perplexity.cpp 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <algorithm>
  6. #include <array>
  7. #include <atomic>
  8. #include <cmath>
  9. #include <cstdio>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <fstream>
  13. #include <mutex>
  14. #include <random>
  15. #include <sstream>
  16. #include <thread>
  17. #include <vector>
  18. #if defined(_MSC_VER)
  19. #pragma warning(disable: 4244 4267) // possible loss of data
  20. #endif
  21. struct results_perplexity {
  22. std::vector<llama_token> tokens;
  23. double ppl_value;
  24. std::vector<float> logits;
  25. std::vector<float> probs;
  26. };
  27. struct results_log_softmax {
  28. double log_softmax;
  29. float logit;
  30. float prob;
  31. };
  32. static void write_logfile(
  33. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  34. const struct results_perplexity & results
  35. ) {
  36. if (params.logdir.empty()) {
  37. return;
  38. }
  39. if (params.hellaswag) {
  40. LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  41. return;
  42. }
  43. const std::string timestamp = string_get_sortable_timestamp();
  44. const bool success = fs_create_directory_with_parents(params.logdir);
  45. if (!success) {
  46. LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
  47. __func__, params.logdir.c_str());
  48. return;
  49. }
  50. const std::string logfile_path = params.logdir + timestamp + ".yml";
  51. FILE * logfile = fopen(logfile_path.c_str(), "w");
  52. if (logfile == NULL) {
  53. LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  54. return;
  55. }
  56. fprintf(logfile, "binary: main\n");
  57. char model_desc[128];
  58. llama_model_desc(model, model_desc, sizeof(model_desc));
  59. yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
  60. fprintf(logfile, "\n");
  61. fprintf(logfile, "######################\n");
  62. fprintf(logfile, "# Perplexity Results #\n");
  63. fprintf(logfile, "######################\n");
  64. fprintf(logfile, "\n");
  65. yaml_dump_vector_float(logfile, "logits", results.logits);
  66. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  67. yaml_dump_vector_float(logfile, "probs", results.probs);
  68. llama_perf_dump_yaml(logfile, ctx);
  69. fclose(logfile);
  70. }
  71. static std::vector<float> softmax(const std::vector<float>& logits) {
  72. std::vector<float> probs(logits.size());
  73. float max_logit = logits[0];
  74. for (float v : logits) {
  75. max_logit = std::max(max_logit, v);
  76. }
  77. double sum_exp = 0.0;
  78. for (size_t i = 0; i < logits.size(); i++) {
  79. // Subtract the maximum logit value from the current logit value for numerical stability
  80. const float logit = logits[i] - max_logit;
  81. const float exp_logit = expf(logit);
  82. sum_exp += exp_logit;
  83. probs[i] = exp_logit;
  84. }
  85. for (size_t i = 0; i < probs.size(); i++) {
  86. probs[i] /= sum_exp;
  87. }
  88. return probs;
  89. }
  90. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  91. float max_logit = logits[0];
  92. for (int i = 1; i < n_vocab; ++i) {
  93. max_logit = std::max(max_logit, logits[i]);
  94. }
  95. double sum_exp = 0.0;
  96. for (int i = 0; i < n_vocab; ++i) {
  97. sum_exp += expf(logits[i] - max_logit);
  98. }
  99. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  100. }
  101. static inline int nearest_int(float fval) {
  102. //assert(fval <= 4194303.f);
  103. float val = fval + 12582912.f;
  104. int i; memcpy(&i, &val, sizeof(int));
  105. return (i & 0x007fffff) - 0x00400000;
  106. }
  107. static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
  108. float max_logit = logits[0];
  109. float min_logit = logits[0];
  110. for (int i = 1; i < n_vocab; ++i) {
  111. max_logit = std::max(max_logit, logits[i]);
  112. min_logit = std::min(min_logit, logits[i]);
  113. }
  114. min_logit = std::max(min_logit, max_logit - 16);
  115. double sum_exp = 0.0;
  116. for (int i = 0; i < n_vocab; ++i) {
  117. sum_exp += expf(logits[i] - max_logit);
  118. }
  119. const float log_sum_exp = log(sum_exp);
  120. const float min_log_prob = min_logit - max_logit - log_sum_exp;
  121. const float scale = (max_logit - min_logit)/65535.f;
  122. float * d = (float *)log_prob;
  123. d[0] = scale;
  124. d[1] = min_log_prob;
  125. log_prob += 4;
  126. if (scale) {
  127. const float inv_scale = 1/scale;
  128. for (int i = 0; i < n_vocab; ++i) {
  129. log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
  130. }
  131. } else {
  132. std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
  133. }
  134. return max_logit + log_sum_exp - logits[tok];
  135. }
  136. static void process_logits(
  137. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  138. double & nll, double & nll2, float * logit_history, float * prob_history
  139. ) {
  140. std::mutex mutex;
  141. int counter = 0;
  142. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  143. double local_nll = 0;
  144. double local_nll2 = 0;
  145. while (true) {
  146. std::unique_lock<std::mutex> lock(mutex);
  147. int i = counter++;
  148. if (i >= n_token) {
  149. nll += local_nll; nll2 += local_nll2;
  150. break;
  151. }
  152. lock.unlock();
  153. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  154. const double v = -results.log_softmax;
  155. local_nll += v;
  156. local_nll2 += v*v;
  157. logit_history[i] = results.logit;
  158. prob_history[i] = results.prob;
  159. }
  160. };
  161. for (auto & w : workers) {
  162. w = std::thread(compute);
  163. }
  164. compute();
  165. for (auto & w : workers) {
  166. w.join();
  167. }
  168. }
  169. static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
  170. std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
  171. std::mutex mutex;
  172. const int nv = 2*((n_vocab + 1)/2) + 4;
  173. int counter = 0;
  174. auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
  175. double local_nll = 0;
  176. double local_nll2 = 0;
  177. while (true) {
  178. std::unique_lock<std::mutex> lock(mutex);
  179. int i = counter++;
  180. if (i >= n_token) {
  181. nll += local_nll; nll2 += local_nll2;
  182. break;
  183. }
  184. lock.unlock();
  185. const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
  186. local_nll += v;
  187. local_nll2 += v*v;
  188. }
  189. };
  190. for (auto & w : workers) {
  191. w = std::thread(compute);
  192. }
  193. compute();
  194. for (auto & w : workers) {
  195. w.join();
  196. }
  197. out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
  198. }
  199. struct kl_divergence_result {
  200. double sum_nll = 0.0;
  201. double sum_nll2 = 0.0;
  202. double sum_nll_base = 0.0;
  203. double sum_nll_base2 = 0.0;
  204. double sum_nll_nll_base = 0.0;
  205. double sum_kld = 0.0;
  206. double sum_kld2 = 0.0;
  207. double sum_p_diff = 0.0;
  208. double sum_p_diff2 = 0.0;
  209. double sum_p_diff4 = 0.0;
  210. float max_p_diff = 0.0f;
  211. size_t n_same_top = 0.0;
  212. size_t count = 0.0;
  213. };
  214. static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
  215. float max_logit = logits[0];
  216. int imax = 0;
