
  6559. ggml_vec_sqrt_f32(nc,
  6560. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6561. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6562. }
  6563. }
  6564. static void ggml_compute_forward_sqrt(
  6565. const struct ggml_compute_params * params,
  6566. const struct ggml_tensor * src0,
  6567. struct ggml_tensor * dst) {
  6568. switch (src0->type) {
  6569. case GGML_TYPE_F32:
  6570. {
  6571. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6572. } break;
  6573. default:
  6574. {
  6575. GGML_ASSERT(false);
  6576. } break;
  6577. }
  6578. }
  6579. // ggml_compute_forward_log
  6580. static void ggml_compute_forward_log_f32(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * src0,
  6583. struct ggml_tensor * dst) {
  6584. GGML_ASSERT(params->ith == 0);
  6585. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6587. return;
  6588. }
  6589. const int n = ggml_nrows(src0);
  6590. const int nc = src0->ne[0];
  6591. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6592. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6593. for (int i = 0; i < n; i++) {
  6594. ggml_vec_log_f32(nc,
  6595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6597. }
  6598. }
  6599. static void ggml_compute_forward_log(
  6600. const struct ggml_compute_params * params,
  6601. const struct ggml_tensor * src0,
  6602. struct ggml_tensor * dst) {
  6603. switch (src0->type) {
  6604. case GGML_TYPE_F32:
  6605. {
  6606. ggml_compute_forward_log_f32(params, src0, dst);
  6607. } break;
  6608. default:
  6609. {
  6610. GGML_ASSERT(false);
  6611. } break;
  6612. }
  6613. }
  6614. // ggml_compute_forward_sum
  6615. static void ggml_compute_forward_sum_f32(
  6616. const struct ggml_compute_params * params,
  6617. const struct ggml_tensor * src0,
  6618. struct ggml_tensor * dst) {
  6619. assert(params->ith == 0);
  6620. assert(ggml_is_scalar(dst));
  6621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6622. return;
  6623. }
  6624. assert(ggml_is_scalar(dst));
  6625. assert(src0->nb[0] == sizeof(float));
  6626. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6627. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6628. ggml_float sum = 0;
  6629. ggml_float row_sum = 0;
  6630. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6631. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6632. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6633. ggml_vec_sum_f32_ggf(ne00,
  6634. &row_sum,
  6635. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6636. sum += row_sum;
  6637. }
  6638. }
  6639. }
  6640. ((float *) dst->data)[0] = sum;
  6641. }
  6642. static void ggml_compute_forward_sum_f16(
  6643. const struct ggml_compute_params * params,
  6644. const struct ggml_tensor * src0,
  6645. struct ggml_tensor * dst) {
  6646. assert(params->ith == 0);
  6647. assert(ggml_is_scalar(dst));
  6648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6652. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6653. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6654. float sum = 0;
  6655. float row_sum = 0;
  6656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6658. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6659. ggml_vec_sum_f16_ggf(ne00,
  6660. &row_sum,
  6661. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6662. sum += row_sum;
  6663. }
  6664. }
  6665. }
  6666. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6667. }
  6668. static void ggml_compute_forward_sum(
  6669. const struct ggml_compute_params * params,
  6670. const struct ggml_tensor * src0,
  6671. struct ggml_tensor * dst) {
  6672. switch (src0->type) {
  6673. case GGML_TYPE_F32:
  6674. {
  6675. ggml_compute_forward_sum_f32(params, src0, dst);
  6676. } break;
  6677. case GGML_TYPE_F16:
  6678. {
  6679. ggml_compute_forward_sum_f16(params, src0, dst);
  6680. } break;
  6681. default:
  6682. {
  6683. GGML_ASSERT(false);
  6684. } break;
  6685. }
  6686. }
  6687. // ggml_compute_forward_sum_rows
  6688. static void ggml_compute_forward_sum_rows_f32(
  6689. const struct ggml_compute_params * params,
  6690. const struct ggml_tensor * src0,
  6691. struct ggml_tensor * dst) {
  6692. GGML_ASSERT(params->ith == 0);
  6693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6694. return;
  6695. }
  6696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6697. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6698. GGML_TENSOR_UNARY_OP_LOCALS
  6699. GGML_ASSERT(ne0 == 1);
  6700. GGML_ASSERT(ne1 == ne01);
  6701. GGML_ASSERT(ne2 == ne02);
  6702. GGML_ASSERT(ne3 == ne03);
  6703. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6704. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6705. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6706. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6707. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6708. float row_sum = 0;
  6709. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6710. dst_row[0] = row_sum;
  6711. }
  6712. }
  6713. }
  6714. }
  6715. static void ggml_compute_forward_sum_rows(
  6716. const struct ggml_compute_params * params,
  6717. const struct ggml_tensor * src0,
  6718. struct ggml_tensor * dst) {
  6719. switch (src0->type) {
  6720. case GGML_TYPE_F32:
  6721. {
  6722. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6723. } break;
  6724. default:
  6725. {
  6726. GGML_ASSERT(false);
  6727. } break;
  6728. }
  6729. }
  6730. // ggml_compute_forward_mean
  6731. static void ggml_compute_forward_mean_f32(
  6732. const struct ggml_compute_params * params,
  6733. const struct ggml_tensor * src0,
  6734. struct ggml_tensor * dst) {
  6735. assert(params->ith == 0);
  6736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6737. return;
  6738. }
  6739. assert(src0->nb[0] == sizeof(float));
  6740. GGML_TENSOR_UNARY_OP_LOCALS
  6741. assert(ne0 == 1);
  6742. assert(ne1 == ne01);
  6743. assert(ne2 == ne02);
  6744. assert(ne3 == ne03);
  6745. UNUSED(ne0);
  6746. UNUSED(ne1);
  6747. UNUSED(ne2);
  6748. UNUSED(ne3);
  6749. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6750. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6751. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6752. ggml_vec_sum_f32(ne00,
  6753. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6754. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6755. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6756. }
  6757. }
  6758. }
  6759. }
  6760. static void ggml_compute_forward_mean(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. struct ggml_tensor * dst) {
  6764. switch (src0->type) {
  6765. case GGML_TYPE_F32:
  6766. {
  6767. ggml_compute_forward_mean_f32(params, src0, dst);
  6768. } break;
  6769. default:
  6770. {
  6771. GGML_ASSERT(false);
  6772. } break;
  6773. }
  6774. }
  6775. // ggml_compute_forward_argmax
  6776. static void ggml_compute_forward_argmax_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. struct ggml_tensor * dst) {
  6780. assert(params->ith == 0);
  6781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6782. return;
  6783. }
  6784. assert(src0->nb[0] == sizeof(float));
  6785. assert(dst->nb[0] == sizeof(float));
  6786. const int64_t ne00 = src0->ne[0];
  6787. const int64_t ne01 = src0->ne[1];
  6788. const size_t nb01 = src0->nb[1];
  6789. const size_t nb0 = dst->nb[0];
  6790. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6791. float * src = (float *) ((char *) src0->data + i1*nb01);
  6792. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6793. int v = 0;
  6794. ggml_vec_argmax_f32(ne00, &v, src);
  6795. dst_[0] = v;
  6796. }
  6797. }
  6798. static void ggml_compute_forward_argmax(
  6799. const struct ggml_compute_params * params,
  6800. const struct ggml_tensor * src0,
  6801. struct ggml_tensor * dst) {
  6802. switch (src0->type) {
  6803. case GGML_TYPE_F32:
  6804. {
  6805. ggml_compute_forward_argmax_f32(params, src0, dst);
  6806. } break;
  6807. default:
  6808. {
  6809. GGML_ASSERT(false);
  6810. } break;
  6811. }
  6812. }
  6813. // ggml_compute_forward_repeat
  6814. static void ggml_compute_forward_repeat_f32(
  6815. const struct ggml_compute_params * params,
  6816. const struct ggml_tensor * src0,
  6817. struct ggml_tensor * dst) {
  6818. GGML_ASSERT(params->ith == 0);
  6819. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6821. return;
  6822. }
  6823. GGML_TENSOR_UNARY_OP_LOCALS
  6824. // guaranteed to be an integer due to the check in ggml_can_repeat
  6825. const int nr0 = (int)(ne0/ne00);
  6826. const int nr1 = (int)(ne1/ne01);
  6827. const int nr2 = (int)(ne2/ne02);
  6828. const int nr3 = (int)(ne3/ne03);
  6829. // TODO: support for transposed / permuted tensors
  6830. GGML_ASSERT(nb0 == sizeof(float));
  6831. GGML_ASSERT(nb00 == sizeof(float));
  6832. // TODO: maybe this is not optimal?
  6833. for (int i3 = 0; i3 < nr3; i3++) {
  6834. for (int k3 = 0; k3 < ne03; k3++) {
  6835. for (int i2 = 0; i2 < nr2; i2++) {
  6836. for (int k2 = 0; k2 < ne02; k2++) {
  6837. for (int i1 = 0; i1 < nr1; i1++) {
  6838. for (int k1 = 0; k1 < ne01; k1++) {
  6839. for (int i0 = 0; i0 < nr0; i0++) {
  6840. ggml_vec_cpy_f32(ne00,
  6841. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6842. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6843. }
  6844. }
  6845. }
  6846. }
  6847. }
  6848. }
  6849. }
  6850. }
  6851. static void ggml_compute_forward_repeat_f16(
  6852. const struct ggml_compute_params * params,
  6853. const struct ggml_tensor * src0,
  6854. struct ggml_tensor * dst) {
  6855. GGML_ASSERT(params->ith == 0);
  6856. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6858. return;
  6859. }
  6860. GGML_TENSOR_UNARY_OP_LOCALS;
  6861. // guaranteed to be an integer due to the check in ggml_can_repeat
  6862. const int nr0 = (int)(ne0/ne00);
  6863. const int nr1 = (int)(ne1/ne01);
  6864. const int nr2 = (int)(ne2/ne02);
  6865. const int nr3 = (int)(ne3/ne03);
  6866. // TODO: support for transposed / permuted tensors
  6867. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6868. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6869. // TODO: maybe this is not optimal?
  6870. for (int i3 = 0; i3 < nr3; i3++) {
  6871. for (int k3 = 0; k3 < ne03; k3++) {
  6872. for (int i2 = 0; i2 < nr2; i2++) {
  6873. for (int k2 = 0; k2 < ne02; k2++) {
  6874. for (int i1 = 0; i1 < nr1; i1++) {
  6875. for (int k1 = 0; k1 < ne01; k1++) {
  6876. for (int i0 = 0; i0 < nr0; i0++) {
  6877. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6878. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6879. // ggml_vec_cpy_f16(ne00, y, x)
  6880. for (int i = 0; i < ne00; ++i) {
  6881. y[i] = x[i];
  6882. }
  6883. }
  6884. }
  6885. }
  6886. }
  6887. }
  6888. }
  6889. }
  6890. }
  6891. static void ggml_compute_forward_repeat(
  6892. const struct ggml_compute_params * params,
  6893. const struct ggml_tensor * src0,
  6894. struct ggml_tensor * dst) {
  6895. switch (src0->type) {
  6896. case GGML_TYPE_F16:
  6897. {
  6898. ggml_compute_forward_repeat_f16(params, src0, dst);
  6899. } break;
  6900. case GGML_TYPE_F32:
  6901. {
  6902. ggml_compute_forward_repeat_f32(params, src0, dst);
  6903. } break;
  6904. default:
  6905. {
  6906. GGML_ASSERT(false);
  6907. } break;
  6908. }
  6909. }
  6910. // ggml_compute_forward_repeat_back
  6911. static void ggml_compute_forward_repeat_back_f32(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * src0,
  6914. struct ggml_tensor * dst) {
  6915. GGML_ASSERT(params->ith == 0);
  6916. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6918. return;
  6919. }
  6920. GGML_TENSOR_UNARY_OP_LOCALS
  6921. // guaranteed to be an integer due to the check in ggml_can_repeat
  6922. const int nr0 = (int)(ne00/ne0);
  6923. const int nr1 = (int)(ne01/ne1);
  6924. const int nr2 = (int)(ne02/ne2);
  6925. const int nr3 = (int)(ne03/ne3);
  6926. // TODO: support for transposed / permuted tensors
  6927. GGML_ASSERT(nb0 == sizeof(float));
  6928. GGML_ASSERT(nb00 == sizeof(float));
  6929. if (ggml_is_contiguous(dst)) {
  6930. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6931. } else {
  6932. for (int k3 = 0; k3 < ne3; k3++) {
  6933. for (int k2 = 0; k2 < ne2; k2++) {
  6934. for (int k1 = 0; k1 < ne1; k1++) {
  6935. ggml_vec_set_f32(ne0,
  6936. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6937. 0);
  6938. }
  6939. }
  6940. }
  6941. }
  6942. // TODO: maybe this is not optimal?
  6943. for (int i3 = 0; i3 < nr3; i3++) {
  6944. for (int k3 = 0; k3 < ne3; k3++) {
  6945. for (int i2 = 0; i2 < nr2; i2++) {
  6946. for (int k2 = 0; k2 < ne2; k2++) {
  6947. for (int i1 = 0; i1 < nr1; i1++) {
  6948. for (int k1 = 0; k1 < ne1; k1++) {
  6949. for (int i0 = 0; i0 < nr0; i0++) {
  6950. ggml_vec_acc_f32(ne0,
  6951. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6952. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6953. }
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. }
  6961. static void ggml_compute_forward_repeat_back(
  6962. const struct ggml_compute_params * params,
  6963. const struct ggml_tensor * src0,
  6964. struct ggml_tensor * dst) {
  6965. switch (src0->type) {
  6966. case GGML_TYPE_F32:
  6967. {
  6968. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6969. } break;
  6970. default:
  6971. {
  6972. GGML_ASSERT(false);
  6973. } break;
  6974. }
  6975. }
  6976. // ggml_compute_forward_concat
  6977. static void ggml_compute_forward_concat_f32(
  6978. const struct ggml_compute_params * params,
  6979. const struct ggml_tensor * src0,
  6980. const struct ggml_tensor * src1,
  6981. struct ggml_tensor * dst) {
  6982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6983. return;
  6984. }
  6985. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6986. const int ith = params->ith;
  6987. GGML_TENSOR_BINARY_OP_LOCALS
  6988. // TODO: support for transposed / permuted tensors
  6989. GGML_ASSERT(nb0 == sizeof(float));
  6990. GGML_ASSERT(nb00 == sizeof(float));
  6991. GGML_ASSERT(nb10 == sizeof(float));
  6992. for (int i3 = 0; i3 < ne3; i3++) {
  6993. for (int i2 = ith; i2 < ne2; i2++) {
  6994. if (i2 < ne02) { // src0
  6995. for (int i1 = 0; i1 < ne1; i1++) {
  6996. for (int i0 = 0; i0 < ne0; i0++) {
  6997. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6998. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6999. *y = *x;
  7000. }
  7001. }
  7002. } // src1
  7003. else {
  7004. for (int i1 = 0; i1 < ne1; i1++) {
  7005. for (int i0 = 0; i0 < ne0; i0++) {
  7006. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7007. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7008. *y = *x;
  7009. }
  7010. }
  7011. }
  7012. }
  7013. }
  7014. }
  7015. static void ggml_compute_forward_concat(
  7016. const struct ggml_compute_params* params,
  7017. const struct ggml_tensor* src0,
  7018. const struct ggml_tensor* src1,
  7019. struct ggml_tensor* dst) {
  7020. switch (src0->type) {
  7021. case GGML_TYPE_F32:
  7022. {
  7023. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_abs
  7032. static void ggml_compute_forward_abs_f32(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. assert(params->ith == 0);
  7037. assert(ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7039. return;
  7040. }
  7041. const int n = ggml_nrows(src0);
  7042. const int nc = src0->ne[0];
  7043. assert(dst->nb[0] == sizeof(float));
  7044. assert(src0->nb[0] == sizeof(float));
  7045. for (int i = 0; i < n; i++) {
  7046. ggml_vec_abs_f32(nc,
  7047. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7048. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7049. }
  7050. }
  7051. static void ggml_compute_forward_abs(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. struct ggml_tensor * dst) {
  7055. switch (src0->type) {
  7056. case GGML_TYPE_F32:
  7057. {
  7058. ggml_compute_forward_abs_f32(params, src0, dst);
  7059. } break;
  7060. default:
  7061. {
  7062. GGML_ASSERT(false);
  7063. } break;
  7064. }
  7065. }
  7066. // ggml_compute_forward_sgn
  7067. static void ggml_compute_forward_sgn_f32(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. assert(params->ith == 0);
  7072. assert(ggml_are_same_shape(src0, dst));
  7073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7074. return;
  7075. }
  7076. const int n = ggml_nrows(src0);
  7077. const int nc = src0->ne[0];
  7078. assert(dst->nb[0] == sizeof(float));
  7079. assert(src0->nb[0] == sizeof(float));
  7080. for (int i = 0; i < n; i++) {
  7081. ggml_vec_sgn_f32(nc,
  7082. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7083. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7084. }
  7085. }
  7086. static void ggml_compute_forward_sgn(
  7087. const struct ggml_compute_params * params,
  7088. const struct ggml_tensor * src0,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_sgn_f32(params, src0, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_neg
  7102. static void ggml_compute_forward_neg_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. assert(params->ith == 0);
  7107. assert(ggml_are_same_shape(src0, dst));
  7108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7109. return;
  7110. }
  7111. const int n = ggml_nrows(src0);
  7112. const int nc = src0->ne[0];
  7113. assert(dst->nb[0] == sizeof(float));
  7114. assert(src0->nb[0] == sizeof(float));
  7115. for (int i = 0; i < n; i++) {
  7116. ggml_vec_neg_f32(nc,
  7117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7118. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7119. }
  7120. }
  7121. static void ggml_compute_forward_neg(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. switch (src0->type) {
  7126. case GGML_TYPE_F32:
  7127. {
  7128. ggml_compute_forward_neg_f32(params, src0, dst);
  7129. } break;
  7130. default:
  7131. {
  7132. GGML_ASSERT(false);
  7133. } break;
  7134. }
  7135. }
  7136. // ggml_compute_forward_step
  7137. static void ggml_compute_forward_step_f32(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. struct ggml_tensor * dst) {
  7141. assert(params->ith == 0);
  7142. assert(ggml_are_same_shape(src0, dst));
  7143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7144. return;
  7145. }
  7146. const int n = ggml_nrows(src0);
  7147. const int nc = src0->ne[0];
  7148. assert(dst->nb[0] == sizeof(float));
  7149. assert(src0->nb[0] == sizeof(float));
  7150. for (int i = 0; i < n; i++) {
  7151. ggml_vec_step_f32(nc,
  7152. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7153. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7154. }
  7155. }
  7156. static void ggml_compute_forward_step(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_step_f32(params, src0, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_tanh
  7172. static void ggml_compute_forward_tanh_f32(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. assert(params->ith == 0);
  7177. assert(ggml_are_same_shape(src0, dst));
  7178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7179. return;
  7180. }
  7181. const int n = ggml_nrows(src0);
  7182. const int nc = src0->ne[0];
  7183. assert(dst->nb[0] == sizeof(float));
  7184. assert(src0->nb[0] == sizeof(float));
  7185. for (int i = 0; i < n; i++) {
  7186. ggml_vec_tanh_f32(nc,
  7187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7188. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7189. }
  7190. }
  7191. static void ggml_compute_forward_tanh(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. switch (src0->type) {
  7196. case GGML_TYPE_F32:
  7197. {
  7198. ggml_compute_forward_tanh_f32(params, src0, dst);
  7199. } break;
  7200. default:
  7201. {
  7202. GGML_ASSERT(false);
  7203. } break;
  7204. }
  7205. }
  7206. // ggml_compute_forward_elu
  7207. static void ggml_compute_forward_elu_f32(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. struct ggml_tensor * dst) {
  7211. assert(params->ith == 0);
  7212. assert(ggml_are_same_shape(src0, dst));
  7213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7214. return;
  7215. }
  7216. const int n = ggml_nrows(src0);
  7217. const int nc = src0->ne[0];
  7218. assert(dst->nb[0] == sizeof(float));
  7219. assert(src0->nb[0] == sizeof(float));
  7220. for (int i = 0; i < n; i++) {
  7221. ggml_vec_elu_f32(nc,
  7222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7223. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7224. }
  7225. }
  7226. static void ggml_compute_forward_elu(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. switch (src0->type) {
  7231. case GGML_TYPE_F32:
  7232. {
  7233. ggml_compute_forward_elu_f32(params, src0, dst);
  7234. } break;
  7235. default:
  7236. {
  7237. GGML_ASSERT(false);
  7238. } break;
  7239. }
  7240. }
  7241. // ggml_compute_forward_relu
  7242. static void ggml_compute_forward_relu_f32(
  7243. const struct ggml_compute_params * params,
  7244. const struct ggml_tensor * src0,
  7245. struct ggml_tensor * dst) {
  7246. assert(params->ith == 0);
  7247. assert(ggml_are_same_shape(src0, dst));
  7248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7249. return;
  7250. }
  7251. const int n = ggml_nrows(src0);
  7252. const int nc = src0->ne[0];
  7253. assert(dst->nb[0] == sizeof(float));
  7254. assert(src0->nb[0] == sizeof(float));
  7255. for (int i = 0; i < n; i++) {
  7256. ggml_vec_relu_f32(nc,
  7257. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7258. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7259. }
  7260. }
  7261. static void ggml_compute_forward_relu(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. switch (src0->type) {
  7266. case GGML_TYPE_F32:
  7267. {
  7268. ggml_compute_forward_relu_f32(params, src0, dst);
  7269. } break;
  7270. default:
  7271. {
  7272. GGML_ASSERT(false);
  7273. } break;
  7274. }
  7275. }
  7276. // ggml_compute_forward_gelu
  7277. static void ggml_compute_forward_gelu_f32(
  7278. const struct ggml_compute_params * params,
  7279. const struct ggml_tensor * src0,
  7280. struct ggml_tensor * dst) {
  7281. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7282. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7283. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7284. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7285. return;
  7286. }
  7287. const int ith = params->ith;
  7288. const int nth = params->nth;
  7289. const int nc = src0->ne[0];
  7290. const int nr = ggml_nrows(src0);
  7291. // rows per thread
  7292. const int dr = (nr + nth - 1)/nth;
  7293. // row range for this thread
  7294. const int ir0 = dr*ith;
  7295. const int ir1 = MIN(ir0 + dr, nr);
  7296. for (int i1 = ir0; i1 < ir1; i1++) {
  7297. ggml_vec_gelu_f32(nc,
  7298. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7299. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7300. #ifndef NDEBUG
  7301. for (int k = 0; k < nc; k++) {
  7302. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7303. UNUSED(x);
  7304. assert(!isnan(x));
  7305. assert(!isinf(x));
  7306. }
  7307. #endif
  7308. }
  7309. }
  7310. static void ggml_compute_forward_gelu(
  7311. const struct ggml_compute_params * params,
  7312. const struct ggml_tensor * src0,
  7313. struct ggml_tensor * dst) {
  7314. switch (src0->type) {
  7315. case GGML_TYPE_F32:
  7316. {
  7317. ggml_compute_forward_gelu_f32(params, src0, dst);
  7318. } break;
  7319. default:
  7320. {
  7321. GGML_ASSERT(false);
  7322. } break;
  7323. }
  7324. }
  7325. // ggml_compute_forward_gelu_quick
  7326. static void ggml_compute_forward_gelu_quick_f32(
  7327. const struct ggml_compute_params * params,
  7328. const struct ggml_tensor * src0,
  7329. struct ggml_tensor * dst) {
  7330. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7331. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7334. return;
  7335. }
  7336. const int ith = params->ith;
  7337. const int nth = params->nth;
  7338. const int nc = src0->ne[0];
  7339. const int nr = ggml_nrows(src0);
  7340. // rows per thread
  7341. const int dr = (nr + nth - 1)/nth;
  7342. // row range for this thread
  7343. const int ir0 = dr*ith;
  7344. const int ir1 = MIN(ir0 + dr, nr);
  7345. for (int i1 = ir0; i1 < ir1; i1++) {
  7346. ggml_vec_gelu_quick_f32(nc,
  7347. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7348. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7349. #ifndef NDEBUG
  7350. for (int k = 0; k < nc; k++) {
  7351. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7352. UNUSED(x);
  7353. assert(!isnan(x));
  7354. assert(!isinf(x));
  7355. }
  7356. #endif
  7357. }
  7358. }
  7359. static void ggml_compute_forward_gelu_quick(
  7360. const struct ggml_compute_params * params,
  7361. const struct ggml_tensor * src0,
  7362. struct ggml_tensor * dst) {
  7363. switch (src0->type) {
  7364. case GGML_TYPE_F32:
  7365. {
  7366. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7367. } break;
  7368. default:
  7369. {
  7370. GGML_ASSERT(false);
  7371. } break;
  7372. }
  7373. }
  7374. // ggml_compute_forward_silu
  7375. static void ggml_compute_forward_silu_f32(
  7376. const struct ggml_compute_params * params,
  7377. const struct ggml_tensor * src0,
  7378. struct ggml_tensor * dst) {
  7379. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7380. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7383. return;
  7384. }
  7385. const int ith = params->ith;
  7386. const int nth = params->nth;
  7387. const int nc = src0->ne[0];
  7388. const int nr = ggml_nrows(src0);
  7389. // rows per thread
  7390. const int dr = (nr + nth - 1)/nth;
  7391. // row range for this thread
  7392. const int ir0 = dr*ith;
  7393. const int ir1 = MIN(ir0 + dr, nr);
  7394. for (int i1 = ir0; i1 < ir1; i1++) {
  7395. ggml_vec_silu_f32(nc,
  7396. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7397. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7398. #ifndef NDEBUG
  7399. for (int k = 0; k < nc; k++) {
  7400. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7401. UNUSED(x);
  7402. assert(!isnan(x));
  7403. assert(!isinf(x));
  7404. }
  7405. #endif
  7406. }
  7407. }
  7408. static void ggml_compute_forward_silu(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. struct ggml_tensor * dst) {
  7412. switch (src0->type) {
  7413. case GGML_TYPE_F32:
  7414. {
  7415. ggml_compute_forward_silu_f32(params, src0, dst);
  7416. } break;
  7417. default:
  7418. {
  7419. GGML_ASSERT(false);
  7420. } break;
  7421. }
  7422. }
  7423. // ggml_compute_forward_silu_back
  7424. static void ggml_compute_forward_silu_back_f32(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. const struct ggml_tensor * grad,
  7428. struct ggml_tensor * dst) {
  7429. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7430. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7431. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7433. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7435. return;
  7436. }
  7437. const int ith = params->ith;
  7438. const int nth = params->nth;
  7439. const int nc = src0->ne[0];
  7440. const int nr = ggml_nrows(src0);
  7441. // rows per thread
  7442. const int dr = (nr + nth - 1)/nth;
  7443. // row range for this thread
  7444. const int ir0 = dr*ith;
  7445. const int ir1 = MIN(ir0 + dr, nr);
  7446. for (int i1 = ir0; i1 < ir1; i1++) {
  7447. ggml_vec_silu_backward_f32(nc,
  7448. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7449. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7450. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7451. #ifndef NDEBUG
  7452. for (int k = 0; k < nc; k++) {
  7453. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7454. UNUSED(x);
  7455. assert(!isnan(x));
  7456. assert(!isinf(x));
  7457. }
  7458. #endif
  7459. }
  7460. }
  7461. static void ggml_compute_forward_silu_back(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. const struct ggml_tensor * grad,
  7465. struct ggml_tensor * dst) {
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. {
  7469. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. // ggml_compute_forward_norm
  7478. static void ggml_compute_forward_norm_f32(
  7479. const struct ggml_compute_params * params,
  7480. const struct ggml_tensor * src0,
  7481. struct ggml_tensor * dst) {
  7482. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7487. const int ith = params->ith;
  7488. const int nth = params->nth;
  7489. GGML_TENSOR_UNARY_OP_LOCALS
  7490. float eps;
  7491. memcpy(&eps, dst->op_params, sizeof(float));
  7492. // TODO: optimize
  7493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7495. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7496. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7497. ggml_float sum = 0.0;
  7498. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7499. sum += (ggml_float)x[i00];
  7500. }
  7501. float mean = sum/ne00;
  7502. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7503. ggml_float sum2 = 0.0;
  7504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7505. float v = x[i00] - mean;
  7506. y[i00] = v;
  7507. sum2 += (ggml_float)(v*v);
  7508. }
  7509. float variance = sum2/ne00;
  7510. const float scale = 1.0f/sqrtf(variance + eps);
  7511. ggml_vec_scale_f32(ne00, y, scale);
  7512. }
  7513. }
  7514. }
  7515. }
  7516. static void ggml_compute_forward_norm(
  7517. const struct ggml_compute_params * params,
  7518. const struct ggml_tensor * src0,
  7519. struct ggml_tensor * dst) {
  7520. switch (src0->type) {
  7521. case GGML_TYPE_F32:
  7522. {
  7523. ggml_compute_forward_norm_f32(params, src0, dst);
  7524. } break;
  7525. default:
  7526. {
  7527. GGML_ASSERT(false);
  7528. } break;
  7529. }
  7530. }
  7531. // ggml_compute_forward_group_rms_norm
  7532. static void ggml_compute_forward_rms_norm_f32(
  7533. const struct ggml_compute_params * params,
  7534. const struct ggml_tensor * src0,
  7535. struct ggml_tensor * dst) {
  7536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7538. return;
  7539. }
  7540. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7541. const int ith = params->ith;
  7542. const int nth = params->nth;
  7543. GGML_TENSOR_UNARY_OP_LOCALS
  7544. float eps;
  7545. memcpy(&eps, dst->op_params, sizeof(float));
  7546. // TODO: optimize
  7547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7549. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7550. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7551. ggml_float sum = 0.0;
  7552. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7553. sum += (ggml_float)(x[i00] * x[i00]);
  7554. }
  7555. const float mean = sum/ne00;
  7556. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7557. memcpy(y, x, ne00 * sizeof(float));
  7558. // for (int i00 = 0; i00 < ne00; i00++) {
  7559. // y[i00] = x[i00];
  7560. // }
  7561. const float scale = 1.0f/sqrtf(mean + eps);
  7562. ggml_vec_scale_f32(ne00, y, scale);
  7563. }
  7564. }
  7565. }
  7566. }
  7567. static void ggml_compute_forward_rms_norm(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. struct ggml_tensor * dst) {
  7571. switch (src0->type) {
  7572. case GGML_TYPE_F32:
  7573. {
  7574. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7575. } break;
  7576. default:
  7577. {
  7578. GGML_ASSERT(false);
  7579. } break;
  7580. }
  7581. }
  7582. static void ggml_compute_forward_rms_norm_back_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. const struct ggml_tensor * src1,
  7586. struct ggml_tensor * dst) {
  7587. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7589. return;
  7590. }
  7591. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7592. const int ith = params->ith;
  7593. const int nth = params->nth;
  7594. GGML_TENSOR_BINARY_OP_LOCALS
  7595. float eps;
  7596. memcpy(&eps, dst->op_params, sizeof(float));
  7597. // TODO: optimize
  7598. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7600. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7601. // src1 is same shape as src0 => same indices
  7602. const int64_t i11 = i01;
  7603. const int64_t i12 = i02;
  7604. const int64_t i13 = i03;
  7605. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7606. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7607. ggml_float sum_xx = 0.0;
  7608. ggml_float sum_xdz = 0.0;
  7609. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7610. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7611. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7612. }
  7613. //const float mean = (float)(sum_xx)/ne00;
  7614. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7615. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7616. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7617. // we could cache rms from forward pass to improve performance.
