ggml.c 743 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_iq4_xs),
  791. .is_quantized = true,
  792. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  793. .from_float = quantize_row_iq4_xs,
  794. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  795. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  796. .vec_dot_type = GGML_TYPE_Q8_K,
  797. .nrows = 1,
  798. },
  799. [GGML_TYPE_Q8_K] = {
  800. .type_name = "q8_K",
  801. .blck_size = QK_K,
  802. .type_size = sizeof(block_q8_K),
  803. .is_quantized = true,
  804. .from_float = quantize_row_q8_K,
  805. },
  806. [GGML_TYPE_BF16] = {
  807. .type_name = "bf16",
  808. .blck_size = 1,
  809. .type_size = sizeof(ggml_bf16_t),
  810. .is_quantized = false,
  811. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  812. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  813. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  814. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  815. .vec_dot_type = GGML_TYPE_BF16,
  816. .nrows = 1,
  817. }
  818. };
  819. // For internal test use
  820. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  821. GGML_ASSERT(type < GGML_TYPE_COUNT);
  822. return type_traits[type];
  823. }
  824. //
  825. // simd mappings
  826. //
  827. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  828. // we then implement the fundamental computation operations below using only these macros
  829. // adding support for new architectures requires to define the corresponding SIMD macros
  830. //
  831. // GGML_F32_STEP / GGML_F16_STEP
  832. // number of elements to process in a single step
  833. //
  834. // GGML_F32_EPR / GGML_F16_EPR
  835. // number of elements to fit in a single register
  836. //
  837. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  838. #define GGML_SIMD
  839. // F32 NEON
  840. #define GGML_F32_STEP 16
  841. #define GGML_F32_EPR 4
  842. #define GGML_F32x4 float32x4_t
  843. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32x4_LOAD vld1q_f32
  846. #define GGML_F32x4_STORE vst1q_f32
  847. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32x4_ADD vaddq_f32
  849. #define GGML_F32x4_MUL vmulq_f32
  850. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  851. #define GGML_F32x4_REDUCE(res, x) \
  852. { \
  853. int offset = GGML_F32_ARR >> 1; \
  854. for (int i = 0; i < offset; ++i) { \
  855. x[i] = vaddq_f32(x[i], x[offset+i]); \
  856. } \
  857. offset >>= 1; \
  858. for (int i = 0; i < offset; ++i) { \
  859. x[i] = vaddq_f32(x[i], x[offset+i]); \
  860. } \
  861. offset >>= 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  866. }
  867. #define GGML_F32_VEC GGML_F32x4
  868. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  869. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  870. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  871. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  872. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  873. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  874. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  875. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  876. // F16 NEON
  877. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. #define GGML_F16x8 float16x8_t
  881. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  882. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  883. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  884. #define GGML_F16x8_STORE vst1q_f16
  885. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  886. #define GGML_F16x8_ADD vaddq_f16
  887. #define GGML_F16x8_MUL vmulq_f16
  888. #define GGML_F16x8_REDUCE(res, x) \
  889. do { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f16(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f16(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  903. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  904. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  905. } while (0)
  906. #define GGML_F16_VEC GGML_F16x8
  907. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  908. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  909. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  910. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  911. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  912. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  913. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  914. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  915. #else
  916. // if FP16 vector arithmetic is not supported, we use FP32 instead
  917. // and take advantage of the vcvt_ functions to convert to/from FP16
  918. #define GGML_F16_STEP 16
  919. #define GGML_F16_EPR 4
  920. #define GGML_F32Cx4 float32x4_t
  921. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  922. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  923. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  924. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  925. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  926. #define GGML_F32Cx4_ADD vaddq_f32
  927. #define GGML_F32Cx4_MUL vmulq_f32
  928. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  929. #define GGML_F16_VEC GGML_F32Cx4
  930. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  931. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  932. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  933. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  934. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  935. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  936. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  937. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  938. #endif
  939. #elif defined(__AVX512F__)
  940. #define GGML_SIMD
  941. // F32 AVX512
  942. #define GGML_F32_STEP 64
  943. #define GGML_F32_EPR 16
  944. #define GGML_F32x16 __m512
  945. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  946. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  947. #define GGML_F32x16_LOAD _mm512_loadu_ps
  948. #define GGML_F32x16_STORE _mm512_storeu_ps
  949. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  950. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  951. #define GGML_F32x16_ADD _mm512_add_ps
  952. #define GGML_F32x16_MUL _mm512_mul_ps
  953. #define GGML_F32x16_REDUCE(res, x) \
  954. do { \
  955. int offset = GGML_F32_ARR >> 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  958. } \
  959. offset >>= 1; \
  960. for (int i = 0; i < offset; ++i) { \
  961. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  962. } \
  963. offset >>= 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. res = _mm512_reduce_add_ps(x[0]); \
  968. } while (0)
  969. // TODO: is this optimal ?
  970. #define GGML_F32_VEC GGML_F32x16
  971. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  972. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  973. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  974. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  975. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  976. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  977. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  978. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  979. // F16 AVX512
  980. // F16 AVX
  981. #define GGML_F16_STEP 64
  982. #define GGML_F16_EPR 16
  983. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  984. #define GGML_F32Cx16 __m512
  985. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  986. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  987. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  988. // so F16C guard isn't required
  989. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  990. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  991. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  992. #define GGML_F32Cx16_ADD _mm512_add_ps
  993. #define GGML_F32Cx16_MUL _mm512_mul_ps
  994. #define GGML_F32Cx16_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. res = _mm512_reduce_add_ps(x[0]); \
  1009. } while (0)
  1010. #define GGML_F16_VEC GGML_F32Cx16
  1011. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1012. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1013. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1014. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1015. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1016. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1017. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1018. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1019. #elif defined(__AVX__)
  1020. #define GGML_SIMD
  1021. // F32 AVX
  1022. #define GGML_F32_STEP 32
  1023. #define GGML_F32_EPR 8
  1024. #define GGML_F32x8 __m256
  1025. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1026. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1027. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1028. #define GGML_F32x8_STORE _mm256_storeu_ps
  1029. #if defined(__FMA__)
  1030. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1031. #else
  1032. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1033. #endif
  1034. #define GGML_F32x8_ADD _mm256_add_ps
  1035. #define GGML_F32x8_MUL _mm256_mul_ps
  1036. #define GGML_F32x8_REDUCE(res, x) \
  1037. do { \
  1038. int offset = GGML_F32_ARR >> 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. offset >>= 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1051. _mm256_extractf128_ps(x[0], 1)); \
  1052. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1053. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1054. } while (0)
  1055. // TODO: is this optimal ?
  1056. #define GGML_F32_VEC GGML_F32x8
  1057. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1065. // F16 AVX
  1066. #define GGML_F16_STEP 32
  1067. #define GGML_F16_EPR 8
  1068. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1069. #define GGML_F32Cx8 __m256
  1070. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1071. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1072. #if defined(__F16C__)
  1073. // the _mm256_cvt intrinsics require F16C
  1074. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1075. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1076. #else
  1077. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1078. float tmp[8];
  1079. for (int i = 0; i < 8; i++) {
  1080. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1081. }
  1082. return _mm256_loadu_ps(tmp);
  1083. }
  1084. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1085. float arr[8];
  1086. _mm256_storeu_ps(arr, y);
  1087. for (int i = 0; i < 8; i++)
  1088. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1089. }
  1090. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1091. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1092. #endif
  1093. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1094. #define GGML_F32Cx8_ADD _mm256_add_ps
  1095. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1096. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1097. #define GGML_F16_VEC GGML_F32Cx8
  1098. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1099. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1100. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1101. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1102. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1103. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1104. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1105. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1106. #elif defined(__POWER9_VECTOR__)
  1107. #define GGML_SIMD
  1108. // F32 POWER9
  1109. #define GGML_F32_STEP 32
  1110. #define GGML_F32_EPR 4
  1111. #define GGML_F32x4 vector float
  1112. #define GGML_F32x4_ZERO 0.0f
  1113. #define GGML_F32x4_SET1 vec_splats
  1114. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1115. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1116. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1117. #define GGML_F32x4_ADD vec_add
  1118. #define GGML_F32x4_MUL vec_mul
  1119. #define GGML_F32x4_REDUCE(res, x) \
  1120. { \
  1121. int offset = GGML_F32_ARR >> 1; \
  1122. for (int i = 0; i < offset; ++i) { \
  1123. x[i] = vec_add(x[i], x[offset+i]); \
  1124. } \
  1125. offset >>= 1; \
  1126. for (int i = 0; i < offset; ++i) { \
  1127. x[i] = vec_add(x[i], x[offset+i]); \
  1128. } \
  1129. offset >>= 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. res = vec_extract(x[0], 0) + \
  1134. vec_extract(x[0], 1) + \
  1135. vec_extract(x[0], 2) + \
  1136. vec_extract(x[0], 3); \
  1137. }
  1138. #define GGML_F32_VEC GGML_F32x4
  1139. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1142. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1143. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1144. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1145. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1146. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1147. // F16 POWER9
  1148. #define GGML_F16_STEP GGML_F32_STEP
  1149. #define GGML_F16_EPR GGML_F32_EPR
  1150. #define GGML_F16_VEC GGML_F32x4
  1151. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1157. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1158. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1159. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1160. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1161. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1162. #define GGML_F16_VEC_STORE(p, r, i) \
  1163. if (i & 0x1) \
  1164. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1165. r[i - GGML_ENDIAN_BYTE(0)]), \
  1166. 0, p - GGML_F16_EPR)
  1167. #elif defined(__wasm_simd128__)
  1168. #define GGML_SIMD
  1169. // F32 WASM
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 v128_t
  1173. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1174. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1175. #define GGML_F32x4_LOAD wasm_v128_load
  1176. #define GGML_F32x4_STORE wasm_v128_store
  1177. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1178. #define GGML_F32x4_ADD wasm_f32x4_add
  1179. #define GGML_F32x4_MUL wasm_f32x4_mul
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1195. wasm_f32x4_extract_lane(x[0], 1) + \
  1196. wasm_f32x4_extract_lane(x[0], 2) + \
  1197. wasm_f32x4_extract_lane(x[0], 3); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 WASM
  1209. #define GGML_F16_STEP 16
  1210. #define GGML_F16_EPR 4
  1211. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1212. float tmp[4];
  1213. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1214. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1215. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1216. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1217. return wasm_v128_load(tmp);
  1218. }
  1219. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1220. float tmp[4];
  1221. wasm_v128_store(tmp, x);
  1222. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1223. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1224. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1225. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1226. }
  1227. #define GGML_F16x4 v128_t
  1228. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1229. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1230. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1231. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1232. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1233. #define GGML_F16x4_ADD wasm_f32x4_add
  1234. #define GGML_F16x4_MUL wasm_f32x4_mul
  1235. #define GGML_F16x4_REDUCE(res, x) \
  1236. { \
  1237. int offset = GGML_F16_ARR >> 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1240. } \
  1241. offset >>= 1; \
  1242. for (int i = 0; i < offset; ++i) { \
  1243. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1244. } \
  1245. offset >>= 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1250. wasm_f32x4_extract_lane(x[0], 1) + \
  1251. wasm_f32x4_extract_lane(x[0], 2) + \
  1252. wasm_f32x4_extract_lane(x[0], 3); \
  1253. }
  1254. #define GGML_F16_VEC GGML_F16x4
  1255. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1256. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1257. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1258. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1259. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1260. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1261. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1262. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1263. #elif defined(__SSE3__)
  1264. #define GGML_SIMD
  1265. // F32 SSE
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 4
  1268. #define GGML_F32x4 __m128
  1269. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1270. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1271. #define GGML_F32x4_LOAD _mm_loadu_ps
  1272. #define GGML_F32x4_STORE _mm_storeu_ps
  1273. #if defined(__FMA__)
  1274. // TODO: Does this work?
  1275. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1276. #else
  1277. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1278. #endif
  1279. #define GGML_F32x4_ADD _mm_add_ps
  1280. #define GGML_F32x4_MUL _mm_mul_ps
  1281. #define GGML_F32x4_REDUCE(res, x) \
  1282. { \
  1283. int offset = GGML_F32_ARR >> 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1286. } \
  1287. offset >>= 1; \
  1288. for (int i = 0; i < offset; ++i) { \
  1289. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1290. } \
  1291. offset >>= 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1296. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1297. }
  1298. // TODO: is this optimal ?
  1299. #define GGML_F32_VEC GGML_F32x4
  1300. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1301. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1302. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1303. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1304. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1305. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1306. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1307. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1308. // F16 SSE
  1309. #define GGML_F16_STEP 32
  1310. #define GGML_F16_EPR 4
  1311. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1312. float tmp[4];
  1313. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1314. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1315. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1316. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1317. return _mm_loadu_ps(tmp);
  1318. }
  1319. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1320. float arr[4];
  1321. _mm_storeu_ps(arr, y);
  1322. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1323. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1324. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1325. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1326. }
  1327. #define GGML_F32Cx4 __m128
  1328. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1329. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1330. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1331. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1332. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1333. #define GGML_F32Cx4_ADD _mm_add_ps
  1334. #define GGML_F32Cx4_MUL _mm_mul_ps
  1335. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1336. #define GGML_F16_VEC GGML_F32Cx4
  1337. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1338. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1339. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1340. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1341. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1342. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1343. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1344. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1345. #elif defined(__loongarch_asx)
  1346. #define GGML_SIMD
  1347. // F32 LASX
  1348. #define GGML_F32_STEP 32
  1349. #define GGML_F32_EPR 8
  1350. #define GGML_F32x8 __m256
  1351. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1352. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1353. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1354. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1355. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1356. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1357. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1358. #define GGML_F32x8_REDUCE(res, x) \
  1359. do { \
  1360. int offset = GGML_F32_ARR >> 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1363. } \
  1364. offset >>= 1; \
  1365. for (int i = 0; i < offset; ++i) { \
  1366. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1367. } \
  1368. offset >>= 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. float *tmp_p = (float *)&x[0]; \
  1373. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1374. } while (0)
  1375. // TODO: is this optimal ?
  1376. #define GGML_F32_VEC GGML_F32x8
  1377. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1385. // F16 LASX
  1386. #define GGML_F16_STEP 32
  1387. #define GGML_F16_EPR 8
  1388. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1389. #define GGML_F32Cx8 __m256
  1390. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1391. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1392. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1393. float tmp[8];
  1394. for (int i = 0; i < 8; i++) {
  1395. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1396. }
  1397. return (__m256)__lasx_xvld(tmp, 0);
  1398. }
  1399. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1400. float arr[8];
  1401. __lasx_xvst(y, arr, 0);
  1402. for (int i = 0; i < 8; i++)
  1403. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1404. }
  1405. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1406. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1407. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1408. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1409. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1410. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1411. #define GGML_F16_VEC GGML_F32Cx8
  1412. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1413. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1414. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1415. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1416. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1417. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1418. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1419. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1420. #elif defined(__loongarch_sx)
  1421. #define GGML_SIMD
  1422. // F32 LSX
  1423. #define GGML_F32_STEP 32
  1424. #define GGML_F32_EPR 4
  1425. #define GGML_F32x4 __m128
  1426. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1427. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1428. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1429. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1430. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1431. #define GGML_F32x4_ADD __lsx_vfadd_s
  1432. #define GGML_F32x4_MUL __lsx_vfmul_s
  1433. #define GGML_F32x4_REDUCE(res, x) \
  1434. { \
  1435. int offset = GGML_F32_ARR >> 1; \
  1436. for (int i = 0; i < offset; ++i) { \
  1437. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1438. } \
  1439. offset >>= 1; \
  1440. for (int i = 0; i < offset; ++i) { \
  1441. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1442. } \
  1443. offset >>= 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1448. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1449. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1450. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1451. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1452. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1453. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1454. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1455. }
  1456. #define GGML_F32_VEC GGML_F32x4
  1457. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1458. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1459. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1460. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1461. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1462. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1463. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1464. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1465. // F16 LSX
  1466. #define GGML_F16_STEP 32
  1467. #define GGML_F16_EPR 4
  1468. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1469. float tmp[4];
  1470. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1471. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1472. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1473. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1474. return __lsx_vld(tmp, 0);
  1475. }
  1476. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1477. float arr[4];
  1478. __lsx_vst(y, arr, 0);
  1479. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1480. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1481. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1482. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1483. }
  1484. #define GGML_F32Cx4 __m128
  1485. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1486. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1487. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1488. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1489. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1490. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1491. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1492. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1493. #define GGML_F16_VEC GGML_F32Cx4
  1494. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1495. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1496. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1497. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1498. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1499. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1500. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1501. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1502. #endif
  1503. // GGML_F32_ARR / GGML_F16_ARR
  1504. // number of registers to use per step
  1505. #ifdef GGML_SIMD
  1506. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1507. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1508. #endif
  1509. //
  1510. // ggml context
  1511. //
  1512. struct ggml_context {
  1513. size_t mem_size;
  1514. void* mem_buffer;
  1515. bool mem_buffer_owned;
  1516. bool no_alloc;
  1517. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1518. int n_objects;
  1519. struct ggml_object* objects_begin;
  1520. struct ggml_object* objects_end;
  1521. struct ggml_scratch scratch;
  1522. struct ggml_scratch scratch_save;
  1523. };
  1524. struct ggml_context_container {
  1525. bool used;
  1526. struct ggml_context context;
  1527. };
  1528. struct ggml_compute_state_shared {
  1529. const struct ggml_cgraph* cgraph;
  1530. const struct ggml_cplan* cplan;
  1531. int64_t perf_node_start_cycles;
  1532. int64_t perf_node_start_time_us;
  1533. const int n_threads;
  1534. // synchronization primitives
  1535. atomic_int n_active; // num active threads
  1536. atomic_int node_n; // active graph node
  1537. atomic_int node_task; // active graph node task phase
  1538. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1539. void* abort_callback_data;
  1540. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1541. };
  1542. struct ggml_compute_state {
  1543. ggml_thread_t thrd;
  1544. int ith;
  1545. struct ggml_compute_state_shared* shared;
  1546. enum ggml_status ec;
  1547. };
  1548. //
  1549. // fundamental operations
  1550. //
  1551. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1552. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1553. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1554. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1555. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1557. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1558. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1559. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1560. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1561. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1563. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1564. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1565. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1566. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1567. assert(nrc == 1);
  1568. UNUSED(nrc);
  1569. UNUSED(bx);
  1570. UNUSED(by);
  1571. UNUSED(bs);
  1572. #if defined(GGML_SIMD)
  1573. float sumf = 0.0f;
  1574. const int np = (n & ~(GGML_F32_STEP - 1));
  1575. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1576. GGML_F32_VEC ax[GGML_F32_ARR];
  1577. GGML_F32_VEC ay[GGML_F32_ARR];
  1578. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1579. for (int j = 0; j < GGML_F32_ARR; j++) {
  1580. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1581. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1582. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1583. }
  1584. }
  1585. // reduce sum0..sum3 to sum0
  1586. GGML_F32_VEC_REDUCE(sumf, sum);
  1587. // leftovers
  1588. for (int i = np; i < n; ++i) {
  1589. sumf += x[i]*y[i];
  1590. }
  1591. #else
  1592. // scalar
  1593. ggml_float sumf = 0.0;
  1594. for (int i = 0; i < n; ++i) {
  1595. sumf += (ggml_float)(x[i]*y[i]);
  1596. }
  1597. #endif
  1598. *s = sumf;
  1599. }
  1600. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1601. assert(nrc == 1);
  1602. UNUSED(nrc);
  1603. UNUSED(bx);
  1604. UNUSED(by);
  1605. UNUSED(bs);
  1606. int i = 0;
  1607. ggml_float sumf = 0;
  1608. #if defined(__AVX512BF16__)
  1609. __m512 c1 = _mm512_setzero_ps();
  1610. __m512 c2 = _mm512_setzero_ps();
  1611. for (; i + 64 <= n; i += 64) {
  1612. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1613. m512bh(_mm512_loadu_si512((y + i))));
  1614. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1615. m512bh(_mm512_loadu_si512((y + i + 32))));
  1616. }
  1617. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1618. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1619. #elif defined(__AVX512F__)
  1620. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 32 <= n; i += 32) {
  1624. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1625. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1626. }
  1627. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1628. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1629. #undef LOAD
  1630. #elif defined(__AVX2__)
  1631. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1632. __m256 c1 = _mm256_setzero_ps();
  1633. __m256 c2 = _mm256_setzero_ps();
  1634. __m256 c3 = _mm256_setzero_ps();
  1635. __m256 c4 = _mm256_setzero_ps();
  1636. for (; i + 32 <= n; i += 32) {
  1637. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1638. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1639. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1640. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1641. }
  1642. __m128 g;
  1643. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1644. _mm256_add_ps(c2, c4));
  1645. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1646. _mm256_castps256_ps128(c1));
  1647. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1648. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1649. sumf += (ggml_float)_mm_cvtss_f32(g);
  1650. #undef LOAD
  1651. #endif
  1652. for (; i < n; ++i) {
  1653. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1654. GGML_BF16_TO_FP32(y[i]));
  1655. }
  1656. *s = sumf;
  1657. }
  1658. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1659. assert(nrc == 1);
  1660. UNUSED(nrc);
  1661. UNUSED(bx);
  1662. UNUSED(by);
  1663. UNUSED(bs);
  1664. ggml_float sumf = 0.0;
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1668. GGML_F16_VEC ax[GGML_F16_ARR];
  1669. GGML_F16_VEC ay[GGML_F16_ARR];
  1670. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1671. for (int j = 0; j < GGML_F16_ARR; j++) {
  1672. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1673. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1674. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1675. }
  1676. }
  1677. // reduce sum0..sum3 to sum0
  1678. GGML_F16_VEC_REDUCE(sumf, sum);
  1679. // leftovers
  1680. for (int i = np; i < n; ++i) {
  1681. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1682. }
  1683. #else
  1684. for (int i = 0; i < n; ++i) {
  1685. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1686. }
  1687. #endif
  1688. *s = sumf;
  1689. }
  1690. // compute GGML_VEC_DOT_UNROLL dot products at once
  1691. // xs - x row stride in bytes
  1692. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1693. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1694. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1695. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1696. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1697. }
  1698. #if defined(GGML_SIMD)
  1699. const int np = (n & ~(GGML_F16_STEP - 1));
  1700. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1701. GGML_F16_VEC ax[GGML_F16_ARR];
  1702. GGML_F16_VEC ay[GGML_F16_ARR];
  1703. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1704. for (int j = 0; j < GGML_F16_ARR; j++) {
  1705. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1706. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1707. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1708. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1709. }
  1710. }
  1711. }
  1712. // reduce sum0..sum3 to sum0
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1715. }
  1716. // leftovers
  1717. for (int i = np; i < n; ++i) {
  1718. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1719. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. }
  1722. #else
  1723. for (int i = 0; i < n; ++i) {
  1724. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1725. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1726. }
  1727. }
  1728. #endif
  1729. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1730. s[i] = sumf[i];
  1731. }
  1732. }
  1733. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1734. #if defined(GGML_SIMD)
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1744. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1745. }
  1746. }
  1747. // leftovers
  1748. for (int i = np; i < n; ++i) {
  1749. y[i] += x[i]*v;
  1750. }
  1751. #else
  1752. // scalar
  1753. for (int i = 0; i < n; ++i) {
  1754. y[i] += x[i]*v;
  1755. }
  1756. #endif
  1757. }
  1758. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1759. #if defined(GGML_SIMD)
  1760. const int np = (n & ~(GGML_F16_STEP - 1));
  1761. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1762. GGML_F16_VEC ax[GGML_F16_ARR];
  1763. GGML_F16_VEC ay[GGML_F16_ARR];
  1764. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1765. for (int j = 0; j < GGML_F16_ARR; j++) {
  1766. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1767. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1768. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1769. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1770. }
  1771. }
  1772. // leftovers
  1773. for (int i = np; i < n; ++i) {
  1774. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1775. }
  1776. #else
  1777. // scalar
  1778. for (int i = 0; i < n; ++i) {
  1779. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1780. }
  1781. #endif
  1782. }
  1783. // xs and vs are byte strides of x and v
  1784. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1785. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1786. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1787. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1788. x[i] = (const float *) ((const char *) xv + i*xs);
  1789. v[i] = (const float *) ((const char *) vv + i*vs);
  1790. }
  1791. #if defined(GGML_SIMD)
  1792. const int np = (n & ~(GGML_F32_STEP - 1));
  1793. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1794. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1795. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1796. }
  1797. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1798. GGML_F32_VEC ay[GGML_F32_ARR];
  1799. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1800. for (int j = 0; j < GGML_F32_ARR; j++) {
  1801. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1804. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1805. }
  1806. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1807. }
  1808. }
  1809. // leftovers
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. for (int i = np; i < n; ++i) {
  1812. y[i] += x[k][i]*v[k][0];
  1813. }
  1814. }
  1815. #else
  1816. // scalar
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = 0; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #endif
  1823. }
  1824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1826. #if defined(GGML_USE_ACCELERATE)
  1827. vDSP_vsmul(y, 1, &v, y, 1, n);
  1828. #elif defined(GGML_SIMD)
  1829. const int np = (n & ~(GGML_F32_STEP - 1));
  1830. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1831. GGML_F32_VEC ay[GGML_F32_ARR];
  1832. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1833. for (int j = 0; j < GGML_F32_ARR; j++) {
  1834. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1835. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1836. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1837. }
  1838. }
  1839. // leftovers
  1840. for (int i = np; i < n; ++i) {
  1841. y[i] *= v;
  1842. }
  1843. #else
  1844. // scalar
  1845. for (int i = 0; i < n; ++i) {
  1846. y[i] *= v;
  1847. }
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1851. #if defined(GGML_SIMD)
  1852. const int np = (n & ~(GGML_F16_STEP - 1));
  1853. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1854. GGML_F16_VEC ay[GGML_F16_ARR];
  1855. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1856. for (int j = 0; j < GGML_F16_ARR; j++) {
  1857. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1858. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1859. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1860. }
  1861. }
  1862. // leftovers
  1863. for (int i = np; i < n; ++i) {
  1864. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1865. }
  1866. #else
  1867. // scalar
  1868. for (int i = 0; i < n; ++i) {
  1869. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1870. }
  1871. #endif
  1872. }
  1873. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1874. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1875. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1876. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1877. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1878. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1879. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1880. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1881. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1882. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1883. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1884. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1885. // TODO: optimize performance
  1886. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1887. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1888. static const float GELU_COEF_A = 0.044715f;
  1889. static const float GELU_QUICK_COEF = -1.702f;
  1890. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1891. inline static float ggml_gelu_f32(float x) {
  1892. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1893. }
  1894. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1895. const uint16_t * i16 = (const uint16_t *) x;
  1896. for (int i = 0; i < n; ++i) {
  1897. y[i] = ggml_table_gelu_f16[i16[i]];
  1898. }
  1899. }
  1900. #ifdef GGML_GELU_FP16
  1901. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1902. uint16_t t;
  1903. for (int i = 0; i < n; ++i) {
  1904. if (x[i] <= -10.0f) {
  1905. y[i] = 0.0f;
  1906. } else if (x[i] >= 10.0f) {
  1907. y[i] = x[i];
  1908. } else {
  1909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1910. memcpy(&t, &fp16, sizeof(uint16_t));
  1911. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1912. }
  1913. }
  1914. }
  1915. #else
  1916. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1917. for (int i = 0; i < n; ++i) {
  1918. y[i] = ggml_gelu_f32(x[i]);
  1919. }
  1920. }
  1921. #endif
  1922. inline static float ggml_gelu_quick_f32(float x) {
  1923. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1924. }
  1925. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1926. // const uint16_t * i16 = (const uint16_t *) x;
  1927. // for (int i = 0; i < n; ++i) {
  1928. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1929. // }
  1930. //}
  1931. #ifdef GGML_GELU_QUICK_FP16
  1932. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1933. uint16_t t;
  1934. for (int i = 0; i < n; ++i) {
  1935. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1936. memcpy(&t, &fp16, sizeof(uint16_t));
  1937. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1938. }
  1939. }
  1940. #else
  1941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1942. for (int i = 0; i < n; ++i) {
  1943. y[i] = ggml_gelu_quick_f32(x[i]);
  1944. }
  1945. }
  1946. #endif
  1947. // Sigmoid Linear Unit (SiLU) function
  1948. inline static float ggml_silu_f32(float x) {
  1949. return x/(1.0f + expf(-x));
  1950. }
  1951. #if defined(__ARM_NEON) && defined(__aarch64__)
  1952. // adapted from arm limited optimized routine
  1953. // the maximum error is 1.45358 plus 0.5 ulps
  1954. // numbers above 88.38 will flush to infinity
  1955. // numbers beneath -103.97 will flush to zero
  1956. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1957. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1958. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1959. const float32x4_t n = vsubq_f32(z, r);
  1960. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1961. vdupq_n_f32(0x1.7f7d1cp-20f));
  1962. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1963. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1964. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1965. const float32x4_t u = vmulq_f32(b, b);
  1966. const float32x4_t j = vfmaq_f32(
  1967. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1968. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1969. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1970. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1971. return vfmaq_f32(k, j, k);
  1972. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1973. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1974. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1975. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1976. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1977. }
  1978. // computes silu x/(1+exp(-x)) in single precision vector
  1979. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1980. const float32x4_t one = vdupq_n_f32(1.0f);
  1981. const float32x4_t zero = vdupq_n_f32(0.0f);
  1982. const float32x4_t neg_x = vsubq_f32(zero, x);
  1983. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1984. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1985. return vdivq_f32(x, one_plus_exp_neg_x);
  1986. }
  1987. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1988. // adapted from arm limited optimized routine
  1989. // the maximum error is 1.45358 plus 0.5 ulps
  1990. // numbers above 88.38 will flush to infinity
  1991. // numbers beneath -103.97 will flush to zero
  1992. inline static __m512 ggml_v_expf(__m512 x) {
  1993. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1994. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1995. const __m512 n = _mm512_sub_ps(z, r);
  1996. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1997. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1998. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  1999. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2000. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2001. const __m512 u = _mm512_mul_ps(b, b);
  2002. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2003. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2004. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2005. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2006. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2007. if (_mm512_kortestz(c, c))
  2008. return _mm512_fmadd_ps(j, k, k);
  2009. const __m512i g = _mm512_and_si512(
  2010. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2011. _mm512_set1_epi32(0x82000000u));
  2012. const __m512 s1 =
  2013. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2014. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2015. const __mmask16 d =
  2016. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2017. return _mm512_mask_blend_ps(
  2018. d, _mm512_mask_blend_ps(
  2019. c, _mm512_fmadd_ps(k, j, k),
  2020. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2021. _mm512_mul_ps(s1, s1));
  2022. }
  2023. // computes silu x/(1+exp(-x)) in single precision vector
  2024. inline static __m512 ggml_v_silu(__m512 x) {
  2025. const __m512 one = _mm512_set1_ps(1);
  2026. const __m512 zero = _mm512_setzero_ps();
  2027. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2028. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2029. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2030. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2031. }
  2032. #elif defined(__AVX2__) && defined(__FMA__)
  2033. // adapted from arm limited optimized routine
  2034. // the maximum error is 1.45358 plus 0.5 ulps
  2035. // numbers above 88.38 will flush to infinity
  2036. // numbers beneath -103.97 will flush to zero
  2037. inline static __m256 ggml_v_expf(__m256 x) {
  2038. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2039. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2040. const __m256 n = _mm256_sub_ps(z, r);
  2041. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2042. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2043. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2044. const __m256 k = _mm256_castsi256_ps(
  2045. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2046. const __m256i c = _mm256_castps_si256(
  2047. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2048. _mm256_set1_ps(126), _CMP_GT_OQ));
  2049. const __m256 u = _mm256_mul_ps(b, b);
  2050. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2051. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2052. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2053. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2054. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2055. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2056. return _mm256_fmadd_ps(j, k, k);
  2057. const __m256i g = _mm256_and_si256(
  2058. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2059. _mm256_set1_epi32(0x82000000u));
  2060. const __m256 s1 =
  2061. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2062. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2063. const __m256i d = _mm256_castps_si256(
  2064. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2065. _mm256_set1_ps(192), _CMP_GT_OQ));
  2066. return _mm256_or_ps(
  2067. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2068. _mm256_andnot_ps(
  2069. _mm256_castsi256_ps(d),
  2070. _mm256_or_ps(
  2071. _mm256_and_ps(_mm256_castsi256_ps(c),
  2072. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2073. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2074. }
  2075. // computes silu x/(1+exp(-x)) in single precision vector
  2076. inline static __m256 ggml_v_silu(__m256 x) {
  2077. const __m256 one = _mm256_set1_ps(1);
  2078. const __m256 zero = _mm256_setzero_ps();
  2079. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2080. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2081. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2082. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2083. }
  2084. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2085. #if defined(__FMA__)
  2086. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2087. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2088. #else
  2089. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2090. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2091. #endif
  2092. // adapted from arm limited optimized routine
  2093. // the maximum error is 1.45358 plus 0.5 ulps
  2094. // numbers above 88.38 will flush to infinity
  2095. // numbers beneath -103.97 will flush to zero
  2096. inline static __m128 ggml_v_expf(__m128 x) {
  2097. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2098. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2099. const __m128 n = _mm_sub_ps(z, r);
  2100. const __m128 b =
  2101. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2102. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2103. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2104. const __m128i c =
  2105. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2106. const __m128 u = _mm_mul_ps(b, b);
  2107. const __m128 j =
  2108. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2109. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2110. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2111. if (!_mm_movemask_epi8(c))
  2112. return MADD128(j, k, k);
  2113. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2114. _mm_set1_epi32(0x82000000u));
  2115. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2116. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2117. const __m128i d =
  2118. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2119. return _mm_or_ps(
  2120. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2121. _mm_andnot_ps(_mm_castsi128_ps(d),
  2122. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2123. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2124. }
  2125. // computes silu x/(1+exp(-x)) in single precision vector
  2126. inline static __m128 ggml_v_silu(__m128 x) {
  2127. const __m128 one = _mm_set1_ps(1);
  2128. const __m128 zero = _mm_setzero_ps();
  2129. const __m128 neg_x = _mm_sub_ps(zero, x);
  2130. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2131. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2132. return _mm_div_ps(x, one_plus_exp_neg_x);
  2133. }
  2134. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2135. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2136. int i = 0;
  2137. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2138. for (; i + 15 < n; i += 16) {
  2139. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2140. }
  2141. #elif defined(__AVX2__) && defined(__FMA__)
  2142. for (; i + 7 < n; i += 8) {
  2143. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2144. }
  2145. #elif defined(__SSE2__)
  2146. for (; i + 3 < n; i += 4) {
  2147. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2150. for (; i + 3 < n; i += 4) {
  2151. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2152. }
  2153. #endif
  2154. for (; i < n; ++i) {
  2155. y[i] = ggml_silu_f32(x[i]);
  2156. }
  2157. }
  2158. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2159. int i = 0;
  2160. ggml_float sum = 0;
  2161. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2162. for (; i + 15 < n; i += 16) {
  2163. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2164. _mm512_set1_ps(max)));
  2165. _mm512_storeu_ps(y + i, val);
  2166. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2167. }
  2168. #elif defined(__AVX2__) && defined(__FMA__)
  2169. for (; i + 7 < n; i += 8) {
  2170. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2171. _mm256_set1_ps(max)));
  2172. _mm256_storeu_ps(y + i, val);
  2173. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2174. _mm256_castps256_ps128(val));
  2175. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2176. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2177. sum += (ggml_float)_mm_cvtss_f32(val2);
  2178. }
  2179. #elif defined(__SSE2__)
  2180. for (; i + 3 < n; i += 4) {
  2181. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2182. _mm_set1_ps(max)));
  2183. _mm_storeu_ps(y + i, val);
  2184. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2185. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2186. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2187. #else
  2188. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2189. val = _mm_add_ps(val, tmp);
  2190. tmp = _mm_movehl_ps(tmp, val);
  2191. val = _mm_add_ss(val, tmp);
  2192. #endif
  2193. sum += (ggml_float)_mm_cvtss_f32(val);
  2194. }
  2195. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2196. for (; i + 3 < n; i += 4) {
  2197. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2198. vdupq_n_f32(max)));
  2199. vst1q_f32(y + i, val);
  2200. sum += (ggml_float)vaddvq_f32(val);
  2201. }
  2202. #endif
  2203. for (; i < n; ++i) {
  2204. float val = expf(x[i] - max);
  2205. sum += (ggml_float)val;
  2206. y[i] = val;
  2207. }
  2208. return sum;
  2209. }
  2210. inline static float ggml_silu_backward_f32(float x, float dy) {
  2211. const float s = 1.0f/(1.0f + expf(-x));
  2212. return dy*s*(1.0f + x*(1.0f - s));
  2213. }
  2214. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2215. for (int i = 0; i < n; ++i) {
  2216. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2217. }
  2218. }
  2219. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2220. #ifndef GGML_USE_ACCELERATE
  2221. ggml_float sum = 0.0;
  2222. for (int i = 0; i < n; ++i) {
  2223. sum += (ggml_float)x[i];
  2224. }
  2225. *s = sum;
  2226. #else
  2227. vDSP_sve(x, 1, s, n);
  2228. #endif
  2229. }
  2230. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2231. ggml_float sum = 0.0;
  2232. for (int i = 0; i < n; ++i) {
  2233. sum += (ggml_float)x[i];
  2234. }
  2235. *s = sum;
  2236. }
  2237. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2238. float sum = 0.0f;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += GGML_FP16_TO_FP32(x[i]);
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2245. float sum = 0.0f;
  2246. for (int i = 0; i < n; ++i) {
  2247. sum += GGML_BF16_TO_FP32(x[i]);
  2248. }
  2249. *s = sum;
  2250. }
  2251. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2252. #ifndef GGML_USE_ACCELERATE
  2253. float max = -INFINITY;
  2254. for (int i = 0; i < n; ++i) {
  2255. max = MAX(max, x[i]);
  2256. }
  2257. *s = max;
  2258. #else
  2259. vDSP_maxv(x, 1, s, n);
  2260. #endif
  2261. }
  2262. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2263. ggml_vec_norm_f32(n, s, x);
  2264. *s = 1.f/(*s);
  2265. }
  2266. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2267. float max = -INFINITY;
  2268. int idx = 0;
  2269. for (int i = 0; i < n; ++i) {
  2270. max = MAX(max, x[i]);
  2271. if (max == x[i]) { idx = i; }
  2272. }
  2273. *s = idx;
  2274. }
  2275. //
  2276. // data types
  2277. //
  2278. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2279. "NONE",
  2280. "DUP",
  2281. "ADD",
  2282. "ADD1",
  2283. "ACC",
  2284. "SUB",
  2285. "MUL",
  2286. "DIV",
  2287. "SQR",
  2288. "SQRT",
  2289. "LOG",
  2290. "SUM",
  2291. "SUM_ROWS",
  2292. "MEAN",
  2293. "ARGMAX",
  2294. "REPEAT",
  2295. "REPEAT_BACK",
  2296. "CONCAT",
  2297. "SILU_BACK",
  2298. "NORM",
  2299. "RMS_NORM",
  2300. "RMS_NORM_BACK",
  2301. "GROUP_NORM",
  2302. "MUL_MAT",
  2303. "MUL_MAT_ID",
  2304. "OUT_PROD",
  2305. "SCALE",
  2306. "SET",
  2307. "CPY",
  2308. "CONT",
  2309. "RESHAPE",
  2310. "VIEW",
  2311. "PERMUTE",
  2312. "TRANSPOSE",
  2313. "GET_ROWS",
  2314. "GET_ROWS_BACK",
  2315. "DIAG",
  2316. "DIAG_MASK_INF",
  2317. "DIAG_MASK_ZERO",
  2318. "SOFT_MAX",
  2319. "SOFT_MAX_BACK",
  2320. "ROPE",
  2321. "ROPE_BACK",
  2322. "CLAMP",
  2323. "CONV_TRANSPOSE_1D",
  2324. "IM2COL",
  2325. "CONV_TRANSPOSE_2D",
  2326. "POOL_1D",
  2327. "POOL_2D",
  2328. "UPSCALE",
  2329. "PAD",
  2330. "ARANGE",
  2331. "TIMESTEP_EMBEDDING",
  2332. "ARGSORT",
  2333. "LEAKY_RELU",
  2334. "FLASH_ATTN_EXT",
  2335. "FLASH_ATTN_BACK",
  2336. "SSM_CONV",
  2337. "SSM_SCAN",
  2338. "WIN_PART",
  2339. "WIN_UNPART",
  2340. "GET_REL_POS",
  2341. "ADD_REL_POS",
  2342. "UNARY",
  2343. "MAP_UNARY",
  2344. "MAP_BINARY",
  2345. "MAP_CUSTOM1_F32",
  2346. "MAP_CUSTOM2_F32",
  2347. "MAP_CUSTOM3_F32",
  2348. "MAP_CUSTOM1",
  2349. "MAP_CUSTOM2",
  2350. "MAP_CUSTOM3",
  2351. "CROSS_ENTROPY_LOSS",
  2352. "CROSS_ENTROPY_LOSS_BACK",
  2353. };
  2354. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2355. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2356. "none",
  2357. "x",
  2358. "x+y",
  2359. "x+y",
  2360. "view(x,nb,offset)+=y->x",
  2361. "x-y",
  2362. "x*y",
  2363. "x/y",
  2364. "x^2",
  2365. "√x",
  2366. "log(x)",
  2367. "Σx",
  2368. "Σx_k",
  2369. "Σx/n",
  2370. "argmax(x)",
  2371. "repeat(x)",
  2372. "repeat_back(x)",
  2373. "concat(x, y)",
  2374. "silu_back(x)",
  2375. "norm(x)",
  2376. "rms_norm(x)",
  2377. "rms_norm_back(x)",
  2378. "group_norm(x)",
  2379. "X*Y",
  2380. "X[i]*Y",
  2381. "X*Y",
  2382. "x*v",
  2383. "y-\\>view(x)",
  2384. "x-\\>y",
  2385. "cont(x)",
  2386. "reshape(x)",
  2387. "view(x)",
  2388. "permute(x)",
  2389. "transpose(x)",
  2390. "get_rows(x)",
  2391. "get_rows_back(x)",
  2392. "diag(x)",
  2393. "diag_mask_inf(x)",
  2394. "diag_mask_zero(x)",
  2395. "soft_max(x)",
  2396. "soft_max_back(x)",
  2397. "rope(x)",
  2398. "rope_back(x)",
  2399. "clamp(x)",
  2400. "conv_transpose_1d(x)",
  2401. "im2col(x)",
  2402. "conv_transpose_2d(x)",
  2403. "pool_1d(x)",
  2404. "pool_2d(x)",
  2405. "upscale(x)",
  2406. "pad(x)",
  2407. "arange(start, stop, step)",
  2408. "timestep_embedding(timesteps, dim, max_period)",
  2409. "argsort(x)",
  2410. "leaky_relu(x)",
  2411. "flash_attn_ext(x)",
  2412. "flash_attn_back(x)",
  2413. "ssm_conv(x)",
  2414. "ssm_scan(x)",
  2415. "win_part(x)",
  2416. "win_unpart(x)",
  2417. "get_rel_pos(x)",
  2418. "add_rel_pos(x)",
  2419. "unary(x)",
  2420. "f(x)",
  2421. "f(x,y)",
  2422. "custom_f32(x)",
  2423. "custom_f32(x,y)",
  2424. "custom_f32(x,y,z)",
  2425. "custom(x)",
  2426. "custom(x,y)",
  2427. "custom(x,y,z)",
  2428. "cross_entropy_loss(x,y)",
  2429. "cross_entropy_loss_back(x,y)",
  2430. };
  2431. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2432. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2433. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2434. "ABS",
  2435. "SGN",
  2436. "NEG",
  2437. "STEP",
  2438. "TANH",
  2439. "ELU",
  2440. "RELU",
  2441. "SIGMOID",
  2442. "GELU",
  2443. "GELU_QUICK",
  2444. "SILU",
  2445. "HARDSWISH",
  2446. "HARDSIGMOID",
  2447. };
  2448. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2449. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2450. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2451. // WARN:
  2452. // Mis-configuration can lead to problem that's hard to reason about:
  2453. // * At best it crash or talks nosense.
  2454. // * At worst it talks slightly difference but hard to perceive.
  2455. //
  2456. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2457. // Take care about compile options (e.g., GGML_USE_xxx).
  2458. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2459. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2460. static void ggml_setup_op_has_task_pass(void) {
  2461. { // INIT
  2462. bool * p = GGML_OP_HAS_INIT;
  2463. p[GGML_OP_ACC ] = true;
  2464. p[GGML_OP_MUL_MAT ] = true;
  2465. p[GGML_OP_MUL_MAT_ID ] = true;
  2466. p[GGML_OP_OUT_PROD ] = true;
  2467. p[GGML_OP_SET ] = true;
  2468. p[GGML_OP_GET_ROWS_BACK ] = true;
  2469. p[GGML_OP_DIAG_MASK_INF ] = true;
  2470. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2471. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2472. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2473. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2474. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2475. p[GGML_OP_ADD_REL_POS ] = true;
  2476. }
  2477. { // FINALIZE
  2478. bool * p = GGML_OP_HAS_FINALIZE;
  2479. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2480. }
  2481. }
  2482. //
  2483. // NUMA support
  2484. //
  2485. #define GGML_NUMA_MAX_NODES 8
  2486. #define GGML_NUMA_MAX_CPUS 512
  2487. struct ggml_numa_node {
  2488. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2489. uint32_t n_cpus;
  2490. };
  2491. struct ggml_numa_nodes {
  2492. enum ggml_numa_strategy numa_strategy;
  2493. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2494. uint32_t n_nodes;
  2495. uint32_t total_cpus; // hardware threads on system
  2496. uint32_t current_node; // node on which main process is execting
  2497. #if defined(__gnu_linux__)
  2498. cpu_set_t cpuset; // cpuset from numactl
  2499. #else
  2500. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2501. #endif
  2502. };
  2503. //
  2504. // ggml state
  2505. //
  2506. struct ggml_state {
  2507. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2508. struct ggml_numa_nodes numa;
  2509. };
  2510. // global state
  2511. static struct ggml_state g_state;
  2512. static atomic_int g_state_barrier = 0;
  2513. // barrier via spin lock
  2514. inline static void ggml_critical_section_start(void) {
  2515. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2516. while (processing > 0) {
  2517. // wait for other threads to finish
  2518. atomic_fetch_sub(&g_state_barrier, 1);
  2519. sched_yield(); // TODO: reconsider this
  2520. processing = atomic_fetch_add(&g_state_barrier, 1);
  2521. }
  2522. }
  2523. // TODO: make this somehow automatically executed
  2524. // some sort of "sentry" mechanism
  2525. inline static void ggml_critical_section_end(void) {
  2526. atomic_fetch_sub(&g_state_barrier, 1);
  2527. }
  2528. #if defined(__gnu_linux__)
  2529. static cpu_set_t ggml_get_numa_affinity(void) {
  2530. cpu_set_t cpuset;
  2531. pthread_t thread;
  2532. thread = pthread_self();
  2533. CPU_ZERO(&cpuset);
  2534. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2535. return cpuset;
  2536. }
  2537. #else
  2538. static uint32_t ggml_get_numa_affinity(void) {
  2539. return 0; // no NUMA support
  2540. }
  2541. #endif
  2542. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2543. if (g_state.numa.n_nodes > 0) {
  2544. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2545. return;
  2546. }
  2547. #if defined(__gnu_linux__)
  2548. struct stat st;
  2549. char path[256];
  2550. int rv;
  2551. // set numa scheme
  2552. g_state.numa.numa_strategy = numa_flag;
  2553. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2554. g_state.numa.cpuset = ggml_get_numa_affinity();
  2555. // enumerate nodes
  2556. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2557. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2558. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2559. if (stat(path, &st) != 0) { break; }
  2560. ++g_state.numa.n_nodes;
  2561. }
  2562. // enumerate CPUs
  2563. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2564. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2565. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2566. if (stat(path, &st) != 0) { break; }
  2567. ++g_state.numa.total_cpus;
  2568. }
  2569. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2570. // figure out which node we're on
  2571. uint current_cpu;
  2572. int getcpu_ret = 0;
  2573. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2574. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2575. #else
  2576. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2577. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2578. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2579. # endif
  2580. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2581. #endif
  2582. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2583. g_state.numa.n_nodes = 0;
  2584. return;
  2585. }
  2586. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2587. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2588. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2589. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2590. node->n_cpus = 0;
  2591. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2592. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2593. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2594. if (stat(path, &st) == 0) {
  2595. node->cpus[node->n_cpus++] = c;
  2596. GGML_PRINT_DEBUG(" %u", c);
  2597. }
  2598. }
  2599. GGML_PRINT_DEBUG("\n");
  2600. }
  2601. if (ggml_is_numa()) {
  2602. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2603. if (fptr != NULL) {
  2604. char buf[42];
  2605. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2606. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2607. }
  2608. fclose(fptr);
  2609. }
  2610. }
  2611. #else
  2612. GGML_UNUSED(numa_flag);
  2613. // TODO
  2614. #endif
  2615. }
  2616. bool ggml_is_numa(void) {
  2617. return g_state.numa.n_nodes > 1;
  2618. }
  2619. ////////////////////////////////////////////////////////////////////////////////
  2620. void ggml_print_object(const struct ggml_object * obj) {
  2621. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2622. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2623. }
  2624. void ggml_print_objects(const struct ggml_context * ctx) {
  2625. struct ggml_object * obj = ctx->objects_begin;
  2626. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2627. while (obj != NULL) {
  2628. ggml_print_object(obj);
  2629. obj = obj->next;
  2630. }
  2631. GGML_PRINT("%s: --- end ---\n", __func__);
  2632. }
  2633. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2635. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2636. }
  2637. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2638. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2639. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2640. }
  2641. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2642. size_t nbytes;
  2643. size_t blck_size = ggml_blck_size(tensor->type);
  2644. if (blck_size == 1) {
  2645. nbytes = ggml_type_size(tensor->type);
  2646. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2647. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2648. }
  2649. }
  2650. else {
  2651. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2652. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2653. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2654. }
  2655. }
  2656. return nbytes;
  2657. }
  2658. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2659. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2660. }
  2661. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2662. return type_traits[type].blck_size;
  2663. }
  2664. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2665. return type_traits[type].type_size;
  2666. }
  2667. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2668. assert(ne % ggml_blck_size(type) == 0);
  2669. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2670. }
  2671. double ggml_type_sizef(enum ggml_type type) {
  2672. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2673. }
  2674. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2675. return type_traits[type].type_name;
  2676. }
  2677. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2678. return type_traits[type].is_quantized;
  2679. }
  2680. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2681. return GGML_OP_NAME[op];
  2682. }
  2683. const char * ggml_op_symbol(enum ggml_op op) {
  2684. return GGML_OP_SYMBOL[op];
  2685. }
  2686. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2687. return GGML_UNARY_OP_NAME[op];
  2688. }
  2689. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2690. if (t->op == GGML_OP_UNARY) {
  2691. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2692. return ggml_unary_op_name(uop);
  2693. }
  2694. else {
  2695. return ggml_op_name(t->op);
  2696. }
  2697. }
  2698. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2699. return ggml_type_size(tensor->type);
  2700. }
  2701. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2702. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2703. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2704. }
  2705. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2708. }
  2709. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2711. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2712. }
  2713. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2714. return tensor->ne[3] == 1;
  2715. }
  2716. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2717. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2718. if (tensor->ne[i] > 1) {
  2719. return i + 1;
  2720. }
  2721. }
  2722. return 1;
  2723. }
  2724. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2725. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2726. return (t0->ne[0] == t1->ne[0]) &&
  2727. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2728. (t1->ne[3]%t0->ne[3] == 0);
  2729. }
  2730. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2731. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2732. return (t0->ne[1] == t1->ne[1]) &&
  2733. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2734. (t1->ne[3]%t0->ne[3] == 0);
  2735. }
  2736. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2737. enum ggml_type wtype = GGML_TYPE_COUNT;
  2738. switch (ftype) {
  2739. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2740. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2741. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2742. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2743. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2744. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2745. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2746. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2747. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2748. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2749. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2750. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2752. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2753. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2754. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2755. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2756. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2757. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2758. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2760. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2761. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2762. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2763. }
  2764. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2765. return wtype;
  2766. }
  2767. size_t ggml_tensor_overhead(void) {
  2768. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2769. }
  2770. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2771. return tensor->nb[0] > tensor->nb[1];
  2772. }
  2773. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2774. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2775. return
  2776. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2777. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2778. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2779. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2780. }
  2781. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2783. return
  2784. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2785. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2786. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2787. }
  2788. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2790. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2791. }
  2792. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return
  2795. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2796. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2797. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2798. }
  2799. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2800. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2801. if (tensor->ne[i] == 0) {
  2802. // empty if any dimension has no elements
  2803. return true;
  2804. }
  2805. }
  2806. return false;
  2807. }
  2808. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2810. return
  2811. (t0->ne[0] == t1->ne[0] ) &&
  2812. (t0->ne[1] == t1->ne[1] ) &&
  2813. (t0->ne[2] == t1->ne[2] ) &&
  2814. (t0->ne[3] == t1->ne[3] );
  2815. }
  2816. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2818. return
  2819. (t0->nb[0] == t1->nb[0] ) &&
  2820. (t0->nb[1] == t1->nb[1] ) &&
  2821. (t0->nb[2] == t1->nb[2] ) &&
  2822. (t0->nb[3] == t1->nb[3] );
  2823. }
  2824. // check if t1 can be represented as a repeatition of t0
  2825. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2827. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2828. (t1->ne[0]%t0->ne[0] == 0) &&
  2829. (t1->ne[1]%t0->ne[1] == 0) &&
  2830. (t1->ne[2]%t0->ne[2] == 0) &&
  2831. (t1->ne[3]%t0->ne[3] == 0);
  2832. }
  2833. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2836. }
  2837. static inline int ggml_up32(int n) {
  2838. return (n + 31) & ~31;
  2839. }
  2840. //static inline int ggml_up64(int n) {
  2841. // return (n + 63) & ~63;
  2842. //}
  2843. static inline int ggml_up(int n, int m) {
  2844. // assert m is a power of 2
  2845. GGML_ASSERT((m & (m - 1)) == 0);
  2846. return (n + m - 1) & ~(m - 1);
  2847. }
  2848. // assert that pointer is aligned to GGML_MEM_ALIGN
  2849. #define ggml_assert_aligned(ptr) \
  2850. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2851. ////////////////////////////////////////////////////////////////////////////////
  2852. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2853. // make this function thread safe
  2854. ggml_critical_section_start();
  2855. static bool is_first_call = true;
  2856. if (is_first_call) {
  2857. // initialize time system (required on Windows)
  2858. ggml_time_init();
  2859. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2860. {
  2861. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2862. for (int i = 0; i < (1 << 16); ++i) {
  2863. union {
  2864. uint16_t u16;
  2865. ggml_fp16_t fp16;
  2866. } u = {i};
  2867. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2868. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2869. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2870. }
  2871. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2872. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2873. }
  2874. // initialize g_state
  2875. {
  2876. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2877. g_state = (struct ggml_state) {
  2878. /*.contexts =*/ { { 0 } },
  2879. /*.numa =*/ {
  2880. .n_nodes = 0,
  2881. .total_cpus = 0,
  2882. },
  2883. };
  2884. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2885. g_state.contexts[i].used = false;
  2886. }
  2887. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2888. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2889. }
  2890. #if defined(GGML_USE_CLBLAST)
  2891. ggml_cl_init();
  2892. #endif
  2893. ggml_setup_op_has_task_pass();
  2894. is_first_call = false;
  2895. }
  2896. // find non-used context in g_state
  2897. struct ggml_context * ctx = NULL;
  2898. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2899. if (!g_state.contexts[i].used) {
  2900. g_state.contexts[i].used = true;
  2901. ctx = &g_state.contexts[i].context;
  2902. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2903. break;
  2904. }
  2905. }
  2906. if (ctx == NULL) {
  2907. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2908. ggml_critical_section_end();
  2909. return NULL;
  2910. }
  2911. // allow to call ggml_init with 0 size
  2912. if (params.mem_size == 0) {
  2913. params.mem_size = GGML_MEM_ALIGN;
  2914. }
  2915. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2916. *ctx = (struct ggml_context) {
  2917. /*.mem_size =*/ mem_size,
  2918. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2919. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2920. /*.no_alloc =*/ params.no_alloc,
  2921. /*.no_alloc_save =*/ params.no_alloc,
  2922. /*.n_objects =*/ 0,
  2923. /*.objects_begin =*/ NULL,
  2924. /*.objects_end =*/ NULL,
  2925. /*.scratch =*/ { 0, 0, NULL, },
  2926. /*.scratch_save =*/ { 0, 0, NULL, },
  2927. };
  2928. GGML_ASSERT(ctx->mem_buffer != NULL);
  2929. ggml_assert_aligned(ctx->mem_buffer);
  2930. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2931. ggml_critical_section_end();
  2932. return ctx;
  2933. }
  2934. void ggml_free(struct ggml_context * ctx) {
  2935. if (ctx == NULL) {
  2936. return;
  2937. }
  2938. // make this function thread safe
  2939. ggml_critical_section_start();
  2940. bool found = false;
  2941. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2942. if (&g_state.contexts[i].context == ctx) {
  2943. g_state.contexts[i].used = false;
  2944. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2945. __func__, i, ggml_used_mem(ctx));
  2946. if (ctx->mem_buffer_owned) {
  2947. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2948. }
  2949. found = true;
  2950. break;
  2951. }
  2952. }
  2953. if (!found) {
  2954. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2955. }
  2956. ggml_critical_section_end();
  2957. }
  2958. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2959. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2960. }
  2961. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2962. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2963. ctx->scratch = scratch;
  2964. return result;
  2965. }
  2966. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2967. return ctx->no_alloc;
  2968. }
  2969. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2970. ctx->no_alloc = no_alloc;
  2971. }
  2972. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2973. return ctx->mem_buffer;
  2974. }
  2975. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2976. return ctx->mem_size;
  2977. }
  2978. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2979. size_t max_size = 0;
  2980. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2981. size_t bytes = ggml_nbytes(tensor);
  2982. max_size = MAX(max_size, bytes);
  2983. }
  2984. return max_size;
  2985. }
  2986. // IMPORTANT:
  2987. // when creating "opt" tensors, always save and load the scratch buffer
  2988. // this is an error prone process, but it is necessary to support inplace
  2989. // operators when using scratch buffers
  2990. // TODO: implement a better way
  2991. static void ggml_scratch_save(struct ggml_context * ctx) {
  2992. // this is needed to allow opt tensors to store their data
  2993. // TODO: again, need to find a better way
  2994. ctx->no_alloc_save = ctx->no_alloc;
  2995. ctx->no_alloc = false;
  2996. ctx->scratch_save = ctx->scratch;
  2997. ctx->scratch.data = NULL;
  2998. }
  2999. static void ggml_scratch_load(struct ggml_context * ctx) {
  3000. ctx->no_alloc = ctx->no_alloc_save;
  3001. ctx->scratch = ctx->scratch_save;
  3002. }
  3003. ////////////////////////////////////////////////////////////////////////////////
  3004. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3005. // always insert objects at the end of the context's memory pool
  3006. struct ggml_object * obj_cur = ctx->objects_end;
  3007. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3008. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3009. const size_t cur_end = cur_offs + cur_size;
  3010. // align to GGML_MEM_ALIGN
  3011. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3012. char * const mem_buffer = ctx->mem_buffer;
  3013. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3014. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3015. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3016. __func__, cur_end + size_needed, ctx->mem_size);
  3017. assert(false);
  3018. return NULL;
  3019. }
  3020. *obj_new = (struct ggml_object) {
  3021. .offs = cur_end + GGML_OBJECT_SIZE,
  3022. .size = size_needed,
  3023. .next = NULL,
  3024. .type = type,
  3025. };
  3026. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3027. if (obj_cur != NULL) {
  3028. obj_cur->next = obj_new;
  3029. } else {
  3030. // this is the first object in this context
  3031. ctx->objects_begin = obj_new;
  3032. }
  3033. ctx->objects_end = obj_new;
  3034. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3035. return obj_new;
  3036. }
  3037. static struct ggml_tensor * ggml_new_tensor_impl(
  3038. struct ggml_context * ctx,
  3039. enum ggml_type type,
  3040. int n_dims,
  3041. const int64_t * ne,
  3042. struct ggml_tensor * view_src,
  3043. size_t view_offs) {
  3044. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3045. // find the base tensor and absolute offset
  3046. if (view_src != NULL && view_src->view_src != NULL) {
  3047. view_offs += view_src->view_offs;
  3048. view_src = view_src->view_src;
  3049. }
  3050. size_t data_size = ggml_row_size(type, ne[0]);
  3051. for (int i = 1; i < n_dims; i++) {
  3052. data_size *= ne[i];
  3053. }
  3054. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3055. void * data = view_src != NULL ? view_src->data : NULL;
  3056. if (data != NULL) {
  3057. data = (char *) data + view_offs;
  3058. }
  3059. size_t obj_alloc_size = 0;
  3060. if (view_src == NULL && !ctx->no_alloc) {
  3061. if (ctx->scratch.data != NULL) {
  3062. // allocate tensor data in the scratch buffer
  3063. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3064. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3065. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3066. assert(false);
  3067. return NULL;
  3068. }
  3069. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3070. ctx->scratch.offs += data_size;
  3071. } else {