  217. for (int i = 1; i < n_vocab; ++i) {
  218. if (logits[i] > max_logit) {
  219. max_logit = logits[i];
  220. imax = i;
  221. }
  222. }
  223. double sum_exp = 0.0;
  224. for (int i = 0; i < n_vocab; ++i) {
  225. sum_exp += expf(logits[i] - max_logit);
  226. }
  227. const float log_sum_exp = log(sum_exp);
  228. const float * d = (const float *)base_log_prob;
  229. const float scale = d[0];
  230. const float min_log_prob = d[1];
  231. base_log_prob += 4;
  232. const float nll = max_logit + log_sum_exp - logits[tok];
  233. kld.sum_nll += nll;
  234. kld.sum_nll2 += nll*nll;
  235. const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
  236. kld.sum_nll_base += nll_base;
  237. kld.sum_nll_base2 += nll_base*nll_base;
  238. kld.sum_nll_nll_base += nll*nll_base;
  239. max_logit += log_sum_exp;
  240. double sum = 0;
  241. int imax_base = -1;
  242. float p_log_base_max = 0;
  243. for (int i = 0; i < n_vocab; ++i) {
  244. const float p_log_base = scale*base_log_prob[i] + min_log_prob;
  245. if (i == 0 || p_log_base > p_log_base_max) {
  246. p_log_base_max = p_log_base;
  247. imax_base = i;
  248. }
  249. if (p_log_base > -16.f) {
  250. const float p_base = expf(p_log_base);
  251. sum += p_base * (p_log_base - logits[i] + max_logit);
  252. }
  253. }
  254. kld.sum_kld += sum;
  255. kld.sum_kld2 += sum*sum;
  256. ++kld.count;
  257. if (imax == imax_base) ++kld.n_same_top;
  258. const float p_base = expf(-nll_base);
  259. const float p = expf(-nll);
  260. const float p_diff = p - p_base;
  261. kld.sum_p_diff += p_diff;
  262. const double p_diff2 = p_diff*p_diff;
  263. kld.sum_p_diff2 += p_diff2;
  264. kld.sum_p_diff4 += p_diff2*p_diff2;
  265. kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
  266. return std::make_pair(sum, p_diff);
  267. }
  268. static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
  269. std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
  270. float * kld_values, float * p_diff_values) {
  271. std::mutex mutex;
  272. const int nv = 2*((n_vocab + 1)/2) + 4;
  273. int counter = 0;
  274. auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
  275. kl_divergence_result local_kld;
  276. while (true) {
  277. std::unique_lock<std::mutex> lock(mutex);
  278. int i = counter++;
  279. if (i >= n_token) {
  280. kld.sum_nll += local_kld.sum_nll;
  281. kld.sum_nll2 += local_kld.sum_nll2;
  282. kld.sum_nll_base += local_kld.sum_nll_base;
  283. kld.sum_nll_base2 += local_kld.sum_nll_base2;
  284. kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
  285. kld.sum_kld += local_kld.sum_kld;
  286. kld.sum_kld2 += local_kld.sum_kld2;
  287. kld.sum_p_diff += local_kld.sum_p_diff;
  288. kld.sum_p_diff2 += local_kld.sum_p_diff2;
  289. kld.sum_p_diff4 += local_kld.sum_p_diff4;
  290. kld.n_same_top += local_kld.n_same_top;
  291. kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
  292. kld.count += local_kld.count;
  293. break;
  294. }
  295. lock.unlock();
  296. std::pair<double, float> v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
  297. kld_values[i] = (float)v.first;
  298. p_diff_values[i] = v.second;
  299. }
  300. };
  301. for (auto & w : workers) {
  302. w = std::thread(compute);
  303. }
  304. compute();
  305. for (auto & w : workers) {
  306. w.join();
  307. }
  308. }
  309. static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  310. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  311. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  312. // Output: `perplexity: 13.5106 [114/114]`
  313. // BOS tokens will be added for each chunk before eval
  314. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  315. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  316. LOG_INF("%s: tokenizing the input ..\n", __func__);
  317. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
  318. const int n_ctx = llama_n_ctx(ctx);
  319. if (int(tokens.size()) < 2*n_ctx) {
  320. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  321. n_ctx);
  322. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  323. return {std::move(tokens), 0., {}, {}};
  324. }
  325. std::vector<float> logit_history;
  326. std::vector<float> prob_history;
  327. logit_history.resize(tokens.size());
  328. prob_history.resize(tokens.size());
  329. if (params.ppl_stride <= 0) {
  330. LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  331. return {tokens, -1, logit_history, prob_history};
  332. }
  333. const int calc_chunk = n_ctx;
  334. LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  335. if (int(tokens.size()) <= calc_chunk) {
  336. LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  337. tokens.size(), n_ctx, params.ppl_stride);
  338. return {tokens, -1, logit_history, prob_history};
  339. }
  340. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  341. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  342. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  343. const int n_batch = params.n_batch;
  344. int count = 0;
  345. double nll = 0.0;
  346. LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  347. for (int i = 0; i < n_chunk; ++i) {
  348. const int start = i * params.ppl_stride;
  349. const int end = start + calc_chunk;
  350. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  351. //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  352. std::vector<float> logits;
  353. const auto t_start = std::chrono::high_resolution_clock::now();
  354. // clear the KV cache
  355. llama_kv_cache_clear(ctx);
  356. for (int j = 0; j < num_batches; ++j) {
  357. const int batch_start = start + j * n_batch;
  358. const int batch_size = std::min(end - batch_start, n_batch);
  359. //LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  360. // TODO: use llama_batch.logits instead of relying on logits_all == true
  361. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  362. //LOG_ERR("%s : failed to eval\n", __func__);
  363. return {tokens, -1, logit_history, prob_history};
  364. }
  365. // save original token and restore it after eval
  366. const auto token_org = tokens[batch_start];
  367. // add BOS token for the first batch of each chunk
  368. if (add_bos && j == 0) {
  369. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  370. }
  371. const auto batch_logits = llama_get_logits(ctx);
  372. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  373. if (j == 0) {
  374. tokens[batch_start] = token_org;
  375. }
  376. }
  377. const auto t_end = std::chrono::high_resolution_clock::now();
  378. if (i == 0) {
  379. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  380. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  381. int total_seconds = (int)(t_total * n_chunk);
  382. if (total_seconds >= 60*60) {
  383. LOG("%d hours ", total_seconds / (60*60));
  384. total_seconds = total_seconds % (60*60);
  385. }
  386. LOG("%.2f minutes\n", total_seconds / 60.0);
  387. }
  388. LOG("\n");
  389. //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  390. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  391. // Calculate probability of next token, given the previous ones.