  7618. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7619. //const float rms = sqrtf(mean_eps);
  7620. const float rrms = 1.0f / sqrtf(mean_eps);
  7621. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7622. {
  7623. // z = rms_norm(x)
  7624. //
  7625. // rms_norm(src0) =
  7626. // scale(
  7627. // src0,
  7628. // div(
  7629. // 1,
  7630. // sqrt(
  7631. // add(
  7632. // scale(
  7633. // sum(
  7634. // sqr(
  7635. // src0)),
  7636. // (1.0/N)),
  7637. // eps))));
  7638. // postorder:
  7639. // ## op args grad
  7640. // 00 param src0 grad[#00]
  7641. // 01 const 1
  7642. // 02 sqr (#00) grad[#02]
  7643. // 03 sum (#02) grad[#03]
  7644. // 04 const 1/N
  7645. // 05 scale (#03, #04) grad[#05]
  7646. // 06 const eps
  7647. // 07 add (#05, #06) grad[#07]
  7648. // 08 sqrt (#07) grad[#08]
  7649. // 09 div (#01,#08) grad[#09]
  7650. // 10 scale (#00,#09) grad[#10]
  7651. //
  7652. // backward pass, given grad[#10]
  7653. // #10: scale
  7654. // grad[#00] += scale(grad[#10],#09)
  7655. // grad[#09] += sum(mul(grad[#10],#00))
  7656. // #09: div
  7657. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7658. // #08: sqrt
  7659. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7660. // #07: add
  7661. // grad[#05] += grad[#07]
  7662. // #05: scale
  7663. // grad[#03] += scale(grad[#05],#04)
  7664. // #03: sum
  7665. // grad[#02] += repeat(grad[#03], #02)
  7666. // #02:
  7667. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7668. //
  7669. // substitute and simplify:
  7670. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7671. // grad[#02] = repeat(grad[#03], #02)
  7672. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7673. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7674. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7675. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7676. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7677. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7678. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7679. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7680. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7681. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7682. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7683. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7684. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7685. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7686. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7687. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7688. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7689. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7690. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7691. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7692. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7693. // a = b*c + d*e
  7694. // a = b*c*f/f + d*e*f/f
  7695. // a = (b*c*f + d*e*f)*(1/f)
  7696. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7697. // a = (b + d*e/c)*c
  7698. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7699. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7700. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7701. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7702. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7703. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7704. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7705. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7706. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7707. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7708. }
  7709. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7710. // post-order:
  7711. // dx := x
  7712. // dx := scale(dx,-mean_xdz/mean_eps)
  7713. // dx := add(dx, dz)
  7714. // dx := scale(dx, rrms)
  7715. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7716. ggml_vec_cpy_f32 (ne00, dx, x);
  7717. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7718. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7719. ggml_vec_acc_f32 (ne00, dx, dz);
  7720. ggml_vec_scale_f32(ne00, dx, rrms);
  7721. }
  7722. }
  7723. }
  7724. }
  7725. static void ggml_compute_forward_rms_norm_back(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. const struct ggml_tensor * src1,
  7729. struct ggml_tensor * dst) {
  7730. switch (src0->type) {
  7731. case GGML_TYPE_F32:
  7732. {
  7733. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7734. } break;
  7735. default:
  7736. {
  7737. GGML_ASSERT(false);
  7738. } break;
  7739. }
  7740. }
  7741. // ggml_compute_forward_group_norm
  7742. static void ggml_compute_forward_group_norm_f32(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. struct ggml_tensor * dst) {
  7746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7748. return;
  7749. }
  7750. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7751. const int ith = params->ith;
  7752. const int nth = params->nth;
  7753. GGML_TENSOR_UNARY_OP_LOCALS
  7754. const float eps = 1e-6f; // TODO: make this a parameter
  7755. // TODO: optimize
  7756. int n_channels = src0->ne[2];
  7757. int n_groups = dst->op_params[0];
  7758. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7759. for (int i = ith; i < n_groups; i+=nth) {
  7760. int start = i * n_channels_per_group;
  7761. int end = start + n_channels_per_group;
  7762. if (end > n_channels) {
  7763. end = n_channels;
  7764. }
  7765. int step = end - start;
  7766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7767. ggml_float sum = 0.0;
  7768. for (int64_t i02 = start; i02 < end; i02++) {
  7769. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7770. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7771. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7772. sum += (ggml_float)x[i00];
  7773. }
  7774. }
  7775. }
  7776. float mean = sum / (ne00 * ne01 * step);
  7777. ggml_float sum2 = 0.0;
  7778. for (int64_t i02 = start; i02 < end; i02++) {
  7779. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7780. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7781. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7783. float v = x[i00] - mean;
  7784. y[i00] = v;
  7785. sum2 += (ggml_float)(v * v);
  7786. }
  7787. }
  7788. }
  7789. float variance = sum2 / (ne00 * ne01 * step);
  7790. const float scale = 1.0f / sqrtf(variance + eps);
  7791. for (int64_t i02 = start; i02 < end; i02++) {
  7792. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7793. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7794. ggml_vec_scale_f32(ne00, y, scale);
  7795. }
  7796. }
  7797. }
  7798. }
  7799. }
  7800. static void ggml_compute_forward_group_norm(
  7801. const struct ggml_compute_params * params,
  7802. const struct ggml_tensor * src0,
  7803. struct ggml_tensor * dst) {
  7804. switch (src0->type) {
  7805. case GGML_TYPE_F32:
  7806. {
  7807. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7808. } break;
  7809. default:
  7810. {
  7811. GGML_ASSERT(false);
  7812. } break;
  7813. }
  7814. }
  7815. // ggml_compute_forward_mul_mat
  7816. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7817. // helper function to determine if it is better to use BLAS or not
  7818. // for large matrices, BLAS is faster
  7819. static bool ggml_compute_forward_mul_mat_use_blas(
  7820. const struct ggml_tensor * src0,
  7821. const struct ggml_tensor * src1,
  7822. struct ggml_tensor * dst) {
  7823. //const int64_t ne00 = src0->ne[0];
  7824. //const int64_t ne01 = src0->ne[1];
  7825. const int64_t ne10 = src1->ne[0];
  7826. const int64_t ne0 = dst->ne[0];
  7827. const int64_t ne1 = dst->ne[1];
  7828. // TODO: find the optimal values for these
  7829. if (ggml_is_contiguous(src0) &&
  7830. ggml_is_contiguous(src1) &&
  7831. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7832. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7833. return true;
  7834. }
  7835. return false;
  7836. }
  7837. #endif
  7838. static void ggml_compute_forward_mul_mat(
  7839. const struct ggml_compute_params * params,
  7840. const struct ggml_tensor * src0,
  7841. const struct ggml_tensor * src1,
  7842. struct ggml_tensor * dst) {
  7843. int64_t t0 = ggml_perf_time_us();
  7844. UNUSED(t0);
  7845. GGML_TENSOR_BINARY_OP_LOCALS
  7846. const int ith = params->ith;
  7847. const int nth = params->nth;
  7848. const enum ggml_type type = src0->type;
  7849. const bool src1_cont = ggml_is_contiguous(src1);
  7850. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7851. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7852. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7853. GGML_ASSERT(ne0 == ne01);
  7854. GGML_ASSERT(ne1 == ne11);
  7855. GGML_ASSERT(ne2 == ne12);
  7856. GGML_ASSERT(ne3 == ne13);
  7857. // we don't support permuted src0 or src1
  7858. GGML_ASSERT(nb00 == ggml_type_size(type));
  7859. GGML_ASSERT(nb10 == sizeof(float));
  7860. // dst cannot be transposed or permuted
  7861. GGML_ASSERT(nb0 == sizeof(float));
  7862. GGML_ASSERT(nb0 <= nb1);
  7863. GGML_ASSERT(nb1 <= nb2);
  7864. GGML_ASSERT(nb2 <= nb3);
  7865. // broadcast factors
  7866. const int64_t r2 = ne12/ne02;
  7867. const int64_t r3 = ne13/ne03;
  7868. // nb01 >= nb00 - src0 is not transposed
  7869. // compute by src0 rows
  7870. #if defined(GGML_USE_CLBLAST)
  7871. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7872. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7873. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7874. }
  7875. return;
  7876. }
  7877. #endif
  7878. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7879. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7880. if (params->ith != 0) {
  7881. return;
  7882. }
  7883. if (params->type == GGML_TASK_INIT) {
  7884. return;
  7885. }
  7886. if (params->type == GGML_TASK_FINALIZE) {
  7887. return;
  7888. }
  7889. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7890. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7891. // broadcast src0 into src1 across 2nd,3rd dimension
  7892. const int64_t i03 = i13/r3;
  7893. const int64_t i02 = i12/r2;
  7894. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7895. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7896. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7897. if (type != GGML_TYPE_F32) {
  7898. float * const wdata = params->wdata;
  7899. ggml_to_float_t const to_float = type_traits[type].to_float;
  7900. size_t id = 0;
  7901. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7902. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7903. id += ne00;
  7904. }
  7905. assert(id*sizeof(float) <= params->wsize);
  7906. x = wdata;
  7907. }
  7908. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7909. ne11, ne01, ne10,
  7910. 1.0f, y, ne10,
  7911. x, ne00,
  7912. 0.0f, d, ne01);
  7913. }
  7914. }
  7915. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7916. return;
  7917. }
  7918. #endif
  7919. if (params->type == GGML_TASK_INIT) {
  7920. if (src1->type != vec_dot_type) {
  7921. char * wdata = params->wdata;
  7922. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7923. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7924. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7925. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7926. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7927. wdata += row_size;
  7928. }
  7929. }
  7930. }
  7931. }
  7932. return;
  7933. }
  7934. if (params->type == GGML_TASK_FINALIZE) {
  7935. return;
  7936. }
  7937. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7938. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7939. const int64_t nr0 = ne01; // src0 rows
  7940. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7941. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7942. // distribute the thread work across the inner or outer loop based on which one is larger
  7943. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7944. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7945. const int64_t ith0 = ith % nth0;
  7946. const int64_t ith1 = ith / nth0;
  7947. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7948. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7949. const int64_t ir010 = dr0*ith0;
  7950. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7951. const int64_t ir110 = dr1*ith1;
  7952. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7953. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7954. // threads with no work simply yield (not sure if it helps)
  7955. if (ir010 >= ir011 || ir110 >= ir111) {
  7956. sched_yield();
  7957. return;
  7958. }
  7959. assert(ne12 % ne02 == 0);
  7960. assert(ne13 % ne03 == 0);
  7961. // block-tiling attempt
  7962. const int64_t blck_0 = 16;
  7963. const int64_t blck_1 = 16;
  7964. // attempt to reduce false-sharing (does not seem to make a difference)
  7965. float tmp[16];
  7966. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7967. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7968. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7969. const int64_t i13 = (ir1/(ne12*ne11));
  7970. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7971. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7972. // broadcast src0 into src1
  7973. const int64_t i03 = i13/r3;
  7974. const int64_t i02 = i12/r2;
  7975. const int64_t i1 = i11;
  7976. const int64_t i2 = i12;
  7977. const int64_t i3 = i13;
  7978. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7979. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7980. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7981. // the original src1 data pointer, so we should index using the indices directly
  7982. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7983. const char * src1_col = (const char *) wdata +
  7984. (src1_cont || src1->type != vec_dot_type
  7985. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7986. : (i11*nb11 + i12*nb12 + i13*nb13));
  7987. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7988. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7989. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7990. //}
  7991. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7992. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7993. }
  7994. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7995. }
  7996. }
  7997. }
  7998. }
  7999. // ggml_compute_forward_out_prod
  8000. static void ggml_compute_forward_out_prod_f32(
  8001. const struct ggml_compute_params * params,
  8002. const struct ggml_tensor * src0,
  8003. const struct ggml_tensor * src1,
  8004. struct ggml_tensor * dst) {
  8005. // int64_t t0 = ggml_perf_time_us();
  8006. // UNUSED(t0);
  8007. GGML_TENSOR_BINARY_OP_LOCALS
  8008. const int ith = params->ith;
  8009. const int nth = params->nth;
  8010. GGML_ASSERT(ne02 == ne12);
  8011. GGML_ASSERT(ne03 == ne13);
  8012. GGML_ASSERT(ne2 == ne12);
  8013. GGML_ASSERT(ne3 == ne13);
  8014. // we don't support permuted src0 or src1
  8015. GGML_ASSERT(nb00 == sizeof(float));
  8016. // dst cannot be transposed or permuted
  8017. GGML_ASSERT(nb0 == sizeof(float));
  8018. // GGML_ASSERT(nb0 <= nb1);
  8019. // GGML_ASSERT(nb1 <= nb2);
  8020. // GGML_ASSERT(nb2 <= nb3);
  8021. GGML_ASSERT(ne0 == ne00);
  8022. GGML_ASSERT(ne1 == ne10);
  8023. GGML_ASSERT(ne2 == ne02);
  8024. GGML_ASSERT(ne3 == ne03);
  8025. // nb01 >= nb00 - src0 is not transposed
  8026. // compute by src0 rows
  8027. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8028. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8029. if (params->type == GGML_TASK_INIT) {
  8030. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8031. return;
  8032. }
  8033. if (params->type == GGML_TASK_FINALIZE) {
  8034. return;
  8035. }
  8036. // dst[:,:,:,:] = 0
  8037. // for i2,i3:
  8038. // for i1:
  8039. // for i01:
  8040. // for i0:
  8041. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8042. // parallelize by last three dimensions
  8043. // total rows in dst
  8044. const int64_t nr = ne1*ne2*ne3;
  8045. // rows per thread
  8046. const int64_t dr = (nr + nth - 1)/nth;
  8047. // row range for this thread
  8048. const int64_t ir0 = dr*ith;
  8049. const int64_t ir1 = MIN(ir0 + dr, nr);
  8050. // block-tiling attempt
  8051. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8052. const int64_t blck_1 = 16;
  8053. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8054. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8055. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8056. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8057. for (int64_t ir = bir; ir < bir1; ++ir) {
  8058. // dst indices
  8059. const int64_t i3 = ir/(ne2*ne1);
  8060. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8061. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8062. const int64_t i02 = i2;
  8063. const int64_t i03 = i3;
  8064. //const int64_t i10 = i1;
  8065. const int64_t i12 = i2;
  8066. const int64_t i13 = i3;
  8067. #if GGML_VEC_MAD_UNROLL > 2
  8068. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8069. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8070. const int64_t i11 = i01;
  8071. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8072. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8073. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8074. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8075. }
  8076. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8077. const int64_t i11 = i01;
  8078. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8079. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8080. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8081. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8082. }
  8083. #else
  8084. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8085. const int64_t i11 = i01;
  8086. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8087. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8088. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8089. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8090. }
  8091. #endif
  8092. }
  8093. }
  8094. }
  8095. //int64_t t1 = ggml_perf_time_us();
  8096. //static int64_t acc = 0;
  8097. //acc += t1 - t0;
  8098. //if (t1 - t0 > 10) {
  8099. // printf("\n");
  8100. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8101. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8102. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8103. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8104. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8105. //}
  8106. }
  8107. static void ggml_compute_forward_out_prod_q_f32(
  8108. const struct ggml_compute_params * params,
  8109. const struct ggml_tensor * src0,
  8110. const struct ggml_tensor * src1,
  8111. struct ggml_tensor * dst) {
  8112. // int64_t t0 = ggml_perf_time_us();
  8113. // UNUSED(t0);
  8114. GGML_TENSOR_BINARY_OP_LOCALS;
  8115. const int ith = params->ith;
  8116. const int nth = params->nth;
  8117. const enum ggml_type type = src0->type;
  8118. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8119. GGML_ASSERT(ne02 == ne12);
  8120. GGML_ASSERT(ne03 == ne13);
  8121. GGML_ASSERT(ne2 == ne12);
  8122. GGML_ASSERT(ne3 == ne13);
  8123. // we don't support permuted src0 dim0
  8124. GGML_ASSERT(nb00 == ggml_type_size(type));
  8125. // dst dim0 cannot be transposed or permuted
  8126. GGML_ASSERT(nb0 == sizeof(float));
  8127. // GGML_ASSERT(nb0 <= nb1);
  8128. // GGML_ASSERT(nb1 <= nb2);
  8129. // GGML_ASSERT(nb2 <= nb3);
  8130. GGML_ASSERT(ne0 == ne00);
  8131. GGML_ASSERT(ne1 == ne10);
  8132. GGML_ASSERT(ne2 == ne02);
  8133. GGML_ASSERT(ne3 == ne03);
  8134. // nb01 >= nb00 - src0 is not transposed
  8135. // compute by src0 rows
  8136. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8137. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8138. if (params->type == GGML_TASK_INIT) {
  8139. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8140. return;
  8141. }
  8142. if (params->type == GGML_TASK_FINALIZE) {
  8143. return;
  8144. }
  8145. // parallelize by last three dimensions
  8146. // total rows in dst
  8147. const int64_t nr = ne1*ne2*ne3;
  8148. // rows per thread
  8149. const int64_t dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int64_t ir0 = dr*ith;
  8152. const int64_t ir1 = MIN(ir0 + dr, nr);
  8153. // dst[:,:,:,:] = 0
  8154. // for i2,i3:
  8155. // for i1:
  8156. // for i01:
  8157. // for i0:
  8158. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8159. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8160. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8161. // dst indices
  8162. const int64_t i3 = ir/(ne2*ne1);
  8163. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8164. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8165. const int64_t i02 = i2;
  8166. const int64_t i03 = i3;
  8167. //const int64_t i10 = i1;
  8168. const int64_t i12 = i2;
  8169. const int64_t i13 = i3;
  8170. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8171. const int64_t i11 = i01;
  8172. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8173. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8174. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8175. dequantize_row_q(s0, wdata, ne0);
  8176. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8177. }
  8178. }
  8179. //int64_t t1 = ggml_perf_time_us();
  8180. //static int64_t acc = 0;
  8181. //acc += t1 - t0;
  8182. //if (t1 - t0 > 10) {
  8183. // printf("\n");
  8184. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8185. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8186. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8187. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8188. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8189. //}
  8190. }
  8191. static void ggml_compute_forward_out_prod(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * src0,
  8194. const struct ggml_tensor * src1,
  8195. struct ggml_tensor * dst) {
  8196. switch (src0->type) {
  8197. case GGML_TYPE_Q4_0:
  8198. case GGML_TYPE_Q4_1:
  8199. case GGML_TYPE_Q5_0:
  8200. case GGML_TYPE_Q5_1:
  8201. case GGML_TYPE_Q8_0:
  8202. case GGML_TYPE_Q2_K:
  8203. case GGML_TYPE_Q3_K:
  8204. case GGML_TYPE_Q4_K:
  8205. case GGML_TYPE_Q5_K:
  8206. case GGML_TYPE_Q6_K:
  8207. {
  8208. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8209. } break;
  8210. case GGML_TYPE_F16:
  8211. {
  8212. GGML_ASSERT(false); // todo
  8213. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8214. } break;
  8215. case GGML_TYPE_F32:
  8216. {
  8217. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8218. } break;
  8219. default:
  8220. {
  8221. GGML_ASSERT(false);
  8222. } break;
  8223. }
  8224. }
  8225. // ggml_compute_forward_scale
  8226. static void ggml_compute_forward_scale_f32(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. const struct ggml_tensor * src1,
  8230. struct ggml_tensor * dst) {
  8231. GGML_ASSERT(ggml_is_contiguous(src0));
  8232. GGML_ASSERT(ggml_is_contiguous(dst));
  8233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8234. GGML_ASSERT(ggml_is_scalar(src1));
  8235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8236. return;
  8237. }
  8238. // scale factor
  8239. const float v = *(float *) src1->data;
  8240. const int ith = params->ith;
  8241. const int nth = params->nth;
  8242. const int nc = src0->ne[0];
  8243. const int nr = ggml_nrows(src0);
  8244. // rows per thread
  8245. const int dr = (nr + nth - 1)/nth;
  8246. // row range for this thread
  8247. const int ir0 = dr*ith;
  8248. const int ir1 = MIN(ir0 + dr, nr);
  8249. const size_t nb01 = src0->nb[1];
  8250. const size_t nb1 = dst->nb[1];
  8251. for (int i1 = ir0; i1 < ir1; i1++) {
  8252. if (dst->data != src0->data) {
  8253. // src0 is same shape as dst => same indices
  8254. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8255. }
  8256. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8257. }
  8258. }
  8259. static void ggml_compute_forward_scale(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. const struct ggml_tensor * src1,
  8263. struct ggml_tensor * dst) {
  8264. switch (src0->type) {
  8265. case GGML_TYPE_F32:
  8266. {
  8267. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8268. } break;
  8269. default:
  8270. {
  8271. GGML_ASSERT(false);
  8272. } break;
  8273. }
  8274. }
  8275. // ggml_compute_forward_set
  8276. static void ggml_compute_forward_set_f32(
  8277. const struct ggml_compute_params * params,
  8278. const struct ggml_tensor * src0,
  8279. const struct ggml_tensor * src1,
  8280. struct ggml_tensor * dst) {
  8281. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8282. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8283. // view src0 and dst with these strides and data offset inbytes during set
  8284. // nb0 is implicitely element_size because src0 and dst are contiguous
  8285. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8286. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8287. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8288. size_t offset = ((int32_t *) dst->op_params)[3];
  8289. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8290. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8291. // memcpy needs to be synchronized across threads to avoid race conditions.
  8292. // => do it in INIT phase
  8293. memcpy(
  8294. ((char *) dst->data),
  8295. ((char *) src0->data),
  8296. ggml_nbytes(dst));
  8297. }
  8298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8299. return;
  8300. }
  8301. const int ith = params->ith;
  8302. const int nth = params->nth;
  8303. const int nr = ggml_nrows(src1);
  8304. const int nc = src1->ne[0];
  8305. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8306. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8307. // src0 and dst as viewed during set
  8308. const size_t nb0 = ggml_element_size(src0);
  8309. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8310. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8311. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8312. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8313. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8314. GGML_ASSERT(nb10 == sizeof(float));
  8315. // rows per thread
  8316. const int dr = (nr + nth - 1)/nth;
  8317. // row range for this thread
  8318. const int ir0 = dr*ith;
  8319. const int ir1 = MIN(ir0 + dr, nr);
  8320. for (int ir = ir0; ir < ir1; ++ir) {
  8321. // src0 and dst are viewed with shape of src1 and offset
  8322. // => same indices
  8323. const int i3 = ir/(ne12*ne11);
  8324. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8325. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8326. ggml_vec_cpy_f32(nc,
  8327. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8328. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8329. }
  8330. }
  8331. static void ggml_compute_forward_set(
  8332. const struct ggml_compute_params * params,
  8333. const struct ggml_tensor * src0,
  8334. const struct ggml_tensor * src1,
  8335. struct ggml_tensor * dst) {
  8336. switch (src0->type) {
  8337. case GGML_TYPE_F32:
  8338. {
  8339. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8340. } break;
  8341. case GGML_TYPE_F16:
  8342. case GGML_TYPE_Q4_0:
  8343. case GGML_TYPE_Q4_1:
  8344. case GGML_TYPE_Q5_0:
  8345. case GGML_TYPE_Q5_1:
  8346. case GGML_TYPE_Q8_0:
  8347. case GGML_TYPE_Q8_1:
  8348. case GGML_TYPE_Q2_K:
  8349. case GGML_TYPE_Q3_K:
  8350. case GGML_TYPE_Q4_K:
  8351. case GGML_TYPE_Q5_K:
  8352. case GGML_TYPE_Q6_K:
  8353. default:
  8354. {
  8355. GGML_ASSERT(false);
  8356. } break;
  8357. }
  8358. }
  8359. // ggml_compute_forward_cpy
  8360. static void ggml_compute_forward_cpy(
  8361. const struct ggml_compute_params * params,
  8362. const struct ggml_tensor * src0,
  8363. struct ggml_tensor * dst) {
  8364. ggml_compute_forward_dup(params, src0, dst);
  8365. }
  8366. // ggml_compute_forward_cont
  8367. static void ggml_compute_forward_cont(
  8368. const struct ggml_compute_params * params,
  8369. const struct ggml_tensor * src0,
  8370. struct ggml_tensor * dst) {
  8371. ggml_compute_forward_dup(params, src0, dst);
  8372. }
  8373. // ggml_compute_forward_reshape
  8374. static void ggml_compute_forward_reshape(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. struct ggml_tensor * dst) {
  8378. // NOP
  8379. UNUSED(params);
  8380. UNUSED(src0);
  8381. UNUSED(dst);
  8382. }
  8383. // ggml_compute_forward_view
  8384. static void ggml_compute_forward_view(
  8385. const struct ggml_compute_params * params,
  8386. const struct ggml_tensor * src0) {
  8387. // NOP
  8388. UNUSED(params);
  8389. UNUSED(src0);
  8390. }
  8391. // ggml_compute_forward_permute
  8392. static void ggml_compute_forward_permute(
  8393. const struct ggml_compute_params * params,
  8394. const struct ggml_tensor * src0) {
  8395. // NOP
  8396. UNUSED(params);
  8397. UNUSED(src0);
  8398. }
  8399. // ggml_compute_forward_transpose
  8400. static void ggml_compute_forward_transpose(
  8401. const struct ggml_compute_params * params,
  8402. const struct ggml_tensor * src0) {
  8403. // NOP
  8404. UNUSED(params);
  8405. UNUSED(src0);
  8406. }
  8407. // ggml_compute_forward_get_rows
  8408. static void ggml_compute_forward_get_rows_q(
  8409. const struct ggml_compute_params * params,
  8410. const struct ggml_tensor * src0,
  8411. const struct ggml_tensor * src1,
  8412. struct ggml_tensor * dst) {
  8413. assert(params->ith == 0);
  8414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8415. return;
  8416. }
  8417. const int nc = src0->ne[0];
  8418. const int nr = ggml_nelements(src1);
  8419. const enum ggml_type type = src0->type;
  8420. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8421. assert( dst->ne[0] == nc);
  8422. assert( dst->ne[1] == nr);
  8423. assert(src0->nb[0] == ggml_type_size(type));
  8424. for (int i = 0; i < nr; ++i) {
  8425. const int r = ((int32_t *) src1->data)[i];
  8426. dequantize_row_q(
  8427. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8428. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8429. }
  8430. }
  8431. static void ggml_compute_forward_get_rows_f16(
  8432. const struct ggml_compute_params * params,
  8433. const struct ggml_tensor * src0,
  8434. const struct ggml_tensor * src1,
  8435. struct ggml_tensor * dst) {
  8436. assert(params->ith == 0);
  8437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8438. return;
  8439. }
  8440. const int nc = src0->ne[0];
  8441. const int nr = ggml_nelements(src1);
  8442. assert( dst->ne[0] == nc);
  8443. assert( dst->ne[1] == nr);
  8444. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8445. for (int i = 0; i < nr; ++i) {
  8446. const int r = ((int32_t *) src1->data)[i];
  8447. for (int j = 0; j < nc; ++j) {
  8448. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8449. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8450. }
  8451. }
  8452. }
  8453. static void ggml_compute_forward_get_rows_f32(
  8454. const struct ggml_compute_params * params,
  8455. const struct ggml_tensor * src0,
  8456. const struct ggml_tensor * src1,
  8457. struct ggml_tensor * dst) {
  8458. assert(params->ith == 0);
  8459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8460. return;
  8461. }
  8462. const int nc = src0->ne[0];
  8463. const int nr = ggml_nelements(src1);
  8464. assert( dst->ne[0] == nc);
  8465. assert( dst->ne[1] == nr);
  8466. assert(src0->nb[0] == sizeof(float));
  8467. for (int i = 0; i < nr; ++i) {
  8468. const int r = ((int32_t *) src1->data)[i];
  8469. ggml_vec_cpy_f32(nc,
  8470. (float *) ((char *) dst->data + i*dst->nb[1]),
  8471. (float *) ((char *) src0->data + r*src0->nb[1]));
  8472. }
  8473. }
  8474. static void ggml_compute_forward_get_rows(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0,
  8477. const struct ggml_tensor * src1,
  8478. struct ggml_tensor * dst) {
  8479. switch (src0->type) {
  8480. case GGML_TYPE_Q4_0:
  8481. case GGML_TYPE_Q4_1:
  8482. case GGML_TYPE_Q5_0:
  8483. case GGML_TYPE_Q5_1:
  8484. case GGML_TYPE_Q8_0:
  8485. case GGML_TYPE_Q8_1:
  8486. case GGML_TYPE_Q2_K:
  8487. case GGML_TYPE_Q3_K:
  8488. case GGML_TYPE_Q4_K:
  8489. case GGML_TYPE_Q5_K:
  8490. case GGML_TYPE_Q6_K:
  8491. {
  8492. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8493. } break;
  8494. case GGML_TYPE_F16:
  8495. {
  8496. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8497. } break;
  8498. case GGML_TYPE_F32:
  8499. {
  8500. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8501. } break;
  8502. default:
  8503. {
  8504. GGML_ASSERT(false);
  8505. } break;
  8506. }
  8507. //static bool first = true;
  8508. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8509. //if (first) {
  8510. // first = false;
  8511. //} else {
  8512. // for (int k = 0; k < dst->ne[1]; ++k) {
  8513. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8514. // for (int i = 0; i < 16; ++i) {
  8515. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8516. // }
  8517. // printf("\n");
  8518. // }
  8519. // printf("\n");
  8520. // }
  8521. // printf("\n");
  8522. // exit(0);
  8523. //}
  8524. }
  8525. // ggml_compute_forward_get_rows_back
  8526. static void ggml_compute_forward_get_rows_back_f32_f16(
  8527. const struct ggml_compute_params * params,
  8528. const struct ggml_tensor * src0,
  8529. const struct ggml_tensor * src1,
  8530. struct ggml_tensor * dst) {
  8531. GGML_ASSERT(params->ith == 0);
  8532. GGML_ASSERT(ggml_is_contiguous(dst));
  8533. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8534. if (params->type == GGML_TASK_INIT) {
  8535. memset(dst->data, 0, ggml_nbytes(dst));
  8536. }
  8537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8538. return;
  8539. }
  8540. const int nc = src0->ne[0];
  8541. const int nr = ggml_nelements(src1);
  8542. GGML_ASSERT( dst->ne[0] == nc);
  8543. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8544. for (int i = 0; i < nr; ++i) {
  8545. const int r = ((int32_t *) src1->data)[i];
  8546. for (int j = 0; j < nc; ++j) {
  8547. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8548. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8549. }
  8550. }
  8551. }
  8552. static void ggml_compute_forward_get_rows_back_f32(
  8553. const struct ggml_compute_params * params,
  8554. const struct ggml_tensor * src0,
  8555. const struct ggml_tensor * src1,
  8556. struct ggml_tensor * dst) {
  8557. GGML_ASSERT(params->ith == 0);
  8558. GGML_ASSERT(ggml_is_contiguous(dst));
  8559. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8560. if (params->type == GGML_TASK_INIT) {
  8561. memset(dst->data, 0, ggml_nbytes(dst));
  8562. }
  8563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8564. return;
  8565. }
  8566. const int nc = src0->ne[0];
  8567. const int nr = ggml_nelements(src1);
  8568. GGML_ASSERT( dst->ne[0] == nc);
  8569. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8570. for (int i = 0; i < nr; ++i) {
  8571. const int r = ((int32_t *) src1->data)[i];
  8572. ggml_vec_add_f32(nc,
  8573. (float *) ((char *) dst->data + r*dst->nb[1]),
  8574. (float *) ((char *) dst->data + r*dst->nb[1]),
  8575. (float *) ((char *) src0->data + i*src0->nb[1]));
  8576. }
  8577. }
  8578. static void ggml_compute_forward_get_rows_back(
  8579. const struct ggml_compute_params * params,
  8580. const struct ggml_tensor * src0,
  8581. const struct ggml_tensor * src1,
  8582. struct ggml_tensor * dst) {
  8583. switch (src0->type) {
  8584. case GGML_TYPE_F16:
  8585. {
  8586. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8587. } break;
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. //static bool first = true;
  8598. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8599. //if (first) {
  8600. // first = false;
  8601. //} else {
  8602. // for (int k = 0; k < dst->ne[1]; ++k) {
  8603. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8604. // for (int i = 0; i < 16; ++i) {
  8605. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8606. // }
  8607. // printf("\n");
  8608. // }
  8609. // printf("\n");
  8610. // }
  8611. // printf("\n");
  8612. // exit(0);
  8613. //}
  8614. }
  8615. // ggml_compute_forward_diag
  8616. static void ggml_compute_forward_diag_f32(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. struct ggml_tensor * dst) {
  8620. GGML_ASSERT(params->ith == 0);
  8621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8622. return;
  8623. }
  8624. // TODO: handle transposed/permuted matrices
  8625. GGML_TENSOR_UNARY_OP_LOCALS
  8626. GGML_ASSERT(ne00 == ne0);
  8627. GGML_ASSERT(ne00 == ne1);
  8628. GGML_ASSERT(ne01 == 1);
  8629. GGML_ASSERT(ne02 == ne2);
  8630. GGML_ASSERT(ne03 == ne3);
  8631. GGML_ASSERT(nb00 == sizeof(float));
  8632. GGML_ASSERT(nb0 == sizeof(float));
  8633. for (int i3 = 0; i3 < ne3; i3++) {
  8634. for (int i2 = 0; i2 < ne2; i2++) {
  8635. for (int i1 = 0; i1 < ne1; i1++) {
  8636. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8637. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8638. for (int i0 = 0; i0 < i1; i0++) {
  8639. d[i0] = 0;
  8640. }
  8641. d[i1] = s[i1];
  8642. for (int i0 = i1+1; i0 < ne0; i0++) {
  8643. d[i0] = 0;
  8644. }
  8645. }
  8646. }
  8647. }
  8648. }
  8649. static void ggml_compute_forward_diag(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * src0,
  8652. struct ggml_tensor * dst) {
  8653. switch (src0->type) {
  8654. case GGML_TYPE_F32:
  8655. {
  8656. ggml_compute_forward_diag_f32(params, src0, dst);
  8657. } break;
  8658. default:
  8659. {
  8660. GGML_ASSERT(false);
  8661. } break;
  8662. }
  8663. }
  8664. // ggml_compute_forward_diag_mask_inf
  8665. static void ggml_compute_forward_diag_mask_f32(
  8666. const struct ggml_compute_params * params,
  8667. const struct ggml_tensor * src0,
  8668. struct ggml_tensor * dst,
  8669. const float value) {
  8670. const int ith = params->ith;
  8671. const int nth = params->nth;
  8672. const int n_past = ((int32_t *) dst->op_params)[0];
  8673. const bool inplace = src0->data == dst->data;
  8674. GGML_ASSERT(n_past >= 0);
  8675. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8676. // memcpy needs to be synchronized across threads to avoid race conditions.
  8677. // => do it in INIT phase
  8678. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8679. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8680. memcpy(
  8681. ((char *) dst->data),
  8682. ((char *) src0->data),
  8683. ggml_nbytes(dst));
  8684. }
  8685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8686. return;
  8687. }
  8688. // TODO: handle transposed/permuted matrices
  8689. const int n = ggml_nrows(src0);
  8690. const int nc = src0->ne[0];
  8691. const int nr = src0->ne[1];
  8692. const int nz = n/nr;
  8693. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8694. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8695. for (int k = 0; k < nz; k++) {
  8696. for (int j = ith; j < nr; j += nth) {
  8697. for (int i = n_past; i < nc; i++) {
  8698. if (i > n_past + j) {
  8699. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8700. }
  8701. }
  8702. }
  8703. }
  8704. }
  8705. static void ggml_compute_forward_diag_mask_inf(
  8706. const struct ggml_compute_params * params,
  8707. const struct ggml_tensor * src0,
  8708. struct ggml_tensor * dst) {
  8709. switch (src0->type) {
  8710. case GGML_TYPE_F32:
  8711. {
  8712. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8713. } break;
  8714. default:
  8715. {
  8716. GGML_ASSERT(false);
  8717. } break;
  8718. }
  8719. }
  8720. static void ggml_compute_forward_diag_mask_zero(
  8721. const struct ggml_compute_params * params,
  8722. const struct ggml_tensor * src0,
  8723. struct ggml_tensor * dst) {
  8724. switch (src0->type) {
  8725. case GGML_TYPE_F32:
  8726. {
  8727. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8728. } break;
  8729. default:
  8730. {
  8731. GGML_ASSERT(false);
  8732. } break;
  8733. }
  8734. }
  8735. // ggml_compute_forward_soft_max
  8736. static void ggml_compute_forward_soft_max_f32(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0,
  8739. struct ggml_tensor * dst) {
  8740. GGML_ASSERT(ggml_is_contiguous(src0));
  8741. GGML_ASSERT(ggml_is_contiguous(dst));
  8742. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8744. return;
  8745. }
  8746. // TODO: handle transposed/permuted matrices
  8747. const int ith = params->ith;
  8748. const int nth = params->nth;
  8749. const int nc = src0->ne[0];
  8750. const int nr = ggml_nrows(src0);
  8751. // rows per thread
  8752. const int dr = (nr + nth - 1)/nth;
  8753. // row range for this thread
  8754. const int ir0 = dr*ith;
  8755. const int ir1 = MIN(ir0 + dr, nr);
  8756. for (int i1 = ir0; i1 < ir1; i1++) {
  8757. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8758. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8759. #ifndef NDEBUG
  8760. for (int i = 0; i < nc; ++i) {
  8761. //printf("p[%d] = %f\n", i, p[i]);
  8762. assert(!isnan(sp[i]));
  8763. }
  8764. #endif
  8765. float max = -INFINITY;
  8766. ggml_vec_max_f32(nc, &max, sp);
  8767. ggml_float sum = 0.0;
  8768. uint16_t scvt;
  8769. for (int i = 0; i < nc; i++) {
  8770. if (sp[i] == -INFINITY) {
  8771. dp[i] = 0.0f;
  8772. } else {
  8773. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8774. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8775. memcpy(&scvt, &s, sizeof(scvt));
  8776. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8777. sum += (ggml_float)val;
  8778. dp[i] = val;
  8779. }
  8780. }
  8781. assert(sum > 0.0);
  8782. sum = 1.0/sum;
  8783. ggml_vec_scale_f32(nc, dp, sum);
  8784. #ifndef NDEBUG
  8785. for (int i = 0; i < nc; ++i) {
  8786. assert(!isnan(dp[i]));
  8787. assert(!isinf(dp[i]));
  8788. }
  8789. #endif
  8790. }
  8791. }
  8792. static void ggml_compute_forward_soft_max(
  8793. const struct ggml_compute_params * params,
  8794. const struct ggml_tensor * src0,
  8795. struct ggml_tensor * dst) {
  8796. switch (src0->type) {
  8797. case GGML_TYPE_F32:
  8798. {
  8799. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8800. } break;
  8801. default:
  8802. {
  8803. GGML_ASSERT(false);
  8804. } break;
  8805. }
  8806. }
  8807. // ggml_compute_forward_soft_max_back
  8808. static void ggml_compute_forward_soft_max_back_f32(
  8809. const struct ggml_compute_params * params,
  8810. const struct ggml_tensor * src0,
  8811. const struct ggml_tensor * src1,
  8812. struct ggml_tensor * dst) {
  8813. GGML_ASSERT(ggml_is_contiguous(src0));
  8814. GGML_ASSERT(ggml_is_contiguous(src1));
  8815. GGML_ASSERT(ggml_is_contiguous(dst));
  8816. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8817. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8819. return;
  8820. }
  8821. // TODO: handle transposed/permuted matrices
  8822. const int ith = params->ith;
  8823. const int nth = params->nth;
  8824. const int nc = src0->ne[0];
  8825. const int nr = ggml_nrows(src0);
  8826. // rows per thread
  8827. const int dr = (nr + nth - 1)/nth;
  8828. // row range for this thread
  8829. const int ir0 = dr*ith;
  8830. const int ir1 = MIN(ir0 + dr, nr);
  8831. for (int i1 = ir0; i1 < ir1; i1++) {
  8832. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8833. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8834. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8835. #ifndef NDEBUG
  8836. for (int i = 0; i < nc; ++i) {
  8837. //printf("p[%d] = %f\n", i, p[i]);
  8838. assert(!isnan(dy[i]));
  8839. assert(!isnan(y[i]));
  8840. }
  8841. #endif
  8842. // Jii = yi - yi*yi
  8843. // Jij = -yi*yj
  8844. // J = diag(y)-y.T*y
  8845. // dx = J * dy
  8846. // dxk = sum_i(Jki * dyi)
  8847. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8848. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8849. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8850. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8851. // dxk = -yk * dot(y, dy) + yk*dyk
  8852. // dxk = yk * (- dot(y, dy) + dyk)
  8853. // dxk = yk * (dyk - dot(y, dy))
  8854. //
  8855. // post-order:
  8856. // dot_y_dy := dot(y, dy)
  8857. // dx := dy
  8858. // dx := dx - dot_y_dy
  8859. // dx := dx * y
  8860. // linear runtime, no additional memory
  8861. float dot_y_dy = 0;
  8862. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8863. ggml_vec_cpy_f32 (nc, dx, dy);
  8864. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8865. ggml_vec_mul_f32 (nc, dx, dx, y);
  8866. #ifndef NDEBUG
  8867. for (int i = 0; i < nc; ++i) {
  8868. assert(!isnan(dx[i]));
  8869. assert(!isinf(dx[i]));
  8870. }
  8871. #endif
  8872. }
  8873. }
  8874. static void ggml_compute_forward_soft_max_back(
  8875. const struct ggml_compute_params * params,
  8876. const struct ggml_tensor * src0,
  8877. const struct ggml_tensor * src1,
  8878. struct ggml_tensor * dst) {
  8879. switch (src0->type) {
  8880. case GGML_TYPE_F32:
  8881. {
  8882. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8883. } break;
  8884. default:
  8885. {
  8886. GGML_ASSERT(false);
  8887. } break;
  8888. }
  8889. }
  8890. // ggml_compute_forward_alibi
  8891. static void ggml_compute_forward_alibi_f32(
  8892. const struct ggml_compute_params * params,
  8893. const struct ggml_tensor * src0,
  8894. struct ggml_tensor * dst) {
  8895. assert(params->ith == 0);
  8896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8897. return;
  8898. }
  8899. //const int n_past = ((int32_t *) dst->op_params)[0];
  8900. const int n_head = ((int32_t *) dst->op_params)[1];