  3072. // allocate tensor data in the context's memory pool
  3073. obj_alloc_size = data_size;
  3074. }
  3075. }
  3076. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3077. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3078. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3079. #ifdef __clang__
  3080. // temporary until ggml_tensor::backend is removed
  3081. #pragma clang diagnostic push
  3082. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3083. #endif
  3084. *result = (struct ggml_tensor) {
  3085. /*.type =*/ type,
  3086. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3087. /*.buffer =*/ NULL,
  3088. /*.ne =*/ { 1, 1, 1, 1 },
  3089. /*.nb =*/ { 0, 0, 0, 0 },
  3090. /*.op =*/ GGML_OP_NONE,
  3091. /*.op_params =*/ { 0 },
  3092. /*.flags =*/ 0,
  3093. /*.grad =*/ NULL,
  3094. /*.src =*/ { NULL },
  3095. /*.perf_runs =*/ 0,
  3096. /*.perf_cycles =*/ 0,
  3097. /*.perf_time_us =*/ 0,
  3098. /*.view_src =*/ view_src,
  3099. /*.view_offs =*/ view_offs,
  3100. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3101. /*.name =*/ { 0 },
  3102. /*.extra =*/ NULL,
  3103. /*.padding =*/ { 0 },
  3104. };
  3105. #ifdef __clang__
  3106. #pragma clang diagnostic pop
  3107. #endif
  3108. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3109. //ggml_assert_aligned(result->data);
  3110. for (int i = 0; i < n_dims; i++) {
  3111. result->ne[i] = ne[i];
  3112. }
  3113. result->nb[0] = ggml_type_size(type);
  3114. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3115. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3116. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3117. }
  3118. ctx->n_objects++;
  3119. return result;
  3120. }
  3121. struct ggml_tensor * ggml_new_tensor(
  3122. struct ggml_context * ctx,
  3123. enum ggml_type type,
  3124. int n_dims,
  3125. const int64_t * ne) {
  3126. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3127. }
  3128. struct ggml_tensor * ggml_new_tensor_1d(
  3129. struct ggml_context * ctx,
  3130. enum ggml_type type,
  3131. int64_t ne0) {
  3132. return ggml_new_tensor(ctx, type, 1, &ne0);
  3133. }
  3134. struct ggml_tensor * ggml_new_tensor_2d(
  3135. struct ggml_context * ctx,
  3136. enum ggml_type type,
  3137. int64_t ne0,
  3138. int64_t ne1) {
  3139. const int64_t ne[2] = { ne0, ne1 };
  3140. return ggml_new_tensor(ctx, type, 2, ne);
  3141. }
  3142. struct ggml_tensor * ggml_new_tensor_3d(
  3143. struct ggml_context * ctx,
  3144. enum ggml_type type,
  3145. int64_t ne0,
  3146. int64_t ne1,
  3147. int64_t ne2) {
  3148. const int64_t ne[3] = { ne0, ne1, ne2 };
  3149. return ggml_new_tensor(ctx, type, 3, ne);
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor_4d(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int64_t ne0,
  3155. int64_t ne1,
  3156. int64_t ne2,
  3157. int64_t ne3) {
  3158. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3159. return ggml_new_tensor(ctx, type, 4, ne);
  3160. }
  3161. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3162. ggml_scratch_save(ctx);
  3163. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3164. ggml_scratch_load(ctx);
  3165. ggml_set_i32(result, value);
  3166. return result;
  3167. }
  3168. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3169. ggml_scratch_save(ctx);
  3170. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3171. ggml_scratch_load(ctx);
  3172. ggml_set_f32(result, value);
  3173. return result;
  3174. }
  3175. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3176. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3177. }
  3178. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3179. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3180. assert(params_size <= GGML_MAX_OP_PARAMS);
  3181. memcpy(tensor->op_params, params, params_size);
  3182. }
  3183. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3184. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3185. return ((const int32_t *)(tensor->op_params))[i];
  3186. }
  3187. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3188. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3189. return ((const float *)(tensor->op_params))[i];
  3190. }
  3191. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3192. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3193. ((int32_t *)(tensor->op_params))[i] = value;
  3194. }
  3195. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3197. ((float *)(tensor->op_params))[i] = value;
  3198. }
  3199. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3200. memset(tensor->data, 0, ggml_nbytes(tensor));
  3201. return tensor;
  3202. }
  3203. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3204. const int n = ggml_nrows(tensor);
  3205. const int nc = tensor->ne[0];
  3206. const size_t n1 = tensor->nb[1];
  3207. char * const data = tensor->data;
  3208. switch (tensor->type) {
  3209. case GGML_TYPE_I8:
  3210. {
  3211. assert(tensor->nb[0] == sizeof(int8_t));
  3212. for (int i = 0; i < n; i++) {
  3213. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3214. }
  3215. } break;
  3216. case GGML_TYPE_I16:
  3217. {
  3218. assert(tensor->nb[0] == sizeof(int16_t));
  3219. for (int i = 0; i < n; i++) {
  3220. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3221. }
  3222. } break;
  3223. case GGML_TYPE_I32:
  3224. {
  3225. assert(tensor->nb[0] == sizeof(int32_t));
  3226. for (int i = 0; i < n; i++) {
  3227. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3228. }
  3229. } break;
  3230. case GGML_TYPE_F16:
  3231. {
  3232. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3233. for (int i = 0; i < n; i++) {
  3234. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3235. }
  3236. } break;
  3237. case GGML_TYPE_BF16:
  3238. {
  3239. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3240. for (int i = 0; i < n; i++) {
  3241. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3242. }
  3243. } break;
  3244. case GGML_TYPE_F32:
  3245. {
  3246. assert(tensor->nb[0] == sizeof(float));
  3247. for (int i = 0; i < n; i++) {
  3248. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3249. }
  3250. } break;
  3251. default:
  3252. {
  3253. GGML_ASSERT(false);
  3254. } break;
  3255. }
  3256. return tensor;
  3257. }
  3258. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3259. const int n = ggml_nrows(tensor);
  3260. const int nc = tensor->ne[0];
  3261. const size_t n1 = tensor->nb[1];
  3262. char * const data = tensor->data;
  3263. switch (tensor->type) {
  3264. case GGML_TYPE_I8:
  3265. {
  3266. assert(tensor->nb[0] == sizeof(int8_t));
  3267. for (int i = 0; i < n; i++) {
  3268. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3269. }
  3270. } break;
  3271. case GGML_TYPE_I16:
  3272. {
  3273. assert(tensor->nb[0] == sizeof(int16_t));
  3274. for (int i = 0; i < n; i++) {
  3275. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3276. }
  3277. } break;
  3278. case GGML_TYPE_I32:
  3279. {
  3280. assert(tensor->nb[0] == sizeof(int32_t));
  3281. for (int i = 0; i < n; i++) {
  3282. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3283. }
  3284. } break;
  3285. case GGML_TYPE_F16:
  3286. {
  3287. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3288. for (int i = 0; i < n; i++) {
  3289. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3290. }
  3291. } break;
  3292. case GGML_TYPE_BF16:
  3293. {
  3294. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3295. for (int i = 0; i < n; i++) {
  3296. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3297. }
  3298. } break;
  3299. case GGML_TYPE_F32:
  3300. {
  3301. assert(tensor->nb[0] == sizeof(float));
  3302. for (int i = 0; i < n; i++) {
  3303. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3304. }
  3305. } break;
  3306. default:
  3307. {
  3308. GGML_ASSERT(false);
  3309. } break;
  3310. }
  3311. return tensor;
  3312. }
  3313. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3314. const int64_t ne2 = tensor->ne[2];
  3315. const int64_t ne1 = tensor->ne[1];
  3316. const int64_t ne0 = tensor->ne[0];
  3317. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3318. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3319. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3320. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3321. if (i0) {
  3322. * i0 = i0_;
  3323. }
  3324. if (i1) {
  3325. * i1 = i1_;
  3326. }
  3327. if (i2) {
  3328. * i2 = i2_;
  3329. }
  3330. if (i3) {
  3331. * i3 = i3_;
  3332. }
  3333. }
  3334. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3335. if (!ggml_is_contiguous(tensor)) {
  3336. int64_t id[4] = { 0, 0, 0, 0 };
  3337. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3338. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3339. }
  3340. switch (tensor->type) {
  3341. case GGML_TYPE_I8:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3344. return ((int8_t *)(tensor->data))[i];
  3345. }
  3346. case GGML_TYPE_I16:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3349. return ((int16_t *)(tensor->data))[i];
  3350. }
  3351. case GGML_TYPE_I32:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3354. return ((int32_t *)(tensor->data))[i];
  3355. }
  3356. case GGML_TYPE_F16:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3359. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3360. }
  3361. case GGML_TYPE_BF16:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3364. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3365. }
  3366. case GGML_TYPE_F32:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3369. return ((float *)(tensor->data))[i];
  3370. }
  3371. default:
  3372. {
  3373. GGML_ASSERT(false);
  3374. }
  3375. }
  3376. return 0.0f;
  3377. }
  3378. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3379. if (!ggml_is_contiguous(tensor)) {
  3380. int64_t id[4] = { 0, 0, 0, 0 };
  3381. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3382. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3383. return;
  3384. }
  3385. switch (tensor->type) {
  3386. case GGML_TYPE_I8:
  3387. {
  3388. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3389. ((int8_t *)(tensor->data))[i] = value;
  3390. } break;
  3391. case GGML_TYPE_I16:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3394. ((int16_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_I32:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3399. ((int32_t *)(tensor->data))[i] = value;
  3400. } break;
  3401. case GGML_TYPE_F16:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3404. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3405. } break;
  3406. case GGML_TYPE_BF16:
  3407. {
  3408. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3409. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3410. } break;
  3411. case GGML_TYPE_F32:
  3412. {
  3413. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3414. ((float *)(tensor->data))[i] = value;
  3415. } break;
  3416. default:
  3417. {
  3418. GGML_ASSERT(false);
  3419. } break;
  3420. }
  3421. }
  3422. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3423. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3424. switch (tensor->type) {
  3425. case GGML_TYPE_I8:
  3426. return ((int8_t *) data)[0];
  3427. case GGML_TYPE_I16:
  3428. return ((int16_t *) data)[0];
  3429. case GGML_TYPE_I32:
  3430. return ((int32_t *) data)[0];
  3431. case GGML_TYPE_F16:
  3432. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3433. case GGML_TYPE_BF16:
  3434. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3435. case GGML_TYPE_F32:
  3436. return ((float *) data)[0];
  3437. default:
  3438. GGML_ASSERT(false);
  3439. }
  3440. return 0.0f;
  3441. }
  3442. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3443. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3444. switch (tensor->type) {
  3445. case GGML_TYPE_I8:
  3446. {
  3447. ((int8_t *)(data))[0] = value;
  3448. } break;
  3449. case GGML_TYPE_I16:
  3450. {
  3451. ((int16_t *)(data))[0] = value;
  3452. } break;
  3453. case GGML_TYPE_I32:
  3454. {
  3455. ((int32_t *)(data))[0] = value;
  3456. } break;
  3457. case GGML_TYPE_F16:
  3458. {
  3459. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3460. } break;
  3461. case GGML_TYPE_BF16:
  3462. {
  3463. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3464. } break;
  3465. case GGML_TYPE_F32:
  3466. {
  3467. ((float *)(data))[0] = value;
  3468. } break;
  3469. default:
  3470. {
  3471. GGML_ASSERT(false);
  3472. } break;
  3473. }
  3474. }
  3475. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3476. if (!ggml_is_contiguous(tensor)) {
  3477. int64_t id[4] = { 0, 0, 0, 0 };
  3478. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3479. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3480. }
  3481. switch (tensor->type) {
  3482. case GGML_TYPE_I8:
  3483. {
  3484. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3485. return ((int8_t *)(tensor->data))[i];
  3486. }
  3487. case GGML_TYPE_I16:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3490. return ((int16_t *)(tensor->data))[i];
  3491. }
  3492. case GGML_TYPE_I32:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3495. return ((int32_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_F16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3500. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3501. }
  3502. case GGML_TYPE_BF16:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3505. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3506. }
  3507. case GGML_TYPE_F32:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3510. return ((float *)(tensor->data))[i];
  3511. }
  3512. default:
  3513. {
  3514. GGML_ASSERT(false);
  3515. }
  3516. }
  3517. return 0.0f;
  3518. }
  3519. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3520. if (!ggml_is_contiguous(tensor)) {
  3521. int64_t id[4] = { 0, 0, 0, 0 };
  3522. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3523. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3524. return;
  3525. }
  3526. switch (tensor->type) {
  3527. case GGML_TYPE_I8:
  3528. {
  3529. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3530. ((int8_t *)(tensor->data))[i] = value;
  3531. } break;
  3532. case GGML_TYPE_I16:
  3533. {
  3534. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3535. ((int16_t *)(tensor->data))[i] = value;
  3536. } break;
  3537. case GGML_TYPE_I32:
  3538. {
  3539. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3540. ((int32_t *)(tensor->data))[i] = value;
  3541. } break;
  3542. case GGML_TYPE_F16:
  3543. {
  3544. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3545. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3546. } break;
  3547. case GGML_TYPE_BF16:
  3548. {
  3549. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3550. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3551. } break;
  3552. case GGML_TYPE_F32:
  3553. {
  3554. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3555. ((float *)(tensor->data))[i] = value;
  3556. } break;
  3557. default:
  3558. {
  3559. GGML_ASSERT(false);
  3560. } break;
  3561. }
  3562. }
  3563. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3564. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3565. switch (tensor->type) {
  3566. case GGML_TYPE_I8:
  3567. return ((int8_t *) data)[0];
  3568. case GGML_TYPE_I16:
  3569. return ((int16_t *) data)[0];
  3570. case GGML_TYPE_I32:
  3571. return ((int32_t *) data)[0];
  3572. case GGML_TYPE_F16:
  3573. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3574. case GGML_TYPE_BF16:
  3575. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3576. case GGML_TYPE_F32:
  3577. return ((float *) data)[0];
  3578. default:
  3579. GGML_ASSERT(false);
  3580. }
  3581. return 0.0f;
  3582. }
  3583. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3584. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3585. switch (tensor->type) {
  3586. case GGML_TYPE_I8:
  3587. {
  3588. ((int8_t *)(data))[0] = value;
  3589. } break;
  3590. case GGML_TYPE_I16:
  3591. {
  3592. ((int16_t *)(data))[0] = value;
  3593. } break;
  3594. case GGML_TYPE_I32:
  3595. {
  3596. ((int32_t *)(data))[0] = value;
  3597. } break;
  3598. case GGML_TYPE_F16:
  3599. {
  3600. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3601. } break;
  3602. case GGML_TYPE_BF16:
  3603. {
  3604. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3605. } break;
  3606. case GGML_TYPE_F32:
  3607. {
  3608. ((float *)(data))[0] = value;
  3609. } break;
  3610. default:
  3611. {
  3612. GGML_ASSERT(false);
  3613. } break;
  3614. }
  3615. }
  3616. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3617. return tensor->data;
  3618. }
  3619. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3620. assert(tensor->type == GGML_TYPE_F32);
  3621. return (float *)(tensor->data);
  3622. }
  3623. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3624. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3625. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3626. }
  3627. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3628. return tensor->name;
  3629. }
  3630. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3631. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3632. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3633. return tensor;
  3634. }
  3635. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3636. va_list args;
  3637. va_start(args, fmt);
  3638. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3639. va_end(args);
  3640. return tensor;
  3641. }
  3642. struct ggml_tensor * ggml_view_tensor(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * src) {
  3645. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3646. ggml_format_name(result, "%s (view)", src->name);
  3647. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3648. result->nb[i] = src->nb[i];
  3649. }
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3653. struct ggml_object * obj = ctx->objects_begin;
  3654. char * const mem_buffer = ctx->mem_buffer;
  3655. while (obj != NULL) {
  3656. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3657. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3658. }
  3659. obj = obj->next;
  3660. }
  3661. return NULL;
  3662. }
  3663. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3664. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3665. obj = obj->next;
  3666. char * const mem_buffer = ctx->mem_buffer;
  3667. while (obj != NULL) {
  3668. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3669. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3670. }
  3671. obj = obj->next;
  3672. }
  3673. return NULL;
  3674. }
  3675. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3676. struct ggml_object * obj = ctx->objects_begin;
  3677. char * const mem_buffer = ctx->mem_buffer;
  3678. while (obj != NULL) {
  3679. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3680. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3681. if (strcmp(cur->name, name) == 0) {
  3682. return cur;
  3683. }
  3684. }
  3685. obj = obj->next;
  3686. }
  3687. return NULL;
  3688. }
  3689. ////////////////////////////////////////////////////////////////////////////////
  3690. // ggml_dup
  3691. static struct ggml_tensor * ggml_dup_impl(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. bool inplace) {
  3695. bool is_node = false;
  3696. if (!inplace && (a->grad)) {
  3697. is_node = true;
  3698. }
  3699. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3700. result->op = GGML_OP_DUP;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src[0] = a;
  3703. return result;
  3704. }
  3705. struct ggml_tensor * ggml_dup(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a) {
  3708. return ggml_dup_impl(ctx, a, false);
  3709. }
  3710. struct ggml_tensor * ggml_dup_inplace(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a) {
  3713. return ggml_dup_impl(ctx, a, true);
  3714. }
  3715. // ggml_add
  3716. static struct ggml_tensor * ggml_add_impl(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. struct ggml_tensor * b,
  3720. bool inplace) {
  3721. GGML_ASSERT(ggml_can_repeat(b, a));
  3722. bool is_node = false;
  3723. if (!inplace && (a->grad || b->grad)) {
  3724. // TODO: support backward pass for broadcasting
  3725. GGML_ASSERT(ggml_are_same_shape(a, b));
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3729. result->op = GGML_OP_ADD;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src[0] = a;
  3732. result->src[1] = b;
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_add(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. struct ggml_tensor * b) {
  3739. return ggml_add_impl(ctx, a, b, false);
  3740. }
  3741. struct ggml_tensor * ggml_add_inplace(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b) {
  3745. return ggml_add_impl(ctx, a, b, true);
  3746. }
  3747. // ggml_add_cast
  3748. static struct ggml_tensor * ggml_add_cast_impl(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a,
  3751. struct ggml_tensor * b,
  3752. enum ggml_type type) {
  3753. // TODO: support less-strict constraint
  3754. // GGML_ASSERT(ggml_can_repeat(b, a));
  3755. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3756. // currently only supported for quantized input and f16
  3757. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3758. a->type == GGML_TYPE_F16 ||
  3759. a->type == GGML_TYPE_BF16);
  3760. bool is_node = false;
  3761. if (a->grad || b->grad) {
  3762. // TODO: support backward pass for broadcasting
  3763. GGML_ASSERT(ggml_are_same_shape(a, b));
  3764. is_node = true;
  3765. }
  3766. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3767. result->op = GGML_OP_ADD;
  3768. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3769. result->src[0] = a;
  3770. result->src[1] = b;
  3771. return result;
  3772. }
  3773. struct ggml_tensor * ggml_add_cast(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b,
  3777. enum ggml_type type) {
  3778. return ggml_add_cast_impl(ctx, a, b, type);
  3779. }
  3780. // ggml_add1
  3781. static struct ggml_tensor * ggml_add1_impl(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b,
  3785. bool inplace) {
  3786. GGML_ASSERT(ggml_is_scalar(b));
  3787. GGML_ASSERT(ggml_is_padded_1d(a));
  3788. bool is_node = false;
  3789. if (a->grad || b->grad) {
  3790. is_node = true;
  3791. }
  3792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3793. result->op = GGML_OP_ADD1;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. result->src[1] = b;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_add1(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b) {
  3803. return ggml_add1_impl(ctx, a, b, false);
  3804. }
  3805. struct ggml_tensor * ggml_add1_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_add1_impl(ctx, a, b, true);
  3810. }
  3811. // ggml_acc
  3812. static struct ggml_tensor * ggml_acc_impl(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. struct ggml_tensor * b,
  3816. size_t nb1,
  3817. size_t nb2,
  3818. size_t nb3,
  3819. size_t offset,
  3820. bool inplace) {
  3821. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3822. GGML_ASSERT(ggml_is_contiguous(a));
  3823. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3824. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3825. bool is_node = false;
  3826. if (!inplace && (a->grad || b->grad)) {
  3827. is_node = true;
  3828. }
  3829. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3830. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3831. ggml_set_op_params(result, params, sizeof(params));
  3832. result->op = GGML_OP_ACC;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = a;
  3835. result->src[1] = b;
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_acc(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b,
  3842. size_t nb1,
  3843. size_t nb2,
  3844. size_t nb3,
  3845. size_t offset) {
  3846. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3847. }
  3848. struct ggml_tensor * ggml_acc_inplace(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b,
  3852. size_t nb1,
  3853. size_t nb2,
  3854. size_t nb3,
  3855. size_t offset) {
  3856. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3857. }
  3858. // ggml_sub
  3859. static struct ggml_tensor * ggml_sub_impl(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b,
  3863. bool inplace) {
  3864. GGML_ASSERT(ggml_are_same_shape(a, b));
  3865. bool is_node = false;
  3866. if (!inplace && (a->grad || b->grad)) {
  3867. is_node = true;
  3868. }
  3869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3870. result->op = GGML_OP_SUB;
  3871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3872. result->src[0] = a;
  3873. result->src[1] = b;
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_sub(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. return ggml_sub_impl(ctx, a, b, false);
  3881. }
  3882. struct ggml_tensor * ggml_sub_inplace(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. return ggml_sub_impl(ctx, a, b, true);
  3887. }
  3888. // ggml_mul
  3889. static struct ggml_tensor * ggml_mul_impl(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. struct ggml_tensor * b,
  3893. bool inplace) {
  3894. GGML_ASSERT(ggml_can_repeat(b, a));
  3895. bool is_node = false;
  3896. if (!inplace && (a->grad || b->grad)) {
  3897. // TODO: support backward pass for broadcasting
  3898. GGML_ASSERT(ggml_are_same_shape(a, b));
  3899. is_node = true;
  3900. }
  3901. if (inplace) {
  3902. GGML_ASSERT(!is_node);
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_MUL;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. result->src[1] = b;
  3909. return result;
  3910. }
  3911. struct ggml_tensor * ggml_mul(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b) {
  3915. return ggml_mul_impl(ctx, a, b, false);
  3916. }
  3917. struct ggml_tensor * ggml_mul_inplace(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b) {
  3921. return ggml_mul_impl(ctx, a, b, true);
  3922. }
  3923. // ggml_div
  3924. static struct ggml_tensor * ggml_div_impl(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. bool inplace) {
  3929. GGML_ASSERT(ggml_can_repeat(b, a));
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad || b->grad)) {
  3932. is_node = true;
  3933. }
  3934. if (inplace) {
  3935. GGML_ASSERT(!is_node);
  3936. }
  3937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3938. result->op = GGML_OP_DIV;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. result->src[1] = b;
  3942. return result;
  3943. }
  3944. struct ggml_tensor * ggml_div(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b) {
  3948. return ggml_div_impl(ctx, a, b, false);
  3949. }
  3950. struct ggml_tensor * ggml_div_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_div_impl(ctx, a, b, true);
  3955. }
  3956. // ggml_sqr
  3957. static struct ggml_tensor * ggml_sqr_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. bool inplace) {
  3961. bool is_node = false;
  3962. if (!inplace && (a->grad)) {
  3963. is_node = true;
  3964. }
  3965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3966. result->op = GGML_OP_SQR;
  3967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3968. result->src[0] = a;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_sqr(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a) {
  3974. return ggml_sqr_impl(ctx, a, false);
  3975. }
  3976. struct ggml_tensor * ggml_sqr_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_sqr_impl(ctx, a, true);
  3980. }
  3981. // ggml_sqrt
  3982. static struct ggml_tensor * ggml_sqrt_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. bool inplace) {
  3986. bool is_node = false;
  3987. if (!inplace && (a->grad)) {
  3988. is_node = true;
  3989. }
  3990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3991. result->op = GGML_OP_SQRT;
  3992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3993. result->src[0] = a;
  3994. return result;
  3995. }
  3996. struct ggml_tensor * ggml_sqrt(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a) {
  3999. return ggml_sqrt_impl(ctx, a, false);
  4000. }
  4001. struct ggml_tensor * ggml_sqrt_inplace(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a) {
  4004. return ggml_sqrt_impl(ctx, a, true);
  4005. }
  4006. // ggml_log
  4007. static struct ggml_tensor * ggml_log_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. bool inplace) {
  4011. bool is_node = false;
  4012. if (!inplace && (a->grad)) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4016. result->op = GGML_OP_LOG;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src[0] = a;
  4019. return result;
  4020. }
  4021. struct ggml_tensor * ggml_log(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. return ggml_log_impl(ctx, a, false);
  4025. }
  4026. struct ggml_tensor * ggml_log_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_log_impl(ctx, a, true);
  4030. }
  4031. // ggml_sum
  4032. struct ggml_tensor * ggml_sum(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. bool is_node = false;
  4036. if (a->grad) {
  4037. is_node = true;
  4038. }
  4039. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4040. result->op = GGML_OP_SUM;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src[0] = a;
  4043. return result;
  4044. }
  4045. // ggml_sum_rows
  4046. struct ggml_tensor * ggml_sum_rows(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. is_node = true;
  4052. }
  4053. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4054. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4055. ne[i] = a->ne[i];
  4056. }
  4057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4058. result->op = GGML_OP_SUM_ROWS;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src[0] = a;
  4061. return result;
  4062. }
  4063. // ggml_mean
  4064. struct ggml_tensor * ggml_mean(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. bool is_node = false;
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // TODO: implement
  4070. is_node = true;
  4071. }
  4072. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4073. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4074. result->op = GGML_OP_MEAN;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src[0] = a;
  4077. return result;
  4078. }
  4079. // ggml_argmax
  4080. struct ggml_tensor * ggml_argmax(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a) {
  4083. GGML_ASSERT(ggml_is_matrix(a));
  4084. bool is_node = false;
  4085. if (a->grad) {
  4086. GGML_ASSERT(false);
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4090. result->op = GGML_OP_ARGMAX;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src[0] = a;
  4093. return result;
  4094. }
  4095. // ggml_repeat
  4096. struct ggml_tensor * ggml_repeat(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. struct ggml_tensor * b) {
  4100. GGML_ASSERT(ggml_can_repeat(a, b));
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4106. result->op = GGML_OP_REPEAT;
  4107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4108. result->src[0] = a;
  4109. return result;
  4110. }
  4111. // ggml_repeat_back
  4112. struct ggml_tensor * ggml_repeat_back(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. struct ggml_tensor * b) {
  4116. GGML_ASSERT(ggml_can_repeat(b, a));
  4117. bool is_node = false;
  4118. if (a->grad) {
  4119. is_node = true;
  4120. }
  4121. if (ggml_are_same_shape(a, b) && !is_node) {
  4122. return a;
  4123. }
  4124. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4125. result->op = GGML_OP_REPEAT_BACK;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. return result;
  4129. }
  4130. // ggml_concat
  4131. struct ggml_tensor * ggml_concat(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b,
  4135. int dim) {
  4136. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4137. int64_t ne[GGML_MAX_DIMS];
  4138. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4139. if (d == dim) {
  4140. ne[d] = a->ne[d] + b->ne[d];
  4141. continue;
  4142. }
  4143. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4144. ne[d] = a->ne[d];
  4145. }
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4151. ggml_set_op_params_i32(result, 0, dim);
  4152. result->op = GGML_OP_CONCAT;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. result->src[1] = b;
  4156. return result;
  4157. }
  4158. // ggml_abs
  4159. struct ggml_tensor * ggml_abs(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a) {
  4162. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4163. }
  4164. struct ggml_tensor * ggml_abs_inplace(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4168. }
  4169. // ggml_sgn
  4170. struct ggml_tensor * ggml_sgn(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4174. }
  4175. struct ggml_tensor * ggml_sgn_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4179. }
  4180. // ggml_neg
  4181. struct ggml_tensor * ggml_neg(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4185. }
  4186. struct ggml_tensor * ggml_neg_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4190. }
  4191. // ggml_step
  4192. struct ggml_tensor * ggml_step(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4196. }
  4197. struct ggml_tensor * ggml_step_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4201. }
  4202. // ggml_tanh
  4203. struct ggml_tensor * ggml_tanh(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4207. }
  4208. struct ggml_tensor * ggml_tanh_inplace(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4212. }
  4213. // ggml_elu
  4214. struct ggml_tensor * ggml_elu(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4218. }
  4219. struct ggml_tensor * ggml_elu_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4223. }
  4224. // ggml_relu
  4225. struct ggml_tensor * ggml_relu(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4229. }
  4230. struct ggml_tensor * ggml_relu_inplace(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4234. }
  4235. // ggml_leaky_relu
  4236. struct ggml_tensor * ggml_leaky_relu(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4245. result->op = GGML_OP_LEAKY_RELU;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src[0] = a;
  4248. return result;
  4249. }
  4250. // ggml_sigmoid
  4251. struct ggml_tensor * ggml_sigmoid(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a) {
  4254. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4255. }
  4256. struct ggml_tensor * ggml_sigmoid_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4260. }
  4261. // ggml_gelu
  4262. struct ggml_tensor * ggml_gelu(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4266. }
  4267. struct ggml_tensor * ggml_gelu_inplace(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4271. }
  4272. // ggml_gelu_quick
  4273. struct ggml_tensor * ggml_gelu_quick(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4277. }
  4278. struct ggml_tensor * ggml_gelu_quick_inplace(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4282. }
  4283. // ggml_silu
  4284. struct ggml_tensor * ggml_silu(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4288. }
  4289. struct ggml_tensor * ggml_silu_inplace(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a) {
  4292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4293. }
  4294. // ggml_silu_back
  4295. struct ggml_tensor * ggml_silu_back(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_SILU_BACK;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. result->src[1] = b;
  4309. return result;
  4310. }
  4311. // ggml hardswish
  4312. struct ggml_tensor * ggml_hardswish(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4316. }
  4317. // ggml hardsigmoid
  4318. struct ggml_tensor * ggml_hardsigmoid(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4322. }
  4323. // ggml_norm
  4324. static struct ggml_tensor * ggml_norm_impl(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. float eps,
  4328. bool inplace) {
  4329. bool is_node = false;
  4330. if (!inplace && (a->grad)) {
  4331. GGML_ASSERT(false); // TODO: implement backward
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. ggml_set_op_params(result, &eps, sizeof(eps));
  4336. result->op = GGML_OP_NORM;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src[0] = a;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_norm(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. float eps) {
  4345. return ggml_norm_impl(ctx, a, eps, false);
  4346. }
  4347. struct ggml_tensor * ggml_norm_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps) {
  4351. return ggml_norm_impl(ctx, a, eps, true);
  4352. }
  4353. // ggml_rms_norm
  4354. static struct ggml_tensor * ggml_rms_norm_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. float eps,
  4358. bool inplace) {
  4359. bool is_node = false;
  4360. if (!inplace && (a->grad)) {
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. ggml_set_op_params(result, &eps, sizeof(eps));
  4365. result->op = GGML_OP_RMS_NORM;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_rms_norm(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. float eps) {
  4374. return ggml_rms_norm_impl(ctx, a, eps, false);
  4375. }
  4376. struct ggml_tensor * ggml_rms_norm_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. float eps) {
  4380. return ggml_rms_norm_impl(ctx, a, eps, true);
  4381. }
  4382. // ggml_rms_norm_back
  4383. struct ggml_tensor * ggml_rms_norm_back(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. struct ggml_tensor * b,
  4387. float eps) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4394. ggml_set_op_params(result, &eps, sizeof(eps));
  4395. result->op = GGML_OP_RMS_NORM_BACK;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. result->src[1] = b;
  4399. return result;
  4400. }
  4401. // ggml_group_norm
  4402. static struct ggml_tensor * ggml_group_norm_impl(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a,
  4405. int n_groups,
  4406. bool inplace) {
  4407. bool is_node = false;
  4408. if (!inplace && (a->grad)) {
  4409. GGML_ASSERT(false); // TODO: implement backward
  4410. is_node = true;
  4411. }
  4412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op_params[0] = n_groups;
  4414. result->op = GGML_OP_GROUP_NORM;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src[0] = a;
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_group_norm(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. int n_groups) {
  4423. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4424. }
  4425. struct ggml_tensor * ggml_group_norm_inplace(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int n_groups) {
  4429. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4430. }
  4431. // ggml_mul_mat
  4432. struct ggml_tensor * ggml_mul_mat(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b) {
  4436. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4437. GGML_ASSERT(!ggml_is_transposed(a));
  4438. bool is_node = false;
  4439. if (a->grad || b->grad) {
  4440. is_node = true;
  4441. }
  4442. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4444. result->op = GGML_OP_MUL_MAT;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. result->src[1] = b;
  4448. return result;
  4449. }
  4450. void ggml_mul_mat_set_prec(
  4451. struct ggml_tensor * a,
  4452. enum ggml_prec prec) {
  4453. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4454. const int32_t prec_i32 = (int32_t) prec;
  4455. ggml_set_op_params_i32(a, 0, prec_i32);
  4456. }
  4457. // ggml_mul_mat_id
  4458. /*
  4459. c = ggml_mul_mat_id(ctx, as, b, ids);
  4460. as -> [cols, rows, n_expert]
  4461. ids -> [n_experts_used, n_tokens] (i32)
  4462. b -> [cols, n_expert_used, n_tokens]
  4463. c -> [cols, n_expert_used, n_tokens]
  4464. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4465. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4466. */
  4467. struct ggml_tensor * ggml_mul_mat_id(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * as,
  4470. struct ggml_tensor * b,
  4471. struct ggml_tensor * ids) {
  4472. GGML_ASSERT(!ggml_is_transposed(as));
  4473. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4474. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4475. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4476. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4477. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4478. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4479. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4480. bool is_node = false;
  4481. if (as->grad || b->grad) {
  4482. is_node = true;
  4483. }
  4484. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4486. result->op = GGML_OP_MUL_MAT_ID;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src[0] = as;
  4489. result->src[1] = b;
  4490. result->src[2] = ids;
  4491. return result;
  4492. }
  4493. // ggml_out_prod
  4494. struct ggml_tensor * ggml_out_prod(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. GGML_ASSERT(ggml_can_out_prod(a, b));
  4499. GGML_ASSERT(!ggml_is_transposed(a));
  4500. bool is_node = false;
  4501. if (a->grad || b->grad) {
  4502. is_node = true;
  4503. }
  4504. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4505. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4507. result->op = GGML_OP_OUT_PROD;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. result->src[1] = b;
  4511. return result;
  4512. }
  4513. // ggml_scale
  4514. static struct ggml_tensor * ggml_scale_impl(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. float s,
  4518. bool inplace) {
  4519. GGML_ASSERT(ggml_is_padded_1d(a));
  4520. bool is_node = false;
  4521. if (a->grad) {
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4525. ggml_set_op_params(result, &s, sizeof(s));
  4526. result->op = GGML_OP_SCALE;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src[0] = a;
  4529. return result;
  4530. }
  4531. struct ggml_tensor * ggml_scale(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. float s) {
  4535. return ggml_scale_impl(ctx, a, s, false);
  4536. }
  4537. struct ggml_tensor * ggml_scale_inplace(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. float s) {
  4541. return ggml_scale_impl(ctx, a, s, true);
  4542. }
  4543. // ggml_set
  4544. static struct ggml_tensor * ggml_set_impl(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. struct ggml_tensor * b,
  4548. size_t nb1,
  4549. size_t nb2,
  4550. size_t nb3,
  4551. size_t offset,
  4552. bool inplace) {
  4553. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4554. bool is_node = false;
  4555. if (a->grad || b->grad) {
  4556. is_node = true;
  4557. }
  4558. // make a view of the destination
  4559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4560. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4561. ggml_set_op_params(result, params, sizeof(params));
  4562. result->op = GGML_OP_SET;
  4563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4564. result->src[0] = a;
  4565. result->src[1] = b;
  4566. return result;
  4567. }
  4568. struct ggml_tensor * ggml_set(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. size_t nb1,
  4573. size_t nb2,
  4574. size_t nb3,
  4575. size_t offset) {
  4576. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4577. }
  4578. struct ggml_tensor * ggml_set_inplace(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t nb3,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4587. }
  4588. struct ggml_tensor * ggml_set_1d(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4594. }
  4595. struct ggml_tensor * ggml_set_1d_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t offset) {
  4600. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4601. }
  4602. struct ggml_tensor * ggml_set_2d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. size_t nb1,
  4607. size_t offset) {
  4608. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4609. }
  4610. struct ggml_tensor * ggml_set_2d_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b,
  4614. size_t nb1,
  4615. size_t offset) {
  4616. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4617. }
  4618. // ggml_cpy
  4619. static struct ggml_tensor * ggml_cpy_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b) {
  4623. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4624. bool is_node = false;
  4625. if (a->grad || b->grad) {
  4626. // inplace is false and either one have a grad
  4627. is_node = true;
  4628. }
  4629. // make a view of the destination
  4630. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4631. if (strlen(b->name) > 0) {
  4632. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4633. } else {
  4634. ggml_format_name(result, "%s (copy)", a->name);
  4635. }
  4636. result->op = GGML_OP_CPY;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_cpy(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. return ggml_cpy_impl(ctx, a, b);
  4647. }
  4648. struct ggml_tensor * ggml_cast(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. enum ggml_type type) {
  4652. bool is_node = false;
  4653. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4654. ggml_format_name(result, "%s (copy)", a->name);
  4655. result->op = GGML_OP_CPY;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. result->src[1] = result;
  4659. return result;
  4660. }
  4661. // ggml_cont
  4662. static struct ggml_tensor * ggml_cont_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a) {
  4665. bool is_node = false;
  4666. if (a->grad) {
  4667. is_node = true;
  4668. }
  4669. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4670. ggml_format_name(result, "%s (cont)", a->name);
  4671. result->op = GGML_OP_CONT;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_cont(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_cont_impl(ctx, a);
  4680. }
  4681. // make contiguous, with new shape
  4682. GGML_API struct ggml_tensor * ggml_cont_1d(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int64_t ne0) {
  4686. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4687. }
  4688. GGML_API struct ggml_tensor * ggml_cont_2d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1) {
  4693. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4694. }
  4695. GGML_API struct ggml_tensor * ggml_cont_3d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. int64_t ne0,
  4699. int64_t ne1,
  4700. int64_t ne2) {
  4701. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4702. }
  4703. struct ggml_tensor * ggml_cont_4d(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. int64_t ne0,
  4707. int64_t ne1,
  4708. int64_t ne2,
  4709. int64_t ne3) {
  4710. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4711. bool is_node = false;
  4712. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4713. ggml_format_name(result, "%s (cont)", a->name);
  4714. result->op = GGML_OP_CONT;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_reshape
  4720. struct ggml_tensor * ggml_reshape(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. GGML_ASSERT(ggml_is_contiguous(a));
  4725. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4726. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. is_node = true;
  4730. }
  4731. if (b->grad) {
  4732. // gradient propagation is not supported
  4733. //GGML_ASSERT(false);
  4734. }
  4735. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4736. ggml_format_name(result, "%s (reshaped)", a->name);
  4737. result->op = GGML_OP_RESHAPE;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src[0] = a;
  4740. return result;
  4741. }
  4742. struct ggml_tensor * ggml_reshape_1d(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int64_t ne0) {
  4746. GGML_ASSERT(ggml_is_contiguous(a));
  4747. GGML_ASSERT(ggml_nelements(a) == ne0);
  4748. bool is_node = false;
  4749. if (a->grad) {
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[1] = { ne0 };
  4753. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4754. ggml_format_name(result, "%s (reshaped)", a->name);
  4755. result->op = GGML_OP_RESHAPE;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. return result;
  4759. }
  4760. struct ggml_tensor * ggml_reshape_2d(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a,
  4763. int64_t ne0,
  4764. int64_t ne1) {
  4765. GGML_ASSERT(ggml_is_contiguous(a));
  4766. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. is_node = true;
  4770. }
  4771. const int64_t ne[2] = { ne0, ne1 };
  4772. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4773. ggml_format_name(result, "%s (reshaped)", a->name);
  4774. result->op = GGML_OP_RESHAPE;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src[0] = a;
  4777. return result;
  4778. }
  4779. struct ggml_tensor * ggml_reshape_3d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. int64_t ne0,
  4783. int64_t ne1,
  4784. int64_t ne2) {
  4785. GGML_ASSERT(ggml_is_contiguous(a));
  4786. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4787. bool is_node = false;
  4788. if (a->grad) {
  4789. is_node = true;
  4790. }
  4791. const int64_t ne[3] = { ne0, ne1, ne2 };
  4792. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4793. ggml_format_name(result, "%s (reshaped)", a->name);
  4794. result->op = GGML_OP_RESHAPE;
  4795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4796. result->src[0] = a;
  4797. return result;
  4798. }
  4799. struct ggml_tensor * ggml_reshape_4d(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. int64_t ne0,
  4803. int64_t ne1,
  4804. int64_t ne2,
  4805. int64_t ne3) {
  4806. GGML_ASSERT(ggml_is_contiguous(a));
  4807. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4808. bool is_node = false;
  4809. if (a->grad) {
  4810. is_node = true;
  4811. }
  4812. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4813. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4814. ggml_format_name(result, "%s (reshaped)", a->name);
  4815. result->op = GGML_OP_RESHAPE;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src[0] = a;
  4818. return result;
  4819. }
  4820. static struct ggml_tensor * ggml_view_impl(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. int n_dims,
  4824. const int64_t * ne,
  4825. size_t offset) {
  4826. bool is_node = false;
  4827. if (a->grad) {
  4828. is_node = true;
  4829. }
  4830. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4831. ggml_format_name(result, "%s (view)", a->name);
  4832. ggml_set_op_params(result, &offset, sizeof(offset));
  4833. result->op = GGML_OP_VIEW;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. // ggml_view_1d
  4839. struct ggml_tensor * ggml_view_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int64_t ne0,
  4843. size_t offset) {
  4844. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4845. return result;
  4846. }
  4847. // ggml_view_2d
  4848. struct ggml_tensor * ggml_view_2d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int64_t ne0,
  4852. int64_t ne1,
  4853. size_t nb1,
  4854. size_t offset) {
  4855. const int64_t ne[2] = { ne0, ne1 };
  4856. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4857. result->nb[1] = nb1;
  4858. result->nb[2] = result->nb[1]*ne1;
  4859. result->nb[3] = result->nb[2];
  4860. return result;
  4861. }
  4862. // ggml_view_3d
  4863. struct ggml_tensor * ggml_view_3d(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. int64_t ne0,
  4867. int64_t ne1,
  4868. int64_t ne2,
  4869. size_t nb1,
  4870. size_t nb2,
  4871. size_t offset) {
  4872. const int64_t ne[3] = { ne0, ne1, ne2 };
  4873. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4874. result->nb[1] = nb1;
  4875. result->nb[2] = nb2;
  4876. result->nb[3] = result->nb[2]*ne2;
  4877. return result;
  4878. }
  4879. // ggml_view_4d
  4880. struct ggml_tensor * ggml_view_4d(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int64_t ne0,
  4884. int64_t ne1,
  4885. int64_t ne2,
  4886. int64_t ne3,
  4887. size_t nb1,
  4888. size_t nb2,
  4889. size_t nb3,
  4890. size_t offset) {
  4891. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4892. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4893. result->nb[1] = nb1;
  4894. result->nb[2] = nb2;
  4895. result->nb[3] = nb3;
  4896. return result;
  4897. }
  4898. // ggml_permute
  4899. struct ggml_tensor * ggml_permute(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. int axis0,
  4903. int axis1,
  4904. int axis2,
  4905. int axis3) {
  4906. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4907. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4910. GGML_ASSERT(axis0 != axis1);
  4911. GGML_ASSERT(axis0 != axis2);
  4912. GGML_ASSERT(axis0 != axis3);
  4913. GGML_ASSERT(axis1 != axis2);
  4914. GGML_ASSERT(axis1 != axis3);
  4915. GGML_ASSERT(axis2 != axis3);
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4921. ggml_format_name(result, "%s (permuted)", a->name);
  4922. int ne[GGML_MAX_DIMS];
  4923. int nb[GGML_MAX_DIMS];
  4924. ne[axis0] = a->ne[0];
  4925. ne[axis1] = a->ne[1];
  4926. ne[axis2] = a->ne[2];
  4927. ne[axis3] = a->ne[3];
  4928. nb[axis0] = a->nb[0];
  4929. nb[axis1] = a->nb[1];
  4930. nb[axis2] = a->nb[2];
  4931. nb[axis3] = a->nb[3];
  4932. result->ne[0] = ne[0];
  4933. result->ne[1] = ne[1];
  4934. result->ne[2] = ne[2];
  4935. result->ne[3] = ne[3];
  4936. result->nb[0] = nb[0];
  4937. result->nb[1] = nb[1];
  4938. result->nb[2] = nb[2];
  4939. result->nb[3] = nb[3];
  4940. result->op = GGML_OP_PERMUTE;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4944. ggml_set_op_params(result, params, sizeof(params));
  4945. return result;
  4946. }
  4947. // ggml_transpose
  4948. struct ggml_tensor * ggml_transpose(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a) {
  4951. bool is_node = false;
  4952. if (a->grad) {
  4953. is_node = true;
  4954. }
  4955. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4956. ggml_format_name(result, "%s (transposed)", a->name);
  4957. result->ne[0] = a->ne[1];
  4958. result->ne[1] = a->ne[0];
  4959. result->nb[0] = a->nb[1];
  4960. result->nb[1] = a->nb[0];
  4961. result->op = GGML_OP_TRANSPOSE;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. return result;
  4965. }
  4966. // ggml_get_rows
  4967. struct ggml_tensor * ggml_get_rows(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b) {
  4971. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4972. GGML_ASSERT(b->ne[3] == 1);
  4973. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4974. bool is_node = false;
  4975. if (a->grad || b->grad) {
  4976. is_node = true;
  4977. }
  4978. // TODO: implement non F32 return
  4979. enum ggml_type type = GGML_TYPE_F32;
  4980. if (a->type == GGML_TYPE_I32) {
  4981. type = a->type;
  4982. }
  4983. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4984. result->op = GGML_OP_GET_ROWS;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src[0] = a;
  4987. result->src[1] = b;
  4988. return result;
  4989. }
  4990. // ggml_get_rows_back
  4991. struct ggml_tensor * ggml_get_rows_back(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b,
  4995. struct ggml_tensor * c) {
  4996. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4997. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4998. bool is_node = false;
  4999. if (a->grad || b->grad) {
  5000. is_node = true;
  5001. }
  5002. // TODO: implement non F32 return
  5003. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5004. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5005. result->op = GGML_OP_GET_ROWS_BACK;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. result->src[1] = b;
  5009. return result;
  5010. }
  5011. // ggml_diag
  5012. struct ggml_tensor * ggml_diag(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * a) {
  5015. GGML_ASSERT(a->ne[1] == 1);
  5016. bool is_node = false;
  5017. if (a->grad) {
  5018. is_node = true;
  5019. }
  5020. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5022. result->op = GGML_OP_DIAG;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. return result;
  5026. }
  5027. // ggml_diag_mask_inf
  5028. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int n_past,
  5032. bool inplace) {
  5033. bool is_node = false;
  5034. if (a->grad) {
  5035. is_node = true;
  5036. }
  5037. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5038. int32_t params[] = { n_past };
  5039. ggml_set_op_params(result, params, sizeof(params));
  5040. result->op = GGML_OP_DIAG_MASK_INF;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_diag_mask_inf(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. int n_past) {
  5049. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5050. }
  5051. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past) {
  5055. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5056. }
  5057. // ggml_diag_mask_zero
  5058. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. int n_past,
  5062. bool inplace) {
  5063. bool is_node = false;
  5064. if (a->grad) {
  5065. is_node = true;
  5066. }
  5067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5068. int32_t params[] = { n_past };
  5069. ggml_set_op_params(result, params, sizeof(params));
  5070. result->op = GGML_OP_DIAG_MASK_ZERO;
  5071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5072. result->src[0] = a;
  5073. return result;
  5074. }
  5075. struct ggml_tensor * ggml_diag_mask_zero(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int n_past) {
  5079. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5080. }
  5081. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. int n_past) {
  5085. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5086. }
  5087. // ggml_soft_max
  5088. static struct ggml_tensor * ggml_soft_max_impl(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. struct ggml_tensor * mask,
  5092. float scale,
  5093. float max_bias,
  5094. bool inplace) {
  5095. GGML_ASSERT(ggml_is_contiguous(a));
  5096. if (mask) {
  5097. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5098. GGML_ASSERT(ggml_is_contiguous(mask));
  5099. GGML_ASSERT(ggml_is_matrix(mask));
  5100. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5101. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5102. }
  5103. if (max_bias > 0.0f) {
  5104. GGML_ASSERT(mask);
  5105. }
  5106. bool is_node = false;
  5107. if (a->grad) {
  5108. is_node = true;
  5109. }
  5110. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5111. float params[] = { scale, max_bias };
  5112. ggml_set_op_params(result, params, sizeof(params));
  5113. result->op = GGML_OP_SOFT_MAX;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = a;
  5116. result->src[1] = mask;
  5117. return result;
  5118. }
  5119. struct ggml_tensor * ggml_soft_max(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a) {
  5122. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5123. }
  5124. struct ggml_tensor * ggml_soft_max_inplace(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a) {
  5127. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5128. }
  5129. struct ggml_tensor * ggml_soft_max_ext(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * mask,
  5133. float scale,
  5134. float max_bias) {
  5135. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5136. }
  5137. // ggml_soft_max_back
  5138. static struct ggml_tensor * ggml_soft_max_back_impl(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * b,
  5142. bool inplace) {
  5143. bool is_node = false;
  5144. if (a->grad || b->grad) {
  5145. is_node = true; // TODO : implement backward pass
  5146. }
  5147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5148. result->op = GGML_OP_SOFT_MAX_BACK;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. result->src[1] = b;
  5152. return result;
  5153. }
  5154. struct ggml_tensor * ggml_soft_max_back(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. struct ggml_tensor * b) {
  5158. return ggml_soft_max_back_impl(ctx, a, b, false);
  5159. }
  5160. struct ggml_tensor * ggml_soft_max_back_inplace(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b) {
  5164. return ggml_soft_max_back_impl(ctx, a, b, true);
  5165. }
  5166. // ggml_rope
  5167. static struct ggml_tensor * ggml_rope_impl(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b,
  5171. struct ggml_tensor * c,
  5172. int n_dims,
  5173. int mode,
  5174. int n_ctx,
  5175. int n_orig_ctx,
  5176. float freq_base,
  5177. float freq_scale,
  5178. float ext_factor,
  5179. float attn_factor,
  5180. float beta_fast,
  5181. float beta_slow,
  5182. float xpos_base,
  5183. bool xpos_down,
  5184. bool inplace) {
  5185. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5186. GGML_ASSERT(ggml_is_vector(b));
  5187. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5188. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5189. if (c) {
  5190. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5191. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5192. }
  5193. bool is_node = false;
  5194. if (a->grad) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5198. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5199. memcpy(params + 5, &freq_base, sizeof(float));
  5200. memcpy(params + 6, &freq_scale, sizeof(float));
  5201. memcpy(params + 7, &ext_factor, sizeof(float));
  5202. memcpy(params + 8, &attn_factor, sizeof(float));
  5203. memcpy(params + 9, &beta_fast, sizeof(float));
  5204. memcpy(params + 10, &beta_slow, sizeof(float));
  5205. memcpy(params + 11, &xpos_base, sizeof(float));
  5206. memcpy(params + 12, &xpos_down, sizeof(bool));
  5207. ggml_set_op_params(result, params, sizeof(params));
  5208. result->op = GGML_OP_ROPE;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src[0] = a;
  5211. result->src[1] = b;
  5212. result->src[2] = c;
  5213. return result;
  5214. }
  5215. struct ggml_tensor * ggml_rope(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. struct ggml_tensor * b,
  5219. int n_dims,
  5220. int mode,
  5221. int n_ctx) {
  5222. return ggml_rope_impl(
  5223. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5224. );
  5225. }
  5226. struct ggml_tensor * ggml_rope_inplace(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. int n_dims,
  5231. int mode,
  5232. int n_ctx) {
  5233. return ggml_rope_impl(
  5234. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5235. );
  5236. }
  5237. struct ggml_tensor * ggml_rope_ext(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. struct ggml_tensor * b,
  5241. struct ggml_tensor * c,
  5242. int n_dims,
  5243. int mode,
  5244. int n_ctx,
  5245. int n_orig_ctx,
  5246. float freq_base,
  5247. float freq_scale,
  5248. float ext_factor,
  5249. float attn_factor,
  5250. float beta_fast,
  5251. float beta_slow) {
  5252. return ggml_rope_impl(
  5253. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5254. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5255. );
  5256. }
  5257. struct ggml_tensor * ggml_rope_ext_inplace(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b,
  5261. struct ggml_tensor * c,
  5262. int n_dims,
  5263. int mode,
  5264. int n_ctx,
  5265. int n_orig_ctx,
  5266. float freq_base,
  5267. float freq_scale,
  5268. float ext_factor,
  5269. float attn_factor,
  5270. float beta_fast,
  5271. float beta_slow) {
  5272. return ggml_rope_impl(
  5273. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5274. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5275. );
  5276. }
  5277. struct ggml_tensor * ggml_rope_custom(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. struct ggml_tensor * b,
  5281. int n_dims,
  5282. int mode,
  5283. int n_ctx,
  5284. int n_orig_ctx,
  5285. float freq_base,
  5286. float freq_scale,
  5287. float ext_factor,
  5288. float attn_factor,
  5289. float beta_fast,
  5290. float beta_slow) {
  5291. return ggml_rope_impl(
  5292. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5293. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5294. );
  5295. }
  5296. struct ggml_tensor * ggml_rope_custom_inplace(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. int n_dims,
  5301. int mode,
  5302. int n_ctx,
  5303. int n_orig_ctx,
  5304. float freq_base,
  5305. float freq_scale,
  5306. float ext_factor,
  5307. float attn_factor,
  5308. float beta_fast,
  5309. float beta_slow) {
  5310. return ggml_rope_impl(
  5311. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5312. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5313. );
  5314. }
  5315. struct ggml_tensor * ggml_rope_xpos_inplace(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. struct ggml_tensor * b,
  5319. int n_dims,
  5320. float base,
  5321. bool down) {
  5322. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5323. }
  5324. // ggml_rope_back
  5325. struct ggml_tensor * ggml_rope_back(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. struct ggml_tensor * b,
  5329. struct ggml_tensor * c,
  5330. int n_dims,
  5331. int mode,
  5332. int n_ctx,
  5333. int n_orig_ctx,
  5334. float freq_base,
  5335. float freq_scale,
  5336. float ext_factor,
  5337. float attn_factor,
  5338. float beta_fast,
  5339. float beta_slow,
  5340. float xpos_base,
  5341. bool xpos_down) {
  5342. GGML_ASSERT(ggml_is_vector(b));
  5343. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5344. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5345. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5346. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5347. bool is_node = false;
  5348. if (a->grad) {
  5349. is_node = false; // TODO: implement backward
  5350. }
  5351. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5352. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5353. memcpy(params + 5, &freq_base, sizeof(float));
  5354. memcpy(params + 6, &freq_scale, sizeof(float));
  5355. memcpy(params + 7, &ext_factor, sizeof(float));
  5356. memcpy(params + 8, &attn_factor, sizeof(float));
  5357. memcpy(params + 9, &beta_fast, sizeof(float));
  5358. memcpy(params + 10, &beta_slow, sizeof(float));
  5359. memcpy(params + 11, &xpos_base, sizeof(float));
  5360. memcpy(params + 12, &xpos_down, sizeof(bool));
  5361. ggml_set_op_params(result, params, sizeof(params));
  5362. result->op = GGML_OP_ROPE_BACK;
  5363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5364. result->src[0] = a;
  5365. result->src[1] = b;
  5366. return result;
  5367. }
  5368. // ggml_clamp
  5369. struct ggml_tensor * ggml_clamp(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. float min,
  5373. float max) {
  5374. bool is_node = false;
  5375. if (a->grad) {
  5376. GGML_ASSERT(false); // TODO: implement backward
  5377. is_node = true;
  5378. }
  5379. // TODO: when implement backward, fix this:
  5380. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5381. float params[] = { min, max };
  5382. ggml_set_op_params(result, params, sizeof(params));
  5383. result->op = GGML_OP_CLAMP;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. return result;
  5387. }
  5388. // ggml_conv_1d
  5389. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5390. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5391. }
  5392. GGML_API struct ggml_tensor * ggml_conv_1d(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. struct ggml_tensor * b,
  5396. int s0,
  5397. int p0,
  5398. int d0) {
  5399. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5400. struct ggml_tensor * result =
  5401. ggml_mul_mat(ctx,
  5402. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5403. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5404. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5405. return result;
  5406. }
  5407. // ggml_conv_1d_ph
  5408. struct ggml_tensor* ggml_conv_1d_ph(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a,
  5411. struct ggml_tensor * b,
  5412. int s,
  5413. int d) {
  5414. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5415. }
  5416. // ggml_conv_transpose_1d
  5417. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5418. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5419. }
  5420. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. struct ggml_tensor * b,
  5424. int s0,
  5425. int p0,
  5426. int d0) {
  5427. GGML_ASSERT(ggml_is_matrix(b));
  5428. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5429. GGML_ASSERT(a->ne[3] == 1);
  5430. GGML_ASSERT(p0 == 0);
  5431. GGML_ASSERT(d0 == 1);
  5432. bool is_node = false;
  5433. if (a->grad || b->grad) {
  5434. GGML_ASSERT(false); // TODO: implement backward
  5435. is_node = true;
  5436. }
  5437. const int64_t ne[4] = {
  5438. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5439. a->ne[1], b->ne[2], 1,
  5440. };
  5441. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5442. int32_t params[] = { s0, p0, d0 };
  5443. ggml_set_op_params(result, params, sizeof(params));
  5444. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5446. result->src[0] = a;
  5447. result->src[1] = b;
  5448. return result;
  5449. }
  5450. // ggml_conv_depthwise
  5451. struct ggml_tensor * ggml_conv_depthwise_2d(
  5452. struct ggml_context * ctx,
  5453. struct ggml_tensor * a,
  5454. struct ggml_tensor * b,
  5455. int s0,
  5456. int s1,
  5457. int p0,
  5458. int p1,
  5459. int d0,
  5460. int d1) {
  5461. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5462. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5463. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5464. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5465. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5466. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5467. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5468. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5469. return result;
  5470. }
  5471. // ggml_conv_2d
  5472. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5473. // a: [OC,IC, KH, KW]
  5474. // b: [N, IC, IH, IW]
  5475. // result: [N, OH, OW, IC*KH*KW]
  5476. struct ggml_tensor * ggml_im2col(
  5477. struct ggml_context * ctx,
  5478. struct ggml_tensor * a,
  5479. struct ggml_tensor * b,
  5480. int s0,
  5481. int s1,
  5482. int p0,
  5483. int p1,
  5484. int d0,
  5485. int d1,
  5486. bool is_2D,
  5487. enum ggml_type dst_type) {
  5488. if(is_2D) {
  5489. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5490. } else {
  5491. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5492. }
  5493. bool is_node = false;
  5494. if (a->grad || b->grad) {
  5495. GGML_ASSERT(false); // TODO: implement backward
  5496. is_node = true;
  5497. }
  5498. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5499. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5500. const int64_t ne[4] = {
  5501. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5502. OW,
  5503. is_2D ? OH : b->ne[2],
  5504. is_2D ? b->ne[3] : 1,
  5505. };
  5506. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5507. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5508. ggml_set_op_params(result, params, sizeof(params));
  5509. result->op = GGML_OP_IM2COL;
  5510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5511. result->src[0] = a;
  5512. result->src[1] = b;
  5513. return result;
  5514. }
  5515. // a: [OC,IC, KH, KW]
  5516. // b: [N, IC, IH, IW]
  5517. // result: [N, OC, OH, OW]
  5518. struct ggml_tensor * ggml_conv_2d(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a,
  5521. struct ggml_tensor * b,
  5522. int s0,
  5523. int s1,
  5524. int p0,
  5525. int p1,
  5526. int d0,
  5527. int d1) {
  5528. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5529. struct ggml_tensor * result =
  5530. ggml_mul_mat(ctx,
  5531. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5532. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5533. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5534. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5535. return result;
  5536. }
  5537. // ggml_conv_2d_sk_p0
  5538. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5539. struct ggml_context * ctx,
  5540. struct ggml_tensor * a,
  5541. struct ggml_tensor * b) {
  5542. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5543. }
  5544. // ggml_conv_2d_s1_ph
  5545. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5546. struct ggml_context * ctx,
  5547. struct ggml_tensor * a,
  5548. struct ggml_tensor * b) {
  5549. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5550. }
  5551. // ggml_conv_transpose_2d_p0
  5552. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5553. return (ins - 1) * s - 2 * p + ks;
  5554. }
  5555. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b,
  5559. int stride) {
  5560. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5561. bool is_node = false;
  5562. if (a->grad || b->grad) {
  5563. GGML_ASSERT(false); // TODO: implement backward
  5564. is_node = true;
  5565. }
  5566. const int64_t ne[4] = {
  5567. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5568. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5569. a->ne[2], b->ne[3],
  5570. };
  5571. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5572. ggml_set_op_params_i32(result, 0, stride);
  5573. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5575. result->src[0] = a;
  5576. result->src[1] = b;
  5577. return result;
  5578. }
  5579. // ggml_pool_*
  5580. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5581. return (ins + 2 * p - ks) / s + 1;
  5582. }
  5583. // ggml_pool_1d
  5584. struct ggml_tensor * ggml_pool_1d(
  5585. struct ggml_context * ctx,
  5586. struct ggml_tensor * a,
  5587. enum ggml_op_pool op,
  5588. int k0,
  5589. int s0,
  5590. int p0) {
  5591. bool is_node = false;
  5592. if (a->grad) {
  5593. GGML_ASSERT(false); // TODO: implement backward
  5594. is_node = true;
  5595. }
  5596. const int64_t ne[4] = {
  5597. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5598. a->ne[1],
  5599. a->ne[2],
  5600. a->ne[3],
  5601. };
  5602. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5603. int32_t params[] = { op, k0, s0, p0 };
  5604. ggml_set_op_params(result, params, sizeof(params));
  5605. result->op = GGML_OP_POOL_1D;
  5606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5607. result->src[0] = a;
  5608. return result;
  5609. }
  5610. // ggml_pool_2d
  5611. struct ggml_tensor * ggml_pool_2d(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. enum ggml_op_pool op,
  5615. int k0,
  5616. int k1,
  5617. int s0,
  5618. int s1,
  5619. float p0,
  5620. float p1) {
  5621. bool is_node = false;
  5622. if (a->grad) {
  5623. GGML_ASSERT(false); // TODO: implement backward
  5624. is_node = true;
  5625. }
  5626. struct ggml_tensor * result;
  5627. const int64_t ne[3] = {
  5628. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5629. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5630. a->ne[2],
  5631. };
  5632. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5633. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5634. ggml_set_op_params(result, params, sizeof(params));
  5635. result->op = GGML_OP_POOL_2D;
  5636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5637. result->src[0] = a;
  5638. return result;
  5639. }
  5640. // ggml_upscale
  5641. static struct ggml_tensor * ggml_upscale_impl(
  5642. struct ggml_context * ctx,
  5643. struct ggml_tensor * a,
  5644. int ne0,
  5645. int ne1,
  5646. int ne2,
  5647. int ne3) {
  5648. bool is_node = false;
  5649. if (a->grad) {
  5650. GGML_ASSERT(false); // TODO: implement backward
  5651. is_node = true;
  5652. }
  5653. GGML_ASSERT(a->ne[0] <= ne0);
  5654. GGML_ASSERT(a->ne[1] <= ne1);
  5655. GGML_ASSERT(a->ne[2] <= ne2);
  5656. GGML_ASSERT(a->ne[3] <= ne3);
  5657. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5658. ne0,
  5659. ne1,
  5660. ne2,
  5661. ne3
  5662. );
  5663. result->op = GGML_OP_UPSCALE;
  5664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5665. result->src[0] = a;
  5666. return result;
  5667. }
  5668. struct ggml_tensor * ggml_upscale(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. int scale_factor) {
  5672. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5673. }
  5674. struct ggml_tensor * ggml_upscale_ext(
  5675. struct ggml_context * ctx,
  5676. struct ggml_tensor * a,
  5677. int ne0,
  5678. int ne1,
  5679. int ne2,
  5680. int ne3) {
  5681. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5682. }
  5683. // ggml_pad
  5684. struct ggml_tensor * ggml_pad(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. int p0, int p1, int p2, int p3) {
  5688. bool is_node = false;
  5689. if (a->grad) {
  5690. GGML_ASSERT(false); // TODO: implement backward
  5691. is_node = true;
  5692. }
  5693. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5694. a->ne[0] + p0,
  5695. a->ne[1] + p1,
  5696. a->ne[2] + p2,
  5697. a->ne[3] + p3);
  5698. result->op = GGML_OP_PAD;
  5699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5700. result->src[0] = a;
  5701. return result;
  5702. }
  5703. // ggml_arange
  5704. struct ggml_tensor * ggml_arange(
  5705. struct ggml_context * ctx,
  5706. float start,
  5707. float stop,
  5708. float step) {
  5709. GGML_ASSERT(stop > start);
  5710. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5711. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5712. result->op = GGML_OP_ARANGE;
  5713. ggml_set_op_params_f32(result, 0, start);
  5714. ggml_set_op_params_f32(result, 1, stop);
  5715. ggml_set_op_params_f32(result, 2, step);
  5716. return result;
  5717. }
  5718. // ggml_timestep_embedding
  5719. struct ggml_tensor * ggml_timestep_embedding(
  5720. struct ggml_context * ctx,
  5721. struct ggml_tensor * timesteps,
  5722. int dim,
  5723. int max_period) {
  5724. bool is_node = false;
  5725. if (timesteps->grad) {
  5726. GGML_ASSERT(false); // TODO: implement backward
  5727. is_node = true;
  5728. }
  5729. int actual_dim = dim;
  5730. if (dim % 2 != 0) {
  5731. actual_dim = dim + 1;
  5732. }
  5733. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5734. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5735. ggml_set_op_params_i32(result, 0, dim);
  5736. ggml_set_op_params_i32(result, 1, max_period);
  5737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5738. result->src[0] = timesteps;
  5739. return result;
  5740. }
  5741. // ggml_argsort
  5742. struct ggml_tensor * ggml_argsort(
  5743. struct ggml_context * ctx,
  5744. struct ggml_tensor * a,
  5745. enum ggml_sort_order order) {
  5746. bool is_node = false;
  5747. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5748. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5749. result->op = GGML_OP_ARGSORT;
  5750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5751. result->src[0] = a;
  5752. return result;
  5753. }
  5754. // ggml_top_k
  5755. struct ggml_tensor * ggml_top_k(
  5756. struct ggml_context * ctx,
  5757. struct ggml_tensor * a,
  5758. int k) {
  5759. GGML_ASSERT(a->ne[0] >= k);
  5760. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5761. result = ggml_view_4d(ctx, result,
  5762. k, result->ne[1], result->ne[2], result->ne[3],
  5763. result->nb[1], result->nb[2], result->nb[3],
  5764. 0);
  5765. return result;
  5766. }
  5767. // ggml_flash_attn_ext
  5768. struct ggml_tensor * ggml_flash_attn_ext(
  5769. struct ggml_context * ctx,
  5770. struct ggml_tensor * q,
  5771. struct ggml_tensor * k,
  5772. struct ggml_tensor * v,
  5773. struct ggml_tensor * mask,
  5774. float scale,
  5775. float max_bias) {
  5776. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5777. // TODO: check if vT can be multiplied by (k*qT)
  5778. if (mask) {
  5779. GGML_ASSERT(ggml_is_contiguous(mask));
  5780. GGML_ASSERT(mask->ne[2] == 1);
  5781. GGML_ASSERT(mask->ne[3] == 1);
  5782. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5783. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5784. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5785. }
  5786. if (max_bias > 0.0f) {
  5787. GGML_ASSERT(mask);
  5788. }
  5789. bool is_node = false;
  5790. if (q->grad || k->grad || v->grad) {
  5791. is_node = true;
  5792. }
  5793. // permute(0, 2, 1, 3)
  5794. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5795. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5796. float params[] = { scale, max_bias };
  5797. ggml_set_op_params(result, params, sizeof(params));
  5798. result->op = GGML_OP_FLASH_ATTN_EXT;
  5799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5800. result->src[0] = q;
  5801. result->src[1] = k;
  5802. result->src[2] = v;
  5803. result->src[3] = mask;
  5804. return result;
  5805. }
  5806. void ggml_flash_attn_ext_set_prec(
  5807. struct ggml_tensor * a,
  5808. enum ggml_prec prec) {
  5809. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5810. const int32_t prec_i32 = (int32_t) prec;
  5811. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5812. }
  5813. // ggml_flash_attn_back
  5814. struct ggml_tensor * ggml_flash_attn_back(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * q,
  5817. struct ggml_tensor * k,
  5818. struct ggml_tensor * v,
  5819. struct ggml_tensor * d,
  5820. bool masked) {
  5821. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5822. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5823. // TODO: check if vT can be multiplied by (k*qT)
  5824. // d shape [D,N,ne2,ne3]
  5825. // q shape [D,N,ne2,ne3]
  5826. // k shape [D,M,kvne2,ne3]
  5827. // v shape [M,D,kvne2,ne3]
  5828. const int64_t D = q->ne[0];
  5829. const int64_t N = q->ne[1];
  5830. const int64_t M = k->ne[1];
  5831. const int64_t ne2 = q->ne[2];
  5832. const int64_t ne3 = q->ne[3];
  5833. const int64_t kvne2 = k->ne[2];
  5834. GGML_ASSERT(k->ne[0] == D);
  5835. GGML_ASSERT(v->ne[0] == M);
  5836. GGML_ASSERT(v->ne[1] == D);
  5837. GGML_ASSERT(d->ne[0] == D);
  5838. GGML_ASSERT(d->ne[1] == N);
  5839. GGML_ASSERT(k->ne[2] == kvne2);
  5840. GGML_ASSERT(k->ne[3] == ne3);
  5841. GGML_ASSERT(v->ne[2] == kvne2);
  5842. GGML_ASSERT(v->ne[3] == ne3);
  5843. GGML_ASSERT(d->ne[2] == ne2);
  5844. GGML_ASSERT(d->ne[3] == ne3);
  5845. GGML_ASSERT(ne2 % kvne2 == 0);
  5846. bool is_node = false;
  5847. if (q->grad || k->grad || v->grad) {
  5848. // when using this operation (in backwards pass) these grads are set.
  5849. // we don't want to create (big) grad of our result, so is_node is false.
  5850. is_node = false;
  5851. }
  5852. // store gradients of q, k and v as continuous tensors concatenated in result.
