utils.hpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. #pragma once
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include "common/base64.hpp"
  6. #ifndef NDEBUG
  7. // crash the server in debug mode, otherwise send an http 500 error
  8. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  9. #endif
  10. // increase max payload length to allow use of larger context size
  11. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  12. #include "httplib.h"
  13. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  14. #define JSON_ASSERT GGML_ASSERT
  15. #include "json.hpp"
  16. #include <random>
  17. #include <sstream>
  18. #include <string>
  19. #include <vector>
  20. #include <memory>
  21. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
  22. using json = nlohmann::ordered_json;
  23. #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  24. #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  25. #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  26. #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  27. #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  28. #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  29. #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  30. #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  31. #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  32. #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  33. #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  34. #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  35. template <typename T>
  36. static T json_value(const json & body, const std::string & key, const T & default_value) {
  37. // Fallback null to default value
  38. if (body.contains(key) && !body.at(key).is_null()) {
  39. try {
  40. return body.at(key);
  41. } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
  42. LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
  43. return default_value;
  44. }
  45. } else {
  46. return default_value;
  47. }
  48. }
  49. const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
  50. //
  51. // tokenizer and input processing utils
  52. //
  53. static bool json_is_array_of_numbers(const json & data) {
  54. if (data.is_array()) {
  55. for (const auto & e : data) {
  56. if (!e.is_number_integer()) {
  57. return false;
  58. }
  59. }
  60. return true;
  61. }
  62. return false;
  63. }
  64. // is array having BOTH numbers & strings?
  65. static bool json_is_array_of_mixed_numbers_strings(const json & data) {
  66. bool seen_string = false;
  67. bool seen_number = false;
  68. if (data.is_array()) {
  69. for (const auto & e : data) {
  70. seen_string |= e.is_string();
  71. seen_number |= e.is_number_integer();
  72. if (seen_number && seen_string) {
  73. return true;
  74. }
  75. }
  76. }
  77. return false;
  78. }
  79. // get value by path(key1 / key2)
  80. static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
  81. json result = json::object();
  82. for (const std::string & path : paths) {
  83. json current = js;
  84. const auto keys = string_split<std::string>(path, /*separator*/ '/');
  85. bool valid_path = true;
  86. for (const std::string & k : keys) {
  87. if (valid_path && current.is_object() && current.contains(k)) {
  88. current = current[k];
  89. } else {
  90. valid_path = false;
  91. }
  92. }
  93. if (valid_path) {
  94. result[path] = current;
  95. }
  96. }
  97. return result;
  98. }
  99. /**
  100. * this handles 2 cases:
  101. * - only string, example: "string"
  102. * - mixed string and tokens, example: [12, 34, "string", 56, 78]
  103. */
  104. static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
  105. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  106. // or the first element of the json_prompt array is a string.
  107. llama_tokens prompt_tokens;
  108. if (json_prompt.is_array()) {
  109. bool first = true;
  110. for (const auto & p : json_prompt) {
  111. if (p.is_string()) {
  112. auto s = p.template get<std::string>();
  113. llama_tokens p;
  114. if (first) {
  115. p = common_tokenize(ctx, s, add_special, parse_special);
  116. first = false;
  117. } else {
  118. p = common_tokenize(ctx, s, false, parse_special);
  119. }
  120. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  121. } else {
  122. if (first) {
  123. first = false;
  124. }
  125. prompt_tokens.push_back(p.template get<llama_token>());
  126. }
  127. }
  128. } else {
  129. auto s = json_prompt.template get<std::string>();
  130. prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
  131. }
  132. return prompt_tokens;
  133. }
  134. /**
  135. * break the input "prompt" object into multiple prompt if needed, then tokenize them
  136. * this supports these cases:
  137. * - "prompt": "string"
  138. * - "prompt": [12, 34, 56]
  139. * - "prompt": [12, 34, "string", 56, 78]
  140. * and multiple prompts (multi-tasks):
  141. * - "prompt": ["string1", "string2"]
  142. * - "prompt": ["string1", [12, 34, 56]]
  143. * - "prompt": [[12, 34, 56], [78, 90, 12]]
  144. * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
  145. */
  146. static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
  147. std::vector<llama_tokens> result;
  148. if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
  149. // string or mixed