  392. const std::vector<float> tok_logits(
  393. logits.begin() + (j + 0) * n_vocab,
  394. logits.begin() + (j + 1) * n_vocab);
  395. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  396. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  397. prob_history[start + j + 1] = prob;
  398. nll += -std::log(prob);
  399. ++count;
  400. }
  401. // perplexity is e^(average negative log-likelihood)
  402. if (params.ppl_output_type == 0) {
  403. LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
  404. } else {
  405. LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  406. }
  407. }
  408. LOG("\n");
  409. return {tokens, std::exp(nll / count), logit_history, prob_history};
  410. }
  411. static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
  412. if (params.ppl_stride > 0) {
  413. return perplexity_v2(ctx, params);
  414. }
  415. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  416. // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  417. // Output: `perplexity: 13.5106 [114/114]`
  418. // BOS tokens will be added for each chunk before eval
  419. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  420. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  421. std::ofstream logits_stream;
  422. if (!params.logits_file.empty()) {
  423. logits_stream.open(params.logits_file.c_str(), std::ios::binary);
  424. if (!logits_stream.is_open()) {
  425. LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
  426. return {};
  427. }
  428. LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
  429. logits_stream.write("_logits_", 8);
  430. logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
  431. }
  432. auto tim1 = std::chrono::high_resolution_clock::now();
  433. LOG_INF("%s: tokenizing the input ..\n", __func__);
  434. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
  435. auto tim2 = std::chrono::high_resolution_clock::now();
  436. LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  437. if (int(tokens.size()) < 2*n_ctx) {
  438. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  439. n_ctx);
  440. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  441. return {std::move(tokens), 0., {}, {}};
  442. }
  443. std::vector<float> logit_history;
  444. logit_history.resize(tokens.size());
  445. std::vector<float> prob_history;
  446. prob_history.resize(tokens.size());
  447. const int n_chunk_max = tokens.size() / n_ctx;
  448. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  449. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  450. const int n_batch = params.n_batch;
  451. int count = 0;
  452. double nll = 0.0;
  453. double nll2 = 0.0;
  454. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  455. const int n_seq = std::max(1, n_batch / n_ctx);
  456. GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
  457. GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
  458. llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
  459. std::vector<float> logits;
  460. if (num_batches > 1) {
  461. logits.reserve((size_t)n_ctx * n_vocab);
  462. }
  463. LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
  464. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  465. std::vector<uint16_t> log_probs;
  466. if (!params.logits_file.empty()) {
  467. logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
  468. logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
  469. logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
  470. const int nv = 2*((n_vocab + 1)/2) + 4;
  471. log_probs.resize(n_ctx * nv);
  472. }
  473. // We get the logits for all the tokens in the context window (params.n_ctx)
  474. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  475. // calculate the perplexity over the last half of the window (so the model always has
  476. // some context to predict the token).
  477. //
  478. // We rely on the fact that attention in the forward pass only looks at previous
  479. // tokens here, so the logits returned for each token are an accurate representation
  480. // of what the model would have predicted at that point.
  481. //
  482. // Example, we have a context window of 512, we will compute perplexity for each of the
  483. // last 256 tokens. Then, we split the input up into context window size chunks to
  484. // process the entire prompt.
  485. const int first = n_ctx/2;
  486. for (int i = 0; i < n_chunk; i += n_seq) {
  487. const int start = i * n_ctx;
  488. const int end = start + n_ctx;
  489. const int n_seq_batch = std::min(n_seq, n_chunk - i);
  490. const auto t_start = std::chrono::high_resolution_clock::now();
  491. // clear the KV cache
  492. llama_kv_cache_clear(ctx);
  493. for (int j = 0; j < num_batches; ++j) {
  494. const int batch_start = start + j * n_batch;
  495. const int batch_size = std::min(end - batch_start, n_batch);
  496. int n_outputs = 0;
  497. batch.n_tokens = 0;
  498. for (int seq = 0; seq < n_seq_batch; seq++) {
  499. int seq_start = batch_start + seq*n_ctx;
  500. // save original token and restore it after eval
  501. const auto token_org = tokens[seq_start];
  502. // add BOS token for the first batch of each chunk
  503. if (add_bos && j == 0) {
  504. tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
  505. }
  506. for (int k = 0; k < batch_size; ++k) {
  507. const int idx = seq*n_ctx + k;
  508. batch.token [idx] = tokens[seq_start + k];
  509. batch.pos [idx] = j*n_batch + k;
  510. batch.n_seq_id[idx] = 1;
  511. batch.seq_id [idx][0] = seq;
  512. batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
  513. n_outputs += batch.logits[idx] != 0;
  514. }
  515. batch.n_tokens += batch_size;
  516. // restore the original token in case it was set to BOS
  517. tokens[seq_start] = token_org;
  518. }
  519. if (llama_decode(ctx, batch)) {
  520. LOG_INF("%s : failed to eval\n", __func__);
  521. return {tokens, -1, logit_history, prob_history};
  522. }
  523. if (num_batches > 1 && n_outputs > 0) {
  524. const auto * batch_logits = llama_get_logits(ctx);
  525. logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
  526. }
  527. }
  528. if (i == 0) {
  529. llama_synchronize(ctx);
  530. const auto t_end = std::chrono::high_resolution_clock::now();
  531. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  532. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  533. int total_seconds = (int)(t_total*n_chunk/n_seq);
  534. if (total_seconds >= 60*60) {
  535. LOG("%d hours ", total_seconds / (60*60));
  536. total_seconds = total_seconds % (60*60);
  537. }
  538. LOG("%.2f minutes\n", total_seconds / 60.0);
  539. }
  540. LOG("\n");
  541. for (int seq = 0; seq < n_seq_batch; seq++) {
  542. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
  543. llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
  544. if (!params.logits_file.empty()) {
  545. process_logits(logits_stream, n_vocab, all_logits,
  546. tokens_data, n_ctx - 1 - first,
  547. workers, log_probs, nll, nll2);
  548. } else {
  549. process_logits(n_vocab, all_logits,
  550. tokens_data, n_ctx - 1 - first,
  551. workers, nll, nll2,
  552. logit_history.data() + start + seq*n_ctx + first,
  553. prob_history.data() + start + seq*n_ctx + first);
  554. }
  555. count += n_ctx - first - 1;
  556. // perplexity is e^(average negative log-likelihood)
  557. if (params.ppl_output_type == 0) {
  558. LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
  559. } else {
  560. double av = nll/count;
  561. double av2 = nll2/count - av*av;
  562. if (av2 > 0) av2 = sqrt(av2/(count-1));
  563. LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  564. }
  565. }
  566. logits.clear();
  567. }
  568. LOG("\n");
  569. nll2 /= count;
  570. nll /= count;
  571. const double ppl = exp(nll);
  572. nll2 -= nll * nll;
  573. if (nll2 > 0) {
  574. nll2 = sqrt(nll2/(count-1));
  575. LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  576. } else {
  577. LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
  578. }
  579. llama_batch_free(batch);
  580. return {tokens, ppl, logit_history, prob_history};
  581. }
  582. static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
  583. int prev_outputs = 0;
  584. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
  585. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  586. llama_batch batch_view = {
  587. n_tokens,
  588. batch.token + i,
  589. nullptr,
  590. batch.pos + i,
  591. batch.n_seq_id + i,
  592. batch.seq_id + i,
  593. batch.logits + i,
  594. 0, 0, 0, // unused
  595. };
  596. const int ret = llama_decode(ctx, batch_view);
  597. if (ret != 0) {
  598. LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
  599. return false;
  600. }
  601. int n_outputs = 0;
  602. for (int i = 0; i < n_tokens; ++i) {
  603. n_outputs += batch_view.logits[i] != 0;
  604. }
  605. memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
  606. prev_outputs += n_outputs;
  607. }
  608. return true;
  609. }
  610. #define K_TOKEN_CHUNK 4
  611. static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
  612. const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
  613. if (eval_results.size() != eval_pairs.size()) {
  614. eval_results.resize(eval_pairs.size());
  615. }
  616. if (eval_pairs.empty()) return;
  617. size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
  618. std::atomic<int> counter(0);
  619. auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
  620. float local_logprobs[K_TOKEN_CHUNK];
  621. while (true) {
  622. size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
  623. if (first >= eval_results.size()) break;
  624. size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
  625. for (size_t i = first; i < last; ++i) {
  626. auto logits = batch_logits + eval_pairs[i].first * n_vocab;
  627. float max_logit = logits[0];
  628. for (int j = 1; j < n_vocab; ++j) {
  629. max_logit = std::max(max_logit, logits[j]);
  630. }
  631. float sum_p = 0.f;
  632. for (int j = 0; j < n_vocab; ++j) {
  633. sum_p += expf(logits[j] - max_logit);
  634. }
  635. local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
  636. }
  637. std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
  638. }
  639. };
  640. for (size_t it = 0; it < max_threads; ++it) {
  641. workers[it] = std::thread(compute);
  642. }
  643. for (size_t it = 0; it < max_threads; ++it) {
  644. workers[it].join();
  645. }
  646. }
  647. static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  648. // Calculates hellaswag score (acc_norm) from prompt
  649. //
  650. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  651. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  652. //
  653. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  654. //
  655. // Datafile layout:
  656. // ['??'] denotes json fields
  657. // 6 lines per task:
  658. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  659. // ['label'] - The index the best common sense ending aka gold ending
  660. // ['endings'][0] - Endings added to the first part of the query
  661. // ['endings'][1]
  662. // ['endings'][2]
  663. // ['endings'][3]
  664. std::vector<std::string> prompt_lines;
  665. std::istringstream strstream(params.prompt);
  666. std::string line;
  667. while (std::getline(strstream,line,'\n')) {
  668. prompt_lines.push_back(line);
  669. }
  670. if (prompt_lines.size() % 6 != 0) {
  671. LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
  672. return;
  673. }
  674. size_t hs_task_count = prompt_lines.size()/6;
  675. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  676. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  677. LOG_INF("================================= is_spm = %d\n", is_spm);
  678. // The tasks should be randomized so the score stabilizes quickly.