  5853. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5854. const int64_t elem_q = ggml_nelements(q);
  5855. const int64_t elem_k = ggml_nelements(k);
  5856. const int64_t elem_v = ggml_nelements(v);
  5857. enum ggml_type result_type = GGML_TYPE_F32;
  5858. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5859. const size_t tsize = ggml_type_size(result_type);
  5860. const size_t offs_q = 0;
  5861. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5862. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5863. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5864. const size_t nelements = (end + tsize - 1)/tsize;
  5865. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5866. int32_t masked_i = masked ? 1 : 0;
  5867. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5868. result->op = GGML_OP_FLASH_ATTN_BACK;
  5869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5870. result->src[0] = q;
  5871. result->src[1] = k;
  5872. result->src[2] = v;
  5873. result->src[3] = d;
  5874. return result;
  5875. }
  5876. // ggml_ssm_conv
  5877. struct ggml_tensor * ggml_ssm_conv(
  5878. struct ggml_context * ctx,
  5879. struct ggml_tensor * s,
  5880. struct ggml_tensor * x,
  5881. struct ggml_tensor * c,
  5882. struct ggml_tensor * sq) {
  5883. GGML_ASSERT(ggml_is_3d(s));
  5884. GGML_ASSERT(ggml_is_matrix(x));
  5885. GGML_ASSERT(ggml_is_matrix(c));
  5886. GGML_ASSERT(ggml_is_matrix(sq));
  5887. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5888. const int64_t d_conv = c->ne[0];
  5889. const int64_t d_inner = c->ne[1];
  5890. const int64_t n_tokens = x->ne[1];
  5891. const int64_t n_kv = s->ne[2];
  5892. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5893. GGML_ASSERT( s->ne[1] == d_inner);
  5894. GGML_ASSERT( x->ne[0] == d_inner);
  5895. GGML_ASSERT(sq->ne[0] == n_kv);
  5896. GGML_ASSERT(sq->ne[1] == n_tokens);
  5897. bool is_node = false;
  5898. if (s->grad || x->grad || c->grad || sq->grad) {
  5899. GGML_ASSERT(false); // TODO: implement
  5900. is_node = true;
  5901. }
  5902. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5903. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5904. result->op = GGML_OP_SSM_CONV;
  5905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5906. result->src[0] = s;
  5907. result->src[1] = x;
  5908. result->src[2] = c;
  5909. result->src[3] = sq;
  5910. return result;
  5911. }
  5912. // ggml_ssm_scan
  5913. struct ggml_tensor * ggml_ssm_scan(
  5914. struct ggml_context * ctx,
  5915. struct ggml_tensor * s,
  5916. struct ggml_tensor * x,
  5917. struct ggml_tensor * dt,
  5918. struct ggml_tensor * A,
  5919. struct ggml_tensor * B,
  5920. struct ggml_tensor * C,
  5921. struct ggml_tensor * sq) {
  5922. GGML_ASSERT(ggml_is_contiguous(s));
  5923. GGML_ASSERT(ggml_is_contiguous(x));
  5924. GGML_ASSERT(ggml_is_contiguous(dt));
  5925. GGML_ASSERT(ggml_is_contiguous(A));
  5926. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5927. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5928. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5929. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5930. {
  5931. const int64_t d_state = s->ne[0];
  5932. const int64_t d_inner = s->ne[1];
  5933. const int64_t n_tokens = x->ne[1];
  5934. GGML_ASSERT(x->ne[0] == d_inner);
  5935. GGML_ASSERT(A->ne[0] == d_state);
  5936. GGML_ASSERT(A->ne[1] == d_inner);
  5937. GGML_ASSERT(B->ne[0] == d_state);
  5938. GGML_ASSERT(B->ne[1] == n_tokens);
  5939. GGML_ASSERT(C->ne[0] == d_state);
  5940. GGML_ASSERT(C->ne[1] == n_tokens);
  5941. }
  5942. bool is_node = false;
  5943. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5944. GGML_ASSERT(false); // TODO: implement
  5945. is_node = true;
  5946. }
  5947. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5948. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5949. result->op = GGML_OP_SSM_SCAN;
  5950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5951. result->src[0] = s;
  5952. result->src[1] = x;
  5953. result->src[2] = dt;
  5954. result->src[3] = A;
  5955. result->src[4] = B;
  5956. result->src[5] = C;
  5957. result->src[6] = sq;
  5958. return result;
  5959. }
  5960. // ggml_win_part
  5961. struct ggml_tensor * ggml_win_part(
  5962. struct ggml_context * ctx,
  5963. struct ggml_tensor * a,
  5964. int w) {
  5965. GGML_ASSERT(a->ne[3] == 1);
  5966. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5967. bool is_node = false;
  5968. if (a->grad) {
  5969. GGML_ASSERT(false); // TODO: implement backward
  5970. is_node = true;
  5971. }
  5972. // padding
  5973. const int px = (w - a->ne[1]%w)%w;
  5974. const int py = (w - a->ne[2]%w)%w;
  5975. const int npx = (px + a->ne[1])/w;
  5976. const int npy = (py + a->ne[2])/w;
  5977. const int np = npx*npy;
  5978. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5979. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5980. int32_t params[] = { npx, npy, w };
  5981. ggml_set_op_params(result, params, sizeof(params));
  5982. result->op = GGML_OP_WIN_PART;
  5983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5984. result->src[0] = a;
  5985. return result;
  5986. }
  5987. // ggml_win_unpart
  5988. struct ggml_tensor * ggml_win_unpart(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. int w0,
  5992. int h0,
  5993. int w) {
  5994. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5995. bool is_node = false;
  5996. if (a->grad) {
  5997. GGML_ASSERT(false); // TODO: implement backward
  5998. is_node = true;
  5999. }
  6000. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6001. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6002. int32_t params[] = { w };
  6003. ggml_set_op_params(result, params, sizeof(params));
  6004. result->op = GGML_OP_WIN_UNPART;
  6005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6006. result->src[0] = a;
  6007. return result;
  6008. }
  6009. // ggml_get_rel_pos
  6010. struct ggml_tensor * ggml_get_rel_pos(
  6011. struct ggml_context * ctx,
  6012. struct ggml_tensor * a,
  6013. int qh,
  6014. int kh) {
  6015. GGML_ASSERT(qh == kh);
  6016. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6017. bool is_node = false;
  6018. if (a->grad) {
  6019. GGML_ASSERT(false); // TODO: implement backward
  6020. is_node = true;
  6021. }
  6022. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6023. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6024. result->op = GGML_OP_GET_REL_POS;
  6025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6026. result->src[0] = a;
  6027. return result;
  6028. }
  6029. // ggml_add_rel_pos
  6030. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6031. struct ggml_context * ctx,
  6032. struct ggml_tensor * a,
  6033. struct ggml_tensor * pw,
  6034. struct ggml_tensor * ph,
  6035. bool inplace) {
  6036. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6037. GGML_ASSERT(ggml_is_contiguous(a));
  6038. GGML_ASSERT(ggml_is_contiguous(pw));
  6039. GGML_ASSERT(ggml_is_contiguous(ph));
  6040. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6041. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6042. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6043. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6044. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6045. bool is_node = false;
  6046. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6047. is_node = true;
  6048. }
  6049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6050. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6051. result->op = GGML_OP_ADD_REL_POS;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. result->src[1] = pw;
  6055. result->src[2] = ph;
  6056. return result;
  6057. }
  6058. struct ggml_tensor * ggml_add_rel_pos(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. struct ggml_tensor * pw,
  6062. struct ggml_tensor * ph) {
  6063. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6064. }
  6065. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. struct ggml_tensor * pw,
  6069. struct ggml_tensor * ph) {
  6070. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6071. }
  6072. // gmml_unary
  6073. static struct ggml_tensor * ggml_unary_impl(
  6074. struct ggml_context * ctx,
  6075. struct ggml_tensor * a,
  6076. enum ggml_unary_op op,
  6077. bool inplace) {
  6078. bool is_node = false;
  6079. if (!inplace && (a->grad)) {
  6080. is_node = true;
  6081. }
  6082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6083. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6084. result->op = GGML_OP_UNARY;
  6085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6086. result->src[0] = a;
  6087. return result;
  6088. }
  6089. struct ggml_tensor * ggml_unary(
  6090. struct ggml_context * ctx,
  6091. struct ggml_tensor * a,
  6092. enum ggml_unary_op op) {
  6093. return ggml_unary_impl(ctx, a, op, false);
  6094. }
  6095. struct ggml_tensor * ggml_unary_inplace(
  6096. struct ggml_context * ctx,
  6097. struct ggml_tensor * a,
  6098. enum ggml_unary_op op) {
  6099. return ggml_unary_impl(ctx, a, op, true);
  6100. }
  6101. // ggml_map_unary
  6102. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * a,
  6105. const ggml_unary_op_f32_t fun,
  6106. bool inplace) {
  6107. bool is_node = false;
  6108. if (!inplace && a->grad) {
  6109. is_node = true;
  6110. }
  6111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6112. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6113. result->op = GGML_OP_MAP_UNARY;
  6114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6115. result->src[0] = a;
  6116. return result;
  6117. }
  6118. struct ggml_tensor * ggml_map_unary_f32(
  6119. struct ggml_context * ctx,
  6120. struct ggml_tensor * a,
  6121. const ggml_unary_op_f32_t fun) {
  6122. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6123. }
  6124. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6125. struct ggml_context * ctx,
  6126. struct ggml_tensor * a,
  6127. const ggml_unary_op_f32_t fun) {
  6128. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6129. }
  6130. // ggml_map_binary
  6131. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. struct ggml_tensor * b,
  6135. const ggml_binary_op_f32_t fun,
  6136. bool inplace) {
  6137. GGML_ASSERT(ggml_are_same_shape(a, b));
  6138. bool is_node = false;
  6139. if (!inplace && (a->grad || b->grad)) {
  6140. is_node = true;
  6141. }
  6142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6143. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6144. result->op = GGML_OP_MAP_BINARY;
  6145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6146. result->src[0] = a;
  6147. result->src[1] = b;
  6148. return result;
  6149. }
  6150. struct ggml_tensor * ggml_map_binary_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. struct ggml_tensor * b,
  6154. const ggml_binary_op_f32_t fun) {
  6155. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6156. }
  6157. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6158. struct ggml_context * ctx,
  6159. struct ggml_tensor * a,
  6160. struct ggml_tensor * b,
  6161. const ggml_binary_op_f32_t fun) {
  6162. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6163. }
  6164. // ggml_map_custom1_f32
  6165. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. const ggml_custom1_op_f32_t fun,
  6169. bool inplace) {
  6170. bool is_node = false;
  6171. if (!inplace && a->grad) {
  6172. is_node = true;
  6173. }
  6174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6175. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6176. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6178. result->src[0] = a;
  6179. return result;
  6180. }
  6181. struct ggml_tensor * ggml_map_custom1_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. const ggml_custom1_op_f32_t fun) {
  6185. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6186. }
  6187. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. const ggml_custom1_op_f32_t fun) {
  6191. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6192. }
  6193. // ggml_map_custom2_f32
  6194. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. struct ggml_tensor * b,
  6198. const ggml_custom2_op_f32_t fun,
  6199. bool inplace) {
  6200. bool is_node = false;
  6201. if (!inplace && (a->grad || b->grad)) {
  6202. is_node = true;
  6203. }
  6204. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6205. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6206. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6208. result->src[0] = a;
  6209. result->src[1] = b;
  6210. return result;
  6211. }
  6212. struct ggml_tensor * ggml_map_custom2_f32(
  6213. struct ggml_context * ctx,
  6214. struct ggml_tensor * a,
  6215. struct ggml_tensor * b,
  6216. const ggml_custom2_op_f32_t fun) {
  6217. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6218. }
  6219. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6220. struct ggml_context * ctx,
  6221. struct ggml_tensor * a,
  6222. struct ggml_tensor * b,
  6223. const ggml_custom2_op_f32_t fun) {
  6224. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6225. }
  6226. // ggml_map_custom3_f32
  6227. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6228. struct ggml_context * ctx,
  6229. struct ggml_tensor * a,
  6230. struct ggml_tensor * b,
  6231. struct ggml_tensor * c,
  6232. const ggml_custom3_op_f32_t fun,
  6233. bool inplace) {
  6234. bool is_node = false;
  6235. if (!inplace && (a->grad || b->grad || c->grad)) {
  6236. is_node = true;
  6237. }
  6238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6239. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6240. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6242. result->src[0] = a;
  6243. result->src[1] = b;
  6244. result->src[2] = c;
  6245. return result;
  6246. }
  6247. struct ggml_tensor * ggml_map_custom3_f32(
  6248. struct ggml_context * ctx,
  6249. struct ggml_tensor * a,
  6250. struct ggml_tensor * b,
  6251. struct ggml_tensor * c,
  6252. const ggml_custom3_op_f32_t fun) {
  6253. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6254. }
  6255. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6256. struct ggml_context * ctx,
  6257. struct ggml_tensor * a,
  6258. struct ggml_tensor * b,
  6259. struct ggml_tensor * c,
  6260. const ggml_custom3_op_f32_t fun) {
  6261. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6262. }
  6263. // ggml_map_custom1
  6264. struct ggml_map_custom1_op_params {
  6265. ggml_custom1_op_t fun;
  6266. int n_tasks;
  6267. void * userdata;
  6268. };
  6269. static struct ggml_tensor * ggml_map_custom1_impl(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. const ggml_custom1_op_t fun,
  6273. int n_tasks,
  6274. void * userdata,
  6275. bool inplace) {
  6276. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6277. bool is_node = false;
  6278. if (!inplace && a->grad) {
  6279. is_node = true;
  6280. }
  6281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6282. struct ggml_map_custom1_op_params params = {
  6283. /*.fun =*/ fun,
  6284. /*.n_tasks =*/ n_tasks,
  6285. /*.userdata =*/ userdata
  6286. };
  6287. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6288. result->op = GGML_OP_MAP_CUSTOM1;
  6289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6290. result->src[0] = a;
  6291. return result;
  6292. }
  6293. struct ggml_tensor * ggml_map_custom1(
  6294. struct ggml_context * ctx,
  6295. struct ggml_tensor * a,
  6296. const ggml_custom1_op_t fun,
  6297. int n_tasks,
  6298. void * userdata) {
  6299. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6300. }
  6301. struct ggml_tensor * ggml_map_custom1_inplace(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. const ggml_custom1_op_t fun,
  6305. int n_tasks,
  6306. void * userdata) {
  6307. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6308. }
  6309. // ggml_map_custom2
  6310. struct ggml_map_custom2_op_params {
  6311. ggml_custom2_op_t fun;
  6312. int n_tasks;
  6313. void * userdata;
  6314. };
  6315. static struct ggml_tensor * ggml_map_custom2_impl(
  6316. struct ggml_context * ctx,
  6317. struct ggml_tensor * a,
  6318. struct ggml_tensor * b,
  6319. const ggml_custom2_op_t fun,
  6320. int n_tasks,
  6321. void * userdata,
  6322. bool inplace) {
  6323. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6324. bool is_node = false;
  6325. if (!inplace && (a->grad || b->grad)) {
  6326. is_node = true;
  6327. }
  6328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6329. struct ggml_map_custom2_op_params params = {
  6330. /*.fun =*/ fun,
  6331. /*.n_tasks =*/ n_tasks,
  6332. /*.userdata =*/ userdata
  6333. };
  6334. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6335. result->op = GGML_OP_MAP_CUSTOM2;
  6336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6337. result->src[0] = a;
  6338. result->src[1] = b;
  6339. return result;
  6340. }
  6341. struct ggml_tensor * ggml_map_custom2(
  6342. struct ggml_context * ctx,
  6343. struct ggml_tensor * a,
  6344. struct ggml_tensor * b,
  6345. const ggml_custom2_op_t fun,
  6346. int n_tasks,
  6347. void * userdata) {
  6348. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6349. }
  6350. struct ggml_tensor * ggml_map_custom2_inplace(
  6351. struct ggml_context * ctx,
  6352. struct ggml_tensor * a,
  6353. struct ggml_tensor * b,
  6354. const ggml_custom2_op_t fun,
  6355. int n_tasks,
  6356. void * userdata) {
  6357. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6358. }
  6359. // ggml_map_custom3
  6360. struct ggml_map_custom3_op_params {
  6361. ggml_custom3_op_t fun;
  6362. int n_tasks;
  6363. void * userdata;
  6364. };
  6365. static struct ggml_tensor * ggml_map_custom3_impl(
  6366. struct ggml_context * ctx,
  6367. struct ggml_tensor * a,
  6368. struct ggml_tensor * b,
  6369. struct ggml_tensor * c,
  6370. const ggml_custom3_op_t fun,
  6371. int n_tasks,
  6372. void * userdata,
  6373. bool inplace) {
  6374. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6375. bool is_node = false;
  6376. if (!inplace && (a->grad || b->grad || c->grad)) {
  6377. is_node = true;
  6378. }
  6379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6380. struct ggml_map_custom3_op_params params = {
  6381. /*.fun =*/ fun,
  6382. /*.n_tasks =*/ n_tasks,
  6383. /*.userdata =*/ userdata
  6384. };
  6385. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6386. result->op = GGML_OP_MAP_CUSTOM3;
  6387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6388. result->src[0] = a;
  6389. result->src[1] = b;
  6390. result->src[2] = c;
  6391. return result;
  6392. }
  6393. struct ggml_tensor * ggml_map_custom3(
  6394. struct ggml_context * ctx,
  6395. struct ggml_tensor * a,
  6396. struct ggml_tensor * b,
  6397. struct ggml_tensor * c,
  6398. const ggml_custom3_op_t fun,
  6399. int n_tasks,
  6400. void * userdata) {
  6401. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6402. }
  6403. struct ggml_tensor * ggml_map_custom3_inplace(
  6404. struct ggml_context * ctx,
  6405. struct ggml_tensor * a,
  6406. struct ggml_tensor * b,
  6407. struct ggml_tensor * c,
  6408. const ggml_custom3_op_t fun,
  6409. int n_tasks,
  6410. void * userdata) {
  6411. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6412. }
  6413. // ggml_cross_entropy_loss
  6414. struct ggml_tensor * ggml_cross_entropy_loss(
  6415. struct ggml_context * ctx,
  6416. struct ggml_tensor * a,
  6417. struct ggml_tensor * b) {
  6418. GGML_ASSERT(ggml_are_same_shape(a, b));
  6419. bool is_node = false;
  6420. if (a->grad || b->grad) {
  6421. is_node = true;
  6422. }
  6423. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6424. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6426. result->src[0] = a;
  6427. result->src[1] = b;
  6428. return result;
  6429. }
  6430. // ggml_cross_entropy_loss_back
  6431. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6432. struct ggml_context * ctx,
  6433. struct ggml_tensor * a,
  6434. struct ggml_tensor * b,
  6435. struct ggml_tensor * c) {
  6436. GGML_ASSERT(ggml_are_same_shape(a, b));
  6437. GGML_ASSERT(ggml_is_scalar(c));
  6438. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6439. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6440. result->grad = NULL;
  6441. result->src[0] = a;
  6442. result->src[1] = b;
  6443. result->src[2] = c;
  6444. return result;
  6445. }
  6446. ////////////////////////////////////////////////////////////////////////////////
  6447. void ggml_set_param(
  6448. struct ggml_context * ctx,
  6449. struct ggml_tensor * tensor) {
  6450. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6451. GGML_ASSERT(tensor->grad == NULL);
  6452. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6453. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6454. }
  6455. // ggml_compute_forward_dup
  6456. static void ggml_compute_forward_dup_same_cont(
  6457. const struct ggml_compute_params * params,
  6458. struct ggml_tensor * dst) {
  6459. const struct ggml_tensor * src0 = dst->src[0];
  6460. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6461. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6462. GGML_ASSERT(src0->type == dst->type);
  6463. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6464. return;
  6465. }
  6466. const size_t nb00 = src0->nb[0];
  6467. const size_t nb0 = dst->nb[0];
  6468. const int ith = params->ith; // thread index
  6469. const int nth = params->nth; // number of threads
  6470. // parallelize by elements
  6471. const int ne = ggml_nelements(dst);
  6472. const int dr = (ne + nth - 1) / nth;
  6473. const int ie0 = dr * ith;
  6474. const int ie1 = MIN(ie0 + dr, ne);
  6475. if (ie0 < ie1) {
  6476. memcpy(
  6477. ((char *) dst->data + ie0*nb0),
  6478. ((char *) src0->data + ie0*nb00),
  6479. (ie1 - ie0) * ggml_type_size(src0->type));
  6480. }
  6481. }
  6482. static void ggml_compute_forward_dup_f16(
  6483. const struct ggml_compute_params * params,
  6484. struct ggml_tensor * dst) {
  6485. const struct ggml_tensor * src0 = dst->src[0];
  6486. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6488. return;
  6489. }
  6490. GGML_TENSOR_UNARY_OP_LOCALS
  6491. const int ith = params->ith; // thread index
  6492. const int nth = params->nth; // number of threads
  6493. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6494. ggml_compute_forward_dup_same_cont(params, dst);
  6495. return;
  6496. }
  6497. // parallelize by rows
  6498. const int nr = ne01;
  6499. // number of rows per thread
  6500. const int dr = (nr + nth - 1) / nth;
  6501. // row range for this thread
  6502. const int ir0 = dr * ith;
  6503. const int ir1 = MIN(ir0 + dr, nr);
  6504. if (src0->type == dst->type &&
  6505. ne00 == ne0 &&
  6506. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6507. // copy by rows
  6508. const size_t rs = ne00*nb00;
  6509. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6510. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6511. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6512. memcpy(
  6513. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6514. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6515. rs);
  6516. }
  6517. }
  6518. }
  6519. return;
  6520. }
  6521. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6522. if (ggml_is_contiguous(dst)) {
  6523. if (nb00 == sizeof(ggml_fp16_t)) {
  6524. if (dst->type == GGML_TYPE_F16) {
  6525. size_t id = 0;
  6526. const size_t rs = ne00 * nb00;
  6527. char * dst_ptr = (char *) dst->data;
  6528. for (int i03 = 0; i03 < ne03; i03++) {
  6529. for (int i02 = 0; i02 < ne02; i02++) {
  6530. id += rs * ir0;
  6531. for (int i01 = ir0; i01 < ir1; i01++) {
  6532. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6533. memcpy(dst_ptr + id, src0_ptr, rs);
  6534. id += rs;
  6535. }
  6536. id += rs * (ne01 - ir1);
  6537. }
  6538. }
  6539. } else if (dst->type == GGML_TYPE_F32) {
  6540. size_t id = 0;
  6541. float * dst_ptr = (float *) dst->data;
  6542. for (int i03 = 0; i03 < ne03; i03++) {
  6543. for (int i02 = 0; i02 < ne02; i02++) {
  6544. id += ne00 * ir0;
  6545. for (int i01 = ir0; i01 < ir1; i01++) {
  6546. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6547. for (int i00 = 0; i00 < ne00; i00++) {
  6548. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6549. id++;
  6550. }
  6551. }
  6552. id += ne00 * (ne01 - ir1);
  6553. }
  6554. }
  6555. } else if (type_traits[dst->type].from_float) {
  6556. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6557. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6558. size_t id = 0;
  6559. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6560. char * dst_ptr = (char *) dst->data;
  6561. for (int i03 = 0; i03 < ne03; i03++) {
  6562. for (int i02 = 0; i02 < ne02; i02++) {
  6563. id += rs * ir0;
  6564. for (int i01 = ir0; i01 < ir1; i01++) {
  6565. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6566. for (int i00 = 0; i00 < ne00; i00++) {
  6567. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6568. }
  6569. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6570. id += rs;
  6571. }
  6572. id += rs * (ne01 - ir1);
  6573. }
  6574. }
  6575. } else {
  6576. GGML_ASSERT(false); // TODO: implement
  6577. }
  6578. } else {
  6579. //printf("%s: this is not optimal - fix me\n", __func__);
  6580. if (dst->type == GGML_TYPE_F32) {
  6581. size_t id = 0;
  6582. float * dst_ptr = (float *) dst->data;
  6583. for (int i03 = 0; i03 < ne03; i03++) {
  6584. for (int i02 = 0; i02 < ne02; i02++) {
  6585. id += ne00 * ir0;
  6586. for (int i01 = ir0; i01 < ir1; i01++) {
  6587. for (int i00 = 0; i00 < ne00; i00++) {
  6588. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6589. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6590. id++;
  6591. }
  6592. }
  6593. id += ne00 * (ne01 - ir1);
  6594. }
  6595. }
  6596. } else if (dst->type == GGML_TYPE_F16) {
  6597. size_t id = 0;
  6598. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6599. for (int i03 = 0; i03 < ne03; i03++) {
  6600. for (int i02 = 0; i02 < ne02; i02++) {
  6601. id += ne00 * ir0;
  6602. for (int i01 = ir0; i01 < ir1; i01++) {
  6603. for (int i00 = 0; i00 < ne00; i00++) {
  6604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. dst_ptr[id] = *src0_ptr;
  6606. id++;
  6607. }
  6608. }
  6609. id += ne00 * (ne01 - ir1);
  6610. }
  6611. }
  6612. } else {
  6613. GGML_ASSERT(false); // TODO: implement
  6614. }
  6615. }
  6616. return;
  6617. }
  6618. // dst counters
  6619. int64_t i10 = 0;
  6620. int64_t i11 = 0;
  6621. int64_t i12 = 0;
  6622. int64_t i13 = 0;
  6623. if (dst->type == GGML_TYPE_F16) {
  6624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6626. i10 += ne00 * ir0;
  6627. while (i10 >= ne0) {
  6628. i10 -= ne0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6641. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6642. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6643. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6644. if (++i10 == ne00) {
  6645. i10 = 0;
  6646. if (++i11 == ne01) {
  6647. i11 = 0;
  6648. if (++i12 == ne02) {
  6649. i12 = 0;
  6650. if (++i13 == ne03) {
  6651. i13 = 0;
  6652. }
  6653. }
  6654. }
  6655. }
  6656. }
  6657. }
  6658. i10 += ne00 * (ne01 - ir1);
  6659. while (i10 >= ne0) {
  6660. i10 -= ne0;
  6661. if (++i11 == ne1) {
  6662. i11 = 0;
  6663. if (++i12 == ne2) {
  6664. i12 = 0;
  6665. if (++i13 == ne3) {
  6666. i13 = 0;
  6667. }
  6668. }
  6669. }
  6670. }
  6671. }
  6672. }
  6673. } else if (dst->type == GGML_TYPE_F32) {
  6674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6676. i10 += ne00 * ir0;
  6677. while (i10 >= ne0) {
  6678. i10 -= ne0;
  6679. if (++i11 == ne1) {
  6680. i11 = 0;
  6681. if (++i12 == ne2) {
  6682. i12 = 0;
  6683. if (++i13 == ne3) {
  6684. i13 = 0;
  6685. }
  6686. }
  6687. }
  6688. }
  6689. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6690. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6691. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6692. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6693. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6694. if (++i10 == ne0) {
  6695. i10 = 0;
  6696. if (++i11 == ne1) {
  6697. i11 = 0;
  6698. if (++i12 == ne2) {
  6699. i12 = 0;
  6700. if (++i13 == ne3) {
  6701. i13 = 0;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. }
  6707. }
  6708. i10 += ne00 * (ne01 - ir1);
  6709. while (i10 >= ne0) {
  6710. i10 -= ne0;
  6711. if (++i11 == ne1) {
  6712. i11 = 0;
  6713. if (++i12 == ne2) {
  6714. i12 = 0;
  6715. if (++i13 == ne3) {
  6716. i13 = 0;
  6717. }
  6718. }
  6719. }
  6720. }
  6721. }
  6722. }
  6723. } else {
  6724. GGML_ASSERT(false); // TODO: implement
  6725. }
  6726. }
  6727. static void ggml_compute_forward_dup_bf16(
  6728. const struct ggml_compute_params * params,
  6729. struct ggml_tensor * dst) {
  6730. const struct ggml_tensor * src0 = dst->src[0];
  6731. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6733. return;
  6734. }
  6735. GGML_TENSOR_UNARY_OP_LOCALS
  6736. const int ith = params->ith; // thread index
  6737. const int nth = params->nth; // number of threads
  6738. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6739. ggml_compute_forward_dup_same_cont(params, dst);
  6740. return;
  6741. }
  6742. // parallelize by rows
  6743. const int nr = ne01;
  6744. // number of rows per thread
  6745. const int dr = (nr + nth - 1) / nth;
  6746. // row range for this thread
  6747. const int ir0 = dr * ith;
  6748. const int ir1 = MIN(ir0 + dr, nr);
  6749. if (src0->type == dst->type &&
  6750. ne00 == ne0 &&
  6751. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6752. // copy by rows
  6753. const size_t rs = ne00*nb00;
  6754. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6756. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6757. memcpy(
  6758. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6759. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6760. rs);
  6761. }
  6762. }
  6763. }
  6764. return;
  6765. }
  6766. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6767. if (ggml_is_contiguous(dst)) {
  6768. if (nb00 == sizeof(ggml_bf16_t)) {
  6769. if (dst->type == GGML_TYPE_BF16) {
  6770. size_t id = 0;
  6771. const size_t rs = ne00 * nb00;
  6772. char * dst_ptr = (char *) dst->data;
  6773. for (int i03 = 0; i03 < ne03; i03++) {
  6774. for (int i02 = 0; i02 < ne02; i02++) {
  6775. id += rs * ir0;
  6776. for (int i01 = ir0; i01 < ir1; i01++) {
  6777. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6778. memcpy(dst_ptr + id, src0_ptr, rs);
  6779. id += rs;
  6780. }
  6781. id += rs * (ne01 - ir1);
  6782. }
  6783. }
  6784. } else if (dst->type == GGML_TYPE_F16) {
  6785. size_t id = 0;
  6786. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6787. for (int i03 = 0; i03 < ne03; i03++) {
  6788. for (int i02 = 0; i02 < ne02; i02++) {
  6789. id += ne00 * ir0;
  6790. for (int i01 = ir0; i01 < ir1; i01++) {
  6791. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6792. for (int i00 = 0; i00 < ne00; i00++) {
  6793. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6794. id++;
  6795. }
  6796. }
  6797. id += ne00 * (ne01 - ir1);
  6798. }
  6799. }
  6800. } else if (dst->type == GGML_TYPE_F32) {
  6801. size_t id = 0;
  6802. float * dst_ptr = (float *) dst->data;
  6803. for (int i03 = 0; i03 < ne03; i03++) {
  6804. for (int i02 = 0; i02 < ne02; i02++) {
  6805. id += ne00 * ir0;
  6806. for (int i01 = ir0; i01 < ir1; i01++) {
  6807. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6808. for (int i00 = 0; i00 < ne00; i00++) {
  6809. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6810. id++;
  6811. }
  6812. }
  6813. id += ne00 * (ne01 - ir1);
  6814. }
  6815. }
  6816. } else if (type_traits[dst->type].from_float) {
  6817. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6818. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6819. size_t id = 0;
  6820. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6821. char * dst_ptr = (char *) dst->data;
  6822. for (int i03 = 0; i03 < ne03; i03++) {
  6823. for (int i02 = 0; i02 < ne02; i02++) {
  6824. id += rs * ir0;
  6825. for (int i01 = ir0; i01 < ir1; i01++) {
  6826. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6827. for (int i00 = 0; i00 < ne00; i00++) {
  6828. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6829. }
  6830. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6831. id += rs;
  6832. }
  6833. id += rs * (ne01 - ir1);
  6834. }
  6835. }
  6836. } else {
  6837. GGML_ASSERT(false); // TODO: implement
  6838. }
  6839. } else {
  6840. //printf("%s: this is not optimal - fix me\n", __func__);
  6841. if (dst->type == GGML_TYPE_F32) {
  6842. size_t id = 0;
  6843. float * dst_ptr = (float *) dst->data;
  6844. for (int i03 = 0; i03 < ne03; i03++) {
  6845. for (int i02 = 0; i02 < ne02; i02++) {
  6846. id += ne00 * ir0;
  6847. for (int i01 = ir0; i01 < ir1; i01++) {
  6848. for (int i00 = 0; i00 < ne00; i00++) {
  6849. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6850. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6851. id++;
  6852. }
  6853. }
  6854. id += ne00 * (ne01 - ir1);
  6855. }
  6856. }
  6857. } else if (dst->type == GGML_TYPE_BF16) {
  6858. size_t id = 0;
  6859. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6860. for (int i03 = 0; i03 < ne03; i03++) {
  6861. for (int i02 = 0; i02 < ne02; i02++) {
  6862. id += ne00 * ir0;
  6863. for (int i01 = ir0; i01 < ir1; i01++) {
  6864. for (int i00 = 0; i00 < ne00; i00++) {
  6865. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6866. dst_ptr[id] = *src0_ptr;
  6867. id++;
  6868. }
  6869. }
  6870. id += ne00 * (ne01 - ir1);
  6871. }
  6872. }
  6873. } else if (dst->type == GGML_TYPE_F16) {
  6874. size_t id = 0;
  6875. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6876. for (int i03 = 0; i03 < ne03; i03++) {
  6877. for (int i02 = 0; i02 < ne02; i02++) {
  6878. id += ne00 * ir0;
  6879. for (int i01 = ir0; i01 < ir1; i01++) {
  6880. for (int i00 = 0; i00 < ne00; i00++) {
  6881. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6882. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6883. id++;
  6884. }
  6885. }
  6886. id += ne00 * (ne01 - ir1);
  6887. }
  6888. }
  6889. } else {
  6890. GGML_ASSERT(false); // TODO: implement
  6891. }
  6892. }
  6893. return;
  6894. }
  6895. // dst counters
  6896. int64_t i10 = 0;
  6897. int64_t i11 = 0;
  6898. int64_t i12 = 0;
  6899. int64_t i13 = 0;
  6900. if (dst->type == GGML_TYPE_BF16) {
  6901. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6902. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6903. i10 += ne00 * ir0;
  6904. while (i10 >= ne0) {
  6905. i10 -= ne0;
  6906. if (++i11 == ne1) {
  6907. i11 = 0;
  6908. if (++i12 == ne2) {
  6909. i12 = 0;
  6910. if (++i13 == ne3) {
  6911. i13 = 0;
  6912. }
  6913. }
  6914. }
  6915. }
  6916. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6917. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6918. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6919. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6920. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6921. if (++i10 == ne00) {
  6922. i10 = 0;
  6923. if (++i11 == ne01) {
  6924. i11 = 0;
  6925. if (++i12 == ne02) {
  6926. i12 = 0;
  6927. if (++i13 == ne03) {
  6928. i13 = 0;
  6929. }
  6930. }
  6931. }
  6932. }
  6933. }
  6934. }
  6935. i10 += ne00 * (ne01 - ir1);
  6936. while (i10 >= ne0) {
  6937. i10 -= ne0;
  6938. if (++i11 == ne1) {
  6939. i11 = 0;
  6940. if (++i12 == ne2) {
  6941. i12 = 0;
  6942. if (++i13 == ne3) {
  6943. i13 = 0;
  6944. }
  6945. }
  6946. }
  6947. }
  6948. }
  6949. }
  6950. } else if (dst->type == GGML_TYPE_F16) {
  6951. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6952. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6953. i10 += ne00 * ir0;
  6954. while (i10 >= ne0) {
  6955. i10 -= ne0;
  6956. if (++i11 == ne1) {
  6957. i11 = 0;
  6958. if (++i12 == ne2) {
  6959. i12 = 0;
  6960. if (++i13 == ne3) {
  6961. i13 = 0;
  6962. }
  6963. }
  6964. }
  6965. }
  6966. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6967. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6968. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6969. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6970. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6971. if (++i10 == ne0) {
  6972. i10 = 0;
  6973. if (++i11 == ne1) {
  6974. i11 = 0;
  6975. if (++i12 == ne2) {
  6976. i12 = 0;
  6977. if (++i13 == ne3) {
  6978. i13 = 0;
  6979. }
  6980. }
  6981. }
  6982. }
  6983. }
  6984. }
  6985. i10 += ne00 * (ne01 - ir1);
  6986. while (i10 >= ne0) {
  6987. i10 -= ne0;
  6988. if (++i11 == ne1) {
  6989. i11 = 0;
  6990. if (++i12 == ne2) {
  6991. i12 = 0;
  6992. if (++i13 == ne3) {
  6993. i13 = 0;
  6994. }
  6995. }
  6996. }
  6997. }
  6998. }
  6999. }
  7000. } else if (dst->type == GGML_TYPE_F32) {
  7001. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7002. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7003. i10 += ne00 * ir0;
  7004. while (i10 >= ne0) {
  7005. i10 -= ne0;
  7006. if (++i11 == ne1) {
  7007. i11 = 0;
  7008. if (++i12 == ne2) {
  7009. i12 = 0;
  7010. if (++i13 == ne3) {
  7011. i13 = 0;
  7012. }
  7013. }
  7014. }
  7015. }
  7016. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7017. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7018. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7019. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7020. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7021. if (++i10 == ne0) {
  7022. i10 = 0;
  7023. if (++i11 == ne1) {
  7024. i11 = 0;
  7025. if (++i12 == ne2) {
  7026. i12 = 0;
  7027. if (++i13 == ne3) {
  7028. i13 = 0;
  7029. }
  7030. }
  7031. }
  7032. }
  7033. }
  7034. }
  7035. i10 += ne00 * (ne01 - ir1);
  7036. while (i10 >= ne0) {
  7037. i10 -= ne0;
  7038. if (++i11 == ne1) {
  7039. i11 = 0;
  7040. if (++i12 == ne2) {
  7041. i12 = 0;
  7042. if (++i13 == ne3) {
  7043. i13 = 0;
  7044. }
  7045. }
  7046. }
  7047. }
  7048. }
  7049. }
  7050. } else {
  7051. GGML_ASSERT(false); // TODO: implement
  7052. }
  7053. }
  7054. static void ggml_compute_forward_dup_f32(
  7055. const struct ggml_compute_params * params,
  7056. struct ggml_tensor * dst) {
  7057. const struct ggml_tensor * src0 = dst->src[0];
  7058. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7059. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7060. return;
  7061. }
  7062. GGML_TENSOR_UNARY_OP_LOCALS
  7063. const int ith = params->ith; // thread index
  7064. const int nth = params->nth; // number of threads
  7065. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7066. ggml_compute_forward_dup_same_cont(params, dst);
  7067. return;
  7068. }
  7069. // parallelize by rows
  7070. const int nr = ne01;
  7071. // number of rows per thread
  7072. const int dr = (nr + nth - 1) / nth;
  7073. // row range for this thread
  7074. const int ir0 = dr * ith;
  7075. const int ir1 = MIN(ir0 + dr, nr);
  7076. if (src0->type == dst->type &&
  7077. ne00 == ne0 &&
  7078. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7079. // copy by rows
  7080. const size_t rs = ne00*nb00;
  7081. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7083. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7084. memcpy(
  7085. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7086. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7087. rs);
  7088. }
  7089. }
  7090. }
  7091. return;
  7092. }
  7093. if (ggml_is_contiguous(dst)) {
  7094. // TODO: simplify
  7095. if (nb00 == sizeof(float)) {
  7096. if (dst->type == GGML_TYPE_F32) {
  7097. size_t id = 0;
  7098. const size_t rs = ne00 * nb00;
  7099. char * dst_ptr = (char *) dst->data;
  7100. for (int i03 = 0; i03 < ne03; i03++) {
  7101. for (int i02 = 0; i02 < ne02; i02++) {
  7102. id += rs * ir0;
  7103. for (int i01 = ir0; i01 < ir1; i01++) {
  7104. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7105. memcpy(dst_ptr + id, src0_ptr, rs);
  7106. id += rs;
  7107. }
  7108. id += rs * (ne01 - ir1);
  7109. }
  7110. }
  7111. } else if (type_traits[dst->type].from_float) {
  7112. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7113. size_t id = 0;
  7114. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7115. char * dst_ptr = (char *) dst->data;
  7116. for (int i03 = 0; i03 < ne03; i03++) {
  7117. for (int i02 = 0; i02 < ne02; i02++) {
  7118. id += rs * ir0;
  7119. for (int i01 = ir0; i01 < ir1; i01++) {
  7120. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7121. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7122. id += rs;
  7123. }
  7124. id += rs * (ne01 - ir1);
  7125. }
  7126. }
  7127. } else {
  7128. GGML_ASSERT(false); // TODO: implement
  7129. }
  7130. } else {
  7131. //printf("%s: this is not optimal - fix me\n", __func__);
  7132. if (dst->type == GGML_TYPE_F32) {
  7133. size_t id = 0;
  7134. float * dst_ptr = (float *) dst->data;
  7135. for (int i03 = 0; i03 < ne03; i03++) {
  7136. for (int i02 = 0; i02 < ne02; i02++) {
  7137. id += ne00 * ir0;
  7138. for (int i01 = ir0; i01 < ir1; i01++) {
  7139. for (int i00 = 0; i00 < ne00; i00++) {
  7140. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7141. dst_ptr[id] = *src0_ptr;
  7142. id++;
  7143. }
  7144. }
  7145. id += ne00 * (ne01 - ir1);
  7146. }
  7147. }
  7148. } else if (dst->type == GGML_TYPE_F16) {
  7149. size_t id = 0;
  7150. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7151. for (int i03 = 0; i03 < ne03; i03++) {
  7152. for (int i02 = 0; i02 < ne02; i02++) {
  7153. id += ne00 * ir0;
  7154. for (int i01 = ir0; i01 < ir1; i01++) {
  7155. for (int i00 = 0; i00 < ne00; i00++) {
  7156. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7157. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7158. id++;
  7159. }
  7160. }
  7161. id += ne00 * (ne01 - ir1);
  7162. }
  7163. }
  7164. } else if (dst->type == GGML_TYPE_BF16) {
  7165. size_t id = 0;
  7166. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7167. for (int i03 = 0; i03 < ne03; i03++) {
  7168. for (int i02 = 0; i02 < ne02; i02++) {
  7169. id += ne00 * ir0;
  7170. for (int i01 = ir0; i01 < ir1; i01++) {
  7171. for (int i00 = 0; i00 < ne00; i00++) {
  7172. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7173. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7174. id++;
  7175. }
  7176. }
  7177. id += ne00 * (ne01 - ir1);
  7178. }
  7179. }
  7180. } else {
  7181. GGML_ASSERT(false); // TODO: implement
  7182. }
  7183. }
  7184. return;
  7185. }
  7186. // dst counters
  7187. int64_t i10 = 0;
  7188. int64_t i11 = 0;
  7189. int64_t i12 = 0;
  7190. int64_t i13 = 0;
  7191. if (dst->type == GGML_TYPE_F32) {
  7192. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7194. i10 += ne00 * ir0;
  7195. while (i10 >= ne0) {
  7196. i10 -= ne0;
  7197. if (++i11 == ne1) {
  7198. i11 = 0;
  7199. if (++i12 == ne2) {
  7200. i12 = 0;
  7201. if (++i13 == ne3) {
  7202. i13 = 0;
  7203. }
  7204. }
  7205. }
  7206. }
  7207. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7208. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7209. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7210. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7211. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7212. if (++i10 == ne0) {
  7213. i10 = 0;
  7214. if (++i11 == ne1) {
  7215. i11 = 0;
  7216. if (++i12 == ne2) {
  7217. i12 = 0;
  7218. if (++i13 == ne3) {
  7219. i13 = 0;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. }
  7225. }
  7226. i10 += ne00 * (ne01 - ir1);
  7227. while (i10 >= ne0) {
  7228. i10 -= ne0;
  7229. if (++i11 == ne1) {
  7230. i11 = 0;
  7231. if (++i12 == ne2) {
  7232. i12 = 0;
  7233. if (++i13 == ne3) {
  7234. i13 = 0;
  7235. }
  7236. }
  7237. }
  7238. }
  7239. }
  7240. }
  7241. } else if (dst->type == GGML_TYPE_F16) {
  7242. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7243. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7244. i10 += ne00 * ir0;
  7245. while (i10 >= ne0) {
  7246. i10 -= ne0;
  7247. if (++i11 == ne1) {
  7248. i11 = 0;
  7249. if (++i12 == ne2) {
  7250. i12 = 0;
  7251. if (++i13 == ne3) {
  7252. i13 = 0;
  7253. }
  7254. }
  7255. }
  7256. }
  7257. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7258. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7259. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7260. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7261. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7262. if (++i10 == ne0) {
  7263. i10 = 0;
  7264. if (++i11 == ne1) {
  7265. i11 = 0;
  7266. if (++i12 == ne2) {
  7267. i12 = 0;
  7268. if (++i13 == ne3) {
  7269. i13 = 0;
  7270. }
  7271. }
  7272. }
  7273. }
  7274. }
  7275. }
  7276. i10 += ne00 * (ne01 - ir1);
  7277. while (i10 >= ne0) {
  7278. i10 -= ne0;
  7279. if (++i11 == ne1) {
  7280. i11 = 0;
  7281. if (++i12 == ne2) {
  7282. i12 = 0;
  7283. if (++i13 == ne3) {
  7284. i13 = 0;
  7285. }
  7286. }
  7287. }
  7288. }
  7289. }
  7290. }
  7291. } else if (dst->type == GGML_TYPE_BF16) {
  7292. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7293. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7294. i10 += ne00 * ir0;
  7295. while (i10 >= ne0) {
  7296. i10 -= ne0;
  7297. if (++i11 == ne1) {
  7298. i11 = 0;
  7299. if (++i12 == ne2) {
  7300. i12 = 0;
  7301. if (++i13 == ne3) {
  7302. i13 = 0;
  7303. }
  7304. }
  7305. }
  7306. }
  7307. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7308. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7309. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7310. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7311. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7312. if (++i10 == ne0) {
  7313. i10 = 0;
  7314. if (++i11 == ne1) {
  7315. i11 = 0;
  7316. if (++i12 == ne2) {
  7317. i12 = 0;
  7318. if (++i13 == ne3) {
  7319. i13 = 0;
  7320. }
  7321. }
  7322. }
  7323. }
  7324. }
  7325. }
  7326. i10 += ne00 * (ne01 - ir1);
  7327. while (i10 >= ne0) {
  7328. i10 -= ne0;
  7329. if (++i11 == ne1) {
  7330. i11 = 0;
  7331. if (++i12 == ne2) {
  7332. i12 = 0;
  7333. if (++i13 == ne3) {
  7334. i13 = 0;
  7335. }
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. } else {
  7342. GGML_ASSERT(false); // TODO: implement
  7343. }
  7344. }
  7345. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7346. static void ggml_compute_forward_dup_bytes(
  7347. const struct ggml_compute_params * params,
  7348. struct ggml_tensor * dst) {
  7349. const struct ggml_tensor * src0 = dst->src[0];
  7350. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7351. GGML_ASSERT(src0->type == dst->type);
  7352. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7353. return;
  7354. }
  7355. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7356. ggml_compute_forward_dup_same_cont(params, dst);
  7357. return;
  7358. }
  7359. GGML_TENSOR_UNARY_OP_LOCALS;
  7360. const size_t type_size = ggml_type_size(src0->type);
  7361. const int ith = params->ith; // thread index
  7362. const int nth = params->nth; // number of threads
  7363. // parallelize by rows
  7364. const int nr = ne01;
  7365. // number of rows per thread
  7366. const int dr = (nr + nth - 1) / nth;
  7367. // row range for this thread
  7368. const int ir0 = dr * ith;
  7369. const int ir1 = MIN(ir0 + dr, nr);
  7370. if (src0->type == dst->type &&
  7371. ne00 == ne0 &&
  7372. nb00 == type_size && nb0 == type_size) {
  7373. // copy by rows
  7374. const size_t rs = ne00 * type_size;
  7375. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7376. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7377. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7378. memcpy(
  7379. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7380. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7381. rs);
  7382. }
  7383. }
  7384. }
  7385. return;
  7386. }
  7387. if (ggml_is_contiguous(dst)) {
  7388. size_t id = 0;
  7389. char * dst_ptr = (char *) dst->data;
  7390. const size_t rs = ne00 * type_size;
  7391. if (nb00 == type_size) {
  7392. // src0 is contigous on first dimension, copy by rows
  7393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7395. id += rs * ir0;
  7396. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7397. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7398. memcpy(dst_ptr + id, src0_ptr, rs);
  7399. id += rs;
  7400. }
  7401. id += rs * (ne01 - ir1);
  7402. }
  7403. }
  7404. } else {
  7405. //printf("%s: this is not optimal - fix me\n", __func__);
  7406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7408. id += rs * ir0;
  7409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7411. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7412. memcpy(dst_ptr + id, src0_ptr, type_size);
  7413. id += type_size;
  7414. }
  7415. }
  7416. id += rs * (ne01 - ir1);
  7417. }
  7418. }
  7419. }
  7420. return;
  7421. }
  7422. // dst counters
  7423. int64_t i10 = 0;
  7424. int64_t i11 = 0;
  7425. int64_t i12 = 0;
  7426. int64_t i13 = 0;
  7427. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7429. i10 += ne00 * ir0;
  7430. while (i10 >= ne0) {
  7431. i10 -= ne0;
  7432. if (++i11 == ne1) {
  7433. i11 = 0;
  7434. if (++i12 == ne2) {
  7435. i12 = 0;
  7436. if (++i13 == ne3) {
  7437. i13 = 0;
  7438. }
  7439. }
  7440. }
  7441. }
  7442. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7443. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7444. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7445. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7446. memcpy(dst_ptr, src0_ptr, type_size);
  7447. if (++i10 == ne0) {
  7448. i10 = 0;
  7449. if (++i11 == ne1) {
  7450. i11 = 0;
  7451. if (++i12 == ne2) {
  7452. i12 = 0;
  7453. if (++i13 == ne3) {
  7454. i13 = 0;
  7455. }
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. i10 += ne00 * (ne01 - ir1);
  7462. while (i10 >= ne0) {
  7463. i10 -= ne0;
  7464. if (++i11 == ne1) {
  7465. i11 = 0;
  7466. if (++i12 == ne2) {
  7467. i12 = 0;
  7468. if (++i13 == ne3) {
  7469. i13 = 0;
  7470. }
  7471. }
  7472. }
  7473. }
  7474. }
  7475. }
  7476. }
  7477. static void ggml_compute_forward_dup(
  7478. const struct ggml_compute_params * params,
  7479. struct ggml_tensor * dst) {
  7480. const struct ggml_tensor * src0 = dst->src[0];
  7481. if (src0->type == dst->type) {
  7482. ggml_compute_forward_dup_bytes(params, dst);
  7483. return;
  7484. }
  7485. switch (src0->type) {
  7486. case GGML_TYPE_F16:
  7487. {
  7488. ggml_compute_forward_dup_f16(params, dst);
  7489. } break;
  7490. case GGML_TYPE_BF16:
  7491. {
  7492. ggml_compute_forward_dup_bf16(params, dst);
  7493. } break;
  7494. case GGML_TYPE_F32:
  7495. {
  7496. ggml_compute_forward_dup_f32(params, dst);
  7497. } break;
  7498. default:
  7499. {
  7500. GGML_ASSERT(false);
  7501. } break;
  7502. }
  7503. }
  7504. // ggml_compute_forward_add
  7505. static void ggml_compute_forward_add_f32(
  7506. const struct ggml_compute_params * params,
  7507. struct ggml_tensor * dst) {
  7508. const struct ggml_tensor * src0 = dst->src[0];
  7509. const struct ggml_tensor * src1 = dst->src[1];
  7510. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7511. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7512. return;
  7513. }
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. #ifdef GGML_USE_CLBLAST
  7517. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7518. // TODO: OpenCL kernel support full broadcast
  7519. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7520. if (ith == 0) {
  7521. ggml_cl_add(src0, src1, dst);
  7522. }
  7523. return;
  7524. }
  7525. #endif
  7526. const int nr = ggml_nrows(src0);
  7527. GGML_TENSOR_BINARY_OP_LOCALS
  7528. GGML_ASSERT( nb0 == sizeof(float));
  7529. GGML_ASSERT(nb00 == sizeof(float));
  7530. // rows per thread
  7531. const int dr = (nr + nth - 1)/nth;
  7532. // row range for this thread
  7533. const int ir0 = dr*ith;
  7534. const int ir1 = MIN(ir0 + dr, nr);
  7535. if (nb10 == sizeof(float)) {
  7536. for (int ir = ir0; ir < ir1; ++ir) {
  7537. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7538. const int64_t i03 = ir/(ne02*ne01);
  7539. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7540. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7541. const int64_t i13 = i03 % ne13;
  7542. const int64_t i12 = i02 % ne12;
  7543. const int64_t i11 = i01 % ne11;
  7544. const int64_t nr0 = ne00 / ne10;
  7545. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7546. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7547. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7548. for (int64_t r = 0; r < nr0; ++r) {
  7549. #ifdef GGML_USE_ACCELERATE
  7550. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7551. #else
  7552. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7553. #endif
  7554. }
  7555. }
  7556. } else {
  7557. // src1 is not contiguous
  7558. for (int ir = ir0; ir < ir1; ++ir) {
  7559. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7560. const int64_t i03 = ir/(ne02*ne01);
  7561. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7562. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7563. const int64_t i13 = i03 % ne13;
  7564. const int64_t i12 = i02 % ne12;
  7565. const int64_t i11 = i01 % ne11;
  7566. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7567. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7568. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7569. const int64_t i10 = i0 % ne10;
  7570. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7571. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7572. }
  7573. }
  7574. }
  7575. }
  7576. static void ggml_compute_forward_add_f16_f32(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. const struct ggml_tensor * src1 = dst->src[1];
  7581. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7583. return;
  7584. }
  7585. const int ith = params->ith;
  7586. const int nth = params->nth;
  7587. const int nr = ggml_nrows(src0);
  7588. GGML_TENSOR_BINARY_OP_LOCALS
  7589. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7590. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7591. if (dst->type == GGML_TYPE_F32) {
  7592. GGML_ASSERT( nb0 == sizeof(float));
  7593. }
  7594. else {
  7595. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7596. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7597. }
  7598. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7599. // rows per thread
  7600. const int dr = (nr + nth - 1)/nth;
  7601. // row range for this thread
  7602. const int ir0 = dr*ith;
  7603. const int ir1 = MIN(ir0 + dr, nr);
  7604. if (nb10 == sizeof(float)) {
  7605. if (dst->type == GGML_TYPE_F16) {
  7606. for (int ir = ir0; ir < ir1; ++ir) {
  7607. // src0, src1 and dst are same shape => same indices
  7608. const int i3 = ir/(ne2*ne1);
  7609. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7610. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7611. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7612. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7613. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7614. for (int i = 0; i < ne0; i++) {
  7615. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7616. }
  7617. }
  7618. } else {
  7619. for (int ir = ir0; ir < ir1; ++ir) {
  7620. // src0, src1 and dst are same shape => same indices
  7621. const int i3 = ir/(ne2*ne1);
  7622. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7623. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7624. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7625. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7626. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7627. for (int i = 0; i < ne0; i++) {
  7628. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7629. }
  7630. }
  7631. }
  7632. }
  7633. else {
  7634. // src1 is not contiguous
  7635. GGML_ASSERT(false);
  7636. }
  7637. }
  7638. static void ggml_compute_forward_add_bf16_f32(
  7639. const struct ggml_compute_params * params,
  7640. struct ggml_tensor * dst) {
  7641. const struct ggml_tensor * src0 = dst->src[0];
  7642. const struct ggml_tensor * src1 = dst->src[1];
  7643. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7644. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7645. return;
  7646. }
  7647. const int ith = params->ith;
  7648. const int nth = params->nth;
  7649. const int nr = ggml_nrows(src0);
  7650. GGML_TENSOR_BINARY_OP_LOCALS
  7651. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7652. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7653. if (dst->type == GGML_TYPE_F32) {
  7654. GGML_ASSERT( nb0 == sizeof(float));
  7655. }
  7656. else {
  7657. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7658. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7659. }
  7660. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7661. // rows per thread
  7662. const int dr = (nr + nth - 1)/nth;
  7663. // row range for this thread
  7664. const int ir0 = dr*ith;
  7665. const int ir1 = MIN(ir0 + dr, nr);
  7666. if (nb10 == sizeof(float)) {
  7667. if (dst->type == GGML_TYPE_BF16) {
  7668. for (int ir = ir0; ir < ir1; ++ir) {
  7669. // src0, src1 and dst are same shape => same indices
  7670. const int i3 = ir/(ne2*ne1);
  7671. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7672. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7673. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7674. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7675. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7676. for (int i = 0; i < ne0; i++) {
  7677. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7678. }
  7679. }
  7680. } else {
  7681. for (int ir = ir0; ir < ir1; ++ir) {
  7682. // src0, src1 and dst are same shape => same indices
  7683. const int i3 = ir/(ne2*ne1);
  7684. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7685. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7686. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7687. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7688. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7689. for (int i = 0; i < ne0; i++) {
  7690. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7691. }
  7692. }
  7693. }
  7694. }
  7695. else {
  7696. // src1 is not contiguous
  7697. GGML_ASSERT(false);
  7698. }
  7699. }
  7700. static void ggml_compute_forward_add_f16_f16(
  7701. const struct ggml_compute_params * params,
  7702. struct ggml_tensor * dst) {
  7703. const struct ggml_tensor * src0 = dst->src[0];
  7704. const struct ggml_tensor * src1 = dst->src[1];
  7705. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7707. return;
  7708. }
  7709. const int ith = params->ith;
  7710. const int nth = params->nth;
  7711. const int nr = ggml_nrows(src0);
  7712. GGML_TENSOR_BINARY_OP_LOCALS
  7713. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7714. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7715. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7716. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7717. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7718. // rows per thread
  7719. const int dr = (nr + nth - 1)/nth;
  7720. // row range for this thread
  7721. const int ir0 = dr*ith;
  7722. const int ir1 = MIN(ir0 + dr, nr);
  7723. if (nb10 == sizeof(ggml_fp16_t)) {
  7724. for (int ir = ir0; ir < ir1; ++ir) {
  7725. // src0, src1 and dst are same shape => same indices
  7726. const int i3 = ir/(ne2*ne1);
  7727. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7728. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7729. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7730. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7731. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7732. for (int i = 0; i < ne0; i++) {
  7733. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7734. }
  7735. }
  7736. }
  7737. else {
  7738. // src1 is not contiguous
  7739. GGML_ASSERT(false);
  7740. }
  7741. }
  7742. static void ggml_compute_forward_add_bf16_bf16(
  7743. const struct ggml_compute_params * params,
  7744. struct ggml_tensor * dst) {
  7745. const struct ggml_tensor * src0 = dst->src[0];
  7746. const struct ggml_tensor * src1 = dst->src[1];
  7747. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7749. return;
  7750. }
  7751. const int ith = params->ith;
  7752. const int nth = params->nth;
  7753. const int nr = ggml_nrows(src0);
  7754. GGML_TENSOR_BINARY_OP_LOCALS
  7755. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7756. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7757. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7758. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7759. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7760. // rows per thread
  7761. const int dr = (nr + nth - 1)/nth;
  7762. // row range for this thread
  7763. const int ir0 = dr*ith;
  7764. const int ir1 = MIN(ir0 + dr, nr);
  7765. if (nb10 == sizeof(ggml_bf16_t)) {
  7766. for (int ir = ir0; ir < ir1; ++ir) {
  7767. // src0, src1 and dst are same shape => same indices
  7768. const int i3 = ir/(ne2*ne1);
  7769. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7770. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7771. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7772. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7773. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7774. for (int i = 0; i < ne0; i++) {
  7775. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7776. }
  7777. }
  7778. }
  7779. else {
  7780. // src1 is not contiguous
  7781. GGML_ASSERT(false);
  7782. }
  7783. }
  7784. static void ggml_compute_forward_add_q_f32(
  7785. const struct ggml_compute_params * params,
  7786. struct ggml_tensor * dst) {
  7787. const struct ggml_tensor * src0 = dst->src[0];
  7788. const struct ggml_tensor * src1 = dst->src[1];
  7789. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7791. return;
  7792. }
  7793. const int nr = ggml_nrows(src0);
  7794. GGML_TENSOR_BINARY_OP_LOCALS
  7795. const int ith = params->ith;
  7796. const int nth = params->nth;
  7797. const enum ggml_type type = src0->type;
  7798. const enum ggml_type dtype = dst->type;
  7799. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7800. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7801. // we don't support permuted src0 or src1
  7802. GGML_ASSERT(nb00 == ggml_type_size(type));
  7803. GGML_ASSERT(nb10 == sizeof(float));
  7804. // dst cannot be transposed or permuted
  7805. GGML_ASSERT(nb0 <= nb1);
  7806. GGML_ASSERT(nb1 <= nb2);
  7807. GGML_ASSERT(nb2 <= nb3);
  7808. GGML_ASSERT(ggml_is_quantized(src0->type));
  7809. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7810. // rows per thread
  7811. const int dr = (nr + nth - 1)/nth;
  7812. // row range for this thread
  7813. const int ir0 = dr*ith;
  7814. const int ir1 = MIN(ir0 + dr, nr);
  7815. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7816. for (int ir = ir0; ir < ir1; ++ir) {
  7817. // src0 indices
  7818. const int i03 = ir/(ne02*ne01);
  7819. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7820. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7821. // src1 and dst are same shape as src0 => same indices
  7822. const int i13 = i03;
  7823. const int i12 = i02;
  7824. const int i11 = i01;
  7825. const int i3 = i03;
  7826. const int i2 = i02;
  7827. const int i1 = i01;
  7828. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7829. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7830. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7831. assert(ne00 % 32 == 0);
  7832. // unquantize row from src0 to temp buffer
  7833. dequantize_row_q(src0_row, wdata, ne00);
  7834. // add src1
  7835. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7836. // quantize row to dst
  7837. if (quantize_row_q != NULL) {
  7838. quantize_row_q(wdata, dst_row, ne00);
  7839. } else {
  7840. memcpy(dst_row, wdata, ne0*nb0);
  7841. }
  7842. }
  7843. }
  7844. static void ggml_compute_forward_add(
  7845. const struct ggml_compute_params * params,
  7846. struct ggml_tensor * dst) {
  7847. const struct ggml_tensor * src0 = dst->src[0];
  7848. const struct ggml_tensor * src1 = dst->src[1];
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F32:
  7851. {
  7852. if (src1->type == GGML_TYPE_F32) {
  7853. ggml_compute_forward_add_f32(params, dst);
  7854. }
  7855. else {
  7856. GGML_ASSERT(false);
  7857. }
  7858. } break;
  7859. case GGML_TYPE_F16:
  7860. {
  7861. if (src1->type == GGML_TYPE_F16) {
  7862. ggml_compute_forward_add_f16_f16(params, dst);
  7863. }
  7864. else if (src1->type == GGML_TYPE_F32) {
  7865. ggml_compute_forward_add_f16_f32(params, dst);
  7866. }
  7867. else {
  7868. GGML_ASSERT(false);
  7869. }
  7870. } break;
  7871. case GGML_TYPE_BF16:
  7872. {
  7873. if (src1->type == GGML_TYPE_BF16) {
  7874. ggml_compute_forward_add_bf16_bf16(params, dst);
  7875. }
  7876. else if (src1->type == GGML_TYPE_F32) {
  7877. ggml_compute_forward_add_bf16_f32(params, dst);
  7878. }
  7879. else {
  7880. GGML_ASSERT(false);
  7881. }
  7882. } break;
  7883. case GGML_TYPE_Q4_0:
  7884. case GGML_TYPE_Q4_1:
  7885. case GGML_TYPE_Q5_0:
  7886. case GGML_TYPE_Q5_1:
  7887. case GGML_TYPE_Q8_0:
  7888. case GGML_TYPE_Q2_K:
  7889. case GGML_TYPE_Q3_K:
  7890. case GGML_TYPE_Q4_K:
  7891. case GGML_TYPE_Q5_K:
  7892. case GGML_TYPE_Q6_K:
  7893. case GGML_TYPE_IQ2_XXS:
  7894. case GGML_TYPE_IQ2_XS:
  7895. case GGML_TYPE_IQ3_XXS:
  7896. case GGML_TYPE_IQ1_S:
  7897. case GGML_TYPE_IQ1_M:
  7898. case GGML_TYPE_IQ4_NL:
  7899. case GGML_TYPE_IQ4_XS:
  7900. case GGML_TYPE_IQ3_S:
  7901. case GGML_TYPE_IQ2_S:
  7902. {
  7903. ggml_compute_forward_add_q_f32(params, dst);
  7904. } break;
  7905. default:
  7906. {
  7907. GGML_ASSERT(false);
  7908. } break;
  7909. }
  7910. }
  7911. // ggml_compute_forward_add1
  7912. static void ggml_compute_forward_add1_f32(
  7913. const struct ggml_compute_params * params,
  7914. struct ggml_tensor * dst) {
  7915. const struct ggml_tensor * src0 = dst->src[0];
  7916. const struct ggml_tensor * src1 = dst->src[1];
  7917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7918. GGML_ASSERT(ggml_is_scalar(src1));
  7919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7920. return;
  7921. }
  7922. const int ith = params->ith;
  7923. const int nth = params->nth;
  7924. const int nr = ggml_nrows(src0);
  7925. GGML_TENSOR_UNARY_OP_LOCALS
  7926. GGML_ASSERT( nb0 == sizeof(float));
  7927. GGML_ASSERT(nb00 == sizeof(float));
  7928. // rows per thread
  7929. const int dr = (nr + nth - 1)/nth;
  7930. // row range for this thread
  7931. const int ir0 = dr*ith;
  7932. const int ir1 = MIN(ir0 + dr, nr);
  7933. for (int ir = ir0; ir < ir1; ++ir) {
  7934. // src0 and dst are same shape => same indices
  7935. const int i3 = ir/(ne2*ne1);
  7936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7938. #ifdef GGML_USE_ACCELERATE
  7939. UNUSED(ggml_vec_add1_f32);
  7940. vDSP_vadd(
  7941. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7942. (float *) ((char *) src1->data), 0,
  7943. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7944. ne0);
  7945. #else
  7946. ggml_vec_add1_f32(ne0,
  7947. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7948. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7949. *(float *) src1->data);
  7950. #endif
  7951. }
  7952. }
  7953. static void ggml_compute_forward_add1_f16_f32(
  7954. const struct ggml_compute_params * params,
  7955. struct ggml_tensor * dst) {
  7956. const struct ggml_tensor * src0 = dst->src[0];
  7957. const struct ggml_tensor * src1 = dst->src[1];
  7958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7959. GGML_ASSERT(ggml_is_scalar(src1));
  7960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7961. return;
  7962. }
  7963. // scalar to add
  7964. const float v = *(float *) src1->data;
  7965. const int ith = params->ith;
  7966. const int nth = params->nth;
  7967. const int nr = ggml_nrows(src0);
  7968. GGML_TENSOR_UNARY_OP_LOCALS
  7969. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7971. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7972. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7973. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7974. // rows per thread
  7975. const int dr = (nr + nth - 1)/nth;
  7976. // row range for this thread
  7977. const int ir0 = dr*ith;
  7978. const int ir1 = MIN(ir0 + dr, nr);
  7979. for (int ir = ir0; ir < ir1; ++ir) {
  7980. // src0 and dst are same shape => same indices
  7981. const int i3 = ir/(ne2*ne1);
  7982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7984. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7985. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7986. for (int i = 0; i < ne0; i++) {
  7987. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7988. }
  7989. }
  7990. }
  7991. static void ggml_compute_forward_add1_f16_f16(
  7992. const struct ggml_compute_params * params,
  7993. struct ggml_tensor * dst) {
  7994. const struct ggml_tensor * src0 = dst->src[0];
  7995. const struct ggml_tensor * src1 = dst->src[1];
  7996. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7997. GGML_ASSERT(ggml_is_scalar(src1));
  7998. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7999. return;
  8000. }
  8001. // scalar to add
  8002. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8003. const int ith = params->ith;
  8004. const int nth = params->nth;
  8005. const int nr = ggml_nrows(src0);
  8006. GGML_TENSOR_UNARY_OP_LOCALS
  8007. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8008. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8009. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8010. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8012. // rows per thread
  8013. const int dr = (nr + nth - 1)/nth;
  8014. // row range for this thread
  8015. const int ir0 = dr*ith;
  8016. const int ir1 = MIN(ir0 + dr, nr);
  8017. for (int ir = ir0; ir < ir1; ++ir) {
  8018. // src0 and dst are same shape => same indices
  8019. const int i3 = ir/(ne2*ne1);
  8020. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8021. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8022. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8023. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8024. for (int i = 0; i < ne0; i++) {
  8025. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8026. }
  8027. }
  8028. }
  8029. static void ggml_compute_forward_add1_q_f32(
  8030. const struct ggml_compute_params * params,
  8031. struct ggml_tensor * dst) {
  8032. const struct ggml_tensor * src0 = dst->src[0];
  8033. const struct ggml_tensor * src1 = dst->src[1];
  8034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8035. GGML_ASSERT(ggml_is_scalar(src1));
  8036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8037. return;
  8038. }
  8039. // scalar to add
  8040. const float v = *(float *) src1->data;
  8041. const int ith = params->ith;
  8042. const int nth = params->nth;
  8043. const int nr = ggml_nrows(src0);
  8044. GGML_TENSOR_UNARY_OP_LOCALS
  8045. const enum ggml_type type = src0->type;
  8046. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8047. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8048. // we don't support permuted src0
  8049. GGML_ASSERT(nb00 == ggml_type_size(type));
  8050. // dst cannot be transposed or permuted
  8051. GGML_ASSERT(nb0 <= nb1);
  8052. GGML_ASSERT(nb1 <= nb2);
  8053. GGML_ASSERT(nb2 <= nb3);
  8054. GGML_ASSERT(ggml_is_quantized(src0->type));
  8055. GGML_ASSERT(dst->type == src0->type);
  8056. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8057. // rows per thread
  8058. const int dr = (nr + nth - 1)/nth;
  8059. // row range for this thread
  8060. const int ir0 = dr*ith;
  8061. const int ir1 = MIN(ir0 + dr, nr);
  8062. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8063. for (int ir = ir0; ir < ir1; ++ir) {
  8064. // src0 and dst are same shape => same indices
  8065. const int i3 = ir/(ne2*ne1);
  8066. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8067. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8068. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8069. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8070. assert(ne0 % 32 == 0);
  8071. // unquantize row from src0 to temp buffer
  8072. dequantize_row_q(src0_row, wdata, ne0);
  8073. // add src1
  8074. ggml_vec_acc1_f32(ne0, wdata, v);
  8075. // quantize row to dst
  8076. quantize_row_q(wdata, dst_row, ne0);
  8077. }
  8078. }
  8079. static void ggml_compute_forward_add1_bf16_f32(
  8080. const struct ggml_compute_params * params,
  8081. struct ggml_tensor * dst) {
  8082. const struct ggml_tensor * src0 = dst->src[0];
  8083. const struct ggml_tensor * src1 = dst->src[1];
  8084. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8085. GGML_ASSERT(ggml_is_scalar(src1));
  8086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8087. return;
  8088. }
  8089. // scalar to add
  8090. const float v = *(float *) src1->data;
  8091. const int ith = params->ith;
  8092. const int nth = params->nth;
  8093. const int nr = ggml_nrows(src0);
  8094. GGML_TENSOR_UNARY_OP_LOCALS
  8095. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8096. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8097. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8098. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8099. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8100. // rows per thread
  8101. const int dr = (nr + nth - 1)/nth;
  8102. // row range for this thread
  8103. const int ir0 = dr*ith;
  8104. const int ir1 = MIN(ir0 + dr, nr);
  8105. for (int ir = ir0; ir < ir1; ++ir) {
  8106. // src0 and dst are same shape => same indices
  8107. const int i3 = ir/(ne2*ne1);
  8108. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8109. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8110. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8111. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8112. for (int i = 0; i < ne0; i++) {
  8113. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8114. }
  8115. }
  8116. }
  8117. static void ggml_compute_forward_add1_bf16_bf16(
  8118. const struct ggml_compute_params * params,
  8119. struct ggml_tensor * dst) {
  8120. const struct ggml_tensor * src0 = dst->src[0];
  8121. const struct ggml_tensor * src1 = dst->src[1];
  8122. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8123. GGML_ASSERT(ggml_is_scalar(src1));
  8124. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8125. return;
  8126. }
  8127. // scalar to add
  8128. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8129. const int ith = params->ith;
  8130. const int nth = params->nth;
  8131. const int nr = ggml_nrows(src0);
  8132. GGML_TENSOR_UNARY_OP_LOCALS
  8133. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8134. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8135. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8136. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8137. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8138. // rows per thread
  8139. const int dr = (nr + nth - 1)/nth;
  8140. // row range for this thread
  8141. const int ir0 = dr*ith;
  8142. const int ir1 = MIN(ir0 + dr, nr);
  8143. for (int ir = ir0; ir < ir1; ++ir) {
  8144. // src0 and dst are same shape => same indices
  8145. const int i3 = ir/(ne2*ne1);
  8146. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8147. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8148. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8149. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8150. for (int i = 0; i < ne0; i++) {
  8151. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8152. }
  8153. }
  8154. }
  8155. static void ggml_compute_forward_add1(
  8156. const struct ggml_compute_params * params,
  8157. struct ggml_tensor * dst) {
  8158. const struct ggml_tensor * src0 = dst->src[0];
  8159. const struct ggml_tensor * src1 = dst->src[1];
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_add1_f32(params, dst);
  8164. } break;
  8165. case GGML_TYPE_F16:
  8166. {
  8167. if (src1->type == GGML_TYPE_F16) {
  8168. ggml_compute_forward_add1_f16_f16(params, dst);
  8169. }
  8170. else if (src1->type == GGML_TYPE_F32) {
  8171. ggml_compute_forward_add1_f16_f32(params, dst);
  8172. }
  8173. else {
  8174. GGML_ASSERT(false);
  8175. }
  8176. } break;
  8177. case GGML_TYPE_BF16:
  8178. {
  8179. if (src1->type == GGML_TYPE_BF16) {
  8180. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8181. }
  8182. else if (src1->type == GGML_TYPE_F32) {
  8183. ggml_compute_forward_add1_bf16_f32(params, dst);
  8184. }
  8185. else {
  8186. GGML_ASSERT(false);
  8187. }
  8188. } break;
  8189. case GGML_TYPE_Q4_0:
  8190. case GGML_TYPE_Q4_1:
  8191. case GGML_TYPE_Q5_0:
  8192. case GGML_TYPE_Q5_1:
  8193. case GGML_TYPE_Q8_0:
  8194. case GGML_TYPE_Q8_1:
  8195. case GGML_TYPE_Q2_K:
  8196. case GGML_TYPE_Q3_K:
  8197. case GGML_TYPE_Q4_K:
  8198. case GGML_TYPE_Q5_K:
  8199. case GGML_TYPE_Q6_K:
  8200. case GGML_TYPE_IQ2_XXS:
  8201. case GGML_TYPE_IQ2_XS:
  8202. case GGML_TYPE_IQ3_XXS:
  8203. case GGML_TYPE_IQ1_S:
  8204. case GGML_TYPE_IQ1_M:
  8205. case GGML_TYPE_IQ4_NL:
  8206. case GGML_TYPE_IQ4_XS:
  8207. case GGML_TYPE_IQ3_S:
  8208. case GGML_TYPE_IQ2_S:
  8209. {
  8210. ggml_compute_forward_add1_q_f32(params, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_acc
  8219. static void ggml_compute_forward_acc_f32(
  8220. const struct ggml_compute_params * params,
  8221. struct ggml_tensor * dst) {
  8222. const struct ggml_tensor * src0 = dst->src[0];
  8223. const struct ggml_tensor * src1 = dst->src[1];
  8224. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8225. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8226. // view src0 and dst with these strides and data offset inbytes during acc
  8227. // nb0 is implicitly element_size because src0 and dst are contiguous
  8228. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8229. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8230. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8231. size_t offset = ((int32_t *) dst->op_params)[3];
  8232. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8233. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8234. if (params->ith != 0) {
  8235. return;
  8236. }
  8237. // memcpy needs to be synchronized across threads to avoid race conditions.