  150. result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
  151. } else if (json_is_array_of_numbers(json_prompt)) {
  152. // array of tokens
  153. result.push_back(json_prompt.get<llama_tokens>());
  154. } else if (json_prompt.is_array()) {
  155. // array of prompts
  156. result.reserve(json_prompt.size());
  157. for (const auto & p : json_prompt) {
  158. if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
  159. result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
  160. } else if (json_is_array_of_numbers(p)) {
  161. // array of tokens
  162. result.push_back(p.get<llama_tokens>());
  163. } else {
  164. throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
  165. }
  166. }
  167. } else {
  168. throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
  169. }
  170. if (result.empty()) {
  171. throw std::runtime_error("\"prompt\" must not be empty");
  172. }
  173. return result;
  174. }
  175. // return the last index of character that can form a valid string
  176. // if the last character is potentially cut in half, return the index before the cut
  177. // if validate_utf8(text) == text.size(), then the whole text is valid utf8
  178. static size_t validate_utf8(const std::string& text) {
  179. size_t len = text.size();
  180. if (len == 0) return 0;
  181. // Check the last few bytes to see if a multi-byte character is cut off
  182. for (size_t i = 1; i <= 4 && i <= len; ++i) {
  183. unsigned char c = text[len - i];
  184. // Check for start of a multi-byte sequence from the end
  185. if ((c & 0xE0) == 0xC0) {
  186. // 2-byte character start: 110xxxxx
  187. // Needs at least 2 bytes
  188. if (i < 2) return len - i;
  189. } else if ((c & 0xF0) == 0xE0) {
  190. // 3-byte character start: 1110xxxx
  191. // Needs at least 3 bytes
  192. if (i < 3) return len - i;
  193. } else if ((c & 0xF8) == 0xF0) {
  194. // 4-byte character start: 11110xxx
  195. // Needs at least 4 bytes
  196. if (i < 4) return len - i;
  197. }
  198. }
  199. // If no cut-off multi-byte character is found, return full length
  200. return len;
  201. }
  202. //
  203. // template utils
  204. //
  205. // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
  206. static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
  207. llama_tokens result;
  208. result.reserve(doc.size() + query.size() + 4);
  209. result.push_back(llama_token_bos(model));
  210. result.insert(result.end(), query.begin(), query.end());
  211. result.push_back(llama_token_eos(model));
  212. result.push_back(llama_token_sep(model));
  213. result.insert(result.end(), doc.begin(), doc.end());
  214. result.push_back(llama_token_eos(model));
  215. return result;
  216. }
  217. // format infill task
  218. static llama_tokens format_infill(
  219. const llama_context * ctx,
  220. const json & input_prefix,
  221. const json & input_suffix,
  222. const json & input_extra,
  223. const int n_batch,
  224. const int n_predict,
  225. const int n_ctx,
  226. const bool spm_infill,
  227. const llama_tokens & tokens_prompt
  228. ) {
  229. // TODO: optimize this block by reducing memory allocations and movement
  230. // use FIM repo-level pattern:
  231. // ref: https://arxiv.org/pdf/2409.12186
  232. //
  233. // [FIM_REP]myproject
  234. // [FIM_SEP]filename0
  235. // extra chunk 0
  236. // [FIM_SEP]filename1
  237. // extra chunk 1
  238. // ...
  239. // [FIM_SEP]filename
  240. // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
  241. //
  242. llama_tokens extra_tokens;
  243. extra_tokens.reserve(n_ctx);
  244. auto model = llama_get_model(ctx);
  245. auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
  246. auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
  247. if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
  248. // TODO: make project name an input
  249. static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
  250. extra_tokens.push_back(llama_token_fim_rep(model));
  251. extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
  252. }
  253. for (const auto & chunk : input_extra) {
  254. // { "text": string, "filename": string }
  255. const std::string text = json_value(chunk, "text", std::string());
  256. const std::string filename = json_value(chunk, "filename", std::string("tmp"));
  257. if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
  258. const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
  259. extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
  260. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  261. } else {
  262. // chunk separator in binary form to avoid confusing the AI
  263. static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
  264. static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
  265. extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
  266. }
  267. const auto chunk_tokens = common_tokenize(ctx, text, false, false);
  268. extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
  269. }
  270. if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
  271. // TODO: current filename
  272. static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
  273. extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
  274. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  275. }
  276. // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
  277. const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