  8901. float max_bias;
  8902. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8903. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8904. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8905. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8906. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8907. const int64_t n = ggml_nrows(src0);
  8908. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8909. const size_t nb0 = src0->nb[0];
  8910. const size_t nb1 = src0->nb[1];
  8911. const size_t nb2 = src0->nb[2];
  8912. //const int nb3 = src0->nb[3];
  8913. GGML_ASSERT(nb0 == sizeof(float));
  8914. GGML_ASSERT(n_head == ne2);
  8915. // add alibi to src0 (KQ_scaled)
  8916. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8917. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8918. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8919. for (int64_t i = 0; i < ne0; i++) {
  8920. for (int64_t j = 0; j < ne1; j++) {
  8921. for (int64_t k = 0; k < ne2_ne3; k++) {
  8922. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8923. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8924. // TODO: k*nb2 or k*nb3
  8925. float m_k;
  8926. if (k < n_heads_log2_floor) {
  8927. m_k = powf(m0, k + 1);
  8928. } else {
  8929. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8930. }
  8931. pdst[0] = i * m_k + src[0];
  8932. }
  8933. }
  8934. }
  8935. }
  8936. static void ggml_compute_forward_alibi_f16(
  8937. const struct ggml_compute_params * params,
  8938. const struct ggml_tensor * src0,
  8939. struct ggml_tensor * dst) {
  8940. assert(params->ith == 0);
  8941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8942. return;
  8943. }
  8944. //const int n_past = ((int32_t *) dst->op_params)[0];
  8945. const int n_head = ((int32_t *) dst->op_params)[1];
  8946. float max_bias;
  8947. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8948. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8949. const int ne1 = src0->ne[1]; // seq_len_without_past
  8950. const int ne2 = src0->ne[2]; // n_head -> this is k
  8951. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8952. const int n = ggml_nrows(src0);
  8953. const int ne2_ne3 = n/ne1; // ne2*ne3
  8954. const int nb0 = src0->nb[0];
  8955. const int nb1 = src0->nb[1];
  8956. const int nb2 = src0->nb[2];
  8957. //const int nb3 = src0->nb[3];
  8958. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8959. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8960. GGML_ASSERT(n_head == ne2);
  8961. // add alibi to src0 (KQ_scaled)
  8962. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8963. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8964. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8965. for (int i = 0; i < ne0; i++) {
  8966. for (int j = 0; j < ne1; j++) {
  8967. for (int k = 0; k < ne2_ne3; k++) {
  8968. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8969. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8970. // TODO: k*nb2 or k*nb3
  8971. float m_k;
  8972. if (k < n_heads_log2_floor) {
  8973. m_k = powf(m0, k + 1);
  8974. } else {
  8975. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8976. }
  8977. // we return F32
  8978. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8979. }
  8980. }
  8981. }
  8982. }
  8983. static void ggml_compute_forward_alibi(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0,
  8986. struct ggml_tensor * dst) {
  8987. switch (src0->type) {
  8988. case GGML_TYPE_F16:
  8989. {
  8990. ggml_compute_forward_alibi_f16(params, src0, dst);
  8991. } break;
  8992. case GGML_TYPE_F32:
  8993. {
  8994. ggml_compute_forward_alibi_f32(params, src0, dst);
  8995. } break;
  8996. case GGML_TYPE_Q4_0:
  8997. case GGML_TYPE_Q4_1:
  8998. case GGML_TYPE_Q5_0:
  8999. case GGML_TYPE_Q5_1:
  9000. case GGML_TYPE_Q8_0:
  9001. case GGML_TYPE_Q8_1:
  9002. case GGML_TYPE_Q2_K:
  9003. case GGML_TYPE_Q3_K:
  9004. case GGML_TYPE_Q4_K:
  9005. case GGML_TYPE_Q5_K:
  9006. case GGML_TYPE_Q6_K:
  9007. case GGML_TYPE_Q8_K:
  9008. case GGML_TYPE_I8:
  9009. case GGML_TYPE_I16:
  9010. case GGML_TYPE_I32:
  9011. case GGML_TYPE_COUNT:
  9012. {
  9013. GGML_ASSERT(false);
  9014. } break;
  9015. }
  9016. }
  9017. // ggml_compute_forward_clamp
  9018. static void ggml_compute_forward_clamp_f32(
  9019. const struct ggml_compute_params * params,
  9020. const struct ggml_tensor * src0,
  9021. struct ggml_tensor * dst) {
  9022. assert(params->ith == 0);
  9023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9024. return;
  9025. }
  9026. float min;
  9027. float max;
  9028. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9029. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9030. const int ith = params->ith;
  9031. const int nth = params->nth;
  9032. const int n = ggml_nrows(src0);
  9033. const int nc = src0->ne[0];
  9034. const size_t nb00 = src0->nb[0];
  9035. const size_t nb01 = src0->nb[1];
  9036. const size_t nb0 = dst->nb[0];
  9037. const size_t nb1 = dst->nb[1];
  9038. GGML_ASSERT( nb0 == sizeof(float));
  9039. GGML_ASSERT(nb00 == sizeof(float));
  9040. for (int j = ith; j < n; j += nth) {
  9041. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9042. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9043. for (int i = 0; i < nc; i++) {
  9044. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9045. }
  9046. }
  9047. }
  9048. static void ggml_compute_forward_clamp(
  9049. const struct ggml_compute_params * params,
  9050. const struct ggml_tensor * src0,
  9051. struct ggml_tensor * dst) {
  9052. switch (src0->type) {
  9053. case GGML_TYPE_F32:
  9054. {
  9055. ggml_compute_forward_clamp_f32(params, src0, dst);
  9056. } break;
  9057. case GGML_TYPE_F16:
  9058. case GGML_TYPE_Q4_0:
  9059. case GGML_TYPE_Q4_1:
  9060. case GGML_TYPE_Q5_0:
  9061. case GGML_TYPE_Q5_1:
  9062. case GGML_TYPE_Q8_0:
  9063. case GGML_TYPE_Q8_1:
  9064. case GGML_TYPE_Q2_K:
  9065. case GGML_TYPE_Q3_K:
  9066. case GGML_TYPE_Q4_K:
  9067. case GGML_TYPE_Q5_K:
  9068. case GGML_TYPE_Q6_K:
  9069. case GGML_TYPE_Q8_K:
  9070. case GGML_TYPE_I8:
  9071. case GGML_TYPE_I16:
  9072. case GGML_TYPE_I32:
  9073. case GGML_TYPE_COUNT:
  9074. {
  9075. GGML_ASSERT(false);
  9076. } break;
  9077. }
  9078. }
  9079. // ggml_compute_forward_rope
  9080. static void ggml_compute_forward_rope_f32(
  9081. const struct ggml_compute_params * params,
  9082. const struct ggml_tensor * src0,
  9083. const struct ggml_tensor * src1,
  9084. struct ggml_tensor * dst) {
  9085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9086. return;
  9087. }
  9088. float freq_base;
  9089. float freq_scale;
  9090. // these two only relevant for xPos RoPE:
  9091. float xpos_base;
  9092. bool xpos_down;
  9093. //const int n_past = ((int32_t *) dst->op_params)[0];
  9094. const int n_dims = ((int32_t *) dst->op_params)[1];
  9095. const int mode = ((int32_t *) dst->op_params)[2];
  9096. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9097. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9098. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9099. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  9100. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  9101. GGML_TENSOR_UNARY_OP_LOCALS
  9102. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9103. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9104. GGML_ASSERT(nb00 == sizeof(float));
  9105. const int ith = params->ith;
  9106. const int nth = params->nth;
  9107. const int nr = ggml_nrows(dst);
  9108. GGML_ASSERT(n_dims <= ne0);
  9109. GGML_ASSERT(n_dims % 2 == 0);
  9110. // rows per thread
  9111. const int dr = (nr + nth - 1)/nth;
  9112. // row range for this thread
  9113. const int ir0 = dr*ith;
  9114. const int ir1 = MIN(ir0 + dr, nr);
  9115. // row index used to determine which thread to use
  9116. int ir = 0;
  9117. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9118. const bool is_neox = mode & 2;
  9119. const bool is_glm = mode & 4;
  9120. const int32_t * pos = (const int32_t *) src1->data;
  9121. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9122. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9123. const int64_t p = pos[i2];
  9124. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9125. if (ir++ < ir0) continue;
  9126. if (ir > ir1) break;
  9127. float theta = freq_scale * (float)p;
  9128. if (is_glm) {
  9129. theta = MIN(p, n_ctx - 2);
  9130. float block_theta = MAX(p - (n_ctx - 2), 0);
  9131. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9132. const float cos_theta = cosf(theta);
  9133. const float sin_theta = sinf(theta);
  9134. const float cos_block_theta = cosf(block_theta);
  9135. const float sin_block_theta = sinf(block_theta);
  9136. theta *= theta_scale;
  9137. block_theta *= theta_scale;
  9138. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9139. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9140. const float x0 = src[0];
  9141. const float x1 = src[n_dims/2];
  9142. const float x2 = src[n_dims];
  9143. const float x3 = src[n_dims/2*3];
  9144. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9145. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9146. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9147. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9148. }
  9149. } else if (!is_neox) {
  9150. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9151. const float cos_theta = cosf(theta);
  9152. const float sin_theta = sinf(theta);
  9153. // zeta scaling for xPos only:
  9154. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9155. if (xpos_down) zeta = 1.0f / zeta;
  9156. theta *= theta_scale;
  9157. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9158. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9159. const float x0 = src[0];
  9160. const float x1 = src[1];
  9161. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9162. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9163. }
  9164. } else {
  9165. // TODO: this might be wrong for ne0 != n_dims - need double check
  9166. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9167. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9168. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9169. const float cos_theta = cosf(theta);
  9170. const float sin_theta = sinf(theta);
  9171. theta *= theta_scale;
  9172. const int64_t i0 = ib*n_dims + ic/2;
  9173. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9174. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9175. const float x0 = src[0];
  9176. const float x1 = src[n_dims/2];
  9177. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9178. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9179. }
  9180. }
  9181. }
  9182. }
  9183. }
  9184. }
  9185. }
  9186. static void ggml_compute_forward_rope_f16(
  9187. const struct ggml_compute_params * params,
  9188. const struct ggml_tensor * src0,
  9189. const struct ggml_tensor * src1,
  9190. struct ggml_tensor * dst) {
  9191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9192. return;
  9193. }
  9194. float freq_base;
  9195. float freq_scale;
  9196. //const int n_past = ((int32_t *) dst->op_params)[0];
  9197. const int n_dims = ((int32_t *) dst->op_params)[1];
  9198. const int mode = ((int32_t *) dst->op_params)[2];
  9199. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9200. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9201. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9202. GGML_TENSOR_UNARY_OP_LOCALS
  9203. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9204. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9205. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9206. const int ith = params->ith;
  9207. const int nth = params->nth;
  9208. const int nr = ggml_nrows(dst);
  9209. GGML_ASSERT(n_dims <= ne0);
  9210. GGML_ASSERT(n_dims % 2 == 0);
  9211. // rows per thread
  9212. const int dr = (nr + nth - 1)/nth;
  9213. // row range for this thread
  9214. const int ir0 = dr*ith;
  9215. const int ir1 = MIN(ir0 + dr, nr);
  9216. // row index used to determine which thread to use
  9217. int ir = 0;
  9218. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9219. const bool is_neox = mode & 2;
  9220. const bool is_glm = mode & 4;
  9221. const int32_t * pos = (const int32_t *) src1->data;
  9222. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9223. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9224. const int64_t p = pos[i2];
  9225. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9226. if (ir++ < ir0) continue;
  9227. if (ir > ir1) break;
  9228. float theta = freq_scale * (float)p;
  9229. if (is_glm) {
  9230. theta = MIN(p, n_ctx - 2);
  9231. float block_theta = MAX(p - (n_ctx - 2), 0);
  9232. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9233. const float cos_theta = cosf(theta);
  9234. const float sin_theta = sinf(theta);
  9235. const float cos_block_theta = cosf(block_theta);
  9236. const float sin_block_theta = sinf(block_theta);
  9237. theta *= theta_scale;
  9238. block_theta *= theta_scale;
  9239. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9240. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9241. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9242. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9243. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9244. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9245. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9246. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9247. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9248. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9249. }
  9250. } else if (!is_neox) {
  9251. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9252. const float cos_theta = cosf(theta);
  9253. const float sin_theta = sinf(theta);
  9254. theta *= theta_scale;
  9255. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9256. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9257. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9258. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9259. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9260. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9261. }
  9262. } else {
  9263. // TODO: this might be wrong for ne0 != n_dims - need double check
  9264. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9265. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9266. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9267. const float cos_theta = cosf(theta);
  9268. const float sin_theta = sinf(theta);
  9269. theta *= theta_scale;
  9270. const int64_t i0 = ib*n_dims + ic/2;
  9271. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9272. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9273. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9274. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9275. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9276. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9277. }
  9278. }
  9279. }
  9280. }
  9281. }
  9282. }
  9283. }
  9284. static void ggml_compute_forward_rope(
  9285. const struct ggml_compute_params * params,
  9286. const struct ggml_tensor * src0,
  9287. const struct ggml_tensor * src1,
  9288. struct ggml_tensor * dst) {
  9289. switch (src0->type) {
  9290. case GGML_TYPE_F16:
  9291. {
  9292. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9293. } break;
  9294. case GGML_TYPE_F32:
  9295. {
  9296. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9297. } break;
  9298. default:
  9299. {
  9300. GGML_ASSERT(false);
  9301. } break;
  9302. }
  9303. }
  9304. // ggml_compute_forward_rope_back
  9305. static void ggml_compute_forward_rope_back_f32(
  9306. const struct ggml_compute_params * params,
  9307. const struct ggml_tensor * src0,
  9308. const struct ggml_tensor * src1,
  9309. struct ggml_tensor * dst) {
  9310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9311. return;
  9312. }
  9313. // y = rope(x, src1)
  9314. // dx = rope_back(dy, src1)
  9315. // src0 is dy, src1 contains options
  9316. float freq_base;
  9317. float freq_scale;
  9318. // these two only relevant for xPos RoPE:
  9319. float xpos_base;
  9320. bool xpos_down;
  9321. //const int n_past = ((int32_t *) dst->op_params)[0];
  9322. const int n_dims = ((int32_t *) dst->op_params)[1];
  9323. const int mode = ((int32_t *) dst->op_params)[2];
  9324. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  9325. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9326. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9327. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  9328. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  9329. GGML_TENSOR_UNARY_OP_LOCALS
  9330. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9331. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9332. assert(nb0 == sizeof(float));
  9333. const int ith = params->ith;
  9334. const int nth = params->nth;
  9335. const int nr = ggml_nrows(dst);
  9336. // rows per thread
  9337. const int dr = (nr + nth - 1)/nth;
  9338. // row range for this thread
  9339. const int ir0 = dr*ith;
  9340. const int ir1 = MIN(ir0 + dr, nr);
  9341. // row index used to determine which thread to use
  9342. int ir = 0;
  9343. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9344. const bool is_neox = mode & 2;
  9345. const int32_t * pos = (const int32_t *) src1->data;
  9346. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9347. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9348. const int64_t p = pos[i2];
  9349. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9350. if (ir++ < ir0) continue;
  9351. if (ir > ir1) break;
  9352. float theta = freq_scale * (float)p;
  9353. if (!is_neox) {
  9354. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9355. const float cos_theta = cosf(theta);
  9356. const float sin_theta = sinf(theta);
  9357. // zeta scaling for xPos only:
  9358. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9359. if (xpos_down) zeta = 1.0f / zeta;
  9360. theta *= theta_scale;
  9361. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9362. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9363. const float dy0 = dy[0];
  9364. const float dy1 = dy[1];
  9365. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  9366. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  9367. }
  9368. } else {
  9369. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9370. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9371. const float cos_theta = cosf(theta);
  9372. const float sin_theta = sinf(theta);
  9373. theta *= theta_scale;
  9374. const int64_t i0 = ib*n_dims + ic/2;
  9375. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9376. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9377. const float dy0 = dy[0];
  9378. const float dy1 = dy[n_dims/2];
  9379. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9380. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9381. }
  9382. }
  9383. }
  9384. }
  9385. }
  9386. }
  9387. }
  9388. static void ggml_compute_forward_rope_back_f16(
  9389. const struct ggml_compute_params * params,
  9390. const struct ggml_tensor * src0,
  9391. const struct ggml_tensor * src1,
  9392. struct ggml_tensor * dst) {
  9393. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9394. return;
  9395. }
  9396. // y = rope(x, src1)
  9397. // dx = rope_back(dy, src1)
  9398. // src0 is dy, src1 contains options
  9399. //const int n_past = ((int32_t *) dst->op_params)[0];
  9400. const int n_dims = ((int32_t *) dst->op_params)[1];
  9401. const int mode = ((int32_t *) dst->op_params)[2];
  9402. GGML_TENSOR_UNARY_OP_LOCALS
  9403. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9404. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9405. assert(nb0 == sizeof(ggml_fp16_t));
  9406. const int ith = params->ith;
  9407. const int nth = params->nth;
  9408. const int nr = ggml_nrows(dst);
  9409. // rows per thread
  9410. const int dr = (nr + nth - 1)/nth;
  9411. // row range for this thread
  9412. const int ir0 = dr*ith;
  9413. const int ir1 = MIN(ir0 + dr, nr);
  9414. // row index used to determine which thread to use
  9415. int ir = 0;
  9416. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9417. const bool is_neox = mode & 2;
  9418. const int32_t * pos = (const int32_t *) src1->data;
  9419. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9420. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9421. const int64_t p = pos[i2];
  9422. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9423. if (ir++ < ir0) continue;
  9424. if (ir > ir1) break;
  9425. float theta = (float)p;
  9426. if (!is_neox) {
  9427. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9428. const float cos_theta = cosf(theta);
  9429. const float sin_theta = sinf(theta);
  9430. theta *= theta_scale;
  9431. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9432. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9433. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9434. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9435. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9436. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9437. }
  9438. } else {
  9439. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9440. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9441. const float cos_theta = cosf(theta);
  9442. const float sin_theta = sinf(theta);
  9443. theta *= theta_scale;
  9444. const int64_t i0 = ib*n_dims + ic/2;
  9445. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9446. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9447. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9448. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9449. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9450. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9451. }
  9452. }
  9453. }
  9454. }
  9455. }
  9456. }
  9457. }
  9458. static void ggml_compute_forward_rope_back(
  9459. const struct ggml_compute_params * params,
  9460. const struct ggml_tensor * src0,
  9461. const struct ggml_tensor * src1,
  9462. struct ggml_tensor * dst) {
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F16:
  9465. {
  9466. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9467. } break;
  9468. case GGML_TYPE_F32:
  9469. {
  9470. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9471. } break;
  9472. default:
  9473. {
  9474. GGML_ASSERT(false);
  9475. } break;
  9476. }
  9477. }
  9478. // ggml_compute_forward_conv_1d
  9479. static void ggml_compute_forward_conv_1d_f16_f32(
  9480. const struct ggml_compute_params * params,
  9481. const struct ggml_tensor * src0,
  9482. const struct ggml_tensor * src1,
  9483. struct ggml_tensor * dst) {
  9484. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9485. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9486. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9487. int64_t t0 = ggml_perf_time_us();
  9488. UNUSED(t0);
  9489. GGML_TENSOR_BINARY_OP_LOCALS
  9490. const int ith = params->ith;
  9491. const int nth = params->nth;
  9492. const int nk = ne00;
  9493. // size of the convolution row - the kernel size unrolled across all input channels
  9494. const int ew0 = nk*ne01;
  9495. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9496. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9497. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9498. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9499. GGML_ASSERT(nb10 == sizeof(float));
  9500. if (params->type == GGML_TASK_INIT) {
  9501. memset(params->wdata, 0, params->wsize);
  9502. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9503. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9504. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9505. ggml_fp16_t * dst_data = wdata;
  9506. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9507. for (int64_t ik = 0; ik < nk; ik++) {
  9508. const int idx0 = i0*s0 + ik*d0 - p0;
  9509. if(!(idx0 < 0 || idx0 >= ne10)) {
  9510. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9511. }
  9512. }
  9513. }
  9514. }
  9515. return;
  9516. }
  9517. if (params->type == GGML_TASK_FINALIZE) {
  9518. return;
  9519. }
  9520. // total rows in dst
  9521. const int nr = ne2;
  9522. // rows per thread
  9523. const int dr = (nr + nth - 1)/nth;
  9524. // row range for this thread
  9525. const int ir0 = dr*ith;
  9526. const int ir1 = MIN(ir0 + dr, nr);
  9527. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9528. for (int i2 = 0; i2 < ne2; i2++) {
  9529. for (int i1 = ir0; i1 < ir1; i1++) {
  9530. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9531. for (int i0 = 0; i0 < ne0; i0++) {
  9532. ggml_vec_dot_f16(ew0, dst_data + i0,
  9533. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9534. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9535. }
  9536. }
  9537. }
  9538. }
  9539. static void ggml_compute_forward_conv_1d_f32(
  9540. const struct ggml_compute_params * params,
  9541. const struct ggml_tensor * src0,
  9542. const struct ggml_tensor * src1,
  9543. struct ggml_tensor * dst) {
  9544. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9545. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9546. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9547. int64_t t0 = ggml_perf_time_us();
  9548. UNUSED(t0);
  9549. GGML_TENSOR_BINARY_OP_LOCALS
  9550. const int ith = params->ith;
  9551. const int nth = params->nth;
  9552. const int nk = ne00;
  9553. const int ew0 = nk*ne01;
  9554. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9555. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9556. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9557. GGML_ASSERT(nb00 == sizeof(float));
  9558. GGML_ASSERT(nb10 == sizeof(float));
  9559. if (params->type == GGML_TASK_INIT) {
  9560. memset(params->wdata, 0, params->wsize);
  9561. float * const wdata = (float *) params->wdata + 0;
  9562. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9563. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9564. float * dst_data = wdata;
  9565. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9566. for (int64_t ik = 0; ik < nk; ik++) {
  9567. const int idx0 = i0*s0 + ik*d0 - p0;
  9568. if(!(idx0 < 0 || idx0 >= ne10)) {
  9569. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9570. }
  9571. }
  9572. }
  9573. }
  9574. return;
  9575. }
  9576. if (params->type == GGML_TASK_FINALIZE) {
  9577. return;
  9578. }
  9579. // total rows in dst
  9580. const int nr = ne02;
  9581. // rows per thread
  9582. const int dr = (nr + nth - 1)/nth;
  9583. // row range for this thread
  9584. const int ir0 = dr*ith;
  9585. const int ir1 = MIN(ir0 + dr, nr);
  9586. float * const wdata = (float *) params->wdata + 0;
  9587. for (int i2 = 0; i2 < ne2; i2++) {
  9588. for (int i1 = ir0; i1 < ir1; i1++) {
  9589. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9590. for (int i0 = 0; i0 < ne0; i0++) {
  9591. ggml_vec_dot_f32(ew0, dst_data + i0,
  9592. (float *) ((char *) src0->data + i1*nb02),
  9593. (float *) wdata + i2*nb2 + i0*ew0);
  9594. }
  9595. }
  9596. }
  9597. }
  9598. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9599. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9600. ggml_fp16_t * A,
  9601. ggml_fp16_t * B,
  9602. float * C,
  9603. const int ith, const int nth) {
  9604. // does not seem to make a difference
  9605. int64_t m0, m1, n0, n1;
  9606. // patches per thread
  9607. if (m > n) {
  9608. n0 = 0;
  9609. n1 = n;
  9610. // total patches in dst
  9611. const int np = m;
  9612. // patches per thread
  9613. const int dp = (np + nth - 1)/nth;
  9614. // patch range for this thread
  9615. m0 = dp*ith;
  9616. m1 = MIN(m0 + dp, np);
  9617. } else {
  9618. m0 = 0;
  9619. m1 = m;
  9620. // total patches in dst
  9621. const int np = n;
  9622. // patches per thread
  9623. const int dp = (np + nth - 1)/nth;
  9624. // patch range for this thread
  9625. n0 = dp*ith;
  9626. n1 = MIN(n0 + dp, np);
  9627. }
  9628. // block-tiling attempt
  9629. int64_t blck_n = 16;
  9630. int64_t blck_m = 16;
  9631. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9632. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9633. // if (blck_size > 0) {
  9634. // blck_0 = 4;
  9635. // blck_1 = blck_size / blck_0;
  9636. // if (blck_1 < 0) {
  9637. // blck_1 = 1;
  9638. // }
  9639. // // blck_0 = (int64_t)sqrt(blck_size);
  9640. // // blck_1 = blck_0;
  9641. // }
  9642. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9643. for (int j = n0; j < n1; j+=blck_n) {
  9644. for (int i = m0; i < m1; i+=blck_m) {
  9645. // printf("i j k => %d %d %d\n", i, j, K);
  9646. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9647. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9648. ggml_vec_dot_f16(k,
  9649. C + ii*n + jj,
  9650. A + ii * k,
  9651. B + jj * k);
  9652. }
  9653. }
  9654. }
  9655. }
  9656. }
  9657. // src0: kernel [OC, IC, K]
  9658. // src1: signal [N, IC, IL]
  9659. // dst: result [N, OL, IC*K]
  9660. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9661. const struct ggml_compute_params * params,
  9662. const struct ggml_tensor * src0,
  9663. const struct ggml_tensor * src1,
  9664. struct ggml_tensor * dst) {
  9665. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9666. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9667. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9668. int64_t t0 = ggml_perf_time_us();
  9669. UNUSED(t0);
  9670. GGML_TENSOR_BINARY_OP_LOCALS;
  9671. const int64_t N = ne12;
  9672. const int64_t IC = ne11;
  9673. const int64_t IL = ne10;
  9674. const int64_t K = ne00;
  9675. const int64_t OL = ne1;
  9676. const int ith = params->ith;
  9677. const int nth = params->nth;
  9678. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9679. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9680. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9681. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9682. GGML_ASSERT(nb10 == sizeof(float));
  9683. if (params->type == GGML_TASK_INIT) {
  9684. memset(dst->data, 0, ggml_nbytes(dst));
  9685. return;
  9686. }
  9687. if (params->type == GGML_TASK_FINALIZE) {
  9688. return;
  9689. }
  9690. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9691. {
  9692. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9693. for (int64_t in = 0; in < N; in++) {
  9694. for (int64_t iol = 0; iol < OL; iol++) {
  9695. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9696. // micro kernel
  9697. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9698. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9699. for (int64_t ik = 0; ik < K; ik++) {
  9700. const int64_t iil = iol*s0 + ik*d0 - p0;
  9701. if (!(iil < 0 || iil >= IL)) {
  9702. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9703. }
  9704. }
  9705. }
  9706. }
  9707. }
  9708. }
  9709. }
  9710. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9711. // src0: [OC, IC, K]
  9712. // src1: [N, OL, IC * K]
  9713. // result: [N, OC, OL]
  9714. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9715. const struct ggml_compute_params * params,
  9716. const struct ggml_tensor * src0,
  9717. const struct ggml_tensor * src1,
  9718. struct ggml_tensor * dst) {
  9719. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9720. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9721. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9722. int64_t t0 = ggml_perf_time_us();
  9723. UNUSED(t0);
  9724. if (params->type == GGML_TASK_INIT) {
  9725. return;
  9726. }
  9727. if (params->type == GGML_TASK_FINALIZE) {
  9728. return;
  9729. }
  9730. GGML_TENSOR_BINARY_OP_LOCALS;
  9731. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9732. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9733. GGML_ASSERT(nb0 == sizeof(float));
  9734. const int N = ne12;
  9735. const int OL = ne11;
  9736. const int OC = ne02;
  9737. const int IC = ne01;
  9738. const int K = ne00;
  9739. const int ith = params->ith;
  9740. const int nth = params->nth;
  9741. int64_t m = OC;
  9742. int64_t n = OL;
  9743. int64_t k = IC * K;
  9744. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9745. for (int i = 0; i < N; i++) {
  9746. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9747. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9748. float * C = (float *)dst->data + i * m * n; // [m, n]
  9749. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9750. }
  9751. }
  9752. static void ggml_compute_forward_conv_1d(
  9753. const struct ggml_compute_params * params,
  9754. const struct ggml_tensor * src0,
  9755. const struct ggml_tensor * src1,
  9756. struct ggml_tensor * dst) {
  9757. switch(src0->type) {
  9758. case GGML_TYPE_F16:
  9759. {
  9760. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9761. } break;
  9762. case GGML_TYPE_F32:
  9763. {
  9764. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9765. } break;
  9766. default:
  9767. {
  9768. GGML_ASSERT(false);
  9769. } break;
  9770. }
  9771. }
  9772. static void ggml_compute_forward_conv_1d_stage_0(
  9773. const struct ggml_compute_params * params,
  9774. const struct ggml_tensor * src0,
  9775. const struct ggml_tensor * src1,
  9776. struct ggml_tensor * dst) {
  9777. switch(src0->type) {
  9778. case GGML_TYPE_F16:
  9779. {
  9780. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9781. } break;
  9782. default:
  9783. {
  9784. GGML_ASSERT(false);
  9785. } break;
  9786. }
  9787. }
  9788. static void ggml_compute_forward_conv_1d_stage_1(
  9789. const struct ggml_compute_params * params,
  9790. const struct ggml_tensor * src0,
  9791. const struct ggml_tensor * src1,
  9792. struct ggml_tensor * dst) {
  9793. switch(src0->type) {
  9794. case GGML_TYPE_F16:
  9795. {
  9796. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9797. } break;
  9798. default:
  9799. {
  9800. GGML_ASSERT(false);
  9801. } break;
  9802. }
  9803. }
  9804. // ggml_compute_forward_conv_transpose_1d
  9805. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9806. const struct ggml_compute_params * params,
  9807. const struct ggml_tensor * src0,
  9808. const struct ggml_tensor * src1,
  9809. struct ggml_tensor * dst) {
  9810. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9811. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9812. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9813. int64_t t0 = ggml_perf_time_us();
  9814. UNUSED(t0);
  9815. GGML_TENSOR_BINARY_OP_LOCALS
  9816. const int ith = params->ith;
  9817. const int nth = params->nth;
  9818. const int nk = ne00*ne01*ne02;
  9819. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9820. GGML_ASSERT(nb10 == sizeof(float));
  9821. if (params->type == GGML_TASK_INIT) {
  9822. memset(params->wdata, 0, params->wsize);
  9823. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9824. {
  9825. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9826. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9828. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9829. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9830. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9831. dst_data[i00*ne02 + i02] = src[i00];
  9832. }
  9833. }
  9834. }
  9835. }
  9836. // permute source data (src1) from (L x Cin) to (Cin x L)
  9837. {
  9838. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9839. ggml_fp16_t * dst_data = wdata;
  9840. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9841. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9842. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9843. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9844. }
  9845. }
  9846. }
  9847. // need to zero dst since we are accumulating into it
  9848. memset(dst->data, 0, ggml_nbytes(dst));
  9849. return;
  9850. }
  9851. if (params->type == GGML_TASK_FINALIZE) {
  9852. return;
  9853. }
  9854. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9855. // total rows in dst
  9856. const int nr = ne1;
  9857. // rows per thread
  9858. const int dr = (nr + nth - 1)/nth;
  9859. // row range for this thread
  9860. const int ir0 = dr*ith;
  9861. const int ir1 = MIN(ir0 + dr, nr);
  9862. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9863. ggml_fp16_t * const wdata_src = wdata + nk;
  9864. for (int i1 = ir0; i1 < ir1; i1++) {
  9865. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9866. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9867. for (int i10 = 0; i10 < ne10; i10++) {
  9868. const int i1n = i10*ne11;
  9869. for (int i00 = 0; i00 < ne00; i00++) {
  9870. float v = 0;
  9871. ggml_vec_dot_f16(ne02, &v,
  9872. (ggml_fp16_t *) wdata_src + i1n,
  9873. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9874. dst_data[i10*s0 + i00] += v;
  9875. }
  9876. }
  9877. }
  9878. }
  9879. static void ggml_compute_forward_conv_transpose_1d_f32(
  9880. const struct ggml_compute_params * params,
  9881. const struct ggml_tensor * src0,
  9882. const struct ggml_tensor * src1,
  9883. struct ggml_tensor * dst) {
  9884. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9885. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9886. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9887. int64_t t0 = ggml_perf_time_us();
  9888. UNUSED(t0);
  9889. GGML_TENSOR_BINARY_OP_LOCALS
  9890. const int ith = params->ith;
  9891. const int nth = params->nth;
  9892. const int nk = ne00*ne01*ne02;
  9893. GGML_ASSERT(nb00 == sizeof(float));
  9894. GGML_ASSERT(nb10 == sizeof(float));
  9895. if (params->type == GGML_TASK_INIT) {
  9896. memset(params->wdata, 0, params->wsize);
  9897. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9898. {
  9899. float * const wdata = (float *) params->wdata + 0;
  9900. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9901. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9902. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9903. float * dst_data = wdata + i01*ne00*ne02;
  9904. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9905. dst_data[i00*ne02 + i02] = src[i00];
  9906. }
  9907. }
  9908. }
  9909. }
  9910. // prepare source data (src1)
  9911. {
  9912. float * const wdata = (float *) params->wdata + nk;
  9913. float * dst_data = wdata;
  9914. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9915. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9916. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9917. dst_data[i10*ne11 + i11] = src[i10];
  9918. }
  9919. }
  9920. }
  9921. // need to zero dst since we are accumulating into it
  9922. memset(dst->data, 0, ggml_nbytes(dst));
  9923. return;
  9924. }
  9925. if (params->type == GGML_TASK_FINALIZE) {
  9926. return;
  9927. }
  9928. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9929. // total rows in dst
  9930. const int nr = ne1;
  9931. // rows per thread
  9932. const int dr = (nr + nth - 1)/nth;
  9933. // row range for this thread
  9934. const int ir0 = dr*ith;
  9935. const int ir1 = MIN(ir0 + dr, nr);
  9936. float * const wdata = (float *) params->wdata + 0;
  9937. float * const wdata_src = wdata + nk;
  9938. for (int i1 = ir0; i1 < ir1; i1++) {
  9939. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9940. float * wdata_kernel = wdata + i1*ne02*ne00;
  9941. for (int i10 = 0; i10 < ne10; i10++) {
  9942. const int i1n = i10*ne11;
  9943. for (int i00 = 0; i00 < ne00; i00++) {
  9944. float v = 0;
  9945. ggml_vec_dot_f32(ne02, &v,
  9946. wdata_src + i1n,
  9947. wdata_kernel + i00*ne02);
  9948. dst_data[i10*s0 + i00] += v;
  9949. }
  9950. }
  9951. }
  9952. }
  9953. static void ggml_compute_forward_conv_transpose_1d(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. const struct ggml_tensor * src1,
  9957. struct ggml_tensor * dst) {
  9958. switch (src0->type) {
  9959. case GGML_TYPE_F16:
  9960. {
  9961. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9962. } break;
  9963. case GGML_TYPE_F32:
  9964. {
  9965. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9966. } break;
  9967. default:
  9968. {
  9969. GGML_ASSERT(false);
  9970. } break;
  9971. }
  9972. }
  9973. // ggml_compute_forward_conv_2d
  9974. // src0: kernel [OC, IC, KH, KW]
  9975. // src1: image [N, IC, IH, IW]
  9976. // dst: result [N, OH, OW, IC*KH*KW]
  9977. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9978. const struct ggml_compute_params * params,
  9979. const struct ggml_tensor * src0,
  9980. const struct ggml_tensor * src1,
  9981. struct ggml_tensor * dst) {
  9982. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9983. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9984. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9985. int64_t t0 = ggml_perf_time_us();
  9986. UNUSED(t0);
  9987. GGML_TENSOR_BINARY_OP_LOCALS;
  9988. const int64_t N = ne13;
  9989. const int64_t IC = ne12;
  9990. const int64_t IH = ne11;
  9991. const int64_t IW = ne10;
  9992. // const int64_t OC = ne03;
  9993. // const int64_t IC = ne02;
  9994. const int64_t KH = ne01;
  9995. const int64_t KW = ne00;
  9996. const int64_t OH = ne2;
  9997. const int64_t OW = ne1;
  9998. const int ith = params->ith;
  9999. const int nth = params->nth;
  10000. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10001. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10002. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10003. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10004. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10005. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10006. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10007. GGML_ASSERT(nb10 == sizeof(float));
  10008. if (params->type == GGML_TASK_INIT) {
  10009. memset(dst->data, 0, ggml_nbytes(dst));
  10010. return;
  10011. }
  10012. if (params->type == GGML_TASK_FINALIZE) {
  10013. return;
  10014. }
  10015. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10016. {
  10017. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10018. for (int64_t in = 0; in < N; in++) {
  10019. for (int64_t ioh = 0; ioh < OH; ioh++) {
  10020. for (int64_t iow = 0; iow < OW; iow++) {
  10021. for (int64_t iic = ith; iic < IC; iic+=nth) {
  10022. // micro kernel
  10023. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10024. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  10025. for (int64_t ikh = 0; ikh < KH; ikh++) {
  10026. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10027. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10028. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10029. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  10030. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10031. }
  10032. }
  10033. }
  10034. }
  10035. }
  10036. }
  10037. }
  10038. }
  10039. }
  10040. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10041. // src0: [OC, IC, KH, KW]
  10042. // src1: [N, OH, OW, IC * KH * KW]
  10043. // result: [N, OC, OH, OW]
  10044. static void ggml_compute_forward_conv_2d_stage_1_f16(
  10045. const struct ggml_compute_params * params,
  10046. const struct ggml_tensor * src0,
  10047. const struct ggml_tensor * src1,
  10048. struct ggml_tensor * dst) {
  10049. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10050. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  10051. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10052. int64_t t0 = ggml_perf_time_us();
  10053. UNUSED(t0);
  10054. if (params->type == GGML_TASK_INIT) {
  10055. return;
  10056. }
  10057. if (params->type == GGML_TASK_FINALIZE) {
  10058. return;
  10059. }
  10060. GGML_TENSOR_BINARY_OP_LOCALS;
  10061. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10062. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  10063. GGML_ASSERT(nb0 == sizeof(float));
  10064. const int N = ne13;
  10065. const int OH = ne12;
  10066. const int OW = ne11;
  10067. const int OC = ne03;
  10068. const int IC = ne02;
  10069. const int KH = ne01;
  10070. const int KW = ne00;
  10071. const int ith = params->ith;
  10072. const int nth = params->nth;
  10073. int64_t m = OC;
  10074. int64_t n = OH * OW;
  10075. int64_t k = IC * KH * KW;
  10076. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10077. for (int i = 0; i < N; i++) {
  10078. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10079. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  10080. float * C = (float *)dst->data + i * m * n; // [m, n]
  10081. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10082. }
  10083. }
  10084. static void ggml_compute_forward_conv_2d_f16_f32(
  10085. const struct ggml_compute_params * params,
  10086. const struct ggml_tensor * src0,
  10087. const struct ggml_tensor * src1,
  10088. struct ggml_tensor * dst) {
  10089. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10090. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10091. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10092. int64_t t0 = ggml_perf_time_us();
  10093. UNUSED(t0);
  10094. GGML_TENSOR_BINARY_OP_LOCALS
  10095. // src1: image [N, IC, IH, IW]
  10096. // src0: kernel [OC, IC, KH, KW]
  10097. // dst: result [N, OC, OH, OW]
  10098. // ne12: IC
  10099. // ne0: OW
  10100. // ne1: OH
  10101. // nk0: KW
  10102. // nk1: KH
  10103. // ne13: N
  10104. const int N = ne13;
  10105. const int IC = ne12;
  10106. const int IH = ne11;
  10107. const int IW = ne10;
  10108. const int OC = ne03;
  10109. // const int IC = ne02;
  10110. const int KH = ne01;
  10111. const int KW = ne00;
  10112. const int OH = ne1;
  10113. const int OW = ne0;
  10114. const int ith = params->ith;
  10115. const int nth = params->nth;
  10116. // const int nk0 = ne00;
  10117. // const int nk1 = ne01;