  679. bool randomize_tasks = true;
  680. // Number of tasks to use when computing the score
  681. if (params.hellaswag_tasks < hs_task_count) {
  682. hs_task_count = params.hellaswag_tasks;
  683. }
  684. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  685. std::mt19937 rng(1);
  686. // Dataholder for hellaswag tasks
  687. struct hs_data_t {
  688. std::string context;
  689. size_t gold_ending_idx;
  690. std::string ending[4];
  691. size_t ending_logprob_count[4];
  692. double ending_logprob[4];
  693. size_t i_logits; // starting index of logits in the llama_batch
  694. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  695. size_t required_tokens; // needed number of tokens to evaluate all 4 endings
  696. std::vector<llama_token> seq_tokens[4];
  697. };
  698. LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  699. // Select and read data from prompt lines
  700. std::vector<hs_data_t> hs_data(hs_task_count);
  701. for (size_t i = 0; i < hs_task_count; i++) {
  702. size_t idx = i;
  703. auto & hs_cur = hs_data[i];
  704. // Select a random example of those left in the prompt
  705. if (randomize_tasks) {
  706. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  707. idx = dist(rng);
  708. }
  709. hs_cur.context = prompt_lines[idx*6];
  710. hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  711. for (size_t j = 0; j < 4; j++) {
  712. hs_cur.ending[j] = prompt_lines[idx*6+2+j];
  713. hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
  714. }
  715. // determine the common prefix of the endings
  716. hs_cur.common_prefix = 0;
  717. for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
  718. if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
  719. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
  720. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
  721. break;
  722. }
  723. hs_cur.common_prefix++;
  724. }
  725. hs_cur.required_tokens = hs_cur.common_prefix +
  726. hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
  727. hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
  728. hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
  729. hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
  730. //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
  731. // Delete the selected random example from the prompt
  732. if (randomize_tasks) {
  733. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  734. }
  735. }
  736. LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
  737. LOG("\ntask\tacc_norm\n");
  738. double acc = 0.0f;
  739. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  740. const int n_ctx = llama_n_ctx(ctx);
  741. const int n_batch = params.n_batch;
  742. const int max_tasks_per_batch = 32;
  743. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  744. llama_batch batch = llama_batch_init(n_ctx, 0, 4);
  745. std::vector<float> tok_logits(n_vocab);
  746. // TODO: this could be made smaller; it's currently the worst-case size
  747. std::vector<float> batch_logits(n_vocab*n_ctx);
  748. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  749. std::vector<float> eval_results;
  750. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  751. for (size_t i0 = 0; i0 < hs_task_count; i0++) {
  752. int n_cur = 0;
  753. size_t i1 = i0;
  754. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  755. llama_batch_clear(batch);
  756. // batch as much tasks as possible into the available context
  757. // each task has 4 unique sequence ids - one for each ending
  758. // the common prefix is shared among the 4 sequences to save tokens
  759. // we extract logits only from the last common token and from all ending tokens of each sequence
  760. while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
  761. auto & hs_cur = hs_data[i1];
  762. int n_logits = 0;
  763. const int s0 = 4*(i1 - i0);
  764. if (s0 + 4 > max_seq) {
  765. break;
  766. }
  767. for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
  768. llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
  769. }
  770. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  771. n_logits += 1;
  772. for (int s = 0; s < 4; ++s) {
  773. const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
  774. // TODO: don't evaluate the last token of each sequence
  775. for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
  776. const bool needs_logits = i < seq_tokens_size - 1;
  777. llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  778. n_logits += needs_logits;
  779. }
  780. }
  781. hs_cur.i_logits = i_logits;
  782. i_logits += n_logits;
  783. n_cur += hs_data[i1].required_tokens;
  784. if (++i1 == hs_task_count) {
  785. break;
  786. }
  787. }
  788. if (i0 == i1) {
  789. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  790. return;
  791. }
  792. llama_kv_cache_clear(ctx);
  793. // decode all tasks [i0, i1)
  794. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  795. LOG_ERR("%s: llama_decode() failed\n", __func__);
  796. return;
  797. }
  798. // Compute log-probs in parallel
  799. // First we collect all tasks
  800. eval_pairs.clear();
  801. for (size_t i = i0; i < i1; ++i) {
  802. auto & hs_cur = hs_data[i];
  803. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  804. for (int s = 0; s < 4; ++s) {
  805. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  806. eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
  807. }
  808. }
  809. }
  810. // Then we do the actual calculation
  811. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  812. size_t ir = 0;
  813. // compute the logprobs for each ending of the decoded tasks
  814. for (size_t i = i0; i < i1; ++i) {
  815. auto & hs_cur = hs_data[i];
  816. // get the logits of the last token of the common prefix
  817. std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
  818. const auto first_probs = softmax(tok_logits);
  819. for (int s = 0; s < 4; ++s) {
  820. hs_cur.ending_logprob_count[s] = 1;
  821. hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
  822. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  823. hs_cur.ending_logprob[s] += eval_results[ir++];
  824. hs_cur.ending_logprob_count[s]++;
  825. }
  826. hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
  827. }
  828. // Find the ending with maximum logprob
  829. size_t ending_logprob_max_idx = 0;
  830. double ending_logprob_max_val = hs_cur.ending_logprob[0];
  831. for (size_t s = 1; s < 4; s++) {
  832. if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
  833. ending_logprob_max_idx = s;
  834. ending_logprob_max_val = hs_cur.ending_logprob[s];
  835. }
  836. }
  837. //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
  838. // If the gold ending got the maximum logprobe add one accuracy point
  839. if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
  840. acc += 1.0;
  841. }
  842. // Print the accumulated accuracy mean x 100
  843. LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
  844. }
  845. i0 = i1 - 1;
  846. }
  847. llama_batch_free(batch);
  848. LOG("\n");
  849. }
  850. struct winogrande_entry {
  851. std::string first;
  852. std::string second;
  853. std::array<std::string, 2> choices;
  854. int answer;
  855. size_t i_logits;
  856. size_t common_prefix;
  857. size_t required_tokens;
  858. size_t n_base1; // number of tokens for context + choice 1
  859. size_t n_base2; // number of tokens for context + choice 2
  860. std::vector<llama_token> seq_tokens[2];
  861. };
  862. static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
  863. std::vector<winogrande_entry> result;
  864. std::istringstream in(prompt);
  865. std::string line;
  866. std::array<int, 4> comma_pos;
  867. while (true) {
  868. std::getline(in, line);
  869. if (in.fail() || in.eof()) break;
  870. int ipos = 0;
  871. bool quote_open = false;
  872. for (int i = 0; i < int(line.size()); ++i) {
  873. if (!quote_open) {
  874. if (line[i] == ',') {
  875. comma_pos[ipos++] = i;
  876. if (ipos == 4) break;
  877. }
  878. else if (line[i] == '"') {
  879. quote_open = true;
  880. }
  881. }
  882. else {
  883. if (line[i] == '"') {
  884. quote_open = false;
  885. }
  886. }
  887. }
  888. if (ipos != 4) {
  889. LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
  890. continue;
  891. }
  892. auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
  893. : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