  278. const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
  279. SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
  280. // fill the rest of the context with extra chunks
  281. const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
  282. tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
  283. tokens_suffix.resize(n_suffix_take);
  284. tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
  285. tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
  286. tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
  287. auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
  288. auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
  289. if (llama_add_bos_token(model)) {
  290. embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
  291. }
  292. SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
  293. // put the extra context before the FIM prefix
  294. embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
  295. embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
  296. embd_inp.push_back(llama_token_fim_mid(model));
  297. return embd_inp;
  298. }
  299. // Format given chat. If tmpl is empty, we take the template from model metadata
  300. inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
  301. std::vector<common_chat_msg> chat;
  302. for (size_t i = 0; i < messages.size(); ++i) {
  303. const auto & curr_msg = messages[i];
  304. std::string role = json_value(curr_msg, "role", std::string(""));
  305. std::string content;
  306. if (curr_msg.contains("content")) {
  307. if (curr_msg["content"].is_string()) {
  308. content = curr_msg["content"].get<std::string>();
  309. } else if (curr_msg["content"].is_array()) {
  310. for (const auto & part : curr_msg["content"]) {
  311. if (part.contains("text")) {
  312. content += "\n" + part["text"].get<std::string>();
  313. }
  314. }
  315. } else {
  316. throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
  317. }
  318. } else {
  319. throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
  320. }
  321. chat.push_back({role, content});
  322. }
  323. const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
  324. LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
  325. return formatted_chat;
  326. }
  327. //
  328. // base64 utils (TODO: move to common in the future)
  329. //
  330. static const std::string base64_chars =
  331. "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  332. "abcdefghijklmnopqrstuvwxyz"
  333. "0123456789+/";
  334. static inline bool is_base64(uint8_t c) {
  335. return (isalnum(c) || (c == '+') || (c == '/'));
  336. }
  337. static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
  338. int i = 0;
  339. int j = 0;
  340. int in_ = 0;
  341. int in_len = encoded_string.size();
  342. uint8_t char_array_4[4];
  343. uint8_t char_array_3[3];
  344. std::vector<uint8_t> ret;
  345. while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
  346. char_array_4[i++] = encoded_string[in_]; in_++;
  347. if (i == 4) {
  348. for (i = 0; i < 4; i++) {
  349. char_array_4[i] = base64_chars.find(char_array_4[i]);
  350. }
  351. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  352. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  353. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  354. for (i = 0; (i < 3); i++) {
  355. ret.push_back(char_array_3[i]);
  356. }
  357. i = 0;
  358. }
  359. }
  360. if (i) {
  361. for (j = i; j < 4; j++) {
  362. char_array_4[j] = 0;
  363. }
  364. for (j = 0; j < 4; j++) {
  365. char_array_4[j] = base64_chars.find(char_array_4[j]);
  366. }
  367. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  368. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  369. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  370. for (j = 0; j < i - 1; j++) {
  371. ret.push_back(char_array_3[j]);
  372. }
  373. }
  374. return ret;
  375. }
  376. //
  377. // random string / id
  378. //
  379. static std::string random_string() {
  380. static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
  381. std::random_device rd;
  382. std::mt19937 generator(rd());
  383. std::string result(32, ' ');
  384. for (int i = 0; i < 32; ++i) {
  385. result[i] = str[generator() % str.size()];
  386. }
  387. return result;
  388. }
  389. static std::string gen_chatcmplid() {
  390. return "chatcmpl-" + random_string();
  391. }
  392. //
  393. // other common utils
  394. //
  395. static bool ends_with(const std::string & str, const std::string & suffix) {
  396. return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  397. }
  398. static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
  399. if (!text.empty() && !stop.empty()) {
  400. const char text_last_char = text.back();
  401. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
  402. if (stop[char_index] == text_last_char) {
  403. const std::string current_partial = stop.substr(0, char_index + 1);
  404. if (ends_with(text, current_partial)) {
  405. return text.size() - char_index - 1;
  406. }
  407. }
  408. }
  409. }
  410. return std::string::npos;
  411. }
  412. // TODO: reuse llama_detokenize
  413. template <class Iter>
  414. static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
  415. std::string ret;
  416. for (; begin != end; ++begin) {