  10118. // size of the convolution row - the kernel size unrolled across all channels
  10119. // const int ew0 = nk0*nk1*ne02;
  10120. // ew0: IC*KH*KW
  10121. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10122. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10123. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10124. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10125. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10126. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10127. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10128. GGML_ASSERT(nb10 == sizeof(float));
  10129. if (params->type == GGML_TASK_INIT) {
  10130. memset(params->wdata, 0, params->wsize);
  10131. // prepare source data (src1)
  10132. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  10133. {
  10134. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10135. for (int in = 0; in < N; in++) {
  10136. for (int iic = 0; iic < IC; iic++) {
  10137. for (int ioh = 0; ioh < OH; ioh++) {
  10138. for (int iow = 0; iow < OW; iow++) {
  10139. // micro kernel
  10140. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10141. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  10142. for (int ikh = 0; ikh < KH; ikh++) {
  10143. for (int ikw = 0; ikw < KW; ikw++) {
  10144. const int iiw = iow*s0 + ikw*d0 - p0;
  10145. const int iih = ioh*s1 + ikh*d1 - p1;
  10146. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  10147. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10148. }
  10149. }
  10150. }
  10151. }
  10152. }
  10153. }
  10154. }
  10155. }
  10156. return;
  10157. }
  10158. if (params->type == GGML_TASK_FINALIZE) {
  10159. return;
  10160. }
  10161. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10162. // wdata: [N*OH*OW, IC*KH*KW]
  10163. // dst: result [N, OC, OH, OW]
  10164. // src0: kernel [OC, IC, KH, KW]
  10165. int64_t m = OC;
  10166. int64_t n = OH * OW;
  10167. int64_t k = IC * KH * KW;
  10168. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10169. for (int i = 0; i < N; i++) {
  10170. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10171. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10172. float * C = (float *)dst->data + i * m * n; // [m * k]
  10173. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10174. }
  10175. }
  10176. static void ggml_compute_forward_conv_2d(
  10177. const struct ggml_compute_params * params,
  10178. const struct ggml_tensor * src0,
  10179. const struct ggml_tensor * src1,
  10180. struct ggml_tensor * dst) {
  10181. switch (src0->type) {
  10182. case GGML_TYPE_F16:
  10183. {
  10184. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10185. } break;
  10186. case GGML_TYPE_F32:
  10187. {
  10188. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10189. GGML_ASSERT(false);
  10190. } break;
  10191. default:
  10192. {
  10193. GGML_ASSERT(false);
  10194. } break;
  10195. }
  10196. }
  10197. static void ggml_compute_forward_conv_2d_stage_0(
  10198. const struct ggml_compute_params * params,
  10199. const struct ggml_tensor * src0,
  10200. const struct ggml_tensor * src1,
  10201. struct ggml_tensor * dst) {
  10202. switch (src0->type) {
  10203. case GGML_TYPE_F16:
  10204. {
  10205. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10206. } break;
  10207. case GGML_TYPE_F32:
  10208. {
  10209. GGML_ASSERT(false);
  10210. } break;
  10211. default:
  10212. {
  10213. GGML_ASSERT(false);
  10214. } break;
  10215. }
  10216. }
  10217. static void ggml_compute_forward_conv_2d_stage_1(
  10218. const struct ggml_compute_params * params,
  10219. const struct ggml_tensor * src0,
  10220. const struct ggml_tensor * src1,
  10221. struct ggml_tensor * dst) {
  10222. switch (src0->type) {
  10223. case GGML_TYPE_F16:
  10224. {
  10225. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10226. } break;
  10227. case GGML_TYPE_F32:
  10228. {
  10229. GGML_ASSERT(false);
  10230. } break;
  10231. default:
  10232. {
  10233. GGML_ASSERT(false);
  10234. } break;
  10235. }
  10236. }
  10237. // ggml_compute_forward_conv_transpose_2d
  10238. static void ggml_compute_forward_conv_transpose_2d(
  10239. const struct ggml_compute_params * params,
  10240. const struct ggml_tensor * src0,
  10241. const struct ggml_tensor * src1,
  10242. struct ggml_tensor * dst) {
  10243. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10244. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10245. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10246. int64_t t0 = ggml_perf_time_us();
  10247. UNUSED(t0);
  10248. GGML_TENSOR_BINARY_OP_LOCALS
  10249. const int ith = params->ith;
  10250. const int nth = params->nth;
  10251. const int nk = ne00*ne01*ne02*ne03;
  10252. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10253. GGML_ASSERT(nb10 == sizeof(float));
  10254. if (params->type == GGML_TASK_INIT) {
  10255. memset(params->wdata, 0, params->wsize);
  10256. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10257. {
  10258. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10259. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10260. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10261. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10262. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10263. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10264. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10265. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10266. }
  10267. }
  10268. }
  10269. }
  10270. }
  10271. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10272. {
  10273. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10274. for (int i12 = 0; i12 < ne12; i12++) {
  10275. for (int i11 = 0; i11 < ne11; i11++) {
  10276. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10277. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10278. for (int i10 = 0; i10 < ne10; i10++) {
  10279. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10280. }
  10281. }
  10282. }
  10283. }
  10284. memset(dst->data, 0, ggml_nbytes(dst));
  10285. return;
  10286. }
  10287. if (params->type == GGML_TASK_FINALIZE) {
  10288. return;
  10289. }
  10290. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10291. // total patches in dst
  10292. const int np = ne2;
  10293. // patches per thread
  10294. const int dp = (np + nth - 1)/nth;
  10295. // patch range for this thread
  10296. const int ip0 = dp*ith;
  10297. const int ip1 = MIN(ip0 + dp, np);
  10298. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10299. ggml_fp16_t * const wdata_src = wdata + nk;
  10300. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10301. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10302. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10303. for (int i11 = 0; i11 < ne11; i11++) {
  10304. for (int i10 = 0; i10 < ne10; i10++) {
  10305. const int i1n = i11*ne10*ne12 + i10*ne12;
  10306. for (int i01 = 0; i01 < ne01; i01++) {
  10307. for (int i00 = 0; i00 < ne00; i00++) {
  10308. float v = 0;
  10309. ggml_vec_dot_f16(ne03, &v,
  10310. wdata_src + i1n,
  10311. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10312. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10313. }
  10314. }
  10315. }
  10316. }
  10317. }
  10318. }
  10319. // ggml_compute_forward_pool_1d_sk_p0
  10320. static void ggml_compute_forward_pool_1d_sk_p0(
  10321. const struct ggml_compute_params * params,
  10322. const enum ggml_op_pool op,
  10323. const struct ggml_tensor * src,
  10324. const int k,
  10325. struct ggml_tensor * dst) {
  10326. assert(src->type == GGML_TYPE_F32);
  10327. assert(params->ith == 0);
  10328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10329. return;
  10330. }
  10331. const char * cdata = (const char *)src->data;
  10332. const char * const data_end = cdata + ggml_nbytes(src);
  10333. float * drow = (float *)dst->data;
  10334. const int64_t rs = dst->ne[0];
  10335. while (cdata < data_end) {
  10336. const float * const srow = (const float *)cdata;
  10337. int j = 0;
  10338. for (int64_t i = 0; i < rs; ++i) {
  10339. switch (op) {
  10340. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10341. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10342. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10343. }
  10344. for (int ki = 0; ki < k; ++ki) {
  10345. switch (op) {
  10346. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10347. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10348. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10349. }
  10350. ++j;
  10351. }
  10352. switch (op) {
  10353. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10354. case GGML_OP_POOL_MAX: break;
  10355. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10356. }
  10357. }
  10358. cdata += src->nb[1];
  10359. drow += rs;
  10360. }
  10361. }
  10362. // ggml_compute_forward_pool_1d
  10363. static void ggml_compute_forward_pool_1d(
  10364. const struct ggml_compute_params * params,
  10365. const struct ggml_tensor * src0,
  10366. struct ggml_tensor * dst) {
  10367. const int32_t * opts = (const int32_t *)dst->op_params;
  10368. enum ggml_op_pool op = opts[0];
  10369. const int k0 = opts[1];
  10370. const int s0 = opts[2];
  10371. const int p0 = opts[3];
  10372. GGML_ASSERT(p0 == 0); // padding not supported
  10373. GGML_ASSERT(k0 == s0); // only s = k supported
  10374. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10375. }
  10376. // ggml_compute_forward_pool_2d_sk_p0
  10377. static void ggml_compute_forward_pool_2d_sk_p0(
  10378. const struct ggml_compute_params * params,
  10379. const enum ggml_op_pool op,
  10380. const struct ggml_tensor * src,
  10381. const int k0,
  10382. const int k1,
  10383. struct ggml_tensor * dst) {
  10384. assert(src->type == GGML_TYPE_F32);
  10385. assert(params->ith == 0);
  10386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10387. return;
  10388. }
  10389. const char * cdata = (const char*)src->data;
  10390. const char * const data_end = cdata + ggml_nbytes(src);
  10391. const int64_t px = dst->ne[0];
  10392. const int64_t py = dst->ne[1];
  10393. const int64_t pa = px * py;
  10394. float * dplane = (float *)dst->data;
  10395. const int ka = k0 * k1;
  10396. while (cdata < data_end) {
  10397. for (int oy = 0; oy < py; ++oy) {
  10398. float * const drow = dplane + oy * px;
  10399. for (int ox = 0; ox < px; ++ox) {
  10400. float * const out = drow + ox;
  10401. switch (op) {
  10402. case GGML_OP_POOL_AVG: *out = 0; break;
  10403. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10404. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10405. }
  10406. const int ix = ox * k0;
  10407. const int iy = oy * k1;
  10408. for (int ky = 0; ky < k1; ++ky) {
  10409. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10410. for (int kx = 0; kx < k0; ++kx) {
  10411. int j = ix + kx;
  10412. switch (op) {
  10413. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10414. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10415. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10416. }
  10417. }
  10418. }
  10419. switch (op) {
  10420. case GGML_OP_POOL_AVG: *out /= ka; break;
  10421. case GGML_OP_POOL_MAX: break;
  10422. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10423. }
  10424. }
  10425. }
  10426. cdata += src->nb[2];
  10427. dplane += pa;
  10428. }
  10429. }
  10430. // ggml_compute_forward_pool_2d
  10431. static void ggml_compute_forward_pool_2d(
  10432. const struct ggml_compute_params * params,
  10433. const struct ggml_tensor * src0,
  10434. struct ggml_tensor * dst) {
  10435. const int32_t * opts = (const int32_t *)dst->op_params;
  10436. enum ggml_op_pool op = opts[0];
  10437. const int k0 = opts[1];
  10438. const int k1 = opts[2];
  10439. const int s0 = opts[3];
  10440. const int s1 = opts[4];
  10441. const int p0 = opts[5];
  10442. const int p1 = opts[6];
  10443. GGML_ASSERT(p0 == 0);
  10444. GGML_ASSERT(p1 == 0); // padding not supported
  10445. GGML_ASSERT(k0 == s0);
  10446. GGML_ASSERT(k1 == s1); // only s = k supported
  10447. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10448. }
  10449. // ggml_compute_forward_upscale
  10450. static void ggml_compute_forward_upscale_f32(
  10451. const struct ggml_compute_params * params,
  10452. const struct ggml_tensor * src0,
  10453. struct ggml_tensor * dst) {
  10454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10455. return;
  10456. }
  10457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10458. const int ith = params->ith;
  10459. GGML_TENSOR_UNARY_OP_LOCALS
  10460. const int scale_factor = dst->op_params[0];
  10461. // TODO: optimize
  10462. for (int i03 = 0; i03 < ne03; i03++) {
  10463. for (int i02 = ith; i02 < ne02; i02++) {
  10464. for (int m = 0; m < dst->ne[1]; m++) {
  10465. int i01 = m / scale_factor;
  10466. for (int n = 0; n < dst->ne[0]; n++) {
  10467. int i00 = n / scale_factor;
  10468. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10469. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10470. *y = *x;
  10471. }
  10472. }
  10473. }
  10474. }
  10475. }
  10476. static void ggml_compute_forward_upscale(
  10477. const struct ggml_compute_params * params,
  10478. const struct ggml_tensor * src0,
  10479. struct ggml_tensor * dst) {
  10480. switch (src0->type) {
  10481. case GGML_TYPE_F32:
  10482. {
  10483. ggml_compute_forward_upscale_f32(params, src0, dst);
  10484. } break;
  10485. default:
  10486. {
  10487. GGML_ASSERT(false);
  10488. } break;
  10489. }
  10490. }
  10491. // ggml_compute_forward_flash_attn
  10492. static void ggml_compute_forward_flash_attn_f32(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * q,
  10495. const struct ggml_tensor * k,
  10496. const struct ggml_tensor * v,
  10497. const bool masked,
  10498. struct ggml_tensor * dst) {
  10499. int64_t t0 = ggml_perf_time_us();
  10500. UNUSED(t0);
  10501. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10502. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10503. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10504. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10505. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10506. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10507. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10508. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10509. const int ith = params->ith;
  10510. const int nth = params->nth;
  10511. const int64_t D = neq0;
  10512. const int64_t N = neq1;
  10513. const int64_t P = nek1 - N;
  10514. const int64_t M = P + N;
  10515. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10516. GGML_ASSERT(ne0 == D);
  10517. GGML_ASSERT(ne1 == N);
  10518. GGML_ASSERT(P >= 0);
  10519. GGML_ASSERT(nbq0 == sizeof(float));
  10520. GGML_ASSERT(nbk0 == sizeof(float));
  10521. GGML_ASSERT(nbv0 == sizeof(float));
  10522. GGML_ASSERT(neq0 == D);
  10523. GGML_ASSERT(nek0 == D);
  10524. GGML_ASSERT(nev1 == D);
  10525. GGML_ASSERT(neq1 == N);
  10526. GGML_ASSERT(nek1 == N + P);
  10527. GGML_ASSERT(nev1 == D);
  10528. // dst cannot be transposed or permuted
  10529. GGML_ASSERT(nb0 == sizeof(float));
  10530. GGML_ASSERT(nb0 <= nb1);
  10531. GGML_ASSERT(nb1 <= nb2);
  10532. GGML_ASSERT(nb2 <= nb3);
  10533. if (params->type == GGML_TASK_INIT) {
  10534. return;
  10535. }
  10536. if (params->type == GGML_TASK_FINALIZE) {
  10537. return;
  10538. }
  10539. // parallelize by q rows using ggml_vec_dot_f32
  10540. // total rows in q
  10541. const int nr = neq1*neq2*neq3;
  10542. // rows per thread
  10543. const int dr = (nr + nth - 1)/nth;
  10544. // row range for this thread
  10545. const int ir0 = dr*ith;
  10546. const int ir1 = MIN(ir0 + dr, nr);
  10547. const float scale = 1.0f/sqrtf(D);
  10548. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10549. for (int ir = ir0; ir < ir1; ++ir) {
  10550. // q indices
  10551. const int iq3 = ir/(neq2*neq1);
  10552. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10553. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10554. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10555. for (int i = M; i < Mup; ++i) {
  10556. S[i] = -INFINITY;
  10557. }
  10558. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10559. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10560. // k indices
  10561. const int ik3 = iq3;
  10562. const int ik2 = iq2 % nek2;
  10563. const int ik1 = ic;
  10564. // S indices
  10565. const int i1 = ik1;
  10566. ggml_vec_dot_f32(neq0,
  10567. S + i1,
  10568. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10569. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10570. }
  10571. // scale
  10572. ggml_vec_scale_f32(masked_begin, S, scale);
  10573. for (int64_t i = masked_begin; i < M; i++) {
  10574. S[i] = -INFINITY;
  10575. }
  10576. // softmax
  10577. // exclude known -INF S[..] values from max and loop
  10578. // dont forget to set their SW values to zero
  10579. {
  10580. float max = -INFINITY;
  10581. ggml_vec_max_f32(masked_begin, &max, S);
  10582. ggml_float sum = 0.0;
  10583. {
  10584. #ifdef GGML_SOFT_MAX_ACCELERATE
  10585. max = -max;
  10586. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10587. vvexpf(S, S, &Mup);
  10588. ggml_vec_sum_f32(Mup, &sum, S);
  10589. #else
  10590. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10591. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10592. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10593. if (i >= masked_begin) {
  10594. break;
  10595. }
  10596. float * SS = S + i;
  10597. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10598. if (i + j >= masked_begin) {
  10599. break;
  10600. } else if (SS[j] == -INFINITY) {
  10601. SS[j] = 0.0f;
  10602. } else {
  10603. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10604. const float val = expf(SS[j] - max);
  10605. #else
  10606. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10607. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10608. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10609. #endif
  10610. sump[j] += (ggml_float)val;
  10611. SS[j] = val;
  10612. }
  10613. }
  10614. }
  10615. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10616. sum += sump[i];
  10617. }
  10618. #endif
  10619. }
  10620. assert(sum > 0.0);
  10621. sum = 1.0/sum;
  10622. ggml_vec_scale_f32(masked_begin, S, sum);
  10623. #ifndef NDEBUG
  10624. for (int i = 0; i < masked_begin; ++i) {
  10625. assert(!isnan(S[i]));
  10626. assert(!isinf(S[i]));
  10627. }
  10628. #endif
  10629. }
  10630. for (int64_t ic = 0; ic < nev1; ++ic) {
  10631. // dst indices
  10632. const int i1 = iq1;
  10633. const int i2 = iq2;
  10634. const int i3 = iq3;
  10635. // v indices
  10636. const int iv2 = iq2 % nev2;
  10637. const int iv3 = iq3;
  10638. ggml_vec_dot_f32(masked_begin,
  10639. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10640. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10641. S);
  10642. }
  10643. }
  10644. }
  10645. static void ggml_compute_forward_flash_attn_f16(
  10646. const struct ggml_compute_params * params,
  10647. const struct ggml_tensor * q,
  10648. const struct ggml_tensor * k,
  10649. const struct ggml_tensor * v,
  10650. const bool masked,
  10651. struct ggml_tensor * dst) {
  10652. int64_t t0 = ggml_perf_time_us();
  10653. UNUSED(t0);
  10654. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10655. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10656. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10657. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10658. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10659. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10660. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10661. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10662. const int ith = params->ith;
  10663. const int nth = params->nth;
  10664. const int64_t D = neq0;
  10665. const int64_t N = neq1;
  10666. const int64_t P = nek1 - N;
  10667. const int64_t M = P + N;
  10668. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10669. GGML_ASSERT(ne0 == D);
  10670. GGML_ASSERT(ne1 == N);
  10671. GGML_ASSERT(P >= 0);
  10672. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10673. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10674. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10675. GGML_ASSERT(neq0 == D);
  10676. GGML_ASSERT(nek0 == D);
  10677. GGML_ASSERT(nev1 == D);
  10678. GGML_ASSERT(neq1 == N);
  10679. GGML_ASSERT(nek1 == N + P);
  10680. GGML_ASSERT(nev1 == D);
  10681. // dst cannot be transposed or permuted
  10682. GGML_ASSERT(nb0 == sizeof(float));
  10683. GGML_ASSERT(nb0 <= nb1);
  10684. GGML_ASSERT(nb1 <= nb2);
  10685. GGML_ASSERT(nb2 <= nb3);
  10686. if (params->type == GGML_TASK_INIT) {
  10687. return;
  10688. }
  10689. if (params->type == GGML_TASK_FINALIZE) {
  10690. return;
  10691. }
  10692. // parallelize by q rows using ggml_vec_dot_f32
  10693. // total rows in q
  10694. const int nr = neq1*neq2*neq3;
  10695. // rows per thread
  10696. const int dr = (nr + nth - 1)/nth;
  10697. // row range for this thread
  10698. const int ir0 = dr*ith;
  10699. const int ir1 = MIN(ir0 + dr, nr);
  10700. const float scale = 1.0f/sqrtf(D);
  10701. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10702. for (int ir = ir0; ir < ir1; ++ir) {
  10703. // q indices
  10704. const int iq3 = ir/(neq2*neq1);
  10705. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10706. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10707. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10708. for (int i = M; i < Mup; ++i) {
  10709. S[i] = -INFINITY;
  10710. }
  10711. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10712. for (int64_t ic = 0; ic < nek1; ++ic) {
  10713. // k indices
  10714. const int ik3 = iq3;
  10715. const int ik2 = iq2 % nek2;
  10716. const int ik1 = ic;
  10717. // S indices
  10718. const int i1 = ik1;
  10719. ggml_vec_dot_f16(neq0,
  10720. S + i1,
  10721. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10722. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10723. }
  10724. } else {
  10725. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10726. // k indices
  10727. const int ik3 = iq3;
  10728. const int ik2 = iq2 % nek2;
  10729. const int ik1 = ic;
  10730. // S indices
  10731. const int i1 = ik1;
  10732. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10733. S + i1,
  10734. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10735. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10736. }
  10737. }
  10738. // scale
  10739. ggml_vec_scale_f32(nek1, S, scale);
  10740. if (masked) {
  10741. for (int64_t i = P; i < M; i++) {
  10742. if (i > P + iq1) {
  10743. S[i] = -INFINITY;
  10744. }
  10745. }
  10746. }
  10747. // softmax
  10748. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10749. // dont forget to set their S values to zero
  10750. {
  10751. float max = -INFINITY;
  10752. ggml_vec_max_f32(M, &max, S);
  10753. ggml_float sum = 0.0;
  10754. {
  10755. #ifdef GGML_SOFT_MAX_ACCELERATE
  10756. max = -max;
  10757. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10758. vvexpf(S, S, &Mup);
  10759. ggml_vec_sum_f32(Mup, &sum, S);
  10760. #else
  10761. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10762. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10763. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10764. float * SS = S + i;
  10765. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10766. if (SS[j] == -INFINITY) {
  10767. SS[j] = 0.0f;
  10768. } else {
  10769. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10770. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10771. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10772. sump[j] += (ggml_float)val;
  10773. SS[j] = val;
  10774. }
  10775. }
  10776. }
  10777. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10778. sum += sump[i];
  10779. }
  10780. #endif
  10781. }
  10782. assert(sum > 0.0);
  10783. sum = 1.0/sum;
  10784. ggml_vec_scale_f32(M, S, sum);
  10785. #ifndef NDEBUG
  10786. for (int i = 0; i < M; ++i) {
  10787. assert(!isnan(S[i]));
  10788. assert(!isinf(S[i]));
  10789. }
  10790. #endif
  10791. }
  10792. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10793. for (int64_t i = 0; i < M; i++) {
  10794. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10795. }
  10796. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10797. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10798. for (int64_t ic = 0; ic < nev1; ++ic) {
  10799. // dst indices
  10800. const int i1 = iq1;
  10801. const int i2 = iq2;
  10802. const int i3 = iq3;
  10803. // v indices
  10804. const int iv2 = iq2 % nev2;
  10805. const int iv3 = iq3;
  10806. ggml_vec_dot_f16(nev0,
  10807. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10808. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10809. S16);
  10810. }
  10811. } else {
  10812. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10813. // dst indices
  10814. const int i1 = iq1;
  10815. const int i2 = iq2;
  10816. const int i3 = iq3;
  10817. // v indices
  10818. const int iv2 = iq2 % nev2;
  10819. const int iv3 = iq3;
  10820. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10821. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10822. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10823. S16);
  10824. }
  10825. }
  10826. }
  10827. }
  10828. static void ggml_compute_forward_flash_attn(
  10829. const struct ggml_compute_params * params,
  10830. const struct ggml_tensor * q,
  10831. const struct ggml_tensor * k,
  10832. const struct ggml_tensor * v,
  10833. const bool masked,
  10834. struct ggml_tensor * dst) {
  10835. switch (q->type) {
  10836. case GGML_TYPE_F16:
  10837. {
  10838. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10839. } break;
  10840. case GGML_TYPE_F32:
  10841. {
  10842. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10843. } break;
  10844. default:
  10845. {
  10846. GGML_ASSERT(false);
  10847. } break;
  10848. }
  10849. }
  10850. // ggml_compute_forward_flash_ff
  10851. static void ggml_compute_forward_flash_ff_f16(
  10852. const struct ggml_compute_params * params,
  10853. const struct ggml_tensor * a, // F16
  10854. const struct ggml_tensor * b0, // F16 fc_w
  10855. const struct ggml_tensor * b1, // F32 fc_b
  10856. const struct ggml_tensor * c0, // F16 proj_w
  10857. const struct ggml_tensor * c1, // F32 proj_b
  10858. struct ggml_tensor * dst) {
  10859. int64_t t0 = ggml_perf_time_us();
  10860. UNUSED(t0);
  10861. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10862. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10863. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10864. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10865. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10866. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10867. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10868. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10869. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10870. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10871. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10872. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10873. const int ith = params->ith;
  10874. const int nth = params->nth;
  10875. const int64_t D = nea0;
  10876. //const int64_t N = nea1;
  10877. const int64_t M = neb01;
  10878. GGML_ASSERT(ne0 == nea0);
  10879. GGML_ASSERT(ne1 == nea1);
  10880. GGML_ASSERT(ne2 == nea2);
  10881. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10882. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10883. GGML_ASSERT(nbb10 == sizeof(float));
  10884. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10885. GGML_ASSERT(nbc10 == sizeof(float));
  10886. GGML_ASSERT(neb00 == D);
  10887. GGML_ASSERT(neb01 == M);
  10888. GGML_ASSERT(neb10 == M);
  10889. GGML_ASSERT(neb11 == 1);
  10890. GGML_ASSERT(nec00 == M);
  10891. GGML_ASSERT(nec01 == D);
  10892. GGML_ASSERT(nec10 == D);
  10893. GGML_ASSERT(nec11 == 1);
  10894. // dst cannot be transposed or permuted
  10895. GGML_ASSERT(nb0 == sizeof(float));
  10896. GGML_ASSERT(nb0 <= nb1);
  10897. GGML_ASSERT(nb1 <= nb2);
  10898. GGML_ASSERT(nb2 <= nb3);
  10899. if (params->type == GGML_TASK_INIT) {
  10900. return;
  10901. }
  10902. if (params->type == GGML_TASK_FINALIZE) {
  10903. return;
  10904. }
  10905. // parallelize by a rows using ggml_vec_dot_f32
  10906. // total rows in a
  10907. const int nr = nea1*nea2*nea3;
  10908. // rows per thread
  10909. const int dr = (nr + nth - 1)/nth;
  10910. // row range for this thread
  10911. const int ir0 = dr*ith;
  10912. const int ir1 = MIN(ir0 + dr, nr);
  10913. for (int ir = ir0; ir < ir1; ++ir) {
  10914. // a indices
  10915. const int ia3 = ir/(nea2*nea1);
  10916. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10917. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10918. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10919. for (int64_t ic = 0; ic < neb01; ++ic) {
  10920. // b0 indices
  10921. const int ib03 = ia3;
  10922. const int ib02 = ia2;
  10923. const int ib01 = ic;
  10924. // S indices
  10925. const int i1 = ib01;
  10926. ggml_vec_dot_f16(nea0,
  10927. S + i1,
  10928. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10929. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10930. }
  10931. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10932. //ggml_vec_gelu_f32(neb01, S, S);
  10933. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10934. for (int64_t i = 0; i < M; i++) {
  10935. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10936. }
  10937. ggml_vec_gelu_f16(neb01, S16, S16);
  10938. {
  10939. // dst indices
  10940. const int i1 = ia1;
  10941. const int i2 = ia2;
  10942. const int i3 = ia3;
  10943. for (int64_t ic = 0; ic < nec01; ++ic) {
  10944. ggml_vec_dot_f16(neb01,
  10945. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10946. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10947. S16);
  10948. }
  10949. ggml_vec_add_f32(nec01,
  10950. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10951. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10952. (float *) c1->data);
  10953. }
  10954. }
  10955. }
  10956. static void ggml_compute_forward_flash_ff(
  10957. const struct ggml_compute_params * params,
  10958. const struct ggml_tensor * a,
  10959. const struct ggml_tensor * b0,
  10960. const struct ggml_tensor * b1,
  10961. const struct ggml_tensor * c0,
  10962. const struct ggml_tensor * c1,
  10963. struct ggml_tensor * dst) {
  10964. switch (b0->type) {
  10965. case GGML_TYPE_F16:
  10966. {
  10967. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10968. } break;
  10969. case GGML_TYPE_F32:
  10970. {
  10971. GGML_ASSERT(false); // TODO
  10972. } break;
  10973. default:
  10974. {
  10975. GGML_ASSERT(false);
  10976. } break;
  10977. }
  10978. }
  10979. // ggml_compute_forward_flash_attn_back
  10980. static void ggml_compute_forward_flash_attn_back_f32(
  10981. const struct ggml_compute_params * params,
  10982. const struct ggml_tensor * q,
  10983. const struct ggml_tensor * k,
  10984. const struct ggml_tensor * v,
  10985. const struct ggml_tensor * d,
  10986. const bool masked,
  10987. struct ggml_tensor * dst) {
  10988. int64_t t0 = ggml_perf_time_us();
  10989. UNUSED(t0);
  10990. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10991. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10992. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10993. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10994. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10995. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10996. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10997. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10998. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10999. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11000. const int ith = params->ith;
  11001. const int nth = params->nth;
  11002. const int64_t D = neq0;
  11003. const int64_t N = neq1;
  11004. const int64_t P = nek1 - N;
  11005. const int64_t M = P + N;
  11006. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11007. const int mxDM = MAX(D, Mup);
  11008. // GGML_ASSERT(ne0 == D);
  11009. // GGML_ASSERT(ne1 == N);
  11010. GGML_ASSERT(P >= 0);
  11011. GGML_ASSERT(nbq0 == sizeof(float));
  11012. GGML_ASSERT(nbk0 == sizeof(float));
  11013. GGML_ASSERT(nbv0 == sizeof(float));
  11014. GGML_ASSERT(neq0 == D);
  11015. GGML_ASSERT(nek0 == D);
  11016. GGML_ASSERT(nev1 == D);
  11017. GGML_ASSERT(ned0 == D);
  11018. GGML_ASSERT(neq1 == N);
  11019. GGML_ASSERT(nek1 == N + P);
  11020. GGML_ASSERT(nev1 == D);
  11021. GGML_ASSERT(ned1 == N);
  11022. // dst cannot be transposed or permuted
  11023. GGML_ASSERT(nb0 == sizeof(float));
  11024. GGML_ASSERT(nb0 <= nb1);
  11025. GGML_ASSERT(nb1 <= nb2);
  11026. GGML_ASSERT(nb2 <= nb3);
  11027. if (params->type == GGML_TASK_INIT) {
  11028. if (ith == 0) {
  11029. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11030. }
  11031. return;
  11032. }
  11033. if (params->type == GGML_TASK_FINALIZE) {
  11034. return;
  11035. }
  11036. const int64_t elem_q = ggml_nelements(q);
  11037. const int64_t elem_k = ggml_nelements(k);
  11038. enum ggml_type result_type = dst->type;
  11039. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11040. const size_t tsize = ggml_type_size(result_type);
  11041. const size_t offs_q = 0;
  11042. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11043. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11044. void * grad_q = (char *) dst->data;
  11045. void * grad_k = (char *) dst->data + offs_k;
  11046. void * grad_v = (char *) dst->data + offs_v;
  11047. const size_t nbgq1 = nb0*neq0;
  11048. const size_t nbgq2 = nb0*neq0*neq1;
  11049. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11050. const size_t nbgk1 = nb0*nek0;
  11051. const size_t nbgk2 = nb0*nek0*nek1;
  11052. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11053. const size_t nbgv1 = nb0*nev0;
  11054. const size_t nbgv2 = nb0*nev0*nev1;
  11055. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11056. // parallelize by k rows using ggml_vec_dot_f32
  11057. // total rows in k
  11058. const int nr = nek2*nek3;
  11059. // rows per thread
  11060. const int dr = (nr + nth - 1)/nth;
  11061. // row range for this thread
  11062. const int ir0 = dr*ith;
  11063. const int ir1 = MIN(ir0 + dr, nr);
  11064. const float scale = 1.0f/sqrtf(D);
  11065. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11066. // how often k2 (and v2) is repeated in q2
  11067. int nrep = neq2/nek2;
  11068. for (int ir = ir0; ir < ir1; ++ir) {
  11069. // q indices
  11070. const int ik3 = ir/(nek2);
  11071. const int ik2 = ir - ik3*nek2;
  11072. const int iq3 = ik3;
  11073. const int id3 = ik3;
  11074. const int iv3 = ik3;
  11075. const int iv2 = ik2;
  11076. for (int irep = 0; irep < nrep; ++irep) {
  11077. const int iq2 = ik2 + irep*nek2;
  11078. const int id2 = iq2;
  11079. // (ik2 + irep*nek2) % nek2 == ik2
  11080. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11081. const int id1 = iq1;
  11082. // not sure about CACHE_LINE_SIZE_F32..
  11083. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11084. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11085. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11086. for (int i = M; i < Mup; ++i) {
  11087. S[i] = -INFINITY;
  11088. }
  11089. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11090. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11091. // k indices
  11092. const int ik1 = ic;
  11093. // S indices
  11094. const int i1 = ik1;
  11095. ggml_vec_dot_f32(neq0,
  11096. S + i1,
  11097. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11098. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11099. }
  11100. // scale
  11101. ggml_vec_scale_f32(masked_begin, S, scale);
  11102. for (int64_t i = masked_begin; i < M; i++) {
  11103. S[i] = -INFINITY;
  11104. }
  11105. // softmax
  11106. // exclude known -INF S[..] values from max and loop
  11107. // dont forget to set their SM values to zero
  11108. {
  11109. float max = -INFINITY;
  11110. ggml_vec_max_f32(masked_begin, &max, S);
  11111. ggml_float sum = 0.0;
  11112. {
  11113. #ifdef GGML_SOFT_MAX_ACCELERATE
  11114. max = -max;
  11115. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11116. vvexpf(SM, SM, &Mup);
  11117. ggml_vec_sum_f32(Mup, &sum, SM);
  11118. #else
  11119. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11120. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11121. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11122. if (i >= masked_begin) {
  11123. break;
  11124. }
  11125. float * SR = S + i;
  11126. float * SW = SM + i;
  11127. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11128. if (i + j >= masked_begin) {
  11129. break;
  11130. } else if (SR[j] == -INFINITY) {
  11131. SW[j] = 0.0f;
  11132. } else {
  11133. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11134. const float val = expf(SR[j] - max);
  11135. #else
  11136. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11137. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11138. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11139. #endif
  11140. sump[j] += (ggml_float)val;
  11141. SW[j] = val;
  11142. }
  11143. }
  11144. }
  11145. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11146. sum += sump[i];
  11147. }
  11148. #endif
  11149. }
  11150. assert(sum > 0.0);
  11151. sum = 1.0/sum;
  11152. ggml_vec_scale_f32(masked_begin, SM, sum);
  11153. }
  11154. // step-by-step explanation
  11155. {
  11156. // forward-process shape grads from backward process
  11157. // parallel_for ik2,ik3:
  11158. // for irep:
  11159. // iq2 = ik2 + irep*nek2
  11160. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11161. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11162. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11163. // for iq1:
  11164. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11165. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11166. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11167. // S0 = -Inf [D,1,1,1]
  11168. // ~S1[i] = dot(kcur[:D,i], qcur)
  11169. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11170. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11171. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11172. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11173. // ~S5[i] = dot(vcur[:,i], S4)
  11174. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11175. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11176. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11177. // dst backward-/ grad[dst] = d
  11178. //
  11179. // output gradients with their dependencies:
  11180. //
  11181. // grad[kcur] = grad[S1].T @ qcur
  11182. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11183. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11184. // grad[S4] = grad[S5] @ vcur
  11185. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11186. // grad[qcur] = grad[S1] @ kcur
  11187. // grad[vcur] = grad[S5].T @ S4
  11188. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11189. //
  11190. // in post-order:
  11191. //
  11192. // S1 = qcur @ kcur.T
  11193. // S2 = S1 * scale
  11194. // S3 = diag_mask_inf(S2, P)
  11195. // S4 = softmax(S3)
  11196. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11197. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11198. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11199. // grad[qcur] = grad[S1] @ kcur
  11200. // grad[kcur] = grad[S1].T @ qcur
  11201. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11202. //
  11203. // using less variables (SM=S4):
  11204. //
  11205. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11206. // SM = softmax(S)
  11207. // S = d[:D,iq1,iq2,iq3] @ vcur
  11208. // dot_SM_gradSM = dot(SM, S)
  11209. // S = SM * (S - dot(SM, S))
  11210. // S = diag_mask_zero(S, P) * scale
  11211. //
  11212. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11213. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11214. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11215. }
  11216. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11217. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11218. // for ic:
  11219. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11220. // exclude known future zero S[..] values from operation
  11221. ggml_vec_set_f32(masked_begin, S, 0);
  11222. for (int64_t ic = 0; ic < D; ++ic) {
  11223. ggml_vec_mad_f32(masked_begin,
  11224. S,
  11225. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11226. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11227. }
  11228. // S = SM * (S - dot(SM, S))
  11229. float dot_SM_gradSM = 0;
  11230. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11231. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11232. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11233. // S = diag_mask_zero(S, P) * scale
  11234. // already done by above ggml_vec_set_f32
  11235. // exclude known zero S[..] values from operation
  11236. ggml_vec_scale_f32(masked_begin, S, scale);
  11237. // S shape [M,1]
  11238. // SM shape [M,1]
  11239. // kcur shape [D,M]
  11240. // qcur shape [D,1]
  11241. // vcur shape [M,D]
  11242. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11243. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11244. // for ic:
  11245. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11246. // exclude known zero S[..] values from loop
  11247. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11248. ggml_vec_mad_f32(D,
  11249. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11250. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11251. S[ic]);
  11252. }
  11253. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11254. // for ic:
  11255. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11256. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11257. // exclude known zero S[..] values from loop
  11258. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11259. ggml_vec_mad_f32(D,
  11260. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11261. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11262. S[ic]);
  11263. }
  11264. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11265. // for ic:
  11266. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11267. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11268. // exclude known zero SM[..] values from mad
  11269. for (int64_t ic = 0; ic < D; ++ic) {
  11270. ggml_vec_mad_f32(masked_begin,
  11271. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11272. SM,
  11273. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11274. }
  11275. }
  11276. }
  11277. }
  11278. }
  11279. static void ggml_compute_forward_flash_attn_back(
  11280. const struct ggml_compute_params * params,
  11281. const struct ggml_tensor * q,
  11282. const struct ggml_tensor * k,
  11283. const struct ggml_tensor * v,
  11284. const struct ggml_tensor * d,
  11285. const bool masked,
  11286. struct ggml_tensor * dst) {
  11287. switch (q->type) {
  11288. case GGML_TYPE_F32:
  11289. {
  11290. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11291. } break;
  11292. default:
  11293. {
  11294. GGML_ASSERT(false);
  11295. } break;
  11296. }
  11297. }
  11298. // ggml_compute_forward_win_part
  11299. static void ggml_compute_forward_win_part_f32(
  11300. const struct ggml_compute_params * params,
  11301. const struct ggml_tensor * src0,
  11302. struct ggml_tensor * dst) {
  11303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11304. return;
  11305. }
  11306. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11307. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11308. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11309. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11310. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11311. assert(ne00 == ne0);
  11312. assert(ne3 == nep0*nep1);
  11313. // TODO: optimize / multi-thread
  11314. for (int py = 0; py < nep1; ++py) {
  11315. for (int px = 0; px < nep0; ++px) {
  11316. const int64_t i3 = py*nep0 + px;
  11317. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11318. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11319. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11320. const int64_t i02 = py*w + i2;
  11321. const int64_t i01 = px*w + i1;
  11322. const int64_t i00 = i0;
  11323. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11324. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11325. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11326. ((float *) dst->data)[i] = 0.0f;
  11327. } else {
  11328. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11329. }
  11330. }
  11331. }
  11332. }
  11333. }
  11334. }
  11335. }
  11336. static void ggml_compute_forward_win_part(
  11337. const struct ggml_compute_params * params,
  11338. const struct ggml_tensor * src0,
  11339. struct ggml_tensor * dst) {
  11340. switch (src0->type) {
  11341. case GGML_TYPE_F32:
  11342. {
  11343. ggml_compute_forward_win_part_f32(params, src0, dst);
  11344. } break;
  11345. default:
  11346. {
  11347. GGML_ASSERT(false);
  11348. } break;
  11349. }
  11350. }
  11351. // ggml_compute_forward_win_unpart
  11352. static void ggml_compute_forward_win_unpart_f32(
  11353. const struct ggml_compute_params * params,
  11354. const struct ggml_tensor * src0,