  894. auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
  895. auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
  896. auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
  897. auto index = line.substr(0, comma_pos[0]);
  898. int where = 0;
  899. for ( ; where < int(sentence.size()); ++where) {
  900. if (sentence[where] == '_') break;
  901. }
  902. if (where == int(sentence.size())) {
  903. LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
  904. continue;
  905. }
  906. std::istringstream stream(answer.c_str());
  907. int i_answer; stream >> i_answer;
  908. if (stream.fail() || i_answer < 1 || i_answer > 2) {
  909. LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
  910. continue;
  911. }
  912. result.emplace_back();
  913. auto& wg = result.back();
  914. wg.first = sentence.substr(0, where);
  915. wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
  916. wg.choices[0] = std::move(choice1);
  917. wg.choices[1] = std::move(choice2);
  918. wg.answer = i_answer;
  919. }
  920. return result;
  921. }
  922. /*
  923. * Evaluates the Winogrande score.
  924. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
  925. * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
  926. * As an example, the 1st row in the above dataset is
  927. *
  928. * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
  929. *
  930. */
  931. static void winogrande_score(llama_context * ctx, const gpt_params & params) {
  932. constexpr int k_min_trailing_ctx = 3;
  933. auto data = load_winogrande_from_csv(params.prompt);
  934. if (data.empty()) {
  935. LOG_ERR("%s: no tasks\n", __func__);
  936. return;
  937. }
  938. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
  939. if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
  940. LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
  941. std::mt19937 rng(1);
  942. std::vector<int> aux(data.size());
  943. for (int i = 0; i < int(data.size()); ++i) {
  944. aux[i] = i;
  945. }
  946. float scale = 1/(1.f + (float)rng.max());
  947. std::vector<winogrande_entry> selected;
  948. selected.resize(params.winogrande_tasks);
  949. for (int i = 0; i < int(params.winogrande_tasks); ++i) {
  950. int j = int(scale*rng()*aux.size());
  951. selected[i] = std::move(data[aux[j]]);
  952. aux[j] = aux.back();
  953. aux.pop_back();
  954. }
  955. data = std::move(selected);
  956. }
  957. LOG_INF("%s : tokenizing selected tasks\n", __func__);
  958. for (auto & task : data) {
  959. task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true);
  960. task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, true);
  961. task.common_prefix = 0;
  962. for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
  963. if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
  964. break;
  965. }
  966. task.common_prefix++;
  967. }
  968. // TODO: the last token of each of the sequences don't need to be evaluated
  969. task.required_tokens = task.common_prefix +
  970. task.seq_tokens[0].size() - task.common_prefix +
  971. task.seq_tokens[1].size() - task.common_prefix;
  972. task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], true).size();
  973. task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size();
  974. }
  975. LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
  976. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  977. const int n_ctx = llama_n_ctx(ctx);
  978. const int n_batch = params.n_batch;
  979. const int max_tasks_per_batch = 128;
  980. const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  981. llama_batch batch = llama_batch_init(n_ctx, 0, 2);
  982. std::vector<float> tok_logits(n_vocab);
  983. // TODO: this could be made smaller; it's currently the worst-case size
  984. std::vector<float> batch_logits(n_vocab*n_ctx);
  985. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  986. std::vector<float> eval_results;
  987. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  988. int n_correct = 0;
  989. int n_done = 0;
  990. for (size_t i0 = 0; i0 < data.size(); i0++) {
  991. int n_cur = 0;
  992. size_t i1 = i0;
  993. size_t i_logits = 0;
  994. llama_batch_clear(batch);
  995. while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
  996. int n_logits = 0;
  997. const int s0 = 2*(i1 - i0);
  998. if (s0 + 2 > max_seq) {
  999. break;
  1000. }
  1001. for (size_t i = 0; i < data[i1].common_prefix; ++i) {
  1002. llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
  1003. }
  1004. batch.logits[batch.n_tokens - 1] = true;
  1005. n_logits += 1;
  1006. for (int s = 0; s < 2; ++s) {
  1007. // TODO: end before the last token, no need to predict past the end of the sequences
  1008. for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
  1009. llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
  1010. n_logits += 1;
  1011. }
  1012. }
  1013. data[i1].i_logits = i_logits;
  1014. i_logits += n_logits;
  1015. n_cur += data[i1].required_tokens;
  1016. if (++i1 == data.size()) {
  1017. break;
  1018. }
  1019. }
  1020. if (i0 == i1) {
  1021. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1022. return;
  1023. }
  1024. llama_kv_cache_clear(ctx);
  1025. // decode all tasks [i0, i1)
  1026. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1027. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1028. return;
  1029. }
  1030. eval_pairs.clear();
  1031. for (size_t i = i0; i < i1; ++i) {
  1032. auto & task = data[i];
  1033. const bool skip_choice =
  1034. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1035. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1036. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1037. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1038. size_t li = n_base1 - task.common_prefix;
  1039. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1040. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
  1041. }
  1042. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1043. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1044. // FIXME: this uses the wrong first logits when not skipping the choice word
  1045. li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
  1046. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1047. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
  1048. }
  1049. }
  1050. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1051. size_t ir = 0;
  1052. for (size_t i = i0; i < i1; ++i) {
  1053. auto & task = data[i];
  1054. const bool skip_choice =
  1055. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1056. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1057. float score_1st = 0;
  1058. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1059. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1060. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1061. score_1st += eval_results[ir++];
  1062. }
  1063. score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
  1064. float score_2nd = 0;
  1065. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1066. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1067. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1068. score_2nd += eval_results[ir++];
  1069. }
  1070. score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
  1071. int result = score_1st > score_2nd ? 1 : 2;
  1072. if (result == task.answer) {
  1073. ++n_correct;
  1074. }
  1075. ++n_done;
  1076. // print the accumulated accuracy mean x 100
  1077. LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
  1078. }
  1079. i0 = i1 - 1;
  1080. }
  1081. LOG("\n");
  1082. if (n_done < 100) return;
  1083. const float p = 1.f*n_correct/n_done;
  1084. const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
  1085. LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
  1086. }
  1087. static bool deserialize_string(std::istream & in, std::string & str) {
  1088. uint32_t size;
  1089. if (!in.read((char *)&size, sizeof(size)).fail()) {
  1090. str.resize(size);
  1091. if (!in.read((char *)&str[0], size).fail()) return true;
  1092. }
  1093. return false;
  1094. }
  1095. struct multiple_choice_answers {
  1096. std::vector<std::string> answers;
  1097. std::vector<int> labels;
  1098. bool deserialize(std::istream& in) {
  1099. uint32_t n;
  1100. in.read((char *)&n, sizeof(n));
  1101. if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
  1102. answers.resize(n);
  1103. labels.resize(n);
  1104. for (auto& a : answers) {
  1105. if (!deserialize_string(in, a)) return false;