  417. ret += common_token_to_piece(ctx, *begin);
  418. }
  419. return ret;
  420. }
  421. // format incomplete utf-8 multibyte character for output
  422. static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
  423. std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
  424. // if the size is 1 and first bit is 1, meaning it's a partial character
  425. // (size > 1 meaning it's already a known token)
  426. if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
  427. std::stringstream ss;
  428. ss << std::hex << (out[0] & 0xff);
  429. std::string res(ss.str());
  430. out = "byte: \\x" + res;
  431. }
  432. return out;
  433. }
  434. static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
  435. const std::string str =
  436. std::string(event) + ": " +
  437. data.dump(-1, ' ', false, json::error_handler_t::replace) +
  438. "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
  439. LOG_DBG("data stream, to_send: %s", str.c_str());
  440. return sink.write(str.c_str(), str.size());
  441. }
  442. //
  443. // OAI utils
  444. //
  445. static json oaicompat_completion_params_parse(const json & body) {
  446. json llama_params;
  447. if (!body.contains("prompt")) {
  448. throw std::runtime_error("\"prompt\" is required");
  449. }
  450. // Handle "stop" field
  451. if (body.contains("stop") && body.at("stop").is_string()) {
  452. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  453. } else {
  454. llama_params["stop"] = json_value(body, "stop", json::array());
  455. }
  456. // Handle "n" field
  457. int n_choices = json_value(body, "n", 1);
  458. if (n_choices != 1) {
  459. throw std::runtime_error("Only one completion choice is allowed");
  460. }
  461. // Params supported by OAI but unsupported by llama.cpp
  462. static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
  463. for (const auto & param : unsupported_params) {
  464. if (body.contains(param)) {
  465. throw std::runtime_error("Unsupported param: " + param);
  466. }
  467. }
  468. // Copy remaining properties to llama_params
  469. for (const auto & item : body.items()) {
  470. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  471. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  472. llama_params[item.key()] = item.value();
  473. }
  474. }
  475. return llama_params;
  476. }
  477. static json oaicompat_chat_completion_params_parse(
  478. const struct llama_model * model,
  479. const json & body, /* openai api json semantics */
  480. const std::string & chat_template) {
  481. json llama_params;
  482. // Apply chat template to the list of messages
  483. llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
  484. // Handle "stop" field
  485. if (body.contains("stop") && body.at("stop").is_string()) {
  486. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  487. } else {
  488. llama_params["stop"] = json_value(body, "stop", json::array());
  489. }
  490. // Handle "response_format" field
  491. if (body.contains("response_format")) {
  492. json response_format = json_value(body, "response_format", json::object());
  493. std::string response_type = json_value(response_format, "type", std::string());
  494. if (response_type == "json_object") {
  495. llama_params["json_schema"] = json_value(response_format, "schema", json::object());
  496. } else if (response_type == "json_schema") {
  497. json json_schema = json_value(response_format, "json_schema", json::object());
  498. llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
  499. } else if (!response_type.empty() && response_type != "text") {
  500. throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
  501. }
  502. }
  503. // Handle "n" field
  504. int n_choices = json_value(body, "n", 1);
  505. if (n_choices != 1) {
  506. throw std::runtime_error("Only one completion choice is allowed");
  507. }
  508. // Handle "logprobs" field
  509. // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
  510. if (json_value(body, "logprobs", false)) {
  511. llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
  512. } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
  513. throw std::runtime_error("top_logprobs requires logprobs to be set to true");
  514. }
  515. // Params supported by OAI but unsupported by llama.cpp
  516. static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
  517. for (const auto & param : unsupported_params) {
  518. if (body.contains(param)) {
  519. throw std::runtime_error("Unsupported param: " + param);
  520. }
  521. }
  522. // Copy remaining properties to llama_params
  523. // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
  524. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
  525. for (const auto & item : body.items()) {
  526. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  527. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  528. llama_params[item.key()] = item.value();
  529. }
  530. }
  531. return llama_params;
  532. }
  533. static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
  534. json data = json::array();
  535. int32_t n_tokens = 0;
  536. int i = 0;
  537. for (const auto & elem : embeddings) {
  538. json embedding_obj;
  539. if (use_base64) {
  540. const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
  541. const char* data_ptr = reinterpret_cast<const char*>(vec.data());