  11355. struct ggml_tensor * dst) {
  11356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11357. return;
  11358. }
  11359. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11360. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11361. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11362. // padding
  11363. const int px = (w - ne1%w)%w;
  11364. //const int py = (w - ne2%w)%w;
  11365. const int npx = (px + ne1)/w;
  11366. //const int npy = (py + ne2)/w;
  11367. assert(ne0 == ne00);
  11368. // TODO: optimize / multi-thread
  11369. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11370. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11371. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11372. const int ip2 = i2/w;
  11373. const int ip1 = i1/w;
  11374. const int64_t i02 = i2%w;
  11375. const int64_t i01 = i1%w;
  11376. const int64_t i00 = i0;
  11377. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11378. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11379. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11380. }
  11381. }
  11382. }
  11383. }
  11384. static void ggml_compute_forward_win_unpart(
  11385. const struct ggml_compute_params * params,
  11386. const struct ggml_tensor * src0,
  11387. struct ggml_tensor * dst) {
  11388. switch (src0->type) {
  11389. case GGML_TYPE_F32:
  11390. {
  11391. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11392. } break;
  11393. default:
  11394. {
  11395. GGML_ASSERT(false);
  11396. } break;
  11397. }
  11398. }
  11399. //gmml_compute_forward_unary
  11400. static void ggml_compute_forward_unary(
  11401. const struct ggml_compute_params * params,
  11402. const struct ggml_tensor * src0,
  11403. struct ggml_tensor * dst) {
  11404. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11405. switch (op) {
  11406. case GGML_UNARY_OP_ABS:
  11407. {
  11408. ggml_compute_forward_abs(params, src0, dst);
  11409. } break;
  11410. case GGML_UNARY_OP_SGN:
  11411. {
  11412. ggml_compute_forward_sgn(params, src0, dst);
  11413. } break;
  11414. case GGML_UNARY_OP_NEG:
  11415. {
  11416. ggml_compute_forward_neg(params, src0, dst);
  11417. } break;
  11418. case GGML_UNARY_OP_STEP:
  11419. {
  11420. ggml_compute_forward_step(params, src0, dst);
  11421. } break;
  11422. case GGML_UNARY_OP_TANH:
  11423. {
  11424. ggml_compute_forward_tanh(params, src0, dst);
  11425. } break;
  11426. case GGML_UNARY_OP_ELU:
  11427. {
  11428. ggml_compute_forward_elu(params, src0, dst);
  11429. } break;
  11430. case GGML_UNARY_OP_RELU:
  11431. {
  11432. ggml_compute_forward_relu(params, src0, dst);
  11433. } break;
  11434. case GGML_UNARY_OP_GELU:
  11435. {
  11436. ggml_compute_forward_gelu(params, src0, dst);
  11437. } break;
  11438. case GGML_UNARY_OP_GELU_QUICK:
  11439. {
  11440. ggml_compute_forward_gelu_quick(params, src0, dst);
  11441. } break;
  11442. case GGML_UNARY_OP_SILU:
  11443. {
  11444. ggml_compute_forward_silu(params, src0, dst);
  11445. } break;
  11446. default:
  11447. {
  11448. GGML_ASSERT(false);
  11449. } break;
  11450. }
  11451. }
  11452. // ggml_compute_forward_get_rel_pos
  11453. static void ggml_compute_forward_get_rel_pos_f16(
  11454. const struct ggml_compute_params * params,
  11455. const struct ggml_tensor * src0,
  11456. struct ggml_tensor * dst) {
  11457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11458. return;
  11459. }
  11460. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11461. GGML_TENSOR_UNARY_OP_LOCALS
  11462. const int64_t w = ne1;
  11463. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11464. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11465. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11466. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11467. const int64_t pos = (w - i1 - 1) + i2;
  11468. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11469. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11470. }
  11471. }
  11472. }
  11473. }
  11474. static void ggml_compute_forward_get_rel_pos(
  11475. const struct ggml_compute_params * params,
  11476. const struct ggml_tensor * src0,
  11477. struct ggml_tensor * dst) {
  11478. switch (src0->type) {
  11479. case GGML_TYPE_F16:
  11480. {
  11481. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11482. } break;
  11483. default:
  11484. {
  11485. GGML_ASSERT(false);
  11486. } break;
  11487. }
  11488. }
  11489. // ggml_compute_forward_add_rel_pos
  11490. static void ggml_compute_forward_add_rel_pos_f32(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. const struct ggml_tensor * src1,
  11494. const struct ggml_tensor * src2,
  11495. struct ggml_tensor * dst) {
  11496. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11497. if (!inplace && params->type == GGML_TASK_INIT) {
  11498. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11499. return;
  11500. }
  11501. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11502. return;
  11503. }
  11504. int64_t t0 = ggml_perf_time_us();
  11505. UNUSED(t0);
  11506. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11507. float * src1_data = (float *) src1->data;
  11508. float * src2_data = (float *) src2->data;
  11509. float * dst_data = (float *) dst->data;
  11510. const int64_t ne10 = src1->ne[0];
  11511. const int64_t ne11 = src1->ne[1];
  11512. const int64_t ne12 = src1->ne[2];
  11513. const int64_t ne13 = src1->ne[3];
  11514. const int ith = params->ith;
  11515. const int nth = params->nth;
  11516. // total patches in dst
  11517. const int np = ne13;
  11518. // patches per thread
  11519. const int dp = (np + nth - 1)/nth;
  11520. // patch range for this thread
  11521. const int ip0 = dp*ith;
  11522. const int ip1 = MIN(ip0 + dp, np);
  11523. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11524. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11525. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11526. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11527. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11528. const int64_t jp0 = jp1 + i10;
  11529. const float src1_e = src1_data[jp0];
  11530. const float src2_e = src2_data[jp0];
  11531. const int64_t jdh = jp0 * ne10;
  11532. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11533. for (int64_t j = 0; j < ne10; ++j) {
  11534. dst_data[jdh + j ] += src2_e;
  11535. dst_data[jdw + j*ne10] += src1_e;
  11536. }
  11537. }
  11538. }
  11539. }
  11540. }
  11541. }
  11542. static void ggml_compute_forward_add_rel_pos(
  11543. const struct ggml_compute_params * params,
  11544. const struct ggml_tensor * src0,
  11545. const struct ggml_tensor * src1,
  11546. const struct ggml_tensor * src2,
  11547. struct ggml_tensor * dst) {
  11548. switch (src0->type) {
  11549. case GGML_TYPE_F32:
  11550. {
  11551. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11552. } break;
  11553. default:
  11554. {
  11555. GGML_ASSERT(false);
  11556. } break;
  11557. }
  11558. }
  11559. // ggml_compute_forward_map_unary
  11560. static void ggml_compute_forward_map_unary_f32(
  11561. const struct ggml_compute_params * params,
  11562. const struct ggml_tensor * src0,
  11563. struct ggml_tensor * dst,
  11564. const ggml_unary_op_f32_t fun) {
  11565. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11567. return;
  11568. }
  11569. const int n = ggml_nrows(src0);
  11570. const int nc = src0->ne[0];
  11571. assert( dst->nb[0] == sizeof(float));
  11572. assert(src0->nb[0] == sizeof(float));
  11573. for (int i = 0; i < n; i++) {
  11574. fun(nc,
  11575. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11576. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11577. }
  11578. }
  11579. static void ggml_compute_forward_map_unary(
  11580. const struct ggml_compute_params * params,
  11581. const struct ggml_tensor * src0,
  11582. struct ggml_tensor * dst,
  11583. const ggml_unary_op_f32_t fun) {
  11584. switch (src0->type) {
  11585. case GGML_TYPE_F32:
  11586. {
  11587. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11588. } break;
  11589. default:
  11590. {
  11591. GGML_ASSERT(false);
  11592. } break;
  11593. }
  11594. }
  11595. // ggml_compute_forward_map_binary
  11596. static void ggml_compute_forward_map_binary_f32(
  11597. const struct ggml_compute_params * params,
  11598. const struct ggml_tensor * src0,
  11599. const struct ggml_tensor * src1,
  11600. struct ggml_tensor * dst,
  11601. const ggml_binary_op_f32_t fun) {
  11602. assert(params->ith == 0);
  11603. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11605. return;
  11606. }
  11607. const int n = ggml_nrows(src0);
  11608. const int nc = src0->ne[0];
  11609. assert( dst->nb[0] == sizeof(float));
  11610. assert(src0->nb[0] == sizeof(float));
  11611. assert(src1->nb[0] == sizeof(float));
  11612. for (int i = 0; i < n; i++) {
  11613. fun(nc,
  11614. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11615. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11616. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11617. }
  11618. }
  11619. static void ggml_compute_forward_map_binary(
  11620. const struct ggml_compute_params * params,
  11621. const struct ggml_tensor * src0,
  11622. const struct ggml_tensor * src1,
  11623. struct ggml_tensor * dst,
  11624. const ggml_binary_op_f32_t fun) {
  11625. switch (src0->type) {
  11626. case GGML_TYPE_F32:
  11627. {
  11628. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11629. } break;
  11630. default:
  11631. {
  11632. GGML_ASSERT(false);
  11633. } break;
  11634. }
  11635. }
  11636. // ggml_compute_forward_map_custom1
  11637. static void ggml_compute_forward_map_custom1_f32(
  11638. const struct ggml_compute_params * params,
  11639. const struct ggml_tensor * a,
  11640. struct ggml_tensor * dst,
  11641. const ggml_custom1_op_f32_t fun) {
  11642. assert(params->ith == 0);
  11643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11644. return;
  11645. }
  11646. fun(dst, a);
  11647. }
  11648. // ggml_compute_forward_map_custom2
  11649. static void ggml_compute_forward_map_custom2_f32(
  11650. const struct ggml_compute_params * params,
  11651. const struct ggml_tensor * a,
  11652. const struct ggml_tensor * b,
  11653. struct ggml_tensor * dst,
  11654. const ggml_custom2_op_f32_t fun) {
  11655. assert(params->ith == 0);
  11656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11657. return;
  11658. }
  11659. fun(dst, a, b);
  11660. }
  11661. // ggml_compute_forward_map_custom3
  11662. static void ggml_compute_forward_map_custom3_f32(
  11663. const struct ggml_compute_params * params,
  11664. const struct ggml_tensor * a,
  11665. const struct ggml_tensor * b,
  11666. const struct ggml_tensor * c,
  11667. struct ggml_tensor * dst,
  11668. const ggml_custom3_op_f32_t fun) {
  11669. assert(params->ith == 0);
  11670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11671. return;
  11672. }
  11673. fun(dst, a, b, c);
  11674. }
  11675. // ggml_compute_forward_map_custom1
  11676. static void ggml_compute_forward_map_custom1(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * a,
  11679. struct ggml_tensor * dst) {
  11680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11681. return;
  11682. }
  11683. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11684. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11685. }
  11686. // ggml_compute_forward_map_custom2
  11687. static void ggml_compute_forward_map_custom2(
  11688. const struct ggml_compute_params * params,
  11689. const struct ggml_tensor * a,
  11690. const struct ggml_tensor * b,
  11691. struct ggml_tensor * dst) {
  11692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11693. return;
  11694. }
  11695. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11696. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11697. }
  11698. // ggml_compute_forward_map_custom3
  11699. static void ggml_compute_forward_map_custom3(
  11700. const struct ggml_compute_params * params,
  11701. const struct ggml_tensor * a,
  11702. const struct ggml_tensor * b,
  11703. const struct ggml_tensor * c,
  11704. struct ggml_tensor * dst) {
  11705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11706. return;
  11707. }
  11708. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11709. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11710. }
  11711. // ggml_compute_forward_cross_entropy_loss
  11712. static void ggml_compute_forward_cross_entropy_loss_f32(
  11713. const struct ggml_compute_params * params,
  11714. const struct ggml_tensor * src0,
  11715. const struct ggml_tensor * src1,
  11716. struct ggml_tensor * dst) {
  11717. GGML_ASSERT(ggml_is_contiguous(src0));
  11718. GGML_ASSERT(ggml_is_contiguous(src1));
  11719. GGML_ASSERT(ggml_is_scalar(dst));
  11720. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11721. const int ith = params->ith;
  11722. const int nth = params->nth;
  11723. float * sums = (float *) params->wdata;
  11724. // TODO: handle transposed/permuted matrices
  11725. const int nc = src0->ne[0];
  11726. const int nr = ggml_nrows(src0);
  11727. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11728. if (params->type == GGML_TASK_INIT) {
  11729. if (ith == 0) {
  11730. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11731. }
  11732. return;
  11733. }
  11734. if (params->type == GGML_TASK_FINALIZE) {
  11735. if (ith == 0) {
  11736. float * dp = (float *) dst->data;
  11737. ggml_vec_sum_f32(nth, dp, sums);
  11738. dp[0] *= -1.0f / (float) nr;
  11739. }
  11740. return;
  11741. }
  11742. const double eps = 1e-9;
  11743. // rows per thread
  11744. const int dr = (nr + nth - 1)/nth;
  11745. // row range for this thread
  11746. const int ir0 = dr*ith;
  11747. const int ir1 = MIN(ir0 + dr, nr);
  11748. for (int i1 = ir0; i1 < ir1; i1++) {
  11749. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11750. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11751. float * st = ((float *) params->wdata) + nth + ith*nc;
  11752. #ifndef NDEBUG
  11753. for (int i = 0; i < nc; ++i) {
  11754. //printf("p[%d] = %f\n", i, p[i]);
  11755. assert(!isnan(s0[i]));
  11756. assert(!isnan(s1[i]));
  11757. }
  11758. #endif
  11759. // soft_max
  11760. ggml_float sum = 0.0;
  11761. {
  11762. float max = -INFINITY;
  11763. ggml_vec_max_f32(nc, &max, s0);
  11764. uint16_t scvt; UNUSED(scvt);
  11765. for (int i = 0; i < nc; i++) {
  11766. if (s0[i] == -INFINITY) {
  11767. st[i] = 0.0f;
  11768. } else {
  11769. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11770. const float s = s0[i] - max;
  11771. const float val = expf(s);
  11772. #else
  11773. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11774. memcpy(&scvt, &s, sizeof(scvt));
  11775. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11776. #endif
  11777. sum += (ggml_float)val;
  11778. st[i] = val;
  11779. }
  11780. }
  11781. assert(sum > 0.0);
  11782. // sum = 1.0/sum;
  11783. }
  11784. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11785. sum = (1.0 - eps) / sum;
  11786. ggml_vec_scale_f32(nc, st, sum);
  11787. ggml_vec_add1_f32(nc, st, st, eps);
  11788. ggml_vec_log_f32(nc, st, st);
  11789. ggml_vec_mul_f32(nc, st, st, s1);
  11790. float st_sum = 0;
  11791. ggml_vec_sum_f32(nc, &st_sum, st);
  11792. sums[ith] += st_sum;
  11793. #ifndef NDEBUG
  11794. for (int i = 0; i < nc; ++i) {
  11795. assert(!isnan(st[i]));
  11796. assert(!isinf(st[i]));
  11797. }
  11798. #endif
  11799. }
  11800. }
  11801. static void ggml_compute_forward_cross_entropy_loss(
  11802. const struct ggml_compute_params * params,
  11803. const struct ggml_tensor * src0,
  11804. const struct ggml_tensor * src1,
  11805. struct ggml_tensor * dst) {
  11806. switch (src0->type) {
  11807. case GGML_TYPE_F32:
  11808. {
  11809. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11810. } break;
  11811. default:
  11812. {
  11813. GGML_ASSERT(false);
  11814. } break;
  11815. }
  11816. }
  11817. // ggml_compute_forward_cross_entropy_loss_back
  11818. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11819. const struct ggml_compute_params * params,
  11820. const struct ggml_tensor * src0,
  11821. const struct ggml_tensor * src1,
  11822. const struct ggml_tensor * opt0,
  11823. struct ggml_tensor * dst) {
  11824. GGML_ASSERT(ggml_is_contiguous(dst));
  11825. GGML_ASSERT(ggml_is_contiguous(src0));
  11826. GGML_ASSERT(ggml_is_contiguous(src1));
  11827. GGML_ASSERT(ggml_is_contiguous(opt0));
  11828. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11829. const int64_t ith = params->ith;
  11830. const int64_t nth = params->nth;
  11831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11832. return;
  11833. }
  11834. const double eps = 1e-9;
  11835. // TODO: handle transposed/permuted matrices
  11836. const int64_t nc = src0->ne[0];
  11837. const int64_t nr = ggml_nrows(src0);
  11838. // rows per thread
  11839. const int64_t dr = (nr + nth - 1)/nth;
  11840. // row range for this thread
  11841. const int64_t ir0 = dr*ith;
  11842. const int64_t ir1 = MIN(ir0 + dr, nr);
  11843. float * d = (float *) opt0->data;
  11844. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11845. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11846. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11847. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11848. #ifndef NDEBUG
  11849. for (int i = 0; i < nc; ++i) {
  11850. //printf("p[%d] = %f\n", i, p[i]);
  11851. assert(!isnan(s0[i]));
  11852. assert(!isnan(s1[i]));
  11853. }
  11854. #endif
  11855. // soft_max
  11856. ggml_float sum = 0.0;
  11857. {
  11858. float max = -INFINITY;
  11859. ggml_vec_max_f32(nc, &max, s0);
  11860. uint16_t scvt; UNUSED(scvt);
  11861. for (int i = 0; i < nc; i++) {
  11862. if (s0[i] == -INFINITY) {
  11863. ds0[i] = 0.0f;
  11864. } else {
  11865. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11866. const float s = s0[i] - max;
  11867. const float val = expf(s);
  11868. #else
  11869. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11870. memcpy(&scvt, &s, sizeof(scvt));
  11871. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11872. #endif
  11873. sum += (ggml_float)val;
  11874. ds0[i] = val;
  11875. }
  11876. }
  11877. assert(sum > 0.0);
  11878. sum = (1.0 - eps)/sum;
  11879. }
  11880. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11881. ggml_vec_scale_f32(nc, ds0, sum);
  11882. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11883. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11884. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11885. #ifndef NDEBUG
  11886. for (int i = 0; i < nc; ++i) {
  11887. assert(!isnan(ds0[i]));
  11888. assert(!isinf(ds0[i]));
  11889. }
  11890. #endif
  11891. }
  11892. }
  11893. static void ggml_compute_forward_cross_entropy_loss_back(
  11894. const struct ggml_compute_params * params,
  11895. const struct ggml_tensor * src0,
  11896. const struct ggml_tensor * src1,
  11897. const struct ggml_tensor * opt0,
  11898. struct ggml_tensor * dst) {
  11899. switch (src0->type) {
  11900. case GGML_TYPE_F32:
  11901. {
  11902. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11903. } break;
  11904. default:
  11905. {
  11906. GGML_ASSERT(false);
  11907. } break;
  11908. }
  11909. }
  11910. /////////////////////////////////
  11911. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11912. GGML_ASSERT(params);
  11913. if (tensor->op == GGML_OP_NONE) {
  11914. return;
  11915. }
  11916. #ifdef GGML_USE_CUBLAS
  11917. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11918. if (skip_cpu) {
  11919. return;
  11920. }
  11921. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11922. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11923. #endif // GGML_USE_CUBLAS
  11924. switch (tensor->op) {
  11925. case GGML_OP_DUP:
  11926. {
  11927. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_ADD:
  11930. {
  11931. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11932. } break;
  11933. case GGML_OP_ADD1:
  11934. {
  11935. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11936. } break;
  11937. case GGML_OP_ACC:
  11938. {
  11939. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11940. } break;
  11941. case GGML_OP_SUB:
  11942. {
  11943. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11944. } break;
  11945. case GGML_OP_MUL:
  11946. {
  11947. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11948. } break;
  11949. case GGML_OP_DIV:
  11950. {
  11951. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11952. } break;
  11953. case GGML_OP_SQR:
  11954. {
  11955. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11956. } break;
  11957. case GGML_OP_SQRT:
  11958. {
  11959. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11960. } break;
  11961. case GGML_OP_LOG:
  11962. {
  11963. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11964. } break;
  11965. case GGML_OP_SUM:
  11966. {
  11967. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11968. } break;
  11969. case GGML_OP_SUM_ROWS:
  11970. {
  11971. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11972. } break;
  11973. case GGML_OP_MEAN:
  11974. {
  11975. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_ARGMAX:
  11978. {
  11979. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11980. } break;
  11981. case GGML_OP_REPEAT:
  11982. {
  11983. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11984. } break;
  11985. case GGML_OP_REPEAT_BACK:
  11986. {
  11987. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11988. } break;
  11989. case GGML_OP_CONCAT:
  11990. {
  11991. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11992. } break;
  11993. case GGML_OP_SILU_BACK:
  11994. {
  11995. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11996. } break;
  11997. case GGML_OP_NORM:
  11998. {
  11999. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12000. } break;
  12001. case GGML_OP_RMS_NORM:
  12002. {
  12003. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12004. } break;
  12005. case GGML_OP_RMS_NORM_BACK:
  12006. {
  12007. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_GROUP_NORM:
  12010. {
  12011. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12012. } break;
  12013. case GGML_OP_MUL_MAT:
  12014. {
  12015. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12016. } break;
  12017. case GGML_OP_OUT_PROD:
  12018. {
  12019. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12020. } break;
  12021. case GGML_OP_SCALE:
  12022. {
  12023. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12024. } break;
  12025. case GGML_OP_SET:
  12026. {
  12027. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_CPY:
  12030. {
  12031. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12032. } break;
  12033. case GGML_OP_CONT:
  12034. {
  12035. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12036. } break;
  12037. case GGML_OP_RESHAPE:
  12038. {
  12039. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12040. } break;
  12041. case GGML_OP_VIEW:
  12042. {
  12043. ggml_compute_forward_view(params, tensor->src[0]);
  12044. } break;
  12045. case GGML_OP_PERMUTE:
  12046. {
  12047. ggml_compute_forward_permute(params, tensor->src[0]);
  12048. } break;
  12049. case GGML_OP_TRANSPOSE:
  12050. {
  12051. ggml_compute_forward_transpose(params, tensor->src[0]);
  12052. } break;
  12053. case GGML_OP_GET_ROWS:
  12054. {
  12055. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12056. } break;
  12057. case GGML_OP_GET_ROWS_BACK:
  12058. {
  12059. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12060. } break;
  12061. case GGML_OP_DIAG:
  12062. {
  12063. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12064. } break;
  12065. case GGML_OP_DIAG_MASK_INF:
  12066. {
  12067. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12068. } break;
  12069. case GGML_OP_DIAG_MASK_ZERO:
  12070. {
  12071. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12072. } break;
  12073. case GGML_OP_SOFT_MAX:
  12074. {
  12075. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12076. } break;
  12077. case GGML_OP_SOFT_MAX_BACK:
  12078. {
  12079. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12080. } break;
  12081. case GGML_OP_ROPE:
  12082. {
  12083. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12084. } break;
  12085. case GGML_OP_ROPE_BACK:
  12086. {
  12087. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12088. } break;
  12089. case GGML_OP_ALIBI:
  12090. {
  12091. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12092. } break;
  12093. case GGML_OP_CLAMP:
  12094. {
  12095. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12096. } break;
  12097. case GGML_OP_CONV_1D:
  12098. {
  12099. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12100. } break;
  12101. case GGML_OP_CONV_1D_STAGE_0:
  12102. {
  12103. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12104. } break;
  12105. case GGML_OP_CONV_1D_STAGE_1:
  12106. {
  12107. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12108. } break;
  12109. case GGML_OP_CONV_TRANSPOSE_1D:
  12110. {
  12111. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12112. } break;
  12113. case GGML_OP_CONV_2D:
  12114. {
  12115. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12116. } break;
  12117. case GGML_OP_CONV_2D_STAGE_0:
  12118. {
  12119. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12120. } break;
  12121. case GGML_OP_CONV_2D_STAGE_1:
  12122. {
  12123. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12124. } break;
  12125. case GGML_OP_CONV_TRANSPOSE_2D:
  12126. {
  12127. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12128. } break;
  12129. case GGML_OP_POOL_1D:
  12130. {
  12131. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12132. } break;
  12133. case GGML_OP_POOL_2D:
  12134. {
  12135. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12136. } break;
  12137. case GGML_OP_UPSCALE:
  12138. {
  12139. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12140. } break;
  12141. case GGML_OP_FLASH_ATTN:
  12142. {
  12143. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12144. GGML_ASSERT(t == 0 || t == 1);
  12145. const bool masked = t != 0;
  12146. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12147. } break;
  12148. case GGML_OP_FLASH_FF:
  12149. {
  12150. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12151. } break;
  12152. case GGML_OP_FLASH_ATTN_BACK:
  12153. {
  12154. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12155. GGML_ASSERT(t == 0 || t == 1);
  12156. bool masked = t != 0;
  12157. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12158. } break;
  12159. case GGML_OP_WIN_PART:
  12160. {
  12161. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12162. } break;
  12163. case GGML_OP_WIN_UNPART:
  12164. {
  12165. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12166. } break;
  12167. case GGML_OP_UNARY:
  12168. {
  12169. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12170. } break;
  12171. case GGML_OP_GET_REL_POS:
  12172. {
  12173. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12174. } break;
  12175. case GGML_OP_ADD_REL_POS:
  12176. {
  12177. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12178. } break;
  12179. case GGML_OP_MAP_UNARY:
  12180. {
  12181. ggml_unary_op_f32_t fun;
  12182. memcpy(&fun, tensor->op_params, sizeof(fun));
  12183. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12184. }
  12185. break;
  12186. case GGML_OP_MAP_BINARY:
  12187. {
  12188. ggml_binary_op_f32_t fun;
  12189. memcpy(&fun, tensor->op_params, sizeof(fun));
  12190. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12191. }
  12192. break;
  12193. case GGML_OP_MAP_CUSTOM1_F32:
  12194. {
  12195. ggml_custom1_op_f32_t fun;
  12196. memcpy(&fun, tensor->op_params, sizeof(fun));
  12197. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12198. }
  12199. break;
  12200. case GGML_OP_MAP_CUSTOM2_F32:
  12201. {
  12202. ggml_custom2_op_f32_t fun;
  12203. memcpy(&fun, tensor->op_params, sizeof(fun));
  12204. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12205. }
  12206. break;
  12207. case GGML_OP_MAP_CUSTOM3_F32:
  12208. {
  12209. ggml_custom3_op_f32_t fun;
  12210. memcpy(&fun, tensor->op_params, sizeof(fun));
  12211. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12212. }
  12213. break;
  12214. case GGML_OP_MAP_CUSTOM1:
  12215. {
  12216. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12217. }
  12218. break;
  12219. case GGML_OP_MAP_CUSTOM2:
  12220. {
  12221. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12222. }
  12223. break;
  12224. case GGML_OP_MAP_CUSTOM3:
  12225. {
  12226. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12227. }
  12228. break;
  12229. case GGML_OP_CROSS_ENTROPY_LOSS:
  12230. {
  12231. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12232. }
  12233. break;
  12234. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12235. {
  12236. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12237. }
  12238. break;
  12239. case GGML_OP_NONE:
  12240. {
  12241. // nop
  12242. } break;
  12243. case GGML_OP_COUNT:
  12244. {
  12245. GGML_ASSERT(false);
  12246. } break;
  12247. }
  12248. }
  12249. ////////////////////////////////////////////////////////////////////////////////
  12250. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12251. static size_t hash(void * p) {
  12252. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12253. }
  12254. static size_t hash_find(void * hash_table[], void * p) {
  12255. size_t h = hash(p);
  12256. // linear probing
  12257. size_t i = h;
  12258. while (hash_table[i] != NULL && hash_table[i] != p) {
  12259. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12260. if (i == h) {
  12261. // visited all hash table entries -> not found
  12262. return GGML_GRAPH_HASHTABLE_SIZE;
  12263. }
  12264. }
  12265. return i;
  12266. }
  12267. static bool hash_insert(void * hash_table[], void * p) {
  12268. size_t i = hash_find(hash_table, p);
  12269. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12270. if (hash_table[i] == p) {
  12271. return true;
  12272. }
  12273. // insert
  12274. GGML_ASSERT(hash_table[i] == NULL);
  12275. hash_table[i] = p;
  12276. return false;
  12277. }
  12278. static bool hash_contains(void * hash_table[], void * p) {
  12279. size_t i = hash_find(hash_table, p);
  12280. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  12281. }
  12282. struct hash_map {
  12283. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  12284. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  12285. };
  12286. static struct hash_map * new_hash_map(void) {
  12287. struct hash_map * result = malloc(sizeof(struct hash_map));
  12288. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  12289. result->keys[i] = NULL;
  12290. result->vals[i] = NULL;
  12291. }
  12292. return result;
  12293. }
  12294. static void free_hash_map(struct hash_map * map) {
  12295. free(map);
  12296. }
  12297. // gradient checkpointing
  12298. static struct ggml_tensor * ggml_recompute_graph_node(
  12299. struct ggml_context * ctx,
  12300. struct ggml_cgraph * graph,
  12301. struct hash_map * replacements,
  12302. struct ggml_tensor * node) {
  12303. if (node == NULL) {
  12304. return NULL;
  12305. }
  12306. if (node->is_param) {
  12307. return node;
  12308. }
  12309. if (!hash_contains(graph->visited_hash_table, node)) {
  12310. return node;
  12311. }
  12312. int count_children = 0;
  12313. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12314. if (node->src[k]) {
  12315. ++count_children;
  12316. }
  12317. }
  12318. if (count_children == 0) {
  12319. return node;
  12320. }
  12321. size_t i = hash_find(replacements->keys, node);
  12322. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12323. if (replacements->keys[i] == node) {
  12324. return (struct ggml_tensor *) replacements->vals[i];
  12325. }
  12326. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12327. // insert clone into replacements
  12328. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  12329. replacements->keys[i] = node;
  12330. replacements->vals[i] = clone;
  12331. clone->op = node->op;
  12332. clone->grad = node->grad;
  12333. clone->is_param = node->is_param;
  12334. clone->extra = node->extra;
  12335. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12336. clone->nb[k] = node->nb[k];
  12337. }
  12338. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12339. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12340. }
  12341. if (node->view_src != NULL) {
  12342. clone->data = (node->view_src->data == NULL)
  12343. ? NULL // view_src not yet allocated
  12344. : (char *) node->view_src->data // view_src already allocated
  12345. + node->view_offs;
  12346. clone->view_src = node->view_src;
  12347. clone->view_offs = node->view_offs;
  12348. }
  12349. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12350. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12351. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12352. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12353. return clone;
  12354. }
  12355. void ggml_build_backward_gradient_checkpointing(
  12356. struct ggml_context * ctx,
  12357. struct ggml_cgraph * gf,
  12358. struct ggml_cgraph * gb,
  12359. struct ggml_cgraph * gb_tmp,
  12360. struct ggml_tensor * * checkpoints,
  12361. int n_checkpoints) {
  12362. *gb_tmp = *gf;
  12363. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12364. if (n_checkpoints <= 0) {
  12365. *gb = *gb_tmp;
  12366. return;
  12367. }
  12368. struct hash_map * replacements = new_hash_map();
  12369. // insert checkpoints in replacements
  12370. for (int i = 0; i < n_checkpoints; ++i) {
  12371. size_t k = hash_find(replacements->keys, checkpoints[i]);
  12372. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12373. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  12374. replacements->keys[k] = checkpoints[i];
  12375. replacements->vals[k] = checkpoints[i];
  12376. }
  12377. *gb = *gf;
  12378. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12379. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12380. // by recomputing them from checkpoints
  12381. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12382. struct ggml_tensor * node = gb_tmp->nodes[i];
  12383. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12384. // insert new tensors recomputing src, reusing already made replacements,
  12385. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12386. // recurse for input tensors,
  12387. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12388. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12389. }
  12390. // insert rewritten backward node with replacements made into resulting backward graph gb
  12391. ggml_build_forward_expand(gb, node);
  12392. }
  12393. free_hash_map(replacements);
  12394. }
  12395. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12396. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12397. if (hash_contains(zero_table, a)) {
  12398. return b;
  12399. } else {
  12400. return ggml_add_impl(ctx, a, b, false);
  12401. }
  12402. }
  12403. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  12404. if (hash_contains(zero_table, a)) {
  12405. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12406. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12407. } else {
  12408. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12409. }
  12410. }
  12411. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12412. if (hash_contains(zero_table, a)) {
  12413. return ggml_repeat(ctx, b, a);
  12414. } else {
  12415. return ggml_add1_impl(ctx, a, b, false);
  12416. }
  12417. }
  12418. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12419. if (hash_contains(zero_table, a)) {
  12420. return ggml_neg(ctx, b);
  12421. } else {
  12422. return ggml_sub_impl(ctx, a, b, false);
  12423. }
  12424. }
  12425. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  12426. struct ggml_tensor * src0 = tensor->src[0];
  12427. struct ggml_tensor * src1 = tensor->src[1];
  12428. switch (tensor->op) {
  12429. case GGML_OP_DUP:
  12430. {
  12431. if (src0->grad) {
  12432. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12433. }
  12434. } break;
  12435. case GGML_OP_ADD:
  12436. {
  12437. if (src0->grad) {
  12438. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12439. }
  12440. if (src1->grad) {
  12441. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12442. }
  12443. } break;
  12444. case GGML_OP_ADD1:
  12445. {
  12446. if (src0->grad) {
  12447. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12448. }
  12449. if (src1->grad) {
  12450. src1->grad = ggml_add_or_set(ctx,
  12451. src1->grad,
  12452. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12453. zero_table);
  12454. }
  12455. } break;
  12456. case GGML_OP_ACC:
  12457. {
  12458. if (src0->grad) {
  12459. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12460. }
  12461. if (src1->grad) {
  12462. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12463. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12464. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12465. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12466. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12467. tensor->grad,
  12468. src1->grad->ne[0],
  12469. src1->grad->ne[1],
  12470. src1->grad->ne[2],
  12471. src1->grad->ne[3],
  12472. nb1, nb2, nb3, offset);
  12473. src1->grad =
  12474. ggml_add_or_set(ctx,
  12475. src1->grad,
  12476. ggml_reshape(ctx,
  12477. ggml_cont(ctx, tensor_grad_view),
  12478. src1->grad),
  12479. zero_table);
  12480. }
  12481. } break;
  12482. case GGML_OP_SUB:
  12483. {
  12484. if (src0->grad) {
  12485. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12486. }
  12487. if (src1->grad) {
  12488. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12489. }
  12490. } break;
  12491. case GGML_OP_MUL:
  12492. {
  12493. if (src0->grad) {
  12494. src0->grad =
  12495. ggml_add_or_set(ctx,
  12496. src0->grad,
  12497. ggml_mul(ctx, src1, tensor->grad),
  12498. zero_table);
  12499. }
  12500. if (src1->grad) {
  12501. src1->grad =
  12502. ggml_add_or_set(ctx,
  12503. src1->grad,
  12504. ggml_mul(ctx, src0, tensor->grad),
  12505. zero_table);
  12506. }
  12507. } break;
  12508. case GGML_OP_DIV:
  12509. {
  12510. if (src0->grad) {
  12511. src0->grad =
  12512. ggml_add_or_set(ctx,
  12513. src0->grad,
  12514. ggml_div(ctx, tensor->grad, src1),
  12515. zero_table);
  12516. }
  12517. if (src1->grad) {
  12518. src1->grad =
  12519. ggml_sub_or_set(ctx,
  12520. src1->grad,
  12521. ggml_mul(ctx,
  12522. tensor->grad,
  12523. ggml_div(ctx, tensor, src1)),
  12524. zero_table);
  12525. }
  12526. } break;
  12527. case GGML_OP_SQR:
  12528. {
  12529. if (src0->grad) {
  12530. src0->grad =
  12531. ggml_add_or_set(ctx,
  12532. src0->grad,
  12533. ggml_scale(ctx,
  12534. ggml_mul(ctx, src0, tensor->grad),
  12535. ggml_new_f32(ctx, 2.0f)),
  12536. zero_table);
  12537. }
  12538. } break;
  12539. case GGML_OP_SQRT:
  12540. {
  12541. if (src0->grad) {
  12542. src0->grad =
  12543. ggml_add_or_set(ctx,
  12544. src0->grad,
  12545. ggml_scale(ctx,
  12546. ggml_div(ctx,
  12547. tensor->grad,
  12548. tensor),
  12549. ggml_new_f32(ctx, 0.5f)),
  12550. zero_table);
  12551. }
  12552. } break;
  12553. case GGML_OP_LOG:
  12554. {
  12555. if (src0->grad) {
  12556. src0->grad =
  12557. ggml_add_or_set(ctx,
  12558. src0->grad,
  12559. ggml_div(ctx,
  12560. tensor->grad,
  12561. src0),
  12562. zero_table);
  12563. }
  12564. } break;
  12565. case GGML_OP_SUM:
  12566. {
  12567. if (src0->grad) {
  12568. src0->grad =
  12569. ggml_add1_or_set(ctx,
  12570. src0->grad,
  12571. tensor->grad,
  12572. zero_table);
  12573. }
  12574. } break;
  12575. case GGML_OP_SUM_ROWS:
  12576. {
  12577. if (src0->grad) {
  12578. src0->grad =
  12579. ggml_add_or_set(ctx,
  12580. src0->grad,
  12581. ggml_repeat(ctx,
  12582. tensor->grad,
  12583. src0->grad),
  12584. zero_table);
  12585. }
  12586. } break;
  12587. case GGML_OP_MEAN:
  12588. case GGML_OP_ARGMAX:
  12589. {
  12590. GGML_ASSERT(false); // TODO: implement
  12591. } break;
  12592. case GGML_OP_REPEAT:
  12593. {
  12594. // necessary for llama
  12595. if (src0->grad) {
  12596. src0->grad = ggml_add_or_set(ctx,
  12597. src0->grad,
  12598. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12599. zero_table);
  12600. }
  12601. } break;
  12602. case GGML_OP_REPEAT_BACK:
  12603. {
  12604. if (src0->grad) {
  12605. // TODO: test this
  12606. src0->grad = ggml_add_or_set(ctx,
  12607. src0->grad,
  12608. ggml_repeat(ctx, tensor->grad, src0->grad),
  12609. zero_table);
  12610. }
  12611. } break;
  12612. case GGML_OP_CONCAT:
  12613. {
  12614. GGML_ASSERT(false); // TODO: implement
  12615. } break;
  12616. case GGML_OP_SILU_BACK:
  12617. {
  12618. GGML_ASSERT(false); // TODO: not implemented
  12619. } break;
  12620. case GGML_OP_NORM:
  12621. {
  12622. GGML_ASSERT(false); // TODO: not implemented
  12623. } break;
  12624. case GGML_OP_RMS_NORM:
  12625. {
  12626. // necessary for llama
  12627. if (src0->grad) {
  12628. float eps;
  12629. memcpy(&eps, tensor->op_params, sizeof(float));
  12630. src0->grad = ggml_add_or_set(ctx,
  12631. src0->grad,
  12632. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12633. zero_table);
  12634. }
  12635. } break;
  12636. case GGML_OP_RMS_NORM_BACK:
  12637. {
  12638. GGML_ASSERT(false); // TODO: not implemented
  12639. } break;
  12640. case GGML_OP_GROUP_NORM:
  12641. {
  12642. GGML_ASSERT(false); // TODO: not implemented
  12643. } break;
  12644. case GGML_OP_MUL_MAT:
  12645. {
  12646. // https://cs231n.github.io/optimization-2/#staged
  12647. // # forward pass
  12648. // s0 = np.random.randn(5, 10)
  12649. // s1 = np.random.randn(10, 3)
  12650. // t = s0.dot(s1)
  12651. // # now suppose we had the gradient on t from above in the circuit
  12652. // dt = np.random.randn(*t.shape) # same shape as t
  12653. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12654. // ds1 = t.T.dot(dt)
  12655. // tensor.shape [m,p,qq,rr]
  12656. // src0.shape [n,m,q1,r1]
  12657. // src1.shape [n,p,qq,rr]
  12658. // necessary for llama
  12659. if (src0->grad) {
  12660. struct ggml_tensor * s1_tg =
  12661. ggml_out_prod(ctx, // [n,m,qq,rr]
  12662. src1, // [n,p,qq,rr]
  12663. tensor->grad); // [m,p,qq,rr]
  12664. const int64_t qq = s1_tg->ne[2];
  12665. const int64_t rr = s1_tg->ne[3];
  12666. const int64_t q1 = src0->ne[2];
  12667. const int64_t r1 = src0->ne[3];
  12668. const bool ne2_broadcasted = qq > q1;
  12669. const bool ne3_broadcasted = rr > r1;
  12670. if (ne2_broadcasted || ne3_broadcasted) {
  12671. // sum broadcast repetitions of s1_tg into shape of src0
  12672. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12673. }
  12674. src0->grad =
  12675. ggml_add_or_set(ctx,
  12676. src0->grad, // [n,m,q1,r1]
  12677. s1_tg, // [n,m,q1,r1]
  12678. zero_table);
  12679. }
  12680. if (src1->grad) {
  12681. src1->grad =
  12682. ggml_add_or_set(ctx,
  12683. src1->grad, // [n,p,qq,rr]
  12684. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12685. // ggml_cont(ctx, // [m,n,q1,r1]
  12686. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12687. // tensor->grad), // [m,p,qq,rr]
  12688. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12689. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12690. // // and then use ggml_out_prod
  12691. ggml_out_prod(ctx, // [n,p,qq,rr]
  12692. src0, // [n,m,q1,r1]
  12693. ggml_transpose(ctx, // [p,m,qq,rr]
  12694. tensor->grad)), // [m,p,qq,rr]
  12695. zero_table);
  12696. }
  12697. } break;
  12698. case GGML_OP_OUT_PROD:
  12699. {
  12700. GGML_ASSERT(false); // TODO: not implemented
  12701. } break;
  12702. case GGML_OP_SCALE:
  12703. {
  12704. // necessary for llama
  12705. if (src0->grad) {
  12706. src0->grad =
  12707. ggml_add_or_set(ctx,
  12708. src0->grad,
  12709. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12710. zero_table);
  12711. }
  12712. if (src1->grad) {
  12713. src1->grad =
  12714. ggml_add_or_set(ctx,
  12715. src1->grad,
  12716. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12717. zero_table);
  12718. }
  12719. } break;
  12720. case GGML_OP_SET:
  12721. {
  12722. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12723. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12724. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12725. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12726. struct ggml_tensor * tensor_grad_view = NULL;
  12727. if (src0->grad || src1->grad) {
  12728. GGML_ASSERT(src0->type == tensor->type);
  12729. GGML_ASSERT(tensor->grad->type == tensor->type);
  12730. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12731. tensor_grad_view = ggml_view_4d(ctx,
  12732. tensor->grad,
  12733. src1->grad->ne[0],
  12734. src1->grad->ne[1],
  12735. src1->grad->ne[2],
  12736. src1->grad->ne[3],
  12737. nb1, nb2, nb3, offset);
  12738. }
  12739. if (src0->grad) {
  12740. src0->grad = ggml_add_or_set(ctx,
  12741. src0->grad,
  12742. ggml_acc_impl(ctx,
  12743. tensor->grad,
  12744. ggml_neg(ctx, tensor_grad_view),
  12745. nb1, nb2, nb3, offset, false),
  12746. zero_table);
  12747. }
  12748. if (src1->grad) {
  12749. src1->grad =
  12750. ggml_add_or_set(ctx,
  12751. src1->grad,
  12752. ggml_reshape(ctx,
  12753. ggml_cont(ctx, tensor_grad_view),
  12754. src1->grad),