  1106. }
  1107. in.read((char *)labels.data(), n*sizeof(int));
  1108. return !in.fail();
  1109. }
  1110. };
  1111. struct multiple_choice_task {
  1112. std::string question; // the question (or context that needs to be continued)
  1113. multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
  1114. multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
  1115. bool deserialize(std::istream& in) {
  1116. if (!deserialize_string(in, question)) return false;
  1117. return mc1.deserialize(in) && mc2.deserialize(in);
  1118. }
  1119. // For evaluation
  1120. size_t i_logits; // starting index of logits in the llama_batch
  1121. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  1122. size_t required_tokens; // needed number of tokens to evaluate all answers
  1123. std::vector<std::vector<llama_token>> seq_tokens;
  1124. std::vector<float> log_probs;
  1125. };
  1126. static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
  1127. if (task.question.empty() || task.mc1.answers.empty()) {
  1128. if (log_error) {
  1129. LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
  1130. }
  1131. return false;
  1132. }
  1133. task.seq_tokens.reserve(task.mc1.answers.size());
  1134. for (auto& answer : task.mc1.answers) {
  1135. if (answer.empty()) {
  1136. if (log_error) {
  1137. LOG_ERR("%s: found empty answer\n", __func__);
  1138. }
  1139. return false;
  1140. }
  1141. task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, true));
  1142. }
  1143. auto min_len = task.seq_tokens.front().size();
  1144. for (auto& seq : task.seq_tokens) {
  1145. min_len = std::min(min_len, seq.size());
  1146. }
  1147. task.common_prefix = 0;
  1148. for (size_t k = 0; k < min_len; ++k) {
  1149. auto token = task.seq_tokens[0][k];
  1150. bool all_same = true;
  1151. for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
  1152. if (task.seq_tokens[i][k] != token) {
  1153. all_same = false;
  1154. break;
  1155. }
  1156. }
  1157. if (!all_same) {
  1158. break;
  1159. }
  1160. ++task.common_prefix;
  1161. }
  1162. task.required_tokens = task.common_prefix;
  1163. for (auto& seq : task.seq_tokens) {
  1164. task.required_tokens += seq.size() - task.common_prefix;
  1165. }
  1166. return true;
  1167. }
  1168. //
  1169. // Calculates score for multiple choice tasks with single correct answer from prompt.
  1170. // Commonly used LLM evaluation metrics of this type are
  1171. // * ARC
  1172. // * HellaSwag
  1173. // * MMLU
  1174. // * TruthfulQA
  1175. //
  1176. // Validation datasets for these 4 tests can be found at
  1177. // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
  1178. // The data for these datasets was extracted from
  1179. // git@hf.co:datasets/allenai/ai2_arc
  1180. // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  1181. // git@hf.co:datasets/Stevross/mmlu
  1182. // https://huggingface.co/datasets/truthful_qa
  1183. //
  1184. static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
  1185. std::istringstream strstream(params.prompt);
  1186. uint32_t n_task;
  1187. strstream.read((char *)&n_task, sizeof(n_task));
  1188. if (strstream.fail() || n_task == 0) {
  1189. LOG_ERR("%s: no tasks\n", __func__);
  1190. return;
  1191. }
  1192. LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
  1193. std::vector<uint32_t> task_pos(n_task);
  1194. strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
  1195. if (strstream.fail()) {
  1196. LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
  1197. return;
  1198. }
  1199. std::vector<multiple_choice_task> tasks;
  1200. if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
  1201. // Use all tasks
  1202. tasks.resize(n_task);
  1203. LOG_INF("%s: reading tasks", __func__);
  1204. int n_dot = std::max((int) n_task/100, 1);
  1205. int i = 0;
  1206. for (auto& task : tasks) {
  1207. ++i;
  1208. if (!task.deserialize(strstream)) {
  1209. LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
  1210. return;
  1211. }
  1212. if (i%n_dot == 0) LOG(".");
  1213. }
  1214. LOG("done\n");
  1215. }
  1216. else {
  1217. LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
  1218. std::mt19937 rng(1);
  1219. std::vector<int> aux(n_task);
  1220. for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
  1221. float scale = 1.f/(1.f + (float)std::mt19937::max());
  1222. tasks.resize(params.multiple_choice_tasks);
  1223. for (auto& task : tasks) {
  1224. int j = (int)(scale * rng() * aux.size());
  1225. int idx = aux[j];
  1226. aux[j] = aux.back();
  1227. aux.pop_back();
  1228. strstream.seekg(task_pos[idx], std::ios::beg);
  1229. if (!task.deserialize(strstream)) {
  1230. LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
  1231. return;
  1232. }
  1233. }
  1234. n_task = params.multiple_choice_tasks;
  1235. }
  1236. LOG_INF("%s: preparing task data", __func__);
  1237. if (n_task > 500) {
  1238. LOG("...");
  1239. std::atomic<int> counter(0);
  1240. std::atomic<int> n_bad(0);
  1241. auto prepare = [&counter, &n_bad, &tasks, ctx] () {
  1242. int num_tasks = tasks.size();
  1243. int n_bad_local = 0;
  1244. while (true) {
  1245. int first = counter.fetch_add(K_TOKEN_CHUNK);
  1246. if (first >= num_tasks) {
  1247. if (n_bad_local > 0) n_bad += n_bad_local;
  1248. break;
  1249. }
  1250. int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
  1251. for (int i = first; i < last; ++i) {
  1252. if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
  1253. }
  1254. }
  1255. };
  1256. size_t max_thread = std::thread::hardware_concurrency();
  1257. max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
  1258. std::vector<std::thread> workers(max_thread-1);
  1259. for (auto& w : workers) w = std::thread(prepare);
  1260. prepare();
  1261. for (auto& w : workers) w.join();
  1262. LOG("done\n");
  1263. int nbad = n_bad;
  1264. if (nbad > 0) {
  1265. LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
  1266. return;
  1267. }
  1268. } else {
  1269. int n_dot = std::max((int) n_task/100, 1);
  1270. int i_task = 0;
  1271. for (auto& task : tasks) {
  1272. ++i_task;
  1273. if (!multiple_choice_prepare_one_task(ctx, task, true)) {
  1274. return;
  1275. }
  1276. if (i_task%n_dot == 0) {
  1277. LOG(".");
  1278. }
  1279. }
  1280. LOG("done\n");
  1281. }
  1282. LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
  1283. LOG("\ntask\tacc_norm\n");
  1284. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  1285. const int n_ctx = llama_n_ctx(ctx);
  1286. const int n_batch = params.n_batch;
  1287. const int max_tasks_per_batch = 32;
  1288. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  1289. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  1290. std::vector<float> tok_logits(n_vocab);
  1291. std::vector<float> batch_logits(n_vocab*n_ctx);
  1292. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  1293. std::vector<float> eval_results;
  1294. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  1295. std::vector<int> batch_indeces;
  1296. int n_done = 0;
  1297. int n_correct = 0;
  1298. int n_tot_answers = 0;
  1299. for (size_t i0 = 0; i0 < tasks.size(); i0++) {
  1300. int n_cur = 0;
  1301. size_t i1 = i0;
  1302. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  1303. llama_batch_clear(batch);
  1304. // batch as much tasks as possible into the available context
  1305. // each task has 4 unique sequence ids - one for each ending
  1306. // the common prefix is shared among the 4 sequences to save tokens
  1307. // we extract logits only from the last common token and from all ending tokens of each sequence
  1308. int s0 = 0;
  1309. while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
  1310. auto& cur_task = tasks[i1];
  1311. int n_logits = 0;
  1312. int num_answers = cur_task.seq_tokens.size();
  1313. if (s0 + num_answers > max_seq) {
  1314. break;
  1315. }
  1316. if (int(batch_indeces.size()) != num_answers) {
  1317. batch_indeces.resize(num_answers);
  1318. }
  1319. for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
  1320. for (size_t i = 0; i < cur_task.common_prefix; ++i) {
  1321. //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
  1322. llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
  1323. }
  1324. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  1325. n_logits += 1;
  1326. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1327. const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