  8238. // => do it in INIT phase
  8239. memcpy(
  8240. ((char *) dst->data),
  8241. ((char *) src0->data),
  8242. ggml_nbytes(dst));
  8243. }
  8244. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8245. return;
  8246. }
  8247. const int ith = params->ith;
  8248. const int nth = params->nth;
  8249. const int nr = ggml_nrows(src1);
  8250. const int nc = src1->ne[0];
  8251. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8252. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8253. // src0 and dst as viewed during acc
  8254. const size_t nb0 = ggml_element_size(src0);
  8255. const size_t nb00 = nb0;
  8256. const size_t nb01 = nb1;
  8257. const size_t nb02 = nb2;
  8258. const size_t nb03 = nb3;
  8259. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8260. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8261. GGML_ASSERT(nb10 == sizeof(float));
  8262. // rows per thread
  8263. const int dr = (nr + nth - 1)/nth;
  8264. // row range for this thread
  8265. const int ir0 = dr*ith;
  8266. const int ir1 = MIN(ir0 + dr, nr);
  8267. for (int ir = ir0; ir < ir1; ++ir) {
  8268. // src0 and dst are viewed with shape of src1 and offset
  8269. // => same indices
  8270. const int i3 = ir/(ne12*ne11);
  8271. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8272. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8273. #ifdef GGML_USE_ACCELERATE
  8274. vDSP_vadd(
  8275. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8276. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8277. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8278. #else
  8279. ggml_vec_add_f32(nc,
  8280. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8281. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8282. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8283. #endif
  8284. }
  8285. }
  8286. static void ggml_compute_forward_acc(
  8287. const struct ggml_compute_params * params,
  8288. struct ggml_tensor * dst) {
  8289. const struct ggml_tensor * src0 = dst->src[0];
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_acc_f32(params, dst);
  8294. } break;
  8295. case GGML_TYPE_F16:
  8296. case GGML_TYPE_BF16:
  8297. case GGML_TYPE_Q4_0:
  8298. case GGML_TYPE_Q4_1:
  8299. case GGML_TYPE_Q5_0:
  8300. case GGML_TYPE_Q5_1:
  8301. case GGML_TYPE_Q8_0:
  8302. case GGML_TYPE_Q8_1:
  8303. case GGML_TYPE_Q2_K:
  8304. case GGML_TYPE_Q3_K:
  8305. case GGML_TYPE_Q4_K:
  8306. case GGML_TYPE_Q5_K:
  8307. case GGML_TYPE_Q6_K:
  8308. case GGML_TYPE_IQ2_XXS:
  8309. case GGML_TYPE_IQ2_XS:
  8310. case GGML_TYPE_IQ3_XXS:
  8311. case GGML_TYPE_IQ1_S:
  8312. case GGML_TYPE_IQ1_M:
  8313. case GGML_TYPE_IQ4_NL:
  8314. case GGML_TYPE_IQ4_XS:
  8315. case GGML_TYPE_IQ3_S:
  8316. case GGML_TYPE_IQ2_S:
  8317. default:
  8318. {
  8319. GGML_ASSERT(false);
  8320. } break;
  8321. }
  8322. }
  8323. // ggml_compute_forward_sub
  8324. static void ggml_compute_forward_sub_f32(
  8325. const struct ggml_compute_params * params,
  8326. struct ggml_tensor * dst) {
  8327. const struct ggml_tensor * src0 = dst->src[0];
  8328. const struct ggml_tensor * src1 = dst->src[1];
  8329. assert(params->ith == 0);
  8330. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8331. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8332. return;
  8333. }
  8334. const int nr = ggml_nrows(src0);
  8335. GGML_TENSOR_BINARY_OP_LOCALS
  8336. GGML_ASSERT( nb0 == sizeof(float));
  8337. GGML_ASSERT(nb00 == sizeof(float));
  8338. if (nb10 == sizeof(float)) {
  8339. for (int ir = 0; ir < nr; ++ir) {
  8340. // src0, src1 and dst are same shape => same indices
  8341. const int i3 = ir/(ne2*ne1);
  8342. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8343. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8344. #ifdef GGML_USE_ACCELERATE
  8345. vDSP_vsub(
  8346. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8347. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8348. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8349. ne0);
  8350. #else
  8351. ggml_vec_sub_f32(ne0,
  8352. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8353. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8354. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8355. #endif
  8356. // }
  8357. // }
  8358. }
  8359. } else {
  8360. // src1 is not contiguous
  8361. for (int ir = 0; ir < nr; ++ir) {
  8362. // src0, src1 and dst are same shape => same indices
  8363. const int i3 = ir/(ne2*ne1);
  8364. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8365. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8366. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8367. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8368. for (int i0 = 0; i0 < ne0; i0++) {
  8369. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8370. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8371. }
  8372. }
  8373. }
  8374. }
  8375. static void ggml_compute_forward_sub(
  8376. const struct ggml_compute_params * params,
  8377. struct ggml_tensor * dst) {
  8378. const struct ggml_tensor * src0 = dst->src[0];
  8379. switch (src0->type) {
  8380. case GGML_TYPE_F32:
  8381. {
  8382. ggml_compute_forward_sub_f32(params, dst);
  8383. } break;
  8384. default:
  8385. {
  8386. GGML_ASSERT(false);
  8387. } break;
  8388. }
  8389. }
  8390. // ggml_compute_forward_mul
  8391. static void ggml_compute_forward_mul_f32(
  8392. const struct ggml_compute_params * params,
  8393. struct ggml_tensor * dst) {
  8394. const struct ggml_tensor * src0 = dst->src[0];
  8395. const struct ggml_tensor * src1 = dst->src[1];
  8396. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8398. return;
  8399. }
  8400. const int ith = params->ith;
  8401. const int nth = params->nth;
  8402. #if defined(GGML_USE_CLBLAST)
  8403. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8404. // TODO: OpenCL kernel support full broadcast
  8405. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8406. if (ith == 0) {
  8407. ggml_cl_mul(src0, src1, dst);
  8408. }
  8409. return;
  8410. }
  8411. #endif
  8412. const int64_t nr = ggml_nrows(src0);
  8413. GGML_TENSOR_BINARY_OP_LOCALS
  8414. GGML_ASSERT( nb0 == sizeof(float));
  8415. GGML_ASSERT(nb00 == sizeof(float));
  8416. if (nb10 == sizeof(float)) {
  8417. for (int64_t ir = ith; ir < nr; ir += nth) {
  8418. // src0 and dst are same shape => same indices
  8419. const int64_t i03 = ir/(ne02*ne01);
  8420. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8421. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8422. const int64_t i13 = i03 % ne13;
  8423. const int64_t i12 = i02 % ne12;
  8424. const int64_t i11 = i01 % ne11;
  8425. const int64_t nr0 = ne00 / ne10;
  8426. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8427. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8428. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8429. for (int64_t r = 0 ; r < nr0; ++r) {
  8430. #ifdef GGML_USE_ACCELERATE
  8431. UNUSED(ggml_vec_mul_f32);
  8432. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8433. #else
  8434. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8435. #endif
  8436. }
  8437. }
  8438. } else {
  8439. // src1 is not contiguous
  8440. for (int64_t ir = ith; ir < nr; ir += nth) {
  8441. // src0 and dst are same shape => same indices
  8442. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8443. const int64_t i03 = ir/(ne02*ne01);
  8444. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8445. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8446. const int64_t i13 = i03 % ne13;
  8447. const int64_t i12 = i02 % ne12;
  8448. const int64_t i11 = i01 % ne11;
  8449. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8450. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8451. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8452. const int64_t i10 = i0 % ne10;
  8453. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8454. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8455. }
  8456. }
  8457. }
  8458. }
  8459. static void ggml_compute_forward_mul(
  8460. const struct ggml_compute_params * params,
  8461. struct ggml_tensor * dst) {
  8462. const struct ggml_tensor * src0 = dst->src[0];
  8463. const struct ggml_tensor * src1 = dst->src[1];
  8464. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8465. switch (src0->type) {
  8466. case GGML_TYPE_F32:
  8467. {
  8468. ggml_compute_forward_mul_f32(params, dst);
  8469. } break;
  8470. default:
  8471. {
  8472. GGML_ASSERT(false);
  8473. } break;
  8474. }
  8475. }
  8476. // ggml_compute_forward_div
  8477. static void ggml_compute_forward_div_f32(
  8478. const struct ggml_compute_params * params,
  8479. struct ggml_tensor * dst) {
  8480. const struct ggml_tensor * src0 = dst->src[0];
  8481. const struct ggml_tensor * src1 = dst->src[1];
  8482. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8483. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8484. return;
  8485. }
  8486. const int ith = params->ith;
  8487. const int nth = params->nth;
  8488. const int64_t nr = ggml_nrows(src0);
  8489. GGML_TENSOR_BINARY_OP_LOCALS
  8490. GGML_ASSERT( nb0 == sizeof(float));
  8491. GGML_ASSERT(nb00 == sizeof(float));
  8492. if (nb10 == sizeof(float)) {
  8493. for (int64_t ir = ith; ir < nr; ir += nth) {
  8494. // src0 and dst are same shape => same indices
  8495. const int64_t i03 = ir/(ne02*ne01);
  8496. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8497. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8498. const int64_t i13 = i03 % ne13;
  8499. const int64_t i12 = i02 % ne12;
  8500. const int64_t i11 = i01 % ne11;
  8501. const int64_t nr0 = ne00 / ne10;
  8502. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8503. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8504. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8505. for (int64_t r = 0; r < nr0; ++r) {
  8506. #ifdef GGML_USE_ACCELERATE
  8507. UNUSED(ggml_vec_div_f32);
  8508. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8509. #else
  8510. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8511. #endif
  8512. }
  8513. }
  8514. } else {
  8515. // src1 is not contiguous
  8516. for (int64_t ir = ith; ir < nr; ir += nth) {
  8517. // src0 and dst are same shape => same indices
  8518. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8519. const int64_t i03 = ir/(ne02*ne01);
  8520. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8521. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8522. const int64_t i13 = i03 % ne13;
  8523. const int64_t i12 = i02 % ne12;
  8524. const int64_t i11 = i01 % ne11;
  8525. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8526. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8527. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8528. const int64_t i10 = i0 % ne10;
  8529. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8530. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8531. }
  8532. }
  8533. }
  8534. }
  8535. static void ggml_compute_forward_div(
  8536. const struct ggml_compute_params * params,
  8537. struct ggml_tensor * dst) {
  8538. const struct ggml_tensor * src0 = dst->src[0];
  8539. switch (src0->type) {
  8540. case GGML_TYPE_F32:
  8541. {
  8542. ggml_compute_forward_div_f32(params, dst);
  8543. } break;
  8544. default:
  8545. {
  8546. GGML_ASSERT(false);
  8547. } break;
  8548. }
  8549. }
  8550. // ggml_compute_forward_sqr
  8551. static void ggml_compute_forward_sqr_f32(
  8552. const struct ggml_compute_params * params,
  8553. struct ggml_tensor * dst) {
  8554. const struct ggml_tensor * src0 = dst->src[0];
  8555. assert(params->ith == 0);
  8556. assert(ggml_are_same_shape(src0, dst));
  8557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8558. return;
  8559. }
  8560. const int n = ggml_nrows(src0);
  8561. const int nc = src0->ne[0];
  8562. assert( dst->nb[0] == sizeof(float));
  8563. assert(src0->nb[0] == sizeof(float));
  8564. for (int i = 0; i < n; i++) {
  8565. ggml_vec_sqr_f32(nc,
  8566. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8567. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8568. }
  8569. }
  8570. static void ggml_compute_forward_sqr(
  8571. const struct ggml_compute_params * params,
  8572. struct ggml_tensor * dst) {
  8573. const struct ggml_tensor * src0 = dst->src[0];
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_sqr_f32(params, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. // ggml_compute_forward_sqrt
  8586. static void ggml_compute_forward_sqrt_f32(
  8587. const struct ggml_compute_params * params,
  8588. struct ggml_tensor * dst) {
  8589. const struct ggml_tensor * src0 = dst->src[0];
  8590. assert(params->ith == 0);
  8591. assert(ggml_are_same_shape(src0, dst));
  8592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8593. return;
  8594. }
  8595. const int n = ggml_nrows(src0);
  8596. const int nc = src0->ne[0];
  8597. assert( dst->nb[0] == sizeof(float));
  8598. assert(src0->nb[0] == sizeof(float));
  8599. for (int i = 0; i < n; i++) {
  8600. ggml_vec_sqrt_f32(nc,
  8601. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8602. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8603. }
  8604. }
  8605. static void ggml_compute_forward_sqrt(
  8606. const struct ggml_compute_params * params,
  8607. struct ggml_tensor * dst) {
  8608. const struct ggml_tensor * src0 = dst->src[0];
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_sqrt_f32(params, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. }
  8620. // ggml_compute_forward_log
  8621. static void ggml_compute_forward_log_f32(
  8622. const struct ggml_compute_params * params,
  8623. struct ggml_tensor * dst) {
  8624. const struct ggml_tensor * src0 = dst->src[0];
  8625. GGML_ASSERT(params->ith == 0);
  8626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8628. return;
  8629. }
  8630. const int n = ggml_nrows(src0);
  8631. const int nc = src0->ne[0];
  8632. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8633. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8634. for (int i = 0; i < n; i++) {
  8635. ggml_vec_log_f32(nc,
  8636. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8637. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8638. }
  8639. }
  8640. static void ggml_compute_forward_log(
  8641. const struct ggml_compute_params * params,
  8642. struct ggml_tensor * dst) {
  8643. const struct ggml_tensor * src0 = dst->src[0];
  8644. switch (src0->type) {
  8645. case GGML_TYPE_F32:
  8646. {
  8647. ggml_compute_forward_log_f32(params, dst);
  8648. } break;
  8649. default:
  8650. {
  8651. GGML_ASSERT(false);
  8652. } break;
  8653. }
  8654. }
  8655. // ggml_compute_forward_sum
  8656. static void ggml_compute_forward_sum_f32(
  8657. const struct ggml_compute_params * params,
  8658. struct ggml_tensor * dst) {
  8659. const struct ggml_tensor * src0 = dst->src[0];
  8660. assert(params->ith == 0);
  8661. assert(ggml_is_scalar(dst));
  8662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8663. return;
  8664. }
  8665. assert(ggml_is_scalar(dst));
  8666. assert(src0->nb[0] == sizeof(float));
  8667. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8668. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8669. ggml_float sum = 0;
  8670. ggml_float row_sum = 0;
  8671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8673. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8674. ggml_vec_sum_f32_ggf(ne00,
  8675. &row_sum,
  8676. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8677. sum += row_sum;
  8678. }
  8679. }
  8680. }
  8681. ((float *) dst->data)[0] = sum;
  8682. }
  8683. static void ggml_compute_forward_sum_f16(
  8684. const struct ggml_compute_params * params,
  8685. struct ggml_tensor * dst) {
  8686. const struct ggml_tensor * src0 = dst->src[0];
  8687. assert(params->ith == 0);
  8688. assert(ggml_is_scalar(dst));
  8689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8690. return;
  8691. }
  8692. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8693. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8694. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8695. float sum = 0;
  8696. float row_sum = 0;
  8697. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8698. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8699. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8700. ggml_vec_sum_f16_ggf(ne00,
  8701. &row_sum,
  8702. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8703. sum += row_sum;
  8704. }
  8705. }
  8706. }
  8707. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8708. }
  8709. static void ggml_compute_forward_sum_bf16(
  8710. const struct ggml_compute_params * params,
  8711. struct ggml_tensor * dst) {
  8712. const struct ggml_tensor * src0 = dst->src[0];
  8713. assert(params->ith == 0);
  8714. assert(ggml_is_scalar(dst));
  8715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8716. return;
  8717. }
  8718. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8719. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8720. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8721. float sum = 0;
  8722. float row_sum = 0;
  8723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8725. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8726. ggml_vec_sum_bf16_ggf(ne00,
  8727. &row_sum,
  8728. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8729. sum += row_sum;
  8730. }
  8731. }
  8732. }
  8733. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8734. }
  8735. static void ggml_compute_forward_sum(
  8736. const struct ggml_compute_params * params,
  8737. struct ggml_tensor * dst) {
  8738. const struct ggml_tensor * src0 = dst->src[0];
  8739. switch (src0->type) {
  8740. case GGML_TYPE_F32:
  8741. {
  8742. ggml_compute_forward_sum_f32(params, dst);
  8743. } break;
  8744. case GGML_TYPE_F16:
  8745. {
  8746. ggml_compute_forward_sum_f16(params, dst);
  8747. } break;
  8748. case GGML_TYPE_BF16:
  8749. {
  8750. ggml_compute_forward_sum_bf16(params, dst);
  8751. } break;
  8752. default:
  8753. {
  8754. GGML_ASSERT(false);
  8755. } break;
  8756. }
  8757. }
  8758. // ggml_compute_forward_sum_rows
  8759. static void ggml_compute_forward_sum_rows_f32(
  8760. const struct ggml_compute_params * params,
  8761. struct ggml_tensor * dst) {
  8762. const struct ggml_tensor * src0 = dst->src[0];
  8763. GGML_ASSERT(params->ith == 0);
  8764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8765. return;
  8766. }
  8767. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8768. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8769. GGML_TENSOR_UNARY_OP_LOCALS
  8770. GGML_ASSERT(ne0 == 1);
  8771. GGML_ASSERT(ne1 == ne01);
  8772. GGML_ASSERT(ne2 == ne02);
  8773. GGML_ASSERT(ne3 == ne03);
  8774. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8775. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8776. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8777. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8778. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8779. float row_sum = 0;
  8780. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8781. dst_row[0] = row_sum;
  8782. }
  8783. }
  8784. }
  8785. }
  8786. static void ggml_compute_forward_sum_rows(
  8787. const struct ggml_compute_params * params,
  8788. struct ggml_tensor * dst) {
  8789. const struct ggml_tensor * src0 = dst->src[0];
  8790. switch (src0->type) {
  8791. case GGML_TYPE_F32:
  8792. {
  8793. ggml_compute_forward_sum_rows_f32(params, dst);
  8794. } break;
  8795. default:
  8796. {
  8797. GGML_ASSERT(false);
  8798. } break;
  8799. }
  8800. }
  8801. // ggml_compute_forward_mean
  8802. static void ggml_compute_forward_mean_f32(
  8803. const struct ggml_compute_params * params,
  8804. struct ggml_tensor * dst) {
  8805. const struct ggml_tensor * src0 = dst->src[0];
  8806. assert(params->ith == 0);
  8807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8808. return;
  8809. }
  8810. assert(src0->nb[0] == sizeof(float));
  8811. GGML_TENSOR_UNARY_OP_LOCALS
  8812. assert(ne0 == 1);
  8813. assert(ne1 == ne01);
  8814. assert(ne2 == ne02);
  8815. assert(ne3 == ne03);
  8816. UNUSED(ne0);
  8817. UNUSED(ne1);
  8818. UNUSED(ne2);
  8819. UNUSED(ne3);
  8820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8822. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8823. ggml_vec_sum_f32(ne00,
  8824. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8825. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8826. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8827. }
  8828. }
  8829. }
  8830. }
  8831. static void ggml_compute_forward_mean(
  8832. const struct ggml_compute_params * params,
  8833. struct ggml_tensor * dst) {
  8834. const struct ggml_tensor * src0 = dst->src[0];
  8835. switch (src0->type) {
  8836. case GGML_TYPE_F32:
  8837. {
  8838. ggml_compute_forward_mean_f32(params, dst);
  8839. } break;
  8840. default:
  8841. {
  8842. GGML_ASSERT(false);
  8843. } break;
  8844. }
  8845. }
  8846. // ggml_compute_forward_argmax
  8847. static void ggml_compute_forward_argmax_f32(
  8848. const struct ggml_compute_params * params,
  8849. struct ggml_tensor * dst) {
  8850. const struct ggml_tensor * src0 = dst->src[0];
  8851. assert(params->ith == 0);
  8852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8853. return;
  8854. }
  8855. assert(src0->nb[0] == sizeof(float));
  8856. assert(dst->nb[0] == sizeof(float));
  8857. const int64_t ne00 = src0->ne[0];
  8858. const int64_t ne01 = src0->ne[1];
  8859. const size_t nb01 = src0->nb[1];
  8860. const size_t nb0 = dst->nb[0];
  8861. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8862. float * src = (float *) ((char *) src0->data + i1*nb01);
  8863. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8864. int v = 0;
  8865. ggml_vec_argmax_f32(ne00, &v, src);
  8866. dst_[0] = v;
  8867. }
  8868. }
  8869. static void ggml_compute_forward_argmax(
  8870. const struct ggml_compute_params * params,
  8871. struct ggml_tensor * dst) {
  8872. const struct ggml_tensor * src0 = dst->src[0];
  8873. switch (src0->type) {
  8874. case GGML_TYPE_F32:
  8875. {
  8876. ggml_compute_forward_argmax_f32(params, dst);
  8877. } break;
  8878. default:
  8879. {
  8880. GGML_ASSERT(false);
  8881. } break;
  8882. }
  8883. }
  8884. // ggml_compute_forward_repeat
  8885. static void ggml_compute_forward_repeat_f32(
  8886. const struct ggml_compute_params * params,
  8887. struct ggml_tensor * dst) {
  8888. const struct ggml_tensor * src0 = dst->src[0];
  8889. GGML_ASSERT(params->ith == 0);
  8890. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8892. return;
  8893. }
  8894. GGML_TENSOR_UNARY_OP_LOCALS
  8895. // guaranteed to be an integer due to the check in ggml_can_repeat
  8896. const int nr0 = (int)(ne0/ne00);
  8897. const int nr1 = (int)(ne1/ne01);
  8898. const int nr2 = (int)(ne2/ne02);
  8899. const int nr3 = (int)(ne3/ne03);
  8900. // TODO: support for transposed / permuted tensors
  8901. GGML_ASSERT(nb0 == sizeof(float));
  8902. GGML_ASSERT(nb00 == sizeof(float));
  8903. // TODO: maybe this is not optimal?
  8904. for (int i3 = 0; i3 < nr3; i3++) {
  8905. for (int k3 = 0; k3 < ne03; k3++) {
  8906. for (int i2 = 0; i2 < nr2; i2++) {
  8907. for (int k2 = 0; k2 < ne02; k2++) {
  8908. for (int i1 = 0; i1 < nr1; i1++) {
  8909. for (int k1 = 0; k1 < ne01; k1++) {
  8910. for (int i0 = 0; i0 < nr0; i0++) {
  8911. ggml_vec_cpy_f32(ne00,
  8912. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8913. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8914. }
  8915. }
  8916. }
  8917. }
  8918. }
  8919. }
  8920. }
  8921. }
  8922. static void ggml_compute_forward_repeat_f16(
  8923. const struct ggml_compute_params * params,
  8924. struct ggml_tensor * dst) {
  8925. const struct ggml_tensor * src0 = dst->src[0];
  8926. GGML_ASSERT(params->ith == 0);
  8927. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8929. return;
  8930. }
  8931. GGML_TENSOR_UNARY_OP_LOCALS
  8932. // guaranteed to be an integer due to the check in ggml_can_repeat
  8933. const int nr0 = (int)(ne0/ne00);
  8934. const int nr1 = (int)(ne1/ne01);
  8935. const int nr2 = (int)(ne2/ne02);
  8936. const int nr3 = (int)(ne3/ne03);
  8937. // TODO: support for transposed / permuted tensors
  8938. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8939. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8940. // TODO: maybe this is not optimal?
  8941. for (int i3 = 0; i3 < nr3; i3++) {
  8942. for (int k3 = 0; k3 < ne03; k3++) {
  8943. for (int i2 = 0; i2 < nr2; i2++) {
  8944. for (int k2 = 0; k2 < ne02; k2++) {
  8945. for (int i1 = 0; i1 < nr1; i1++) {
  8946. for (int k1 = 0; k1 < ne01; k1++) {
  8947. for (int i0 = 0; i0 < nr0; i0++) {
  8948. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8949. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8950. // ggml_vec_cpy_f16(ne00, y, x)
  8951. for (int i = 0; i < ne00; ++i) {
  8952. y[i] = x[i];
  8953. }
  8954. }
  8955. }
  8956. }
  8957. }
  8958. }
  8959. }
  8960. }
  8961. }
  8962. static void ggml_compute_forward_repeat(
  8963. const struct ggml_compute_params * params,
  8964. struct ggml_tensor * dst) {
  8965. const struct ggml_tensor * src0 = dst->src[0];
  8966. switch (src0->type) {
  8967. case GGML_TYPE_F16:
  8968. case GGML_TYPE_BF16:
  8969. case GGML_TYPE_I16:
  8970. {
  8971. ggml_compute_forward_repeat_f16(params, dst);
  8972. } break;
  8973. case GGML_TYPE_F32:
  8974. case GGML_TYPE_I32:
  8975. {
  8976. ggml_compute_forward_repeat_f32(params, dst);
  8977. } break;
  8978. default:
  8979. {
  8980. GGML_ASSERT(false);
  8981. } break;
  8982. }
  8983. }
  8984. // ggml_compute_forward_repeat_back
  8985. static void ggml_compute_forward_repeat_back_f32(
  8986. const struct ggml_compute_params * params,
  8987. struct ggml_tensor * dst) {
  8988. const struct ggml_tensor * src0 = dst->src[0];
  8989. GGML_ASSERT(params->ith == 0);
  8990. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8991. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8992. return;
  8993. }
  8994. GGML_TENSOR_UNARY_OP_LOCALS
  8995. // guaranteed to be an integer due to the check in ggml_can_repeat
  8996. const int nr0 = (int)(ne00/ne0);
  8997. const int nr1 = (int)(ne01/ne1);
  8998. const int nr2 = (int)(ne02/ne2);
  8999. const int nr3 = (int)(ne03/ne3);
  9000. // TODO: support for transposed / permuted tensors
  9001. GGML_ASSERT(nb0 == sizeof(float));
  9002. GGML_ASSERT(nb00 == sizeof(float));
  9003. if (ggml_is_contiguous(dst)) {
  9004. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9005. } else {
  9006. for (int k3 = 0; k3 < ne3; k3++) {
  9007. for (int k2 = 0; k2 < ne2; k2++) {
  9008. for (int k1 = 0; k1 < ne1; k1++) {
  9009. ggml_vec_set_f32(ne0,
  9010. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9011. 0);
  9012. }
  9013. }
  9014. }
  9015. }
  9016. // TODO: maybe this is not optimal?
  9017. for (int i3 = 0; i3 < nr3; i3++) {
  9018. for (int k3 = 0; k3 < ne3; k3++) {
  9019. for (int i2 = 0; i2 < nr2; i2++) {
  9020. for (int k2 = 0; k2 < ne2; k2++) {
  9021. for (int i1 = 0; i1 < nr1; i1++) {
  9022. for (int k1 = 0; k1 < ne1; k1++) {
  9023. for (int i0 = 0; i0 < nr0; i0++) {
  9024. ggml_vec_acc_f32(ne0,
  9025. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9026. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9027. }
  9028. }
  9029. }
  9030. }
  9031. }
  9032. }
  9033. }
  9034. }
  9035. static void ggml_compute_forward_repeat_back(
  9036. const struct ggml_compute_params * params,
  9037. struct ggml_tensor * dst) {
  9038. const struct ggml_tensor * src0 = dst->src[0];
  9039. switch (src0->type) {
  9040. case GGML_TYPE_F32:
  9041. {
  9042. ggml_compute_forward_repeat_back_f32(params, dst);
  9043. } break;
  9044. default:
  9045. {
  9046. GGML_ASSERT(false);
  9047. } break;
  9048. }
  9049. }
  9050. // ggml_compute_forward_concat
  9051. static void ggml_compute_forward_concat_f32(
  9052. const struct ggml_compute_params * params,
  9053. struct ggml_tensor * dst) {
  9054. const struct ggml_tensor * src0 = dst->src[0];
  9055. const struct ggml_tensor * src1 = dst->src[1];
  9056. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9057. return;
  9058. }
  9059. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9060. const int ith = params->ith;
  9061. const int nth = params->nth;
  9062. GGML_TENSOR_BINARY_OP_LOCALS
  9063. // TODO: support for transposed / permuted tensors
  9064. GGML_ASSERT(nb0 == sizeof(float));
  9065. GGML_ASSERT(nb00 == sizeof(float));
  9066. GGML_ASSERT(nb10 == sizeof(float));
  9067. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9068. GGML_ASSERT(dim >= 0 && dim < 4);
  9069. int64_t o[4] = {0, 0, 0, 0};
  9070. o[dim] = src0->ne[dim];
  9071. const float * x;
  9072. // TODO: smarter multi-theading
  9073. for (int i3 = 0; i3 < ne3; i3++) {
  9074. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9075. for (int i1 = 0; i1 < ne1; i1++) {
  9076. for (int i0 = 0; i0 < ne0; i0++) {
  9077. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9078. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9079. } else {
  9080. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9081. }
  9082. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9083. *y = *x;
  9084. }
  9085. }
  9086. }
  9087. }
  9088. }
  9089. static void ggml_compute_forward_concat(
  9090. const struct ggml_compute_params * params,
  9091. struct ggml_tensor * dst) {
  9092. const struct ggml_tensor * src0 = dst->src[0];
  9093. switch (src0->type) {
  9094. case GGML_TYPE_F32:
  9095. case GGML_TYPE_I32:
  9096. {
  9097. ggml_compute_forward_concat_f32(params, dst);
  9098. } break;
  9099. default:
  9100. {
  9101. GGML_ASSERT(false);
  9102. } break;
  9103. }
  9104. }
  9105. // ggml_compute_forward_abs
  9106. static void ggml_compute_forward_abs_f32(
  9107. const struct ggml_compute_params * params,
  9108. struct ggml_tensor * dst) {
  9109. const struct ggml_tensor * src0 = dst->src[0];
  9110. assert(params->ith == 0);
  9111. assert(ggml_are_same_shape(src0, dst));
  9112. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9113. return;
  9114. }
  9115. const int n = ggml_nrows(src0);
  9116. const int nc = src0->ne[0];
  9117. assert(dst->nb[0] == sizeof(float));
  9118. assert(src0->nb[0] == sizeof(float));
  9119. for (int i = 0; i < n; i++) {
  9120. ggml_vec_abs_f32(nc,
  9121. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9122. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9123. }
  9124. }
  9125. static void ggml_compute_forward_abs(
  9126. const struct ggml_compute_params * params,
  9127. struct ggml_tensor * dst) {
  9128. const struct ggml_tensor * src0 = dst->src[0];
  9129. switch (src0->type) {
  9130. case GGML_TYPE_F32:
  9131. {
  9132. ggml_compute_forward_abs_f32(params, dst);
  9133. } break;
  9134. default:
  9135. {
  9136. GGML_ASSERT(false);
  9137. } break;
  9138. }
  9139. }
  9140. // ggml_compute_forward_sgn
  9141. static void ggml_compute_forward_sgn_f32(
  9142. const struct ggml_compute_params * params,
  9143. struct ggml_tensor * dst) {
  9144. const struct ggml_tensor * src0 = dst->src[0];
  9145. assert(params->ith == 0);
  9146. assert(ggml_are_same_shape(src0, dst));
  9147. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9148. return;
  9149. }
  9150. const int n = ggml_nrows(src0);
  9151. const int nc = src0->ne[0];
  9152. assert(dst->nb[0] == sizeof(float));
  9153. assert(src0->nb[0] == sizeof(float));
  9154. for (int i = 0; i < n; i++) {
  9155. ggml_vec_sgn_f32(nc,
  9156. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9157. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9158. }
  9159. }
  9160. static void ggml_compute_forward_sgn(
  9161. const struct ggml_compute_params * params,
  9162. struct ggml_tensor * dst) {
  9163. const struct ggml_tensor * src0 = dst->src[0];
  9164. switch (src0->type) {
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_sgn_f32(params, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. // ggml_compute_forward_neg
  9176. static void ggml_compute_forward_neg_f32(
  9177. const struct ggml_compute_params * params,
  9178. struct ggml_tensor * dst) {
  9179. const struct ggml_tensor * src0 = dst->src[0];
  9180. assert(params->ith == 0);
  9181. assert(ggml_are_same_shape(src0, dst));
  9182. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9183. return;
  9184. }
  9185. const int n = ggml_nrows(src0);
  9186. const int nc = src0->ne[0];
  9187. assert(dst->nb[0] == sizeof(float));
  9188. assert(src0->nb[0] == sizeof(float));
  9189. for (int i = 0; i < n; i++) {
  9190. ggml_vec_neg_f32(nc,
  9191. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9192. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9193. }
  9194. }
  9195. static void ggml_compute_forward_neg(
  9196. const struct ggml_compute_params * params,
  9197. struct ggml_tensor * dst) {
  9198. const struct ggml_tensor * src0 = dst->src[0];
  9199. switch (src0->type) {
  9200. case GGML_TYPE_F32:
  9201. {
  9202. ggml_compute_forward_neg_f32(params, dst);
  9203. } break;
  9204. default:
  9205. {
  9206. GGML_ASSERT(false);
  9207. } break;
  9208. }
  9209. }
  9210. // ggml_compute_forward_step
  9211. static void ggml_compute_forward_step_f32(
  9212. const struct ggml_compute_params * params,
  9213. struct ggml_tensor * dst) {
  9214. const struct ggml_tensor * src0 = dst->src[0];
  9215. assert(params->ith == 0);
  9216. assert(ggml_are_same_shape(src0, dst));
  9217. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9218. return;
  9219. }
  9220. const int n = ggml_nrows(src0);
  9221. const int nc = src0->ne[0];
  9222. assert(dst->nb[0] == sizeof(float));
  9223. assert(src0->nb[0] == sizeof(float));
  9224. for (int i = 0; i < n; i++) {
  9225. ggml_vec_step_f32(nc,
  9226. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9227. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9228. }
  9229. }
  9230. static void ggml_compute_forward_step(
  9231. const struct ggml_compute_params * params,
  9232. struct ggml_tensor * dst) {
  9233. const struct ggml_tensor * src0 = dst->src[0];
  9234. switch (src0->type) {
  9235. case GGML_TYPE_F32:
  9236. {
  9237. ggml_compute_forward_step_f32(params, dst);
  9238. } break;
  9239. default:
  9240. {
  9241. GGML_ASSERT(false);
  9242. } break;
  9243. }
  9244. }
  9245. // ggml_compute_forward_tanh
  9246. static void ggml_compute_forward_tanh_f32(
  9247. const struct ggml_compute_params * params,
  9248. struct ggml_tensor * dst) {
  9249. const struct ggml_tensor * src0 = dst->src[0];
  9250. assert(params->ith == 0);
  9251. assert(ggml_are_same_shape(src0, dst));
  9252. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9253. return;
  9254. }
  9255. const int n = ggml_nrows(src0);
  9256. const int nc = src0->ne[0];
  9257. assert(dst->nb[0] == sizeof(float));
  9258. assert(src0->nb[0] == sizeof(float));
  9259. for (int i = 0; i < n; i++) {
  9260. ggml_vec_tanh_f32(nc,
  9261. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9262. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9263. }
  9264. }
  9265. static void ggml_compute_forward_tanh(
  9266. const struct ggml_compute_params * params,
  9267. struct ggml_tensor * dst) {
  9268. const struct ggml_tensor * src0 = dst->src[0];
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_tanh_f32(params, dst);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ASSERT(false);
  9277. } break;
  9278. }
  9279. }
  9280. // ggml_compute_forward_elu
  9281. static void ggml_compute_forward_elu_f32(
  9282. const struct ggml_compute_params * params,
  9283. struct ggml_tensor * dst) {
  9284. const struct ggml_tensor * src0 = dst->src[0];
  9285. assert(params->ith == 0);
  9286. assert(ggml_are_same_shape(src0, dst));
  9287. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9288. return;
  9289. }
  9290. const int n = ggml_nrows(src0);
  9291. const int nc = src0->ne[0];
  9292. assert(dst->nb[0] == sizeof(float));
  9293. assert(src0->nb[0] == sizeof(float));
  9294. for (int i = 0; i < n; i++) {
  9295. ggml_vec_elu_f32(nc,
  9296. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9297. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9298. }
  9299. }
  9300. static void ggml_compute_forward_elu(
  9301. const struct ggml_compute_params * params,
  9302. struct ggml_tensor * dst) {
  9303. const struct ggml_tensor * src0 = dst->src[0];
  9304. switch (src0->type) {
  9305. case GGML_TYPE_F32:
  9306. {
  9307. ggml_compute_forward_elu_f32(params, dst);
  9308. } break;
  9309. default:
  9310. {
  9311. GGML_ASSERT(false);
  9312. } break;
  9313. }
  9314. }
  9315. // ggml_compute_forward_relu
  9316. static void ggml_compute_forward_relu_f32(
  9317. const struct ggml_compute_params * params,
  9318. struct ggml_tensor * dst) {
  9319. const struct ggml_tensor * src0 = dst->src[0];
  9320. assert(params->ith == 0);
  9321. assert(ggml_are_same_shape(src0, dst));
  9322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9323. return;
  9324. }
  9325. const int n = ggml_nrows(src0);
  9326. const int nc = src0->ne[0];
  9327. assert(dst->nb[0] == sizeof(float));
  9328. assert(src0->nb[0] == sizeof(float));
  9329. for (int i = 0; i < n; i++) {
  9330. ggml_vec_relu_f32(nc,
  9331. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9332. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9333. }
  9334. }
  9335. static void ggml_compute_forward_relu(
  9336. const struct ggml_compute_params * params,
  9337. struct ggml_tensor * dst) {
  9338. const struct ggml_tensor * src0 = dst->src[0];
  9339. switch (src0->type) {
  9340. case GGML_TYPE_F32:
  9341. {
  9342. ggml_compute_forward_relu_f32(params, dst);
  9343. } break;
  9344. default:
  9345. {
  9346. GGML_ASSERT(false);
  9347. } break;
  9348. }
  9349. }
  9350. // ggml_compute_forward_sigmoid
  9351. static void ggml_compute_forward_sigmoid_f32(
  9352. const struct ggml_compute_params * params,
  9353. struct ggml_tensor * dst) {
  9354. const struct ggml_tensor * src0 = dst->src[0];
  9355. assert(params->ith == 0);
  9356. assert(ggml_are_same_shape(src0, dst));
  9357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9358. return;
  9359. }
  9360. const int n = ggml_nrows(src0);
  9361. const int nc = src0->ne[0];
  9362. assert(dst->nb[0] == sizeof(float));
  9363. assert(src0->nb[0] == sizeof(float));
  9364. for (int i = 0; i < n; i++) {
  9365. ggml_vec_sigmoid_f32(nc,
  9366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9367. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9368. }
  9369. }
  9370. static void ggml_compute_forward_sigmoid(
  9371. const struct ggml_compute_params * params,
  9372. struct ggml_tensor * dst) {
  9373. const struct ggml_tensor * src0 = dst->src[0];
  9374. switch (src0->type) {
  9375. case GGML_TYPE_F32:
  9376. {
  9377. ggml_compute_forward_sigmoid_f32(params, dst);
  9378. } break;
  9379. default:
  9380. {
  9381. GGML_ASSERT(false);
  9382. } break;
  9383. }
  9384. }
  9385. // ggml_compute_forward_gelu
  9386. static void ggml_compute_forward_gelu_f32(
  9387. const struct ggml_compute_params * params,
  9388. struct ggml_tensor * dst) {
  9389. const struct ggml_tensor * src0 = dst->src[0];
  9390. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9391. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9392. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9394. return;
  9395. }
  9396. const int ith = params->ith;
  9397. const int nth = params->nth;
  9398. const int nc = src0->ne[0];
  9399. const int nr = ggml_nrows(src0);
  9400. // rows per thread
  9401. const int dr = (nr + nth - 1)/nth;
  9402. // row range for this thread
  9403. const int ir0 = dr*ith;
  9404. const int ir1 = MIN(ir0 + dr, nr);
  9405. for (int i1 = ir0; i1 < ir1; i1++) {
  9406. ggml_vec_gelu_f32(nc,
  9407. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9408. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9409. #ifndef NDEBUG
  9410. for (int k = 0; k < nc; k++) {
  9411. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9412. UNUSED(x);
  9413. assert(!isnan(x));
  9414. assert(!isinf(x));
  9415. }
  9416. #endif
  9417. }
  9418. }
  9419. static void ggml_compute_forward_gelu(
  9420. const struct ggml_compute_params * params,
  9421. struct ggml_tensor * dst) {
  9422. const struct ggml_tensor * src0 = dst->src[0];
  9423. switch (src0->type) {
  9424. case GGML_TYPE_F32:
  9425. {
  9426. ggml_compute_forward_gelu_f32(params, dst);
  9427. } break;
  9428. default:
  9429. {
  9430. GGML_ASSERT(false);
  9431. } break;
  9432. }
  9433. }
  9434. // ggml_compute_forward_gelu_quick
  9435. static void ggml_compute_forward_gelu_quick_f32(
  9436. const struct ggml_compute_params * params,
  9437. struct ggml_tensor * dst) {
  9438. const struct ggml_tensor * src0 = dst->src[0];
  9439. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9440. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9441. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9443. return;
  9444. }
  9445. const int ith = params->ith;
  9446. const int nth = params->nth;
  9447. const int nc = src0->ne[0];
  9448. const int nr = ggml_nrows(src0);
  9449. // rows per thread
  9450. const int dr = (nr + nth - 1)/nth;
  9451. // row range for this thread
  9452. const int ir0 = dr*ith;
  9453. const int ir1 = MIN(ir0 + dr, nr);
  9454. for (int i1 = ir0; i1 < ir1; i1++) {
  9455. ggml_vec_gelu_quick_f32(nc,
  9456. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9457. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9458. #ifndef NDEBUG
  9459. for (int k = 0; k < nc; k++) {
  9460. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9461. UNUSED(x);
  9462. assert(!isnan(x));
  9463. assert(!isinf(x));
  9464. }
  9465. #endif
  9466. }
  9467. }
  9468. static void ggml_compute_forward_gelu_quick(
  9469. const struct ggml_compute_params * params,
  9470. struct ggml_tensor * dst) {
  9471. const struct ggml_tensor * src0 = dst->src[0];
  9472. switch (src0->type) {
  9473. case GGML_TYPE_F32:
  9474. {
  9475. ggml_compute_forward_gelu_quick_f32(params, dst);
  9476. } break;
  9477. default:
  9478. {
  9479. GGML_ASSERT(false);
  9480. } break;
  9481. }
  9482. }
  9483. // ggml_compute_forward_silu
  9484. static void ggml_compute_forward_silu_f32(
  9485. const struct ggml_compute_params * params,
  9486. struct ggml_tensor * dst) {
  9487. const struct ggml_tensor * src0 = dst->src[0];
  9488. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9489. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9490. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9491. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9492. return;
  9493. }
  9494. const int ith = params->ith;
  9495. const int nth = params->nth;
  9496. const int nc = src0->ne[0];
  9497. const int nr = ggml_nrows(src0);
  9498. // rows per thread
  9499. const int dr = (nr + nth - 1)/nth;
  9500. // row range for this thread
  9501. const int ir0 = dr*ith;
  9502. const int ir1 = MIN(ir0 + dr, nr);
  9503. for (int i1 = ir0; i1 < ir1; i1++) {
  9504. ggml_vec_silu_f32(nc,
  9505. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9506. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9507. #ifndef NDEBUG
  9508. for (int k = 0; k < nc; k++) {
  9509. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9510. UNUSED(x);
  9511. assert(!isnan(x));
  9512. assert(!isinf(x));
  9513. }
  9514. #endif
  9515. }
  9516. }
  9517. static void ggml_compute_forward_silu(
  9518. const struct ggml_compute_params * params,
  9519. struct ggml_tensor * dst) {
  9520. const struct ggml_tensor * src0 = dst->src[0];
  9521. switch (src0->type) {
  9522. case GGML_TYPE_F32:
  9523. {
  9524. ggml_compute_forward_silu_f32(params, dst);
  9525. } break;
  9526. default:
  9527. {
  9528. GGML_ASSERT(false);
  9529. } break;
  9530. }
  9531. }
  9532. // ggml_compute_forward_leaky_relu
  9533. static void ggml_compute_forward_leaky_relu_f32(
  9534. const struct ggml_compute_params * params,
  9535. struct ggml_tensor * dst) {
  9536. const struct ggml_tensor * src0 = dst->src[0];
  9537. assert(params->ith == 0);
  9538. assert(ggml_are_same_shape(src0, dst));
  9539. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9540. return;
  9541. }
  9542. const int n = ggml_nrows(src0);
  9543. const int nc = src0->ne[0];
  9544. float negative_slope;
  9545. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9546. assert(dst->nb[0] == sizeof(float));
  9547. assert(src0->nb[0] == sizeof(float));
  9548. for (int i = 0; i < n; i++) {
  9549. ggml_vec_leaky_relu_f32(nc,
  9550. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9551. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9552. }
  9553. }
  9554. static void ggml_compute_forward_leaky_relu(
  9555. const struct ggml_compute_params * params,
  9556. struct ggml_tensor * dst) {
  9557. const struct ggml_tensor * src0 = dst->src[0];
  9558. switch (src0->type) {
  9559. case GGML_TYPE_F32:
  9560. {
  9561. ggml_compute_forward_leaky_relu_f32(params, dst);
  9562. } break;
  9563. default:
  9564. {
  9565. GGML_ASSERT(false);
  9566. } break;
  9567. }
  9568. }
  9569. // ggml_compute_forward_silu_back
  9570. static void ggml_compute_forward_silu_back_f32(
  9571. const struct ggml_compute_params * params,
  9572. struct ggml_tensor * dst) {
  9573. const struct ggml_tensor * src0 = dst->src[0];
  9574. const struct ggml_tensor * grad = dst->src[1];
  9575. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9576. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9577. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9578. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9579. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9580. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9581. return;
  9582. }
  9583. const int ith = params->ith;
  9584. const int nth = params->nth;
  9585. const int nc = src0->ne[0];
  9586. const int nr = ggml_nrows(src0);
  9587. // rows per thread
  9588. const int dr = (nr + nth - 1)/nth;
  9589. // row range for this thread
  9590. const int ir0 = dr*ith;
  9591. const int ir1 = MIN(ir0 + dr, nr);
  9592. for (int i1 = ir0; i1 < ir1; i1++) {
  9593. ggml_vec_silu_backward_f32(nc,
  9594. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9595. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9596. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9597. #ifndef NDEBUG
  9598. for (int k = 0; k < nc; k++) {
  9599. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9600. UNUSED(x);
  9601. assert(!isnan(x));
  9602. assert(!isinf(x));
  9603. }
  9604. #endif
  9605. }
  9606. }
  9607. static void ggml_compute_forward_silu_back(
  9608. const struct ggml_compute_params * params,
  9609. struct ggml_tensor * dst) {
  9610. const struct ggml_tensor * src0 = dst->src[0];
  9611. switch (src0->type) {
  9612. case GGML_TYPE_F32:
  9613. {
  9614. ggml_compute_forward_silu_back_f32(params, dst);
  9615. } break;
  9616. default:
  9617. {
  9618. GGML_ASSERT(false);
  9619. } break;
  9620. }
  9621. }
  9622. static void ggml_compute_forward_hardswish_f32(
  9623. const struct ggml_compute_params * params,
  9624. struct ggml_tensor * dst) {
  9625. const struct ggml_tensor * src0 = dst->src[0];
  9626. assert(params->ith == 0);
  9627. assert(ggml_are_same_shape(src0, dst));
  9628. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9629. return;
  9630. }
  9631. const int n = ggml_nrows(src0);
  9632. const int nc = src0->ne[0];
  9633. assert(dst->nb[0] == sizeof(float));
  9634. assert(src0->nb[0] == sizeof(float));
  9635. for (int i = 0; i < n; i++) {
  9636. ggml_vec_hardswish_f32(nc,
  9637. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9638. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9639. }
  9640. }
  9641. static void ggml_compute_forward_hardswish(
  9642. const struct ggml_compute_params * params,
  9643. struct ggml_tensor * dst) {
  9644. const struct ggml_tensor * src0 = dst->src[0];
  9645. switch (src0->type) {
  9646. case GGML_TYPE_F32:
  9647. {
  9648. ggml_compute_forward_hardswish_f32(params, dst);
  9649. } break;
  9650. default:
  9651. {
  9652. GGML_ASSERT(false);
  9653. } break;
  9654. }
  9655. }
  9656. static void ggml_compute_forward_hardsigmoid_f32(
  9657. const struct ggml_compute_params * params,
  9658. struct ggml_tensor * dst) {
  9659. const struct ggml_tensor * src0 = dst->src[0];
  9660. assert(params->ith == 0);
  9661. assert(ggml_are_same_shape(src0, dst));
  9662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9663. return;
  9664. }
  9665. const int n = ggml_nrows(src0);
  9666. const int nc = src0->ne[0];
  9667. assert(dst->nb[0] == sizeof(float));
  9668. assert(src0->nb[0] == sizeof(float));
  9669. for (int i = 0; i < n; i++) {
  9670. ggml_vec_hardsigmoid_f32(nc,
  9671. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9672. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9673. }
  9674. }
  9675. static void ggml_compute_forward_hardsigmoid(
  9676. const struct ggml_compute_params * params,
  9677. struct ggml_tensor * dst) {
  9678. const struct ggml_tensor * src0 = dst->src[0];
  9679. switch (src0->type) {
  9680. case GGML_TYPE_F32:
  9681. {
  9682. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9683. } break;
  9684. default:
  9685. {
  9686. GGML_ASSERT(false);
  9687. } break;
  9688. }
  9689. }
  9690. // ggml_compute_forward_norm
  9691. static void ggml_compute_forward_norm_f32(
  9692. const struct ggml_compute_params * params,
  9693. struct ggml_tensor * dst) {
  9694. const struct ggml_tensor * src0 = dst->src[0];
  9695. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9696. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9697. return;
  9698. }
  9699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9700. const int ith = params->ith;
  9701. const int nth = params->nth;
  9702. GGML_TENSOR_UNARY_OP_LOCALS
  9703. float eps;
  9704. memcpy(&eps, dst->op_params, sizeof(float));
  9705. GGML_ASSERT(eps > 0.0f);
  9706. // TODO: optimize
  9707. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9708. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9709. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9710. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9711. ggml_float sum = 0.0;
  9712. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9713. sum += (ggml_float)x[i00];
  9714. }
  9715. float mean = sum/ne00;
  9716. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9717. ggml_float sum2 = 0.0;
  9718. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9719. float v = x[i00] - mean;
  9720. y[i00] = v;
  9721. sum2 += (ggml_float)(v*v);
  9722. }
  9723. float variance = sum2/ne00;
  9724. const float scale = 1.0f/sqrtf(variance + eps);
  9725. ggml_vec_scale_f32(ne00, y, scale);
  9726. }
  9727. }
  9728. }
  9729. }
  9730. static void ggml_compute_forward_norm(
  9731. const struct ggml_compute_params * params,
  9732. struct ggml_tensor * dst) {
  9733. const struct ggml_tensor * src0 = dst->src[0];
  9734. switch (src0->type) {
  9735. case GGML_TYPE_F32:
  9736. {
  9737. ggml_compute_forward_norm_f32(params, dst);
  9738. } break;
  9739. default:
  9740. {
  9741. GGML_ASSERT(false);
  9742. } break;
  9743. }
  9744. }
  9745. // ggml_compute_forward_group_rms_norm
  9746. static void ggml_compute_forward_rms_norm_f32(
  9747. const struct ggml_compute_params * params,
  9748. struct ggml_tensor * dst) {
  9749. const struct ggml_tensor * src0 = dst->src[0];
  9750. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9751. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9752. return;
  9753. }
  9754. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9755. const int ith = params->ith;
  9756. const int nth = params->nth;
  9757. GGML_TENSOR_UNARY_OP_LOCALS
  9758. float eps;
  9759. memcpy(&eps, dst->op_params, sizeof(float));
  9760. GGML_ASSERT(eps > 0.0f);
  9761. // TODO: optimize
  9762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9764. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9765. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9766. ggml_float sum = 0.0;
  9767. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9768. sum += (ggml_float)(x[i00] * x[i00]);
  9769. }
  9770. const float mean = sum/ne00;
  9771. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9772. memcpy(y, x, ne00 * sizeof(float));
  9773. // for (int i00 = 0; i00 < ne00; i00++) {
  9774. // y[i00] = x[i00];
  9775. // }
  9776. const float scale = 1.0f/sqrtf(mean + eps);
  9777. ggml_vec_scale_f32(ne00, y, scale);
  9778. }
  9779. }
  9780. }
  9781. }
  9782. static void ggml_compute_forward_rms_norm(
  9783. const struct ggml_compute_params * params,
  9784. struct ggml_tensor * dst) {
  9785. const struct ggml_tensor * src0 = dst->src[0];
  9786. switch (src0->type) {
  9787. case GGML_TYPE_F32:
  9788. {
  9789. ggml_compute_forward_rms_norm_f32(params, dst);
  9790. } break;
  9791. default:
  9792. {
  9793. GGML_ASSERT(false);
  9794. } break;
  9795. }
  9796. }
  9797. static void ggml_compute_forward_rms_norm_back_f32(
  9798. const struct ggml_compute_params * params,
  9799. struct ggml_tensor * dst) {
  9800. const struct ggml_tensor * src0 = dst->src[0];
  9801. const struct ggml_tensor * src1 = dst->src[1];
  9802. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9804. return;
  9805. }
  9806. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9807. const int ith = params->ith;
  9808. const int nth = params->nth;
  9809. GGML_TENSOR_BINARY_OP_LOCALS
  9810. float eps;
  9811. memcpy(&eps, dst->op_params, sizeof(float));
  9812. // TODO: optimize
  9813. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9814. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9815. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9816. // src1 is same shape as src0 => same indices
  9817. const int64_t i11 = i01;
  9818. const int64_t i12 = i02;
  9819. const int64_t i13 = i03;
  9820. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9821. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9822. ggml_float sum_xx = 0.0;
  9823. ggml_float sum_xdz = 0.0;
  9824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9825. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9826. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9827. }
  9828. //const float mean = (float)(sum_xx)/ne00;
  9829. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9830. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9831. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9832. // we could cache rms from forward pass to improve performance.
  9833. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9834. //const float rms = sqrtf(mean_eps);
  9835. const float rrms = 1.0f / sqrtf(mean_eps);
  9836. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9837. {
  9838. // z = rms_norm(x)
  9839. //
  9840. // rms_norm(src0) =
  9841. // scale(
  9842. // src0,
  9843. // div(
  9844. // 1,
  9845. // sqrt(
  9846. // add(
  9847. // scale(
  9848. // sum(
  9849. // sqr(
  9850. // src0)),
  9851. // (1.0/N)),
  9852. // eps))));
  9853. // postorder:
  9854. // ## op args grad
  9855. // 00 param src0 grad[#00]
  9856. // 01 const 1
  9857. // 02 sqr (#00) grad[#02]
  9858. // 03 sum (#02) grad[#03]
  9859. // 04 const 1/N
  9860. // 05 scale (#03, #04) grad[#05]
  9861. // 06 const eps
  9862. // 07 add (#05, #06) grad[#07]
  9863. // 08 sqrt (#07) grad[#08]
  9864. // 09 div (#01,#08) grad[#09]
  9865. // 10 scale (#00,#09) grad[#10]
  9866. //
  9867. // backward pass, given grad[#10]
  9868. // #10: scale
  9869. // grad[#00] += scale(grad[#10],#09)
  9870. // grad[#09] += sum(mul(grad[#10],#00))
  9871. // #09: div
  9872. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9873. // #08: sqrt
  9874. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9875. // #07: add
  9876. // grad[#05] += grad[#07]
  9877. // #05: scale
  9878. // grad[#03] += scale(grad[#05],#04)
  9879. // #03: sum
  9880. // grad[#02] += repeat(grad[#03], #02)
  9881. // #02:
  9882. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9883. //
  9884. // substitute and simplify:
  9885. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9886. // grad[#02] = repeat(grad[#03], #02)
  9887. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9888. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9889. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9890. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9891. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9892. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9893. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9894. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9895. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9896. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9897. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9898. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9899. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9900. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9901. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9902. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9903. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9904. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9905. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9906. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9907. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9908. // a = b*c + d*e
  9909. // a = b*c*f/f + d*e*f/f
  9910. // a = (b*c*f + d*e*f)*(1/f)
  9911. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9912. // a = (b + d*e/c)*c
  9913. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9914. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9915. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9916. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9917. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9918. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9919. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9920. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9921. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9922. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9923. }
  9924. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9925. // post-order:
  9926. // dx := x
  9927. // dx := scale(dx,-mean_xdz/mean_eps)
  9928. // dx := add(dx, dz)
  9929. // dx := scale(dx, rrms)
  9930. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9931. ggml_vec_cpy_f32 (ne00, dx, x);
  9932. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9933. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9934. ggml_vec_acc_f32 (ne00, dx, dz);
  9935. ggml_vec_scale_f32(ne00, dx, rrms);
  9936. }
  9937. }
  9938. }
  9939. }
  9940. static void ggml_compute_forward_rms_norm_back(
  9941. const struct ggml_compute_params * params,
  9942. struct ggml_tensor * dst) {
  9943. const struct ggml_tensor * src0 = dst->src[0];
  9944. switch (src0->type) {
  9945. case GGML_TYPE_F32:
  9946. {
  9947. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9948. } break;
  9949. default:
  9950. {
  9951. GGML_ASSERT(false);
  9952. } break;
  9953. }
  9954. }
  9955. // ggml_compute_forward_group_norm
  9956. static void ggml_compute_forward_group_norm_f32(
  9957. const struct ggml_compute_params * params,
  9958. struct ggml_tensor * dst) {
  9959. const struct ggml_tensor * src0 = dst->src[0];
  9960. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9962. return;
  9963. }
  9964. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9965. const int ith = params->ith;
  9966. const int nth = params->nth;
  9967. GGML_TENSOR_UNARY_OP_LOCALS
  9968. const float eps = 1e-6f; // TODO: make this a parameter
  9969. // TODO: optimize
  9970. int n_channels = src0->ne[2];
  9971. int n_groups = dst->op_params[0];
  9972. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9973. for (int i = ith; i < n_groups; i += nth) {
  9974. int start = i * n_channels_per_group;
  9975. int end = start + n_channels_per_group;
  9976. if (end > n_channels) {
  9977. end = n_channels;
  9978. }
  9979. int step = end - start;
  9980. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9981. ggml_float sum = 0.0;
  9982. for (int64_t i02 = start; i02 < end; i02++) {
  9983. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9984. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9985. ggml_float sumr = 0.0;
  9986. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9987. sumr += (ggml_float)x[i00];
  9988. }
  9989. sum += sumr;
  9990. }
  9991. }
  9992. const float mean = sum / (ne00 * ne01 * step);
  9993. ggml_float sum2 = 0.0;
  9994. for (int64_t i02 = start; i02 < end; i02++) {
  9995. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9996. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9997. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9998. ggml_float sumr = 0.0;
  9999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10000. float v = x[i00] - mean;
  10001. y[i00] = v;
  10002. sumr += (ggml_float)(v * v);
  10003. }
  10004. sum2 += sumr;
  10005. }
  10006. }
  10007. const float variance = sum2 / (ne00 * ne01 * step);
  10008. const float scale = 1.0f / sqrtf(variance + eps);
  10009. for (int64_t i02 = start; i02 < end; i02++) {
  10010. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10011. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10012. ggml_vec_scale_f32(ne00, y, scale);
  10013. }
  10014. }
  10015. }
  10016. }
  10017. }
  10018. static void ggml_compute_forward_group_norm(
  10019. const struct ggml_compute_params * params,
  10020. struct ggml_tensor * dst) {
  10021. const struct ggml_tensor * src0 = dst->src[0];
  10022. switch (src0->type) {
  10023. case GGML_TYPE_F32:
  10024. {
  10025. ggml_compute_forward_group_norm_f32(params, dst);
  10026. } break;
  10027. default:
  10028. {
  10029. GGML_ASSERT(false);
  10030. } break;
  10031. }
  10032. }
  10033. // ggml_compute_forward_mul_mat
  10034. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10035. // helper function to determine if it is better to use BLAS or not
  10036. // for large matrices, BLAS is faster
  10037. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10038. const struct ggml_tensor * src0 = dst->src[0];
  10039. const struct ggml_tensor * src1 = dst->src[1];
  10040. //const int64_t ne00 = src0->ne[0];
  10041. //const int64_t ne01 = src0->ne[1];
  10042. const int64_t ne10 = src1->ne[0];
  10043. const int64_t ne0 = dst->ne[0];
  10044. const int64_t ne1 = dst->ne[1];
  10045. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10046. // all the experts for each batch element and the processing would become incredibly slow
  10047. // TODO: find the optimal values for these
  10048. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10049. ggml_is_contiguous(src0) &&
  10050. ggml_is_contiguous(src1) &&
  10051. //src0->type == GGML_TYPE_F32 &&
  10052. src1->type == GGML_TYPE_F32 &&
  10053. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10054. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10055. return true;
  10056. }
  10057. return false;
  10058. }
  10059. #endif
  10060. static void ggml_compute_forward_mul_mat_one_chunk(
  10061. const struct ggml_compute_params * params,
  10062. struct ggml_tensor * dst,
  10063. const int64_t num_rows_per_vec_dot,
  10064. const int64_t ir0_start,
  10065. const int64_t ir0_end,
  10066. const int64_t ir1_start,
  10067. const int64_t ir1_end) {
  10068. const struct ggml_tensor * src0 = dst->src[0];
  10069. const struct ggml_tensor * src1 = dst->src[1];
  10070. GGML_TENSOR_BINARY_OP_LOCALS
  10071. const enum ggml_type type = src0->type;
  10072. const bool src1_cont = ggml_is_contiguous(src1);
  10073. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10074. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10075. // broadcast factors
  10076. const int64_t r2 = ne12 / ne02;
  10077. const int64_t r3 = ne13 / ne03;
  10078. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10079. // threads with no work simply yield (not sure if it helps)
  10080. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10081. return;
  10082. }
  10083. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10084. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10085. assert(ne12 % ne02 == 0);
  10086. assert(ne13 % ne03 == 0);
  10087. // block-tiling attempt
  10088. const int64_t blck_0 = 16;
  10089. const int64_t blck_1 = 16;
  10090. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10091. // attempt to reduce false-sharing (does not seem to make a difference)
  10092. // 16 * 2, accounting for mmla kernels
  10093. float tmp[32];
  10094. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10095. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10096. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10097. const int64_t i13 = (ir1 / (ne12 * ne1));
  10098. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10099. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10100. // broadcast src0 into src1
  10101. const int64_t i03 = i13 / r3;
  10102. const int64_t i02 = i12 / r2;
  10103. const int64_t i1 = i11;
  10104. const int64_t i2 = i12;
  10105. const int64_t i3 = i13;
  10106. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10107. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10108. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10109. // the original src1 data pointer, so we should index using the indices directly
  10110. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10111. const char * src1_col = (const char*)wdata +
  10112. (src1_cont || src1->type != vec_dot_type
  10113. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10114. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10115. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10116. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10117. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10118. //}
  10119. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10120. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10121. }
  10122. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10123. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10124. }
  10125. }
  10126. }
  10127. }
  10128. }
  10129. static void ggml_compute_forward_mul_mat(
  10130. const struct ggml_compute_params * params,
  10131. struct ggml_tensor * dst,
  10132. struct ggml_compute_state * state) {
  10133. const struct ggml_tensor * src0 = dst->src[0];
  10134. const struct ggml_tensor * src1 = dst->src[1];
  10135. int64_t t0 = ggml_perf_time_us();
  10136. UNUSED(t0);
  10137. GGML_TENSOR_BINARY_OP_LOCALS
  10138. const int ith = params->ith;
  10139. const int nth = params->nth;
  10140. const enum ggml_type type = src0->type;
  10141. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10142. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10143. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10144. GGML_ASSERT(ne0 == ne01);
  10145. GGML_ASSERT(ne1 == ne11);
  10146. GGML_ASSERT(ne2 == ne12);
  10147. GGML_ASSERT(ne3 == ne13);
  10148. // we don't support permuted src0 or src1
  10149. GGML_ASSERT(nb00 == ggml_type_size(type));
  10150. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10151. // dst cannot be transposed or permuted
  10152. GGML_ASSERT(nb0 == sizeof(float));
  10153. GGML_ASSERT(nb0 <= nb1);
  10154. GGML_ASSERT(nb1 <= nb2);
  10155. GGML_ASSERT(nb2 <= nb3);
  10156. // broadcast factors
  10157. const int64_t r2 = ne12 / ne02;
  10158. const int64_t r3 = ne13 / ne03;
  10159. UNUSED(r2);
  10160. UNUSED(r3);
  10161. // nb01 >= nb00 - src0 is not transposed
  10162. // compute by src0 rows
  10163. #if defined(GGML_USE_CLBLAST)
  10164. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10165. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10166. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10167. }
  10168. return;
  10169. }
  10170. #endif
  10171. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10172. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10173. const int64_t ne_plane = ne01*ne00;
  10174. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10175. UNUSED(desired_wsize);
  10176. if (params->type == GGML_TASK_TYPE_INIT) {
  10177. if (type != GGML_TYPE_F32) {
  10178. assert(params->wsize >= desired_wsize);
  10179. // parallelize by src0 rows
  10180. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10181. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10182. // broadcast src0 into src1 across 2nd,3rd dimension
  10183. const int64_t i03 = i13/r3;
  10184. const int64_t i02 = i12/r2;
  10185. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10186. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10187. ggml_to_float_t const to_float = type_traits[type].to_float;
  10188. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10189. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10190. }
  10191. }
  10192. }
  10193. }
  10194. return;
  10195. }
  10196. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10197. return;
  10198. }
  10199. // perform sgemm, parallelization controlled by blas lib
  10200. if (ith != 0) {
  10201. return;
  10202. }
  10203. //const int64_t tgemm0 = ggml_perf_time_us();
  10204. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10205. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10206. const int64_t i03 = i13/r3;
  10207. const int64_t i02 = i12/r2;
  10208. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10209. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10210. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10211. if (type != GGML_TYPE_F32) {
  10212. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10213. }
  10214. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10215. ne1, ne01, ne10,
  10216. 1.0f, y, ne10,
  10217. x, ne00,
  10218. 0.0f, d, ne01);
  10219. }
  10220. }
  10221. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10222. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10223. return;
  10224. }
  10225. #endif
  10226. #if GGML_USE_LLAMAFILE
  10227. const bool src1_cont = ggml_is_contiguous(src1);
  10228. if (src1_cont) {
  10229. for (int64_t i13 = 0; i13 < ne13; i13++)
  10230. for (int64_t i12 = 0; i12 < ne12; i12++)
  10231. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10232. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10233. nb01/ggml_type_size(src0->type),
  10234. (const char *)src1->data + i12*nb12 + i13*nb13,
  10235. nb11/ggml_type_size(src1->type),
  10236. (char *)dst->data + i12*nb2 + i13*nb3,
  10237. nb1/ggml_type_size(dst->type),
  10238. ith, nth,
  10239. params->type,
  10240. src0->type,
  10241. src1->type,
  10242. dst->type))
  10243. goto UseGgmlGemm1;
  10244. return;
  10245. }
  10246. UseGgmlGemm1:;
  10247. #endif
  10248. if (params->type == GGML_TASK_TYPE_INIT) {
  10249. if (ith != 0) {
  10250. return;
  10251. }
  10252. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10253. atomic_store(&state->shared->current_chunk, nth);
  10254. if (src1->type != vec_dot_type) {
  10255. char * wdata = params->wdata;
  10256. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10257. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10258. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10259. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10260. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10261. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10262. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10263. wdata += row_size;
  10264. }
  10265. }
  10266. }
  10267. }
  10268. return;
  10269. }
  10270. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10271. return;
  10272. }
  10273. #if GGML_USE_LLAMAFILE
  10274. if (src1->type != vec_dot_type) {
  10275. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10276. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10277. for (int64_t i13 = 0; i13 < ne13; i13++)
  10278. for (int64_t i12 = 0; i12 < ne12; i12++)
  10279. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10280. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10281. nb01/ggml_type_size(src0->type),
  10282. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10283. row_size/ggml_type_size(vec_dot_type),
  10284. (char *)dst->data + i12*nb2 + i13*nb3,
  10285. nb1/ggml_type_size(dst->type),
  10286. ith, nth,
  10287. params->type,
  10288. src0->type,
  10289. vec_dot_type,
  10290. dst->type))
  10291. goto UseGgmlGemm2;
  10292. return;
  10293. }
  10294. UseGgmlGemm2:;
  10295. #endif
  10296. #ifdef GGML_PERF
  10297. int chunks_executed = 0;
  10298. UNUSED(chunks_executed);
  10299. #endif
  10300. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10301. const int64_t nr0 = ne0;
  10302. // This is the size of the rest of the dimensions of the result
  10303. const int64_t nr1 = ne1 * ne2 * ne3;
  10304. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10305. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10306. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10307. // this check can be removed once they are extended to support odd numbered rows/cols too
  10308. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10309. num_rows_per_vec_dot = 1;
  10310. }
  10311. // Now select a reasonable chunk size.
  10312. int chunk_size = 16;
  10313. // We need to step up the size if it's small
  10314. if (nr0 == 1 || nr1 == 1) {
  10315. chunk_size = 64;
  10316. }
  10317. // distribute the work across the inner or outer loop based on which one is larger
  10318. // The number of chunks in the 0/1 dim.
  10319. // CEIL(nr0/chunk_size)
  10320. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10321. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10322. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10323. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10324. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10325. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10326. // distribute the thread work across the inner or outer loop based on which one is larger
  10327. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10328. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10329. }
  10330. // The number of elements in each chunk
  10331. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10332. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10333. //if (ith == 0)
  10334. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10335. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10336. int current_chunk = ith;
  10337. while (current_chunk < nchunk0 * nchunk1) {
  10338. const int64_t ith0 = current_chunk % nchunk0;
  10339. const int64_t ith1 = current_chunk / nchunk0;
  10340. const int64_t ir0_start = dr0 * ith0;
  10341. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10342. const int64_t ir1_start = dr1 * ith1;
  10343. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10344. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10345. #ifdef GGML_PERF
  10346. chunks_executed++;
  10347. #endif
  10348. if (nth >= nchunk0 * nchunk1) {
  10349. break;
  10350. }
  10351. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10352. }
  10353. #ifdef GGML_PERF
  10354. // These numbers are useful when trying to measure how well the threading scheduling works.