  12755. zero_table);
  12756. }
  12757. } break;
  12758. case GGML_OP_CPY:
  12759. {
  12760. // necessary for llama
  12761. // cpy overwrites value of src1 by src0 and returns view(src1)
  12762. // the overwriting is mathematically equivalent to:
  12763. // tensor = src0 * 1 + src1 * 0
  12764. if (src0->grad) {
  12765. // dsrc0 = dtensor * 1
  12766. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12767. }
  12768. if (src1->grad) {
  12769. // dsrc1 = dtensor * 0 -> noop
  12770. }
  12771. } break;
  12772. case GGML_OP_CONT:
  12773. {
  12774. // same as cpy
  12775. if (src0->grad) {
  12776. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12777. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12778. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12779. }
  12780. } break;
  12781. case GGML_OP_RESHAPE:
  12782. {
  12783. // necessary for llama
  12784. if (src0->grad) {
  12785. src0->grad =
  12786. ggml_add_or_set(ctx, src0->grad,
  12787. ggml_reshape(ctx,
  12788. ggml_is_contiguous(tensor->grad)
  12789. ? tensor->grad
  12790. : ggml_cont(ctx, tensor->grad),
  12791. src0->grad),
  12792. zero_table);
  12793. }
  12794. } break;
  12795. case GGML_OP_VIEW:
  12796. {
  12797. // necessary for llama
  12798. if (src0->grad) {
  12799. size_t offset;
  12800. memcpy(&offset, tensor->op_params, sizeof(offset));
  12801. size_t nb1 = tensor->nb[1];
  12802. size_t nb2 = tensor->nb[2];
  12803. size_t nb3 = tensor->nb[3];
  12804. if (src0->type != src0->grad->type) {
  12805. // gradient is typically F32, but src0 could be other type
  12806. size_t ng = ggml_element_size(src0->grad);
  12807. size_t n0 = ggml_element_size(src0);
  12808. GGML_ASSERT(offset % n0 == 0);
  12809. GGML_ASSERT(nb1 % n0 == 0);
  12810. GGML_ASSERT(nb2 % n0 == 0);
  12811. GGML_ASSERT(nb3 % n0 == 0);
  12812. offset = (offset / n0) * ng;
  12813. nb1 = (nb1 / n0) * ng;
  12814. nb2 = (nb2 / n0) * ng;
  12815. nb3 = (nb3 / n0) * ng;
  12816. }
  12817. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12818. }
  12819. } break;
  12820. case GGML_OP_PERMUTE:
  12821. {
  12822. // necessary for llama
  12823. if (src0->grad) {
  12824. int32_t * axes = (int32_t *) tensor->op_params;
  12825. int axis0 = axes[0] & 0x3;
  12826. int axis1 = axes[1] & 0x3;
  12827. int axis2 = axes[2] & 0x3;
  12828. int axis3 = axes[3] & 0x3;
  12829. int axes_backward[4] = {0,0,0,0};
  12830. axes_backward[axis0] = 0;
  12831. axes_backward[axis1] = 1;
  12832. axes_backward[axis2] = 2;
  12833. axes_backward[axis3] = 3;
  12834. src0->grad =
  12835. ggml_add_or_set(ctx, src0->grad,
  12836. ggml_permute(ctx,
  12837. tensor->grad,
  12838. axes_backward[0],
  12839. axes_backward[1],
  12840. axes_backward[2],
  12841. axes_backward[3]),
  12842. zero_table);
  12843. }
  12844. } break;
  12845. case GGML_OP_TRANSPOSE:
  12846. {
  12847. // necessary for llama
  12848. if (src0->grad) {
  12849. src0->grad =
  12850. ggml_add_or_set(ctx, src0->grad,
  12851. ggml_transpose(ctx, tensor->grad),
  12852. zero_table);
  12853. }
  12854. } break;
  12855. case GGML_OP_GET_ROWS:
  12856. {
  12857. // necessary for llama (only for tokenizer)
  12858. if (src0->grad) {
  12859. src0->grad =
  12860. ggml_add_or_set(ctx, src0->grad,
  12861. // last ggml_get_rows_back argument src0->grad is only
  12862. // necessary to setup correct output shape
  12863. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12864. zero_table);
  12865. }
  12866. if (src1->grad) {
  12867. // noop
  12868. }
  12869. } break;
  12870. case GGML_OP_GET_ROWS_BACK:
  12871. {
  12872. GGML_ASSERT(false); // TODO: not implemented
  12873. } break;
  12874. case GGML_OP_DIAG:
  12875. {
  12876. GGML_ASSERT(false); // TODO: not implemented
  12877. } break;
  12878. case GGML_OP_DIAG_MASK_INF:
  12879. {
  12880. // necessary for llama
  12881. if (src0->grad) {
  12882. const int n_past = ((int32_t *) tensor->op_params)[0];
  12883. src0->grad =
  12884. ggml_add_or_set(ctx, src0->grad,
  12885. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12886. zero_table);
  12887. }
  12888. } break;
  12889. case GGML_OP_DIAG_MASK_ZERO:
  12890. {
  12891. // necessary for llama
  12892. if (src0->grad) {
  12893. const int n_past = ((int32_t *) tensor->op_params)[0];
  12894. src0->grad =
  12895. ggml_add_or_set(ctx, src0->grad,
  12896. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12897. zero_table);
  12898. }
  12899. } break;
  12900. case GGML_OP_SOFT_MAX:
  12901. {
  12902. // necessary for llama
  12903. if (src0->grad) {
  12904. src0->grad =
  12905. ggml_add_or_set(ctx, src0->grad,
  12906. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12907. zero_table);
  12908. }
  12909. } break;
  12910. case GGML_OP_SOFT_MAX_BACK:
  12911. {
  12912. GGML_ASSERT(false); // TODO: not implemented
  12913. } break;
  12914. case GGML_OP_ROPE:
  12915. {
  12916. // necessary for llama
  12917. if (src0->grad) {
  12918. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12919. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12920. const int mode = ((int32_t *) tensor->op_params)[2];
  12921. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12922. float freq_base;
  12923. float freq_scale;
  12924. float xpos_base;
  12925. bool xpos_down;
  12926. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12927. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12928. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12929. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12930. src0->grad = ggml_add_or_set(ctx,
  12931. src0->grad,
  12932. ggml_rope_back(ctx,
  12933. tensor->grad,
  12934. src1,
  12935. n_dims,
  12936. mode,
  12937. n_ctx,
  12938. freq_base,
  12939. freq_scale,
  12940. xpos_base,
  12941. xpos_down),
  12942. zero_table);
  12943. }
  12944. } break;
  12945. case GGML_OP_ROPE_BACK:
  12946. {
  12947. if (src0->grad) {
  12948. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12949. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12950. const int mode = ((int32_t *) tensor->op_params)[2];
  12951. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12952. float freq_base;
  12953. float freq_scale;
  12954. float xpos_base;
  12955. bool xpos_down;
  12956. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12957. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12958. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12959. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12960. src0->grad = ggml_add_or_set(ctx,
  12961. src0->grad,
  12962. ggml_rope_impl(ctx,
  12963. tensor->grad,
  12964. src1,
  12965. n_dims,
  12966. mode,
  12967. n_ctx,
  12968. freq_base,
  12969. freq_scale,
  12970. xpos_base,
  12971. xpos_down,
  12972. false),
  12973. zero_table);
  12974. }
  12975. } break;
  12976. case GGML_OP_ALIBI:
  12977. {
  12978. GGML_ASSERT(false); // TODO: not implemented
  12979. } break;
  12980. case GGML_OP_CLAMP:
  12981. {
  12982. GGML_ASSERT(false); // TODO: not implemented
  12983. } break;
  12984. case GGML_OP_CONV_1D:
  12985. {
  12986. GGML_ASSERT(false); // TODO: not implemented
  12987. } break;
  12988. case GGML_OP_CONV_1D_STAGE_0:
  12989. {
  12990. GGML_ASSERT(false); // TODO: not implemented
  12991. } break;
  12992. case GGML_OP_CONV_1D_STAGE_1:
  12993. {
  12994. GGML_ASSERT(false); // TODO: not implemented
  12995. } break;
  12996. case GGML_OP_CONV_TRANSPOSE_1D:
  12997. {
  12998. GGML_ASSERT(false); // TODO: not implemented
  12999. } break;
  13000. case GGML_OP_CONV_2D:
  13001. {
  13002. GGML_ASSERT(false); // TODO: not implemented
  13003. } break;
  13004. case GGML_OP_CONV_2D_STAGE_0:
  13005. {
  13006. GGML_ASSERT(false); // TODO: not implemented
  13007. } break;
  13008. case GGML_OP_CONV_2D_STAGE_1:
  13009. {
  13010. GGML_ASSERT(false); // TODO: not implemented
  13011. } break;
  13012. case GGML_OP_CONV_TRANSPOSE_2D:
  13013. {
  13014. GGML_ASSERT(false); // TODO: not implemented
  13015. } break;
  13016. case GGML_OP_POOL_1D:
  13017. {
  13018. GGML_ASSERT(false); // TODO: not implemented
  13019. } break;
  13020. case GGML_OP_POOL_2D:
  13021. {
  13022. GGML_ASSERT(false); // TODO: not implemented
  13023. } break;
  13024. case GGML_OP_UPSCALE:
  13025. {
  13026. GGML_ASSERT(false); // TODO: not implemented
  13027. } break;
  13028. case GGML_OP_FLASH_ATTN:
  13029. {
  13030. struct ggml_tensor * flash_grad = NULL;
  13031. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13032. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13033. GGML_ASSERT(t == 0 || t == 1);
  13034. bool masked = t != 0;
  13035. flash_grad =
  13036. ggml_flash_attn_back(ctx,
  13037. src0,
  13038. src1,
  13039. tensor->src[2],
  13040. tensor->grad,
  13041. masked);
  13042. }
  13043. struct ggml_tensor * src2 = tensor->src[2];
  13044. const int64_t elem_q = ggml_nelements(src0);
  13045. const int64_t elem_k = ggml_nelements(src1);
  13046. const int64_t elem_v = ggml_nelements(src2);
  13047. enum ggml_type result_type = flash_grad->type;
  13048. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13049. const size_t tsize = ggml_type_size(result_type);
  13050. const size_t offs_q = 0;
  13051. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13052. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13053. if (src0->grad) {
  13054. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13055. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13056. src0->grad = ggml_add_or_set(ctx,
  13057. src0->grad,
  13058. grad_q,
  13059. zero_table);
  13060. }
  13061. if (src1->grad) {
  13062. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13063. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13064. src1->grad = ggml_add_or_set(ctx,
  13065. src1->grad,
  13066. grad_k,
  13067. zero_table);
  13068. }
  13069. if (src2->grad) {
  13070. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13071. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13072. src2->grad = ggml_add_or_set(ctx,
  13073. src2->grad,
  13074. grad_v,
  13075. zero_table);
  13076. }
  13077. } break;
  13078. case GGML_OP_FLASH_FF:
  13079. {
  13080. GGML_ASSERT(false); // not supported
  13081. } break;
  13082. case GGML_OP_FLASH_ATTN_BACK:
  13083. {
  13084. GGML_ASSERT(false); // not supported
  13085. } break;
  13086. case GGML_OP_WIN_PART:
  13087. case GGML_OP_WIN_UNPART:
  13088. case GGML_OP_UNARY:
  13089. {
  13090. switch (ggml_get_unary_op(tensor)) {
  13091. case GGML_UNARY_OP_ABS:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad =
  13095. ggml_add_or_set(ctx,
  13096. src0->grad,
  13097. ggml_mul(ctx,
  13098. ggml_sgn(ctx, src0),
  13099. tensor->grad),
  13100. zero_table);
  13101. }
  13102. } break;
  13103. case GGML_UNARY_OP_SGN:
  13104. {
  13105. if (src0->grad) {
  13106. // noop
  13107. }
  13108. } break;
  13109. case GGML_UNARY_OP_NEG:
  13110. {
  13111. if (src0->grad) {
  13112. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13113. }
  13114. } break;
  13115. case GGML_UNARY_OP_STEP:
  13116. {
  13117. if (src0->grad) {
  13118. // noop
  13119. }
  13120. } break;
  13121. case GGML_UNARY_OP_TANH:
  13122. {
  13123. GGML_ASSERT(false); // TODO: not implemented
  13124. } break;
  13125. case GGML_UNARY_OP_ELU:
  13126. {
  13127. GGML_ASSERT(false); // TODO: not implemented
  13128. } break;
  13129. case GGML_UNARY_OP_RELU:
  13130. {
  13131. if (src0->grad) {
  13132. src0->grad = ggml_add_or_set(ctx,
  13133. src0->grad,
  13134. ggml_mul(ctx,
  13135. ggml_step(ctx, src0),
  13136. tensor->grad),
  13137. zero_table);
  13138. }
  13139. } break;
  13140. case GGML_UNARY_OP_GELU:
  13141. {
  13142. GGML_ASSERT(false); // TODO: not implemented
  13143. } break;
  13144. case GGML_UNARY_OP_GELU_QUICK:
  13145. {
  13146. GGML_ASSERT(false); // TODO: not implemented
  13147. } break;
  13148. case GGML_UNARY_OP_SILU:
  13149. {
  13150. // necessary for llama
  13151. if (src0->grad) {
  13152. src0->grad = ggml_add_or_set(ctx,
  13153. src0->grad,
  13154. ggml_silu_back(ctx, src0, tensor->grad),
  13155. zero_table);
  13156. }
  13157. } break;
  13158. default:
  13159. GGML_ASSERT(false);
  13160. }
  13161. } break;
  13162. case GGML_OP_GET_REL_POS:
  13163. case GGML_OP_ADD_REL_POS:
  13164. case GGML_OP_MAP_UNARY:
  13165. case GGML_OP_MAP_BINARY:
  13166. case GGML_OP_MAP_CUSTOM1_F32:
  13167. case GGML_OP_MAP_CUSTOM2_F32:
  13168. case GGML_OP_MAP_CUSTOM3_F32:
  13169. case GGML_OP_MAP_CUSTOM1:
  13170. case GGML_OP_MAP_CUSTOM2:
  13171. case GGML_OP_MAP_CUSTOM3:
  13172. {
  13173. GGML_ASSERT(false); // not supported
  13174. } break;
  13175. case GGML_OP_CROSS_ENTROPY_LOSS:
  13176. {
  13177. if (src0->grad) {
  13178. src0->grad = ggml_add_or_set(ctx,
  13179. src0->grad,
  13180. ggml_cross_entropy_loss_back(ctx,
  13181. src0,
  13182. src1,
  13183. tensor->grad),
  13184. zero_table);
  13185. }
  13186. } break;
  13187. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13188. {
  13189. GGML_ASSERT(false); // not supported
  13190. } break;
  13191. case GGML_OP_NONE:
  13192. {
  13193. // nop
  13194. } break;
  13195. case GGML_OP_COUNT:
  13196. {
  13197. GGML_ASSERT(false);
  13198. } break;
  13199. }
  13200. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13201. if (tensor->src[i] && tensor->src[i]->grad) {
  13202. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13203. }
  13204. }
  13205. }
  13206. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13207. if (node->grad == NULL) {
  13208. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13209. // it can also happen during forward pass, if the user performs computations with constants
  13210. if (node->op != GGML_OP_NONE) {
  13211. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13212. }
  13213. }
  13214. // check if already visited
  13215. if (hash_insert(cgraph->visited_hash_table, node)) {
  13216. return;
  13217. }
  13218. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13219. const int k =
  13220. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13221. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13222. /* unknown order, just fall back to using i*/ i;
  13223. if (node->src[k]) {
  13224. ggml_visit_parents(cgraph, node->src[k]);
  13225. }
  13226. }
  13227. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13228. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13229. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13230. if (strlen(node->name) == 0) {
  13231. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13232. }
  13233. cgraph->leafs[cgraph->n_leafs] = node;
  13234. cgraph->n_leafs++;
  13235. } else {
  13236. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13237. if (strlen(node->name) == 0) {
  13238. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13239. }
  13240. cgraph->nodes[cgraph->n_nodes] = node;
  13241. cgraph->grads[cgraph->n_nodes] = node->grad;
  13242. cgraph->n_nodes++;
  13243. }
  13244. }
  13245. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13246. if (!expand) {
  13247. cgraph->n_nodes = 0;
  13248. cgraph->n_leafs = 0;
  13249. }
  13250. const int n0 = cgraph->n_nodes;
  13251. UNUSED(n0);
  13252. ggml_visit_parents(cgraph, tensor);
  13253. const int n_new = cgraph->n_nodes - n0;
  13254. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13255. if (n_new > 0) {
  13256. // the last added node should always be starting point
  13257. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13258. }
  13259. }
  13260. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13261. ggml_build_forward_impl(cgraph, tensor, true);
  13262. }
  13263. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13264. struct ggml_cgraph result = {
  13265. /*.n_nodes =*/ 0,
  13266. /*.n_leafs =*/ 0,
  13267. /*.nodes =*/ { NULL },
  13268. /*.grads =*/ { NULL },
  13269. /*.leafs =*/ { NULL },
  13270. /*.hash_table =*/ { NULL },
  13271. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13272. /*.perf_runs =*/ 0,
  13273. /*.perf_cycles =*/ 0,
  13274. /*.perf_time_us =*/ 0,
  13275. };
  13276. ggml_build_forward_impl(&result, tensor, false);
  13277. return result;
  13278. }
  13279. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13280. GGML_ASSERT(gf->n_nodes > 0);
  13281. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13282. if (keep) {
  13283. for (int i = 0; i < gf->n_nodes; i++) {
  13284. struct ggml_tensor * node = gf->nodes[i];
  13285. if (node->grad) {
  13286. node->grad = ggml_dup_tensor(ctx, node);
  13287. gf->grads[i] = node->grad;
  13288. }
  13289. }
  13290. }
  13291. // remember original gradients which start with zero values
  13292. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  13293. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  13294. for (int i = 0; i < gf->n_nodes; i++) {
  13295. if (gf->grads[i]) {
  13296. hash_insert(zero_table, gf->grads[i]);
  13297. }
  13298. }
  13299. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13300. struct ggml_tensor * node = gf->nodes[i];
  13301. // inplace operations to add gradients are not created by ggml_compute_backward
  13302. // use allocator to automatically make inplace operations
  13303. if (node->grad) {
  13304. ggml_compute_backward(ctx, node, zero_table);
  13305. }
  13306. }
  13307. for (int i = 0; i < gf->n_nodes; i++) {
  13308. struct ggml_tensor * node = gf->nodes[i];
  13309. if (node->is_param) {
  13310. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13311. ggml_build_forward_expand(gb, node->grad);
  13312. }
  13313. }
  13314. free(zero_table);
  13315. }
  13316. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13317. struct ggml_cgraph result = *gf;
  13318. ggml_build_backward_expand(ctx, gf, &result, keep);
  13319. return result;
  13320. }
  13321. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13322. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13323. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13324. *cgraph = (struct ggml_cgraph) {
  13325. /*.n_nodes =*/ 0,
  13326. /*.n_leafs =*/ 0,
  13327. /*.nodes =*/ { NULL },
  13328. /*.grads =*/ { NULL },
  13329. /*.leafs =*/ { NULL },
  13330. /*.hash_table =*/ { NULL },
  13331. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13332. /*.perf_runs =*/ 0,
  13333. /*.perf_cycles =*/ 0,
  13334. /*.perf_time_us =*/ 0,
  13335. };
  13336. return cgraph;
  13337. }
  13338. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13339. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13340. ggml_build_forward_impl(cgraph, tensor, false);
  13341. return cgraph;
  13342. }
  13343. size_t ggml_graph_overhead(void) {
  13344. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13345. }
  13346. //
  13347. // thread data
  13348. //
  13349. // synchronization is done via busy loops
  13350. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13351. //
  13352. #ifdef __APPLE__
  13353. //#include <os/lock.h>
  13354. //
  13355. //typedef os_unfair_lock ggml_lock_t;
  13356. //
  13357. //#define ggml_lock_init(x) UNUSED(x)
  13358. //#define ggml_lock_destroy(x) UNUSED(x)
  13359. //#define ggml_lock_lock os_unfair_lock_lock
  13360. //#define ggml_lock_unlock os_unfair_lock_unlock
  13361. //
  13362. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13363. typedef int ggml_lock_t;
  13364. #define ggml_lock_init(x) UNUSED(x)
  13365. #define ggml_lock_destroy(x) UNUSED(x)
  13366. #define ggml_lock_lock(x) UNUSED(x)
  13367. #define ggml_lock_unlock(x) UNUSED(x)
  13368. #define GGML_LOCK_INITIALIZER 0
  13369. typedef pthread_t ggml_thread_t;
  13370. #define ggml_thread_create pthread_create
  13371. #define ggml_thread_join pthread_join
  13372. #else
  13373. //typedef pthread_spinlock_t ggml_lock_t;
  13374. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13375. //#define ggml_lock_destroy pthread_spin_destroy
  13376. //#define ggml_lock_lock pthread_spin_lock
  13377. //#define ggml_lock_unlock pthread_spin_unlock
  13378. typedef int ggml_lock_t;
  13379. #define ggml_lock_init(x) UNUSED(x)
  13380. #define ggml_lock_destroy(x) UNUSED(x)
  13381. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13382. #define ggml_lock_lock(x) _mm_pause()
  13383. #else
  13384. #define ggml_lock_lock(x) UNUSED(x)
  13385. #endif
  13386. #define ggml_lock_unlock(x) UNUSED(x)
  13387. #define GGML_LOCK_INITIALIZER 0
  13388. typedef pthread_t ggml_thread_t;
  13389. #define ggml_thread_create pthread_create
  13390. #define ggml_thread_join pthread_join
  13391. #endif
  13392. // Android's libc implementation "bionic" does not support setting affinity
  13393. #if defined(__linux__) && !defined(__BIONIC__)
  13394. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13395. if (!ggml_is_numa()) {
  13396. return;
  13397. }
  13398. // run thread on node_num thread_n / (threads per node)
  13399. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13400. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13401. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13402. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13403. CPU_ZERO_S(setsize, cpus);
  13404. for (size_t i = 0; i < node->n_cpus; ++i) {
  13405. CPU_SET_S(node->cpus[i], setsize, cpus);
  13406. }
  13407. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13408. if (rv) {
  13409. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13410. strerror(rv));
  13411. }
  13412. CPU_FREE(cpus);
  13413. }
  13414. static void clear_numa_thread_affinity(void) {
  13415. if (!ggml_is_numa()) {
  13416. return;
  13417. }
  13418. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13419. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13420. CPU_ZERO_S(setsize, cpus);
  13421. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13422. CPU_SET_S(i, setsize, cpus);
  13423. }
  13424. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13425. if (rv) {
  13426. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13427. strerror(rv));
  13428. }
  13429. CPU_FREE(cpus);
  13430. }
  13431. #else
  13432. // TODO: Windows etc.
  13433. // (the linux implementation may also work on BSD, someone should test)
  13434. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13435. static void clear_numa_thread_affinity(void) {}
  13436. #endif
  13437. struct ggml_compute_state_shared {
  13438. const struct ggml_cgraph * cgraph;
  13439. const struct ggml_cplan * cplan;
  13440. int64_t perf_node_start_cycles;
  13441. int64_t perf_node_start_time_us;
  13442. const int n_threads;
  13443. // synchronization primitives
  13444. atomic_int n_active; // num active threads
  13445. atomic_int node_n; // active graph node
  13446. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13447. void * abort_callback_data;
  13448. };
  13449. struct ggml_compute_state {
  13450. ggml_thread_t thrd;
  13451. int ith;
  13452. struct ggml_compute_state_shared * shared;
  13453. };
  13454. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13455. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13456. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13457. node->perf_runs++;
  13458. node->perf_cycles += cycles_cur;
  13459. node->perf_time_us += time_us_cur;
  13460. }
  13461. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13462. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13463. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13464. const struct ggml_cplan * cplan = state->shared->cplan;
  13465. const int * n_tasks_arr = cplan->n_tasks;
  13466. const int n_threads = state->shared->n_threads;
  13467. set_numa_thread_affinity(state->ith, n_threads);
  13468. int node_n = -1;
  13469. while (true) {
  13470. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13471. state->shared->node_n += 1;
  13472. return (thread_ret_t) GGML_EXIT_ABORTED;
  13473. }
  13474. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13475. // all other threads are finished and spinning
  13476. // do finalize and init here so we don't have synchronize again
  13477. struct ggml_compute_params params = {
  13478. /*.type =*/ GGML_TASK_FINALIZE,
  13479. /*.ith =*/ 0,
  13480. /*.nth =*/ 0,
  13481. /*.wsize =*/ cplan->work_size,
  13482. /*.wdata =*/ cplan->work_data,
  13483. };
  13484. if (node_n != -1) {
  13485. /* FINALIZE */
  13486. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13487. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13488. params.nth = n_tasks_arr[node_n];
  13489. ggml_compute_forward(&params, node);
  13490. }
  13491. ggml_graph_compute_perf_stats_node(node, state->shared);
  13492. }
  13493. // distribute new work or execute it direct if 1T
  13494. while (++node_n < cgraph->n_nodes) {
  13495. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13496. struct ggml_tensor * node = cgraph->nodes[node_n];
  13497. const int n_tasks = n_tasks_arr[node_n];
  13498. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13499. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13500. params.nth = n_tasks;
  13501. /* INIT */
  13502. if (GGML_OP_HAS_INIT[node->op]) {
  13503. params.type = GGML_TASK_INIT;
  13504. ggml_compute_forward(&params, node);
  13505. }
  13506. if (n_tasks == 1) {
  13507. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13508. // they do something more efficient than spinning (?)
  13509. params.type = GGML_TASK_COMPUTE;
  13510. ggml_compute_forward(&params, node);
  13511. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13512. params.type = GGML_TASK_FINALIZE;
  13513. ggml_compute_forward(&params, node);
  13514. }
  13515. ggml_graph_compute_perf_stats_node(node, state->shared);
  13516. } else {
  13517. break;
  13518. }
  13519. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13520. break;
  13521. }
  13522. }
  13523. atomic_store(&state->shared->n_active, n_threads);
  13524. atomic_store(&state->shared->node_n, node_n);
  13525. } else {
  13526. // wait for other threads to finish
  13527. const int last = node_n;
  13528. while (true) {
  13529. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13530. // depending on the workload and the operating system.
  13531. // since it is not clear what is the best approach, it should potentially become user-configurable
  13532. // ref: https://github.com/ggerganov/ggml/issues/291
  13533. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13534. sched_yield();
  13535. #endif
  13536. node_n = atomic_load(&state->shared->node_n);
  13537. if (node_n != last) break;
  13538. };
  13539. }
  13540. // check if we should stop
  13541. if (node_n >= cgraph->n_nodes) break;
  13542. /* COMPUTE */
  13543. struct ggml_tensor * node = cgraph->nodes[node_n];
  13544. const int n_tasks = n_tasks_arr[node_n];
  13545. struct ggml_compute_params params = {
  13546. /*.type =*/ GGML_TASK_COMPUTE,
  13547. /*.ith =*/ state->ith,
  13548. /*.nth =*/ n_tasks,
  13549. /*.wsize =*/ cplan->work_size,
  13550. /*.wdata =*/ cplan->work_data,
  13551. };
  13552. if (state->ith < n_tasks) {
  13553. ggml_compute_forward(&params, node);
  13554. }
  13555. }
  13556. return GGML_EXIT_SUCCESS;
  13557. }
  13558. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13559. if (n_threads <= 0) {
  13560. n_threads = GGML_DEFAULT_N_THREADS;
  13561. }
  13562. size_t work_size = 0;
  13563. struct ggml_cplan cplan;
  13564. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13565. // thread scheduling for the different operations + work buffer size estimation
  13566. for (int i = 0; i < cgraph->n_nodes; i++) {
  13567. int n_tasks = 1;
  13568. struct ggml_tensor * node = cgraph->nodes[i];
  13569. switch (node->op) {
  13570. case GGML_OP_CPY:
  13571. case GGML_OP_DUP:
  13572. {
  13573. n_tasks = n_threads;
  13574. size_t cur = 0;
  13575. if (ggml_is_quantized(node->type)) {
  13576. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13577. }
  13578. work_size = MAX(work_size, cur);
  13579. } break;
  13580. case GGML_OP_ADD:
  13581. case GGML_OP_ADD1:
  13582. {
  13583. n_tasks = n_threads;
  13584. size_t cur = 0;
  13585. if (ggml_is_quantized(node->src[0]->type)) {
  13586. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13587. }
  13588. work_size = MAX(work_size, cur);
  13589. } break;
  13590. case GGML_OP_ACC:
  13591. {
  13592. n_tasks = n_threads;
  13593. size_t cur = 0;
  13594. if (ggml_is_quantized(node->src[0]->type)) {
  13595. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13596. }
  13597. work_size = MAX(work_size, cur);
  13598. } break;
  13599. case GGML_OP_SUB:
  13600. case GGML_OP_DIV:
  13601. case GGML_OP_SQR:
  13602. case GGML_OP_SQRT:
  13603. case GGML_OP_LOG:
  13604. case GGML_OP_SUM:
  13605. case GGML_OP_SUM_ROWS:
  13606. case GGML_OP_MEAN:
  13607. case GGML_OP_ARGMAX:
  13608. case GGML_OP_REPEAT:
  13609. case GGML_OP_REPEAT_BACK:
  13610. {
  13611. n_tasks = 1;
  13612. } break;
  13613. case GGML_OP_UNARY:
  13614. {
  13615. switch (ggml_get_unary_op(node)) {
  13616. case GGML_UNARY_OP_ABS:
  13617. case GGML_UNARY_OP_SGN:
  13618. case GGML_UNARY_OP_NEG:
  13619. case GGML_UNARY_OP_STEP:
  13620. case GGML_UNARY_OP_TANH:
  13621. case GGML_UNARY_OP_ELU:
  13622. case GGML_UNARY_OP_RELU:
  13623. {
  13624. n_tasks = 1;
  13625. } break;
  13626. case GGML_UNARY_OP_GELU:
  13627. case GGML_UNARY_OP_GELU_QUICK:
  13628. case GGML_UNARY_OP_SILU:
  13629. {
  13630. n_tasks = n_threads;
  13631. } break;
  13632. }
  13633. } break;
  13634. case GGML_OP_SILU_BACK:
  13635. case GGML_OP_MUL:
  13636. case GGML_OP_NORM:
  13637. case GGML_OP_RMS_NORM:
  13638. case GGML_OP_RMS_NORM_BACK:
  13639. case GGML_OP_GROUP_NORM:
  13640. {
  13641. n_tasks = n_threads;
  13642. } break;
  13643. case GGML_OP_CONCAT:
  13644. case GGML_OP_MUL_MAT:
  13645. {
  13646. n_tasks = n_threads;
  13647. // TODO: use different scheduling for different matrix sizes
  13648. //const int nr0 = ggml_nrows(node->src[0]);
  13649. //const int nr1 = ggml_nrows(node->src[1]);
  13650. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13651. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13652. size_t cur = 0;
  13653. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13654. #if defined(GGML_USE_CUBLAS)
  13655. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13656. n_tasks = 1; // TODO: this actually is doing nothing
  13657. // the threads are still spinning
  13658. } else
  13659. #elif defined(GGML_USE_CLBLAST)
  13660. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13661. n_tasks = 1; // TODO: this actually is doing nothing
  13662. // the threads are still spinning
  13663. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13664. } else
  13665. #endif
  13666. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13667. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13668. n_tasks = 1; // TODO: this actually is doing nothing
  13669. // the threads are still spinning
  13670. if (node->src[0]->type != GGML_TYPE_F32) {
  13671. // here we need memory just for single 2D matrix from src0
  13672. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13673. }
  13674. } else
  13675. #endif
  13676. if (node->src[1]->type != vec_dot_type) {
  13677. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13678. } else {
  13679. cur = 0;
  13680. }
  13681. work_size = MAX(work_size, cur);
  13682. } break;
  13683. case GGML_OP_OUT_PROD:
  13684. {
  13685. n_tasks = n_threads;
  13686. size_t cur = 0;
  13687. if (ggml_is_quantized(node->src[0]->type)) {
  13688. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13689. }
  13690. work_size = MAX(work_size, cur);
  13691. } break;
  13692. case GGML_OP_SCALE:
  13693. {
  13694. n_tasks = 1;
  13695. } break;
  13696. case GGML_OP_SET:
  13697. case GGML_OP_CONT:
  13698. case GGML_OP_RESHAPE:
  13699. case GGML_OP_VIEW:
  13700. case GGML_OP_PERMUTE:
  13701. case GGML_OP_TRANSPOSE:
  13702. case GGML_OP_GET_ROWS:
  13703. case GGML_OP_GET_ROWS_BACK:
  13704. case GGML_OP_DIAG:
  13705. {
  13706. n_tasks = 1;
  13707. } break;
  13708. case GGML_OP_DIAG_MASK_ZERO:
  13709. case GGML_OP_DIAG_MASK_INF:
  13710. case GGML_OP_SOFT_MAX:
  13711. case GGML_OP_SOFT_MAX_BACK:
  13712. case GGML_OP_ROPE:
  13713. case GGML_OP_ROPE_BACK:
  13714. case GGML_OP_ADD_REL_POS:
  13715. {
  13716. n_tasks = n_threads;
  13717. } break;
  13718. case GGML_OP_ALIBI:
  13719. {
  13720. n_tasks = 1; //TODO
  13721. } break;
  13722. case GGML_OP_CLAMP:
  13723. {
  13724. n_tasks = 1; //TODO
  13725. } break;
  13726. case GGML_OP_CONV_1D:
  13727. {
  13728. n_tasks = n_threads;
  13729. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13730. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13731. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13732. const int64_t ne00 = node->src[0]->ne[0];
  13733. const int64_t ne01 = node->src[0]->ne[1];
  13734. const int64_t ne02 = node->src[0]->ne[2];
  13735. const int64_t ne10 = node->src[1]->ne[0];
  13736. const int64_t ne11 = node->src[1]->ne[1];
  13737. const int64_t ne0 = node->ne[0];
  13738. const int64_t ne1 = node->ne[1];
  13739. const int64_t nk = ne00;
  13740. const int64_t ew0 = nk * ne01;
  13741. UNUSED(ne02);
  13742. UNUSED(ne10);
  13743. UNUSED(ne11);
  13744. size_t cur = 0;
  13745. if (node->src[0]->type == GGML_TYPE_F16 &&
  13746. node->src[1]->type == GGML_TYPE_F32) {
  13747. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13748. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13749. node->src[1]->type == GGML_TYPE_F32) {
  13750. cur = sizeof(float)*(ne0*ne1*ew0);
  13751. } else {
  13752. GGML_ASSERT(false);
  13753. }
  13754. work_size = MAX(work_size, cur);
  13755. } break;
  13756. case GGML_OP_CONV_1D_STAGE_0:
  13757. {
  13758. n_tasks = n_threads;
  13759. } break;
  13760. case GGML_OP_CONV_1D_STAGE_1:
  13761. {
  13762. n_tasks = n_threads;
  13763. } break;
  13764. case GGML_OP_CONV_TRANSPOSE_1D:
  13765. {
  13766. n_tasks = n_threads;
  13767. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13768. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13769. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13770. const int64_t ne00 = node->src[0]->ne[0]; // K
  13771. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13772. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13773. const int64_t ne10 = node->src[1]->ne[0]; // L
  13774. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13775. size_t cur = 0;
  13776. if (node->src[0]->type == GGML_TYPE_F16 &&
  13777. node->src[1]->type == GGML_TYPE_F32) {
  13778. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13779. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13780. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13781. node->src[1]->type == GGML_TYPE_F32) {
  13782. cur += sizeof(float)*ne00*ne01*ne02;
  13783. cur += sizeof(float)*ne10*ne11;
  13784. } else {
  13785. GGML_ASSERT(false);
  13786. }
  13787. work_size = MAX(work_size, cur);
  13788. } break;
  13789. case GGML_OP_CONV_2D:
  13790. {
  13791. n_tasks = n_threads;
  13792. const int64_t ne00 = node->src[0]->ne[0]; // W
  13793. const int64_t ne01 = node->src[0]->ne[1]; // H
  13794. const int64_t ne02 = node->src[0]->ne[2]; // C
  13795. const int64_t ne03 = node->src[0]->ne[3]; // N
  13796. const int64_t ne10 = node->src[1]->ne[0]; // W
  13797. const int64_t ne11 = node->src[1]->ne[1]; // H
  13798. const int64_t ne12 = node->src[1]->ne[2]; // C
  13799. const int64_t ne0 = node->ne[0];
  13800. const int64_t ne1 = node->ne[1];
  13801. const int64_t ne2 = node->ne[2];
  13802. const int64_t ne3 = node->ne[3];
  13803. const int64_t nk = ne00*ne01;
  13804. const int64_t ew0 = nk * ne02;
  13805. UNUSED(ne03);
  13806. UNUSED(ne2);
  13807. size_t cur = 0;
  13808. if (node->src[0]->type == GGML_TYPE_F16 &&
  13809. node->src[1]->type == GGML_TYPE_F32) {
  13810. // im2col: [N*OH*OW, IC*KH*KW]
  13811. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13812. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13813. node->src[1]->type == GGML_TYPE_F32) {
  13814. cur = sizeof(float)* (ne10*ne11*ne12);
  13815. } else {
  13816. GGML_ASSERT(false);
  13817. }
  13818. work_size = MAX(work_size, cur);
  13819. } break;
  13820. case GGML_OP_CONV_2D_STAGE_0:
  13821. {
  13822. n_tasks = n_threads;
  13823. } break;
  13824. case GGML_OP_CONV_2D_STAGE_1:
  13825. {
  13826. n_tasks = n_threads;
  13827. } break;
  13828. case GGML_OP_CONV_TRANSPOSE_2D:
  13829. {
  13830. n_tasks = n_threads;
  13831. const int64_t ne00 = node->src[0]->ne[0]; // W
  13832. const int64_t ne01 = node->src[0]->ne[1]; // H
  13833. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13834. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13835. const int64_t ne10 = node->src[1]->ne[0]; // W
  13836. const int64_t ne11 = node->src[1]->ne[1]; // H
  13837. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13838. size_t cur = 0;
  13839. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13840. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13841. work_size = MAX(work_size, cur);
  13842. } break;
  13843. case GGML_OP_POOL_1D:
  13844. case GGML_OP_POOL_2D:
  13845. {
  13846. n_tasks = 1;
  13847. } break;
  13848. case GGML_OP_UPSCALE:
  13849. {
  13850. n_tasks = n_threads;
  13851. } break;
  13852. case GGML_OP_FLASH_ATTN:
  13853. {
  13854. n_tasks = n_threads;
  13855. size_t cur = 0;
  13856. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13857. if (node->src[1]->type == GGML_TYPE_F32) {
  13858. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13859. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13860. }
  13861. if (node->src[1]->type == GGML_TYPE_F16) {
  13862. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13863. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13864. }
  13865. work_size = MAX(work_size, cur);
  13866. } break;
  13867. case GGML_OP_FLASH_FF:
  13868. {
  13869. n_tasks = n_threads;
  13870. size_t cur = 0;
  13871. if (node->src[1]->type == GGML_TYPE_F32) {
  13872. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13873. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13874. }
  13875. if (node->src[1]->type == GGML_TYPE_F16) {
  13876. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13877. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13878. }
  13879. work_size = MAX(work_size, cur);
  13880. } break;
  13881. case GGML_OP_FLASH_ATTN_BACK:
  13882. {
  13883. n_tasks = n_threads;
  13884. size_t cur = 0;
  13885. const int64_t D = node->src[0]->ne[0];
  13886. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13887. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13888. if (node->src[1]->type == GGML_TYPE_F32) {
  13889. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13890. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13891. }
  13892. if (node->src[1]->type == GGML_TYPE_F16) {
  13893. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13894. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13895. }
  13896. work_size = MAX(work_size, cur);
  13897. } break;
  13898. case GGML_OP_WIN_PART:
  13899. case GGML_OP_WIN_UNPART:
  13900. case GGML_OP_GET_REL_POS:
  13901. case GGML_OP_MAP_UNARY:
  13902. case GGML_OP_MAP_BINARY:
  13903. case GGML_OP_MAP_CUSTOM1_F32:
  13904. case GGML_OP_MAP_CUSTOM2_F32:
  13905. case GGML_OP_MAP_CUSTOM3_F32:
  13906. {
  13907. n_tasks = 1;
  13908. } break;
  13909. case GGML_OP_MAP_CUSTOM1:
  13910. {
  13911. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13912. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13913. n_tasks = n_threads;
  13914. } else {
  13915. n_tasks = MIN(p->n_tasks, n_threads);
  13916. }
  13917. } break;
  13918. case GGML_OP_MAP_CUSTOM2:
  13919. {
  13920. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13921. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13922. n_tasks = n_threads;
  13923. } else {
  13924. n_tasks = MIN(p->n_tasks, n_threads);
  13925. }
  13926. } break;
  13927. case GGML_OP_MAP_CUSTOM3:
  13928. {
  13929. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13930. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13931. n_tasks = n_threads;
  13932. } else {
  13933. n_tasks = MIN(p->n_tasks, n_threads);
  13934. }
  13935. } break;
  13936. case GGML_OP_CROSS_ENTROPY_LOSS:
  13937. {
  13938. n_tasks = n_threads;
  13939. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13940. work_size = MAX(work_size, cur);
  13941. } break;
  13942. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13943. {
  13944. n_tasks = n_threads;
  13945. } break;
  13946. case GGML_OP_NONE:
  13947. {
  13948. n_tasks = 1;
  13949. } break;
  13950. case GGML_OP_COUNT:
  13951. {
  13952. GGML_ASSERT(false);
  13953. } break;
  13954. }
  13955. cplan.n_tasks[i] = n_tasks;
  13956. }
  13957. if (work_size > 0) {
  13958. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13959. }
  13960. cplan.n_threads = n_threads;
  13961. cplan.work_size = work_size;
  13962. cplan.work_data = NULL;
  13963. return cplan;
  13964. }
  13965. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13966. {
  13967. GGML_ASSERT(cplan);
  13968. GGML_ASSERT(cplan->n_threads > 0);
  13969. if (cplan->work_size > 0) {
  13970. GGML_ASSERT(cplan->work_data);
  13971. }
  13972. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13973. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13974. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13975. }
  13976. }
  13977. }
  13978. const int n_threads = cplan->n_threads;
  13979. struct ggml_compute_state_shared state_shared = {
  13980. /*.cgraph =*/ cgraph,
  13981. /*.cgraph_plan =*/ cplan,
  13982. /*.perf_node_start_cycles =*/ 0,
  13983. /*.perf_node_start_time_us =*/ 0,
  13984. /*.n_threads =*/ n_threads,
  13985. /*.n_active =*/ n_threads,
  13986. /*.node_n =*/ -1,
  13987. /*.abort_callback =*/ NULL,
  13988. /*.abort_callback_data =*/ NULL,
  13989. };
  13990. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13991. // create thread pool
  13992. if (n_threads > 1) {
  13993. for (int j = 1; j < n_threads; ++j) {
  13994. workers[j] = (struct ggml_compute_state) {
  13995. .thrd = 0,
  13996. .ith = j,
  13997. .shared = &state_shared,
  13998. };
  13999. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14000. GGML_ASSERT(rc == 0);
  14001. UNUSED(rc);
  14002. }
  14003. }
  14004. workers[0].ith = 0;
  14005. workers[0].shared = &state_shared;
  14006. const int64_t perf_start_cycles = ggml_perf_cycles();
  14007. const int64_t perf_start_time_us = ggml_perf_time_us();
  14008. // this is a work thread too
  14009. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14010. // don't leave affinity set on the main thread
  14011. clear_numa_thread_affinity();
  14012. // join or kill thread pool
  14013. if (n_threads > 1) {
  14014. for (int j = 1; j < n_threads; j++) {
  14015. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14016. GGML_ASSERT(rc == 0);
  14017. }
  14018. }
  14019. // performance stats (graph)
  14020. {
  14021. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14022. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14023. cgraph->perf_runs++;
  14024. cgraph->perf_cycles += perf_cycles_cur;
  14025. cgraph->perf_time_us += perf_time_us_cur;
  14026. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14027. __func__, cgraph->perf_runs,
  14028. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14029. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14030. (double) perf_time_us_cur / 1000.0,
  14031. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14032. }
  14033. return compute_status;
  14034. }
  14035. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14036. for (int i = 0; i < cgraph->n_nodes; i++) {
  14037. struct ggml_tensor * grad = cgraph->grads[i];
  14038. if (grad) {
  14039. ggml_set_zero(grad);
  14040. }
  14041. }
  14042. }
  14043. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14044. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14045. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14046. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14047. ggml_graph_compute(cgraph, &cplan);
  14048. }
  14049. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14050. for (int i = 0; i < cgraph->n_leafs; i++) {
  14051. struct ggml_tensor * leaf = cgraph->leafs[i];
  14052. if (strcmp(leaf->name, name) == 0) {
  14053. return leaf;
  14054. }
  14055. }
  14056. for (int i = 0; i < cgraph->n_nodes; i++) {
  14057. struct ggml_tensor * node = cgraph->nodes[i];
  14058. if (strcmp(node->name, name) == 0) {
  14059. return node;
  14060. }
  14061. }
  14062. return NULL;
  14063. }
  14064. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14065. const int64_t * ne = tensor->ne;
  14066. const size_t * nb = tensor->nb;
  14067. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14068. ggml_type_name(tensor->type),
  14069. ggml_op_name (tensor->op),
  14070. tensor->n_dims,
  14071. ne[0], ne[1], ne[2], ne[3],
  14072. nb[0], nb[1], nb[2], nb[3],
  14073. tensor->data,
  14074. tensor->name);
  14075. }
  14076. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14077. const int64_t * ne = tensor->ne;
  14078. const size_t * nb = tensor->nb;
  14079. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14080. arg,
  14081. ggml_type_name(tensor->type),
  14082. ggml_op_name (tensor->op),
  14083. tensor->n_dims,
  14084. ne[0], ne[1], ne[2], ne[3],
  14085. nb[0], nb[1], nb[2], nb[3],
  14086. tensor->data,
  14087. tensor->name);
  14088. }
  14089. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14090. uint64_t size_eval = 0;
  14091. // compute size of intermediate results
  14092. // TODO: does not take into account scratch buffers !!!!