  1328. // TODO: don't evaluate the last token of each sequence
  1329. for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
  1330. const bool needs_logits = i < seq_tokens_size - 1;
  1331. llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  1332. n_logits += needs_logits;
  1333. }
  1334. }
  1335. s0 += num_answers;
  1336. cur_task.i_logits = i_logits;
  1337. i_logits += n_logits;
  1338. n_cur += cur_task.required_tokens;
  1339. if (++i1 == tasks.size()) {
  1340. break;
  1341. }
  1342. }
  1343. if (i0 == i1) {
  1344. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1345. return;
  1346. }
  1347. llama_kv_cache_clear(ctx);
  1348. // decode all tasks [i0, i1)
  1349. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1350. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1351. return;
  1352. }
  1353. // Compute log-probs in parallel
  1354. // First we collect all tasks
  1355. eval_pairs.clear();
  1356. for (size_t i = i0; i < i1; ++i) {
  1357. auto& cur_task = tasks[i];
  1358. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  1359. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1360. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1361. eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
  1362. }
  1363. }
  1364. }
  1365. // Then we do the actual calculation
  1366. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1367. size_t ir = 0;
  1368. // compute the logprobs for each ending of the decoded tasks
  1369. for (size_t i = i0; i < i1; ++i) {
  1370. auto & cur_task = tasks[i];
  1371. //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
  1372. //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
  1373. // if (cur_task.mc1.labels[j] == 1) {
  1374. // LOG("%d", j+1);
  1375. // }
  1376. //}
  1377. //LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
  1378. // get the logits of the last token of the common prefix
  1379. std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
  1380. const auto first_probs = softmax(tok_logits);
  1381. cur_task.log_probs.resize(cur_task.seq_tokens.size());
  1382. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1383. size_t count = 1;
  1384. float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
  1385. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1386. //LOG(" %zu %g\n", ir, eval_results[ir]);
  1387. ++count;
  1388. log_prob += eval_results[ir++];
  1389. }
  1390. cur_task.log_probs[s] = log_prob / count;
  1391. //LOG(" Final: %g\n", log_prob / count);
  1392. //LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
  1393. }
  1394. // Find the ending with maximum logprob
  1395. size_t logprob_max_idx = 0;
  1396. float logprob_max_val = cur_task.log_probs[0];
  1397. for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
  1398. if (cur_task.log_probs[s] > logprob_max_val) {
  1399. logprob_max_val = cur_task.log_probs[s];
  1400. logprob_max_idx = s;
  1401. }
  1402. }
  1403. n_tot_answers += cur_task.log_probs.size();
  1404. if (cur_task.mc1.labels[logprob_max_idx] == 1) {
  1405. ++n_correct;
  1406. }
  1407. ++n_done;
  1408. // Print the accumulated accuracy mean x 100
  1409. LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
  1410. }
  1411. i0 = i1 - 1;
  1412. }
  1413. llama_batch_free(batch);
  1414. if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
  1415. float p = 1.f*n_correct/n_done;
  1416. float sigma = sqrt(p*(1-p)/(n_done-1));
  1417. LOG("\n");
  1418. LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1419. p = 1.f*n_done/n_tot_answers;
  1420. sigma = sqrt(p*(1-p)/(n_done-1));
  1421. LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1422. LOG_INF("\n");
  1423. }
  1424. static void kl_divergence(llama_context * ctx, const gpt_params & params) {
  1425. if (params.logits_file.empty()) {
  1426. LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
  1427. return;
  1428. }
  1429. std::ifstream in(params.logits_file.c_str(), std::ios::binary);
  1430. if (!in) {
  1431. LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
  1432. return;
  1433. }
  1434. {
  1435. char check[9]; check[8] = 0;
  1436. in.read(check, 8);
  1437. if (in.fail() || strncmp("_logits_", check, 8) != 0) {
  1438. LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
  1439. return;
  1440. }
  1441. }
  1442. uint32_t n_ctx;
  1443. in.read((char *)&n_ctx, sizeof(n_ctx));
  1444. if (n_ctx > llama_n_ctx(ctx)) {
  1445. LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
  1446. __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
  1447. }
  1448. int n_vocab, n_chunk;
  1449. in.read((char *)&n_vocab, sizeof(n_vocab));
  1450. in.read((char *)&n_chunk, sizeof(n_chunk));
  1451. if (in.fail()) {
  1452. LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
  1453. return;
  1454. }
  1455. if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
  1456. LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
  1457. }
  1458. std::vector<llama_token> tokens(n_ctx * n_chunk);
  1459. if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
  1460. LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
  1461. return;
  1462. }
  1463. const int n_batch = params.n_batch;
  1464. const int num_batches = (n_ctx + n_batch - 1)/n_batch;
  1465. const int nv = 2*((n_vocab + 1)/2) + 4;
  1466. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  1467. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  1468. std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
  1469. std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1470. std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1471. std::vector<float> logits;
  1472. if (num_batches > 1) {
  1473. logits.reserve(n_ctx * n_vocab);
  1474. }
  1475. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  1476. auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
  1477. if (count < 1) {
  1478. return std::make_pair(0., 0.);
  1479. }
  1480. double f = sum/count;
  1481. double df = sum2/count - f*f;
  1482. df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
  1483. return std::make_pair(f, df);
  1484. };
  1485. auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
  1486. if (count < 10) {
  1487. return 0.0;
  1488. }
  1489. double var = sumab/count - (suma/count)*(sumb/count);
  1490. var /= count - 1;
  1491. return var;
  1492. };
  1493. kl_divergence_result kld;
  1494. auto kld_ptr = kld_values.data();
  1495. auto p_diff_ptr = p_diff_values.data();
  1496. for (int i = 0; i < n_chunk; ++i) {
  1497. const int start = i * n_ctx;
  1498. const int end = start + n_ctx;
  1499. const auto t_start = std::chrono::high_resolution_clock::now();
  1500. if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
  1501. LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
  1502. return;
  1503. }
  1504. // clear the KV cache
  1505. llama_kv_cache_clear(ctx);
  1506. for (int j = 0; j < num_batches; ++j) {
  1507. const int batch_start = start + j * n_batch;
  1508. const int batch_size = std::min(end - batch_start, n_batch);
  1509. // save original token and restore it after eval
  1510. const auto token_org = tokens[batch_start];
  1511. // add BOS token for the first batch of each chunk
  1512. if (add_bos && j == 0) {
  1513. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  1514. }
  1515. // TODO: use llama_batch.logits instead of relying on logits_all == true
  1516. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  1517. LOG_ERR("%s : failed to eval\n", __func__);
  1518. return;
  1519. }
  1520. // restore the original token in case it was set to BOS
  1521. tokens[batch_start] = token_org;
  1522. if (num_batches > 1) {
  1523. const auto * batch_logits = llama_get_logits(ctx);
  1524. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  1525. }
  1526. }
  1527. const auto t_end = std::chrono::high_resolution_clock::now();
  1528. if (i == 0) {
  1529. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  1530. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  1531. int total_seconds = (int)(t_total * n_chunk);
  1532. if (total_seconds >= 60*60) {
  1533. LOG("%d hours ", total_seconds / (60*60));
  1534. total_seconds = total_seconds % (60*60);
  1535. }
  1536. LOG("%.2f minutes\n", total_seconds / 60.0);
  1537. }
  1538. LOG("\n");
  1539. LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
  1540. const int first = n_ctx/2;