  542. size_t data_size = vec.size() * sizeof(float);
  543. embedding_obj = {
  544. {"embedding", base64::encode(data_ptr, data_size)},
  545. {"index", i++},
  546. {"object", "embedding"},
  547. {"encoding_format", "base64"}
  548. };
  549. } else {
  550. embedding_obj = {
  551. {"embedding", json_value(elem, "embedding", json::array())},
  552. {"index", i++},
  553. {"object", "embedding"}
  554. };
  555. }
  556. data.push_back(embedding_obj);
  557. n_tokens += json_value(elem, "tokens_evaluated", 0);
  558. }
  559. json res = json {
  560. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  561. {"object", "list"},
  562. {"usage", json {
  563. {"prompt_tokens", n_tokens},
  564. {"total_tokens", n_tokens}
  565. }},
  566. {"data", data}
  567. };
  568. return res;
  569. }
  570. static json format_response_rerank(const json & request, const json & ranks) {
  571. json data = json::array();
  572. int32_t n_tokens = 0;
  573. int i = 0;
  574. for (const auto & rank : ranks) {
  575. data.push_back(json{
  576. {"index", i++},
  577. {"relevance_score", json_value(rank, "score", 0.0)},
  578. });
  579. n_tokens += json_value(rank, "tokens_evaluated", 0);
  580. }
  581. json res = json {
  582. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  583. {"object", "list"},
  584. {"usage", json {
  585. {"prompt_tokens", n_tokens},
  586. {"total_tokens", n_tokens}
  587. }},
  588. {"results", data}
  589. };
  590. return res;
  591. }
  592. static bool is_valid_utf8(const std::string & str) {
  593. const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
  594. const unsigned char* end = bytes + str.length();
  595. while (bytes < end) {
  596. if (*bytes <= 0x7F) {
  597. // 1-byte sequence (0xxxxxxx)
  598. bytes++;
  599. } else if ((*bytes & 0xE0) == 0xC0) {
  600. // 2-byte sequence (110xxxxx 10xxxxxx)
  601. if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
  602. return false;
  603. bytes += 2;
  604. } else if ((*bytes & 0xF0) == 0xE0) {
  605. // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
  606. if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
  607. return false;
  608. bytes += 3;
  609. } else if ((*bytes & 0xF8) == 0xF0) {
  610. // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
  611. if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
  612. (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
  613. return false;
  614. bytes += 4;
  615. } else {
  616. // Invalid UTF-8 lead byte
  617. return false;
  618. }
  619. }
  620. return true;
  621. }
  622. static json format_tokenizer_response(const json & tokens) {
  623. return json {
  624. {"tokens", tokens}
  625. };
  626. }
  627. static json format_detokenized_response(const std::string & content) {
  628. return json {
  629. {"content", content}
  630. };
  631. }
  632. static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
  633. json data = json::array();
  634. for (const auto & lb : logit_bias) {
  635. data.push_back(json{
  636. {"bias", lb.bias},
  637. {"token", lb.token},
  638. });
  639. }
  640. return data;
  641. }
  642. static std::string safe_json_to_str(json data) {
  643. return data.dump(-1, ' ', false, json::error_handler_t::replace);
  644. }
  645. static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
  646. std::vector<llama_token_data> cur;
  647. const auto * logits = llama_get_logits_ith(ctx, idx);
  648. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  649. cur.resize(n_vocab);
  650. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  651. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  652. }
  653. // sort tokens by logits
  654. std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
  655. return a.logit > b.logit;
  656. });
  657. // apply softmax
  658. float max_l = cur[0].logit;
  659. float cum_sum = 0.0f;
  660. for (size_t i = 0; i < cur.size(); ++i) {
  661. float p = expf(cur[i].logit - max_l);
  662. cur[i].p = p;
  663. cum_sum += p;
  664. }
  665. for (size_t i = 0; i < cur.size(); ++i) {
  666. cur[i].p /= cum_sum;
  667. }
  668. return cur;
  669. }
  670. static bool are_lora_equal(
  671. const std::vector<common_lora_adapter_info> & l1,
  672. const std::vector<common_lora_adapter_info> & l2) {
  673. if (l1.size() != l2.size()) {
  674. return false;
  675. }
  676. for (size_t i = 0; i < l1.size(); ++i) {
  677. // we don't check lora.path to reduce the time complexity
  678. if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
  679. return false;
  680. }
  681. }
  682. return true;
  683. }
  684. // parse lora config from JSON request, returned a copy of lora_base with updated scale
  685. static std::vector<common_lora_adapter_info> parse_lora_request(
  686. const std::vector<common_lora_adapter_info> & lora_base,
  687. const json & data) {
  688. std::vector<common_lora_adapter_info> lora(lora_base);
  689. int max_idx = lora.size();
  690. // clear existing value
  691. for (auto & entry : lora) {
  692. entry.scale = 0.0f;
  693. }
  694. // set value
  695. for (const auto & entry : data) {
  696. int id = json_value(entry, "id", -1);
  697. float scale = json_value(entry, "scale", 0.0f);
  698. if (0 <= id && id < max_idx) {
  699. lora[id].scale = scale;
  700. } else {
  701. throw std::runtime_error("invalid adapter id");
  702. }
  703. }
  704. return lora;
  705. }