  14093. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14094. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14095. }
  14096. // print
  14097. {
  14098. FILE * fout = stdout;
  14099. fprintf(fout, "\n");
  14100. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14101. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14102. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14103. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14104. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14105. // header
  14106. fprintf(fout, "\n");
  14107. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14108. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14109. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14110. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14111. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14112. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14113. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14114. }
  14115. // header
  14116. fprintf(fout, "\n");
  14117. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14118. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14119. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14120. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14121. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14122. if (cgraph->nodes[i]->src[j]) {
  14123. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14124. }
  14125. }
  14126. fprintf(fout, "\n");
  14127. }
  14128. fprintf(fout, "\n");
  14129. }
  14130. // write binary data
  14131. {
  14132. FILE * fout = fopen(fname, "wb");
  14133. if (!fout) {
  14134. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14135. return;
  14136. }
  14137. // header
  14138. {
  14139. const uint32_t magic = GGML_FILE_MAGIC;
  14140. const uint32_t version = GGML_FILE_VERSION;
  14141. const uint32_t n_leafs = cgraph->n_leafs;
  14142. const uint32_t nodes = cgraph->n_nodes;
  14143. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14144. fwrite(&version, sizeof(uint32_t), 1, fout);
  14145. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14146. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14147. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14148. }
  14149. // leafs
  14150. {
  14151. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14152. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14153. const uint32_t type = tensor->type;
  14154. const uint32_t op = tensor->op;
  14155. const uint32_t n_dims = tensor->n_dims;
  14156. fwrite(&type, sizeof(uint32_t), 1, fout);
  14157. fwrite(&op, sizeof(uint32_t), 1, fout);
  14158. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14159. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14160. const uint64_t ne = tensor->ne[j];
  14161. const uint64_t nb = tensor->nb[j];
  14162. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14163. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14164. }
  14165. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14166. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14167. // dump the data
  14168. // TODO: pad this to 32 byte boundary
  14169. {
  14170. const size_t size = ggml_nbytes(tensor);
  14171. fwrite(tensor->data, sizeof(char), size, fout);
  14172. }
  14173. }
  14174. }
  14175. // nodes
  14176. {
  14177. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14178. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14179. const uint32_t type = tensor->type;
  14180. const uint32_t op = tensor->op;
  14181. const uint32_t n_dims = tensor->n_dims;
  14182. fwrite(&type, sizeof(uint32_t), 1, fout);
  14183. fwrite(&op, sizeof(uint32_t), 1, fout);
  14184. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14185. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14186. const uint64_t ne = tensor->ne[j];
  14187. const uint64_t nb = tensor->nb[j];
  14188. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14189. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14190. }
  14191. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14192. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14193. // output the op arguments
  14194. {
  14195. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14196. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14197. args[j] = tensor->src[j];
  14198. }
  14199. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14200. if (args[j]) {
  14201. int32_t idx = -1;
  14202. // check if leaf
  14203. {
  14204. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14205. if (args[j] == cgraph->leafs[k]) {
  14206. idx = k;
  14207. break;
  14208. }
  14209. }
  14210. }
  14211. // check if node
  14212. if (idx == -1) {
  14213. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14214. if (args[j] == cgraph->nodes[k]) {
  14215. idx = GGML_MAX_NODES + k;
  14216. break;
  14217. }
  14218. }
  14219. }
  14220. if (idx == -1) {
  14221. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14222. fclose(fout);
  14223. return;
  14224. }
  14225. fwrite(&idx, sizeof(int32_t), 1, fout);
  14226. } else {
  14227. const int32_t nul = -1;
  14228. fwrite(&nul, sizeof(int32_t), 1, fout);
  14229. }
  14230. }
  14231. }
  14232. }
  14233. }
  14234. fclose(fout);
  14235. }
  14236. }
  14237. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14238. assert(*ctx_data == NULL);
  14239. assert(*ctx_eval == NULL);
  14240. struct ggml_cgraph result = { 0 };
  14241. struct ggml_tensor * data = NULL;
  14242. // read file into data
  14243. {
  14244. FILE * fin = fopen(fname, "rb");
  14245. if (!fin) {
  14246. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14247. return result;
  14248. }
  14249. size_t fsize = 0;
  14250. fseek(fin, 0, SEEK_END);
  14251. fsize = ftell(fin);
  14252. fseek(fin, 0, SEEK_SET);
  14253. // create the data context
  14254. {
  14255. const size_t overhead = 1*ggml_tensor_overhead();
  14256. struct ggml_init_params params = {
  14257. .mem_size = fsize + overhead,
  14258. .mem_buffer = NULL,
  14259. .no_alloc = false,
  14260. };
  14261. *ctx_data = ggml_init(params);
  14262. if (!*ctx_data) {
  14263. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14264. fclose(fin);
  14265. return result;
  14266. }
  14267. }
  14268. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14269. {
  14270. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14271. if (ret != fsize) {
  14272. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14273. fclose(fin);
  14274. return result;
  14275. }
  14276. }
  14277. fclose(fin);
  14278. }
  14279. // populate result
  14280. {
  14281. char * ptr = (char *) data->data;
  14282. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14283. if (magic != GGML_FILE_MAGIC) {
  14284. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14285. return result;
  14286. }
  14287. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14288. if (version != GGML_FILE_VERSION) {
  14289. fprintf(stderr, "%s: invalid version number\n", __func__);
  14290. return result;
  14291. }
  14292. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14293. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14294. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14295. result.n_leafs = n_leafs;
  14296. result.n_nodes = n_nodes;
  14297. // create the data context
  14298. {
  14299. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14300. struct ggml_init_params params = {
  14301. .mem_size = size_eval + overhead,
  14302. .mem_buffer = NULL,
  14303. .no_alloc = true,
  14304. };
  14305. *ctx_eval = ggml_init(params);
  14306. if (!*ctx_eval) {
  14307. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14308. return result;
  14309. }
  14310. }
  14311. // leafs
  14312. {
  14313. uint32_t type;
  14314. uint32_t op;
  14315. uint32_t n_dims;
  14316. for (uint32_t i = 0; i < n_leafs; ++i) {
  14317. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14318. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14319. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14320. int64_t ne[GGML_MAX_DIMS];
  14321. size_t nb[GGML_MAX_DIMS];
  14322. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14323. uint64_t ne_cur;
  14324. uint64_t nb_cur;
  14325. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14326. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14327. ne[j] = ne_cur;
  14328. nb[j] = nb_cur;
  14329. }
  14330. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14331. tensor->op = (enum ggml_op) op;
  14332. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14333. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14334. tensor->data = (void *) ptr;
  14335. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14336. tensor->nb[j] = nb[j];
  14337. }
  14338. result.leafs[i] = tensor;
  14339. ptr += ggml_nbytes(tensor);
  14340. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14341. }
  14342. }
  14343. ggml_set_no_alloc(*ctx_eval, false);
  14344. // nodes
  14345. {
  14346. uint32_t type;
  14347. uint32_t op;
  14348. uint32_t n_dims;
  14349. for (uint32_t i = 0; i < n_nodes; ++i) {
  14350. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14351. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14352. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14353. enum ggml_op eop = (enum ggml_op) op;
  14354. int64_t ne[GGML_MAX_DIMS];
  14355. size_t nb[GGML_MAX_DIMS];
  14356. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14357. uint64_t ne_cur;
  14358. uint64_t nb_cur;
  14359. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14360. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14361. ne[j] = ne_cur;
  14362. nb[j] = nb_cur;
  14363. }
  14364. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14365. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14366. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14367. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14368. // parse args
  14369. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14370. const int32_t arg_idx = ptr_arg_idx[j];
  14371. if (arg_idx == -1) {
  14372. continue;
  14373. }
  14374. if (arg_idx < GGML_MAX_NODES) {
  14375. args[j] = result.leafs[arg_idx];
  14376. } else {
  14377. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14378. }
  14379. }
  14380. // create the tensor
  14381. // "view" operations are handled differently
  14382. // TODO: handle inplace ops - currently a copy is always made
  14383. struct ggml_tensor * tensor = NULL;
  14384. switch (eop) {
  14385. // TODO: implement other view ops
  14386. case GGML_OP_RESHAPE:
  14387. {
  14388. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14389. } break;
  14390. case GGML_OP_VIEW:
  14391. {
  14392. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14393. size_t offs;
  14394. memcpy(&offs, ptr_op_params, sizeof(offs));
  14395. tensor->data = ((char *) tensor->data) + offs;
  14396. } break;
  14397. case GGML_OP_TRANSPOSE:
  14398. {
  14399. tensor = ggml_transpose(*ctx_eval, args[0]);
  14400. } break;
  14401. case GGML_OP_PERMUTE:
  14402. {
  14403. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14404. } break;
  14405. default:
  14406. {
  14407. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14408. tensor->op = eop;
  14409. } break;
  14410. }
  14411. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14412. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14413. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14414. tensor->nb[j] = nb[j];
  14415. }
  14416. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14417. tensor->src[j] = args[j];
  14418. }
  14419. result.nodes[i] = tensor;
  14420. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14421. }
  14422. }
  14423. }
  14424. return result;
  14425. }
  14426. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14427. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14428. GGML_PRINT("=== GRAPH ===\n");
  14429. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14430. for (int i = 0; i < cgraph->n_nodes; i++) {
  14431. struct ggml_tensor * node = cgraph->nodes[i];
  14432. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14433. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14434. i,
  14435. node->ne[0], node->ne[1], node->ne[2],
  14436. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14437. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14438. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14439. (double) node->perf_time_us / 1000.0,
  14440. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14441. }
  14442. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14443. for (int i = 0; i < cgraph->n_leafs; i++) {
  14444. struct ggml_tensor * node = cgraph->leafs[i];
  14445. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14446. i,
  14447. node->ne[0], node->ne[1],
  14448. ggml_op_name(node->op),
  14449. ggml_get_name(node));
  14450. }
  14451. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14452. if (perf_total_per_op_us[i] == 0) {
  14453. continue;
  14454. }
  14455. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14456. }
  14457. GGML_PRINT("========================================\n");
  14458. }
  14459. // check if node is part of the graph
  14460. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14461. if (cgraph == NULL) {
  14462. return true;
  14463. }
  14464. for (int i = 0; i < cgraph->n_nodes; i++) {
  14465. if (cgraph->nodes[i] == node) {
  14466. return true;
  14467. }
  14468. }
  14469. return false;
  14470. }
  14471. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14472. for (int i = 0; i < cgraph->n_nodes; i++) {
  14473. struct ggml_tensor * parent = cgraph->nodes[i];
  14474. if (parent->grad == node) {
  14475. return parent;
  14476. }
  14477. }
  14478. return NULL;
  14479. }
  14480. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14481. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14482. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14483. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14484. gparent0 ? (void *) gparent0 : (void *) parent,
  14485. gparent0 ? "g" : "x",
  14486. gparent ? (void *) gparent : (void *) node,
  14487. gparent ? "g" : "x",
  14488. gparent ? "empty" : "vee",
  14489. gparent ? "dashed" : "solid",
  14490. label);
  14491. }
  14492. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14493. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14494. (void *) parent, "x",
  14495. (void *) node, "x",
  14496. label);
  14497. }
  14498. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14499. char color[16];
  14500. FILE * fp = fopen(filename, "w");
  14501. GGML_ASSERT(fp);
  14502. fprintf(fp, "digraph G {\n");
  14503. fprintf(fp, " newrank = true;\n");
  14504. fprintf(fp, " rankdir = LR;\n");
  14505. for (int i = 0; i < gb->n_nodes; i++) {
  14506. struct ggml_tensor * node = gb->nodes[i];
  14507. if (ggml_graph_get_parent(gb, node) != NULL) {
  14508. continue;
  14509. }
  14510. if (node->is_param) {
  14511. snprintf(color, sizeof(color), "yellow");
  14512. } else if (node->grad) {
  14513. if (ggml_graph_find(gf, node)) {
  14514. snprintf(color, sizeof(color), "green");
  14515. } else {
  14516. snprintf(color, sizeof(color), "lightblue");
  14517. }
  14518. } else {
  14519. snprintf(color, sizeof(color), "white");
  14520. }
  14521. fprintf(fp, " \"%p\" [ "
  14522. "style = filled; fillcolor = %s; shape = record; "
  14523. "label=\"",
  14524. (void *) node, color);
  14525. if (strlen(node->name) > 0) {
  14526. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14527. } else {
  14528. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14529. }
  14530. if (node->n_dims == 2) {
  14531. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14532. } else {
  14533. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14534. }
  14535. if (node->grad) {
  14536. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14537. } else {
  14538. fprintf(fp, "\"; ]\n");
  14539. }
  14540. }
  14541. for (int i = 0; i < gb->n_leafs; i++) {
  14542. struct ggml_tensor * node = gb->leafs[i];
  14543. snprintf(color, sizeof(color), "pink");
  14544. fprintf(fp, " \"%p\" [ "
  14545. "style = filled; fillcolor = %s; shape = record; "
  14546. "label=\"<x>",
  14547. (void *) node, color);
  14548. if (strlen(node->name) > 0) {
  14549. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14550. } else {
  14551. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14552. }
  14553. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14554. if (ggml_nelements(node) < 5) {
  14555. fprintf(fp, " | (");
  14556. for (int j = 0; j < ggml_nelements(node); j++) {
  14557. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14558. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14559. }
  14560. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14561. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14562. }
  14563. else {
  14564. fprintf(fp, "#");
  14565. }
  14566. if (j < ggml_nelements(node) - 1) {
  14567. fprintf(fp, ", ");
  14568. }
  14569. }
  14570. fprintf(fp, ")");
  14571. }
  14572. fprintf(fp, "\"; ]\n");
  14573. }
  14574. for (int i = 0; i < gb->n_nodes; i++) {
  14575. struct ggml_tensor * node = gb->nodes[i];
  14576. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14577. if (node->src[j]) {
  14578. char label[16];
  14579. snprintf(label, sizeof(label), "src %d", j);
  14580. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14581. }
  14582. }
  14583. }
  14584. for (int i = 0; i < gb->n_leafs; i++) {
  14585. struct ggml_tensor * node = gb->leafs[i];
  14586. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14587. if (node->src[j]) {
  14588. char label[16];
  14589. snprintf(label, sizeof(label), "src %d", j);
  14590. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14591. }
  14592. }
  14593. }
  14594. fprintf(fp, "}\n");
  14595. fclose(fp);
  14596. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14597. }
  14598. ////////////////////////////////////////////////////////////////////////////////
  14599. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14600. int i = 0;
  14601. for (int p = 0; p < np; ++p) {
  14602. const int64_t ne = ggml_nelements(ps[p]) ;
  14603. // TODO: add function to set tensor from array
  14604. for (int64_t j = 0; j < ne; ++j) {
  14605. ggml_set_f32_1d(ps[p], j, x[i++]);
  14606. }
  14607. }
  14608. }
  14609. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14610. int i = 0;
  14611. for (int p = 0; p < np; ++p) {
  14612. const int64_t ne = ggml_nelements(ps[p]) ;
  14613. // TODO: add function to get all elements at once
  14614. for (int64_t j = 0; j < ne; ++j) {
  14615. x[i++] = ggml_get_f32_1d(ps[p], j);
  14616. }
  14617. }
  14618. }
  14619. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14620. int64_t i = 0;
  14621. for (int p = 0; p < np; ++p) {
  14622. const int64_t ne = ggml_nelements(ps[p]) ;
  14623. // TODO: add function to get all elements at once
  14624. for (int64_t j = 0; j < ne; ++j) {
  14625. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14626. }
  14627. }
  14628. }
  14629. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14630. int64_t i = 0;
  14631. for (int p = 0; p < np; ++p) {
  14632. const int64_t ne = ggml_nelements(ps[p]) ;
  14633. // TODO: add function to get all elements at once
  14634. for (int64_t j = 0; j < ne; ++j) {
  14635. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14636. }
  14637. }
  14638. }
  14639. //
  14640. // ADAM
  14641. //
  14642. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14643. //
  14644. static enum ggml_opt_result ggml_opt_adam(
  14645. struct ggml_context * ctx,
  14646. struct ggml_opt_context * opt,
  14647. struct ggml_opt_params params,
  14648. struct ggml_tensor * f,
  14649. struct ggml_cgraph * gf,
  14650. struct ggml_cgraph * gb,
  14651. ggml_opt_callback callback,
  14652. void * callback_data) {
  14653. GGML_ASSERT(ggml_is_scalar(f));
  14654. // these will store the parameters we want to optimize
  14655. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14656. int np = 0;
  14657. int64_t nx = 0;
  14658. for (int i = 0; i < gf->n_nodes; ++i) {
  14659. if (gf->nodes[i]->is_param) {
  14660. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14661. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14662. ps[np++] = gf->nodes[i];
  14663. nx += ggml_nelements(gf->nodes[i]);
  14664. }
  14665. }
  14666. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14667. int iter = opt->iter;
  14668. ggml_opt_init(opt->ctx, opt, params, nx);
  14669. opt->iter = iter;
  14670. }
  14671. // constants
  14672. float sched = params.adam.sched;
  14673. const float alpha = params.adam.alpha;
  14674. const float decay = params.adam.decay * alpha;
  14675. const float beta1 = params.adam.beta1;
  14676. const float beta2 = params.adam.beta2;
  14677. const float eps = params.adam.eps;
  14678. const float gclip = params.adam.gclip;
  14679. const int decay_min_ndim = params.adam.decay_min_ndim;
  14680. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14681. const float accum_norm = 1.0f / (float) n_accum;
  14682. float * g = opt->adam.g->data; // gradients
  14683. float * m = opt->adam.m->data; // first moment
  14684. float * v = opt->adam.v->data; // second moment
  14685. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14686. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14687. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14688. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14689. bool cancel = false;
  14690. // compute the function value
  14691. float fx = 0;
  14692. ggml_set_zero(opt->adam.g);
  14693. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14694. if (callback) {
  14695. callback(callback_data, accum_step, &sched, &cancel);
  14696. if (cancel) {
  14697. return GGML_OPT_CANCEL;
  14698. }
  14699. }
  14700. // ggml_graph_reset (gf);
  14701. ggml_set_f32 (f->grad, 1.0f);
  14702. ggml_graph_compute(gb, &cplan);
  14703. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14704. fx += ggml_get_f32_1d(f, 0);
  14705. }
  14706. fx *= accum_norm;
  14707. opt->adam.fx_prev = fx;
  14708. opt->adam.fx_best = opt->adam.fx_prev;
  14709. if (pf) {
  14710. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14711. }
  14712. opt->loss_before = opt->adam.fx_prev;
  14713. opt->loss_after = opt->adam.fx_prev;
  14714. // initialize
  14715. if (opt->just_initialized) {
  14716. opt->adam.n_no_improvement = 0;
  14717. opt->just_initialized = false;
  14718. }
  14719. float * fx_best = &opt->adam.fx_best;
  14720. float * fx_prev = &opt->adam.fx_prev;
  14721. int * n_no_improvement = &opt->adam.n_no_improvement;
  14722. int iter0 = opt->iter;
  14723. // run the optimizer
  14724. for (int t = 0; t < params.adam.n_iter; ++t) {
  14725. opt->iter = iter0 + t + 1;
  14726. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14727. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14728. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14729. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14730. for (int i = 0; i < np; ++i) {
  14731. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14732. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14733. }
  14734. const int64_t t_start_wall = ggml_time_us();
  14735. const int64_t t_start_cpu = ggml_cycles();
  14736. UNUSED(t_start_wall);
  14737. UNUSED(t_start_cpu);
  14738. {
  14739. float gnorm = 1.0f;
  14740. if (gclip > 0.0f) {
  14741. // gradient clipping
  14742. ggml_float sum = 0.0;
  14743. for (int64_t i = 0; i < nx; ++i) {
  14744. sum += (ggml_float)(g[i]*g[i]);
  14745. }
  14746. ggml_float norm = sqrt(sum);
  14747. if (norm > (ggml_float) gclip) {
  14748. gnorm = (float) ((ggml_float) gclip / norm);
  14749. }
  14750. }
  14751. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14752. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14753. int64_t i = 0;
  14754. for (int p = 0; p < np; ++p) {
  14755. const int64_t ne = ggml_nelements(ps[p]);
  14756. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14757. for (int64_t j = 0; j < ne; ++j) {
  14758. float x = ggml_get_f32_1d(ps[p], j);
  14759. float g_ = g[i]*gnorm;
  14760. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14761. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14762. float mh = m[i]*beta1h;
  14763. float vh = v[i]*beta2h;
  14764. vh = sqrtf(vh) + eps;
  14765. x = x*(1.0f - p_decay) - mh/vh;
  14766. ggml_set_f32_1d(ps[p], j, x);
  14767. ++i;
  14768. }
  14769. }
  14770. }
  14771. fx = 0;
  14772. ggml_set_zero(opt->adam.g);
  14773. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14774. if (callback) {
  14775. callback(callback_data, accum_step, &sched, &cancel);
  14776. if (cancel) {
  14777. return GGML_OPT_CANCEL;;
  14778. }
  14779. }
  14780. // ggml_graph_reset (gf);
  14781. ggml_set_f32 (f->grad, 1.0f);
  14782. ggml_graph_compute(gb, &cplan);
  14783. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14784. fx += ggml_get_f32_1d(f, 0);
  14785. }
  14786. fx *= accum_norm;
  14787. opt->loss_after = fx;
  14788. // check convergence
  14789. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14790. GGML_PRINT_DEBUG("converged\n");
  14791. return GGML_OPT_OK;
  14792. }
  14793. // delta-based convergence test
  14794. if (pf != NULL) {
  14795. // need at least params.past iterations to start checking for convergence
  14796. if (params.past <= iter0 + t) {
  14797. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14798. if (fabsf(rate) < params.delta) {
  14799. return GGML_OPT_OK;
  14800. }
  14801. }
  14802. pf[(iter0 + t)%params.past] = fx;
  14803. }
  14804. // check for improvement
  14805. if (params.max_no_improvement > 0) {
  14806. if (fx_best[0] > fx) {
  14807. fx_best[0] = fx;
  14808. n_no_improvement[0] = 0;
  14809. } else {
  14810. ++n_no_improvement[0];
  14811. if (n_no_improvement[0] >= params.max_no_improvement) {
  14812. return GGML_OPT_OK;
  14813. }
  14814. }
  14815. }
  14816. fx_prev[0] = fx;
  14817. {
  14818. const int64_t t_end_cpu = ggml_cycles();
  14819. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14820. UNUSED(t_end_cpu);
  14821. const int64_t t_end_wall = ggml_time_us();
  14822. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14823. UNUSED(t_end_wall);
  14824. }
  14825. }
  14826. return GGML_OPT_DID_NOT_CONVERGE;
  14827. }
  14828. //
  14829. // L-BFGS
  14830. //
  14831. // the L-BFGS implementation below is based on the following implementation:
  14832. //
  14833. // https://github.com/chokkan/liblbfgs
  14834. //
  14835. struct ggml_lbfgs_iteration_data {
  14836. float alpha;
  14837. float ys;
  14838. float * s;
  14839. float * y;
  14840. };
  14841. static enum ggml_opt_result linesearch_backtracking(
  14842. const struct ggml_opt_params * params,
  14843. int nx,
  14844. float * x,
  14845. float * fx,
  14846. float * g,
  14847. float * d,
  14848. float * step,
  14849. const float * xp,
  14850. struct ggml_tensor * f,
  14851. struct ggml_cgraph * gb,
  14852. struct ggml_cplan * cplan,
  14853. const int np,
  14854. struct ggml_tensor * ps[],
  14855. bool * cancel,
  14856. ggml_opt_callback callback,
  14857. void * callback_data) {
  14858. int count = 0;
  14859. float width = 0.0f;
  14860. float dg = 0.0f;
  14861. float finit = 0.0f;
  14862. float dginit = 0.0f;
  14863. float dgtest = 0.0f;
  14864. const float dec = 0.5f;
  14865. const float inc = 2.1f;
  14866. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14867. const float accum_norm = 1.0f / (float) n_accum;
  14868. if (*step <= 0.f) {
  14869. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14870. }
  14871. // compute the initial gradient in the search direction
  14872. ggml_vec_dot_f32(nx, &dginit, g, d);
  14873. // make sure that d points to a descent direction
  14874. if (0 < dginit) {
  14875. return GGML_LINESEARCH_FAIL;
  14876. }
  14877. // initialize local variables
  14878. finit = *fx;
  14879. dgtest = params->lbfgs.ftol*dginit;
  14880. while (true) {
  14881. ggml_vec_cpy_f32(nx, x, xp);
  14882. ggml_vec_mad_f32(nx, x, d, *step);
  14883. // evaluate the function and gradient values
  14884. {
  14885. ggml_opt_set_params(np, ps, x);
  14886. *fx = 0;
  14887. memset(g, 0, sizeof(float)*nx);
  14888. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14889. if (callback) {
  14890. // LBFG-S does not support learning rate -> ignore learning schedule
  14891. float sched = 0;
  14892. callback(callback_data, accum_step, &sched, cancel);
  14893. if (*cancel) {
  14894. return GGML_OPT_CANCEL;
  14895. }
  14896. }
  14897. // ggml_graph_reset (gf);
  14898. ggml_set_f32 (f->grad, 1.0f);
  14899. ggml_graph_compute(gb, cplan);
  14900. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14901. *fx += ggml_get_f32_1d(f, 0);
  14902. }
  14903. *fx *= accum_norm;
  14904. }
  14905. ++count;
  14906. if (*fx > finit + (*step)*dgtest) {
  14907. width = dec;
  14908. } else {
  14909. // Armijo condition is satisfied
  14910. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14911. return count;
  14912. }
  14913. ggml_vec_dot_f32(nx, &dg, g, d);
  14914. // check the Wolfe condition
  14915. if (dg < params->lbfgs.wolfe * dginit) {
  14916. width = inc;
  14917. } else {
  14918. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14919. // regular Wolfe conditions
  14920. return count;
  14921. }
  14922. if(dg > -params->lbfgs.wolfe*dginit) {
  14923. width = dec;
  14924. } else {
  14925. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14926. return count;
  14927. }
  14928. }
  14929. }
  14930. if (*step < params->lbfgs.min_step) {
  14931. return GGML_LINESEARCH_MINIMUM_STEP;
  14932. }
  14933. if (*step > params->lbfgs.max_step) {
  14934. return GGML_LINESEARCH_MAXIMUM_STEP;
  14935. }
  14936. if (params->lbfgs.max_linesearch <= count) {
  14937. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14938. }
  14939. (*step) *= width;
  14940. }
  14941. GGML_UNREACHABLE();
  14942. }
  14943. static enum ggml_opt_result ggml_opt_lbfgs(
  14944. struct ggml_context * ctx,
  14945. struct ggml_opt_context * opt,
  14946. struct ggml_opt_params params,
  14947. struct ggml_tensor * f,
  14948. struct ggml_cgraph * gf,
  14949. struct ggml_cgraph * gb,
  14950. ggml_opt_callback callback,
  14951. void * callback_data) {
  14952. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14953. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14954. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14955. return GGML_OPT_INVALID_WOLFE;
  14956. }
  14957. }
  14958. const int m = params.lbfgs.m;
  14959. // these will store the parameters we want to optimize
  14960. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14961. int np = 0;
  14962. int nx = 0;
  14963. for (int i = 0; i < gf->n_nodes; ++i) {
  14964. if (gf->nodes[i]->is_param) {
  14965. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14966. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14967. ps[np++] = gf->nodes[i];
  14968. nx += ggml_nelements(gf->nodes[i]);
  14969. }
  14970. }
  14971. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14972. int iter = opt->iter;
  14973. ggml_opt_init(ctx, opt, params, nx);
  14974. opt->iter = iter;
  14975. }
  14976. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14977. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14978. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14979. float * x = opt->lbfgs.x->data; // current parameters
  14980. float * xp = opt->lbfgs.xp->data; // previous parameters
  14981. float * g = opt->lbfgs.g->data; // current gradient
  14982. float * gp = opt->lbfgs.gp->data; // previous gradient
  14983. float * d = opt->lbfgs.d->data; // search direction
  14984. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14985. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14986. const float accum_norm = 1.0f / (float) n_accum;
  14987. float fx = 0.0f; // cost function value
  14988. float xnorm = 0.0f; // ||x||
  14989. float gnorm = 0.0f; // ||g||
  14990. // initialize x from the graph nodes
  14991. ggml_opt_get_params(np, ps, x);
  14992. // the L-BFGS memory
  14993. float * lm_alpha = opt->lbfgs.lmal->data;
  14994. float * lm_ys = opt->lbfgs.lmys->data;
  14995. float * lm_s = opt->lbfgs.lms->data;
  14996. float * lm_y = opt->lbfgs.lmy->data;
  14997. bool cancel = false;
  14998. // evaluate the function value and its gradient
  14999. {
  15000. ggml_opt_set_params(np, ps, x);
  15001. fx = 0;
  15002. memset(g, 0, sizeof(float)*nx);
  15003. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15004. if (callback) {
  15005. // LBFG-S does not support learning rate -> ignore learning schedule
  15006. float sched = 0;
  15007. callback(callback_data, accum_step, &sched, &cancel);
  15008. if (cancel) {
  15009. return GGML_OPT_CANCEL;
  15010. }
  15011. }
  15012. // ggml_graph_reset (gf);
  15013. ggml_set_f32 (f->grad, 1.0f);
  15014. ggml_graph_compute(gb, &cplan);
  15015. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15016. fx += ggml_get_f32_1d(f, 0);
  15017. }
  15018. fx *= accum_norm;
  15019. opt->loss_before = fx;
  15020. opt->loss_after = fx;
  15021. }
  15022. // search direction = -gradient
  15023. ggml_vec_neg_f32(nx, d, g);
  15024. // ||x||, ||g||
  15025. ggml_vec_norm_f32(nx, &xnorm, x);
  15026. ggml_vec_norm_f32(nx, &gnorm, g);
  15027. if (xnorm < 1.0f) {
  15028. xnorm = 1.0f;
  15029. }
  15030. // already optimized
  15031. if (gnorm/xnorm <= params.lbfgs.eps) {
  15032. return GGML_OPT_OK;
  15033. }
  15034. if (opt->just_initialized) {
  15035. if (pf) {
  15036. pf[0] = fx;
  15037. }
  15038. opt->lbfgs.fx_best = fx;
  15039. // initial step
  15040. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15041. opt->lbfgs.j = 0;
  15042. opt->lbfgs.k = 1;
  15043. opt->lbfgs.end = 0;
  15044. opt->lbfgs.n_no_improvement = 0;
  15045. opt->just_initialized = false;
  15046. }
  15047. float * fx_best = &opt->lbfgs.fx_best;
  15048. float * step = &opt->lbfgs.step;
  15049. int * j = &opt->lbfgs.j;
  15050. int * k = &opt->lbfgs.k;
  15051. int * end = &opt->lbfgs.end;
  15052. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15053. int ls = 0;
  15054. int bound = 0;
  15055. float ys = 0.0f;
  15056. float yy = 0.0f;
  15057. float beta = 0.0f;
  15058. int it = 0;
  15059. while (true) {
  15060. // store the current position and gradient vectors
  15061. ggml_vec_cpy_f32(nx, xp, x);
  15062. ggml_vec_cpy_f32(nx, gp, g);
  15063. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15064. // to determine if the optimization should be cancelled
  15065. // this is a simple change, but not doing this atm, since I don't have a nice
  15066. // way to test and don't want to break something with so many changes lined up
  15067. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15068. if (cancel) {
  15069. return GGML_OPT_CANCEL;
  15070. }
  15071. if (ls < 0) {
  15072. // linesearch failed - go back to the previous point and return
  15073. ggml_vec_cpy_f32(nx, x, xp);
  15074. ggml_vec_cpy_f32(nx, g, gp);
  15075. return ls;
  15076. }
  15077. opt->loss_after = fx;
  15078. ggml_vec_norm_f32(nx, &xnorm, x);
  15079. ggml_vec_norm_f32(nx, &gnorm, g);
  15080. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15081. if (xnorm < 1.0f) {
  15082. xnorm = 1.0f;
  15083. }
  15084. if (gnorm/xnorm <= params.lbfgs.eps) {
  15085. // converged
  15086. return GGML_OPT_OK;
  15087. }
  15088. // delta-based convergence test
  15089. if (pf != NULL) {
  15090. // need at least params.past iterations to start checking for convergence
  15091. if (params.past <= k[0]) {
  15092. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15093. if (fabsf(rate) < params.delta) {
  15094. return GGML_OPT_OK;
  15095. }
  15096. }
  15097. pf[k[0]%params.past] = fx;
  15098. }
  15099. // check for improvement
  15100. if (params.max_no_improvement > 0) {
  15101. if (fx < fx_best[0]) {
  15102. fx_best[0] = fx;
  15103. n_no_improvement[0] = 0;
  15104. } else {
  15105. n_no_improvement[0]++;
  15106. if (n_no_improvement[0] >= params.max_no_improvement) {
  15107. return GGML_OPT_OK;
  15108. }
  15109. }
  15110. }
  15111. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15112. // reached the maximum number of iterations
  15113. return GGML_OPT_DID_NOT_CONVERGE;
  15114. }
  15115. // update vectors s and y:
  15116. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15117. // y_{k+1} = g_{k+1} - g_{k}.
  15118. //
  15119. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15120. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15121. // compute scalars ys and yy:
  15122. // ys = y^t \cdot s -> 1 / \rho.
  15123. // yy = y^t \cdot y.