  1541. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
  1542. process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  1543. workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
  1544. p_diff_ptr += n_ctx - 1 - first;
  1545. kld_ptr += n_ctx - 1 - first;
  1546. LOG("%4d", i+1);
  1547. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1548. const double ppl_val = exp(log_ppl.first);
  1549. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1550. LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
  1551. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1552. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1553. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1554. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1555. LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
  1556. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1557. LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
  1558. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1559. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1560. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1561. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1562. double p_top_val = 1.*kld.n_same_top/kld.count;
  1563. double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
  1564. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
  1565. LOG("\n");
  1566. logits.clear();
  1567. }
  1568. LOG("\n");
  1569. if (kld.count < 100) return; // we do not wish to do statistics on so few values
  1570. std::sort(kld_values.begin(), kld_values.end());
  1571. std::sort(p_diff_values.begin(), p_diff_values.end());
  1572. LOG("====== Perplexity statistics ======\n");
  1573. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1574. const double ppl_val = exp(log_ppl.first);
  1575. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1576. LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
  1577. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1578. const double ppl_base_val = exp(log_ppl_base.first);
  1579. const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
  1580. LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
  1581. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1582. // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
  1583. const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
  1584. LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
  1585. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1586. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1587. LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
  1588. const double ppl_ratio_val = exp(log_ppl_ratio_val);
  1589. const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
  1590. LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
  1591. const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
  1592. const double ppl_diff_val = ppl_val - ppl_base_val;
  1593. const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
  1594. LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
  1595. LOG("\n");
  1596. LOG("====== KL divergence statistics ======\n");
  1597. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1598. LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
  1599. auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
  1600. : kld_values[kld_values.size()/2];
  1601. auto percentile = [] (std::vector<float> values, float fraction) {
  1602. if (fraction <= 0) return values.front();
  1603. if (fraction >= 1) return values.back();
  1604. float p = fraction*(values.size() - 1);
  1605. size_t ip = size_t(p); p -= ip;
  1606. return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
  1607. };
  1608. LOG("Maximum KLD: %10.6f\n", kld_values.back());
  1609. LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
  1610. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1611. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1612. LOG("Median KLD: %10.6f\n", kld_median);
  1613. LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
  1614. LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
  1615. LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
  1616. LOG("Minimum KLD: %10.6f\n", kld_values.front());
  1617. LOG("\n");
  1618. LOG("====== Token probability statistics ======\n");
  1619. auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
  1620. LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
  1621. auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
  1622. : p_diff_values[p_diff_values.size()/2];
  1623. LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
  1624. LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
  1625. LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
  1626. LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
  1627. LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
  1628. LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
  1629. LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
  1630. LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
  1631. LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
  1632. LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
  1633. LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
  1634. LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
  1635. LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
  1636. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1637. // LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
  1638. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1639. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1640. LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1641. const double same_top_p = 1.0*kld.n_same_top/kld.count;
  1642. LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
  1643. }
  1644. int main(int argc, char ** argv) {
  1645. gpt_params params;
  1646. params.n_ctx = 512;
  1647. params.logits_all = true;
  1648. params.escape = false;
  1649. if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
  1650. return 1;
  1651. }
  1652. gpt_init();
  1653. const int32_t n_ctx = params.n_ctx;
  1654. if (n_ctx <= 0) {
  1655. LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
  1656. return 1;
  1657. }
  1658. const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
  1659. if (ppl) {
  1660. const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
  1661. const int32_t n_kv = n_seq * n_ctx;
  1662. params.n_parallel = n_seq;
  1663. params.n_ctx = n_kv;
  1664. params.n_batch = std::min(params.n_batch, n_kv);
  1665. } else {
  1666. params.n_batch = std::min(params.n_batch, params.n_ctx);
  1667. if (params.kl_divergence) {
  1668. params.n_parallel = 1;
  1669. } else {
  1670. // ensure there's at least enough seq_ids for HellaSwag
  1671. params.n_parallel = std::max(4, params.n_parallel);
  1672. }
  1673. }
  1674. if (params.ppl_stride > 0) {
  1675. LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  1676. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  1677. params.n_ctx += params.ppl_stride/2;
  1678. }
  1679. llama_backend_init();
  1680. llama_numa_init(params.numa);
  1681. // load the model and apply lora adapter, if any
  1682. llama_init_result llama_init = llama_init_from_gpt_params(params);
  1683. llama_model * model = llama_init.model;
  1684. llama_context * ctx = llama_init.context;
  1685. if (model == NULL) {
  1686. LOG_ERR("%s: unable to load model\n", __func__);
  1687. return 1;
  1688. }
  1689. const int n_ctx_train = llama_n_ctx_train(model);
  1690. if (params.n_ctx > n_ctx_train) {
  1691. LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
  1692. __func__, n_ctx_train, params.n_ctx);
  1693. }
  1694. // print system information
  1695. {
  1696. LOG_INF("\n");
  1697. LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
  1698. }
  1699. struct results_perplexity results;
  1700. if (params.hellaswag) {
  1701. hellaswag_score(ctx, params);
  1702. } else if (params.winogrande) {
  1703. winogrande_score(ctx, params);
  1704. } else if (params.multiple_choice) {
  1705. multiple_choice_score(ctx, params);
  1706. } else if (params.kl_divergence) {
  1707. kl_divergence(ctx, params);
  1708. } else {
  1709. results = perplexity(ctx, params, n_ctx);
  1710. }
  1711. LOG("\n");
  1712. llama_perf_context_print(ctx);
  1713. write_logfile(ctx, params, model, results);
  1714. llama_free(ctx);
  1715. llama_free_model(model);
  1716. llama_backend_free();
  1717. return 0;
  1718. }