  10355. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10356. //float time = (ggml_perf_time_us() - t0);
  10357. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10358. #endif
  10359. }
  10360. // ggml_compute_forward_mul_mat_id
  10361. static void ggml_compute_forward_mul_mat_id(
  10362. const struct ggml_compute_params * params,
  10363. struct ggml_tensor * dst) {
  10364. const struct ggml_tensor * src0 = dst->src[0];
  10365. const struct ggml_tensor * src1 = dst->src[1];
  10366. const struct ggml_tensor * ids = dst->src[2];
  10367. GGML_TENSOR_BINARY_OP_LOCALS
  10368. const int ith = params->ith;
  10369. const int nth = params->nth;
  10370. const enum ggml_type type = src0->type;
  10371. const bool src1_cont = ggml_is_contiguous(src1);
  10372. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10373. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10374. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10375. // we don't support permuted src0 or src1
  10376. GGML_ASSERT(nb00 == ggml_type_size(type));
  10377. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10378. // dst cannot be transposed or permuted
  10379. GGML_ASSERT(nb0 == sizeof(float));
  10380. GGML_ASSERT(nb0 <= nb1);
  10381. GGML_ASSERT(nb1 <= nb2);
  10382. GGML_ASSERT(nb2 <= nb3);
  10383. // row groups
  10384. const int n_ids = ids->ne[0]; // n_expert_used
  10385. const int n_as = ne02; // n_expert
  10386. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10387. (char *) params->wdata :
  10388. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10389. struct mmid_row_mapping {
  10390. int32_t i1;
  10391. int32_t i2;
  10392. };
  10393. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10394. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10395. if (params->type == GGML_TASK_TYPE_INIT) {
  10396. if (ith != 0) {
  10397. return;
  10398. }
  10399. char * wdata = params->wdata;
  10400. if (src1->type != vec_dot_type) {
  10401. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10402. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10403. assert(src1->type == GGML_TYPE_F32);
  10404. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10405. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10406. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10407. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10408. wdata += row_size;
  10409. }
  10410. }
  10411. }
  10412. }
  10413. // initialize matrix_row_counts
  10414. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10415. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10416. // group rows by src0 matrix
  10417. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10418. for (int id = 0; id < n_ids; ++id) {
  10419. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10420. assert(i02 >= 0 && i02 < n_as);
  10421. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10422. matrix_row_counts[i02] += 1;
  10423. }
  10424. }
  10425. return;
  10426. }
  10427. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10428. return;
  10429. }
  10430. // compute each matrix multiplication in sequence
  10431. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10432. const int64_t cne1 = matrix_row_counts[cur_a];
  10433. if (cne1 == 0) {
  10434. continue;
  10435. }
  10436. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10437. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10438. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10439. const int64_t nr0 = ne01; // src0 rows
  10440. const int64_t nr1 = cne1; // src1 rows
  10441. // distribute the thread work across the inner or outer loop based on which one is larger
  10442. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10443. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10444. const int64_t ith0 = ith % nth0;
  10445. const int64_t ith1 = ith / nth0;
  10446. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10447. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10448. const int64_t ir010 = dr0*ith0;
  10449. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10450. const int64_t ir110 = dr1*ith1;
  10451. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10452. // threads with no work simply yield (not sure if it helps)
  10453. //if (ir010 >= ir011 || ir110 >= ir111) {
  10454. // sched_yield();
  10455. // continue;
  10456. //}
  10457. // block-tiling attempt
  10458. const int64_t blck_0 = 16;
  10459. const int64_t blck_1 = 16;
  10460. // attempt to reduce false-sharing (does not seem to make a difference)
  10461. float tmp[16];
  10462. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10463. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10464. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10465. const int64_t _i12 = ir1; // logical row index for this expert
  10466. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10467. const int id = row_mapping.i1; // selected expert index
  10468. const int64_t i11 = id % ne11;
  10469. const int64_t i12 = row_mapping.i2; // row index in src1
  10470. const int64_t i1 = id; // selected expert index
  10471. const int64_t i2 = i12; // row
  10472. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10473. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10474. // the original src1 data pointer, so we should index using the indices directly
  10475. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10476. const char * src1_col = (const char *) wdata +
  10477. (src1_cont || src1->type != vec_dot_type
  10478. ? (i11 + i12*ne11)*row_size
  10479. : (i11*nb11 + i12*nb12));
  10480. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10481. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10482. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10483. //}
  10484. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10485. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10486. }
  10487. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10488. }
  10489. }
  10490. }
  10491. }
  10492. #undef MMID_MATRIX_ROW
  10493. }
  10494. // ggml_compute_forward_out_prod
  10495. static void ggml_compute_forward_out_prod_f32(
  10496. const struct ggml_compute_params * params,
  10497. struct ggml_tensor * dst) {
  10498. const struct ggml_tensor * src0 = dst->src[0];
  10499. const struct ggml_tensor * src1 = dst->src[1];
  10500. // int64_t t0 = ggml_perf_time_us();
  10501. // UNUSED(t0);
  10502. GGML_TENSOR_BINARY_OP_LOCALS
  10503. const int ith = params->ith;
  10504. const int nth = params->nth;
  10505. GGML_ASSERT(ne0 == ne00);
  10506. GGML_ASSERT(ne1 == ne10);
  10507. GGML_ASSERT(ne2 == ne02);
  10508. GGML_ASSERT(ne02 == ne12);
  10509. GGML_ASSERT(ne3 == ne13);
  10510. GGML_ASSERT(ne03 == ne13);
  10511. // we don't support permuted src0 or src1
  10512. GGML_ASSERT(nb00 == sizeof(float));
  10513. // dst cannot be transposed or permuted
  10514. GGML_ASSERT(nb0 == sizeof(float));
  10515. // GGML_ASSERT(nb0 <= nb1);
  10516. // GGML_ASSERT(nb1 <= nb2);
  10517. // GGML_ASSERT(nb2 <= nb3);
  10518. // nb01 >= nb00 - src0 is not transposed
  10519. // compute by src0 rows
  10520. // TODO: #if defined(GGML_USE_CLBLAST)
  10521. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10522. bool use_blas = ggml_is_matrix(src0) &&
  10523. ggml_is_matrix(src1) &&
  10524. ggml_is_contiguous(src0) &&
  10525. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10526. #endif
  10527. if (params->type == GGML_TASK_TYPE_INIT) {
  10528. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10529. if (use_blas) {
  10530. return;
  10531. }
  10532. #endif
  10533. if (ith != 0) {
  10534. return;
  10535. }
  10536. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10537. return;
  10538. }
  10539. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10540. return;
  10541. }
  10542. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10543. if (use_blas) {
  10544. if (params->ith != 0) { // All threads other than the first do no work.
  10545. return;
  10546. }
  10547. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10548. // src0: (k,n)
  10549. // src1: (k,m)
  10550. // dst: (m,n)
  10551. //
  10552. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10553. // Also expressed as (major,minor)
  10554. // a: (m,k): so src1 transposed
  10555. // b: (k,n): so src0
  10556. // c: (m,n)
  10557. //
  10558. // However, if ggml_is_transposed(src1) is true, then
  10559. // src1->data already contains a transposed version, so sgemm mustn't
  10560. // transpose it further.
  10561. int n = src0->ne[0];
  10562. int k = src0->ne[1];
  10563. int m = src1->ne[0];
  10564. int transposeA, lda;
  10565. if (!ggml_is_transposed(src1)) {
  10566. transposeA = CblasTrans;
  10567. lda = m;
  10568. } else {
  10569. transposeA = CblasNoTrans;
  10570. lda = k;
  10571. }
  10572. float * a = (float *) ((char *) src1->data);
  10573. float * b = (float *) ((char *) src0->data);
  10574. float * c = (float *) ((char *) dst->data);
  10575. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10576. return;
  10577. }
  10578. #endif
  10579. // dst[:,:,:,:] = 0
  10580. // for i2,i3:
  10581. // for i1:
  10582. // for i01:
  10583. // for i0:
  10584. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10585. // parallelize by last three dimensions
  10586. // total rows in dst
  10587. const int64_t nr = ne1*ne2*ne3;
  10588. // rows per thread
  10589. const int64_t dr = (nr + nth - 1)/nth;
  10590. // row range for this thread
  10591. const int64_t ir0 = dr*ith;
  10592. const int64_t ir1 = MIN(ir0 + dr, nr);
  10593. // block-tiling attempt
  10594. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10595. const int64_t blck_1 = 16;
  10596. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10597. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10598. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10599. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10600. for (int64_t ir = bir; ir < bir1; ++ir) {
  10601. // dst indices
  10602. const int64_t i3 = ir/(ne2*ne1);
  10603. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10604. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10605. const int64_t i02 = i2;
  10606. const int64_t i03 = i3;
  10607. //const int64_t i10 = i1;
  10608. const int64_t i12 = i2;
  10609. const int64_t i13 = i3;
  10610. #if GGML_VEC_MAD_UNROLL > 2
  10611. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10612. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10613. const int64_t i11 = i01;
  10614. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10615. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10616. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10617. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10618. }
  10619. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10620. const int64_t i11 = i01;
  10621. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10622. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10623. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10624. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10625. }
  10626. #else
  10627. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10628. const int64_t i11 = i01;
  10629. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10630. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10631. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10632. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10633. }
  10634. #endif
  10635. }
  10636. }
  10637. }
  10638. //int64_t t1 = ggml_perf_time_us();
  10639. //static int64_t acc = 0;
  10640. //acc += t1 - t0;
  10641. //if (t1 - t0 > 10) {
  10642. // printf("\n");
  10643. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10644. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10645. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10646. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10647. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10648. //}
  10649. }
  10650. static void ggml_compute_forward_out_prod_q_f32(
  10651. const struct ggml_compute_params * params,
  10652. struct ggml_tensor * dst) {
  10653. const struct ggml_tensor * src0 = dst->src[0];
  10654. const struct ggml_tensor * src1 = dst->src[1];
  10655. // int64_t t0 = ggml_perf_time_us();
  10656. // UNUSED(t0);
  10657. GGML_TENSOR_BINARY_OP_LOCALS;
  10658. const int ith = params->ith;
  10659. const int nth = params->nth;
  10660. const enum ggml_type type = src0->type;
  10661. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10662. GGML_ASSERT(ne02 == ne12);
  10663. GGML_ASSERT(ne03 == ne13);
  10664. GGML_ASSERT(ne2 == ne12);
  10665. GGML_ASSERT(ne3 == ne13);
  10666. // we don't support permuted src0 dim0
  10667. GGML_ASSERT(nb00 == ggml_type_size(type));
  10668. // dst dim0 cannot be transposed or permuted
  10669. GGML_ASSERT(nb0 == sizeof(float));
  10670. // GGML_ASSERT(nb0 <= nb1);
  10671. // GGML_ASSERT(nb1 <= nb2);
  10672. // GGML_ASSERT(nb2 <= nb3);
  10673. GGML_ASSERT(ne0 == ne00);
  10674. GGML_ASSERT(ne1 == ne10);
  10675. GGML_ASSERT(ne2 == ne02);
  10676. GGML_ASSERT(ne3 == ne03);
  10677. // nb01 >= nb00 - src0 is not transposed
  10678. // compute by src0 rows
  10679. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10680. if (params->type == GGML_TASK_TYPE_INIT) {
  10681. if (ith != 0) {
  10682. return;
  10683. }
  10684. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10685. return;
  10686. }
  10687. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10688. return;
  10689. }
  10690. // parallelize by last three dimensions
  10691. // total rows in dst
  10692. const int64_t nr = ne1*ne2*ne3;
  10693. // rows per thread
  10694. const int64_t dr = (nr + nth - 1)/nth;
  10695. // row range for this thread
  10696. const int64_t ir0 = dr*ith;
  10697. const int64_t ir1 = MIN(ir0 + dr, nr);
  10698. // dst[:,:,:,:] = 0
  10699. // for i2,i3:
  10700. // for i1:
  10701. // for i01:
  10702. // for i0:
  10703. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10704. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10705. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10706. // dst indices
  10707. const int64_t i3 = ir/(ne2*ne1);
  10708. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10709. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10710. const int64_t i02 = i2;
  10711. const int64_t i03 = i3;
  10712. //const int64_t i10 = i1;
  10713. const int64_t i12 = i2;
  10714. const int64_t i13 = i3;
  10715. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10716. const int64_t i11 = i01;
  10717. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10718. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10719. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10720. dequantize_row_q(s0, wdata, ne0);
  10721. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10722. }
  10723. }
  10724. //int64_t t1 = ggml_perf_time_us();
  10725. //static int64_t acc = 0;
  10726. //acc += t1 - t0;
  10727. //if (t1 - t0 > 10) {
  10728. // printf("\n");
  10729. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10730. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10731. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10732. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10733. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10734. //}
  10735. }
  10736. static void ggml_compute_forward_out_prod(
  10737. const struct ggml_compute_params * params,
  10738. struct ggml_tensor * dst) {
  10739. const struct ggml_tensor * src0 = dst->src[0];
  10740. switch (src0->type) {
  10741. case GGML_TYPE_Q4_0:
  10742. case GGML_TYPE_Q4_1:
  10743. case GGML_TYPE_Q5_0:
  10744. case GGML_TYPE_Q5_1:
  10745. case GGML_TYPE_Q8_0:
  10746. case GGML_TYPE_Q2_K:
  10747. case GGML_TYPE_Q3_K:
  10748. case GGML_TYPE_Q4_K:
  10749. case GGML_TYPE_Q5_K:
  10750. case GGML_TYPE_Q6_K:
  10751. case GGML_TYPE_IQ2_XXS:
  10752. case GGML_TYPE_IQ2_XS:
  10753. case GGML_TYPE_IQ3_XXS:
  10754. case GGML_TYPE_IQ1_S:
  10755. case GGML_TYPE_IQ1_M:
  10756. case GGML_TYPE_IQ4_NL:
  10757. case GGML_TYPE_IQ4_XS:
  10758. case GGML_TYPE_IQ3_S:
  10759. case GGML_TYPE_IQ2_S:
  10760. {
  10761. ggml_compute_forward_out_prod_q_f32(params, dst);
  10762. } break;
  10763. case GGML_TYPE_F16:
  10764. {
  10765. GGML_ASSERT(false); // todo
  10766. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10767. } break;
  10768. case GGML_TYPE_F32:
  10769. {
  10770. ggml_compute_forward_out_prod_f32(params, dst);
  10771. } break;
  10772. default:
  10773. {
  10774. GGML_ASSERT(false);
  10775. } break;
  10776. }
  10777. }
  10778. // ggml_compute_forward_scale
  10779. static void ggml_compute_forward_scale_f32(
  10780. const struct ggml_compute_params * params,
  10781. struct ggml_tensor * dst) {
  10782. const struct ggml_tensor * src0 = dst->src[0];
  10783. GGML_ASSERT(ggml_is_contiguous(src0));
  10784. GGML_ASSERT(ggml_is_contiguous(dst));
  10785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10786. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10787. return;
  10788. }
  10789. // scale factor
  10790. float v;
  10791. memcpy(&v, dst->op_params, sizeof(float));
  10792. const int ith = params->ith;
  10793. const int nth = params->nth;
  10794. const int nc = src0->ne[0];
  10795. const int nr = ggml_nrows(src0);
  10796. // rows per thread
  10797. const int dr = (nr + nth - 1)/nth;
  10798. // row range for this thread
  10799. const int ir0 = dr*ith;
  10800. const int ir1 = MIN(ir0 + dr, nr);
  10801. const size_t nb01 = src0->nb[1];
  10802. const size_t nb1 = dst->nb[1];
  10803. for (int i1 = ir0; i1 < ir1; i1++) {
  10804. if (dst->data != src0->data) {
  10805. // src0 is same shape as dst => same indices
  10806. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10807. }
  10808. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10809. }
  10810. }
  10811. static void ggml_compute_forward_scale(
  10812. const struct ggml_compute_params * params,
  10813. struct ggml_tensor * dst) {
  10814. const struct ggml_tensor * src0 = dst->src[0];
  10815. switch (src0->type) {
  10816. case GGML_TYPE_F32:
  10817. {
  10818. ggml_compute_forward_scale_f32(params, dst);
  10819. } break;
  10820. default:
  10821. {
  10822. GGML_ASSERT(false);
  10823. } break;
  10824. }
  10825. }
  10826. // ggml_compute_forward_set
  10827. static void ggml_compute_forward_set_f32(
  10828. const struct ggml_compute_params * params,
  10829. struct ggml_tensor * dst) {
  10830. const struct ggml_tensor * src0 = dst->src[0];
  10831. const struct ggml_tensor * src1 = dst->src[1];
  10832. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10833. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10834. // view src0 and dst with these strides and data offset inbytes during set
  10835. // nb0 is implicitly element_size because src0 and dst are contiguous
  10836. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10837. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10838. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10839. size_t offset = ((int32_t *) dst->op_params)[3];
  10840. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10841. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10842. if (params->ith != 0) {
  10843. return;
  10844. }
  10845. // memcpy needs to be synchronized across threads to avoid race conditions.
  10846. // => do it in INIT phase
  10847. memcpy(
  10848. ((char *) dst->data),
  10849. ((char *) src0->data),
  10850. ggml_nbytes(dst));
  10851. }
  10852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10853. return;
  10854. }
  10855. const int ith = params->ith;
  10856. const int nth = params->nth;
  10857. const int nr = ggml_nrows(src1);
  10858. const int nc = src1->ne[0];
  10859. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10860. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10861. // src0 and dst as viewed during set
  10862. const size_t nb0 = ggml_element_size(src0);
  10863. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10864. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10865. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10866. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10867. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10868. GGML_ASSERT(nb10 == sizeof(float));
  10869. // rows per thread
  10870. const int dr = (nr + nth - 1)/nth;
  10871. // row range for this thread
  10872. const int ir0 = dr*ith;
  10873. const int ir1 = MIN(ir0 + dr, nr);
  10874. for (int ir = ir0; ir < ir1; ++ir) {
  10875. // src0 and dst are viewed with shape of src1 and offset
  10876. // => same indices
  10877. const int i3 = ir/(ne12*ne11);
  10878. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10879. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10880. ggml_vec_cpy_f32(nc,
  10881. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10882. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10883. }
  10884. }
  10885. static void ggml_compute_forward_set(
  10886. const struct ggml_compute_params * params,
  10887. struct ggml_tensor * dst) {
  10888. const struct ggml_tensor * src0 = dst->src[0];
  10889. switch (src0->type) {
  10890. case GGML_TYPE_F32:
  10891. {
  10892. ggml_compute_forward_set_f32(params, dst);
  10893. } break;
  10894. case GGML_TYPE_F16:
  10895. case GGML_TYPE_BF16:
  10896. case GGML_TYPE_Q4_0:
  10897. case GGML_TYPE_Q4_1:
  10898. case GGML_TYPE_Q5_0:
  10899. case GGML_TYPE_Q5_1:
  10900. case GGML_TYPE_Q8_0:
  10901. case GGML_TYPE_Q8_1:
  10902. case GGML_TYPE_Q2_K:
  10903. case GGML_TYPE_Q3_K:
  10904. case GGML_TYPE_Q4_K:
  10905. case GGML_TYPE_Q5_K:
  10906. case GGML_TYPE_Q6_K:
  10907. case GGML_TYPE_IQ2_XXS:
  10908. case GGML_TYPE_IQ2_XS:
  10909. case GGML_TYPE_IQ3_XXS:
  10910. case GGML_TYPE_IQ1_S:
  10911. case GGML_TYPE_IQ1_M:
  10912. case GGML_TYPE_IQ4_NL:
  10913. case GGML_TYPE_IQ4_XS:
  10914. case GGML_TYPE_IQ3_S:
  10915. case GGML_TYPE_IQ2_S:
  10916. default:
  10917. {
  10918. GGML_ASSERT(false);
  10919. } break;
  10920. }
  10921. }
  10922. // ggml_compute_forward_cpy
  10923. static void ggml_compute_forward_cpy(
  10924. const struct ggml_compute_params * params,
  10925. struct ggml_tensor * dst) {
  10926. ggml_compute_forward_dup(params, dst);
  10927. }
  10928. // ggml_compute_forward_cont
  10929. static void ggml_compute_forward_cont(
  10930. const struct ggml_compute_params * params,
  10931. struct ggml_tensor * dst) {
  10932. ggml_compute_forward_dup(params, dst);
  10933. }
  10934. // ggml_compute_forward_reshape
  10935. static void ggml_compute_forward_reshape(
  10936. const struct ggml_compute_params * params,
  10937. struct ggml_tensor * dst) {
  10938. // NOP
  10939. UNUSED(params);
  10940. UNUSED(dst);
  10941. }
  10942. // ggml_compute_forward_view
  10943. static void ggml_compute_forward_view(
  10944. const struct ggml_compute_params * params,
  10945. const struct ggml_tensor * dst) {
  10946. // NOP
  10947. UNUSED(params);
  10948. UNUSED(dst);
  10949. }
  10950. // ggml_compute_forward_permute
  10951. static void ggml_compute_forward_permute(
  10952. const struct ggml_compute_params * params,
  10953. const struct ggml_tensor * dst) {
  10954. // NOP
  10955. UNUSED(params);
  10956. UNUSED(dst);
  10957. }
  10958. // ggml_compute_forward_transpose
  10959. static void ggml_compute_forward_transpose(
  10960. const struct ggml_compute_params * params,
  10961. const struct ggml_tensor * dst) {
  10962. // NOP
  10963. UNUSED(params);
  10964. UNUSED(dst);
  10965. }
  10966. // ggml_compute_forward_get_rows
  10967. static void ggml_compute_forward_get_rows_q(
  10968. const struct ggml_compute_params * params,
  10969. struct ggml_tensor * dst) {
  10970. const struct ggml_tensor * src0 = dst->src[0];
  10971. const struct ggml_tensor * src1 = dst->src[1];
  10972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10973. return;
  10974. }
  10975. GGML_TENSOR_BINARY_OP_LOCALS
  10976. const int64_t nc = ne00;
  10977. const int64_t nr = ggml_nelements(src1);
  10978. const enum ggml_type type = src0->type;
  10979. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10980. assert(ne0 == nc);
  10981. assert(ne02 == ne11);
  10982. assert(nb00 == ggml_type_size(type));
  10983. assert(ggml_nrows(dst) == nr);
  10984. const int ith = params->ith;
  10985. const int nth = params->nth;
  10986. // rows per thread
  10987. const int dr = (nr + nth - 1)/nth;
  10988. // row range for this thread
  10989. const int ir0 = dr*ith;
  10990. const int ir1 = MIN(ir0 + dr, nr);
  10991. for (int64_t i = ir0; i < ir1; ++i) {
  10992. const int64_t i12 = i/(ne11*ne10);
  10993. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10994. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10995. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10996. dequantize_row_q(
  10997. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10998. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10999. }
  11000. }
  11001. static void ggml_compute_forward_get_rows_f16(
  11002. const struct ggml_compute_params * params,
  11003. struct ggml_tensor * dst) {
  11004. const struct ggml_tensor * src0 = dst->src[0];
  11005. const struct ggml_tensor * src1 = dst->src[1];
  11006. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11007. return;
  11008. }
  11009. GGML_TENSOR_BINARY_OP_LOCALS
  11010. const int64_t nc = ne00;
  11011. const int64_t nr = ggml_nelements(src1);
  11012. assert(ne0 == nc);
  11013. assert(ne02 == ne11);
  11014. assert(nb00 == sizeof(ggml_fp16_t));
  11015. assert(ggml_nrows(dst) == nr);
  11016. const int ith = params->ith;
  11017. const int nth = params->nth;
  11018. // rows per thread
  11019. const int dr = (nr + nth - 1)/nth;
  11020. // row range for this thread
  11021. const int ir0 = dr*ith;
  11022. const int ir1 = MIN(ir0 + dr, nr);
  11023. for (int64_t i = ir0; i < ir1; ++i) {
  11024. const int64_t i12 = i/(ne11*ne10);
  11025. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11026. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11027. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11028. ggml_fp16_to_fp32_row(
  11029. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11030. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11031. }
  11032. }
  11033. static void ggml_compute_forward_get_rows_bf16(
  11034. const struct ggml_compute_params * params,
  11035. struct ggml_tensor * dst) {
  11036. const struct ggml_tensor * src0 = dst->src[0];
  11037. const struct ggml_tensor * src1 = dst->src[1];
  11038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11039. return;
  11040. }
  11041. GGML_TENSOR_BINARY_OP_LOCALS
  11042. const int64_t nc = ne00;
  11043. const int64_t nr = ggml_nelements(src1);
  11044. assert(ne0 == nc);
  11045. assert(ne02 == ne11);
  11046. assert(nb00 == sizeof(ggml_bf16_t));
  11047. assert(ggml_nrows(dst) == nr);
  11048. const int ith = params->ith;
  11049. const int nth = params->nth;
  11050. // rows per thread
  11051. const int dr = (nr + nth - 1)/nth;
  11052. // row range for this thread
  11053. const int ir0 = dr*ith;
  11054. const int ir1 = MIN(ir0 + dr, nr);
  11055. for (int64_t i = ir0; i < ir1; ++i) {
  11056. const int64_t i12 = i/(ne11*ne10);
  11057. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11058. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11059. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11060. ggml_bf16_to_fp32_row(
  11061. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11062. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11063. }
  11064. }
  11065. static void ggml_compute_forward_get_rows_f32(
  11066. const struct ggml_compute_params * params,
  11067. struct ggml_tensor * dst) {
  11068. const struct ggml_tensor * src0 = dst->src[0];
  11069. const struct ggml_tensor * src1 = dst->src[1];
  11070. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11071. return;
  11072. }
  11073. GGML_TENSOR_BINARY_OP_LOCALS
  11074. const int64_t nc = ne00;
  11075. const int64_t nr = ggml_nelements(src1);
  11076. assert(ne0 == nc);
  11077. assert(ne02 == ne11);
  11078. assert(nb00 == sizeof(float));
  11079. assert(ggml_nrows(dst) == nr);
  11080. const int ith = params->ith;
  11081. const int nth = params->nth;
  11082. // rows per thread
  11083. const int dr = (nr + nth - 1)/nth;
  11084. // row range for this thread
  11085. const int ir0 = dr*ith;
  11086. const int ir1 = MIN(ir0 + dr, nr);
  11087. for (int64_t i = ir0; i < ir1; ++i) {
  11088. const int64_t i12 = i/(ne11*ne10);
  11089. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11090. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11091. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11092. ggml_vec_cpy_f32(nc,
  11093. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11094. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11095. }
  11096. }
  11097. static void ggml_compute_forward_get_rows(
  11098. const struct ggml_compute_params * params,
  11099. struct ggml_tensor * dst) {
  11100. const struct ggml_tensor * src0 = dst->src[0];
  11101. switch (src0->type) {
  11102. case GGML_TYPE_Q4_0:
  11103. case GGML_TYPE_Q4_1:
  11104. case GGML_TYPE_Q5_0:
  11105. case GGML_TYPE_Q5_1:
  11106. case GGML_TYPE_Q8_0:
  11107. case GGML_TYPE_Q8_1:
  11108. case GGML_TYPE_Q2_K:
  11109. case GGML_TYPE_Q3_K:
  11110. case GGML_TYPE_Q4_K:
  11111. case GGML_TYPE_Q5_K:
  11112. case GGML_TYPE_Q6_K:
  11113. case GGML_TYPE_IQ2_XXS:
  11114. case GGML_TYPE_IQ2_XS:
  11115. case GGML_TYPE_IQ3_XXS:
  11116. case GGML_TYPE_IQ1_S:
  11117. case GGML_TYPE_IQ1_M:
  11118. case GGML_TYPE_IQ4_NL:
  11119. case GGML_TYPE_IQ4_XS:
  11120. case GGML_TYPE_IQ3_S:
  11121. case GGML_TYPE_IQ2_S:
  11122. {
  11123. ggml_compute_forward_get_rows_q(params, dst);
  11124. } break;
  11125. case GGML_TYPE_F16:
  11126. {
  11127. ggml_compute_forward_get_rows_f16(params, dst);
  11128. } break;
  11129. case GGML_TYPE_BF16:
  11130. {
  11131. ggml_compute_forward_get_rows_bf16(params, dst);
  11132. } break;
  11133. case GGML_TYPE_F32:
  11134. case GGML_TYPE_I32:
  11135. {
  11136. ggml_compute_forward_get_rows_f32(params, dst);
  11137. } break;
  11138. default:
  11139. {
  11140. GGML_ASSERT(false);
  11141. } break;
  11142. }
  11143. //static bool first = true;
  11144. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11145. //if (first) {
  11146. // first = false;
  11147. //} else {
  11148. // for (int k = 0; k < dst->ne[1]; ++k) {
  11149. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11150. // for (int i = 0; i < 16; ++i) {
  11151. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11152. // }
  11153. // printf("\n");
  11154. // }
  11155. // printf("\n");
  11156. // }
  11157. // printf("\n");
  11158. // exit(0);
  11159. //}
  11160. }
  11161. // ggml_compute_forward_get_rows_back
  11162. static void ggml_compute_forward_get_rows_back_f32_f16(
  11163. const struct ggml_compute_params * params,
  11164. struct ggml_tensor * dst) {
  11165. const struct ggml_tensor * src0 = dst->src[0];
  11166. const struct ggml_tensor * src1 = dst->src[1];
  11167. GGML_ASSERT(params->ith == 0);
  11168. GGML_ASSERT(ggml_is_contiguous(dst));
  11169. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11170. if (params->type == GGML_TASK_TYPE_INIT) {
  11171. if (params->ith != 0) {
  11172. return;
  11173. }
  11174. memset(dst->data, 0, ggml_nbytes(dst));
  11175. }
  11176. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11177. return;
  11178. }
  11179. const int nc = src0->ne[0];
  11180. const int nr = ggml_nelements(src1);
  11181. GGML_ASSERT( dst->ne[0] == nc);
  11182. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11183. for (int i = 0; i < nr; ++i) {
  11184. const int r = ((int32_t *) src1->data)[i];
  11185. for (int j = 0; j < nc; ++j) {
  11186. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11187. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11188. }
  11189. }
  11190. }
  11191. static void ggml_compute_forward_get_rows_back_f32(
  11192. const struct ggml_compute_params * params,
  11193. struct ggml_tensor * dst) {
  11194. const struct ggml_tensor * src0 = dst->src[0];
  11195. const struct ggml_tensor * src1 = dst->src[1];
  11196. GGML_ASSERT(params->ith == 0);
  11197. GGML_ASSERT(ggml_is_contiguous(dst));
  11198. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11199. if (params->type == GGML_TASK_TYPE_INIT) {
  11200. if (params->ith != 0) {
  11201. return;
  11202. }
  11203. memset(dst->data, 0, ggml_nbytes(dst));
  11204. }
  11205. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11206. return;
  11207. }
  11208. const int nc = src0->ne[0];
  11209. const int nr = ggml_nelements(src1);
  11210. GGML_ASSERT( dst->ne[0] == nc);
  11211. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11212. for (int i = 0; i < nr; ++i) {
  11213. const int r = ((int32_t *) src1->data)[i];
  11214. ggml_vec_add_f32(nc,
  11215. (float *) ((char *) dst->data + r*dst->nb[1]),
  11216. (float *) ((char *) dst->data + r*dst->nb[1]),
  11217. (float *) ((char *) src0->data + i*src0->nb[1]));
  11218. }
  11219. }
  11220. static void ggml_compute_forward_get_rows_back(
  11221. const struct ggml_compute_params * params,
  11222. struct ggml_tensor * dst) {
  11223. const struct ggml_tensor * src0 = dst->src[0];
  11224. switch (src0->type) {
  11225. case GGML_TYPE_F16:
  11226. {
  11227. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11228. } break;
  11229. case GGML_TYPE_F32:
  11230. {
  11231. ggml_compute_forward_get_rows_back_f32(params, dst);
  11232. } break;
  11233. default:
  11234. {
  11235. GGML_ASSERT(false);
  11236. } break;
  11237. }
  11238. //static bool first = true;
  11239. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11240. //if (first) {
  11241. // first = false;
  11242. //} else {
  11243. // for (int k = 0; k < dst->ne[1]; ++k) {
  11244. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11245. // for (int i = 0; i < 16; ++i) {
  11246. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11247. // }
  11248. // printf("\n");
  11249. // }
  11250. // printf("\n");
  11251. // }
  11252. // printf("\n");
  11253. // exit(0);
  11254. //}
  11255. }
  11256. // ggml_compute_forward_diag
  11257. static void ggml_compute_forward_diag_f32(
  11258. const struct ggml_compute_params * params,
  11259. struct ggml_tensor * dst) {
  11260. const struct ggml_tensor * src0 = dst->src[0];
  11261. GGML_ASSERT(params->ith == 0);
  11262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11263. return;
  11264. }
  11265. // TODO: handle transposed/permuted matrices
  11266. GGML_TENSOR_UNARY_OP_LOCALS
  11267. GGML_ASSERT(ne00 == ne0);
  11268. GGML_ASSERT(ne00 == ne1);
  11269. GGML_ASSERT(ne01 == 1);
  11270. GGML_ASSERT(ne02 == ne2);
  11271. GGML_ASSERT(ne03 == ne3);
  11272. GGML_ASSERT(nb00 == sizeof(float));
  11273. GGML_ASSERT(nb0 == sizeof(float));
  11274. for (int i3 = 0; i3 < ne3; i3++) {
  11275. for (int i2 = 0; i2 < ne2; i2++) {
  11276. for (int i1 = 0; i1 < ne1; i1++) {
  11277. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11278. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11279. for (int i0 = 0; i0 < i1; i0++) {
  11280. d[i0] = 0;
  11281. }
  11282. d[i1] = s[i1];
  11283. for (int i0 = i1+1; i0 < ne0; i0++) {
  11284. d[i0] = 0;
  11285. }
  11286. }
  11287. }
  11288. }
  11289. }
  11290. static void ggml_compute_forward_diag(
  11291. const struct ggml_compute_params * params,
  11292. struct ggml_tensor * dst) {
  11293. const struct ggml_tensor * src0 = dst->src[0];
  11294. switch (src0->type) {
  11295. case GGML_TYPE_F32:
  11296. {
  11297. ggml_compute_forward_diag_f32(params, dst);
  11298. } break;
  11299. default:
  11300. {
  11301. GGML_ASSERT(false);
  11302. } break;
  11303. }
  11304. }
  11305. // ggml_compute_forward_diag_mask_inf
  11306. static void ggml_compute_forward_diag_mask_f32(
  11307. const struct ggml_compute_params * params,
  11308. struct ggml_tensor * dst,
  11309. const float value) {
  11310. const struct ggml_tensor * src0 = dst->src[0];
  11311. const int ith = params->ith;
  11312. const int nth = params->nth;
  11313. const int n_past = ((int32_t *) dst->op_params)[0];
  11314. const bool inplace = src0->data == dst->data;
  11315. GGML_ASSERT(n_past >= 0);
  11316. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11317. if (ith != 0) {
  11318. return;
  11319. }
  11320. // memcpy needs to be synchronized across threads to avoid race conditions.
  11321. // => do it in INIT phase
  11322. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11323. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11324. memcpy(
  11325. ((char *) dst->data),
  11326. ((char *) src0->data),
  11327. ggml_nbytes(dst));
  11328. }
  11329. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11330. return;
  11331. }
  11332. // TODO: handle transposed/permuted matrices
  11333. const int n = ggml_nrows(src0);
  11334. const int nc = src0->ne[0];
  11335. const int nr = src0->ne[1];
  11336. const int nz = n/nr;
  11337. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11338. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11339. for (int k = 0; k < nz; k++) {
  11340. for (int j = ith; j < nr; j += nth) {
  11341. for (int i = n_past; i < nc; i++) {
  11342. if (i > n_past + j) {
  11343. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11344. }
  11345. }
  11346. }
  11347. }
  11348. }
  11349. static void ggml_compute_forward_diag_mask_inf(
  11350. const struct ggml_compute_params * params,
  11351. struct ggml_tensor * dst) {
  11352. const struct ggml_tensor * src0 = dst->src[0];
  11353. switch (src0->type) {
  11354. case GGML_TYPE_F32:
  11355. {
  11356. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11357. } break;
  11358. default:
  11359. {
  11360. GGML_ASSERT(false);
  11361. } break;
  11362. }
  11363. }
  11364. static void ggml_compute_forward_diag_mask_zero(
  11365. const struct ggml_compute_params * params,
  11366. struct ggml_tensor * dst) {
  11367. const struct ggml_tensor * src0 = dst->src[0];
  11368. switch (src0->type) {
  11369. case GGML_TYPE_F32:
  11370. {
  11371. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11372. } break;
  11373. default:
  11374. {
  11375. GGML_ASSERT(false);
  11376. } break;
  11377. }
  11378. }
  11379. // ggml_compute_forward_soft_max
  11380. static void ggml_compute_forward_soft_max_f32(
  11381. const struct ggml_compute_params * params,
  11382. struct ggml_tensor * dst) {
  11383. const struct ggml_tensor * src0 = dst->src[0];
  11384. const struct ggml_tensor * src1 = dst->src[1];
  11385. assert(ggml_is_contiguous(dst));
  11386. assert(ggml_are_same_shape(src0, dst));
  11387. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11388. return;
  11389. }
  11390. float scale = 1.0f;
  11391. float max_bias = 0.0f;
  11392. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11393. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11394. // TODO: handle transposed/permuted matrices
  11395. const int ith = params->ith;
  11396. const int nth = params->nth;
  11397. GGML_TENSOR_UNARY_OP_LOCALS
  11398. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11399. // TODO: is this supposed to be ceil instead of floor?
  11400. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11401. const uint32_t n_head = ne02;
  11402. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11403. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11404. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11405. const int nc = src0->ne[0];
  11406. const int nr = ggml_nrows(src0);
  11407. // rows per thread
  11408. const int dr = (nr + nth - 1)/nth;
  11409. // row range for this thread
  11410. const int ir0 = dr*ith;
  11411. const int ir1 = MIN(ir0 + dr, nr);
  11412. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11413. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11414. for (int i1 = ir0; i1 < ir1; i1++) {
  11415. // ALiBi
  11416. const uint32_t h = (i1/ne01)%ne02; // head
  11417. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11418. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11419. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11420. // broadcast the mask across rows
  11421. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11422. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11423. ggml_vec_cpy_f32 (nc, wp, sp);
  11424. ggml_vec_scale_f32(nc, wp, scale);
  11425. if (mp_f32) {
  11426. if (use_f16) {
  11427. for (int i = 0; i < nc; ++i) {
  11428. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11429. }
  11430. } else {
  11431. for (int i = 0; i < nc; ++i) {
  11432. wp[i] += slope*mp_f32[i];
  11433. }
  11434. }
  11435. }
  11436. #ifndef NDEBUG
  11437. for (int i = 0; i < nc; ++i) {
  11438. //printf("p[%d] = %f\n", i, p[i]);
  11439. assert(!isnan(wp[i]));
  11440. }
  11441. #endif
  11442. float max = -INFINITY;
  11443. ggml_vec_max_f32(nc, &max, wp);
  11444. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11445. assert(sum > 0.0);
  11446. sum = 1.0/sum;
  11447. ggml_vec_scale_f32(nc, dp, sum);
  11448. #ifndef NDEBUG
  11449. for (int i = 0; i < nc; ++i) {
  11450. assert(!isnan(dp[i]));
  11451. assert(!isinf(dp[i]));
  11452. }
  11453. #endif
  11454. }
  11455. }
  11456. static void ggml_compute_forward_soft_max(
  11457. const struct ggml_compute_params * params,
  11458. struct ggml_tensor * dst) {
  11459. const struct ggml_tensor * src0 = dst->src[0];
  11460. switch (src0->type) {
  11461. case GGML_TYPE_F32:
  11462. {
  11463. ggml_compute_forward_soft_max_f32(params, dst);
  11464. } break;
  11465. default:
  11466. {
  11467. GGML_ASSERT(false);
  11468. } break;
  11469. }
  11470. }
  11471. // ggml_compute_forward_soft_max_back
  11472. static void ggml_compute_forward_soft_max_back_f32(
  11473. const struct ggml_compute_params * params,
  11474. struct ggml_tensor * dst) {
  11475. const struct ggml_tensor * src0 = dst->src[0];
  11476. const struct ggml_tensor * src1 = dst->src[1];
  11477. GGML_ASSERT(ggml_is_contiguous(src0));
  11478. GGML_ASSERT(ggml_is_contiguous(src1));
  11479. GGML_ASSERT(ggml_is_contiguous(dst));
  11480. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11481. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11482. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11483. return;
  11484. }
  11485. // TODO: handle transposed/permuted matrices
  11486. const int ith = params->ith;
  11487. const int nth = params->nth;
  11488. const int nc = src0->ne[0];
  11489. const int nr = ggml_nrows(src0);
  11490. // rows per thread
  11491. const int dr = (nr + nth - 1)/nth;
  11492. // row range for this thread
  11493. const int ir0 = dr*ith;
  11494. const int ir1 = MIN(ir0 + dr, nr);
  11495. for (int i1 = ir0; i1 < ir1; i1++) {
  11496. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11497. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11498. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11499. #ifndef NDEBUG
  11500. for (int i = 0; i < nc; ++i) {
  11501. //printf("p[%d] = %f\n", i, p[i]);
  11502. assert(!isnan(dy[i]));
  11503. assert(!isnan(y[i]));
  11504. }
  11505. #endif
  11506. // Jii = yi - yi*yi
  11507. // Jij = -yi*yj
  11508. // J = diag(y)-y.T*y
  11509. // dx = J * dy
  11510. // dxk = sum_i(Jki * dyi)
  11511. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11512. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11513. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11514. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11515. // dxk = -yk * dot(y, dy) + yk*dyk
  11516. // dxk = yk * (- dot(y, dy) + dyk)
  11517. // dxk = yk * (dyk - dot(y, dy))
  11518. //
  11519. // post-order:
  11520. // dot_y_dy := dot(y, dy)
  11521. // dx := dy
  11522. // dx := dx - dot_y_dy
  11523. // dx := dx * y
  11524. // linear runtime, no additional memory
  11525. float dot_y_dy = 0;
  11526. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11527. ggml_vec_cpy_f32 (nc, dx, dy);
  11528. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11529. ggml_vec_mul_f32 (nc, dx, dx, y);
  11530. #ifndef NDEBUG
  11531. for (int i = 0; i < nc; ++i) {
  11532. assert(!isnan(dx[i]));
  11533. assert(!isinf(dx[i]));
  11534. }
  11535. #endif
  11536. }
  11537. }
  11538. static void ggml_compute_forward_soft_max_back(
  11539. const struct ggml_compute_params * params,
  11540. struct ggml_tensor * dst) {
  11541. const struct ggml_tensor * src0 = dst->src[0];
  11542. switch (src0->type) {
  11543. case GGML_TYPE_F32:
  11544. {
  11545. ggml_compute_forward_soft_max_back_f32(params, dst);
  11546. } break;
  11547. default:
  11548. {
  11549. GGML_ASSERT(false);
  11550. } break;
  11551. }
  11552. }
  11553. // ggml_compute_forward_clamp
  11554. static void ggml_compute_forward_clamp_f32(
  11555. const struct ggml_compute_params * params,
  11556. struct ggml_tensor * dst) {
  11557. const struct ggml_tensor * src0 = dst->src[0];
  11558. assert(params->ith == 0);
  11559. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11560. return;
  11561. }
  11562. float min;
  11563. float max;
  11564. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11565. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11566. const int ith = params->ith;
  11567. const int nth = params->nth;
  11568. const int n = ggml_nrows(src0);
  11569. const int nc = src0->ne[0];
  11570. const size_t nb00 = src0->nb[0];
  11571. const size_t nb01 = src0->nb[1];
  11572. const size_t nb0 = dst->nb[0];
  11573. const size_t nb1 = dst->nb[1];
  11574. GGML_ASSERT( nb0 == sizeof(float));
  11575. GGML_ASSERT(nb00 == sizeof(float));
  11576. for (int j = ith; j < n; j += nth) {
  11577. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11578. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11579. for (int i = 0; i < nc; i++) {
  11580. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11581. }
  11582. }
  11583. }
  11584. static void ggml_compute_forward_clamp(
  11585. const struct ggml_compute_params * params,
  11586. struct ggml_tensor * dst) {
  11587. const struct ggml_tensor * src0 = dst->src[0];
  11588. switch (src0->type) {
  11589. case GGML_TYPE_F32:
  11590. {
  11591. ggml_compute_forward_clamp_f32(params, dst);
  11592. } break;
  11593. case GGML_TYPE_F16:
  11594. case GGML_TYPE_BF16:
  11595. case GGML_TYPE_Q4_0:
  11596. case GGML_TYPE_Q4_1:
  11597. case GGML_TYPE_Q5_0:
  11598. case GGML_TYPE_Q5_1:
  11599. case GGML_TYPE_Q8_0:
  11600. case GGML_TYPE_Q8_1:
  11601. case GGML_TYPE_Q2_K:
  11602. case GGML_TYPE_Q3_K:
  11603. case GGML_TYPE_Q4_K:
  11604. case GGML_TYPE_Q5_K:
  11605. case GGML_TYPE_Q6_K:
  11606. case GGML_TYPE_IQ2_XXS:
  11607. case GGML_TYPE_IQ2_XS:
  11608. case GGML_TYPE_IQ3_XXS:
  11609. case GGML_TYPE_IQ1_S:
  11610. case GGML_TYPE_IQ1_M:
  11611. case GGML_TYPE_IQ4_NL:
  11612. case GGML_TYPE_IQ4_XS:
  11613. case GGML_TYPE_IQ3_S:
  11614. case GGML_TYPE_IQ2_S:
  11615. case GGML_TYPE_Q8_K:
  11616. case GGML_TYPE_I8:
  11617. case GGML_TYPE_I16:
  11618. case GGML_TYPE_I32:
  11619. case GGML_TYPE_I64:
  11620. case GGML_TYPE_F64:
  11621. case GGML_TYPE_COUNT:
  11622. {
  11623. GGML_ASSERT(false);
  11624. } break;
  11625. }
  11626. }
  11627. // ggml_compute_forward_rope
  11628. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11629. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11630. return 1 - MIN(1, MAX(0, y));
  11631. }
  11632. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11633. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11634. static void rope_yarn(
  11635. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11636. float * cos_theta, float * sin_theta
  11637. ) {
  11638. // Get n-d rotational scaling corrected for extrapolation
  11639. float theta_interp = freq_scale * theta_extrap;
  11640. float theta = theta_interp;
  11641. if (ext_factor != 0.0f) {
  11642. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11643. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11644. // Get n-d magnitude scaling corrected for interpolation
  11645. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11646. }
  11647. *cos_theta = cosf(theta) * mscale;
  11648. *sin_theta = sinf(theta) * mscale;
  11649. }
  11650. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11651. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11652. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11653. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11654. }
  11655. static void ggml_rope_cache_init(
  11656. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11657. float * cache, float sin_sign, float theta_scale
  11658. ) {
  11659. float theta = theta_base;
  11660. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11661. rope_yarn(
  11662. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11663. );
  11664. cache[i0 + 1] *= sin_sign;
  11665. theta *= theta_scale;
  11666. }
  11667. }
  11668. GGML_CALL void ggml_rope_yarn_corr_dims(
  11669. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11670. ) {
  11671. // start and end correction dims
  11672. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11673. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11674. dims[0] = MAX(0, start);
  11675. dims[1] = MIN(n_dims - 1, end);
  11676. }
  11677. static void ggml_compute_forward_rope_f32(
  11678. const struct ggml_compute_params * params,
  11679. struct ggml_tensor * dst,
  11680. const bool forward) {
  11681. const struct ggml_tensor * src0 = dst->src[0];
  11682. const struct ggml_tensor * src1 = dst->src[1];
  11683. const struct ggml_tensor * src2 = dst->src[2];
  11684. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11685. return;
  11686. }
  11687. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11688. // these two only relevant for xPos RoPE:
  11689. float xpos_base;
  11690. bool xpos_down;
  11691. //const int n_past = ((int32_t *) dst->op_params)[0];
  11692. const int n_dims = ((int32_t *) dst->op_params)[1];
  11693. const int mode = ((int32_t *) dst->op_params)[2];
  11694. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11695. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11696. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11697. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11698. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11699. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11700. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11701. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11702. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11703. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11704. GGML_TENSOR_UNARY_OP_LOCALS
  11705. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11706. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11707. GGML_ASSERT(nb00 == sizeof(float));
  11708. const int ith = params->ith;
  11709. const int nth = params->nth;
  11710. const int nr = ggml_nrows(dst);
  11711. GGML_ASSERT(n_dims <= ne0);
  11712. GGML_ASSERT(n_dims % 2 == 0);
  11713. // rows per thread
  11714. const int dr = (nr + nth - 1)/nth;
  11715. // row range for this thread
  11716. const int ir0 = dr*ith;
  11717. const int ir1 = MIN(ir0 + dr, nr);
  11718. // row index used to determine which thread to use
  11719. int ir = 0;
  11720. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11721. const float inv_ndims = -1.f/n_dims;
  11722. float corr_dims[2];
  11723. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11724. const bool is_neox = mode & 2;
  11725. const bool is_glm = mode & 4;
  11726. const float * freq_factors = NULL;
  11727. if (is_neox) {
  11728. if (src2 != NULL) {
  11729. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11730. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11731. freq_factors = (const float *) src2->data;
  11732. }
  11733. } else {
  11734. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11735. }
  11736. // backward process uses inverse rotation by cos and sin.
  11737. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11738. // this essentially just switches the sign of sin.
  11739. const float sin_sign = forward ? 1.0f : -1.0f;
  11740. const int32_t * pos = (const int32_t *) src1->data;
  11741. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11742. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11743. const int64_t p = pos[i2];
  11744. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11745. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11746. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11747. }
  11748. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11749. if (ir++ < ir0) continue;
  11750. if (ir > ir1) break;
  11751. float theta_base = (float)p;
  11752. if (is_glm) {
  11753. theta_base = MIN(p, n_ctx - 2);
  11754. float block_theta = MAX(p - (n_ctx - 2), 0);
  11755. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11756. const float cos_theta = cosf(theta_base);
  11757. const float sin_theta = sinf(theta_base) * sin_sign;
  11758. const float cos_block_theta = cosf(block_theta);
  11759. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11760. theta_base *= theta_scale;
  11761. block_theta *= theta_scale;
  11762. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11763. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11764. const float x0 = src[0];
  11765. const float x1 = src[n_dims/2];
  11766. const float x2 = src[n_dims];
  11767. const float x3 = src[n_dims/2*3];
  11768. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11769. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11770. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11771. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11772. }
  11773. } else if (!is_neox) {
  11774. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11775. const float cos_theta = cache[i0 + 0];
  11776. const float sin_theta = cache[i0 + 1];
  11777. // zeta scaling for xPos only:
  11778. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11779. if (xpos_down) zeta = 1.0f / zeta;
  11780. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11781. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11782. const float x0 = src[0];
  11783. const float x1 = src[1];
  11784. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11785. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11786. }
  11787. } else {
  11788. // TODO: this might be wrong for ne0 != n_dims - need double check
  11789. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11790. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11791. theta_base *= freq_scale;
  11792. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11793. if (ic < n_dims) {
  11794. const int64_t ib = 0;
  11795. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11796. float cur_rot = inv_ndims * ic - ib;
  11797. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11798. float cos_theta, sin_theta;
  11799. rope_yarn(
  11800. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11801. &cos_theta, &sin_theta
  11802. );
  11803. sin_theta *= sin_sign;
  11804. theta_base *= theta_scale;
  11805. const int64_t i0 = ib*n_dims + ic/2;
  11806. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11807. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11808. const float x0 = src[0];
  11809. const float x1 = src[n_dims/2];
  11810. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11811. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11812. } else {
  11813. const int64_t i0 = ic;
  11814. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11815. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11816. dst_data[0] = src[0];
  11817. dst_data[1] = src[1];
  11818. }
  11819. }
  11820. }
  11821. }
  11822. }
  11823. }
  11824. }
  11825. // TODO: deduplicate f16/f32 code
  11826. static void ggml_compute_forward_rope_f16(
  11827. const struct ggml_compute_params * params,
  11828. struct ggml_tensor * dst,
  11829. const bool forward) {
  11830. const struct ggml_tensor * src0 = dst->src[0];
  11831. const struct ggml_tensor * src1 = dst->src[1];
  11832. const struct ggml_tensor * src2 = dst->src[2];
  11833. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11834. return;
  11835. }
  11836. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11837. //const int n_past = ((int32_t *) dst->op_params)[0];
  11838. const int n_dims = ((int32_t *) dst->op_params)[1];
  11839. const int mode = ((int32_t *) dst->op_params)[2];
  11840. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11841. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11842. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11843. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11844. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11845. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11846. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11847. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11848. GGML_TENSOR_UNARY_OP_LOCALS
  11849. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11850. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11851. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11852. const int ith = params->ith;
  11853. const int nth = params->nth;
  11854. const int nr = ggml_nrows(dst);
  11855. GGML_ASSERT(n_dims <= ne0);
  11856. GGML_ASSERT(n_dims % 2 == 0);
  11857. // rows per thread
  11858. const int dr = (nr + nth - 1)/nth;
  11859. // row range for this thread
  11860. const int ir0 = dr*ith;
  11861. const int ir1 = MIN(ir0 + dr, nr);
  11862. // row index used to determine which thread to use
  11863. int ir = 0;
  11864. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11865. const float inv_ndims = -1.f/n_dims;
  11866. float corr_dims[2];
  11867. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11868. const bool is_neox = mode & 2;
  11869. const bool is_glm = mode & 4;
  11870. const float * freq_factors = NULL;
  11871. if (is_neox) {
  11872. if (src2 != NULL) {
  11873. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11874. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11875. freq_factors = (const float *) src2->data;
  11876. }
  11877. } else {
  11878. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11879. }
  11880. // backward process uses inverse rotation by cos and sin.
  11881. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11882. // this essentially just switches the sign of sin.