  15124. //
  15125. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15126. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15127. lm_ys[end[0]] = ys;
  15128. // find new search direction
  15129. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15130. bound = (m <= k[0]) ? m : k[0];
  15131. k[0]++;
  15132. it++;
  15133. end[0] = (end[0] + 1)%m;
  15134. // initialize search direction with -g
  15135. ggml_vec_neg_f32(nx, d, g);
  15136. j[0] = end[0];
  15137. for (int i = 0; i < bound; ++i) {
  15138. j[0] = (j[0] + m - 1) % m;
  15139. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15140. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15141. lm_alpha[j[0]] /= lm_ys[j[0]];
  15142. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15143. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15144. }
  15145. ggml_vec_scale_f32(nx, d, ys/yy);
  15146. for (int i = 0; i < bound; ++i) {
  15147. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15148. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15149. beta /= lm_ys[j[0]];
  15150. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15151. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15152. j[0] = (j[0] + 1)%m;
  15153. }
  15154. step[0] = 1.0;
  15155. }
  15156. GGML_UNREACHABLE();
  15157. }
  15158. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15159. struct ggml_opt_params result;
  15160. switch (type) {
  15161. case GGML_OPT_ADAM:
  15162. {
  15163. result = (struct ggml_opt_params) {
  15164. .type = GGML_OPT_ADAM,
  15165. .n_threads = 1,
  15166. .past = 0,
  15167. .delta = 1e-5f,
  15168. .max_no_improvement = 100,
  15169. .print_forward_graph = true,
  15170. .print_backward_graph = true,
  15171. .n_gradient_accumulation = 1,
  15172. .adam = {
  15173. .n_iter = 10000,
  15174. .sched = 1.000f,
  15175. .decay = 0.0f,
  15176. .decay_min_ndim = 2,
  15177. .alpha = 0.001f,
  15178. .beta1 = 0.9f,
  15179. .beta2 = 0.999f,
  15180. .eps = 1e-8f,
  15181. .eps_f = 1e-5f,
  15182. .eps_g = 1e-3f,
  15183. .gclip = 0.0f,
  15184. },
  15185. };
  15186. } break;
  15187. case GGML_OPT_LBFGS:
  15188. {
  15189. result = (struct ggml_opt_params) {
  15190. .type = GGML_OPT_LBFGS,
  15191. .n_threads = 1,
  15192. .past = 0,
  15193. .delta = 1e-5f,
  15194. .max_no_improvement = 0,
  15195. .print_forward_graph = true,
  15196. .print_backward_graph = true,
  15197. .n_gradient_accumulation = 1,
  15198. .lbfgs = {
  15199. .m = 6,
  15200. .n_iter = 100,
  15201. .max_linesearch = 20,
  15202. .eps = 1e-5f,
  15203. .ftol = 1e-4f,
  15204. .wolfe = 0.9f,
  15205. .min_step = 1e-20f,
  15206. .max_step = 1e+20f,
  15207. .linesearch = GGML_LINESEARCH_DEFAULT,
  15208. },
  15209. };
  15210. } break;
  15211. }
  15212. return result;
  15213. }
  15214. GGML_API void ggml_opt_init(
  15215. struct ggml_context * ctx,
  15216. struct ggml_opt_context * opt,
  15217. struct ggml_opt_params params,
  15218. int64_t nx) {
  15219. opt->ctx = ctx;
  15220. opt->params = params;
  15221. opt->iter = 0;
  15222. opt->nx = nx;
  15223. opt->just_initialized = true;
  15224. if (opt->ctx == NULL) {
  15225. struct ggml_init_params ctx_opt_params;
  15226. if (opt->params.type == GGML_OPT_ADAM) {
  15227. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15228. if (opt->params.past > 0) {
  15229. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15230. }
  15231. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15232. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15233. if (opt->params.past > 0) {
  15234. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15235. }
  15236. }
  15237. ctx_opt_params.mem_buffer = NULL;
  15238. ctx_opt_params.no_alloc = false;
  15239. opt->ctx = ggml_init(ctx_opt_params);
  15240. }
  15241. switch (opt->params.type) {
  15242. case GGML_OPT_ADAM:
  15243. {
  15244. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15245. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15246. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15247. opt->adam.pf = params.past > 0
  15248. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15249. : NULL;
  15250. ggml_set_zero(opt->adam.m);
  15251. ggml_set_zero(opt->adam.v);
  15252. if (opt->adam.pf) {
  15253. ggml_set_zero(opt->adam.pf);
  15254. }
  15255. } break;
  15256. case GGML_OPT_LBFGS:
  15257. {
  15258. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15259. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15260. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15261. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15262. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15263. opt->lbfgs.pf = params.past > 0
  15264. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15265. : NULL;
  15266. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15267. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15268. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15269. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15270. ggml_set_zero(opt->lbfgs.x);
  15271. ggml_set_zero(opt->lbfgs.xp);
  15272. ggml_set_zero(opt->lbfgs.g);
  15273. ggml_set_zero(opt->lbfgs.gp);
  15274. ggml_set_zero(opt->lbfgs.d);
  15275. if (opt->lbfgs.pf) {
  15276. ggml_set_zero(opt->lbfgs.pf);
  15277. }
  15278. ggml_set_zero(opt->lbfgs.lmal);
  15279. ggml_set_zero(opt->lbfgs.lmys);
  15280. ggml_set_zero(opt->lbfgs.lms);
  15281. ggml_set_zero(opt->lbfgs.lmy);
  15282. } break;
  15283. }
  15284. }
  15285. enum ggml_opt_result ggml_opt(
  15286. struct ggml_context * ctx,
  15287. struct ggml_opt_params params,
  15288. struct ggml_tensor * f) {
  15289. bool free_ctx = false;
  15290. if (ctx == NULL) {
  15291. struct ggml_init_params params_ctx = {
  15292. .mem_size = 16*1024*1024,
  15293. .mem_buffer = NULL,
  15294. .no_alloc = false,
  15295. };
  15296. ctx = ggml_init(params_ctx);
  15297. if (ctx == NULL) {
  15298. return GGML_OPT_NO_CONTEXT;
  15299. }
  15300. free_ctx = true;
  15301. }
  15302. enum ggml_opt_result result = GGML_OPT_OK;
  15303. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15304. ggml_opt_init(ctx, opt, params, 0);
  15305. result = ggml_opt_resume(ctx, opt, f);
  15306. if (free_ctx) {
  15307. ggml_free(ctx);
  15308. }
  15309. return result;
  15310. }
  15311. enum ggml_opt_result ggml_opt_resume(
  15312. struct ggml_context * ctx,
  15313. struct ggml_opt_context * opt,
  15314. struct ggml_tensor * f) {
  15315. // build forward + backward compute graphs
  15316. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15317. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15318. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15319. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15320. *gf = ggml_build_forward (f);
  15321. *gb = ggml_build_backward(ctx, gf, true);
  15322. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15323. }
  15324. enum ggml_opt_result ggml_opt_resume_g(
  15325. struct ggml_context * ctx,
  15326. struct ggml_opt_context * opt,
  15327. struct ggml_tensor * f,
  15328. struct ggml_cgraph * gf,
  15329. struct ggml_cgraph * gb,
  15330. ggml_opt_callback callback,
  15331. void * callback_data) {
  15332. // build forward + backward compute graphs
  15333. enum ggml_opt_result result = GGML_OPT_OK;
  15334. switch (opt->params.type) {
  15335. case GGML_OPT_ADAM:
  15336. {
  15337. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15338. } break;
  15339. case GGML_OPT_LBFGS:
  15340. {
  15341. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15342. } break;
  15343. }
  15344. if (opt->params.print_forward_graph) {
  15345. ggml_graph_print (gf);
  15346. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15347. }
  15348. if (opt->params.print_backward_graph) {
  15349. ggml_graph_print (gb);
  15350. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15351. }
  15352. return result;
  15353. }
  15354. ////////////////////////////////////////////////////////////////////////////////
  15355. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15356. assert(k % QK4_0 == 0);
  15357. const int nb = k / QK4_0;
  15358. for (int b = 0; b < n; b += k) {
  15359. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15360. quantize_row_q4_0_reference(src + b, y, k);
  15361. for (int i = 0; i < nb; i++) {
  15362. for (int j = 0; j < QK4_0; j += 2) {
  15363. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15364. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15365. hist[vi0]++;
  15366. hist[vi1]++;
  15367. }
  15368. }
  15369. }
  15370. return (n/QK4_0*sizeof(block_q4_0));
  15371. }
  15372. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15373. assert(k % QK4_1 == 0);
  15374. const int nb = k / QK4_1;
  15375. for (int b = 0; b < n; b += k) {
  15376. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15377. quantize_row_q4_1_reference(src + b, y, k);
  15378. for (int i = 0; i < nb; i++) {
  15379. for (int j = 0; j < QK4_1; j += 2) {
  15380. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15381. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15382. hist[vi0]++;
  15383. hist[vi1]++;
  15384. }
  15385. }
  15386. }
  15387. return (n/QK4_1*sizeof(block_q4_1));
  15388. }
  15389. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15390. assert(k % QK5_0 == 0);
  15391. const int nb = k / QK5_0;
  15392. for (int b = 0; b < n; b += k) {
  15393. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15394. quantize_row_q5_0_reference(src + b, y, k);
  15395. for (int i = 0; i < nb; i++) {
  15396. uint32_t qh;
  15397. memcpy(&qh, &y[i].qh, sizeof(qh));
  15398. for (int j = 0; j < QK5_0; j += 2) {
  15399. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15400. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15401. // cast to 16 bins
  15402. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15403. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15404. hist[vi0]++;
  15405. hist[vi1]++;
  15406. }
  15407. }
  15408. }
  15409. return (n/QK5_0*sizeof(block_q5_0));
  15410. }
  15411. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15412. assert(k % QK5_1 == 0);
  15413. const int nb = k / QK5_1;
  15414. for (int b = 0; b < n; b += k) {
  15415. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15416. quantize_row_q5_1_reference(src + b, y, k);
  15417. for (int i = 0; i < nb; i++) {
  15418. uint32_t qh;
  15419. memcpy(&qh, &y[i].qh, sizeof(qh));
  15420. for (int j = 0; j < QK5_1; j += 2) {
  15421. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15422. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15423. // cast to 16 bins
  15424. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15425. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15426. hist[vi0]++;
  15427. hist[vi1]++;
  15428. }
  15429. }
  15430. }
  15431. return (n/QK5_1*sizeof(block_q5_1));
  15432. }
  15433. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15434. assert(k % QK8_0 == 0);
  15435. const int nb = k / QK8_0;
  15436. for (int b = 0; b < n; b += k) {
  15437. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15438. quantize_row_q8_0_reference(src + b, y, k);
  15439. for (int i = 0; i < nb; i++) {
  15440. for (int j = 0; j < QK8_0; ++j) {
  15441. const int8_t vi = y[i].qs[j];
  15442. hist[vi/16 + 8]++;
  15443. }
  15444. }
  15445. }
  15446. return (n/QK8_0*sizeof(block_q8_0));
  15447. }
  15448. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15449. size_t result = 0;
  15450. switch (type) {
  15451. case GGML_TYPE_Q4_0:
  15452. {
  15453. GGML_ASSERT(start % QK4_0 == 0);
  15454. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15455. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15456. } break;
  15457. case GGML_TYPE_Q4_1:
  15458. {
  15459. GGML_ASSERT(start % QK4_1 == 0);
  15460. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15461. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15462. } break;
  15463. case GGML_TYPE_Q5_0:
  15464. {
  15465. GGML_ASSERT(start % QK5_0 == 0);
  15466. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15467. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15468. } break;
  15469. case GGML_TYPE_Q5_1:
  15470. {
  15471. GGML_ASSERT(start % QK5_1 == 0);
  15472. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15473. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15474. } break;
  15475. case GGML_TYPE_Q8_0:
  15476. {
  15477. GGML_ASSERT(start % QK8_0 == 0);
  15478. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15479. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15480. } break;
  15481. case GGML_TYPE_Q2_K:
  15482. {
  15483. GGML_ASSERT(start % QK_K == 0);
  15484. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15485. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15486. } break;
  15487. case GGML_TYPE_Q3_K:
  15488. {
  15489. GGML_ASSERT(start % QK_K == 0);
  15490. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15491. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15492. } break;
  15493. case GGML_TYPE_Q4_K:
  15494. {
  15495. GGML_ASSERT(start % QK_K == 0);
  15496. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15497. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15498. } break;
  15499. case GGML_TYPE_Q5_K:
  15500. {
  15501. GGML_ASSERT(start % QK_K == 0);
  15502. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15503. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15504. } break;
  15505. case GGML_TYPE_Q6_K:
  15506. {
  15507. GGML_ASSERT(start % QK_K == 0);
  15508. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15509. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15510. } break;
  15511. case GGML_TYPE_F16:
  15512. {
  15513. int elemsize = sizeof(ggml_fp16_t);
  15514. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15515. result = n * elemsize;
  15516. } break;
  15517. case GGML_TYPE_F32:
  15518. {
  15519. int elemsize = sizeof(float);
  15520. result = n * elemsize;
  15521. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15522. } break;
  15523. default:
  15524. assert(false);
  15525. }
  15526. return result;
  15527. }
  15528. ////////////////////////////////////////////////////////////////////////////////
  15529. struct gguf_str {
  15530. uint64_t n; // GGUFv2
  15531. char * data;
  15532. };
  15533. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15534. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15535. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15536. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15537. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15538. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15539. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15540. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15541. [GGUF_TYPE_BOOL] = sizeof(bool),
  15542. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15543. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15544. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15545. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15546. [GGUF_TYPE_ARRAY] = 0, // undefined
  15547. };
  15548. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15549. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15550. [GGUF_TYPE_UINT8] = "u8",
  15551. [GGUF_TYPE_INT8] = "i8",
  15552. [GGUF_TYPE_UINT16] = "u16",
  15553. [GGUF_TYPE_INT16] = "i16",
  15554. [GGUF_TYPE_UINT32] = "u32",
  15555. [GGUF_TYPE_INT32] = "i32",
  15556. [GGUF_TYPE_FLOAT32] = "f32",
  15557. [GGUF_TYPE_BOOL] = "bool",
  15558. [GGUF_TYPE_STRING] = "str",
  15559. [GGUF_TYPE_ARRAY] = "arr",
  15560. [GGUF_TYPE_UINT64] = "u64",
  15561. [GGUF_TYPE_INT64] = "i64",
  15562. [GGUF_TYPE_FLOAT64] = "f64",
  15563. };
  15564. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15565. union gguf_value {
  15566. uint8_t uint8;
  15567. int8_t int8;
  15568. uint16_t uint16;
  15569. int16_t int16;
  15570. uint32_t uint32;
  15571. int32_t int32;
  15572. float float32;
  15573. uint64_t uint64;
  15574. int64_t int64;
  15575. double float64;
  15576. bool bool_;
  15577. struct gguf_str str;
  15578. struct {
  15579. enum gguf_type type;
  15580. uint64_t n; // GGUFv2
  15581. void * data;
  15582. } arr;
  15583. };
  15584. struct gguf_kv {
  15585. struct gguf_str key;
  15586. enum gguf_type type;
  15587. union gguf_value value;
  15588. };
  15589. struct gguf_header {
  15590. char magic[4];
  15591. uint32_t version;
  15592. uint64_t n_tensors; // GGUFv2
  15593. uint64_t n_kv; // GGUFv2
  15594. };
  15595. struct gguf_tensor_info {
  15596. struct gguf_str name;
  15597. uint32_t n_dims;
  15598. uint64_t ne[GGML_MAX_DIMS];
  15599. enum ggml_type type;
  15600. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15601. // for writing API
  15602. const void * data;
  15603. size_t size;
  15604. };
  15605. struct gguf_context {
  15606. struct gguf_header header;
  15607. struct gguf_kv * kv;
  15608. struct gguf_tensor_info * infos;
  15609. size_t alignment;
  15610. size_t offset; // offset of `data` from beginning of file
  15611. size_t size; // size of `data` in bytes
  15612. //uint8_t * padding;
  15613. void * data;
  15614. };
  15615. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15616. const size_t n = fread(dst, 1, size, file);
  15617. *offset += n;
  15618. return n == size;
  15619. }
  15620. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15621. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  15622. p->n = 0;
  15623. p->data = NULL;
  15624. bool ok = true;
  15625. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15626. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15627. return ok;
  15628. }
  15629. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  15630. p->n = 0;
  15631. p->data = NULL;
  15632. bool ok = true;
  15633. uint32_t n = 0;
  15634. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  15635. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15636. return ok;
  15637. }
  15638. struct gguf_context * gguf_init_empty(void) {
  15639. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15640. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15641. ctx->header.version = GGUF_VERSION;
  15642. ctx->header.n_tensors = 0;
  15643. ctx->header.n_kv = 0;
  15644. ctx->kv = NULL;
  15645. ctx->infos = NULL;
  15646. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15647. ctx->offset = 0;
  15648. ctx->size = 0;
  15649. ctx->data = NULL;
  15650. return ctx;
  15651. }
  15652. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15653. FILE * file = fopen(fname, "rb");
  15654. if (!file) {
  15655. return NULL;
  15656. }
  15657. // offset from start of file
  15658. size_t offset = 0;
  15659. char magic[4];
  15660. // check the magic before making allocations
  15661. {
  15662. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15663. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15664. if (magic[i] != GGUF_MAGIC[i]) {
  15665. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15666. fclose(file);
  15667. return NULL;
  15668. }
  15669. }
  15670. }
  15671. bool ok = true;
  15672. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15673. // read the header
  15674. {
  15675. strncpy(ctx->header.magic, magic, 4);
  15676. ctx->kv = NULL;
  15677. ctx->infos = NULL;
  15678. ctx->data = NULL;
  15679. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15680. if (ctx->header.version == 1) {
  15681. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15682. uint32_t n_tensors = 0;
  15683. uint32_t n_kv = 0;
  15684. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  15685. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  15686. ctx->header.n_tensors = n_tensors;
  15687. ctx->header.n_kv = n_kv;
  15688. } else {
  15689. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15690. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15691. }
  15692. if (!ok) {
  15693. fprintf(stderr, "%s: failed to read header\n", __func__);
  15694. fclose(file);
  15695. gguf_free(ctx);
  15696. return NULL;
  15697. }
  15698. }
  15699. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15700. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  15701. if (ctx->header.version == 1) {
  15702. gguf_fread_str = gguf_fread_str_v1;
  15703. }
  15704. // read the kv pairs
  15705. {
  15706. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15707. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15708. struct gguf_kv * kv = &ctx->kv[i];
  15709. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15710. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15711. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15712. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15713. switch (kv->type) {
  15714. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15715. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15716. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15717. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15718. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15719. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15720. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15721. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15722. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15723. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15724. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15725. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15726. case GGUF_TYPE_ARRAY:
  15727. {
  15728. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15729. if (ctx->header.version == 1) {
  15730. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15731. uint32_t n = 0;
  15732. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  15733. kv->value.arr.n = n;
  15734. } else {
  15735. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15736. }
  15737. switch (kv->value.arr.type) {
  15738. case GGUF_TYPE_UINT8:
  15739. case GGUF_TYPE_INT8:
  15740. case GGUF_TYPE_UINT16:
  15741. case GGUF_TYPE_INT16:
  15742. case GGUF_TYPE_UINT32:
  15743. case GGUF_TYPE_INT32:
  15744. case GGUF_TYPE_FLOAT32:
  15745. case GGUF_TYPE_UINT64:
  15746. case GGUF_TYPE_INT64:
  15747. case GGUF_TYPE_FLOAT64:
  15748. case GGUF_TYPE_BOOL:
  15749. {
  15750. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15751. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15752. } break;
  15753. case GGUF_TYPE_STRING:
  15754. {
  15755. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15756. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15757. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15758. }
  15759. } break;
  15760. case GGUF_TYPE_ARRAY:
  15761. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15762. }
  15763. } break;
  15764. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15765. }
  15766. if (!ok) {
  15767. break;
  15768. }
  15769. }
  15770. if (!ok) {
  15771. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15772. fclose(file);
  15773. gguf_free(ctx);
  15774. return NULL;
  15775. }
  15776. }
  15777. // read the tensor infos
  15778. {
  15779. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15780. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15781. struct gguf_tensor_info * info = &ctx->infos[i];
  15782. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15783. info->ne[j] = 1;
  15784. }
  15785. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15786. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15787. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15788. if (ctx->header.version == 1) {
  15789. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15790. uint32_t t = 0;
  15791. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  15792. info->ne[j] = t;
  15793. } else {
  15794. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15795. }
  15796. }
  15797. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15798. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15799. if (!ok) {
  15800. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15801. fclose(file);
  15802. gguf_free(ctx);
  15803. return NULL;
  15804. }
  15805. }
  15806. }
  15807. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15808. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15809. if (alignment_idx != -1) {
  15810. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15811. }
  15812. // we require the data section to be aligned, so take into account any padding
  15813. {
  15814. const size_t offset_pad = offset % ctx->alignment;
  15815. if (offset_pad != 0) {
  15816. offset += ctx->alignment - offset_pad;
  15817. fseek(file, offset, SEEK_SET);
  15818. }
  15819. }
  15820. // store the current file offset - this is where the data section starts
  15821. ctx->offset = offset;
  15822. // compute the total size of the data section, taking into account the alignment
  15823. {
  15824. ctx->size = 0;
  15825. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15826. struct gguf_tensor_info * info = &ctx->infos[i];
  15827. const int64_t ne =
  15828. (int64_t) info->ne[0] *
  15829. (int64_t) info->ne[1] *
  15830. (int64_t) info->ne[2] *
  15831. (int64_t) info->ne[3];
  15832. if (ne % ggml_blck_size(info->type) != 0) {
  15833. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15834. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15835. fclose(file);
  15836. gguf_free(ctx);
  15837. return NULL;
  15838. }
  15839. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15840. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15841. }
  15842. }
  15843. // load the tensor data only if requested
  15844. if (params.ctx != NULL) {
  15845. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15846. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15847. // the ggml_tensor structs to the appropriate locations in the binary blob
  15848. // compute the exact size needed for the new ggml_context
  15849. const size_t mem_size =
  15850. params.no_alloc ?
  15851. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15852. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15853. struct ggml_init_params pdata = {
  15854. .mem_size = mem_size,
  15855. .mem_buffer = NULL,
  15856. .no_alloc = params.no_alloc,
  15857. };
  15858. *params.ctx = ggml_init(pdata);
  15859. struct ggml_context * ctx_data = *params.ctx;
  15860. struct ggml_tensor * data = NULL;
  15861. if (!params.no_alloc) {
  15862. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15863. ok = ok && data != NULL;
  15864. // read the binary blob with the tensor data
  15865. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15866. if (!ok) {
  15867. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15868. fclose(file);
  15869. ggml_free(ctx_data);
  15870. gguf_free(ctx);
  15871. return NULL;
  15872. }
  15873. ctx->data = data->data;
  15874. }
  15875. ggml_set_no_alloc(ctx_data, true);
  15876. // create the tensors
  15877. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15878. const int64_t ne[GGML_MAX_DIMS] = {
  15879. ctx->infos[i].ne[0],
  15880. ctx->infos[i].ne[1],
  15881. ctx->infos[i].ne[2],
  15882. ctx->infos[i].ne[3],
  15883. };
  15884. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15885. ok = ok && cur != NULL;
  15886. ggml_set_name(cur, ctx->infos[i].name.data);
  15887. if (!ok) {
  15888. break;
  15889. }
  15890. // point the data member to the appropriate location in the binary blob using the tensor infos
  15891. if (!params.no_alloc) {
  15892. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15893. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15894. }
  15895. }
  15896. if (!ok) {
  15897. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15898. fclose(file);
  15899. ggml_free(ctx_data);
  15900. gguf_free(ctx);
  15901. return NULL;
  15902. }
  15903. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15904. }
  15905. fclose(file);
  15906. return ctx;
  15907. }
  15908. void gguf_free(struct gguf_context * ctx) {
  15909. if (ctx == NULL) {
  15910. return;
  15911. }
  15912. if (ctx->kv) {
  15913. // free string memory - not great..
  15914. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15915. struct gguf_kv * kv = &ctx->kv[i];
  15916. if (kv->key.data) {
  15917. free(kv->key.data);
  15918. }
  15919. if (kv->type == GGUF_TYPE_STRING) {
  15920. if (kv->value.str.data) {
  15921. free(kv->value.str.data);
  15922. }
  15923. }
  15924. if (kv->type == GGUF_TYPE_ARRAY) {
  15925. if (kv->value.arr.data) {
  15926. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15927. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15928. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15929. if (str->data) {
  15930. free(str->data);
  15931. }
  15932. }
  15933. }
  15934. free(kv->value.arr.data);
  15935. }
  15936. }
  15937. }
  15938. free(ctx->kv);
  15939. }
  15940. if (ctx->infos) {
  15941. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15942. struct gguf_tensor_info * info = &ctx->infos[i];
  15943. if (info->name.data) {
  15944. free(info->name.data);
  15945. }
  15946. }
  15947. free(ctx->infos);
  15948. }
  15949. GGML_ALIGNED_FREE(ctx);
  15950. }
  15951. const char * gguf_type_name(enum gguf_type type) {
  15952. return GGUF_TYPE_NAME[type];
  15953. }
  15954. int gguf_get_version(const struct gguf_context * ctx) {
  15955. return ctx->header.version;
  15956. }
  15957. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15958. return ctx->alignment;
  15959. }
  15960. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15961. return ctx->offset;
  15962. }
  15963. void * gguf_get_data(const struct gguf_context * ctx) {
  15964. return ctx->data;
  15965. }
  15966. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15967. return ctx->header.n_kv;
  15968. }
  15969. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15970. // return -1 if key not found
  15971. int keyfound = -1;
  15972. const int n_kv = gguf_get_n_kv(ctx);
  15973. for (int i = 0; i < n_kv; ++i) {
  15974. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15975. keyfound = i;
  15976. break;
  15977. }
  15978. }
  15979. return keyfound;
  15980. }
  15981. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15982. return ctx->kv[key_id].key.data;
  15983. }
  15984. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15985. return ctx->kv[key_id].type;
  15986. }
  15987. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15988. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15989. return ctx->kv[key_id].value.arr.type;
  15990. }
  15991. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15992. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15993. return ctx->kv[key_id].value.arr.data;
  15994. }
  15995. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15996. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15997. struct gguf_kv * kv = &ctx->kv[key_id];
  15998. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15999. return str->data;
  16000. }
  16001. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16002. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16003. return ctx->kv[key_id].value.arr.n;
  16004. }
  16005. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16006. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16007. return ctx->kv[key_id].value.uint8;
  16008. }
  16009. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16010. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16011. return ctx->kv[key_id].value.int8;
  16012. }
  16013. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16014. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16015. return ctx->kv[key_id].value.uint16;
  16016. }
  16017. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16018. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16019. return ctx->kv[key_id].value.int16;
  16020. }
  16021. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16022. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16023. return ctx->kv[key_id].value.uint32;
  16024. }
  16025. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16026. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16027. return ctx->kv[key_id].value.int32;
  16028. }
  16029. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16030. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16031. return ctx->kv[key_id].value.float32;
  16032. }
  16033. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16034. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16035. return ctx->kv[key_id].value.uint64;
  16036. }
  16037. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16038. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16039. return ctx->kv[key_id].value.int64;
  16040. }
  16041. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16042. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16043. return ctx->kv[key_id].value.float64;
  16044. }
  16045. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16046. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16047. return ctx->kv[key_id].value.bool_;
  16048. }
  16049. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16050. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16051. return ctx->kv[key_id].value.str.data;
  16052. }
  16053. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16054. return ctx->header.n_tensors;
  16055. }
  16056. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16057. // return -1 if tensor not found
  16058. int tensorfound = -1;
  16059. const int n_tensors = gguf_get_n_tensors(ctx);
  16060. for (int i = 0; i < n_tensors; ++i) {
  16061. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16062. tensorfound = i;
  16063. break;
  16064. }
  16065. }
  16066. return tensorfound;
  16067. }
  16068. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16069. return ctx->infos[i].offset;
  16070. }
  16071. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16072. return ctx->infos[i].name.data;
  16073. }
  16074. // returns the index
  16075. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16076. const int idx = gguf_find_key(ctx, key);
  16077. if (idx >= 0) {
  16078. return idx;
  16079. }
  16080. const int n_kv = gguf_get_n_kv(ctx);
  16081. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16082. ctx->kv[n_kv].key.n = strlen(key);
  16083. ctx->kv[n_kv].key.data = strdup(key);
  16084. ctx->header.n_kv++;
  16085. return n_kv;
  16086. }
  16087. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16088. const int idx = gguf_get_or_add_key(ctx, key);
  16089. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16090. ctx->kv[idx].value.uint8 = val;
  16091. }
  16092. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16093. const int idx = gguf_get_or_add_key(ctx, key);
  16094. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16095. ctx->kv[idx].value.int8 = val;
  16096. }
  16097. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16098. const int idx = gguf_get_or_add_key(ctx, key);
  16099. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16100. ctx->kv[idx].value.uint16 = val;
  16101. }
  16102. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16103. const int idx = gguf_get_or_add_key(ctx, key);
  16104. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16105. ctx->kv[idx].value.int16 = val;
  16106. }
  16107. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16108. const int idx = gguf_get_or_add_key(ctx, key);
  16109. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16110. ctx->kv[idx].value.uint32 = val;
  16111. }
  16112. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16113. const int idx = gguf_get_or_add_key(ctx, key);
  16114. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16115. ctx->kv[idx].value.int32 = val;
  16116. }
  16117. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16118. const int idx = gguf_get_or_add_key(ctx, key);
  16119. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16120. ctx->kv[idx].value.float32 = val;
  16121. }
  16122. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16123. const int idx = gguf_get_or_add_key(ctx, key);
  16124. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16125. ctx->kv[idx].value.uint64 = val;
  16126. }
  16127. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16128. const int idx = gguf_get_or_add_key(ctx, key);
  16129. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16130. ctx->kv[idx].value.int64 = val;
  16131. }
  16132. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16133. const int idx = gguf_get_or_add_key(ctx, key);
  16134. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16135. ctx->kv[idx].value.float64 = val;
  16136. }
  16137. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16138. const int idx = gguf_get_or_add_key(ctx, key);
  16139. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16140. ctx->kv[idx].value.bool_ = val;
  16141. }
  16142. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16143. const int idx = gguf_get_or_add_key(ctx, key);
  16144. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16145. ctx->kv[idx].value.str.n = strlen(val);
  16146. ctx->kv[idx].value.str.data = strdup(val);
  16147. }
  16148. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16149. const int idx = gguf_get_or_add_key(ctx, key);
  16150. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16151. ctx->kv[idx].value.arr.type = type;
  16152. ctx->kv[idx].value.arr.n = n;
  16153. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16154. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16155. }
  16156. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16157. const int idx = gguf_get_or_add_key(ctx, key);
  16158. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16159. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16160. ctx->kv[idx].value.arr.n = n;
  16161. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16162. for (int i = 0; i < n; i++) {
  16163. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16164. str->n = strlen(data[i]);
  16165. str->data = strdup(data[i]);
  16166. }
  16167. }
  16168. // set or add KV pairs from another context
  16169. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16170. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16171. switch (src->kv[i].type) {
  16172. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16173. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16174. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16175. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16176. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16177. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16178. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16179. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16180. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16181. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16182. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16183. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16184. case GGUF_TYPE_ARRAY:
  16185. {
  16186. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16187. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16188. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16189. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16190. }
  16191. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16192. free(data);
  16193. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16194. GGML_ASSERT(false && "nested arrays not supported");
  16195. } else {
  16196. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16197. }
  16198. } break;
  16199. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16200. }
  16201. }
  16202. }
  16203. void gguf_add_tensor(
  16204. struct gguf_context * ctx,
  16205. const struct ggml_tensor * tensor) {
  16206. const int idx = ctx->header.n_tensors;
  16207. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16208. ctx->infos[idx].name.n = strlen(tensor->name);
  16209. ctx->infos[idx].name.data = strdup(tensor->name);
  16210. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16211. ctx->infos[idx].ne[i] = 1;
  16212. }
  16213. ctx->infos[idx].n_dims = tensor->n_dims;
  16214. for (int i = 0; i < tensor->n_dims; i++) {
  16215. ctx->infos[idx].ne[i] = tensor->ne[i];
  16216. }
  16217. ctx->infos[idx].type = tensor->type;
  16218. ctx->infos[idx].offset = 0;
  16219. ctx->infos[idx].data = tensor->data;
  16220. ctx->infos[idx].size = ggml_nbytes(tensor);
  16221. if (ctx->header.n_tensors > 0) {
  16222. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16223. }
  16224. ctx->header.n_tensors++;
  16225. }
  16226. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16227. const int idx = gguf_find_tensor(ctx, name);
  16228. if (idx < 0) {
  16229. GGML_ASSERT(false && "tensor not found");
  16230. }
  16231. ctx->infos[idx].type = type;
  16232. }
  16233. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16234. const int idx = gguf_find_tensor(ctx, name);
  16235. if (idx < 0) {
  16236. GGML_ASSERT(false && "tensor not found");
  16237. }
  16238. ctx->infos[idx].data = data;
  16239. ctx->infos[idx].size = size;
  16240. // update offsets
  16241. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16242. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16243. }
  16244. }
  16245. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16246. // fwrite(&val->n, sizeof(val->n), 1, file);
  16247. // fwrite(val->data, sizeof(char), val->n, file);
  16248. //}
  16249. //
  16250. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16251. // fwrite(val, sizeof(char), size, file);
  16252. //}
  16253. struct gguf_buf {
  16254. void * data;
  16255. size_t size;
  16256. size_t offset;
  16257. };
  16258. static struct gguf_buf gguf_buf_init(size_t size) {
  16259. struct gguf_buf buf = {
  16260. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16261. /*buf.size =*/ size,
  16262. /*buf.offset =*/ 0,
  16263. };
  16264. return buf;
  16265. }
  16266. static void gguf_buf_free(struct gguf_buf buf) {
  16267. if (buf.data) {
  16268. free(buf.data);
  16269. }
  16270. }
  16271. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16272. if (buf->offset + size > buf->size) {
  16273. buf->size = 1.5*(buf->offset + size);
  16274. if (buf->data) {
  16275. buf->data = realloc(buf->data, buf->size);
  16276. }
  16277. }
  16278. }
  16279. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16280. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16281. if (buf->data) {
  16282. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16283. }
  16284. buf->offset += sizeof(val->n);
  16285. if (buf->data) {
  16286. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16287. }
  16288. buf->offset += val->n;
  16289. }
  16290. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16291. gguf_buf_grow(buf, el_size);
  16292. if (buf->data) {
  16293. memcpy((char *) buf->data + buf->offset, val, el_size);
  16294. }
  16295. buf->offset += el_size;
  16296. }
  16297. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16298. // write header
  16299. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16300. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16301. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16302. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16303. // write key-value pairs
  16304. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16305. struct gguf_kv * kv = &ctx->kv[i];
  16306. gguf_bwrite_str(buf, &kv->key);
  16307. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16308. switch (kv->type) {
  16309. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16310. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16311. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16312. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16313. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16314. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16315. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16316. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16317. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16318. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16319. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16320. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16321. case GGUF_TYPE_ARRAY:
  16322. {
  16323. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16324. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16325. switch (kv->value.arr.type) {
  16326. case GGUF_TYPE_UINT8:
  16327. case GGUF_TYPE_INT8:
  16328. case GGUF_TYPE_UINT16:
  16329. case GGUF_TYPE_INT16:
  16330. case GGUF_TYPE_UINT32:
  16331. case GGUF_TYPE_INT32:
  16332. case GGUF_TYPE_FLOAT32:
  16333. case GGUF_TYPE_UINT64:
  16334. case GGUF_TYPE_INT64:
  16335. case GGUF_TYPE_FLOAT64:
  16336. case GGUF_TYPE_BOOL:
  16337. {
  16338. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16339. } break;
  16340. case GGUF_TYPE_STRING:
  16341. {
  16342. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16343. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16344. }
  16345. } break;
  16346. case GGUF_TYPE_ARRAY:
  16347. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16348. }
  16349. } break;
  16350. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16351. }
  16352. }
  16353. // write tensor infos
  16354. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16355. struct gguf_tensor_info * info = &ctx->infos[i];
  16356. gguf_bwrite_str(buf, &info->name);
  16357. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16358. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16359. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16360. }
  16361. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16362. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16363. }
  16364. // we require the data section to be aligned, so take into account any padding
  16365. {
  16366. const size_t offset = buf->offset;
  16367. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16368. if (offset_pad != offset) {
  16369. uint8_t pad = 0;
  16370. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16371. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16372. }
  16373. }
  16374. }
  16375. if (only_meta) {
  16376. return;
  16377. }
  16378. size_t offset = 0;
  16379. // write tensor data
  16380. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16381. struct gguf_tensor_info * info = &ctx->infos[i];
  16382. const size_t size = info->size;
  16383. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16384. gguf_bwrite_el(buf, info->data, size);
  16385. if (size_pad != size) {
  16386. uint8_t pad = 0;
  16387. for (size_t j = 0; j < size_pad - size; ++j) {
  16388. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16389. }
  16390. }
  16391. GGML_ASSERT(offset == info->offset);
  16392. offset += size_pad;
  16393. }
  16394. }
  16395. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16396. FILE * file = fopen(fname, "wb");
  16397. if (!file) {
  16398. GGML_ASSERT(false && "failed to open file for writing");
  16399. }
  16400. struct gguf_buf buf = gguf_buf_init(16*1024);
  16401. gguf_write_to_buf(ctx, &buf, only_meta);
  16402. fwrite(buf.data, 1, buf.offset, file);
  16403. gguf_buf_free(buf);
  16404. fclose(file);
  16405. }
  16406. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16407. // no allocs - only compute size
  16408. struct gguf_buf buf = gguf_buf_init(0);
  16409. gguf_write_to_buf(ctx, &buf, true);
  16410. return buf.offset;
  16411. }
  16412. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16413. struct gguf_buf buf = gguf_buf_init(16*1024);
  16414. gguf_write_to_buf(ctx, &buf, true);
  16415. memcpy(data, buf.data, buf.offset);
  16416. gguf_buf_free(buf);
  16417. }
  16418. ////////////////////////////////////////////////////////////////////////////////
  16419. int ggml_cpu_has_avx(void) {
  16420. #if defined(__AVX__)
  16421. return 1;
  16422. #else
  16423. return 0;
  16424. #endif
  16425. }
  16426. int ggml_cpu_has_avx2(void) {
  16427. #if defined(__AVX2__)
  16428. return 1;
  16429. #else
  16430. return 0;
  16431. #endif
  16432. }
  16433. int ggml_cpu_has_avx512(void) {
  16434. #if defined(__AVX512F__)
  16435. return 1;
  16436. #else
  16437. return 0;
  16438. #endif
  16439. }
  16440. int ggml_cpu_has_avx512_vbmi(void) {
  16441. #if defined(__AVX512VBMI__)
  16442. return 1;
  16443. #else
  16444. return 0;
  16445. #endif
  16446. }
  16447. int ggml_cpu_has_avx512_vnni(void) {
  16448. #if defined(__AVX512VNNI__)
  16449. return 1;
  16450. #else
  16451. return 0;
  16452. #endif
  16453. }
  16454. int ggml_cpu_has_fma(void) {
  16455. #if defined(__FMA__)
  16456. return 1;
  16457. #else
  16458. return 0;
  16459. #endif
  16460. }
  16461. int ggml_cpu_has_neon(void) {
  16462. #if defined(__ARM_NEON)
  16463. return 1;
  16464. #else
  16465. return 0;
  16466. #endif
  16467. }
  16468. int ggml_cpu_has_arm_fma(void) {
  16469. #if defined(__ARM_FEATURE_FMA)
  16470. return 1;
  16471. #else
  16472. return 0;
  16473. #endif
  16474. }
  16475. int ggml_cpu_has_metal(void) {
  16476. #if defined(GGML_USE_METAL)
  16477. return 1;
  16478. #else
  16479. return 0;
  16480. #endif
  16481. }
  16482. int ggml_cpu_has_f16c(void) {
  16483. #if defined(__F16C__)
  16484. return 1;
  16485. #else
  16486. return 0;
  16487. #endif
  16488. }
  16489. int ggml_cpu_has_fp16_va(void) {
  16490. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16491. return 1;
  16492. #else
  16493. return 0;
  16494. #endif
  16495. }
  16496. int ggml_cpu_has_wasm_simd(void) {
  16497. #if defined(__wasm_simd128__)
  16498. return 1;
  16499. #else
  16500. return 0;
  16501. #endif
  16502. }
  16503. int ggml_cpu_has_blas(void) {
  16504. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16505. return 1;
  16506. #else
  16507. return 0;
  16508. #endif
  16509. }
  16510. int ggml_cpu_has_cublas(void) {
  16511. #if defined(GGML_USE_CUBLAS)
  16512. return 1;
  16513. #else
  16514. return 0;
  16515. #endif
  16516. }
  16517. int ggml_cpu_has_clblast(void) {
  16518. #if defined(GGML_USE_CLBLAST)
  16519. return 1;
  16520. #else
  16521. return 0;
  16522. #endif
  16523. }
  16524. int ggml_cpu_has_gpublas(void) {
  16525. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16526. }
  16527. int ggml_cpu_has_sse3(void) {
  16528. #if defined(__SSE3__)
  16529. return 1;
  16530. #else
  16531. return 0;
  16532. #endif
  16533. }
  16534. int ggml_cpu_has_ssse3(void) {
  16535. #if defined(__SSSE3__)
  16536. return 1;
  16537. #else
  16538. return 0;
  16539. #endif
  16540. }
  16541. int ggml_cpu_has_vsx(void) {
  16542. #if defined(__POWER9_VECTOR__)
  16543. return 1;
  16544. #else
  16545. return 0;
  16546. #endif
  16547. }
  16548. ////////////////////////////////////////////////////////////////////////////////