  11883. const float sin_sign = forward ? 1.0f : -1.0f;
  11884. const int32_t * pos = (const int32_t *) src1->data;
  11885. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11886. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11887. const int64_t p = pos[i2];
  11888. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11889. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11890. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11891. }
  11892. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11893. if (ir++ < ir0) continue;
  11894. if (ir > ir1) break;
  11895. float theta_base = (float)p;
  11896. if (is_glm) {
  11897. theta_base = MIN(p, n_ctx - 2);
  11898. float block_theta = MAX(p - (n_ctx - 2), 0);
  11899. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11900. const float cos_theta = cosf(theta_base);
  11901. const float sin_theta = sinf(theta_base) * sin_sign;
  11902. const float cos_block_theta = cosf(block_theta);
  11903. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11904. theta_base *= theta_scale;
  11905. block_theta *= theta_scale;
  11906. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11907. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11908. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11909. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11910. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11911. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11912. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11913. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11914. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11915. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11916. }
  11917. } else if (!is_neox) {
  11918. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11919. const float cos_theta = cache[i0 + 0];
  11920. const float sin_theta = cache[i0 + 1];
  11921. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11922. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11923. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11924. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11925. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11926. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11927. }
  11928. } else {
  11929. // TODO: this might be wrong for ne0 != n_dims - need double check
  11930. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11931. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11932. theta_base *= freq_scale;
  11933. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11934. if (ic < n_dims) {
  11935. const int64_t ib = 0;
  11936. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11937. float cur_rot = inv_ndims * ic - ib;
  11938. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11939. float cos_theta, sin_theta;
  11940. rope_yarn(
  11941. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11942. &cos_theta, &sin_theta
  11943. );
  11944. sin_theta *= sin_sign;
  11945. theta_base *= theta_scale;
  11946. const int64_t i0 = ib*n_dims + ic/2;
  11947. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11948. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11949. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11950. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11951. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11952. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11953. } else {
  11954. const int64_t i0 = ic;
  11955. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11956. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11957. dst_data[0] = src[0];
  11958. dst_data[1] = src[1];
  11959. }
  11960. }
  11961. }
  11962. }
  11963. }
  11964. }
  11965. }
  11966. static void ggml_compute_forward_rope(
  11967. const struct ggml_compute_params * params,
  11968. struct ggml_tensor * dst) {
  11969. const struct ggml_tensor * src0 = dst->src[0];
  11970. switch (src0->type) {
  11971. case GGML_TYPE_F16:
  11972. {
  11973. ggml_compute_forward_rope_f16(params, dst, true);
  11974. } break;
  11975. case GGML_TYPE_F32:
  11976. {
  11977. ggml_compute_forward_rope_f32(params, dst, true);
  11978. } break;
  11979. default:
  11980. {
  11981. GGML_ASSERT(false);
  11982. } break;
  11983. }
  11984. }
  11985. // ggml_compute_forward_rope_back
  11986. static void ggml_compute_forward_rope_back(
  11987. const struct ggml_compute_params * params,
  11988. struct ggml_tensor * dst) {
  11989. const struct ggml_tensor * src0 = dst->src[0];
  11990. switch (src0->type) {
  11991. case GGML_TYPE_F16:
  11992. {
  11993. ggml_compute_forward_rope_f16(params, dst, false);
  11994. } break;
  11995. case GGML_TYPE_F32:
  11996. {
  11997. ggml_compute_forward_rope_f32(params, dst, false);
  11998. } break;
  11999. default:
  12000. {
  12001. GGML_ASSERT(false);
  12002. } break;
  12003. }
  12004. }
  12005. // ggml_compute_forward_conv_transpose_1d
  12006. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12007. const struct ggml_compute_params * params,
  12008. struct ggml_tensor * dst) {
  12009. const struct ggml_tensor * src0 = dst->src[0];
  12010. const struct ggml_tensor * src1 = dst->src[1];
  12011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12012. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12013. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12014. int64_t t0 = ggml_perf_time_us();
  12015. UNUSED(t0);
  12016. GGML_TENSOR_BINARY_OP_LOCALS
  12017. const int ith = params->ith;
  12018. const int nth = params->nth;
  12019. const int nk = ne00*ne01*ne02;
  12020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12021. GGML_ASSERT(nb10 == sizeof(float));
  12022. if (params->type == GGML_TASK_TYPE_INIT) {
  12023. if (ith != 0) {
  12024. return;
  12025. }
  12026. memset(params->wdata, 0, params->wsize);
  12027. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12028. {
  12029. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12031. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12032. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12033. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12035. dst_data[i00*ne02 + i02] = src[i00];
  12036. }
  12037. }
  12038. }
  12039. }
  12040. // permute source data (src1) from (L x Cin) to (Cin x L)
  12041. {
  12042. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12043. ggml_fp16_t * dst_data = wdata;
  12044. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12045. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12046. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12047. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12048. }
  12049. }
  12050. }
  12051. // need to zero dst since we are accumulating into it
  12052. memset(dst->data, 0, ggml_nbytes(dst));
  12053. return;
  12054. }
  12055. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12056. return;
  12057. }
  12058. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12059. // total rows in dst
  12060. const int nr = ne1;
  12061. // rows per thread
  12062. const int dr = (nr + nth - 1)/nth;
  12063. // row range for this thread
  12064. const int ir0 = dr*ith;
  12065. const int ir1 = MIN(ir0 + dr, nr);
  12066. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12067. ggml_fp16_t * const wdata_src = wdata + nk;
  12068. for (int i1 = ir0; i1 < ir1; i1++) {
  12069. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12070. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12071. for (int i10 = 0; i10 < ne10; i10++) {
  12072. const int i1n = i10*ne11;
  12073. for (int i00 = 0; i00 < ne00; i00++) {
  12074. float v = 0;
  12075. ggml_vec_dot_f16(ne02, &v, 0,
  12076. (ggml_fp16_t *) wdata_src + i1n, 0,
  12077. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12078. dst_data[i10*s0 + i00] += v;
  12079. }
  12080. }
  12081. }
  12082. }
  12083. static void ggml_compute_forward_conv_transpose_1d_f32(
  12084. const struct ggml_compute_params * params,
  12085. struct ggml_tensor * dst) {
  12086. const struct ggml_tensor * src0 = dst->src[0];
  12087. const struct ggml_tensor * src1 = dst->src[1];
  12088. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12089. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12090. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12091. int64_t t0 = ggml_perf_time_us();
  12092. UNUSED(t0);
  12093. GGML_TENSOR_BINARY_OP_LOCALS
  12094. const int ith = params->ith;
  12095. const int nth = params->nth;
  12096. const int nk = ne00*ne01*ne02;
  12097. GGML_ASSERT(nb00 == sizeof(float));
  12098. GGML_ASSERT(nb10 == sizeof(float));
  12099. if (params->type == GGML_TASK_TYPE_INIT) {
  12100. if (ith != 0) {
  12101. return;
  12102. }
  12103. memset(params->wdata, 0, params->wsize);
  12104. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12105. {
  12106. float * const wdata = (float *) params->wdata + 0;
  12107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12108. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12109. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12110. float * dst_data = wdata + i01*ne00*ne02;
  12111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12112. dst_data[i00*ne02 + i02] = src[i00];
  12113. }
  12114. }
  12115. }
  12116. }
  12117. // prepare source data (src1)
  12118. {
  12119. float * const wdata = (float *) params->wdata + nk;
  12120. float * dst_data = wdata;
  12121. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12122. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12123. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12124. dst_data[i10*ne11 + i11] = src[i10];
  12125. }
  12126. }
  12127. }
  12128. // need to zero dst since we are accumulating into it
  12129. memset(dst->data, 0, ggml_nbytes(dst));
  12130. return;
  12131. }
  12132. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12133. return;
  12134. }
  12135. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12136. // total rows in dst
  12137. const int nr = ne1;
  12138. // rows per thread
  12139. const int dr = (nr + nth - 1)/nth;
  12140. // row range for this thread
  12141. const int ir0 = dr*ith;
  12142. const int ir1 = MIN(ir0 + dr, nr);
  12143. float * const wdata = (float *) params->wdata + 0;
  12144. float * const wdata_src = wdata + nk;
  12145. for (int i1 = ir0; i1 < ir1; i1++) {
  12146. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12147. float * wdata_kernel = wdata + i1*ne02*ne00;
  12148. for (int i10 = 0; i10 < ne10; i10++) {
  12149. const int i1n = i10*ne11;
  12150. for (int i00 = 0; i00 < ne00; i00++) {
  12151. float v = 0;
  12152. ggml_vec_dot_f32(ne02, &v, 0,
  12153. wdata_src + i1n, 0,
  12154. wdata_kernel + i00*ne02, 0, 1);
  12155. dst_data[i10*s0 + i00] += v;
  12156. }
  12157. }
  12158. }
  12159. }
  12160. static void ggml_compute_forward_conv_transpose_1d(
  12161. const struct ggml_compute_params * params,
  12162. struct ggml_tensor * dst) {
  12163. const struct ggml_tensor * src0 = dst->src[0];
  12164. switch (src0->type) {
  12165. case GGML_TYPE_F16:
  12166. {
  12167. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12168. } break;
  12169. case GGML_TYPE_F32:
  12170. {
  12171. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12172. } break;
  12173. default:
  12174. {
  12175. GGML_ASSERT(false);
  12176. } break;
  12177. }
  12178. }
  12179. // src0: kernel [OC, IC, KH, KW]
  12180. // src1: image [N, IC, IH, IW]
  12181. // dst: result [N, OH, OW, IC*KH*KW]
  12182. static void ggml_compute_forward_im2col_f32(
  12183. const struct ggml_compute_params * params,
  12184. struct ggml_tensor * dst) {
  12185. const struct ggml_tensor * src0 = dst->src[0];
  12186. const struct ggml_tensor * src1 = dst->src[1];
  12187. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12188. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12189. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12190. int64_t t0 = ggml_perf_time_us();
  12191. UNUSED(t0);
  12192. GGML_TENSOR_BINARY_OP_LOCALS;
  12193. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12194. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12195. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12196. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12197. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12198. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12199. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12200. const int ith = params->ith;
  12201. const int nth = params->nth;
  12202. const int64_t N = is_2D ? ne13 : ne12;
  12203. const int64_t IC = is_2D ? ne12 : ne11;
  12204. const int64_t IH = is_2D ? ne11 : 1;
  12205. const int64_t IW = ne10;
  12206. const int64_t KH = is_2D ? ne01 : 1;
  12207. const int64_t KW = ne00;
  12208. const int64_t OH = is_2D ? ne2 : 1;
  12209. const int64_t OW = ne1;
  12210. int ofs0 = is_2D ? nb13 : nb12;
  12211. int ofs1 = is_2D ? nb12 : nb11;
  12212. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12213. GGML_ASSERT(nb10 == sizeof(float));
  12214. if (params->type == GGML_TASK_TYPE_INIT) {
  12215. return;
  12216. }
  12217. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12218. return;
  12219. }
  12220. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12221. {
  12222. float * const wdata = (float *) dst->data;
  12223. for (int64_t in = 0; in < N; in++) {
  12224. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12225. for (int64_t iow = 0; iow < OW; iow++) {
  12226. for (int64_t iic = ith; iic < IC; iic += nth) {
  12227. // micro kernel
  12228. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12229. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12230. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12231. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12232. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12233. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12234. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12235. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12236. } else {
  12237. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12238. }
  12239. }
  12240. }
  12241. }
  12242. }
  12243. }
  12244. }
  12245. }
  12246. }
  12247. // src0: kernel [OC, IC, KH, KW]
  12248. // src1: image [N, IC, IH, IW]
  12249. // dst: result [N, OH, OW, IC*KH*KW]
  12250. static void ggml_compute_forward_im2col_f16(
  12251. const struct ggml_compute_params * params,
  12252. struct ggml_tensor * dst) {
  12253. const struct ggml_tensor * src0 = dst->src[0];
  12254. const struct ggml_tensor * src1 = dst->src[1];
  12255. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12256. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12257. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12258. int64_t t0 = ggml_perf_time_us();
  12259. UNUSED(t0);
  12260. GGML_TENSOR_BINARY_OP_LOCALS;
  12261. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12262. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12263. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12264. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12265. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12266. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12267. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12268. const int ith = params->ith;
  12269. const int nth = params->nth;
  12270. const int64_t N = is_2D ? ne13 : ne12;
  12271. const int64_t IC = is_2D ? ne12 : ne11;
  12272. const int64_t IH = is_2D ? ne11 : 1;
  12273. const int64_t IW = ne10;
  12274. const int64_t KH = is_2D ? ne01 : 1;
  12275. const int64_t KW = ne00;
  12276. const int64_t OH = is_2D ? ne2 : 1;
  12277. const int64_t OW = ne1;
  12278. int ofs0 = is_2D ? nb13 : nb12;
  12279. int ofs1 = is_2D ? nb12 : nb11;
  12280. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12281. GGML_ASSERT(nb10 == sizeof(float));
  12282. if (params->type == GGML_TASK_TYPE_INIT) {
  12283. return;
  12284. }
  12285. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12286. return;
  12287. }
  12288. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12289. {
  12290. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12291. for (int64_t in = 0; in < N; in++) {
  12292. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12293. for (int64_t iow = 0; iow < OW; iow++) {
  12294. for (int64_t iic = ith; iic < IC; iic += nth) {
  12295. // micro kernel
  12296. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12297. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12298. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12299. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12300. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12301. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12302. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12303. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12304. } else {
  12305. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12306. }
  12307. }
  12308. }
  12309. }
  12310. }
  12311. }
  12312. }
  12313. }
  12314. }
  12315. static void ggml_compute_forward_im2col(
  12316. const struct ggml_compute_params * params,
  12317. struct ggml_tensor * dst) {
  12318. switch (dst->type) {
  12319. case GGML_TYPE_F16:
  12320. {
  12321. ggml_compute_forward_im2col_f16(params, dst);
  12322. } break;
  12323. case GGML_TYPE_F32:
  12324. {
  12325. ggml_compute_forward_im2col_f32(params, dst);
  12326. } break;
  12327. default:
  12328. {
  12329. GGML_ASSERT(false);
  12330. } break;
  12331. }
  12332. }
  12333. // ggml_compute_forward_conv_transpose_2d
  12334. static void ggml_compute_forward_conv_transpose_2d(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. const struct ggml_tensor * src0 = dst->src[0];
  12338. const struct ggml_tensor * src1 = dst->src[1];
  12339. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12340. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12341. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12342. int64_t t0 = ggml_perf_time_us();
  12343. UNUSED(t0);
  12344. GGML_TENSOR_BINARY_OP_LOCALS
  12345. const int ith = params->ith;
  12346. const int nth = params->nth;
  12347. const int nk = ne00*ne01*ne02*ne03;
  12348. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12349. GGML_ASSERT(nb10 == sizeof(float));
  12350. if (params->type == GGML_TASK_TYPE_INIT) {
  12351. if (ith != 0) {
  12352. return;
  12353. }
  12354. memset(params->wdata, 0, params->wsize);
  12355. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12356. {
  12357. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12358. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12359. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12360. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12361. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12362. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12363. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12364. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12365. }
  12366. }
  12367. }
  12368. }
  12369. }
  12370. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12371. {
  12372. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12373. for (int i12 = 0; i12 < ne12; i12++) {
  12374. for (int i11 = 0; i11 < ne11; i11++) {
  12375. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12376. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12377. for (int i10 = 0; i10 < ne10; i10++) {
  12378. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12379. }
  12380. }
  12381. }
  12382. }
  12383. memset(dst->data, 0, ggml_nbytes(dst));
  12384. return;
  12385. }
  12386. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12387. return;
  12388. }
  12389. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12390. // total patches in dst
  12391. const int np = ne2;
  12392. // patches per thread
  12393. const int dp = (np + nth - 1)/nth;
  12394. // patch range for this thread
  12395. const int ip0 = dp*ith;
  12396. const int ip1 = MIN(ip0 + dp, np);
  12397. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12398. ggml_fp16_t * const wdata_src = wdata + nk;
  12399. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12400. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12401. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12402. for (int i11 = 0; i11 < ne11; i11++) {
  12403. for (int i10 = 0; i10 < ne10; i10++) {
  12404. const int i1n = i11*ne10*ne12 + i10*ne12;
  12405. for (int i01 = 0; i01 < ne01; i01++) {
  12406. for (int i00 = 0; i00 < ne00; i00++) {
  12407. float v = 0;
  12408. ggml_vec_dot_f16(ne03, &v, 0,
  12409. wdata_src + i1n, 0,
  12410. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12411. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12412. }
  12413. }
  12414. }
  12415. }
  12416. }
  12417. }
  12418. // ggml_compute_forward_pool_1d_sk_p0
  12419. static void ggml_compute_forward_pool_1d_sk_p0(
  12420. const struct ggml_compute_params * params,
  12421. const enum ggml_op_pool op,
  12422. const int k,
  12423. struct ggml_tensor * dst) {
  12424. const struct ggml_tensor * src = dst->src[0];
  12425. assert(src->type == GGML_TYPE_F32);
  12426. assert(params->ith == 0);
  12427. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12428. return;
  12429. }
  12430. const char * cdata = (const char *)src->data;
  12431. const char * const data_end = cdata + ggml_nbytes(src);
  12432. float * drow = (float *)dst->data;
  12433. const int64_t rs = dst->ne[0];
  12434. while (cdata < data_end) {
  12435. const float * const srow = (const float *)cdata;
  12436. int j = 0;
  12437. for (int64_t i = 0; i < rs; ++i) {
  12438. switch (op) {
  12439. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12440. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12441. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12442. }
  12443. for (int ki = 0; ki < k; ++ki) {
  12444. switch (op) {
  12445. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12446. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12447. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12448. }
  12449. ++j;
  12450. }
  12451. switch (op) {
  12452. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12453. case GGML_OP_POOL_MAX: break;
  12454. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12455. }
  12456. }
  12457. cdata += src->nb[1];
  12458. drow += rs;
  12459. }
  12460. }
  12461. // ggml_compute_forward_pool_1d
  12462. static void ggml_compute_forward_pool_1d(
  12463. const struct ggml_compute_params * params,
  12464. struct ggml_tensor * dst) {
  12465. const int32_t * opts = (const int32_t *)dst->op_params;
  12466. enum ggml_op_pool op = opts[0];
  12467. const int k0 = opts[1];
  12468. const int s0 = opts[2];
  12469. const int p0 = opts[3];
  12470. GGML_ASSERT(p0 == 0); // padding not supported
  12471. GGML_ASSERT(k0 == s0); // only s = k supported
  12472. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12473. }
  12474. // ggml_compute_forward_pool_2d
  12475. static void ggml_compute_forward_pool_2d(
  12476. const struct ggml_compute_params * params,
  12477. struct ggml_tensor * dst) {
  12478. const struct ggml_tensor * src = dst->src[0];
  12479. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12480. GGML_ASSERT(params->ith == 0);
  12481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12482. return;
  12483. }
  12484. const int32_t * opts = (const int32_t *)dst->op_params;
  12485. enum ggml_op_pool op = opts[0];
  12486. const int k0 = opts[1];
  12487. const int k1 = opts[2];
  12488. const int s0 = opts[3];
  12489. const int s1 = opts[4];
  12490. const int p0 = opts[5];
  12491. const int p1 = opts[6];
  12492. const char * cdata = (const char*)src->data;
  12493. const char * const data_end = cdata + ggml_nbytes(src);
  12494. const int64_t px = dst->ne[0];
  12495. const int64_t py = dst->ne[1];
  12496. const int64_t pa = px * py;
  12497. float * dplane = (float *)dst->data;
  12498. const int ka = k0 * k1;
  12499. const int offset0 = -p0;
  12500. const int offset1 = -p1;
  12501. while (cdata < data_end) {
  12502. for (int oy = 0; oy < py; ++oy) {
  12503. float * const drow = dplane + oy * px;
  12504. for (int ox = 0; ox < px; ++ox) {
  12505. float * const out = drow + ox;
  12506. switch (op) {
  12507. case GGML_OP_POOL_AVG: *out = 0; break;
  12508. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12509. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12510. }
  12511. const int ix = offset0 + ox * s0;
  12512. const int iy = offset1 + oy * s1;
  12513. for (int ky = 0; ky < k1; ++ky) {
  12514. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12515. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12516. for (int kx = 0; kx < k0; ++kx) {
  12517. int j = ix + kx;
  12518. if (j < 0 || j >= src->ne[0]) continue;
  12519. switch (op) {
  12520. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12521. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12522. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12523. }
  12524. }
  12525. }
  12526. switch (op) {
  12527. case GGML_OP_POOL_AVG: *out /= ka; break;
  12528. case GGML_OP_POOL_MAX: break;
  12529. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12530. }
  12531. }
  12532. }
  12533. cdata += src->nb[2];
  12534. dplane += pa;
  12535. }
  12536. }
  12537. // ggml_compute_forward_upscale
  12538. static void ggml_compute_forward_upscale_f32(
  12539. const struct ggml_compute_params * params,
  12540. struct ggml_tensor * dst) {
  12541. const struct ggml_tensor * src0 = dst->src[0];
  12542. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12543. return;
  12544. }
  12545. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12546. const int ith = params->ith;
  12547. const int nth = params->nth;
  12548. GGML_TENSOR_UNARY_OP_LOCALS
  12549. const float sf0 = (float)ne0/src0->ne[0];
  12550. const float sf1 = (float)ne1/src0->ne[1];
  12551. const float sf2 = (float)ne2/src0->ne[2];
  12552. const float sf3 = (float)ne3/src0->ne[3];
  12553. // TODO: optimize
  12554. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12555. const int64_t i03 = i3 / sf3;
  12556. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12557. const int64_t i02 = i2 / sf2;
  12558. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12559. const int64_t i01 = i1 / sf1;
  12560. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12561. const int64_t i00 = i0 / sf0;
  12562. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12563. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12564. *y = *x;
  12565. }
  12566. }
  12567. }
  12568. }
  12569. }
  12570. static void ggml_compute_forward_upscale(
  12571. const struct ggml_compute_params * params,
  12572. struct ggml_tensor * dst) {
  12573. const struct ggml_tensor * src0 = dst->src[0];
  12574. switch (src0->type) {
  12575. case GGML_TYPE_F32:
  12576. {
  12577. ggml_compute_forward_upscale_f32(params, dst);
  12578. } break;
  12579. default:
  12580. {
  12581. GGML_ASSERT(false);
  12582. } break;
  12583. }
  12584. }
  12585. // ggml_compute_forward_pad
  12586. static void ggml_compute_forward_pad_f32(
  12587. const struct ggml_compute_params * params,
  12588. struct ggml_tensor * dst) {
  12589. const struct ggml_tensor * src0 = dst->src[0];
  12590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12591. return;
  12592. }
  12593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12594. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12595. const int ith = params->ith;
  12596. const int nth = params->nth;
  12597. GGML_TENSOR_UNARY_OP_LOCALS
  12598. float * dst_ptr = (float *) dst->data;
  12599. // TODO: optimize
  12600. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12601. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12602. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12603. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12604. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12605. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12606. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12607. dst_ptr[dst_idx] = *src_ptr;
  12608. } else {
  12609. dst_ptr[dst_idx] = 0;
  12610. }
  12611. }
  12612. }
  12613. }
  12614. }
  12615. }
  12616. static void ggml_compute_forward_pad(
  12617. const struct ggml_compute_params * params,
  12618. struct ggml_tensor * dst) {
  12619. const struct ggml_tensor * src0 = dst->src[0];
  12620. switch (src0->type) {
  12621. case GGML_TYPE_F32:
  12622. {
  12623. ggml_compute_forward_pad_f32(params, dst);
  12624. } break;
  12625. default:
  12626. {
  12627. GGML_ASSERT(false);
  12628. } break;
  12629. }
  12630. }
  12631. // ggml_compute_forward_arange
  12632. static void ggml_compute_forward_arange_f32(
  12633. const struct ggml_compute_params * params,
  12634. struct ggml_tensor * dst) {
  12635. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12636. return;
  12637. }
  12638. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12639. const int ith = params->ith;
  12640. const int nth = params->nth;
  12641. const float start = ggml_get_op_params_f32(dst, 0);
  12642. const float stop = ggml_get_op_params_f32(dst, 1);
  12643. const float step = ggml_get_op_params_f32(dst, 2);
  12644. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12645. GGML_ASSERT(ggml_nelements(dst) == steps);
  12646. for (int64_t i = ith; i < steps; i+= nth) {
  12647. float value = start + step * i;
  12648. ((float *)dst->data)[i] = value;
  12649. }
  12650. }
  12651. static void ggml_compute_forward_arange(
  12652. const struct ggml_compute_params * params,
  12653. struct ggml_tensor * dst) {
  12654. switch (dst->type) {
  12655. case GGML_TYPE_F32:
  12656. {
  12657. ggml_compute_forward_arange_f32(params, dst);
  12658. } break;
  12659. default:
  12660. {
  12661. GGML_ASSERT(false);
  12662. } break;
  12663. }
  12664. }
  12665. static void ggml_compute_forward_timestep_embedding_f32(
  12666. const struct ggml_compute_params * params,
  12667. struct ggml_tensor * dst) {
  12668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12669. return;
  12670. }
  12671. const struct ggml_tensor * src0 = dst->src[0];
  12672. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12673. const int ith = params->ith;
  12674. const int nth = params->nth;
  12675. GGML_TENSOR_UNARY_OP_LOCALS
  12676. const int dim = ggml_get_op_params_i32(dst, 0);
  12677. const int max_period = ggml_get_op_params_i32(dst, 1);
  12678. int half = dim / 2;
  12679. for (int64_t i = 0; i < ne00; i++) {
  12680. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12681. for (int64_t j = ith; j < half; j += nth) {
  12682. float timestep = ((float *)src0->data)[i];
  12683. float freq = (float)expf(-logf(max_period) * j / half);
  12684. float arg = timestep * freq;
  12685. embed_data[j] = cosf(arg);
  12686. embed_data[j + half] = sinf(arg);
  12687. }
  12688. if (dim % 2 != 0 && ith == 0) {
  12689. embed_data[dim] = 0.f;
  12690. }
  12691. }
  12692. }
  12693. static void ggml_compute_forward_timestep_embedding(
  12694. const struct ggml_compute_params * params,
  12695. struct ggml_tensor * dst) {
  12696. const struct ggml_tensor * src0 = dst->src[0];
  12697. switch (src0->type) {
  12698. case GGML_TYPE_F32:
  12699. {
  12700. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12701. } break;
  12702. default:
  12703. {
  12704. GGML_ASSERT(false);
  12705. } break;
  12706. }
  12707. }
  12708. // ggml_compute_forward_argsort
  12709. static void ggml_compute_forward_argsort_f32(
  12710. const struct ggml_compute_params * params,
  12711. struct ggml_tensor * dst) {
  12712. const struct ggml_tensor * src0 = dst->src[0];
  12713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12714. return;
  12715. }
  12716. GGML_TENSOR_UNARY_OP_LOCALS
  12717. GGML_ASSERT(nb0 == sizeof(float));
  12718. const int ith = params->ith;
  12719. const int nth = params->nth;
  12720. const int64_t nr = ggml_nrows(src0);
  12721. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12722. for (int64_t i = ith; i < nr; i += nth) {
  12723. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12724. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12725. for (int64_t j = 0; j < ne0; j++) {
  12726. dst_data[j] = j;
  12727. }
  12728. // C doesn't have a functional sort, so we do a bubble sort instead
  12729. for (int64_t j = 0; j < ne0; j++) {
  12730. for (int64_t k = j + 1; k < ne0; k++) {
  12731. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12732. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12733. int32_t tmp = dst_data[j];
  12734. dst_data[j] = dst_data[k];
  12735. dst_data[k] = tmp;
  12736. }
  12737. }
  12738. }
  12739. }
  12740. }
  12741. static void ggml_compute_forward_argsort(
  12742. const struct ggml_compute_params * params,
  12743. struct ggml_tensor * dst) {
  12744. const struct ggml_tensor * src0 = dst->src[0];
  12745. switch (src0->type) {
  12746. case GGML_TYPE_F32:
  12747. {
  12748. ggml_compute_forward_argsort_f32(params, dst);
  12749. } break;
  12750. default:
  12751. {
  12752. GGML_ASSERT(false);
  12753. } break;
  12754. }
  12755. }
  12756. // ggml_compute_forward_flash_attn_ext
  12757. static void ggml_compute_forward_flash_attn_ext_f16(
  12758. const struct ggml_compute_params * params,
  12759. const struct ggml_tensor * q,
  12760. const struct ggml_tensor * k,
  12761. const struct ggml_tensor * v,
  12762. const struct ggml_tensor * mask,
  12763. struct ggml_tensor * dst) {
  12764. int64_t t0 = ggml_perf_time_us();
  12765. UNUSED(t0);
  12766. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12767. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12768. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12769. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12770. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12771. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12772. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12773. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12774. const int ith = params->ith;
  12775. const int nth = params->nth;
  12776. const int64_t D = neq0;
  12777. const int64_t N = neq1;
  12778. GGML_ASSERT(ne0 == D);
  12779. GGML_ASSERT(ne2 == N);
  12780. // input tensor rows must be contiguous
  12781. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12782. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12783. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12784. GGML_ASSERT(neq0 == D);
  12785. GGML_ASSERT(nek0 == D);
  12786. GGML_ASSERT(nev0 == D);
  12787. GGML_ASSERT(neq1 == N);
  12788. GGML_ASSERT(nev0 == D);
  12789. // dst cannot be transposed or permuted
  12790. GGML_ASSERT(nb0 == sizeof(float));
  12791. GGML_ASSERT(nb0 <= nb1);
  12792. GGML_ASSERT(nb1 <= nb2);
  12793. GGML_ASSERT(nb2 <= nb3);
  12794. // broadcast factors
  12795. const int64_t rk2 = neq2/nek2;
  12796. const int64_t rk3 = neq3/nek3;
  12797. const int64_t rv2 = neq2/nev2;
  12798. const int64_t rv3 = neq3/nev3;
  12799. if (params->type == GGML_TASK_TYPE_INIT) {
  12800. return;
  12801. }
  12802. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12803. return;
  12804. }
  12805. // parallelize by q rows using ggml_vec_dot_f32
  12806. // total rows in q
  12807. const int nr = neq1*neq2*neq3;
  12808. // rows per thread
  12809. const int dr = (nr + nth - 1)/nth;
  12810. // row range for this thread
  12811. const int ir0 = dr*ith;
  12812. const int ir1 = MIN(ir0 + dr, nr);
  12813. float scale = 1.0f;
  12814. float max_bias = 0.0f;
  12815. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12816. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12817. const uint32_t n_head = neq2;
  12818. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12819. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12820. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12821. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12822. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12823. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12824. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12825. // loop over n_batch and n_head
  12826. for (int ir = ir0; ir < ir1; ++ir) {
  12827. // q indices
  12828. const int iq3 = ir/(neq2*neq1);
  12829. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12830. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12831. const uint32_t h = iq2; // head index
  12832. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12833. float S = 0.0f; // sum
  12834. float M = -INFINITY; // maximum KQ value
  12835. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12836. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12837. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12838. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12839. if (v->type == GGML_TYPE_F16) {
  12840. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12841. } else {
  12842. memset(VKQ32, 0, D*sizeof(float));
  12843. }
  12844. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12845. // k indices
  12846. const int ik3 = iq3 / rk3;
  12847. const int ik2 = iq2 / rk2;
  12848. // v indices
  12849. const int iv3 = iq3 / rv3;
  12850. const int iv2 = iq2 / rv2;
  12851. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12852. q_to_vec_dot(pq, Q_q, D);
  12853. // online softmax / attention
  12854. // loop over n_kv and n_head_kv
  12855. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12856. for (int64_t ic = 0; ic < nek1; ++ic) {
  12857. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12858. if (mv == -INFINITY) {
  12859. continue;
  12860. }
  12861. float s; // KQ value
  12862. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12863. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12864. s = s*scale + mv; // scale KQ value and apply mask
  12865. const float Mold = M;
  12866. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12867. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12868. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12869. if (v->type== GGML_TYPE_F16) {
  12870. if (s > M) {
  12871. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12872. M = s;
  12873. ms = expf(Mold - M);
  12874. // V = V*expf(Mold - M)
  12875. ggml_vec_scale_f16(D, VKQ16, ms);
  12876. } else {
  12877. // no new maximum, ms == 1.0f, vs != 1.0f
  12878. vs = expf(s - M);
  12879. }
  12880. // V += v*expf(s - M)
  12881. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12882. } else {
  12883. if (s > M) {
  12884. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12885. M = s;
  12886. ms = expf(Mold - M);
  12887. // V = V*expf(Mold - M)
  12888. ggml_vec_scale_f32(D, VKQ32, ms);
  12889. } else {
  12890. // no new maximum, ms == 1.0f, vs != 1.0f
  12891. vs = expf(s - M);
  12892. }
  12893. v_to_float(v_data, V32, D);
  12894. // V += v*expf(s - M)
  12895. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12896. }
  12897. S = S*ms + vs; // scale and increment sum with partial sum
  12898. }
  12899. if (v->type == GGML_TYPE_F16) {
  12900. for (int64_t d = 0; d < D; ++d) {
  12901. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12902. }
  12903. }
  12904. // V /= S
  12905. const float S_inv = 1.0f/S;
  12906. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12907. // dst indices
  12908. const int i1 = iq1;
  12909. const int i2 = iq2;
  12910. const int i3 = iq3;
  12911. // original
  12912. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12913. // permute(0, 2, 1, 3)
  12914. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12915. }
  12916. }
  12917. static void ggml_compute_forward_flash_attn_ext(
  12918. const struct ggml_compute_params * params,
  12919. const struct ggml_tensor * q,
  12920. const struct ggml_tensor * k,
  12921. const struct ggml_tensor * v,
  12922. const struct ggml_tensor * mask,
  12923. struct ggml_tensor * dst) {
  12924. switch (dst->op_params[2]) {
  12925. case GGML_PREC_DEFAULT:
  12926. case GGML_PREC_F32:
  12927. {
  12928. // uses F32 accumulators
  12929. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12930. } break;
  12931. default:
  12932. {
  12933. GGML_ASSERT(false);
  12934. } break;
  12935. }
  12936. }
  12937. // ggml_compute_forward_flash_attn_back
  12938. static void ggml_compute_forward_flash_attn_back_f32(
  12939. const struct ggml_compute_params * params,
  12940. const bool masked,
  12941. struct ggml_tensor * dst) {
  12942. const struct ggml_tensor * q = dst->src[0];
  12943. const struct ggml_tensor * k = dst->src[1];
  12944. const struct ggml_tensor * v = dst->src[2];
  12945. const struct ggml_tensor * d = dst->src[3];
  12946. int64_t t0 = ggml_perf_time_us();
  12947. UNUSED(t0);
  12948. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12949. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12950. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12951. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12952. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12953. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12954. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12955. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12956. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12957. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12958. const int ith = params->ith;
  12959. const int nth = params->nth;
  12960. const int64_t D = neq0;
  12961. const int64_t N = neq1;
  12962. const int64_t P = nek1 - N;
  12963. const int64_t M = P + N;
  12964. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12965. const int mxDM = MAX(D, Mup);
  12966. // GGML_ASSERT(ne0 == D);
  12967. // GGML_ASSERT(ne1 == N);
  12968. GGML_ASSERT(P >= 0);
  12969. GGML_ASSERT(nbq0 == sizeof(float));
  12970. GGML_ASSERT(nbk0 == sizeof(float));
  12971. GGML_ASSERT(nbv0 == sizeof(float));
  12972. GGML_ASSERT(neq0 == D);
  12973. GGML_ASSERT(nek0 == D);
  12974. GGML_ASSERT(nev1 == D);
  12975. GGML_ASSERT(ned0 == D);
  12976. GGML_ASSERT(neq1 == N);
  12977. GGML_ASSERT(nek1 == N + P);
  12978. GGML_ASSERT(nev1 == D);
  12979. GGML_ASSERT(ned1 == N);
  12980. // dst cannot be transposed or permuted
  12981. GGML_ASSERT(nb0 == sizeof(float));
  12982. GGML_ASSERT(nb0 <= nb1);
  12983. GGML_ASSERT(nb1 <= nb2);
  12984. GGML_ASSERT(nb2 <= nb3);
  12985. if (params->type == GGML_TASK_TYPE_INIT) {
  12986. if (ith == 0) {
  12987. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12988. }
  12989. return;
  12990. }
  12991. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12992. return;
  12993. }
  12994. const int64_t elem_q = ggml_nelements(q);
  12995. const int64_t elem_k = ggml_nelements(k);
  12996. enum ggml_type result_type = dst->type;
  12997. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12998. const size_t tsize = ggml_type_size(result_type);
  12999. const size_t offs_q = 0;
  13000. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13001. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13002. void * grad_q = (char *) dst->data;
  13003. void * grad_k = (char *) dst->data + offs_k;
  13004. void * grad_v = (char *) dst->data + offs_v;
  13005. const size_t nbgq1 = nb0*neq0;
  13006. const size_t nbgq2 = nb0*neq0*neq1;
  13007. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13008. const size_t nbgk1 = nb0*nek0;
  13009. const size_t nbgk2 = nb0*nek0*nek1;
  13010. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13011. const size_t nbgv1 = nb0*nev0;
  13012. const size_t nbgv2 = nb0*nev0*nev1;
  13013. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13014. // parallelize by k rows using ggml_vec_dot_f32
  13015. // total rows in k
  13016. const int nr = nek2*nek3;
  13017. // rows per thread
  13018. const int dr = (nr + nth - 1)/nth;
  13019. // row range for this thread
  13020. const int ir0 = dr*ith;
  13021. const int ir1 = MIN(ir0 + dr, nr);
  13022. const float scale = 1.0f/sqrtf(D);
  13023. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13024. // how often k2 (and v2) is repeated in q2
  13025. int nrep = neq2/nek2;
  13026. for (int ir = ir0; ir < ir1; ++ir) {
  13027. // q indices
  13028. const int ik3 = ir/(nek2);
  13029. const int ik2 = ir - ik3*nek2;
  13030. const int iq3 = ik3;
  13031. const int id3 = ik3;
  13032. const int iv3 = ik3;
  13033. const int iv2 = ik2;
  13034. for (int irep = 0; irep < nrep; ++irep) {
  13035. const int iq2 = ik2 + irep*nek2;
  13036. const int id2 = iq2;
  13037. // (ik2 + irep*nek2) % nek2 == ik2
  13038. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13039. const int id1 = iq1;
  13040. // not sure about CACHE_LINE_SIZE_F32..
  13041. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13042. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13043. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13044. for (int i = M; i < Mup; ++i) {
  13045. S[i] = -INFINITY;
  13046. }
  13047. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13048. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13049. // k indices
  13050. const int ik1 = ic;
  13051. // S indices
  13052. const int i1 = ik1;
  13053. ggml_vec_dot_f32(neq0,
  13054. S + i1, 0,
  13055. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13056. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13057. }
  13058. // scale
  13059. ggml_vec_scale_f32(masked_begin, S, scale);
  13060. for (int64_t i = masked_begin; i < M; i++) {
  13061. S[i] = -INFINITY;
  13062. }
  13063. // softmax
  13064. // exclude known -INF S[..] values from max and loop
  13065. // dont forget to set their SM values to zero
  13066. {
  13067. float max = -INFINITY;
  13068. ggml_vec_max_f32(masked_begin, &max, S);
  13069. ggml_float sum = 0.0;
  13070. {
  13071. #ifdef GGML_SOFT_MAX_ACCELERATE
  13072. max = -max;
  13073. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13074. vvexpf(SM, SM, &Mup);
  13075. ggml_vec_sum_f32(Mup, &sum, SM);
  13076. #else
  13077. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13078. #endif
  13079. }
  13080. assert(sum > 0.0);
  13081. sum = 1.0/sum;
  13082. ggml_vec_scale_f32(masked_begin, SM, sum);
  13083. }
  13084. // step-by-step explanation
  13085. {
  13086. // forward-process shape grads from backward process
  13087. // parallel_for ik2,ik3:
  13088. // for irep:
  13089. // iq2 = ik2 + irep*nek2
  13090. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13091. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13092. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13093. // for iq1:
  13094. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13095. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13096. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13097. // S0 = -Inf [D,1,1,1]
  13098. // ~S1[i] = dot(kcur[:D,i], qcur)
  13099. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13100. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13101. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13102. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13103. // ~S5[i] = dot(vcur[:,i], S4)
  13104. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13105. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13106. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13107. // dst backward-/ grad[dst] = d
  13108. //
  13109. // output gradients with their dependencies:
  13110. //
  13111. // grad[kcur] = grad[S1].T @ qcur
  13112. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13113. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13114. // grad[S4] = grad[S5] @ vcur
  13115. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13116. // grad[qcur] = grad[S1] @ kcur
  13117. // grad[vcur] = grad[S5].T @ S4
  13118. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13119. //
  13120. // in post-order:
  13121. //
  13122. // S1 = qcur @ kcur.T
  13123. // S2 = S1 * scale
  13124. // S3 = diag_mask_inf(S2, P)
  13125. // S4 = softmax(S3)
  13126. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13127. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13128. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13129. // grad[qcur] = grad[S1] @ kcur
  13130. // grad[kcur] = grad[S1].T @ qcur
  13131. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13132. //
  13133. // using less variables (SM=S4):
  13134. //
  13135. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13136. // SM = softmax(S)
  13137. // S = d[:D,iq1,iq2,iq3] @ vcur
  13138. // dot_SM_gradSM = dot(SM, S)
  13139. // S = SM * (S - dot(SM, S))
  13140. // S = diag_mask_zero(S, P) * scale
  13141. //
  13142. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13143. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13144. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13145. }
  13146. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13147. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13148. // for ic:
  13149. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13150. // exclude known future zero S[..] values from operation
  13151. ggml_vec_set_f32(masked_begin, S, 0);
  13152. for (int64_t ic = 0; ic < D; ++ic) {
  13153. ggml_vec_mad_f32(masked_begin,
  13154. S,
  13155. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13156. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13157. }
  13158. // S = SM * (S - dot(SM, S))
  13159. float dot_SM_gradSM = 0;
  13160. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13161. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13162. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13163. // S = diag_mask_zero(S, P) * scale
  13164. // already done by above ggml_vec_set_f32
  13165. // exclude known zero S[..] values from operation
  13166. ggml_vec_scale_f32(masked_begin, S, scale);
  13167. // S shape [M,1]
  13168. // SM shape [M,1]
  13169. // kcur shape [D,M]
  13170. // qcur shape [D,1]
  13171. // vcur shape [M,D]
  13172. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13173. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13174. // for ic:
  13175. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13176. // exclude known zero S[..] values from loop
  13177. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13178. ggml_vec_mad_f32(D,
  13179. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13180. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13181. S[ic]);
  13182. }
  13183. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13184. // for ic:
  13185. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13186. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13187. // exclude known zero S[..] values from loop
  13188. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13189. ggml_vec_mad_f32(D,
  13190. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13191. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13192. S[ic]);
  13193. }
  13194. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13195. // for ic:
  13196. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13197. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13198. // exclude known zero SM[..] values from mad
  13199. for (int64_t ic = 0; ic < D; ++ic) {
  13200. ggml_vec_mad_f32(masked_begin,
  13201. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13202. SM,
  13203. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13204. }
  13205. }
  13206. }
  13207. }
  13208. }
  13209. static void ggml_compute_forward_flash_attn_back(
  13210. const struct ggml_compute_params * params,
  13211. const bool masked,
  13212. struct ggml_tensor * dst) {
  13213. const struct ggml_tensor * q = dst->src[0];
  13214. switch (q->type) {
  13215. case GGML_TYPE_F32:
  13216. {
  13217. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13218. } break;
  13219. default:
  13220. {
  13221. GGML_ASSERT(false);
  13222. } break;
  13223. }
  13224. }
  13225. // ggml_compute_forward_ssm_conv
  13226. static void ggml_compute_forward_ssm_conv_f32(
  13227. const struct ggml_compute_params * params,
  13228. struct ggml_tensor * dst) {
  13229. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13230. return;
  13231. }
  13232. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13233. const struct ggml_tensor * src1 = dst->src[1]; // x
  13234. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13235. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13236. const int ith = params->ith;
  13237. const int nth = params->nth;
  13238. const int nc = src2->ne[0]; // d_conv
  13239. const int nr = src0->ne[1]; // d_inner
  13240. const int n_t = src1->ne[1]; // n_tokens
  13241. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13242. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13243. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13244. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13245. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13246. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13247. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13248. // for use with the destination state offset between sequences
  13249. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13250. // rows per thread
  13251. const int dr = (nr + nth - 1)/nth;
  13252. // row range for this thread
  13253. const int ir0 = dr*ith;
  13254. const int ir1 = MIN(ir0 + dr, nr);
  13255. const int ir = ir1 - ir0;
  13256. if (n_kv > 1) {
  13257. // multiple sequences means it's hard to know when it's the first time a state is read,
  13258. // so copy them all over to the destination, just to be sure.
  13259. for (int i3 = 0; i3 < n_kv; ++i3) {
  13260. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13261. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13262. // can't use memcpy because of d_conv vs d_conv - 1
  13263. for (int i1 = 0; i1 < ir; ++i1) {
  13264. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13265. // copy s0 to last (d_conv - 1) columns of s
  13266. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13267. }
  13268. }
  13269. }
  13270. }
  13271. for (int i2 = 0; i2 < n_t; ++i2) {
  13272. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13273. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13274. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13275. float * s0; // {d_conv - 1, d_inner, n_kv}
  13276. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13277. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13278. int ne0s0;
  13279. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13280. // avoid needing to copy the state for the first token
  13281. if (i2 == 0) {
  13282. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13283. ne0s0 = src0->ne[0];
  13284. } else {
  13285. // the source is the last (d_conv - 1) columns of the destination
  13286. s0 = s + 1;
  13287. ne0s0 = nc;
  13288. }
  13289. // d_inner
  13290. for (int i1 = 0; i1 < ir; ++i1) {
  13291. // shift state left
  13292. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13293. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13294. }
  13295. // insert x on the last column
  13296. s[(nc - 1) + i1*nc] = x0[i1];
  13297. }
  13298. // handle copies when there are multiple output states
  13299. for (int i3 = 1; i3 < n_kv; ++i3) {
  13300. int32_t seq = sq[i3];
  13301. if (0 <= seq && seq < n_kv) {
  13302. float * s1 = s + (seq - sq[0])*nc*nr;
  13303. memcpy(s1, s, nc*ir*sizeof(float));
  13304. } else {
  13305. // stop at negative or too big seq_ids
  13306. break;
  13307. }
  13308. }
  13309. // it seems a little faster when this is separate from the state shift
  13310. for (int i1 = 0; i1 < ir; ++i1) {
  13311. // rowwise dot product
  13312. float sumf = 0.0f;
  13313. for (int i0 = 0; i0 < nc; ++i0) {
  13314. int i = i0 + i1*nc;
  13315. sumf += s[i] * c[i];
  13316. }
  13317. x[i1] = sumf;
  13318. }
  13319. }
  13320. }
  13321. static void ggml_compute_forward_ssm_conv(
  13322. const struct ggml_compute_params * params,
  13323. struct ggml_tensor * dst) {
  13324. switch (dst->src[0]->type) {
  13325. case GGML_TYPE_F32:
  13326. {
  13327. ggml_compute_forward_ssm_conv_f32(params, dst);
  13328. } break;
  13329. default:
  13330. {
  13331. GGML_ASSERT(false);
  13332. } break;
  13333. }
  13334. }
  13335. // ggml_compute_forward_ssm_scan
  13336. static void ggml_compute_forward_ssm_scan_f32(
  13337. const struct ggml_compute_params * params,
  13338. struct ggml_tensor * dst) {
  13339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13340. return;
  13341. }
  13342. const struct ggml_tensor * src0 = dst->src[0]; // s
  13343. const struct ggml_tensor * src1 = dst->src[1]; // x
  13344. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13345. const struct ggml_tensor * src3 = dst->src[3]; // A
  13346. const struct ggml_tensor * src4 = dst->src[4]; // B
  13347. const struct ggml_tensor * src5 = dst->src[5]; // C
  13348. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13349. const int ith = params->ith;
  13350. const int nth = params->nth;
  13351. const int64_t nc = src0->ne[0]; // d_state
  13352. const int64_t nr = src0->ne[1]; // d_inner
  13353. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13354. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13355. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13356. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13357. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13358. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13359. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13360. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13361. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13362. // required for the dot product between s and C, and when copying the states
  13363. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13364. // required for per-sequence offsets for states
  13365. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13366. // required to get correct offset for state destination (i.e. src1->nb[2])
  13367. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13368. // rows per thread
  13369. const int dr = (nr + nth - 1)/nth;
  13370. // row range for this thread
  13371. const int ir0 = dr*ith;
  13372. const int ir1 = MIN(ir0 + dr, nr);
  13373. const int ir = ir1 - ir0;
  13374. if (n_kv > 1) {
  13375. // it's hard to know if the source states have already been copied
  13376. // when there are multiple, so copy them already.
  13377. for (int i3 = 0; i3 < n_kv; ++i3) {
  13378. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13379. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13380. memcpy(s, s0, nc*ir*sizeof(float));
  13381. }
  13382. }
  13383. for (int i2 = 0; i2 < n_t; ++i2) {
  13384. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13385. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13386. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13387. float * s0;
  13388. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13389. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13390. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13391. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13392. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13393. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13394. // avoid needing to copy the state for the first token
  13395. if (i2 == 0) {
  13396. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13397. } else {
  13398. // otherwise the source is the same as the destination
  13399. s0 = s;
  13400. }
  13401. // d_inner
  13402. for (int i1 = 0; i1 < ir; ++i1) {
  13403. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13404. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13405. float x_dt = x[i1] * dt_soft_plus;
  13406. float sumf = 0.0f;
  13407. // d_state
  13408. for (int i0 = 0; i0 < nc; ++i0) {
  13409. int i = i0 + i1*nc;
  13410. // state = prev_state * dA + dB * x
  13411. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13412. // y = rowwise_dotprod(state, C)
  13413. sumf += state * C[i0];
  13414. s[i] = state;
  13415. }
  13416. y[i1] = sumf;
  13417. }
  13418. // handle copies when there are multiple output states
  13419. for (int i3 = 1; i3 < n_kv; ++i3) {
  13420. int32_t seq = sq[i3];
  13421. if (0 <= seq && seq < n_kv) {
  13422. float * s1 = s + (seq - sq[0])*nc*nr;
  13423. memcpy(s1, s, nc*ir*sizeof(float));
  13424. } else {
  13425. // stop at negative or too big seq_ids
  13426. break;
  13427. }
  13428. }
  13429. }
  13430. }
  13431. static void ggml_compute_forward_ssm_scan(
  13432. const struct ggml_compute_params * params,
  13433. struct ggml_tensor * dst) {
  13434. switch (dst->src[0]->type) {
  13435. case GGML_TYPE_F32:
  13436. {
  13437. ggml_compute_forward_ssm_scan_f32(params, dst);
  13438. } break;
  13439. default:
  13440. {
  13441. GGML_ASSERT(false);
  13442. } break;
  13443. }
  13444. }
  13445. // ggml_compute_forward_win_part
  13446. static void ggml_compute_forward_win_part_f32(
  13447. const struct ggml_compute_params * params,
  13448. struct ggml_tensor * dst) {
  13449. const struct ggml_tensor * src0 = dst->src[0];
  13450. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13451. return;
  13452. }
  13453. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13454. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13455. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13456. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13457. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13458. assert(ne00 == ne0);
  13459. assert(ne3 == nep0*nep1);
  13460. // TODO: optimize / multi-thread
  13461. for (int py = 0; py < nep1; ++py) {
  13462. for (int px = 0; px < nep0; ++px) {
  13463. const int64_t i3 = py*nep0 + px;
  13464. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13465. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13466. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13467. const int64_t i02 = py*w + i2;
  13468. const int64_t i01 = px*w + i1;
  13469. const int64_t i00 = i0;
  13470. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13471. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13472. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13473. ((float *) dst->data)[i] = 0.0f;
  13474. } else {
  13475. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13476. }
  13477. }
  13478. }
  13479. }
  13480. }
  13481. }
  13482. }
  13483. static void ggml_compute_forward_win_part(
  13484. const struct ggml_compute_params * params,
  13485. struct ggml_tensor * dst) {
  13486. const struct ggml_tensor * src0 = dst->src[0];
  13487. switch (src0->type) {
  13488. case GGML_TYPE_F32:
  13489. {
  13490. ggml_compute_forward_win_part_f32(params, dst);
  13491. } break;
  13492. default:
  13493. {
  13494. GGML_ASSERT(false);
  13495. } break;
  13496. }
  13497. }
  13498. // ggml_compute_forward_win_unpart
  13499. static void ggml_compute_forward_win_unpart_f32(
  13500. const struct ggml_compute_params * params,
  13501. struct ggml_tensor * dst) {
  13502. const struct ggml_tensor * src0 = dst->src[0];
  13503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13504. return;
  13505. }
  13506. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13507. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13508. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13509. // padding
  13510. const int px = (w - ne1%w)%w;
  13511. //const int py = (w - ne2%w)%w;
  13512. const int npx = (px + ne1)/w;
  13513. //const int npy = (py + ne2)/w;
  13514. assert(ne0 == ne00);
  13515. // TODO: optimize / multi-thread
  13516. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13517. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13518. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13519. const int ip2 = i2/w;
  13520. const int ip1 = i1/w;
  13521. const int64_t i02 = i2%w;
  13522. const int64_t i01 = i1%w;
  13523. const int64_t i00 = i0;
  13524. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13525. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13526. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13527. }
  13528. }
  13529. }
  13530. }
  13531. static void ggml_compute_forward_win_unpart(
  13532. const struct ggml_compute_params * params,
  13533. struct ggml_tensor * dst) {
  13534. const struct ggml_tensor * src0 = dst->src[0];
  13535. switch (src0->type) {
  13536. case GGML_TYPE_F32:
  13537. {
  13538. ggml_compute_forward_win_unpart_f32(params, dst);
  13539. } break;
  13540. default:
  13541. {
  13542. GGML_ASSERT(false);
  13543. } break;
  13544. }
  13545. }
  13546. //gmml_compute_forward_unary
  13547. static void ggml_compute_forward_unary(
  13548. const struct ggml_compute_params * params,
  13549. struct ggml_tensor * dst) {
  13550. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13551. switch (op) {
  13552. case GGML_UNARY_OP_ABS:
  13553. {
  13554. ggml_compute_forward_abs(params, dst);
  13555. } break;
  13556. case GGML_UNARY_OP_SGN:
  13557. {
  13558. ggml_compute_forward_sgn(params, dst);
  13559. } break;
  13560. case GGML_UNARY_OP_NEG:
  13561. {
  13562. ggml_compute_forward_neg(params, dst);
  13563. } break;
  13564. case GGML_UNARY_OP_STEP:
  13565. {
  13566. ggml_compute_forward_step(params, dst);
  13567. } break;
  13568. case GGML_UNARY_OP_TANH:
  13569. {
  13570. ggml_compute_forward_tanh(params, dst);
  13571. } break;
  13572. case GGML_UNARY_OP_ELU:
  13573. {
  13574. ggml_compute_forward_elu(params, dst);
  13575. } break;
  13576. case GGML_UNARY_OP_RELU:
  13577. {
  13578. ggml_compute_forward_relu(params, dst);
  13579. } break;
  13580. case GGML_UNARY_OP_SIGMOID:
  13581. {
  13582. ggml_compute_forward_sigmoid(params, dst);
  13583. } break;
  13584. case GGML_UNARY_OP_GELU:
  13585. {
  13586. ggml_compute_forward_gelu(params, dst);
  13587. } break;
  13588. case GGML_UNARY_OP_GELU_QUICK:
  13589. {
  13590. ggml_compute_forward_gelu_quick(params, dst);
  13591. } break;
  13592. case GGML_UNARY_OP_SILU:
  13593. {
  13594. ggml_compute_forward_silu(params, dst);
  13595. } break;
  13596. case GGML_UNARY_OP_HARDSWISH:
  13597. {
  13598. ggml_compute_forward_hardswish(params, dst);
  13599. } break;
  13600. case GGML_UNARY_OP_HARDSIGMOID:
  13601. {
  13602. ggml_compute_forward_hardsigmoid(params, dst);
  13603. } break;
  13604. default:
  13605. {
  13606. GGML_ASSERT(false);
  13607. } break;
  13608. }
  13609. }
  13610. // ggml_compute_forward_get_rel_pos
  13611. static void ggml_compute_forward_get_rel_pos_f16(
  13612. const struct ggml_compute_params * params,
  13613. struct ggml_tensor * dst) {
  13614. const struct ggml_tensor * src0 = dst->src[0];
  13615. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13616. return;
  13617. }
  13618. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13619. GGML_TENSOR_UNARY_OP_LOCALS
  13620. const int64_t w = ne1;
  13621. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13622. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13623. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13624. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13625. const int64_t pos = (w - i1 - 1) + i2;
  13626. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13627. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13628. }
  13629. }
  13630. }
  13631. }
  13632. static void ggml_compute_forward_get_rel_pos(
  13633. const struct ggml_compute_params * params,
  13634. struct ggml_tensor * dst) {
  13635. const struct ggml_tensor * src0 = dst->src[0];
  13636. switch (src0->type) {
  13637. case GGML_TYPE_F16:
  13638. case GGML_TYPE_BF16:
  13639. {
  13640. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13641. } break;
  13642. default:
  13643. {
  13644. GGML_ASSERT(false);
  13645. } break;
  13646. }
  13647. }
  13648. // ggml_compute_forward_add_rel_pos
  13649. static void ggml_compute_forward_add_rel_pos_f32(
  13650. const struct ggml_compute_params * params,
  13651. struct ggml_tensor * dst) {
  13652. const struct ggml_tensor * src0 = dst->src[0];
  13653. const struct ggml_tensor * src1 = dst->src[1];
  13654. const struct ggml_tensor * src2 = dst->src[2];
  13655. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13656. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13657. if (params->ith != 0) {
  13658. return;
  13659. }
  13660. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13661. return;
  13662. }
  13663. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13664. return;
  13665. }
  13666. int64_t t0 = ggml_perf_time_us();
  13667. UNUSED(t0);
  13668. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13669. float * src1_data = (float *) src1->data;
  13670. float * src2_data = (float *) src2->data;
  13671. float * dst_data = (float *) dst->data;
  13672. const int64_t ne10 = src1->ne[0];
  13673. const int64_t ne11 = src1->ne[1];
  13674. const int64_t ne12 = src1->ne[2];
  13675. const int64_t ne13 = src1->ne[3];
  13676. const int ith = params->ith;
  13677. const int nth = params->nth;
  13678. // total patches in dst
  13679. const int np = ne13;
  13680. // patches per thread
  13681. const int dp = (np + nth - 1)/nth;
  13682. // patch range for this thread
  13683. const int ip0 = dp*ith;
  13684. const int ip1 = MIN(ip0 + dp, np);
  13685. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13686. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13687. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13688. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13689. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13690. const int64_t jp0 = jp1 + i10;
  13691. const float src1_e = src1_data[jp0];
  13692. const float src2_e = src2_data[jp0];
  13693. const int64_t jdh = jp0 * ne10;
  13694. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13695. for (int64_t j = 0; j < ne10; ++j) {
  13696. dst_data[jdh + j ] += src2_e;
  13697. dst_data[jdw + j*ne10] += src1_e;
  13698. }
  13699. }
  13700. }
  13701. }
  13702. }
  13703. }
  13704. static void ggml_compute_forward_add_rel_pos(
  13705. const struct ggml_compute_params * params,
  13706. struct ggml_tensor * dst) {
  13707. const struct ggml_tensor * src0 = dst->src[0];
  13708. switch (src0->type) {
  13709. case GGML_TYPE_F32:
  13710. {
  13711. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13712. } break;
  13713. default:
  13714. {
  13715. GGML_ASSERT(false);
  13716. } break;
  13717. }
  13718. }
  13719. // ggml_compute_forward_map_unary
  13720. static void ggml_compute_forward_map_unary_f32(
  13721. const struct ggml_compute_params * params,
  13722. struct ggml_tensor * dst,
  13723. const ggml_unary_op_f32_t fun) {
  13724. const struct ggml_tensor * src0 = dst->src[0];
  13725. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13726. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13727. return;
  13728. }
  13729. const int n = ggml_nrows(src0);
  13730. const int nc = src0->ne[0];
  13731. assert( dst->nb[0] == sizeof(float));
  13732. assert(src0->nb[0] == sizeof(float));
  13733. for (int i = 0; i < n; i++) {
  13734. fun(nc,
  13735. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13736. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13737. }
  13738. }
  13739. static void ggml_compute_forward_map_unary(
  13740. const struct ggml_compute_params * params,
  13741. struct ggml_tensor * dst,
  13742. const ggml_unary_op_f32_t fun) {
  13743. const struct ggml_tensor * src0 = dst->src[0];
  13744. switch (src0->type) {
  13745. case GGML_TYPE_F32:
  13746. {
  13747. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13748. } break;
  13749. default:
  13750. {
  13751. GGML_ASSERT(false);
  13752. } break;
  13753. }
  13754. }
  13755. // ggml_compute_forward_map_binary
  13756. static void ggml_compute_forward_map_binary_f32(
  13757. const struct ggml_compute_params * params,
  13758. struct ggml_tensor * dst,
  13759. const ggml_binary_op_f32_t fun) {
  13760. const struct ggml_tensor * src0 = dst->src[0];
  13761. const struct ggml_tensor * src1 = dst->src[1];
  13762. assert(params->ith == 0);
  13763. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13765. return;
  13766. }
  13767. const int n = ggml_nrows(src0);
  13768. const int nc = src0->ne[0];
  13769. assert( dst->nb[0] == sizeof(float));
  13770. assert(src0->nb[0] == sizeof(float));
  13771. assert(src1->nb[0] == sizeof(float));
  13772. for (int i = 0; i < n; i++) {
  13773. fun(nc,
  13774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13775. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13776. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13777. }
  13778. }
  13779. static void ggml_compute_forward_map_binary(
  13780. const struct ggml_compute_params * params,
  13781. struct ggml_tensor * dst,
  13782. const ggml_binary_op_f32_t fun) {
  13783. const struct ggml_tensor * src0 = dst->src[0];
  13784. switch (src0->type) {
  13785. case GGML_TYPE_F32:
  13786. {
  13787. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13788. } break;
  13789. default:
  13790. {
  13791. GGML_ASSERT(false);
  13792. } break;
  13793. }
  13794. }
  13795. // ggml_compute_forward_map_custom1
  13796. static void ggml_compute_forward_map_custom1_f32(
  13797. const struct ggml_compute_params * params,
  13798. struct ggml_tensor * dst,
  13799. const ggml_custom1_op_f32_t fun) {
  13800. const struct ggml_tensor * a = dst->src[0];
  13801. assert(params->ith == 0);
  13802. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13803. return;
  13804. }
  13805. fun(dst, a);
  13806. }
  13807. // ggml_compute_forward_map_custom2
  13808. static void ggml_compute_forward_map_custom2_f32(
  13809. const struct ggml_compute_params * params,
  13810. struct ggml_tensor * dst,
  13811. const ggml_custom2_op_f32_t fun) {
  13812. const struct ggml_tensor * a = dst->src[0];
  13813. const struct ggml_tensor * b = dst->src[1];
  13814. assert(params->ith == 0);
  13815. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13816. return;
  13817. }
  13818. fun(dst, a, b);
  13819. }
  13820. // ggml_compute_forward_map_custom3
  13821. static void ggml_compute_forward_map_custom3_f32(
  13822. const struct ggml_compute_params * params,
  13823. struct ggml_tensor * dst,
  13824. const ggml_custom3_op_f32_t fun) {
  13825. const struct ggml_tensor * a = dst->src[0];
  13826. const struct ggml_tensor * b = dst->src[1];
  13827. const struct ggml_tensor * c = dst->src[1];
  13828. assert(params->ith == 0);
  13829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13830. return;
  13831. }
  13832. fun(dst, a, b, c);
  13833. }
  13834. // ggml_compute_forward_map_custom1
  13835. static void ggml_compute_forward_map_custom1(
  13836. const struct ggml_compute_params * params,
  13837. struct ggml_tensor * dst) {
  13838. const struct ggml_tensor * a = dst->src[0];
  13839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13840. return;
  13841. }
  13842. struct ggml_map_custom1_op_params p;
  13843. memcpy(&p, dst->op_params, sizeof(p));
  13844. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13845. }
  13846. // ggml_compute_forward_map_custom2
  13847. static void ggml_compute_forward_map_custom2(
  13848. const struct ggml_compute_params * params,
  13849. struct ggml_tensor * dst) {
  13850. const struct ggml_tensor * a = dst->src[0];
  13851. const struct ggml_tensor * b = dst->src[1];
  13852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13853. return;
  13854. }
  13855. struct ggml_map_custom2_op_params p;
  13856. memcpy(&p, dst->op_params, sizeof(p));
  13857. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13858. }
  13859. // ggml_compute_forward_map_custom3
  13860. static void ggml_compute_forward_map_custom3(
  13861. const struct ggml_compute_params * params,
  13862. struct ggml_tensor * dst) {
  13863. const struct ggml_tensor * a = dst->src[0];
  13864. const struct ggml_tensor * b = dst->src[1];
  13865. const struct ggml_tensor * c = dst->src[2];
  13866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13867. return;
  13868. }
  13869. struct ggml_map_custom3_op_params p;
  13870. memcpy(&p, dst->op_params, sizeof(p));
  13871. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13872. }
  13873. // ggml_compute_forward_cross_entropy_loss
  13874. static void ggml_compute_forward_cross_entropy_loss_f32(
  13875. const struct ggml_compute_params * params,
  13876. struct ggml_tensor * dst) {
  13877. const struct ggml_tensor * src0 = dst->src[0];
  13878. const struct ggml_tensor * src1 = dst->src[1];
  13879. GGML_ASSERT(ggml_is_contiguous(src0));
  13880. GGML_ASSERT(ggml_is_contiguous(src1));
  13881. GGML_ASSERT(ggml_is_scalar(dst));
  13882. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13883. const int ith = params->ith;
  13884. const int nth = params->nth;
  13885. float * sums = (float *) params->wdata;
  13886. // TODO: handle transposed/permuted matrices
  13887. const int nc = src0->ne[0];
  13888. const int nr = ggml_nrows(src0);
  13889. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13890. if (params->type == GGML_TASK_TYPE_INIT) {
  13891. if (ith == 0) {
  13892. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13893. }
  13894. return;
  13895. }
  13896. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13897. if (ith == 0) {
  13898. float * dp = (float *) dst->data;
  13899. ggml_vec_sum_f32(nth, dp, sums);
  13900. dp[0] *= -1.0f / (float) nr;
  13901. }
  13902. return;
  13903. }
  13904. const double eps = 1e-9;
  13905. // rows per thread
  13906. const int dr = (nr + nth - 1)/nth;
  13907. // row range for this thread
  13908. const int ir0 = dr*ith;
  13909. const int ir1 = MIN(ir0 + dr, nr);
  13910. for (int i1 = ir0; i1 < ir1; i1++) {
  13911. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13912. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13913. float * st = ((float *) params->wdata) + nth + ith*nc;
  13914. #ifndef NDEBUG
  13915. for (int i = 0; i < nc; ++i) {
  13916. //printf("p[%d] = %f\n", i, p[i]);
  13917. assert(!isnan(s0[i]));
  13918. assert(!isnan(s1[i]));
  13919. }
  13920. #endif
  13921. // soft_max
  13922. float max = -INFINITY;
  13923. ggml_vec_max_f32(nc, &max, s0);
  13924. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13925. assert(sum > 0.0);
  13926. sum = (1.0 - eps) / sum;
  13927. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13928. ggml_vec_scale_f32(nc, st, sum);
  13929. ggml_vec_add1_f32(nc, st, st, eps);
  13930. ggml_vec_log_f32(nc, st, st);
  13931. ggml_vec_mul_f32(nc, st, st, s1);
  13932. float st_sum = 0;
  13933. ggml_vec_sum_f32(nc, &st_sum, st);
  13934. sums[ith] += st_sum;
  13935. #ifndef NDEBUG
  13936. for (int i = 0; i < nc; ++i) {
  13937. assert(!isnan(st[i]));
  13938. assert(!isinf(st[i]));
  13939. }
  13940. #endif
  13941. }
  13942. }
  13943. static void ggml_compute_forward_cross_entropy_loss(
  13944. const struct ggml_compute_params * params,
  13945. struct ggml_tensor * dst) {
  13946. const struct ggml_tensor * src0 = dst->src[0];
  13947. switch (src0->type) {
  13948. case GGML_TYPE_F32:
  13949. {
  13950. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13951. } break;
  13952. default:
  13953. {
  13954. GGML_ASSERT(false);
  13955. } break;
  13956. }
  13957. }
  13958. // ggml_compute_forward_cross_entropy_loss_back
  13959. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13960. const struct ggml_compute_params * params,
  13961. struct ggml_tensor * dst) {
  13962. const struct ggml_tensor * src0 = dst->src[0];
  13963. const struct ggml_tensor * src1 = dst->src[1];
  13964. const struct ggml_tensor * opt0 = dst->src[2];
  13965. GGML_ASSERT(ggml_is_contiguous(dst));
  13966. GGML_ASSERT(ggml_is_contiguous(src0));
  13967. GGML_ASSERT(ggml_is_contiguous(src1));
  13968. GGML_ASSERT(ggml_is_contiguous(opt0));
  13969. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13970. const int64_t ith = params->ith;
  13971. const int64_t nth = params->nth;
  13972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13973. return;
  13974. }
  13975. const double eps = 1e-9;
  13976. // TODO: handle transposed/permuted matrices
  13977. const int64_t nc = src0->ne[0];
  13978. const int64_t nr = ggml_nrows(src0);
  13979. // rows per thread
  13980. const int64_t dr = (nr + nth - 1)/nth;
  13981. // row range for this thread
  13982. const int64_t ir0 = dr*ith;
  13983. const int64_t ir1 = MIN(ir0 + dr, nr);
  13984. float * d = (float *) opt0->data;
  13985. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13986. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13987. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13988. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13989. #ifndef NDEBUG
  13990. for (int i = 0; i < nc; ++i) {
  13991. //printf("p[%d] = %f\n", i, p[i]);
  13992. assert(!isnan(s0[i]));
  13993. assert(!isnan(s1[i]));
  13994. }
  13995. #endif
  13996. // soft_max
  13997. float max = -INFINITY;
  13998. ggml_vec_max_f32(nc, &max, s0);
  13999. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14000. assert(sum > 0.0);
  14001. sum = (1.0 - eps) / sum;
  14002. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14003. ggml_vec_scale_f32(nc, ds0, sum);
  14004. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14005. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14006. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14007. #ifndef NDEBUG
  14008. for (int i = 0; i < nc; ++i) {
  14009. assert(!isnan(ds0[i]));
  14010. assert(!isinf(ds0[i]));
  14011. }
  14012. #endif
  14013. }
  14014. }
  14015. static void ggml_compute_forward_cross_entropy_loss_back(
  14016. const struct ggml_compute_params * params,
  14017. struct ggml_tensor * dst) {
  14018. const struct ggml_tensor * src0 = dst->src[0];
  14019. switch (src0->type) {
  14020. case GGML_TYPE_F32:
  14021. {
  14022. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14023. } break;
  14024. default:
  14025. {
  14026. GGML_ASSERT(false);
  14027. } break;
  14028. }
  14029. }
  14030. /////////////////////////////////
  14031. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14032. GGML_ASSERT(params);
  14033. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14034. return;
  14035. }
  14036. switch (tensor->op) {
  14037. case GGML_OP_DUP:
  14038. {
  14039. ggml_compute_forward_dup(params, tensor);
  14040. } break;
  14041. case GGML_OP_ADD:
  14042. {
  14043. ggml_compute_forward_add(params, tensor);
  14044. } break;
  14045. case GGML_OP_ADD1:
  14046. {
  14047. ggml_compute_forward_add1(params, tensor);
  14048. } break;
  14049. case GGML_OP_ACC:
  14050. {
  14051. ggml_compute_forward_acc(params, tensor);
  14052. } break;
  14053. case GGML_OP_SUB:
  14054. {
  14055. ggml_compute_forward_sub(params, tensor);
  14056. } break;
  14057. case GGML_OP_MUL:
  14058. {
  14059. ggml_compute_forward_mul(params, tensor);
  14060. } break;
  14061. case GGML_OP_DIV:
  14062. {
  14063. ggml_compute_forward_div(params, tensor);
  14064. } break;
  14065. case GGML_OP_SQR:
  14066. {
  14067. ggml_compute_forward_sqr(params, tensor);
  14068. } break;
  14069. case GGML_OP_SQRT:
  14070. {
  14071. ggml_compute_forward_sqrt(params, tensor);
  14072. } break;
  14073. case GGML_OP_LOG:
  14074. {
  14075. ggml_compute_forward_log(params, tensor);
  14076. } break;
  14077. case GGML_OP_SUM:
  14078. {
  14079. ggml_compute_forward_sum(params, tensor);
  14080. } break;
  14081. case GGML_OP_SUM_ROWS:
  14082. {
  14083. ggml_compute_forward_sum_rows(params, tensor);
  14084. } break;
  14085. case GGML_OP_MEAN:
  14086. {
  14087. ggml_compute_forward_mean(params, tensor);
  14088. } break;
  14089. case GGML_OP_ARGMAX:
  14090. {
  14091. ggml_compute_forward_argmax(params, tensor);
  14092. } break;
  14093. case GGML_OP_REPEAT:
  14094. {
  14095. ggml_compute_forward_repeat(params, tensor);
  14096. } break;
  14097. case GGML_OP_REPEAT_BACK:
  14098. {
  14099. ggml_compute_forward_repeat_back(params, tensor);
  14100. } break;
  14101. case GGML_OP_CONCAT:
  14102. {
  14103. ggml_compute_forward_concat(params, tensor);
  14104. } break;
  14105. case GGML_OP_SILU_BACK:
  14106. {
  14107. ggml_compute_forward_silu_back(params, tensor);
  14108. } break;
  14109. case GGML_OP_NORM:
  14110. {
  14111. ggml_compute_forward_norm(params, tensor);
  14112. } break;
  14113. case GGML_OP_RMS_NORM:
  14114. {
  14115. ggml_compute_forward_rms_norm(params, tensor);
  14116. } break;
  14117. case GGML_OP_RMS_NORM_BACK:
  14118. {
  14119. ggml_compute_forward_rms_norm_back(params, tensor);
  14120. } break;
  14121. case GGML_OP_GROUP_NORM:
  14122. {
  14123. ggml_compute_forward_group_norm(params, tensor);
  14124. } break;
  14125. case GGML_OP_MUL_MAT:
  14126. {
  14127. ggml_compute_forward_mul_mat(params, tensor, state);
  14128. } break;
  14129. case GGML_OP_MUL_MAT_ID:
  14130. {
  14131. ggml_compute_forward_mul_mat_id(params, tensor);
  14132. } break;
  14133. case GGML_OP_OUT_PROD:
  14134. {
  14135. ggml_compute_forward_out_prod(params, tensor);
  14136. } break;
  14137. case GGML_OP_SCALE:
  14138. {
  14139. ggml_compute_forward_scale(params, tensor);
  14140. } break;
  14141. case GGML_OP_SET:
  14142. {
  14143. ggml_compute_forward_set(params, tensor);
  14144. } break;
  14145. case GGML_OP_CPY:
  14146. {
  14147. ggml_compute_forward_cpy(params, tensor);
  14148. } break;
  14149. case GGML_OP_CONT:
  14150. {
  14151. ggml_compute_forward_cont(params, tensor);
  14152. } break;
  14153. case GGML_OP_RESHAPE:
  14154. {
  14155. ggml_compute_forward_reshape(params, tensor);
  14156. } break;
  14157. case GGML_OP_VIEW:
  14158. {
  14159. ggml_compute_forward_view(params, tensor);
  14160. } break;
  14161. case GGML_OP_PERMUTE:
  14162. {
  14163. ggml_compute_forward_permute(params, tensor);
  14164. } break;
  14165. case GGML_OP_TRANSPOSE:
  14166. {
  14167. ggml_compute_forward_transpose(params, tensor);
  14168. } break;
  14169. case GGML_OP_GET_ROWS:
  14170. {
  14171. ggml_compute_forward_get_rows(params, tensor);
  14172. } break;
  14173. case GGML_OP_GET_ROWS_BACK:
  14174. {
  14175. ggml_compute_forward_get_rows_back(params, tensor);
  14176. } break;
  14177. case GGML_OP_DIAG:
  14178. {
  14179. ggml_compute_forward_diag(params, tensor);
  14180. } break;
  14181. case GGML_OP_DIAG_MASK_INF:
  14182. {
  14183. ggml_compute_forward_diag_mask_inf(params, tensor);
  14184. } break;
  14185. case GGML_OP_DIAG_MASK_ZERO:
  14186. {
  14187. ggml_compute_forward_diag_mask_zero(params, tensor);
  14188. } break;
  14189. case GGML_OP_SOFT_MAX:
  14190. {
  14191. ggml_compute_forward_soft_max(params, tensor);
  14192. } break;
  14193. case GGML_OP_SOFT_MAX_BACK:
  14194. {
  14195. ggml_compute_forward_soft_max_back(params, tensor);
  14196. } break;
  14197. case GGML_OP_ROPE:
  14198. {
  14199. ggml_compute_forward_rope(params, tensor);
  14200. } break;
  14201. case GGML_OP_ROPE_BACK:
  14202. {
  14203. ggml_compute_forward_rope_back(params, tensor);
  14204. } break;
  14205. case GGML_OP_CLAMP:
  14206. {
  14207. ggml_compute_forward_clamp(params, tensor);
  14208. } break;
  14209. case GGML_OP_CONV_TRANSPOSE_1D:
  14210. {
  14211. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14212. } break;
  14213. case GGML_OP_IM2COL:
  14214. {
  14215. ggml_compute_forward_im2col(params, tensor);
  14216. } break;
  14217. case GGML_OP_CONV_TRANSPOSE_2D:
  14218. {
  14219. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14220. } break;
  14221. case GGML_OP_POOL_1D:
  14222. {
  14223. ggml_compute_forward_pool_1d(params, tensor);
  14224. } break;
  14225. case GGML_OP_POOL_2D:
  14226. {
  14227. ggml_compute_forward_pool_2d(params, tensor);
  14228. } break;
  14229. case GGML_OP_UPSCALE:
  14230. {
  14231. ggml_compute_forward_upscale(params, tensor);
  14232. } break;
  14233. case GGML_OP_PAD:
  14234. {
  14235. ggml_compute_forward_pad(params, tensor);
  14236. } break;
  14237. case GGML_OP_ARANGE:
  14238. {
  14239. ggml_compute_forward_arange(params, tensor);
  14240. } break;
  14241. case GGML_OP_TIMESTEP_EMBEDDING:
  14242. {
  14243. ggml_compute_forward_timestep_embedding(params, tensor);
  14244. } break;
  14245. case GGML_OP_ARGSORT:
  14246. {
  14247. ggml_compute_forward_argsort(params, tensor);
  14248. } break;
  14249. case GGML_OP_LEAKY_RELU:
  14250. {
  14251. ggml_compute_forward_leaky_relu(params, tensor);
  14252. } break;
  14253. case GGML_OP_FLASH_ATTN_EXT:
  14254. {
  14255. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14256. } break;
  14257. case GGML_OP_FLASH_ATTN_BACK:
  14258. {
  14259. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14260. GGML_ASSERT(t == 0 || t == 1);
  14261. bool masked = t != 0;
  14262. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14263. } break;
  14264. case GGML_OP_SSM_CONV:
  14265. {
  14266. ggml_compute_forward_ssm_conv(params, tensor);
  14267. } break;
  14268. case GGML_OP_SSM_SCAN:
  14269. {
  14270. ggml_compute_forward_ssm_scan(params, tensor);
  14271. } break;
  14272. case GGML_OP_WIN_PART:
  14273. {
  14274. ggml_compute_forward_win_part(params, tensor);
  14275. } break;
  14276. case GGML_OP_WIN_UNPART:
  14277. {
  14278. ggml_compute_forward_win_unpart(params, tensor);
  14279. } break;
  14280. case GGML_OP_UNARY:
  14281. {
  14282. ggml_compute_forward_unary(params, tensor);
  14283. } break;
  14284. case GGML_OP_GET_REL_POS:
  14285. {
  14286. ggml_compute_forward_get_rel_pos(params, tensor);
  14287. } break;
  14288. case GGML_OP_ADD_REL_POS:
  14289. {
  14290. ggml_compute_forward_add_rel_pos(params, tensor);
  14291. } break;
  14292. case GGML_OP_MAP_UNARY:
  14293. {
  14294. ggml_unary_op_f32_t fun;
  14295. memcpy(&fun, tensor->op_params, sizeof(fun));
  14296. ggml_compute_forward_map_unary(params, tensor, fun);
  14297. }
  14298. break;
  14299. case GGML_OP_MAP_BINARY:
  14300. {
  14301. ggml_binary_op_f32_t fun;
  14302. memcpy(&fun, tensor->op_params, sizeof(fun));
  14303. ggml_compute_forward_map_binary(params, tensor, fun);
  14304. }
  14305. break;
  14306. case GGML_OP_MAP_CUSTOM1_F32:
  14307. {
  14308. ggml_custom1_op_f32_t fun;
  14309. memcpy(&fun, tensor->op_params, sizeof(fun));
  14310. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14311. }
  14312. break;
  14313. case GGML_OP_MAP_CUSTOM2_F32:
  14314. {
  14315. ggml_custom2_op_f32_t fun;
  14316. memcpy(&fun, tensor->op_params, sizeof(fun));
  14317. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14318. }
  14319. break;
  14320. case GGML_OP_MAP_CUSTOM3_F32:
  14321. {
  14322. ggml_custom3_op_f32_t fun;
  14323. memcpy(&fun, tensor->op_params, sizeof(fun));
  14324. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14325. }
  14326. break;
  14327. case GGML_OP_MAP_CUSTOM1:
  14328. {
  14329. ggml_compute_forward_map_custom1(params, tensor);
  14330. }
  14331. break;
  14332. case GGML_OP_MAP_CUSTOM2:
  14333. {
  14334. ggml_compute_forward_map_custom2(params, tensor);
  14335. }
  14336. break;
  14337. case GGML_OP_MAP_CUSTOM3:
  14338. {
  14339. ggml_compute_forward_map_custom3(params, tensor);
  14340. }
  14341. break;
  14342. case GGML_OP_CROSS_ENTROPY_LOSS:
  14343. {
  14344. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14345. }
  14346. break;
  14347. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14348. {
  14349. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14350. }
  14351. break;
  14352. case GGML_OP_NONE:
  14353. {
  14354. // nop
  14355. } break;
  14356. case GGML_OP_COUNT:
  14357. {
  14358. GGML_ASSERT(false);
  14359. } break;
  14360. }
  14361. }
  14362. ////////////////////////////////////////////////////////////////////////////////
  14363. static size_t ggml_hash_size(size_t min_sz) {
  14364. // next primes after powers of two
  14365. static const size_t primes[] = {
  14366. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14367. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14368. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14369. 16777259, 33554467, 67108879, 134217757, 268435459,
  14370. 536870923, 1073741827, 2147483659
  14371. };
  14372. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14373. // find the smallest prime that is larger or equal to min_sz
  14374. size_t l = 0;
  14375. size_t r = n_primes;
  14376. while (l < r) {
  14377. size_t m = (l + r)/2;
  14378. if (primes[m] < min_sz) {
  14379. l = m + 1;
  14380. } else {
  14381. r = m;
  14382. }
  14383. }
  14384. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14385. return sz;
  14386. }
  14387. static size_t ggml_hash(const void * p) {
  14388. return (size_t)p;
  14389. }
  14390. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14391. size_t h = ggml_hash(key) % hash_set.size;
  14392. // linear probing
  14393. size_t i = h;
  14394. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14395. i = (i + 1) % hash_set.size;
  14396. if (i == h) {
  14397. // visited all hash table entries -> not found
  14398. return GGML_HASHTABLE_FULL;
  14399. }
  14400. }
  14401. return i;
  14402. }
  14403. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14404. size_t i = ggml_hash_find(hash_set, key);
  14405. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14406. }
  14407. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14408. size_t i = ggml_hash_find(hash_set, key);
  14409. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14410. if (hash_set.keys[i] == key) {
  14411. return GGML_HASHTABLE_ALREADY_EXISTS;
  14412. }
  14413. // insert
  14414. GGML_ASSERT(hash_set.keys[i] == NULL);
  14415. hash_set.keys[i] = key;
  14416. return i;
  14417. }
  14418. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14419. size_t i = ggml_hash_find(hash_set, key);
  14420. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14421. hash_set.keys[i] = key;
  14422. return i;
  14423. }
  14424. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14425. size = ggml_hash_size(size);
  14426. struct ggml_hash_set result;
  14427. result.size = size;
  14428. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14429. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14430. return result;
  14431. }
  14432. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14433. GGML_FREE(hash_set.keys);
  14434. }
  14435. struct hash_map {
  14436. struct ggml_hash_set set;
  14437. struct ggml_tensor ** vals;
  14438. };
  14439. static struct hash_map * ggml_new_hash_map(size_t size) {
  14440. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14441. result->set = ggml_hash_set_new(size);
  14442. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14443. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14444. return result;
  14445. }
  14446. static void ggml_hash_map_free(struct hash_map * map) {
  14447. ggml_hash_set_free(map->set);
  14448. GGML_FREE(map->vals);
  14449. GGML_FREE(map);
  14450. }
  14451. // gradient checkpointing
  14452. static struct ggml_tensor * ggml_recompute_graph_node(
  14453. struct ggml_context * ctx,
  14454. struct ggml_cgraph * graph,
  14455. struct hash_map * replacements,
  14456. struct ggml_tensor * node) {
  14457. if (node == NULL) {
  14458. return NULL;
  14459. }
  14460. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14461. return node;
  14462. }
  14463. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14464. return node;
  14465. }
  14466. int count_children = 0;
  14467. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14468. if (node->src[k]) {
  14469. ++count_children;
  14470. }
  14471. }
  14472. if (count_children == 0) {
  14473. return node;
  14474. }
  14475. size_t i = ggml_hash_find(replacements->set, node);
  14476. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14477. if (replacements->set.keys[i] == node) {
  14478. return replacements->vals[i];
  14479. }
  14480. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14481. // insert clone into replacements
  14482. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14483. replacements->set.keys[i] = node;
  14484. replacements->vals[i] = clone;
  14485. clone->op = node->op;
  14486. clone->grad = node->grad;
  14487. clone->flags = node->flags;
  14488. clone->extra = node->extra;
  14489. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14490. clone->nb[k] = node->nb[k];
  14491. }
  14492. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14493. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14494. }
  14495. if (node->view_src != NULL) {
  14496. clone->data = (node->view_src->data == NULL)
  14497. ? NULL // view_src not yet allocated
  14498. : (char *) node->view_src->data // view_src already allocated
  14499. + node->view_offs;
  14500. clone->view_src = node->view_src;
  14501. clone->view_offs = node->view_offs;
  14502. }
  14503. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14504. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14505. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14506. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14507. return clone;
  14508. }
  14509. void ggml_build_backward_gradient_checkpointing(
  14510. struct ggml_context * ctx,
  14511. struct ggml_cgraph * gf,
  14512. struct ggml_cgraph * gb,
  14513. struct ggml_cgraph * gb_tmp,
  14514. struct ggml_tensor * * checkpoints,
  14515. int n_checkpoints) {
  14516. ggml_graph_cpy(gf, gb_tmp);
  14517. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14518. if (n_checkpoints <= 0) {
  14519. ggml_graph_cpy(gb_tmp, gb);
  14520. return;
  14521. }
  14522. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14523. // insert checkpoints in replacements
  14524. for (int i = 0; i < n_checkpoints; ++i) {
  14525. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14526. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14527. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14528. replacements->set.keys[k] = checkpoints[i];
  14529. replacements->vals[k] = checkpoints[i];
  14530. }
  14531. ggml_graph_cpy(gf, gb);
  14532. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14533. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14534. // by recomputing them from checkpoints
  14535. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14536. struct ggml_tensor * node = gb_tmp->nodes[i];
  14537. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14538. // insert new tensors recomputing src, reusing already made replacements,
  14539. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14540. // recurse for input tensors,
  14541. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14542. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14543. }
  14544. // insert rewritten backward node with replacements made into resulting backward graph gb
  14545. ggml_build_forward_expand(gb, node);
  14546. }
  14547. ggml_hash_map_free(replacements);
  14548. }
  14549. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14550. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14551. if (ggml_hash_contains(zero_table, a)) {
  14552. return b;
  14553. } else {
  14554. return ggml_add_impl(ctx, a, b, false);
  14555. }
  14556. }
  14557. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14558. if (ggml_hash_contains(zero_table, a)) {
  14559. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14560. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14561. } else {
  14562. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14563. }
  14564. }
  14565. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14566. if (ggml_hash_contains(zero_table, a)) {
  14567. return ggml_repeat(ctx, b, a);
  14568. } else {
  14569. return ggml_add1_impl(ctx, a, b, false);
  14570. }
  14571. }
  14572. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14573. if (ggml_hash_contains(zero_table, a)) {
  14574. return ggml_neg(ctx, b);
  14575. } else {
  14576. return ggml_sub_impl(ctx, a, b, false);
  14577. }
  14578. }
  14579. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14580. struct ggml_tensor * src0 = tensor->src[0];
  14581. struct ggml_tensor * src1 = tensor->src[1];
  14582. struct ggml_tensor * src2 = tensor->src[2];
  14583. switch (tensor->op) {
  14584. case GGML_OP_DUP:
  14585. {
  14586. if (src0->grad) {
  14587. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14588. }
  14589. } break;
  14590. case GGML_OP_ADD:
  14591. {
  14592. if (src0->grad) {
  14593. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14594. }
  14595. if (src1->grad) {
  14596. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14597. }
  14598. } break;
  14599. case GGML_OP_ADD1:
  14600. {
  14601. if (src0->grad) {
  14602. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14603. }
  14604. if (src1->grad) {
  14605. src1->grad = ggml_add_or_set(ctx,
  14606. src1->grad,
  14607. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14608. zero_table);
  14609. }
  14610. } break;
  14611. case GGML_OP_ACC:
  14612. {
  14613. if (src0->grad) {
  14614. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14615. }
  14616. if (src1->grad) {
  14617. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14618. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14619. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14620. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14621. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14622. tensor->grad,
  14623. src1->grad->ne[0],
  14624. src1->grad->ne[1],
  14625. src1->grad->ne[2],
  14626. src1->grad->ne[3],
  14627. nb1, nb2, nb3, offset);
  14628. src1->grad =
  14629. ggml_add_or_set(ctx,
  14630. src1->grad,
  14631. ggml_reshape(ctx,
  14632. ggml_cont(ctx, tensor_grad_view),
  14633. src1->grad),
  14634. zero_table);
  14635. }
  14636. } break;
  14637. case GGML_OP_SUB:
  14638. {
  14639. if (src0->grad) {
  14640. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14641. }
  14642. if (src1->grad) {
  14643. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14644. }
  14645. } break;
  14646. case GGML_OP_MUL:
  14647. {
  14648. if (src0->grad) {
  14649. src0->grad =
  14650. ggml_add_or_set(ctx,
  14651. src0->grad,
  14652. ggml_mul(ctx, src1, tensor->grad),
  14653. zero_table);
  14654. }
  14655. if (src1->grad) {
  14656. src1->grad =
  14657. ggml_add_or_set(ctx,
  14658. src1->grad,
  14659. ggml_mul(ctx, src0, tensor->grad),
  14660. zero_table);
  14661. }
  14662. } break;
  14663. case GGML_OP_DIV:
  14664. {
  14665. if (src0->grad) {
  14666. src0->grad =
  14667. ggml_add_or_set(ctx,
  14668. src0->grad,
  14669. ggml_div(ctx, tensor->grad, src1),
  14670. zero_table);
  14671. }
  14672. if (src1->grad) {
  14673. src1->grad =
  14674. ggml_sub_or_set(ctx,
  14675. src1->grad,
  14676. ggml_mul(ctx,
  14677. tensor->grad,
  14678. ggml_div(ctx, tensor, src1)),
  14679. zero_table);
  14680. }
  14681. } break;
  14682. case GGML_OP_SQR:
  14683. {
  14684. if (src0->grad) {
  14685. src0->grad =
  14686. ggml_add_or_set(ctx,
  14687. src0->grad,
  14688. ggml_scale(ctx,
  14689. ggml_mul(ctx, src0, tensor->grad),
  14690. 2.0f),
  14691. zero_table);
  14692. }
  14693. } break;
  14694. case GGML_OP_SQRT:
  14695. {
  14696. if (src0->grad) {
  14697. src0->grad =
  14698. ggml_add_or_set(ctx,
  14699. src0->grad,
  14700. ggml_scale(ctx,
  14701. ggml_div(ctx,
  14702. tensor->grad,
  14703. tensor),
  14704. 0.5f),
  14705. zero_table);
  14706. }
  14707. } break;
  14708. case GGML_OP_LOG:
  14709. {
  14710. if (src0->grad) {
  14711. src0->grad =
  14712. ggml_add_or_set(ctx,
  14713. src0->grad,
  14714. ggml_div(ctx,
  14715. tensor->grad,
  14716. src0),
  14717. zero_table);
  14718. }
  14719. } break;
  14720. case GGML_OP_SUM:
  14721. {
  14722. if (src0->grad) {
  14723. src0->grad =
  14724. ggml_add1_or_set(ctx,
  14725. src0->grad,
  14726. tensor->grad,
  14727. zero_table);
  14728. }
  14729. } break;
  14730. case GGML_OP_SUM_ROWS:
  14731. {
  14732. if (src0->grad) {
  14733. src0->grad =
  14734. ggml_add_or_set(ctx,
  14735. src0->grad,
  14736. ggml_repeat(ctx,
  14737. tensor->grad,
  14738. src0->grad),
  14739. zero_table);
  14740. }
  14741. } break;
  14742. case GGML_OP_MEAN:
  14743. case GGML_OP_ARGMAX:
  14744. {
  14745. GGML_ASSERT(false); // TODO: implement
  14746. } break;
  14747. case GGML_OP_REPEAT:
  14748. {
  14749. // necessary for llama
  14750. if (src0->grad) {
  14751. src0->grad = ggml_add_or_set(ctx,
  14752. src0->grad,
  14753. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14754. zero_table);
  14755. }
  14756. } break;
  14757. case GGML_OP_REPEAT_BACK:
  14758. {
  14759. if (src0->grad) {
  14760. // TODO: test this
  14761. src0->grad = ggml_add_or_set(ctx,
  14762. src0->grad,
  14763. ggml_repeat(ctx, tensor->grad, src0->grad),
  14764. zero_table);
  14765. }
  14766. } break;
  14767. case GGML_OP_CONCAT:
  14768. {
  14769. GGML_ASSERT(false); // TODO: implement
  14770. } break;
  14771. case GGML_OP_SILU_BACK:
  14772. {
  14773. GGML_ASSERT(false); // TODO: not implemented
  14774. } break;
  14775. case GGML_OP_NORM:
  14776. {
  14777. GGML_ASSERT(false); // TODO: not implemented
  14778. } break;
  14779. case GGML_OP_RMS_NORM:
  14780. {
  14781. // necessary for llama
  14782. if (src0->grad) {
  14783. float eps;
  14784. memcpy(&eps, tensor->op_params, sizeof(float));
  14785. src0->grad = ggml_add_or_set(ctx,
  14786. src0->grad,
  14787. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14788. zero_table);
  14789. }
  14790. } break;
  14791. case GGML_OP_RMS_NORM_BACK:
  14792. {
  14793. GGML_ASSERT(false); // TODO: not implemented
  14794. } break;
  14795. case GGML_OP_GROUP_NORM:
  14796. {
  14797. GGML_ASSERT(false); // TODO: not implemented
  14798. } break;
  14799. case GGML_OP_MUL_MAT:
  14800. {
  14801. // https://cs231n.github.io/optimization-2/#staged
  14802. // # forward pass
  14803. // s0 = np.random.randn(5, 10)
  14804. // s1 = np.random.randn(10, 3)
  14805. // t = s0.dot(s1)
  14806. // # now suppose we had the gradient on t from above in the circuit
  14807. // dt = np.random.randn(*t.shape) # same shape as t
  14808. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14809. // ds1 = t.T.dot(dt)
  14810. // tensor.shape [m,p,qq,rr]
  14811. // src0.shape [n,m,q1,r1]
  14812. // src1.shape [n,p,qq,rr]
  14813. // necessary for llama
  14814. if (src0->grad) {
  14815. struct ggml_tensor * s1_tg =
  14816. ggml_out_prod(ctx, // [n,m,qq,rr]
  14817. src1, // [n,p,qq,rr]
  14818. tensor->grad); // [m,p,qq,rr]
  14819. const int64_t qq = s1_tg->ne[2];
  14820. const int64_t rr = s1_tg->ne[3];
  14821. const int64_t q1 = src0->ne[2];
  14822. const int64_t r1 = src0->ne[3];
  14823. const bool ne2_broadcasted = qq > q1;
  14824. const bool ne3_broadcasted = rr > r1;
  14825. if (ne2_broadcasted || ne3_broadcasted) {
  14826. // sum broadcast repetitions of s1_tg into shape of src0
  14827. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14828. }
  14829. src0->grad =
  14830. ggml_add_or_set(ctx,
  14831. src0->grad, // [n,m,q1,r1]
  14832. s1_tg, // [n,m,q1,r1]
  14833. zero_table);
  14834. }
  14835. if (src1->grad) {
  14836. src1->grad =
  14837. ggml_add_or_set(ctx,
  14838. src1->grad, // [n,p,qq,rr]
  14839. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14840. // ggml_cont(ctx, // [m,n,q1,r1]
  14841. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14842. // tensor->grad), // [m,p,qq,rr]
  14843. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14844. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14845. // // and then use ggml_out_prod
  14846. ggml_out_prod(ctx, // [n,p,qq,rr]
  14847. src0, // [n,m,q1,r1]
  14848. ggml_transpose(ctx, // [p,m,qq,rr]
  14849. tensor->grad)), // [m,p,qq,rr]
  14850. zero_table);
  14851. }
  14852. } break;
  14853. case GGML_OP_MUL_MAT_ID:
  14854. {
  14855. GGML_ASSERT(false); // TODO: not implemented
  14856. } break;
  14857. case GGML_OP_OUT_PROD:
  14858. {
  14859. GGML_ASSERT(false); // TODO: not implemented
  14860. } break;
  14861. case GGML_OP_SCALE:
  14862. {
  14863. // necessary for llama
  14864. if (src0->grad) {
  14865. float s;
  14866. memcpy(&s, tensor->op_params, sizeof(float));
  14867. src0->grad =
  14868. ggml_add_or_set(ctx,
  14869. src0->grad,
  14870. ggml_scale_impl(ctx, tensor->grad, s, false),
  14871. zero_table);
  14872. }
  14873. } break;
  14874. case GGML_OP_SET:
  14875. {
  14876. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14877. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14878. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14879. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14880. struct ggml_tensor * tensor_grad_view = NULL;
  14881. if (src0->grad || src1->grad) {
  14882. GGML_ASSERT(src0->type == tensor->type);
  14883. GGML_ASSERT(tensor->grad->type == tensor->type);
  14884. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14885. tensor_grad_view = ggml_view_4d(ctx,
  14886. tensor->grad,
  14887. src1->grad->ne[0],
  14888. src1->grad->ne[1],
  14889. src1->grad->ne[2],
  14890. src1->grad->ne[3],
  14891. nb1, nb2, nb3, offset);
  14892. }
  14893. if (src0->grad) {
  14894. src0->grad = ggml_add_or_set(ctx,
  14895. src0->grad,
  14896. ggml_acc_impl(ctx,
  14897. tensor->grad,
  14898. ggml_neg(ctx, tensor_grad_view),
  14899. nb1, nb2, nb3, offset, false),
  14900. zero_table);
  14901. }
  14902. if (src1->grad) {
  14903. src1->grad =
  14904. ggml_add_or_set(ctx,
  14905. src1->grad,
  14906. ggml_reshape(ctx,
  14907. ggml_cont(ctx, tensor_grad_view),
  14908. src1->grad),
  14909. zero_table);
  14910. }
  14911. } break;
  14912. case GGML_OP_CPY:
  14913. {
  14914. // necessary for llama
  14915. // cpy overwrites value of src1 by src0 and returns view(src1)
  14916. // the overwriting is mathematically equivalent to:
  14917. // tensor = src0 * 1 + src1 * 0
  14918. if (src0->grad) {
  14919. // dsrc0 = dtensor * 1
  14920. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14921. }
  14922. if (src1->grad) {
  14923. // dsrc1 = dtensor * 0 -> noop
  14924. }
  14925. } break;
  14926. case GGML_OP_CONT:
  14927. {
  14928. // same as cpy
  14929. if (src0->grad) {
  14930. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14931. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14932. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14933. }
  14934. } break;
  14935. case GGML_OP_RESHAPE:
  14936. {
  14937. // necessary for llama
  14938. if (src0->grad) {
  14939. src0->grad =
  14940. ggml_add_or_set(ctx, src0->grad,
  14941. ggml_reshape(ctx,
  14942. ggml_is_contiguous(tensor->grad)
  14943. ? tensor->grad
  14944. : ggml_cont(ctx, tensor->grad),
  14945. src0->grad),
  14946. zero_table);
  14947. }
  14948. } break;
  14949. case GGML_OP_VIEW:
  14950. {
  14951. // necessary for llama
  14952. if (src0->grad) {
  14953. size_t offset;
  14954. memcpy(&offset, tensor->op_params, sizeof(offset));
  14955. size_t nb1 = tensor->nb[1];
  14956. size_t nb2 = tensor->nb[2];
  14957. size_t nb3 = tensor->nb[3];
  14958. if (src0->type != src0->grad->type) {
  14959. // gradient is typically F32, but src0 could be other type
  14960. size_t ng = ggml_element_size(src0->grad);
  14961. size_t n0 = ggml_element_size(src0);
  14962. GGML_ASSERT(offset % n0 == 0);
  14963. GGML_ASSERT(nb1 % n0 == 0);
  14964. GGML_ASSERT(nb2 % n0 == 0);
  14965. GGML_ASSERT(nb3 % n0 == 0);
  14966. offset = (offset / n0) * ng;
  14967. nb1 = (nb1 / n0) * ng;
  14968. nb2 = (nb2 / n0) * ng;
  14969. nb3 = (nb3 / n0) * ng;
  14970. }
  14971. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14972. }
  14973. } break;
  14974. case GGML_OP_PERMUTE:
  14975. {
  14976. // necessary for llama
  14977. if (src0->grad) {
  14978. int32_t * axes = (int32_t *) tensor->op_params;
  14979. int axis0 = axes[0] & 0x3;
  14980. int axis1 = axes[1] & 0x3;
  14981. int axis2 = axes[2] & 0x3;
  14982. int axis3 = axes[3] & 0x3;
  14983. int axes_backward[4] = {0,0,0,0};
  14984. axes_backward[axis0] = 0;
  14985. axes_backward[axis1] = 1;
  14986. axes_backward[axis2] = 2;
  14987. axes_backward[axis3] = 3;
  14988. src0->grad =
  14989. ggml_add_or_set(ctx, src0->grad,
  14990. ggml_permute(ctx,
  14991. tensor->grad,
  14992. axes_backward[0],
  14993. axes_backward[1],
  14994. axes_backward[2],
  14995. axes_backward[3]),
  14996. zero_table);
  14997. }
  14998. } break;
  14999. case GGML_OP_TRANSPOSE:
  15000. {
  15001. // necessary for llama
  15002. if (src0->grad) {
  15003. src0->grad =
  15004. ggml_add_or_set(ctx, src0->grad,
  15005. ggml_transpose(ctx, tensor->grad),
  15006. zero_table);
  15007. }
  15008. } break;
  15009. case GGML_OP_GET_ROWS:
  15010. {
  15011. // necessary for llama (only for tokenizer)
  15012. if (src0->grad) {
  15013. src0->grad =
  15014. ggml_add_or_set(ctx, src0->grad,
  15015. // last ggml_get_rows_back argument src0->grad is only
  15016. // necessary to setup correct output shape
  15017. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15018. zero_table);
  15019. }
  15020. if (src1->grad) {
  15021. // noop
  15022. }
  15023. } break;
  15024. case GGML_OP_GET_ROWS_BACK:
  15025. {
  15026. GGML_ASSERT(false); // TODO: not implemented
  15027. } break;
  15028. case GGML_OP_DIAG:
  15029. {
  15030. GGML_ASSERT(false); // TODO: not implemented
  15031. } break;
  15032. case GGML_OP_DIAG_MASK_INF:
  15033. {
  15034. // necessary for llama
  15035. if (src0->grad) {
  15036. const int n_past = ((int32_t *) tensor->op_params)[0];
  15037. src0->grad =
  15038. ggml_add_or_set(ctx, src0->grad,
  15039. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15040. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15041. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15042. zero_table);
  15043. }
  15044. } break;
  15045. case GGML_OP_DIAG_MASK_ZERO:
  15046. {
  15047. // necessary for llama
  15048. if (src0->grad) {
  15049. const int n_past = ((int32_t *) tensor->op_params)[0];
  15050. src0->grad =
  15051. ggml_add_or_set(ctx, src0->grad,
  15052. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15053. zero_table);
  15054. }
  15055. } break;
  15056. case GGML_OP_SOFT_MAX:
  15057. {
  15058. // necessary for llama
  15059. if (src0->grad) {
  15060. src0->grad =
  15061. ggml_add_or_set(ctx, src0->grad,
  15062. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15063. zero_table);
  15064. }
  15065. } break;
  15066. case GGML_OP_SOFT_MAX_BACK:
  15067. {
  15068. GGML_ASSERT(false); // TODO: not implemented
  15069. } break;
  15070. case GGML_OP_ROPE:
  15071. {
  15072. // necessary for llama
  15073. if (src0->grad) {
  15074. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15075. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15076. const int mode = ((int32_t *) tensor->op_params)[2];
  15077. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15078. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15079. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15080. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15081. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15082. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15083. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15084. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15085. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15086. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15087. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15088. src0->grad = ggml_add_or_set(ctx,
  15089. src0->grad,
  15090. ggml_rope_back(ctx,
  15091. tensor->grad,
  15092. src1,
  15093. src2,
  15094. n_dims,
  15095. mode,
  15096. n_ctx,
  15097. n_orig_ctx,
  15098. freq_base,
  15099. freq_scale,
  15100. ext_factor,
  15101. attn_factor,
  15102. beta_fast,
  15103. beta_slow,
  15104. xpos_base,
  15105. xpos_down),
  15106. zero_table);
  15107. }
  15108. } break;
  15109. case GGML_OP_ROPE_BACK:
  15110. {
  15111. if (src0->grad) {
  15112. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15113. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15114. const int mode = ((int32_t *) tensor->op_params)[2];
  15115. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15116. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15117. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15118. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15119. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15120. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15121. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15122. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15123. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15124. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15125. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15126. src0->grad = ggml_add_or_set(ctx,
  15127. src0->grad,
  15128. ggml_rope_impl(ctx,
  15129. tensor->grad,
  15130. src1,
  15131. src2,
  15132. n_dims,
  15133. mode,
  15134. n_ctx,
  15135. n_orig_ctx,
  15136. freq_base,
  15137. freq_scale,
  15138. ext_factor,
  15139. attn_factor,
  15140. beta_fast,
  15141. beta_slow,
  15142. xpos_base,
  15143. xpos_down,
  15144. false),
  15145. zero_table);
  15146. }
  15147. } break;
  15148. case GGML_OP_CLAMP:
  15149. {
  15150. GGML_ASSERT(false); // TODO: not implemented
  15151. } break;
  15152. case GGML_OP_CONV_TRANSPOSE_1D:
  15153. {
  15154. GGML_ASSERT(false); // TODO: not implemented
  15155. } break;
  15156. case GGML_OP_IM2COL:
  15157. {
  15158. GGML_ASSERT(false); // TODO: not implemented
  15159. } break;
  15160. case GGML_OP_CONV_TRANSPOSE_2D:
  15161. {
  15162. GGML_ASSERT(false); // TODO: not implemented
  15163. } break;
  15164. case GGML_OP_POOL_1D:
  15165. {
  15166. GGML_ASSERT(false); // TODO: not implemented
  15167. } break;
  15168. case GGML_OP_POOL_2D:
  15169. {
  15170. GGML_ASSERT(false); // TODO: not implemented
  15171. } break;
  15172. case GGML_OP_UPSCALE:
  15173. {
  15174. GGML_ASSERT(false); // TODO: not implemented
  15175. } break;
  15176. case GGML_OP_PAD:
  15177. {
  15178. GGML_ASSERT(false); // TODO: not implemented
  15179. } break;
  15180. case GGML_OP_ARANGE:
  15181. {
  15182. GGML_ASSERT(false); // TODO: not implemented
  15183. } break;
  15184. case GGML_OP_TIMESTEP_EMBEDDING:
  15185. {
  15186. GGML_ASSERT(false); // TODO: not implemented
  15187. } break;
  15188. case GGML_OP_ARGSORT:
  15189. {
  15190. GGML_ASSERT(false); // TODO: not implemented
  15191. } break;
  15192. case GGML_OP_LEAKY_RELU:
  15193. {
  15194. GGML_ASSERT(false); // TODO: not implemented
  15195. } break;
  15196. case GGML_OP_FLASH_ATTN_EXT:
  15197. {
  15198. struct ggml_tensor * flash_grad = NULL;
  15199. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15200. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15201. GGML_ASSERT(t == 0 || t == 1);
  15202. bool masked = t != 0;
  15203. flash_grad =
  15204. ggml_flash_attn_back(ctx,
  15205. src0,
  15206. src1,
  15207. tensor->src[2],
  15208. tensor->grad,
  15209. masked);
  15210. }
  15211. const int64_t elem_q = ggml_nelements(src0);
  15212. const int64_t elem_k = ggml_nelements(src1);
  15213. const int64_t elem_v = ggml_nelements(src2);
  15214. enum ggml_type result_type = flash_grad->type;
  15215. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15216. const size_t tsize = ggml_type_size(result_type);
  15217. const size_t offs_q = 0;
  15218. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15219. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15220. if (src0->grad) {
  15221. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15222. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15223. src0->grad = ggml_add_or_set(ctx,
  15224. src0->grad,
  15225. grad_q,
  15226. zero_table);
  15227. }
  15228. if (src1->grad) {
  15229. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15230. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15231. src1->grad = ggml_add_or_set(ctx,
  15232. src1->grad,
  15233. grad_k,
  15234. zero_table);
  15235. }
  15236. if (src2->grad) {
  15237. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15238. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15239. src2->grad = ggml_add_or_set(ctx,
  15240. src2->grad,
  15241. grad_v,
  15242. zero_table);
  15243. }
  15244. } break;
  15245. case GGML_OP_FLASH_ATTN_BACK:
  15246. {
  15247. GGML_ASSERT(false); // not supported
  15248. } break;
  15249. case GGML_OP_SSM_CONV:
  15250. case GGML_OP_SSM_SCAN:
  15251. {
  15252. GGML_ASSERT(false); // TODO: not implemented
  15253. } break;
  15254. case GGML_OP_WIN_PART:
  15255. case GGML_OP_WIN_UNPART:
  15256. case GGML_OP_UNARY:
  15257. {
  15258. switch (ggml_get_unary_op(tensor)) {
  15259. case GGML_UNARY_OP_ABS:
  15260. {
  15261. if (src0->grad) {
  15262. src0->grad =
  15263. ggml_add_or_set(ctx,
  15264. src0->grad,
  15265. ggml_mul(ctx,
  15266. ggml_sgn(ctx, src0),
  15267. tensor->grad),
  15268. zero_table);
  15269. }
  15270. } break;
  15271. case GGML_UNARY_OP_SGN:
  15272. {
  15273. if (src0->grad) {
  15274. // noop
  15275. }
  15276. } break;
  15277. case GGML_UNARY_OP_NEG:
  15278. {
  15279. if (src0->grad) {
  15280. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15281. }
  15282. } break;
  15283. case GGML_UNARY_OP_STEP:
  15284. {
  15285. if (src0->grad) {
  15286. // noop
  15287. }
  15288. } break;
  15289. case GGML_UNARY_OP_TANH:
  15290. {
  15291. GGML_ASSERT(false); // TODO: not implemented
  15292. } break;
  15293. case GGML_UNARY_OP_ELU:
  15294. {
  15295. GGML_ASSERT(false); // TODO: not implemented
  15296. } break;
  15297. case GGML_UNARY_OP_RELU:
  15298. {
  15299. if (src0->grad) {
  15300. src0->grad = ggml_add_or_set(ctx,
  15301. src0->grad,
  15302. ggml_mul(ctx,
  15303. ggml_step(ctx, src0),
  15304. tensor->grad),
  15305. zero_table);
  15306. }
  15307. } break;
  15308. case GGML_UNARY_OP_SIGMOID:
  15309. {
  15310. GGML_ASSERT(false); // TODO: not implemented
  15311. } break;
  15312. case GGML_UNARY_OP_GELU:
  15313. {
  15314. GGML_ASSERT(false); // TODO: not implemented
  15315. } break;
  15316. case GGML_UNARY_OP_GELU_QUICK:
  15317. {
  15318. GGML_ASSERT(false); // TODO: not implemented
  15319. } break;
  15320. case GGML_UNARY_OP_SILU:
  15321. {
  15322. // necessary for llama
  15323. if (src0->grad) {
  15324. src0->grad = ggml_add_or_set(ctx,
  15325. src0->grad,
  15326. ggml_silu_back(ctx, src0, tensor->grad),
  15327. zero_table);
  15328. }
  15329. } break;
  15330. default:
  15331. GGML_ASSERT(false);
  15332. }
  15333. } break;
  15334. case GGML_OP_GET_REL_POS:
  15335. case GGML_OP_ADD_REL_POS:
  15336. case GGML_OP_MAP_UNARY:
  15337. case GGML_OP_MAP_BINARY:
  15338. case GGML_OP_MAP_CUSTOM1_F32:
  15339. case GGML_OP_MAP_CUSTOM2_F32:
  15340. case GGML_OP_MAP_CUSTOM3_F32:
  15341. case GGML_OP_MAP_CUSTOM1:
  15342. case GGML_OP_MAP_CUSTOM2:
  15343. case GGML_OP_MAP_CUSTOM3:
  15344. {
  15345. GGML_ASSERT(false); // not supported
  15346. } break;
  15347. case GGML_OP_CROSS_ENTROPY_LOSS:
  15348. {
  15349. if (src0->grad) {
  15350. src0->grad = ggml_add_or_set(ctx,
  15351. src0->grad,
  15352. ggml_cross_entropy_loss_back(ctx,
  15353. src0,
  15354. src1,
  15355. tensor->grad),
  15356. zero_table);
  15357. }
  15358. } break;
  15359. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15360. {
  15361. GGML_ASSERT(false); // not supported
  15362. } break;
  15363. case GGML_OP_NONE:
  15364. {
  15365. // nop
  15366. } break;
  15367. case GGML_OP_COUNT:
  15368. {
  15369. GGML_ASSERT(false);
  15370. } break;
  15371. }
  15372. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15373. if (tensor->src[i] && tensor->src[i]->grad) {
  15374. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15375. }
  15376. }
  15377. }
  15378. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15379. if (node->grad == NULL) {
  15380. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15381. // it can also happen during forward pass, if the user performs computations with constants
  15382. if (node->op != GGML_OP_NONE) {
  15383. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15384. }
  15385. }
  15386. // check if already visited
  15387. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15388. return;
  15389. }
  15390. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15391. const int k =
  15392. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15393. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15394. /* unknown order, just fall back to using i*/ i;
  15395. if (node->src[k]) {
  15396. ggml_visit_parents(cgraph, node->src[k]);
  15397. }
  15398. }
  15399. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15400. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15401. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15402. if (strlen(node->name) == 0) {
  15403. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15404. }
  15405. cgraph->leafs[cgraph->n_leafs] = node;
  15406. cgraph->n_leafs++;
  15407. } else {
  15408. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15409. if (strlen(node->name) == 0) {
  15410. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15411. }
  15412. cgraph->nodes[cgraph->n_nodes] = node;
  15413. if (cgraph->grads) {
  15414. cgraph->grads[cgraph->n_nodes] = node->grad;
  15415. }
  15416. cgraph->n_nodes++;
  15417. }
  15418. }
  15419. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15420. if (!expand) {
  15421. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15422. ggml_graph_clear(cgraph);
  15423. }
  15424. const int n0 = cgraph->n_nodes;
  15425. UNUSED(n0);
  15426. ggml_visit_parents(cgraph, tensor);
  15427. const int n_new = cgraph->n_nodes - n0;
  15428. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15429. if (n_new > 0) {
  15430. // the last added node should always be starting point
  15431. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15432. }
  15433. }
  15434. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15435. ggml_build_forward_impl(cgraph, tensor, true);
  15436. }
  15437. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15438. GGML_ASSERT(gf->n_nodes > 0);
  15439. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15440. if (keep) {
  15441. for (int i = 0; i < gf->n_nodes; i++) {
  15442. struct ggml_tensor * node = gf->nodes[i];
  15443. if (node->grad) {
  15444. node->grad = ggml_dup_tensor(ctx, node);
  15445. gf->grads[i] = node->grad;
  15446. }
  15447. }
  15448. }
  15449. // remember original gradients which start with zero values
  15450. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15451. for (int i = 0; i < gf->n_nodes; i++) {
  15452. if (gf->grads[i]) {
  15453. ggml_hash_insert(zero_table, gf->grads[i]);
  15454. }
  15455. }
  15456. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15457. struct ggml_tensor * node = gf->nodes[i];
  15458. // inplace operations to add gradients are not created by ggml_compute_backward
  15459. // use allocator to automatically make inplace operations
  15460. if (node->grad) {
  15461. ggml_compute_backward(ctx, node, zero_table);
  15462. }
  15463. }
  15464. for (int i = 0; i < gf->n_nodes; i++) {
  15465. struct ggml_tensor * node = gf->nodes[i];
  15466. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15467. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15468. ggml_build_forward_expand(gb, node->grad);
  15469. }
  15470. }
  15471. ggml_hash_set_free(zero_table);
  15472. }
  15473. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15474. size_t nbytes = sizeof(struct ggml_cgraph);
  15475. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15476. if (grads) {
  15477. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15478. }
  15479. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15480. return nbytes;
  15481. }
  15482. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15483. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15484. }
  15485. size_t ggml_graph_overhead(void) {
  15486. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15487. }
  15488. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15489. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15490. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15491. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15492. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15493. size_t hash_size = ggml_hash_size(size * 2);
  15494. struct ggml_tensor ** nodes_ptr = data_start;
  15495. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15496. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15497. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15498. // check that we allocated the correct amount of memory
  15499. assert(obj_size == (size_t) (
  15500. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15501. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15502. *cgraph = (struct ggml_cgraph) {
  15503. /*.size =*/ size,
  15504. /*.n_nodes =*/ 0,
  15505. /*.n_leafs =*/ 0,
  15506. /*.nodes =*/ nodes_ptr,
  15507. /*.grads =*/ grads_ptr,
  15508. /*.leafs =*/ leafs_ptr,
  15509. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15510. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15511. /*.perf_runs =*/ 0,
  15512. /*.perf_cycles =*/ 0,
  15513. /*.perf_time_us =*/ 0,
  15514. };
  15515. return cgraph;
  15516. }
  15517. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15518. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15519. }
  15520. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15521. struct ggml_cgraph cgraph = {
  15522. /*.size =*/ 0,
  15523. /*.n_nodes =*/ i1 - i0,
  15524. /*.n_leafs =*/ 0,
  15525. /*.nodes =*/ cgraph0->nodes + i0,
  15526. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15527. /*.leafs =*/ NULL,
  15528. /*.hash_table =*/ { 0, NULL },
  15529. /*.order =*/ cgraph0->order,
  15530. /*.perf_runs =*/ 0,
  15531. /*.perf_cycles =*/ 0,
  15532. /*.perf_time_us =*/ 0,
  15533. };
  15534. return cgraph;
  15535. }
  15536. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15537. GGML_ASSERT(dst->size >= src->n_leafs);
  15538. GGML_ASSERT(dst->size >= src->n_nodes);
  15539. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15540. dst->n_leafs = src->n_leafs;
  15541. dst->n_nodes = src->n_nodes;
  15542. dst->order = src->order;
  15543. for (int i = 0; i < src->n_leafs; ++i) {
  15544. dst->leafs[i] = src->leafs[i];
  15545. }
  15546. for (int i = 0; i < src->n_nodes; ++i) {
  15547. dst->nodes[i] = src->nodes[i];
  15548. }
  15549. if (src->grads) {
  15550. GGML_ASSERT(dst->grads != NULL);
  15551. for (int i = 0; i < src->n_nodes; ++i) {
  15552. dst->grads[i] = src->grads[i];
  15553. }
  15554. }
  15555. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15556. if (src->visited_hash_table.keys[i]) {
  15557. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15558. }
  15559. }
  15560. }
  15561. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15562. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15563. ggml_graph_cpy(cgraph, result);
  15564. return result;
  15565. }
  15566. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15567. GGML_ASSERT(cgraph->grads != NULL);
  15568. for (int i = 0; i < cgraph->n_nodes; i++) {
  15569. struct ggml_tensor * grad = cgraph->grads[i];
  15570. if (grad) {
  15571. ggml_set_zero(grad);
  15572. }
  15573. }
  15574. }
  15575. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15576. cgraph->n_leafs = 0;
  15577. cgraph->n_nodes = 0;
  15578. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15579. }
  15580. //
  15581. // thread data
  15582. //
  15583. // synchronization is done via busy loops
  15584. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15585. //
  15586. #ifdef __APPLE__
  15587. //#include <os/lock.h>
  15588. //
  15589. //typedef os_unfair_lock ggml_lock_t;
  15590. //
  15591. //#define ggml_lock_init(x) UNUSED(x)
  15592. //#define ggml_lock_destroy(x) UNUSED(x)
  15593. //#define ggml_lock_lock os_unfair_lock_lock
  15594. //#define ggml_lock_unlock os_unfair_lock_unlock
  15595. //
  15596. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15597. typedef int ggml_lock_t;
  15598. #define ggml_lock_init(x) UNUSED(x)
  15599. #define ggml_lock_destroy(x) UNUSED(x)
  15600. #define ggml_lock_lock(x) UNUSED(x)
  15601. #define ggml_lock_unlock(x) UNUSED(x)
  15602. #define GGML_LOCK_INITIALIZER 0
  15603. #define ggml_thread_create pthread_create
  15604. #define ggml_thread_join pthread_join
  15605. #else
  15606. //typedef pthread_spinlock_t ggml_lock_t;
  15607. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15608. //#define ggml_lock_destroy pthread_spin_destroy
  15609. //#define ggml_lock_lock pthread_spin_lock
  15610. //#define ggml_lock_unlock pthread_spin_unlock
  15611. typedef int ggml_lock_t;
  15612. #define ggml_lock_init(x) UNUSED(x)
  15613. #define ggml_lock_destroy(x) UNUSED(x)
  15614. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15615. #define ggml_lock_lock(x) _mm_pause()
  15616. #else
  15617. #define ggml_lock_lock(x) UNUSED(x)
  15618. #endif
  15619. #define ggml_lock_unlock(x) UNUSED(x)
  15620. #define GGML_LOCK_INITIALIZER 0
  15621. #define ggml_thread_create pthread_create
  15622. #define ggml_thread_join pthread_join
  15623. #endif
  15624. // Android's libc implementation "bionic" does not support setting affinity
  15625. #if defined(__gnu_linux__)
  15626. static void set_numa_thread_affinity(int thread_n) {
  15627. if (!ggml_is_numa()) {
  15628. return;
  15629. }
  15630. int node_num;
  15631. int rv;
  15632. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15633. switch(g_state.numa.numa_strategy) {
  15634. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15635. // run thread on node_num thread_n / (threads per node)
  15636. node_num = thread_n % g_state.numa.n_nodes;
  15637. break;
  15638. case GGML_NUMA_STRATEGY_ISOLATE:
  15639. // run thread on current_node
  15640. node_num = g_state.numa.current_node;
  15641. break;
  15642. case GGML_NUMA_STRATEGY_NUMACTL:
  15643. // use the cpuset that numactl gave us
  15644. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15645. if (rv) {
  15646. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15647. }
  15648. return;
  15649. default:
  15650. return;
  15651. }
  15652. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15653. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15654. CPU_ZERO_S(setsize, cpus);
  15655. for (size_t i = 0; i < node->n_cpus; ++i) {
  15656. CPU_SET_S(node->cpus[i], setsize, cpus);
  15657. }
  15658. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15659. if (rv) {
  15660. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15661. }
  15662. CPU_FREE(cpus);
  15663. }
  15664. static void clear_numa_thread_affinity(void) {
  15665. if (!ggml_is_numa()) {
  15666. return;
  15667. }
  15668. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15669. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15670. CPU_ZERO_S(setsize, cpus);
  15671. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15672. CPU_SET_S(i, setsize, cpus);
  15673. }
  15674. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15675. if (rv) {
  15676. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15677. }
  15678. CPU_FREE(cpus);
  15679. }
  15680. #else
  15681. // TODO: Windows etc.
  15682. // (the linux implementation may also work on BSD, someone should test)
  15683. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15684. static void clear_numa_thread_affinity(void) {}
  15685. #endif
  15686. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15687. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15688. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15689. node->perf_runs++;
  15690. node->perf_cycles += cycles_cur;
  15691. node->perf_time_us += time_us_cur;
  15692. }
  15693. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15694. int n_tasks = 0;
  15695. if (ggml_is_empty(node)) {
  15696. // no need to multi-thread a no-op
  15697. n_tasks = 1;
  15698. return n_tasks;
  15699. }
  15700. switch (node->op) {
  15701. case GGML_OP_CPY:
  15702. case GGML_OP_DUP:
  15703. case GGML_OP_ADD:
  15704. case GGML_OP_ADD1:
  15705. case GGML_OP_ACC:
  15706. {
  15707. n_tasks = n_threads;
  15708. } break;
  15709. case GGML_OP_SUB:
  15710. case GGML_OP_SQR:
  15711. case GGML_OP_SQRT:
  15712. case GGML_OP_LOG:
  15713. case GGML_OP_SUM:
  15714. case GGML_OP_SUM_ROWS:
  15715. case GGML_OP_MEAN:
  15716. case GGML_OP_ARGMAX:
  15717. case GGML_OP_REPEAT:
  15718. case GGML_OP_REPEAT_BACK:
  15719. case GGML_OP_LEAKY_RELU:
  15720. {
  15721. n_tasks = 1;
  15722. } break;
  15723. case GGML_OP_UNARY:
  15724. switch (ggml_get_unary_op(node)) {
  15725. case GGML_UNARY_OP_ABS:
  15726. case GGML_UNARY_OP_SGN:
  15727. case GGML_UNARY_OP_NEG:
  15728. case GGML_UNARY_OP_STEP:
  15729. case GGML_UNARY_OP_TANH:
  15730. case GGML_UNARY_OP_ELU:
  15731. case GGML_UNARY_OP_RELU:
  15732. case GGML_UNARY_OP_SIGMOID:
  15733. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15734. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15735. {
  15736. n_tasks = 1;
  15737. } break;
  15738. case GGML_UNARY_OP_GELU:
  15739. case GGML_UNARY_OP_GELU_QUICK:
  15740. case GGML_UNARY_OP_SILU:
  15741. {
  15742. n_tasks = n_threads;
  15743. } break;
  15744. default:
  15745. GGML_ASSERT(false);
  15746. }
  15747. break;
  15748. case GGML_OP_SILU_BACK:
  15749. case GGML_OP_MUL:
  15750. case GGML_OP_DIV:
  15751. case GGML_OP_NORM:
  15752. case GGML_OP_RMS_NORM:
  15753. case GGML_OP_RMS_NORM_BACK:
  15754. case GGML_OP_GROUP_NORM:
  15755. case GGML_OP_CONCAT:
  15756. {
  15757. n_tasks = n_threads;
  15758. } break;
  15759. case GGML_OP_MUL_MAT:
  15760. {
  15761. n_tasks = n_threads;
  15762. // TODO: use different scheduling for different matrix sizes
  15763. //const int nr0 = ggml_nrows(node->src[0]);
  15764. //const int nr1 = ggml_nrows(node->src[1]);
  15765. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15766. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15767. } break;
  15768. case GGML_OP_MUL_MAT_ID:
  15769. {
  15770. n_tasks = n_threads;
  15771. } break;
  15772. case GGML_OP_OUT_PROD:
  15773. {
  15774. n_tasks = n_threads;
  15775. } break;
  15776. case GGML_OP_GET_ROWS:
  15777. {
  15778. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15779. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15780. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15781. } break;
  15782. case GGML_OP_SCALE:
  15783. case GGML_OP_SET:
  15784. case GGML_OP_CONT:
  15785. case GGML_OP_RESHAPE:
  15786. case GGML_OP_VIEW:
  15787. case GGML_OP_PERMUTE:
  15788. case GGML_OP_TRANSPOSE:
  15789. case GGML_OP_GET_ROWS_BACK:
  15790. case GGML_OP_DIAG:
  15791. {
  15792. n_tasks = 1;
  15793. } break;
  15794. case GGML_OP_DIAG_MASK_ZERO:
  15795. case GGML_OP_DIAG_MASK_INF:
  15796. case GGML_OP_SOFT_MAX_BACK:
  15797. case GGML_OP_ROPE:
  15798. case GGML_OP_ROPE_BACK:
  15799. case GGML_OP_ADD_REL_POS:
  15800. {
  15801. n_tasks = n_threads;
  15802. } break;
  15803. case GGML_OP_CLAMP:
  15804. {
  15805. n_tasks = 1; //TODO
  15806. } break;
  15807. case GGML_OP_SOFT_MAX:
  15808. {
  15809. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15810. } break;
  15811. case GGML_OP_CONV_TRANSPOSE_1D:
  15812. {
  15813. n_tasks = n_threads;
  15814. } break;
  15815. case GGML_OP_IM2COL:
  15816. {
  15817. n_tasks = n_threads;
  15818. } break;
  15819. case GGML_OP_CONV_TRANSPOSE_2D:
  15820. {
  15821. n_tasks = n_threads;
  15822. } break;
  15823. case GGML_OP_POOL_1D:
  15824. case GGML_OP_POOL_2D:
  15825. {
  15826. n_tasks = 1;
  15827. } break;
  15828. case GGML_OP_UPSCALE:
  15829. {
  15830. n_tasks = n_threads;
  15831. } break;
  15832. case GGML_OP_PAD:
  15833. {
  15834. n_tasks = n_threads;
  15835. } break;
  15836. case GGML_OP_ARANGE:
  15837. {
  15838. n_tasks = n_threads;
  15839. } break;
  15840. case GGML_OP_TIMESTEP_EMBEDDING:
  15841. {
  15842. n_tasks = n_threads;
  15843. } break;
  15844. case GGML_OP_ARGSORT:
  15845. {
  15846. n_tasks = n_threads;
  15847. } break;
  15848. case GGML_OP_FLASH_ATTN_EXT:
  15849. {
  15850. n_tasks = n_threads;
  15851. } break;
  15852. case GGML_OP_FLASH_ATTN_BACK:
  15853. {
  15854. n_tasks = n_threads;
  15855. } break;
  15856. case GGML_OP_SSM_CONV:
  15857. case GGML_OP_SSM_SCAN:
  15858. {
  15859. n_tasks = n_threads;
  15860. } break;
  15861. case GGML_OP_WIN_PART:
  15862. case GGML_OP_WIN_UNPART:
  15863. case GGML_OP_GET_REL_POS:
  15864. case GGML_OP_MAP_UNARY:
  15865. case GGML_OP_MAP_BINARY:
  15866. case GGML_OP_MAP_CUSTOM1_F32:
  15867. case GGML_OP_MAP_CUSTOM2_F32:
  15868. case GGML_OP_MAP_CUSTOM3_F32:
  15869. {
  15870. n_tasks = 1;
  15871. } break;
  15872. case GGML_OP_MAP_CUSTOM1:
  15873. {
  15874. struct ggml_map_custom1_op_params p;
  15875. memcpy(&p, node->op_params, sizeof(p));
  15876. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15877. n_tasks = n_threads;
  15878. } else {
  15879. n_tasks = MIN(p.n_tasks, n_threads);
  15880. }
  15881. } break;
  15882. case GGML_OP_MAP_CUSTOM2:
  15883. {
  15884. struct ggml_map_custom2_op_params p;
  15885. memcpy(&p, node->op_params, sizeof(p));
  15886. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15887. n_tasks = n_threads;
  15888. } else {
  15889. n_tasks = MIN(p.n_tasks, n_threads);
  15890. }
  15891. } break;
  15892. case GGML_OP_MAP_CUSTOM3:
  15893. {
  15894. struct ggml_map_custom3_op_params p;
  15895. memcpy(&p, node->op_params, sizeof(p));
  15896. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15897. n_tasks = n_threads;
  15898. } else {
  15899. n_tasks = MIN(p.n_tasks, n_threads);
  15900. }
  15901. } break;
  15902. case GGML_OP_CROSS_ENTROPY_LOSS:
  15903. {
  15904. n_tasks = n_threads;
  15905. } break;
  15906. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15907. {
  15908. n_tasks = n_threads;
  15909. } break;
  15910. case GGML_OP_NONE:
  15911. {
  15912. n_tasks = 1;
  15913. } break;
  15914. case GGML_OP_COUNT:
  15915. {
  15916. GGML_ASSERT(false);
  15917. } break;
  15918. default:
  15919. {
  15920. fprintf(stderr, "%s: op not implemented: ", __func__);
  15921. if (node->op < GGML_OP_COUNT) {
  15922. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15923. } else {
  15924. fprintf(stderr, "%d\n", node->op);
  15925. }
  15926. GGML_ASSERT(false);
  15927. } break;
  15928. }
  15929. assert(n_tasks > 0);
  15930. return n_tasks;
  15931. }
  15932. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15933. // wait for other threads to finish
  15934. const int last_node_n = * node_n;
  15935. while (true) {
  15936. if (do_yield) {
  15937. sched_yield();
  15938. }
  15939. * node_n = atomic_load(&state->shared->node_n);
  15940. if (* node_n != last_node_n) break;
  15941. #if defined(__SSE3__)
  15942. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15943. _mm_pause();
  15944. #endif
  15945. }
  15946. }
  15947. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15948. // wait for other threads to finish
  15949. const int last_task_phase = * task_phase;
  15950. while (true) {
  15951. if (do_yield) {
  15952. sched_yield();
  15953. }
  15954. * task_phase = atomic_load(&state->shared->node_task);
  15955. if (* task_phase != last_task_phase) break;
  15956. #if defined(__SSE3__)
  15957. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15958. _mm_pause();
  15959. #endif
  15960. }
  15961. }
  15962. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15963. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15964. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15965. const struct ggml_cplan * cplan = state->shared->cplan;
  15966. const int n_threads = state->shared->n_threads;
  15967. set_numa_thread_affinity(state->ith);
  15968. int node_n = -1;
  15969. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15970. while (true) {
  15971. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15972. state->shared->node_n += 1;
  15973. state->ec = GGML_STATUS_ABORTED;
  15974. return 0;
  15975. }
  15976. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15977. // all other threads are finished and spinning
  15978. // do finalize and init here so we don't have synchronize again
  15979. struct ggml_compute_params params = {
  15980. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15981. /*.ith =*/ 0,
  15982. /*.nth =*/ 0,
  15983. /*.wsize =*/ cplan->work_size,
  15984. /*.wdata =*/ cplan->work_data,
  15985. };
  15986. if (node_n != -1) {
  15987. /* FINALIZE */
  15988. struct ggml_tensor * node = cgraph->nodes[node_n];
  15989. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15990. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15991. ggml_compute_forward(&params, node, state);
  15992. }
  15993. ggml_graph_compute_perf_stats_node(node, state->shared);
  15994. }
  15995. // distribute new work or execute it direct if 1T
  15996. while (++node_n < cgraph->n_nodes) {
  15997. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15998. struct ggml_tensor * node = cgraph->nodes[node_n];
  15999. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16000. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16001. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16002. params.nth = n_tasks;
  16003. if (n_tasks == 1) {
  16004. /* INIT */
  16005. if (GGML_OP_HAS_INIT[node->op]) {
  16006. params.type = GGML_TASK_TYPE_INIT;
  16007. ggml_compute_forward(&params, node, state);
  16008. }
  16009. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16010. // they do something more efficient than spinning (?)
  16011. params.type = GGML_TASK_TYPE_COMPUTE;
  16012. ggml_compute_forward(&params, node, state);
  16013. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16014. params.type = GGML_TASK_TYPE_FINALIZE;
  16015. ggml_compute_forward(&params, node, state);
  16016. }
  16017. ggml_graph_compute_perf_stats_node(node, state->shared);
  16018. } else {
  16019. break;
  16020. }
  16021. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16022. break;
  16023. }
  16024. }
  16025. task_phase = GGML_TASK_TYPE_INIT;
  16026. atomic_store(&state->shared->n_active, n_threads);
  16027. atomic_store(&state->shared->node_n, node_n);
  16028. atomic_store(&state->shared->node_task, task_phase);
  16029. } else {
  16030. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16031. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16032. }
  16033. // check if we should stop
  16034. if (node_n >= cgraph->n_nodes) break;
  16035. /* INIT & COMPUTE */
  16036. struct ggml_tensor * node = cgraph->nodes[node_n];
  16037. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16038. struct ggml_compute_params params = {
  16039. /*.type =*/ GGML_TASK_TYPE_INIT,
  16040. /*.ith =*/ state->ith,
  16041. /*.nth =*/ n_tasks,
  16042. /*.wsize =*/ cplan->work_size,
  16043. /*.wdata =*/ cplan->work_data,
  16044. };
  16045. if (state->ith < n_tasks) {
  16046. if (GGML_OP_HAS_INIT[node->op]) {
  16047. ggml_compute_forward(&params, node, state);
  16048. }
  16049. }
  16050. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16051. task_phase = GGML_TASK_TYPE_COMPUTE;
  16052. atomic_store(&state->shared->n_active, n_threads);
  16053. atomic_store(&state->shared->node_task, task_phase);
  16054. }
  16055. else {
  16056. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16057. // depending on the workload and the operating system.
  16058. // since it is not clear what is the best approach, it should potentially become user-configurable
  16059. // ref: https://github.com/ggerganov/ggml/issues/291
  16060. // UPD: adding the do_yield flag seems to resolve the issue universally
  16061. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16062. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16063. }
  16064. if (state->ith < n_tasks) {
  16065. params.type = GGML_TASK_TYPE_COMPUTE;
  16066. ggml_compute_forward(&params, node, state);
  16067. }
  16068. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16069. task_phase = GGML_TASK_TYPE_FINALIZE;
  16070. atomic_store(&state->shared->n_active, n_threads);
  16071. atomic_store(&state->shared->node_task, task_phase);
  16072. }
  16073. else {
  16074. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16075. }
  16076. }
  16077. return 0;
  16078. }
  16079. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16080. if (n_threads <= 0) {
  16081. n_threads = GGML_DEFAULT_N_THREADS;
  16082. }
  16083. size_t work_size = 0;
  16084. struct ggml_cplan cplan;
  16085. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16086. int max_tasks = 1;
  16087. // thread scheduling for the different operations + work buffer size estimation
  16088. for (int i = 0; i < cgraph->n_nodes; i++) {
  16089. struct ggml_tensor * node = cgraph->nodes[i];
  16090. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16091. max_tasks = MAX(max_tasks, n_tasks);
  16092. size_t cur = 0;
  16093. switch (node->op) {
  16094. case GGML_OP_CPY:
  16095. case GGML_OP_DUP:
  16096. {
  16097. if (ggml_is_quantized(node->type) ||
  16098. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16099. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16100. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16101. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16102. }
  16103. } break;
  16104. case GGML_OP_ADD:
  16105. case GGML_OP_ADD1:
  16106. {
  16107. if (ggml_is_quantized(node->src[0]->type)) {
  16108. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16109. }
  16110. } break;
  16111. case GGML_OP_ACC:
  16112. {
  16113. if (ggml_is_quantized(node->src[0]->type)) {
  16114. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16115. }
  16116. } break;
  16117. case GGML_OP_MUL_MAT:
  16118. {
  16119. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16120. #if defined(GGML_USE_CLBLAST)
  16121. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16122. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16123. } else
  16124. #endif
  16125. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16126. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16127. if (node->src[0]->type != GGML_TYPE_F32) {
  16128. // here we need memory for fully dequantized matrix from src0
  16129. // take into account that src0 can be broadcasted into src1[2,3]
  16130. cur = ggml_type_size(GGML_TYPE_F32)
  16131. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16132. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16133. }
  16134. } else
  16135. #endif
  16136. if (node->src[1]->type != vec_dot_type) {
  16137. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16138. }
  16139. } break;
  16140. case GGML_OP_MUL_MAT_ID:
  16141. {
  16142. cur = 0;
  16143. const struct ggml_tensor * src0 = node->src[0];
  16144. const struct ggml_tensor * src1 = node->src[1];
  16145. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16146. if (src1->type != vec_dot_type) {
  16147. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16148. }
  16149. const int n_as = src0->ne[2];
  16150. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16151. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16152. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16153. } break;
  16154. case GGML_OP_OUT_PROD:
  16155. {
  16156. if (ggml_is_quantized(node->src[0]->type)) {
  16157. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16158. }
  16159. } break;
  16160. case GGML_OP_SOFT_MAX:
  16161. case GGML_OP_ROPE:
  16162. {
  16163. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16164. } break;
  16165. case GGML_OP_CONV_TRANSPOSE_1D:
  16166. {
  16167. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16168. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16169. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16170. const int64_t ne00 = node->src[0]->ne[0]; // K
  16171. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16172. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16173. const int64_t ne10 = node->src[1]->ne[0]; // L
  16174. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16175. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16176. node->src[0]->type == GGML_TYPE_BF16) &&
  16177. node->src[1]->type == GGML_TYPE_F32) {
  16178. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16179. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16180. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16181. node->src[1]->type == GGML_TYPE_F32) {
  16182. cur += sizeof(float)*ne00*ne01*ne02;
  16183. cur += sizeof(float)*ne10*ne11;
  16184. } else {
  16185. GGML_ASSERT(false);
  16186. }
  16187. } break;
  16188. case GGML_OP_CONV_TRANSPOSE_2D:
  16189. {
  16190. const int64_t ne00 = node->src[0]->ne[0]; // W
  16191. const int64_t ne01 = node->src[0]->ne[1]; // H
  16192. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16193. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16194. const int64_t ne10 = node->src[1]->ne[0]; // W
  16195. const int64_t ne11 = node->src[1]->ne[1]; // H
  16196. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16197. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16198. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16199. } break;
  16200. case GGML_OP_FLASH_ATTN_EXT:
  16201. {
  16202. const int64_t ne00 = node->src[0]->ne[0]; // D
  16203. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16204. } break;
  16205. case GGML_OP_FLASH_ATTN_BACK:
  16206. {
  16207. const int64_t D = node->src[0]->ne[0];
  16208. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16209. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16210. if (node->src[1]->type == GGML_TYPE_F32) {
  16211. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16212. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16213. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16214. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16215. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16216. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16217. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16218. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16219. }
  16220. } break;
  16221. case GGML_OP_CROSS_ENTROPY_LOSS:
  16222. {
  16223. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16224. } break;
  16225. case GGML_OP_COUNT:
  16226. {
  16227. GGML_ASSERT(false);
  16228. } break;
  16229. default:
  16230. break;
  16231. }
  16232. work_size = MAX(work_size, cur);
  16233. }
  16234. if (work_size > 0) {
  16235. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16236. }
  16237. cplan.n_threads = MIN(max_tasks, n_threads);
  16238. cplan.work_size = work_size;
  16239. cplan.work_data = NULL;
  16240. return cplan;
  16241. }
  16242. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16243. {
  16244. GGML_ASSERT(cplan);
  16245. GGML_ASSERT(cplan->n_threads > 0);
  16246. if (cplan->work_size > 0) {
  16247. GGML_ASSERT(cplan->work_data);
  16248. }
  16249. }
  16250. const int n_threads = cplan->n_threads;
  16251. struct ggml_compute_state_shared state_shared = {
  16252. /*.cgraph =*/ cgraph,
  16253. /*.cgraph_plan =*/ cplan,
  16254. /*.perf_node_start_cycles =*/ 0,
  16255. /*.perf_node_start_time_us =*/ 0,
  16256. /*.n_threads =*/ n_threads,
  16257. /*.n_active =*/ n_threads,
  16258. /*.node_n =*/ -1,
  16259. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16260. /*.abort_callback =*/ NULL,
  16261. /*.abort_callback_data =*/ NULL,
  16262. /*.current_chunk; =*/ 0,
  16263. };
  16264. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16265. // create thread pool
  16266. if (n_threads > 1) {
  16267. for (int j = 1; j < n_threads; ++j) {
  16268. workers[j] = (struct ggml_compute_state) {
  16269. .thrd = 0,
  16270. .ith = j,
  16271. .shared = &state_shared,
  16272. .ec = GGML_STATUS_SUCCESS,
  16273. };
  16274. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16275. GGML_ASSERT(rc == 0);
  16276. UNUSED(rc);
  16277. }
  16278. }
  16279. workers[0].ith = 0;
  16280. workers[0].shared = &state_shared;
  16281. workers[0].ec = GGML_STATUS_SUCCESS;
  16282. const int64_t perf_start_cycles = ggml_perf_cycles();
  16283. const int64_t perf_start_time_us = ggml_perf_time_us();
  16284. // this is a work thread too
  16285. ggml_graph_compute_thread(&workers[0]);
  16286. enum ggml_status compute_status = workers[0].ec;
  16287. // don't leave affinity set on the main thread
  16288. clear_numa_thread_affinity();
  16289. // join or kill thread pool
  16290. if (n_threads > 1) {
  16291. for (int j = 1; j < n_threads; j++) {
  16292. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16293. GGML_ASSERT(rc == 0);
  16294. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16295. compute_status = workers[j].ec;
  16296. }
  16297. }
  16298. // performance stats (graph)
  16299. {
  16300. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16301. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16302. cgraph->perf_runs++;
  16303. cgraph->perf_cycles += perf_cycles_cur;
  16304. cgraph->perf_time_us += perf_time_us_cur;
  16305. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16306. __func__, cgraph->perf_runs,
  16307. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16308. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16309. (double) perf_time_us_cur / 1000.0,
  16310. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16311. }
  16312. return compute_status;
  16313. }
  16314. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16315. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16316. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16317. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16318. return ggml_graph_compute(cgraph, &cplan);
  16319. }
  16320. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16321. for (int i = 0; i < cgraph->n_leafs; i++) {
  16322. struct ggml_tensor * leaf = cgraph->leafs[i];
  16323. if (strcmp(leaf->name, name) == 0) {
  16324. return leaf;
  16325. }
  16326. }
  16327. for (int i = 0; i < cgraph->n_nodes; i++) {
  16328. struct ggml_tensor * node = cgraph->nodes[i];
  16329. if (strcmp(node->name, name) == 0) {
  16330. return node;
  16331. }
  16332. }
  16333. return NULL;
  16334. }
  16335. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16336. const int64_t * ne = tensor->ne;
  16337. const size_t * nb = tensor->nb;
  16338. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16339. ggml_type_name(tensor->type),
  16340. ggml_op_name (tensor->op),
  16341. ggml_n_dims(tensor),
  16342. ne[0], ne[1], ne[2], ne[3],
  16343. nb[0], nb[1], nb[2], nb[3],
  16344. tensor->data,
  16345. tensor->name);
  16346. }
  16347. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16348. const int64_t * ne = tensor->ne;
  16349. const size_t * nb = tensor->nb;
  16350. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16351. arg,
  16352. ggml_type_name(tensor->type),
  16353. ggml_op_name (tensor->op),
  16354. ggml_n_dims(tensor),
  16355. ne[0], ne[1], ne[2], ne[3],
  16356. nb[0], nb[1], nb[2], nb[3],
  16357. tensor->data,
  16358. tensor->name);
  16359. }
  16360. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16361. uint64_t size_eval = 0;
  16362. // compute size of intermediate results
  16363. // TODO: does not take into account scratch buffers !!!!
  16364. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16365. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16366. }
  16367. // print
  16368. {
  16369. FILE * fout = stdout;
  16370. fprintf(fout, "\n");
  16371. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16372. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16373. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16374. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16375. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16376. // header
  16377. fprintf(fout, "\n");
  16378. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16379. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16380. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16381. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16382. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16383. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16384. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16385. }
  16386. // header
  16387. fprintf(fout, "\n");
  16388. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16389. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16390. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16391. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16392. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16393. if (cgraph->nodes[i]->src[j]) {
  16394. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16395. }
  16396. }
  16397. fprintf(fout, "\n");
  16398. }
  16399. fprintf(fout, "\n");
  16400. }
  16401. // write binary data
  16402. {
  16403. FILE * fout = ggml_fopen(fname, "wb");
  16404. if (!fout) {
  16405. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16406. return;
  16407. }
  16408. // header
  16409. {
  16410. const uint32_t magic = GGML_FILE_MAGIC;
  16411. const uint32_t version = GGML_FILE_VERSION;
  16412. const uint32_t n_leafs = cgraph->n_leafs;
  16413. const uint32_t n_nodes = cgraph->n_nodes;
  16414. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16415. fwrite(&version, sizeof(uint32_t), 1, fout);
  16416. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16417. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16418. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16419. }
  16420. // leafs
  16421. {
  16422. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16423. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16424. const uint32_t type = tensor->type;
  16425. const uint32_t op = tensor->op;
  16426. fwrite(&type, sizeof(uint32_t), 1, fout);
  16427. fwrite(&op, sizeof(uint32_t), 1, fout);
  16428. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16429. const uint64_t ne = tensor->ne[j];
  16430. const uint64_t nb = tensor->nb[j];
  16431. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16432. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16433. }
  16434. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16435. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16436. // dump the data
  16437. // TODO: pad this to 32 byte boundary
  16438. {
  16439. const size_t size = ggml_nbytes(tensor);
  16440. fwrite(tensor->data, sizeof(char), size, fout);
  16441. }
  16442. }
  16443. }
  16444. // nodes
  16445. {
  16446. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16447. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16448. const uint32_t type = tensor->type;
  16449. const uint32_t op = tensor->op;
  16450. fwrite(&type, sizeof(uint32_t), 1, fout);
  16451. fwrite(&op, sizeof(uint32_t), 1, fout);
  16452. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16453. const uint64_t ne = tensor->ne[j];
  16454. const uint64_t nb = tensor->nb[j];
  16455. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16456. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16457. }
  16458. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16459. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16460. // output the op arguments
  16461. {
  16462. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16463. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16464. args[j] = tensor->src[j];
  16465. }
  16466. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16467. if (args[j]) {
  16468. int32_t idx = -1;
  16469. // check if leaf
  16470. {
  16471. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16472. if (args[j] == cgraph->leafs[k]) {
  16473. idx = k;
  16474. break;
  16475. }
  16476. }
  16477. }
  16478. // check if node
  16479. if (idx == -1) {
  16480. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16481. if (args[j] == cgraph->nodes[k]) {
  16482. idx = cgraph->n_leafs + k;
  16483. break;
  16484. }
  16485. }
  16486. }
  16487. if (idx == -1) {
  16488. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16489. fclose(fout);
  16490. return;
  16491. }
  16492. fwrite(&idx, sizeof(int32_t), 1, fout);
  16493. } else {
  16494. const int32_t nul = -1;
  16495. fwrite(&nul, sizeof(int32_t), 1, fout);
  16496. }
  16497. }
  16498. }
  16499. }
  16500. }
  16501. fclose(fout);
  16502. }
  16503. }
  16504. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16505. assert(*ctx_data == NULL);
  16506. assert(*ctx_eval == NULL);
  16507. struct ggml_cgraph * result = NULL;
  16508. struct ggml_tensor * data = NULL;
  16509. // read file into data
  16510. {
  16511. FILE * fin = ggml_fopen(fname, "rb");
  16512. if (!fin) {
  16513. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16514. return result;
  16515. }
  16516. size_t fsize = 0;
  16517. fseek(fin, 0, SEEK_END);
  16518. fsize = ftell(fin);
  16519. fseek(fin, 0, SEEK_SET);
  16520. // create the data context
  16521. {
  16522. const size_t overhead = 1*ggml_tensor_overhead();
  16523. struct ggml_init_params params = {
  16524. .mem_size = fsize + overhead,
  16525. .mem_buffer = NULL,
  16526. .no_alloc = false,
  16527. };
  16528. *ctx_data = ggml_init(params);
  16529. if (!*ctx_data) {
  16530. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16531. fclose(fin);
  16532. return result;
  16533. }
  16534. }
  16535. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16536. {
  16537. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16538. if (ret != fsize) {
  16539. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16540. fclose(fin);
  16541. return result;
  16542. }
  16543. }
  16544. fclose(fin);
  16545. }
  16546. // populate result
  16547. {
  16548. char * ptr = (char *) data->data;
  16549. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16550. if (magic != GGML_FILE_MAGIC) {
  16551. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16552. return result;
  16553. }
  16554. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16555. if (version != GGML_FILE_VERSION) {
  16556. fprintf(stderr, "%s: invalid version number\n", __func__);
  16557. return result;
  16558. }
  16559. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16560. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16561. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16562. const int graph_size = MAX(n_leafs, n_nodes);
  16563. // create the data context
  16564. {
  16565. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16566. struct ggml_init_params params = {
  16567. .mem_size = size_eval + overhead,
  16568. .mem_buffer = NULL,
  16569. .no_alloc = true,
  16570. };
  16571. *ctx_eval = ggml_init(params);
  16572. if (!*ctx_eval) {
  16573. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16574. return result;
  16575. }
  16576. }
  16577. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16578. result->n_leafs = n_leafs;
  16579. result->n_nodes = n_nodes;
  16580. // leafs
  16581. {
  16582. uint32_t type;
  16583. uint32_t op;
  16584. for (uint32_t i = 0; i < n_leafs; ++i) {
  16585. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16586. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16587. int64_t ne[GGML_MAX_DIMS];
  16588. size_t nb[GGML_MAX_DIMS];
  16589. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16590. uint64_t ne_cur;
  16591. uint64_t nb_cur;
  16592. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16593. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16594. ne[j] = ne_cur;
  16595. nb[j] = nb_cur;
  16596. }
  16597. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16598. tensor->op = (enum ggml_op) op;
  16599. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16600. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16601. tensor->data = (void *) ptr;
  16602. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16603. tensor->nb[j] = nb[j];
  16604. }
  16605. result->leafs[i] = tensor;
  16606. ptr += ggml_nbytes(tensor);
  16607. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16608. }
  16609. }
  16610. ggml_set_no_alloc(*ctx_eval, false);
  16611. // nodes
  16612. {
  16613. uint32_t type;
  16614. uint32_t op;
  16615. for (uint32_t i = 0; i < n_nodes; ++i) {
  16616. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16617. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16618. enum ggml_op eop = (enum ggml_op) op;
  16619. int64_t ne[GGML_MAX_DIMS];
  16620. size_t nb[GGML_MAX_DIMS];
  16621. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16622. uint64_t ne_cur;
  16623. uint64_t nb_cur;
  16624. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16625. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16626. ne[j] = ne_cur;
  16627. nb[j] = nb_cur;
  16628. }
  16629. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16630. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16631. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16632. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16633. // parse args
  16634. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16635. const int32_t arg_idx = ptr_arg_idx[j];
  16636. if (arg_idx == -1) {
  16637. continue;
  16638. }
  16639. if (arg_idx < result->n_leafs) {
  16640. args[j] = result->leafs[arg_idx];
  16641. } else {
  16642. args[j] = result->nodes[arg_idx - result->n_leafs];
  16643. }
  16644. }
  16645. // create the tensor
  16646. // "view" operations are handled differently
  16647. // TODO: handle inplace ops - currently a copy is always made
  16648. struct ggml_tensor * tensor = NULL;
  16649. switch (eop) {
  16650. // TODO: implement other view ops
  16651. case GGML_OP_RESHAPE:
  16652. {
  16653. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16654. } break;
  16655. case GGML_OP_VIEW:
  16656. {
  16657. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16658. size_t offs;
  16659. memcpy(&offs, ptr_op_params, sizeof(offs));
  16660. tensor->data = ((char *) tensor->data) + offs;
  16661. } break;
  16662. case GGML_OP_TRANSPOSE:
  16663. {
  16664. tensor = ggml_transpose(*ctx_eval, args[0]);
  16665. } break;
  16666. case GGML_OP_PERMUTE:
  16667. {
  16668. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16669. } break;
  16670. default:
  16671. {
  16672. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16673. tensor->op = eop;
  16674. } break;
  16675. }
  16676. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16677. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16678. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16679. tensor->nb[j] = nb[j];
  16680. }
  16681. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16682. tensor->src[j] = args[j];
  16683. }
  16684. result->nodes[i] = tensor;
  16685. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16686. }
  16687. }
  16688. }
  16689. return result;
  16690. }
  16691. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16692. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16693. GGML_PRINT("=== GRAPH ===\n");
  16694. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16695. for (int i = 0; i < cgraph->n_nodes; i++) {
  16696. struct ggml_tensor * node = cgraph->nodes[i];
  16697. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16698. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16699. i,
  16700. node->ne[0], node->ne[1], node->ne[2],
  16701. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16702. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16703. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16704. (double) node->perf_time_us / 1000.0,
  16705. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16706. }
  16707. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16708. for (int i = 0; i < cgraph->n_leafs; i++) {
  16709. struct ggml_tensor * node = cgraph->leafs[i];
  16710. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16711. i,
  16712. node->ne[0], node->ne[1],
  16713. ggml_op_name(node->op),
  16714. ggml_get_name(node));
  16715. }
  16716. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16717. if (perf_total_per_op_us[i] == 0) {
  16718. continue;
  16719. }
  16720. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16721. }
  16722. GGML_PRINT("========================================\n");
  16723. }
  16724. // check if node is part of the graph
  16725. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16726. if (cgraph == NULL) {
  16727. return true;
  16728. }
  16729. for (int i = 0; i < cgraph->n_nodes; i++) {
  16730. if (cgraph->nodes[i] == node) {
  16731. return true;
  16732. }
  16733. }
  16734. return false;
  16735. }
  16736. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16737. for (int i = 0; i < cgraph->n_nodes; i++) {
  16738. struct ggml_tensor * parent = cgraph->nodes[i];
  16739. if (parent->grad == node) {
  16740. return parent;
  16741. }
  16742. }
  16743. return NULL;
  16744. }
  16745. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16746. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16747. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16748. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16749. gparent0 ? (void *) gparent0 : (void *) parent,
  16750. gparent0 ? "g" : "x",
  16751. gparent ? (void *) gparent : (void *) node,
  16752. gparent ? "g" : "x",
  16753. gparent ? "empty" : "vee",
  16754. gparent ? "dashed" : "solid",
  16755. label);
  16756. }
  16757. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16758. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16759. (void *) parent, "x",
  16760. (void *) node, "x",
  16761. label);
  16762. }
  16763. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16764. char color[16];
  16765. FILE * fp = ggml_fopen(filename, "w");
  16766. GGML_ASSERT(fp);
  16767. fprintf(fp, "digraph G {\n");
  16768. fprintf(fp, " newrank = true;\n");
  16769. fprintf(fp, " rankdir = LR;\n");
  16770. for (int i = 0; i < gb->n_nodes; i++) {
  16771. struct ggml_tensor * node = gb->nodes[i];
  16772. if (ggml_graph_get_parent(gb, node) != NULL) {
  16773. continue;
  16774. }
  16775. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16776. snprintf(color, sizeof(color), "yellow");
  16777. } else if (node->grad) {
  16778. if (ggml_graph_find(gf, node)) {
  16779. snprintf(color, sizeof(color), "green");
  16780. } else {
  16781. snprintf(color, sizeof(color), "lightblue");
  16782. }
  16783. } else {
  16784. snprintf(color, sizeof(color), "white");
  16785. }
  16786. fprintf(fp, " \"%p\" [ "
  16787. "style = filled; fillcolor = %s; shape = record; "
  16788. "label=\"",
  16789. (void *) node, color);
  16790. if (strlen(node->name) > 0) {
  16791. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16792. } else {
  16793. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16794. }
  16795. if (ggml_is_matrix(node)) {
  16796. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16797. } else {
  16798. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16799. }
  16800. if (node->grad) {
  16801. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16802. } else {
  16803. fprintf(fp, "\"; ]\n");
  16804. }
  16805. }
  16806. for (int i = 0; i < gb->n_leafs; i++) {
  16807. struct ggml_tensor * node = gb->leafs[i];
  16808. snprintf(color, sizeof(color), "pink");
  16809. fprintf(fp, " \"%p\" [ "
  16810. "style = filled; fillcolor = %s; shape = record; "
  16811. "label=\"<x>",
  16812. (void *) node, color);
  16813. if (strlen(node->name) > 0) {
  16814. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16815. } else {
  16816. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16817. }
  16818. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16819. if (ggml_nelements(node) < 5) {
  16820. fprintf(fp, " | (");
  16821. for (int j = 0; j < ggml_nelements(node); j++) {
  16822. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16823. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16824. }
  16825. else if (node->type == GGML_TYPE_F32 ||
  16826. node->type == GGML_TYPE_F16 ||
  16827. node->type == GGML_TYPE_BF16) {
  16828. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16829. }
  16830. else {
  16831. fprintf(fp, "#");
  16832. }
  16833. if (j < ggml_nelements(node) - 1) {
  16834. fprintf(fp, ", ");
  16835. }
  16836. }
  16837. fprintf(fp, ")");
  16838. }
  16839. fprintf(fp, "\"; ]\n");
  16840. }
  16841. for (int i = 0; i < gb->n_nodes; i++) {
  16842. struct ggml_tensor * node = gb->nodes[i];
  16843. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16844. if (node->src[j]) {
  16845. char label[16];
  16846. snprintf(label, sizeof(label), "src %d", j);
  16847. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16848. }
  16849. }
  16850. }
  16851. for (int i = 0; i < gb->n_leafs; i++) {
  16852. struct ggml_tensor * node = gb->leafs[i];
  16853. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16854. if (node->src[j]) {
  16855. char label[16];
  16856. snprintf(label, sizeof(label), "src %d", j);
  16857. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16858. }
  16859. }
  16860. }
  16861. fprintf(fp, "}\n");
  16862. fclose(fp);
  16863. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16864. }
  16865. ////////////////////////////////////////////////////////////////////////////////
  16866. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16867. int i = 0;
  16868. for (int p = 0; p < np; ++p) {
  16869. const int64_t ne = ggml_nelements(ps[p]) ;
  16870. // TODO: add function to set tensor from array
  16871. for (int64_t j = 0; j < ne; ++j) {
  16872. ggml_set_f32_1d(ps[p], j, x[i++]);
  16873. }
  16874. }
  16875. }
  16876. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16877. int i = 0;
  16878. for (int p = 0; p < np; ++p) {
  16879. const int64_t ne = ggml_nelements(ps[p]) ;
  16880. // TODO: add function to get all elements at once
  16881. for (int64_t j = 0; j < ne; ++j) {
  16882. x[i++] = ggml_get_f32_1d(ps[p], j);
  16883. }
  16884. }
  16885. }
  16886. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16887. int64_t i = 0;
  16888. for (int p = 0; p < np; ++p) {
  16889. const int64_t ne = ggml_nelements(ps[p]) ;
  16890. // TODO: add function to get all elements at once
  16891. for (int64_t j = 0; j < ne; ++j) {
  16892. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16893. }
  16894. }
  16895. }
  16896. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16897. int64_t i = 0;
  16898. for (int p = 0; p < np; ++p) {
  16899. const int64_t ne = ggml_nelements(ps[p]) ;
  16900. // TODO: add function to get all elements at once
  16901. for (int64_t j = 0; j < ne; ++j) {
  16902. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16903. }
  16904. }
  16905. }
  16906. //
  16907. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16908. //
  16909. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16910. //
  16911. static enum ggml_opt_result ggml_opt_adam(
  16912. struct ggml_context * ctx,
  16913. struct ggml_opt_context * opt,
  16914. struct ggml_opt_params params,
  16915. struct ggml_tensor * f,
  16916. struct ggml_cgraph * gf,
  16917. struct ggml_cgraph * gb,
  16918. ggml_opt_callback callback,
  16919. void * callback_data) {
  16920. GGML_ASSERT(ggml_is_scalar(f));
  16921. // these will store the parameters we want to optimize
  16922. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16923. int np = 0;
  16924. int64_t nx = 0;
  16925. for (int i = 0; i < gf->n_nodes; ++i) {
  16926. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16927. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16928. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16929. ps[np++] = gf->nodes[i];
  16930. nx += ggml_nelements(gf->nodes[i]);
  16931. }
  16932. }
  16933. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16934. int iter = opt->iter;
  16935. ggml_opt_init(opt->ctx, opt, params, nx);
  16936. opt->iter = iter;
  16937. }
  16938. // constants
  16939. float sched = params.adam.sched;
  16940. const float alpha = params.adam.alpha;
  16941. const float decay = params.adam.decay * alpha;
  16942. const float beta1 = params.adam.beta1;
  16943. const float beta2 = params.adam.beta2;
  16944. const float eps = params.adam.eps;
  16945. const float gclip = params.adam.gclip;
  16946. const int decay_min_ndim = params.adam.decay_min_ndim;
  16947. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16948. const float accum_norm = 1.0f / (float) n_accum;
  16949. float * g = opt->adam.g->data; // gradients
  16950. float * m = opt->adam.m->data; // first moment
  16951. float * v = opt->adam.v->data; // second moment
  16952. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16953. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16954. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16955. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16956. bool cancel = false;
  16957. // compute the function value
  16958. float fx = 0;
  16959. ggml_set_zero(opt->adam.g);
  16960. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16961. if (callback) {
  16962. callback(callback_data, accum_step, &sched, &cancel);
  16963. if (cancel) {
  16964. return GGML_OPT_RESULT_CANCEL;
  16965. }
  16966. }
  16967. // ggml_graph_reset (gf);
  16968. ggml_set_f32 (f->grad, 1.0f);
  16969. ggml_graph_compute(gb, &cplan);
  16970. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16971. fx += ggml_get_f32_1d(f, 0);
  16972. }
  16973. fx *= accum_norm;
  16974. opt->adam.fx_prev = fx;
  16975. opt->adam.fx_best = opt->adam.fx_prev;
  16976. if (pf) {
  16977. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16978. }
  16979. opt->loss_before = opt->adam.fx_prev;
  16980. opt->loss_after = opt->adam.fx_prev;
  16981. // initialize
  16982. if (opt->just_initialized) {
  16983. opt->adam.n_no_improvement = 0;
  16984. opt->just_initialized = false;
  16985. }
  16986. float * fx_best = &opt->adam.fx_best;
  16987. float * fx_prev = &opt->adam.fx_prev;
  16988. int * n_no_improvement = &opt->adam.n_no_improvement;
  16989. int iter0 = opt->iter;
  16990. // run the optimizer
  16991. for (int t = 0; t < params.adam.n_iter; ++t) {
  16992. opt->iter = iter0 + t + 1;
  16993. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16994. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16995. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16996. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16997. for (int i = 0; i < np; ++i) {
  16998. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16999. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17000. }
  17001. const int64_t t_start_wall = ggml_time_us();
  17002. const int64_t t_start_cpu = ggml_cycles();
  17003. UNUSED(t_start_wall);
  17004. UNUSED(t_start_cpu);
  17005. {
  17006. float gnorm = 1.0f;
  17007. if (gclip > 0.0f) {
  17008. // gradient clipping
  17009. ggml_float sum = 0.0;
  17010. for (int64_t i = 0; i < nx; ++i) {
  17011. sum += (ggml_float)(g[i]*g[i]);
  17012. }
  17013. ggml_float norm = sqrt(sum);
  17014. if (norm > (ggml_float) gclip) {
  17015. gnorm = (float) ((ggml_float) gclip / norm);
  17016. }
  17017. }
  17018. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17019. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17020. int64_t i = 0;
  17021. for (int p = 0; p < np; ++p) {
  17022. const int64_t ne = ggml_nelements(ps[p]);
  17023. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17024. for (int64_t j = 0; j < ne; ++j) {
  17025. float x = ggml_get_f32_1d(ps[p], j);
  17026. float g_ = g[i]*gnorm;
  17027. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17028. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17029. float mh = m[i]*beta1h;
  17030. float vh = v[i]*beta2h;
  17031. vh = sqrtf(vh) + eps;
  17032. x = x*(1.0f - p_decay) - mh/vh;
  17033. ggml_set_f32_1d(ps[p], j, x);
  17034. ++i;
  17035. }
  17036. }
  17037. }
  17038. fx = 0;
  17039. ggml_set_zero(opt->adam.g);
  17040. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17041. if (callback) {
  17042. callback(callback_data, accum_step, &sched, &cancel);
  17043. if (cancel) {
  17044. return GGML_OPT_RESULT_CANCEL;;
  17045. }
  17046. }
  17047. // ggml_graph_reset (gf);
  17048. ggml_set_f32 (f->grad, 1.0f);
  17049. ggml_graph_compute(gb, &cplan);
  17050. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17051. fx += ggml_get_f32_1d(f, 0);
  17052. }
  17053. fx *= accum_norm;
  17054. opt->loss_after = fx;
  17055. // check convergence
  17056. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17057. GGML_PRINT_DEBUG("converged\n");
  17058. return GGML_OPT_RESULT_OK;
  17059. }
  17060. // delta-based convergence test
  17061. if (pf != NULL) {
  17062. // need at least params.past iterations to start checking for convergence
  17063. if (params.past <= iter0 + t) {
  17064. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17065. if (fabsf(rate) < params.delta) {
  17066. return GGML_OPT_RESULT_OK;
  17067. }
  17068. }
  17069. pf[(iter0 + t)%params.past] = fx;
  17070. }
  17071. // check for improvement
  17072. if (params.max_no_improvement > 0) {
  17073. if (fx_best[0] > fx) {
  17074. fx_best[0] = fx;
  17075. n_no_improvement[0] = 0;
  17076. } else {
  17077. ++n_no_improvement[0];
  17078. if (n_no_improvement[0] >= params.max_no_improvement) {
  17079. return GGML_OPT_RESULT_OK;
  17080. }
  17081. }
  17082. }
  17083. fx_prev[0] = fx;
  17084. {
  17085. const int64_t t_end_cpu = ggml_cycles();
  17086. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17087. UNUSED(t_end_cpu);
  17088. const int64_t t_end_wall = ggml_time_us();
  17089. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17090. UNUSED(t_end_wall);
  17091. }
  17092. }
  17093. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17094. }
  17095. //
  17096. // L-BFGS
  17097. //
  17098. // the L-BFGS implementation below is based on the following implementation:
  17099. //
  17100. // https://github.com/chokkan/liblbfgs
  17101. //
  17102. struct ggml_lbfgs_iteration_data {
  17103. float alpha;
  17104. float ys;
  17105. float * s;
  17106. float * y;
  17107. };
  17108. static enum ggml_opt_result linesearch_backtracking(
  17109. const struct ggml_opt_params * params,
  17110. int nx,
  17111. float * x,
  17112. float * fx,
  17113. float * g,
  17114. float * d,
  17115. float * step,
  17116. const float * xp,
  17117. struct ggml_tensor * f,
  17118. struct ggml_cgraph * gb,
  17119. struct ggml_cplan * cplan,
  17120. const int np,
  17121. struct ggml_tensor * ps[],
  17122. bool * cancel,
  17123. ggml_opt_callback callback,
  17124. void * callback_data) {
  17125. int count = 0;
  17126. float width = 0.0f;
  17127. float dg = 0.0f;
  17128. float finit = 0.0f;
  17129. float dginit = 0.0f;
  17130. float dgtest = 0.0f;
  17131. const float dec = 0.5f;
  17132. const float inc = 2.1f;
  17133. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17134. const float accum_norm = 1.0f / (float) n_accum;
  17135. if (*step <= 0.f) {
  17136. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17137. }
  17138. // compute the initial gradient in the search direction
  17139. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17140. // make sure that d points to a descent direction
  17141. if (0 < dginit) {
  17142. return GGML_LINESEARCH_FAIL;
  17143. }
  17144. // initialize local variables
  17145. finit = *fx;
  17146. dgtest = params->lbfgs.ftol*dginit;
  17147. while (true) {
  17148. ggml_vec_cpy_f32(nx, x, xp);
  17149. ggml_vec_mad_f32(nx, x, d, *step);
  17150. // evaluate the function and gradient values
  17151. {
  17152. ggml_opt_set_params(np, ps, x);
  17153. *fx = 0;
  17154. memset(g, 0, sizeof(float)*nx);
  17155. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17156. if (callback) {
  17157. // LBFG-S does not support learning rate -> ignore learning schedule
  17158. float sched = 0;
  17159. callback(callback_data, accum_step, &sched, cancel);
  17160. if (*cancel) {
  17161. return GGML_OPT_RESULT_CANCEL;
  17162. }
  17163. }
  17164. // ggml_graph_reset (gf);
  17165. ggml_set_f32 (f->grad, 1.0f);
  17166. ggml_graph_compute(gb, cplan);
  17167. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17168. *fx += ggml_get_f32_1d(f, 0);
  17169. }
  17170. *fx *= accum_norm;
  17171. }
  17172. ++count;
  17173. if (*fx > finit + (*step)*dgtest) {
  17174. width = dec;
  17175. } else {
  17176. // Armijo condition is satisfied
  17177. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17178. return count;
  17179. }
  17180. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17181. // check the Wolfe condition
  17182. if (dg < params->lbfgs.wolfe * dginit) {
  17183. width = inc;
  17184. } else {
  17185. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17186. // regular Wolfe conditions
  17187. return count;
  17188. }
  17189. if(dg > -params->lbfgs.wolfe*dginit) {
  17190. width = dec;
  17191. } else {
  17192. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17193. return count;
  17194. }
  17195. }
  17196. }
  17197. if (*step < params->lbfgs.min_step) {
  17198. return GGML_LINESEARCH_MINIMUM_STEP;
  17199. }
  17200. if (*step > params->lbfgs.max_step) {
  17201. return GGML_LINESEARCH_MAXIMUM_STEP;
  17202. }
  17203. if (params->lbfgs.max_linesearch <= count) {
  17204. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17205. }
  17206. (*step) *= width;
  17207. }
  17208. GGML_ASSERT(false && "line search failed");
  17209. return GGML_LINESEARCH_FAIL;
  17210. }
  17211. static enum ggml_opt_result ggml_opt_lbfgs(
  17212. struct ggml_context * ctx,
  17213. struct ggml_opt_context * opt,
  17214. struct ggml_opt_params params,
  17215. struct ggml_tensor * f,
  17216. struct ggml_cgraph * gf,
  17217. struct ggml_cgraph * gb,
  17218. ggml_opt_callback callback,
  17219. void * callback_data) {
  17220. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17221. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17222. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17223. return GGML_OPT_RESULT_INVALID_WOLFE;
  17224. }
  17225. }
  17226. const int m = params.lbfgs.m;
  17227. // these will store the parameters we want to optimize
  17228. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17229. int np = 0;
  17230. int nx = 0;
  17231. for (int i = 0; i < gf->n_nodes; ++i) {
  17232. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17233. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17234. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17235. ps[np++] = gf->nodes[i];
  17236. nx += ggml_nelements(gf->nodes[i]);
  17237. }
  17238. }
  17239. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17240. int iter = opt->iter;
  17241. ggml_opt_init(ctx, opt, params, nx);
  17242. opt->iter = iter;
  17243. }
  17244. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17245. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17246. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17247. float * x = opt->lbfgs.x->data; // current parameters
  17248. float * xp = opt->lbfgs.xp->data; // previous parameters
  17249. float * g = opt->lbfgs.g->data; // current gradient
  17250. float * gp = opt->lbfgs.gp->data; // previous gradient
  17251. float * d = opt->lbfgs.d->data; // search direction
  17252. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17253. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17254. const float accum_norm = 1.0f / (float) n_accum;
  17255. float fx = 0.0f; // cost function value
  17256. float xnorm = 0.0f; // ||x||
  17257. float gnorm = 0.0f; // ||g||
  17258. // initialize x from the graph nodes
  17259. ggml_opt_get_params(np, ps, x);
  17260. // the L-BFGS memory
  17261. float * lm_alpha = opt->lbfgs.lmal->data;
  17262. float * lm_ys = opt->lbfgs.lmys->data;
  17263. float * lm_s = opt->lbfgs.lms->data;
  17264. float * lm_y = opt->lbfgs.lmy->data;
  17265. bool cancel = false;
  17266. // evaluate the function value and its gradient
  17267. {
  17268. ggml_opt_set_params(np, ps, x);
  17269. fx = 0;
  17270. memset(g, 0, sizeof(float)*nx);
  17271. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17272. if (callback) {
  17273. // LBFG-S does not support learning rate -> ignore learning schedule
  17274. float sched = 0;
  17275. callback(callback_data, accum_step, &sched, &cancel);
  17276. if (cancel) {
  17277. return GGML_OPT_RESULT_CANCEL;
  17278. }
  17279. }
  17280. // ggml_graph_reset (gf);
  17281. ggml_set_f32 (f->grad, 1.0f);
  17282. ggml_graph_compute(gb, &cplan);
  17283. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17284. fx += ggml_get_f32_1d(f, 0);
  17285. }
  17286. fx *= accum_norm;
  17287. opt->loss_before = fx;
  17288. opt->loss_after = fx;
  17289. }
  17290. // search direction = -gradient
  17291. ggml_vec_neg_f32(nx, d, g);
  17292. // ||x||, ||g||
  17293. ggml_vec_norm_f32(nx, &xnorm, x);
  17294. ggml_vec_norm_f32(nx, &gnorm, g);
  17295. if (xnorm < 1.0f) {
  17296. xnorm = 1.0f;
  17297. }
  17298. // already optimized
  17299. if (gnorm/xnorm <= params.lbfgs.eps) {
  17300. return GGML_OPT_RESULT_OK;
  17301. }
  17302. if (opt->just_initialized) {
  17303. if (pf) {
  17304. pf[0] = fx;
  17305. }
  17306. opt->lbfgs.fx_best = fx;
  17307. // initial step
  17308. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17309. opt->lbfgs.j = 0;
  17310. opt->lbfgs.k = 1;
  17311. opt->lbfgs.end = 0;
  17312. opt->lbfgs.n_no_improvement = 0;
  17313. opt->just_initialized = false;
  17314. }
  17315. float * fx_best = &opt->lbfgs.fx_best;
  17316. float * step = &opt->lbfgs.step;
  17317. int * j = &opt->lbfgs.j;
  17318. int * k = &opt->lbfgs.k;
  17319. int * end = &opt->lbfgs.end;
  17320. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17321. int ls = 0;
  17322. int bound = 0;
  17323. float ys = 0.0f;
  17324. float yy = 0.0f;
  17325. float beta = 0.0f;
  17326. int it = 0;
  17327. while (true) {
  17328. // store the current position and gradient vectors
  17329. ggml_vec_cpy_f32(nx, xp, x);
  17330. ggml_vec_cpy_f32(nx, gp, g);
  17331. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17332. // to determine if the optimization should be cancelled
  17333. // this is a simple change, but not doing this atm, since I don't have a nice
  17334. // way to test and don't want to break something with so many changes lined up
  17335. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17336. if (cancel) {
  17337. return GGML_OPT_RESULT_CANCEL;
  17338. }
  17339. if (ls < 0) {
  17340. // linesearch failed - go back to the previous point and return
  17341. ggml_vec_cpy_f32(nx, x, xp);
  17342. ggml_vec_cpy_f32(nx, g, gp);
  17343. return ls;
  17344. }
  17345. opt->loss_after = fx;
  17346. ggml_vec_norm_f32(nx, &xnorm, x);
  17347. ggml_vec_norm_f32(nx, &gnorm, g);
  17348. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17349. if (xnorm < 1.0f) {
  17350. xnorm = 1.0f;
  17351. }
  17352. if (gnorm/xnorm <= params.lbfgs.eps) {
  17353. // converged
  17354. return GGML_OPT_RESULT_OK;
  17355. }
  17356. // delta-based convergence test
  17357. if (pf != NULL) {
  17358. // need at least params.past iterations to start checking for convergence
  17359. if (params.past <= k[0]) {
  17360. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17361. if (fabsf(rate) < params.delta) {
  17362. return GGML_OPT_RESULT_OK;
  17363. }
  17364. }
  17365. pf[k[0]%params.past] = fx;
  17366. }
  17367. // check for improvement
  17368. if (params.max_no_improvement > 0) {
  17369. if (fx < fx_best[0]) {
  17370. fx_best[0] = fx;
  17371. n_no_improvement[0] = 0;
  17372. } else {
  17373. n_no_improvement[0]++;
  17374. if (n_no_improvement[0] >= params.max_no_improvement) {
  17375. return GGML_OPT_RESULT_OK;
  17376. }
  17377. }
  17378. }
  17379. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17380. // reached the maximum number of iterations
  17381. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17382. }
  17383. // update vectors s and y:
  17384. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17385. // y_{k+1} = g_{k+1} - g_{k}.
  17386. //
  17387. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17388. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17389. // compute scalars ys and yy:
  17390. // ys = y^t \cdot s -> 1 / \rho.
  17391. // yy = y^t \cdot y.
  17392. //
  17393. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17394. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17395. lm_ys[end[0]] = ys;
  17396. // find new search direction
  17397. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17398. bound = (m <= k[0]) ? m : k[0];
  17399. k[0]++;
  17400. it++;
  17401. end[0] = (end[0] + 1)%m;
  17402. // initialize search direction with -g
  17403. ggml_vec_neg_f32(nx, d, g);
  17404. j[0] = end[0];
  17405. for (int i = 0; i < bound; ++i) {
  17406. j[0] = (j[0] + m - 1) % m;
  17407. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17408. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17409. lm_alpha[j[0]] /= lm_ys[j[0]];
  17410. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17411. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17412. }
  17413. ggml_vec_scale_f32(nx, d, ys/yy);
  17414. for (int i = 0; i < bound; ++i) {
  17415. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17416. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17417. beta /= lm_ys[j[0]];
  17418. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17419. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17420. j[0] = (j[0] + 1)%m;
  17421. }
  17422. step[0] = 1.0;
  17423. }
  17424. GGML_ASSERT(false && "lbfgs failed");
  17425. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17426. }
  17427. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17428. struct ggml_opt_params result;
  17429. switch (type) {
  17430. case GGML_OPT_TYPE_ADAM:
  17431. {
  17432. result = (struct ggml_opt_params) {
  17433. .type = GGML_OPT_TYPE_ADAM,
  17434. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17435. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17436. .past = 0,
  17437. .delta = 1e-5f,
  17438. .max_no_improvement = 100,
  17439. .print_forward_graph = true,
  17440. .print_backward_graph = true,
  17441. .n_gradient_accumulation = 1,
  17442. .adam = {
  17443. .n_iter = 10000,
  17444. .sched = 1.000f,
  17445. .decay = 0.0f,
  17446. .decay_min_ndim = 2,
  17447. .alpha = 0.001f,
  17448. .beta1 = 0.9f,
  17449. .beta2 = 0.999f,
  17450. .eps = 1e-8f,
  17451. .eps_f = 1e-5f,
  17452. .eps_g = 1e-3f,
  17453. .gclip = 0.0f,
  17454. },
  17455. };
  17456. } break;
  17457. case GGML_OPT_TYPE_LBFGS:
  17458. {
  17459. result = (struct ggml_opt_params) {
  17460. .type = GGML_OPT_TYPE_LBFGS,
  17461. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17462. .n_threads = 1,
  17463. .past = 0,
  17464. .delta = 1e-5f,
  17465. .max_no_improvement = 0,
  17466. .print_forward_graph = true,
  17467. .print_backward_graph = true,
  17468. .n_gradient_accumulation = 1,
  17469. .lbfgs = {
  17470. .m = 6,
  17471. .n_iter = 100,
  17472. .max_linesearch = 20,
  17473. .eps = 1e-5f,
  17474. .ftol = 1e-4f,
  17475. .wolfe = 0.9f,
  17476. .min_step = 1e-20f,
  17477. .max_step = 1e+20f,
  17478. .linesearch = GGML_LINESEARCH_DEFAULT,
  17479. },
  17480. };
  17481. } break;
  17482. }
  17483. return result;
  17484. }
  17485. GGML_API void ggml_opt_init(
  17486. struct ggml_context * ctx,
  17487. struct ggml_opt_context * opt,
  17488. struct ggml_opt_params params,
  17489. int64_t nx) {
  17490. opt->ctx = ctx;
  17491. opt->params = params;
  17492. opt->iter = 0;
  17493. opt->nx = nx;
  17494. opt->just_initialized = true;
  17495. if (opt->ctx == NULL) {
  17496. struct ggml_init_params ctx_opt_params;
  17497. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17498. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17499. if (opt->params.past > 0) {
  17500. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17501. }
  17502. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17503. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17504. if (opt->params.past > 0) {
  17505. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17506. }
  17507. }
  17508. ctx_opt_params.mem_buffer = NULL;
  17509. ctx_opt_params.no_alloc = false;
  17510. opt->ctx = ggml_init(ctx_opt_params);
  17511. }
  17512. switch (opt->params.type) {
  17513. case GGML_OPT_TYPE_ADAM:
  17514. {
  17515. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17516. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17517. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17518. opt->adam.pf = params.past > 0
  17519. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17520. : NULL;
  17521. ggml_set_zero(opt->adam.m);
  17522. ggml_set_zero(opt->adam.v);
  17523. if (opt->adam.pf) {
  17524. ggml_set_zero(opt->adam.pf);
  17525. }
  17526. } break;
  17527. case GGML_OPT_TYPE_LBFGS:
  17528. {
  17529. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17530. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17531. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17532. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17533. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17534. opt->lbfgs.pf = params.past > 0
  17535. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17536. : NULL;
  17537. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17538. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17539. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17540. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17541. ggml_set_zero(opt->lbfgs.x);
  17542. ggml_set_zero(opt->lbfgs.xp);
  17543. ggml_set_zero(opt->lbfgs.g);
  17544. ggml_set_zero(opt->lbfgs.gp);
  17545. ggml_set_zero(opt->lbfgs.d);
  17546. if (opt->lbfgs.pf) {
  17547. ggml_set_zero(opt->lbfgs.pf);
  17548. }
  17549. ggml_set_zero(opt->lbfgs.lmal);
  17550. ggml_set_zero(opt->lbfgs.lmys);
  17551. ggml_set_zero(opt->lbfgs.lms);
  17552. ggml_set_zero(opt->lbfgs.lmy);
  17553. } break;
  17554. }
  17555. }
  17556. enum ggml_opt_result ggml_opt(
  17557. struct ggml_context * ctx,
  17558. struct ggml_opt_params params,
  17559. struct ggml_tensor * f) {
  17560. bool free_ctx = false;
  17561. if (ctx == NULL) {
  17562. struct ggml_init_params params_ctx = {
  17563. .mem_size = 16*1024*1024,
  17564. .mem_buffer = NULL,
  17565. .no_alloc = false,
  17566. };
  17567. ctx = ggml_init(params_ctx);
  17568. if (ctx == NULL) {
  17569. return GGML_OPT_RESULT_NO_CONTEXT;
  17570. }
  17571. free_ctx = true;
  17572. }
  17573. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17574. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17575. ggml_opt_init(ctx, opt, params, 0);
  17576. result = ggml_opt_resume(ctx, opt, f);
  17577. if (free_ctx) {
  17578. ggml_free(ctx);
  17579. }
  17580. return result;
  17581. }
  17582. enum ggml_opt_result ggml_opt_resume(
  17583. struct ggml_context * ctx,
  17584. struct ggml_opt_context * opt,
  17585. struct ggml_tensor * f) {
  17586. // build forward + backward compute graphs
  17587. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17588. ggml_build_forward_expand(gf, f);
  17589. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17590. ggml_build_backward_expand(ctx, gf, gb, true);
  17591. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17592. }
  17593. enum ggml_opt_result ggml_opt_resume_g(
  17594. struct ggml_context * ctx,
  17595. struct ggml_opt_context * opt,
  17596. struct ggml_tensor * f,
  17597. struct ggml_cgraph * gf,
  17598. struct ggml_cgraph * gb,
  17599. ggml_opt_callback callback,
  17600. void * callback_data) {
  17601. // build forward + backward compute graphs
  17602. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17603. switch (opt->params.type) {
  17604. case GGML_OPT_TYPE_ADAM:
  17605. {
  17606. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17607. } break;
  17608. case GGML_OPT_TYPE_LBFGS:
  17609. {
  17610. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17611. } break;
  17612. }
  17613. if (opt->params.print_forward_graph) {
  17614. ggml_graph_print (gf);
  17615. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17616. }
  17617. if (opt->params.print_backward_graph) {
  17618. ggml_graph_print (gb);
  17619. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17620. }
  17621. return result;
  17622. }
  17623. ////////////////////////////////////////////////////////////////////////////////
  17624. void ggml_set_input(struct ggml_tensor * tensor) {
  17625. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17626. }
  17627. void ggml_set_output(struct ggml_tensor * tensor) {
  17628. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17629. }
  17630. ////////////////////////////////////////////////////////////////////////////////
  17631. void ggml_quantize_init(enum ggml_type type) {
  17632. ggml_critical_section_start();
  17633. switch (type) {
  17634. case GGML_TYPE_IQ2_XXS:
  17635. case GGML_TYPE_IQ2_XS:
  17636. case GGML_TYPE_IQ2_S:
  17637. case GGML_TYPE_IQ1_S:
  17638. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17639. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17640. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17641. default: // nothing
  17642. break;
  17643. }
  17644. ggml_critical_section_end();
  17645. }
  17646. void ggml_quantize_free(void) {
  17647. ggml_critical_section_start();
  17648. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17649. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17650. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17651. iq3xs_free_impl(256);
  17652. ggml_critical_section_end();
  17653. }
  17654. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17655. return
  17656. type == GGML_TYPE_IQ2_XXS ||
  17657. type == GGML_TYPE_IQ2_XS ||
  17658. type == GGML_TYPE_IQ1_S;// ||
  17659. //type == GGML_TYPE_IQ1_M;
  17660. }
  17661. size_t ggml_quantize_chunk(
  17662. enum ggml_type type,
  17663. const float * src,
  17664. void * dst,
  17665. int64_t start,
  17666. int64_t nrows,
  17667. int64_t n_per_row,
  17668. const float * imatrix) {
  17669. const int64_t n = (int64_t) nrows * n_per_row;
  17670. if (ggml_quantize_requires_imatrix(type)) {
  17671. GGML_ASSERT(imatrix != NULL);
  17672. }
  17673. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17674. GGML_ASSERT(start % n_per_row == 0);
  17675. ggml_quantize_init(type); // this is noop if already initialized
  17676. const size_t start_row = start / n_per_row;
  17677. const size_t row_size = ggml_row_size(type, n_per_row);
  17678. size_t result = 0;
  17679. switch (type) {
  17680. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17681. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17682. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17683. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17684. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17685. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17690. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17691. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17692. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17693. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17694. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17695. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17696. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17697. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17698. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17699. case GGML_TYPE_F16:
  17700. {
  17701. size_t elemsize = sizeof(ggml_fp16_t);
  17702. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17703. result = n * elemsize;
  17704. } break;
  17705. case GGML_TYPE_BF16:
  17706. {
  17707. size_t elemsize = sizeof(ggml_bf16_t);
  17708. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17709. result = n * elemsize;
  17710. } break;
  17711. case GGML_TYPE_F32:
  17712. {
  17713. size_t elemsize = sizeof(float);
  17714. result = n * elemsize;
  17715. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17716. } break;
  17717. default:
  17718. assert(false);
  17719. }
  17720. GGML_ASSERT(result == nrows * row_size);
  17721. return result;
  17722. }
  17723. ////////////////////////////////////////////////////////////////////////////////
  17724. struct gguf_str {
  17725. uint64_t n; // GGUFv2
  17726. char * data;
  17727. };
  17728. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17729. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17730. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17731. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17732. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17733. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17734. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17735. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17736. [GGUF_TYPE_BOOL] = sizeof(bool),
  17737. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17738. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17739. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17740. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17741. [GGUF_TYPE_ARRAY] = 0, // undefined
  17742. };
  17743. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17744. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17745. [GGUF_TYPE_UINT8] = "u8",
  17746. [GGUF_TYPE_INT8] = "i8",
  17747. [GGUF_TYPE_UINT16] = "u16",
  17748. [GGUF_TYPE_INT16] = "i16",
  17749. [GGUF_TYPE_UINT32] = "u32",
  17750. [GGUF_TYPE_INT32] = "i32",
  17751. [GGUF_TYPE_FLOAT32] = "f32",
  17752. [GGUF_TYPE_BOOL] = "bool",
  17753. [GGUF_TYPE_STRING] = "str",
  17754. [GGUF_TYPE_ARRAY] = "arr",
  17755. [GGUF_TYPE_UINT64] = "u64",
  17756. [GGUF_TYPE_INT64] = "i64",
  17757. [GGUF_TYPE_FLOAT64] = "f64",
  17758. };
  17759. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17760. union gguf_value {
  17761. uint8_t uint8;
  17762. int8_t int8;
  17763. uint16_t uint16;
  17764. int16_t int16;
  17765. uint32_t uint32;
  17766. int32_t int32;
  17767. float float32;
  17768. uint64_t uint64;
  17769. int64_t int64;
  17770. double float64;
  17771. bool bool_;
  17772. struct gguf_str str;
  17773. struct {
  17774. enum gguf_type type;
  17775. uint64_t n; // GGUFv2
  17776. void * data;
  17777. } arr;
  17778. };
  17779. struct gguf_kv {
  17780. struct gguf_str key;
  17781. enum gguf_type type;
  17782. union gguf_value value;
  17783. };
  17784. struct gguf_header {
  17785. char magic[4];
  17786. uint32_t version;
  17787. uint64_t n_tensors; // GGUFv2
  17788. uint64_t n_kv; // GGUFv2
  17789. };
  17790. struct gguf_tensor_info {
  17791. struct gguf_str name;
  17792. uint32_t n_dims;
  17793. uint64_t ne[GGML_MAX_DIMS];
  17794. enum ggml_type type;
  17795. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17796. // for writing API
  17797. const void * data;
  17798. size_t size;
  17799. };
  17800. struct gguf_context {
  17801. struct gguf_header header;
  17802. struct gguf_kv * kv;
  17803. struct gguf_tensor_info * infos;
  17804. size_t alignment;
  17805. size_t offset; // offset of `data` from beginning of file
  17806. size_t size; // size of `data` in bytes
  17807. //uint8_t * padding;
  17808. void * data;
  17809. };
  17810. static size_t gguf_type_size(enum gguf_type type) {
  17811. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17812. return GGUF_TYPE_SIZE[type];
  17813. }
  17814. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17815. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17816. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17817. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17818. GGML_ASSERT(info->ne[i] > 0);
  17819. }
  17820. // prevent overflow for total number of elements
  17821. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17822. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17823. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17824. }
  17825. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17826. const size_t n = fread(dst, 1, size, file);
  17827. *offset += n;
  17828. return n == size;
  17829. }
  17830. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17831. p->n = 0;
  17832. p->data = NULL;
  17833. bool ok = true;
  17834. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17835. // early exit if string length is invalid, prevents from integer overflow
  17836. if (p->n == SIZE_MAX) {
  17837. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17838. return false;
  17839. }
  17840. p->data = GGML_CALLOC(p->n + 1, 1);
  17841. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17842. return ok;
  17843. }
  17844. static void gguf_free_kv(struct gguf_kv * kv) {
  17845. if (kv->key.data) {
  17846. GGML_FREE(kv->key.data);
  17847. }
  17848. if (kv->type == GGUF_TYPE_STRING) {
  17849. if (kv->value.str.data) {
  17850. GGML_FREE(kv->value.str.data);
  17851. }
  17852. }
  17853. if (kv->type == GGUF_TYPE_ARRAY) {
  17854. if (kv->value.arr.data) {
  17855. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17856. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17857. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17858. if (str->data) {
  17859. GGML_FREE(str->data);
  17860. }
  17861. }
  17862. }
  17863. GGML_FREE(kv->value.arr.data);
  17864. }
  17865. }
  17866. }
  17867. struct gguf_context * gguf_init_empty(void) {
  17868. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17869. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17870. ctx->header.version = GGUF_VERSION;
  17871. ctx->header.n_tensors = 0;
  17872. ctx->header.n_kv = 0;
  17873. ctx->kv = NULL;
  17874. ctx->infos = NULL;
  17875. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17876. ctx->offset = 0;
  17877. ctx->size = 0;
  17878. ctx->data = NULL;
  17879. return ctx;
  17880. }
  17881. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17882. FILE * file = ggml_fopen(fname, "rb");
  17883. if (!file) {
  17884. return NULL;
  17885. }
  17886. // offset from start of file
  17887. size_t offset = 0;
  17888. char magic[4];
  17889. // check the magic before making allocations
  17890. {
  17891. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17892. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17893. if (magic[i] != GGUF_MAGIC[i]) {
  17894. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17895. fclose(file);
  17896. return NULL;
  17897. }
  17898. }
  17899. }
  17900. bool ok = true;
  17901. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17902. // read the header
  17903. {
  17904. strncpy(ctx->header.magic, magic, 4);
  17905. ctx->kv = NULL;
  17906. ctx->infos = NULL;
  17907. ctx->data = NULL;
  17908. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17909. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17910. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17911. if (ctx->header.version == 1) {
  17912. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17913. fclose(file);
  17914. gguf_free(ctx);
  17915. return NULL;
  17916. }
  17917. // sanity-checks to prevent from integer/buffer overflows
  17918. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17919. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17920. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17921. if (!ok) {
  17922. fprintf(stderr, "%s: failed to read header\n", __func__);
  17923. fclose(file);
  17924. gguf_free(ctx);
  17925. return NULL;
  17926. }
  17927. }
  17928. // read the kv pairs
  17929. {
  17930. const uint64_t n_kv = ctx->header.n_kv;
  17931. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17932. ctx->header.n_kv = 0;
  17933. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17934. for (uint64_t i = 0; i < n_kv; ++i) {
  17935. struct gguf_kv * kv = &ctx->kv[i];
  17936. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17937. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17938. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17939. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17940. switch (kv->type) {
  17941. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17942. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17943. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17944. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17945. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17946. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17947. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17948. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17949. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17950. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17951. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17952. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17953. case GGUF_TYPE_ARRAY:
  17954. {
  17955. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17956. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17957. switch (kv->value.arr.type) {
  17958. case GGUF_TYPE_UINT8:
  17959. case GGUF_TYPE_INT8:
  17960. case GGUF_TYPE_UINT16:
  17961. case GGUF_TYPE_INT16:
  17962. case GGUF_TYPE_UINT32:
  17963. case GGUF_TYPE_INT32:
  17964. case GGUF_TYPE_FLOAT32:
  17965. case GGUF_TYPE_UINT64:
  17966. case GGUF_TYPE_INT64:
  17967. case GGUF_TYPE_FLOAT64:
  17968. case GGUF_TYPE_BOOL:
  17969. {
  17970. // prevent from integer overflow in the malloc below
  17971. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17972. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17973. fclose(file);
  17974. gguf_free(ctx);
  17975. return NULL;
  17976. }
  17977. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17978. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17979. } break;
  17980. case GGUF_TYPE_STRING:
  17981. {
  17982. // prevent from integer overflow in the malloc below
  17983. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17984. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17985. fclose(file);
  17986. gguf_free(ctx);
  17987. return NULL;
  17988. }
  17989. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17990. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17991. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17992. }
  17993. } break;
  17994. case GGUF_TYPE_ARRAY:
  17995. default: GGML_ASSERT(false && "invalid type"); break;
  17996. }
  17997. } break;
  17998. default: GGML_ASSERT(false && "invalid type");
  17999. }
  18000. if (!ok) {
  18001. break;
  18002. }
  18003. ctx->header.n_kv++;
  18004. }
  18005. if (!ok) {
  18006. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18007. fclose(file);
  18008. gguf_free(ctx);
  18009. return NULL;
  18010. }
  18011. }
  18012. // read the tensor infos
  18013. if (ctx->header.n_tensors > 0) {
  18014. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18015. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18016. struct gguf_tensor_info * info = &ctx->infos[i];
  18017. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18018. info->ne[j] = 1;
  18019. }
  18020. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18021. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18022. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18023. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18024. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18025. }
  18026. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18027. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18028. // TODO: return an error instead of crashing with GGML_ASSERT
  18029. gguf_tensor_info_sanitize(info);
  18030. // make sure there is no duplicated tensor names
  18031. for (uint64_t j = 0; j < i; ++j) {
  18032. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18033. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18034. ok = false;
  18035. }
  18036. }
  18037. if (!ok) {
  18038. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18039. fclose(file);
  18040. gguf_free(ctx);
  18041. return NULL;
  18042. }
  18043. }
  18044. }
  18045. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18046. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18047. if (alignment_idx != -1) {
  18048. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18049. }
  18050. // we require the data section to be aligned, so take into account any padding
  18051. {
  18052. const size_t offset_pad = offset % ctx->alignment;
  18053. if (offset_pad != 0) {
  18054. offset += ctx->alignment - offset_pad;
  18055. fseek(file, offset, SEEK_SET);
  18056. }
  18057. }
  18058. // store the current file offset - this is where the data section starts
  18059. ctx->offset = offset;
  18060. // compute the total size of the data section, taking into account the alignment
  18061. {
  18062. ctx->size = 0;
  18063. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18064. struct gguf_tensor_info * info = &ctx->infos[i];
  18065. const int64_t ne =
  18066. (int64_t) info->ne[0] *
  18067. (int64_t) info->ne[1] *
  18068. (int64_t) info->ne[2] *
  18069. (int64_t) info->ne[3];
  18070. if (ne % ggml_blck_size(info->type) != 0) {
  18071. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18072. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18073. fclose(file);
  18074. gguf_free(ctx);
  18075. return NULL;
  18076. }
  18077. const size_t size_cur = ggml_row_size(info->type, ne);
  18078. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18079. }
  18080. }
  18081. // load the tensor data only if requested
  18082. if (params.ctx != NULL) {
  18083. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18084. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18085. // the ggml_tensor structs to the appropriate locations in the binary blob
  18086. // compute the exact size needed for the new ggml_context
  18087. const size_t mem_size =
  18088. params.no_alloc ?
  18089. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18090. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18091. struct ggml_init_params pdata = {
  18092. .mem_size = mem_size,
  18093. .mem_buffer = NULL,
  18094. .no_alloc = params.no_alloc,
  18095. };
  18096. *params.ctx = ggml_init(pdata);
  18097. struct ggml_context * ctx_data = *params.ctx;
  18098. struct ggml_tensor * data = NULL;
  18099. if (!params.no_alloc) {
  18100. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18101. ok = ok && data != NULL;
  18102. // read the binary blob with the tensor data
  18103. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18104. if (!ok) {
  18105. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18106. fclose(file);
  18107. ggml_free(ctx_data);
  18108. gguf_free(ctx);
  18109. return NULL;
  18110. }
  18111. ctx->data = data->data;
  18112. }
  18113. ggml_set_no_alloc(ctx_data, true);
  18114. // create the tensors
  18115. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18116. const int64_t ne[GGML_MAX_DIMS] = {
  18117. ctx->infos[i].ne[0],
  18118. ctx->infos[i].ne[1],
  18119. ctx->infos[i].ne[2],
  18120. ctx->infos[i].ne[3],
  18121. };
  18122. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18123. ok = ok && cur != NULL;
  18124. if (!ok) {
  18125. break;
  18126. }
  18127. ggml_set_name(cur, ctx->infos[i].name.data);
  18128. // point the data member to the appropriate location in the binary blob using the tensor infos
  18129. if (!params.no_alloc) {
  18130. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18131. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18132. }
  18133. }
  18134. if (!ok) {
  18135. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18136. fclose(file);
  18137. ggml_free(ctx_data);
  18138. gguf_free(ctx);
  18139. return NULL;
  18140. }
  18141. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18142. }
  18143. fclose(file);
  18144. return ctx;
  18145. }
  18146. void gguf_free(struct gguf_context * ctx) {
  18147. if (ctx == NULL) {
  18148. return;
  18149. }
  18150. if (ctx->kv) {
  18151. // free string memory - not great..
  18152. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18153. gguf_free_kv(&ctx->kv[i]);
  18154. }
  18155. GGML_FREE(ctx->kv);
  18156. }
  18157. if (ctx->infos) {
  18158. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18159. struct gguf_tensor_info * info = &ctx->infos[i];
  18160. if (info->name.data) {
  18161. GGML_FREE(info->name.data);
  18162. }
  18163. }
  18164. GGML_FREE(ctx->infos);
  18165. }
  18166. GGML_FREE(ctx);
  18167. }
  18168. const char * gguf_type_name(enum gguf_type type) {
  18169. return GGUF_TYPE_NAME[type];
  18170. }
  18171. int gguf_get_version(const struct gguf_context * ctx) {
  18172. return ctx->header.version;
  18173. }
  18174. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18175. return ctx->alignment;
  18176. }
  18177. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18178. return ctx->offset;
  18179. }
  18180. void * gguf_get_data(const struct gguf_context * ctx) {
  18181. return ctx->data;
  18182. }
  18183. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18184. return ctx->header.n_kv;
  18185. }
  18186. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18187. // return -1 if key not found
  18188. int keyfound = -1;
  18189. const int n_kv = gguf_get_n_kv(ctx);
  18190. for (int i = 0; i < n_kv; ++i) {
  18191. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18192. keyfound = i;
  18193. break;
  18194. }
  18195. }
  18196. return keyfound;
  18197. }
  18198. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18199. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18200. return ctx->kv[key_id].key.data;
  18201. }
  18202. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18203. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18204. return ctx->kv[key_id].type;
  18205. }
  18206. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18207. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18208. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18209. return ctx->kv[key_id].value.arr.type;
  18210. }
  18211. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18212. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18213. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18214. return ctx->kv[key_id].value.arr.data;
  18215. }
  18216. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18217. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18218. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18219. struct gguf_kv * kv = &ctx->kv[key_id];
  18220. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18221. return str->data;
  18222. }
  18223. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18224. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18225. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18226. return ctx->kv[key_id].value.arr.n;
  18227. }
  18228. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18229. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18230. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18231. return ctx->kv[key_id].value.uint8;
  18232. }
  18233. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18234. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18235. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18236. return ctx->kv[key_id].value.int8;
  18237. }
  18238. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18241. return ctx->kv[key_id].value.uint16;
  18242. }
  18243. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18246. return ctx->kv[key_id].value.int16;
  18247. }
  18248. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18251. return ctx->kv[key_id].value.uint32;
  18252. }
  18253. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18256. return ctx->kv[key_id].value.int32;
  18257. }
  18258. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18261. return ctx->kv[key_id].value.float32;
  18262. }
  18263. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18266. return ctx->kv[key_id].value.uint64;
  18267. }
  18268. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18271. return ctx->kv[key_id].value.int64;
  18272. }
  18273. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18276. return ctx->kv[key_id].value.float64;
  18277. }
  18278. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18281. return ctx->kv[key_id].value.bool_;
  18282. }
  18283. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18286. return ctx->kv[key_id].value.str.data;
  18287. }
  18288. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18290. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18291. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18292. return &ctx->kv[key_id].value;
  18293. }
  18294. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18295. return ctx->header.n_tensors;
  18296. }
  18297. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18298. // return -1 if tensor not found
  18299. int tensorfound = -1;
  18300. const int n_tensors = gguf_get_n_tensors(ctx);
  18301. for (int i = 0; i < n_tensors; ++i) {
  18302. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18303. tensorfound = i;
  18304. break;
  18305. }
  18306. }
  18307. return tensorfound;
  18308. }
  18309. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18310. return ctx->infos[i].offset;
  18311. }
  18312. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18313. return ctx->infos[i].name.data;
  18314. }
  18315. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18316. return ctx->infos[i].type;
  18317. }
  18318. // returns the index
  18319. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18320. const int idx = gguf_find_key(ctx, key);
  18321. if (idx >= 0) {
  18322. return idx;
  18323. }
  18324. const int n_kv = gguf_get_n_kv(ctx);
  18325. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18326. ctx->kv[n_kv].key.n = strlen(key);
  18327. ctx->kv[n_kv].key.data = strdup(key);
  18328. ctx->header.n_kv++;
  18329. return n_kv;
  18330. }
  18331. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18332. const int idx = gguf_find_key(ctx, key);
  18333. if (idx >= 0) {
  18334. const int n_kv = gguf_get_n_kv(ctx);
  18335. gguf_free_kv(&ctx->kv[idx]);
  18336. for (int i = idx; i < n_kv-1; ++i) {
  18337. ctx->kv[i] = ctx->kv[i+1];
  18338. }
  18339. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18340. ctx->header.n_kv--;
  18341. }
  18342. }
  18343. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18344. const int idx = gguf_get_or_add_key(ctx, key);
  18345. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18346. ctx->kv[idx].value.uint8 = val;
  18347. }
  18348. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18349. const int idx = gguf_get_or_add_key(ctx, key);
  18350. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18351. ctx->kv[idx].value.int8 = val;
  18352. }
  18353. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18354. const int idx = gguf_get_or_add_key(ctx, key);
  18355. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18356. ctx->kv[idx].value.uint16 = val;
  18357. }
  18358. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18359. const int idx = gguf_get_or_add_key(ctx, key);
  18360. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18361. ctx->kv[idx].value.int16 = val;
  18362. }
  18363. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18364. const int idx = gguf_get_or_add_key(ctx, key);
  18365. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18366. ctx->kv[idx].value.uint32 = val;
  18367. }
  18368. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18369. const int idx = gguf_get_or_add_key(ctx, key);
  18370. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18371. ctx->kv[idx].value.int32 = val;
  18372. }
  18373. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18374. const int idx = gguf_get_or_add_key(ctx, key);
  18375. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18376. ctx->kv[idx].value.float32 = val;
  18377. }
  18378. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18379. const int idx = gguf_get_or_add_key(ctx, key);
  18380. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18381. ctx->kv[idx].value.uint64 = val;
  18382. }
  18383. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18384. const int idx = gguf_get_or_add_key(ctx, key);
  18385. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18386. ctx->kv[idx].value.int64 = val;
  18387. }
  18388. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18389. const int idx = gguf_get_or_add_key(ctx, key);
  18390. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18391. ctx->kv[idx].value.float64 = val;
  18392. }
  18393. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18394. const int idx = gguf_get_or_add_key(ctx, key);
  18395. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18396. ctx->kv[idx].value.bool_ = val;
  18397. }
  18398. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18399. const int idx = gguf_get_or_add_key(ctx, key);
  18400. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18401. ctx->kv[idx].value.str.n = strlen(val);
  18402. ctx->kv[idx].value.str.data = strdup(val);
  18403. }
  18404. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18405. const int idx = gguf_get_or_add_key(ctx, key);
  18406. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18407. ctx->kv[idx].value.arr.type = type;
  18408. ctx->kv[idx].value.arr.n = n;
  18409. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18410. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18411. }
  18412. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18413. const int idx = gguf_get_or_add_key(ctx, key);
  18414. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18415. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18416. ctx->kv[idx].value.arr.n = n;
  18417. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18418. for (int i = 0; i < n; i++) {
  18419. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18420. str->n = strlen(data[i]);
  18421. str->data = strdup(data[i]);
  18422. }
  18423. }
  18424. // set or add KV pairs from another context
  18425. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18426. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18427. switch (src->kv[i].type) {
  18428. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18429. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18430. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18431. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18432. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18433. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18434. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18435. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18436. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18437. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18438. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18439. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18440. case GGUF_TYPE_ARRAY:
  18441. {
  18442. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18443. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18444. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18445. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18446. }
  18447. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18448. GGML_FREE((void *)data);
  18449. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18450. GGML_ASSERT(false && "nested arrays not supported");
  18451. } else {
  18452. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18453. }
  18454. } break;
  18455. default: GGML_ASSERT(false && "invalid type"); break;
  18456. }
  18457. }
  18458. }
  18459. void gguf_add_tensor(
  18460. struct gguf_context * ctx,
  18461. const struct ggml_tensor * tensor) {
  18462. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18463. GGML_ASSERT(false && "duplicated tensor name");
  18464. }
  18465. const int idx = ctx->header.n_tensors;
  18466. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18467. ctx->infos[idx].name.n = strlen(tensor->name);
  18468. ctx->infos[idx].name.data = strdup(tensor->name);
  18469. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18470. ctx->infos[idx].ne[i] = 1;
  18471. }
  18472. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18473. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18474. ctx->infos[idx].ne[i] = tensor->ne[i];
  18475. }
  18476. ctx->infos[idx].type = tensor->type;
  18477. ctx->infos[idx].offset = 0;
  18478. ctx->infos[idx].data = tensor->data;
  18479. ctx->infos[idx].size = ggml_nbytes(tensor);
  18480. if (ctx->header.n_tensors > 0) {
  18481. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18482. }
  18483. ctx->header.n_tensors++;
  18484. }
  18485. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18486. const int idx = gguf_find_tensor(ctx, name);
  18487. if (idx < 0) {
  18488. GGML_ASSERT(false && "tensor not found");
  18489. }
  18490. ctx->infos[idx].type = type;
  18491. }
  18492. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18493. const int idx = gguf_find_tensor(ctx, name);
  18494. if (idx < 0) {
  18495. GGML_ASSERT(false && "tensor not found");
  18496. }
  18497. ctx->infos[idx].data = data;
  18498. ctx->infos[idx].size = size;
  18499. // update offsets
  18500. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18501. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18502. }
  18503. }
  18504. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18505. // fwrite(&val->n, sizeof(val->n), 1, file);
  18506. // fwrite(val->data, sizeof(char), val->n, file);
  18507. //}
  18508. //
  18509. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18510. // fwrite(val, sizeof(char), size, file);
  18511. //}
  18512. struct gguf_buf {
  18513. void * data;
  18514. size_t size;
  18515. size_t offset;
  18516. };
  18517. static struct gguf_buf gguf_buf_init(size_t size) {
  18518. struct gguf_buf buf = {
  18519. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18520. /*buf.size =*/ size,
  18521. /*buf.offset =*/ 0,
  18522. };
  18523. return buf;
  18524. }
  18525. static void gguf_buf_free(struct gguf_buf buf) {
  18526. if (buf.data) {
  18527. GGML_FREE(buf.data);
  18528. }
  18529. }
  18530. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18531. if (buf->offset + size > buf->size) {
  18532. buf->size = 1.5*(buf->offset + size);
  18533. if (buf->data) {
  18534. buf->data = realloc(buf->data, buf->size);
  18535. }
  18536. }
  18537. }
  18538. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18539. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18540. if (buf->data) {
  18541. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18542. }
  18543. buf->offset += sizeof(val->n);
  18544. if (buf->data) {
  18545. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18546. }
  18547. buf->offset += val->n;
  18548. }
  18549. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18550. gguf_buf_grow(buf, el_size);
  18551. if (buf->data) {
  18552. memcpy((char *) buf->data + buf->offset, val, el_size);
  18553. }
  18554. buf->offset += el_size;
  18555. }
  18556. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18557. // write header
  18558. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18559. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18560. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18561. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18562. // write key-value pairs
  18563. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18564. struct gguf_kv * kv = &ctx->kv[i];
  18565. gguf_bwrite_str(buf, &kv->key);
  18566. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18567. switch (kv->type) {
  18568. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18569. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18570. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18571. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18572. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18573. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18574. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18575. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18576. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18577. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18578. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18579. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18580. case GGUF_TYPE_ARRAY:
  18581. {
  18582. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18583. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18584. switch (kv->value.arr.type) {
  18585. case GGUF_TYPE_UINT8:
  18586. case GGUF_TYPE_INT8:
  18587. case GGUF_TYPE_UINT16:
  18588. case GGUF_TYPE_INT16:
  18589. case GGUF_TYPE_UINT32:
  18590. case GGUF_TYPE_INT32:
  18591. case GGUF_TYPE_FLOAT32:
  18592. case GGUF_TYPE_UINT64:
  18593. case GGUF_TYPE_INT64:
  18594. case GGUF_TYPE_FLOAT64:
  18595. case GGUF_TYPE_BOOL:
  18596. {
  18597. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18598. } break;
  18599. case GGUF_TYPE_STRING:
  18600. {
  18601. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18602. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18603. }
  18604. } break;
  18605. case GGUF_TYPE_ARRAY:
  18606. default: GGML_ASSERT(false && "invalid type"); break;
  18607. }
  18608. } break;
  18609. default: GGML_ASSERT(false && "invalid type");
  18610. }
  18611. }
  18612. // write tensor infos
  18613. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18614. struct gguf_tensor_info * info = &ctx->infos[i];
  18615. gguf_bwrite_str(buf, &info->name);
  18616. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18617. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18618. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18619. }
  18620. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18621. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18622. }
  18623. // we require the data section to be aligned, so take into account any padding
  18624. {
  18625. const size_t offset = buf->offset;
  18626. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18627. if (offset_pad != offset) {
  18628. uint8_t pad = 0;
  18629. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18630. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18631. }
  18632. }
  18633. }
  18634. if (only_meta) {
  18635. return;
  18636. }
  18637. size_t offset = 0;
  18638. // write tensor data
  18639. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18640. struct gguf_tensor_info * info = &ctx->infos[i];
  18641. const size_t size = info->size;
  18642. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18643. gguf_bwrite_el(buf, info->data, size);
  18644. if (size_pad != size) {
  18645. uint8_t pad = 0;
  18646. for (size_t j = 0; j < size_pad - size; ++j) {
  18647. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18648. }
  18649. }
  18650. GGML_ASSERT(offset == info->offset);
  18651. offset += size_pad;
  18652. }
  18653. }
  18654. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18655. FILE * file = ggml_fopen(fname, "wb");
  18656. if (!file) {
  18657. GGML_ASSERT(false && "failed to open file for writing");
  18658. }
  18659. struct gguf_buf buf = gguf_buf_init(16*1024);
  18660. gguf_write_to_buf(ctx, &buf, only_meta);
  18661. fwrite(buf.data, 1, buf.offset, file);
  18662. gguf_buf_free(buf);
  18663. fclose(file);
  18664. }
  18665. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18666. // no allocs - only compute size
  18667. struct gguf_buf buf = gguf_buf_init(0);
  18668. gguf_write_to_buf(ctx, &buf, true);
  18669. return buf.offset;
  18670. }
  18671. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18672. struct gguf_buf buf = gguf_buf_init(16*1024);
  18673. gguf_write_to_buf(ctx, &buf, true);
  18674. memcpy(data, buf.data, buf.offset);
  18675. gguf_buf_free(buf);
  18676. }
  18677. ////////////////////////////////////////////////////////////////////////////////
  18678. int ggml_cpu_has_avx(void) {
  18679. #if defined(__AVX__)
  18680. return 1;
  18681. #else
  18682. return 0;
  18683. #endif
  18684. }
  18685. int ggml_cpu_has_avx_vnni(void) {
  18686. #if defined(__AVXVNNI__)
  18687. return 1;
  18688. #else
  18689. return 0;
  18690. #endif
  18691. }
  18692. int ggml_cpu_has_avx2(void) {
  18693. #if defined(__AVX2__)
  18694. return 1;
  18695. #else
  18696. return 0;
  18697. #endif
  18698. }
  18699. int ggml_cpu_has_avx512(void) {
  18700. #if defined(__AVX512F__)
  18701. return 1;
  18702. #else
  18703. return 0;
  18704. #endif
  18705. }
  18706. int ggml_cpu_has_avx512_vbmi(void) {
  18707. #if defined(__AVX512VBMI__)
  18708. return 1;
  18709. #else
  18710. return 0;
  18711. #endif
  18712. }
  18713. int ggml_cpu_has_avx512_vnni(void) {
  18714. #if defined(__AVX512VNNI__)
  18715. return 1;
  18716. #else
  18717. return 0;
  18718. #endif
  18719. }
  18720. int ggml_cpu_has_avx512_bf16(void) {
  18721. #if defined(__AVX512BF16__)
  18722. return 1;
  18723. #else
  18724. return 0;
  18725. #endif
  18726. }
  18727. int ggml_cpu_has_fma(void) {
  18728. #if defined(__FMA__)
  18729. return 1;
  18730. #else
  18731. return 0;
  18732. #endif
  18733. }
  18734. int ggml_cpu_has_neon(void) {
  18735. #if defined(__ARM_NEON)
  18736. return 1;
  18737. #else
  18738. return 0;
  18739. #endif
  18740. }
  18741. int ggml_cpu_has_sve(void) {
  18742. #if defined(__ARM_FEATURE_SVE)
  18743. // TODO: Currently, SVE 256 bit is only supported.
  18744. GGML_ASSERT(svcntb() == QK8_0);
  18745. return 1;
  18746. #else
  18747. return 0;
  18748. #endif
  18749. }
  18750. int ggml_cpu_has_arm_fma(void) {
  18751. #if defined(__ARM_FEATURE_FMA)
  18752. return 1;
  18753. #else
  18754. return 0;
  18755. #endif
  18756. }
  18757. int ggml_cpu_has_metal(void) {
  18758. #if defined(GGML_USE_METAL)
  18759. return 1;
  18760. #else
  18761. return 0;
  18762. #endif
  18763. }
  18764. int ggml_cpu_has_f16c(void) {
  18765. #if defined(__F16C__)
  18766. return 1;
  18767. #else
  18768. return 0;
  18769. #endif
  18770. }
  18771. int ggml_cpu_has_fp16_va(void) {
  18772. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18773. return 1;
  18774. #else
  18775. return 0;
  18776. #endif
  18777. }
  18778. int ggml_cpu_has_wasm_simd(void) {
  18779. #if defined(__wasm_simd128__)
  18780. return 1;
  18781. #else
  18782. return 0;
  18783. #endif
  18784. }
  18785. int ggml_cpu_has_blas(void) {
  18786. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18787. return 1;
  18788. #else
  18789. return 0;
  18790. #endif
  18791. }
  18792. int ggml_cpu_has_cuda(void) {
  18793. #if defined(GGML_USE_CUDA)
  18794. return 1;
  18795. #else
  18796. return 0;
  18797. #endif
  18798. }
  18799. int ggml_cpu_has_clblast(void) {
  18800. #if defined(GGML_USE_CLBLAST)
  18801. return 1;
  18802. #else
  18803. return 0;
  18804. #endif
  18805. }
  18806. int ggml_cpu_has_vulkan(void) {
  18807. #if defined(GGML_USE_VULKAN)
  18808. return 1;
  18809. #else
  18810. return 0;
  18811. #endif
  18812. }
  18813. int ggml_cpu_has_kompute(void) {
  18814. #if defined(GGML_USE_KOMPUTE)
  18815. return 1;
  18816. #else
  18817. return 0;
  18818. #endif
  18819. }
  18820. int ggml_cpu_has_sycl(void) {
  18821. #if defined(GGML_USE_SYCL)
  18822. return 1;
  18823. #else
  18824. return 0;
  18825. #endif
  18826. }
  18827. int ggml_cpu_has_gpublas(void) {
  18828. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18829. ggml_cpu_has_sycl();
  18830. }
  18831. int ggml_cpu_has_sse3(void) {
  18832. #if defined(__SSE3__)
  18833. return 1;
  18834. #else
  18835. return 0;
  18836. #endif
  18837. }
  18838. int ggml_cpu_has_ssse3(void) {
  18839. #if defined(__SSSE3__)
  18840. return 1;
  18841. #else
  18842. return 0;
  18843. #endif
  18844. }
  18845. int ggml_cpu_has_vsx(void) {
  18846. #if defined(__POWER9_VECTOR__)
  18847. return 1;
  18848. #else
  18849. return 0;
  18850. #endif
  18851. }
  18852. int ggml_cpu_has_matmul_int8(void) {
  18853. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18854. return 1;
  18855. #else
  18856. return 0;
  18857. #endif
  18858. }
  18859. ////////////////////////////////////////////////////////////////////////////////