ggml-metal.m 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #import <MetalPerformanceShaders/MetalPerformanceShaders.h>
  6. #ifdef GGML_METAL_NDEBUG
  7. #define metal_printf(...)
  8. #else
  9. #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
  10. #endif
  11. #define UNUSED(x) (void)(x)
  12. struct ggml_metal_buffer {
  13. const char * name;
  14. void * data;
  15. size_t size;
  16. id<MTLBuffer> metal;
  17. };
  18. struct ggml_metal_context {
  19. float * logits;
  20. id<MTLDevice> device;
  21. id<MTLCommandQueue> queue;
  22. id<MTLLibrary> library;
  23. int n_buffers;
  24. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  25. // custom kernels
  26. #define GGML_METAL_DECL_KERNEL(name) \
  27. id<MTLFunction> function_##name; \
  28. id<MTLComputePipelineState> pipeline_##name
  29. GGML_METAL_DECL_KERNEL(add);
  30. GGML_METAL_DECL_KERNEL(mul);
  31. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  32. GGML_METAL_DECL_KERNEL(scale);
  33. GGML_METAL_DECL_KERNEL(silu);
  34. GGML_METAL_DECL_KERNEL(relu);
  35. GGML_METAL_DECL_KERNEL(soft_max);
  36. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  37. GGML_METAL_DECL_KERNEL(get_rows_f16);
  38. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  39. GGML_METAL_DECL_KERNEL(get_rows_q2_k);
  40. GGML_METAL_DECL_KERNEL(get_rows_q4_k);
  41. GGML_METAL_DECL_KERNEL(get_rows_q6_k);
  42. GGML_METAL_DECL_KERNEL(rms_norm);
  43. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  44. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  45. GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
  46. GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
  47. GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
  48. GGML_METAL_DECL_KERNEL(rope);
  49. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  50. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  51. #undef GGML_METAL_DECL_KERNEL
  52. };
  53. // MSL code
  54. // TODO: move the contents here when ready
  55. // for now it is easier to work in a separate file
  56. static NSString * const msl_library_source = @"see metal.metal";
  57. struct ggml_metal_context * ggml_metal_init(void) {
  58. fprintf(stderr, "%s: allocating\n", __func__);
  59. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  60. ctx->device = MTLCreateSystemDefaultDevice();
  61. ctx->queue = [ctx->device newCommandQueue];
  62. // determine if we can use MPS
  63. if (MPSSupportsMTLDevice(ctx->device)) {
  64. fprintf(stderr, "%s: using MPS\n", __func__);
  65. } else {
  66. fprintf(stderr, "%s: not using MPS\n", __func__);
  67. GGML_ASSERT(false && "MPS not supported");
  68. }
  69. #if 0
  70. // compile from source string and show compile log
  71. {
  72. NSError * error = nil;
  73. ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
  74. if (error) {
  75. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  76. exit(1);
  77. }
  78. }
  79. #else
  80. UNUSED(msl_library_source);
  81. // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
  82. {
  83. NSError * error = nil;
  84. //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
  85. NSString * path = [[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];
  86. fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
  87. NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
  88. if (error) {
  89. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  90. exit(1);
  91. }
  92. ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
  93. if (error) {
  94. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  95. exit(1);
  96. }
  97. }
  98. #endif
  99. // load kernels
  100. {
  101. #define GGML_METAL_ADD_KERNEL(name) \
  102. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  103. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
  104. fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
  105. GGML_METAL_ADD_KERNEL(add);
  106. GGML_METAL_ADD_KERNEL(mul);
  107. GGML_METAL_ADD_KERNEL(mul_row);
  108. GGML_METAL_ADD_KERNEL(scale);
  109. GGML_METAL_ADD_KERNEL(silu);
  110. GGML_METAL_ADD_KERNEL(relu);
  111. GGML_METAL_ADD_KERNEL(soft_max);
  112. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  113. GGML_METAL_ADD_KERNEL(get_rows_f16);
  114. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  115. GGML_METAL_ADD_KERNEL(get_rows_q2_k);
  116. GGML_METAL_ADD_KERNEL(get_rows_q4_k);
  117. GGML_METAL_ADD_KERNEL(get_rows_q6_k);
  118. GGML_METAL_ADD_KERNEL(rms_norm);
  119. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  120. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  121. GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
  122. GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
  123. GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
  124. GGML_METAL_ADD_KERNEL(rope);
  125. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  126. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  127. #undef GGML_METAL_ADD_KERNEL
  128. }
  129. return ctx;
  130. }
  131. void ggml_metal_free(struct ggml_metal_context * ctx) {
  132. fprintf(stderr, "%s: deallocating\n", __func__);
  133. free(ctx);
  134. }
  135. // finds the Metal buffer that contains the tensor data on the GPU device
  136. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  137. // Metal buffer based on the host memory pointer
  138. //
  139. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  140. //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  141. for (int i = 0; i < ctx->n_buffers; ++i) {
  142. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  143. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  144. *offs = (size_t) ioffs;
  145. //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  146. return ctx->buffers[i].metal;
  147. }
  148. }
  149. fprintf(stderr, "%s: error: buffer is nil\n", __func__);
  150. return nil;
  151. }
  152. bool ggml_metal_add_buffer(
  153. struct ggml_metal_context * ctx,
  154. const char * name,
  155. void * data,
  156. size_t size) {
  157. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  158. fprintf(stderr, "%s: too many buffers\n", __func__);
  159. return false;
  160. }
  161. if (data) {
  162. // verify that the buffer does not overlap with any of the existing buffers
  163. for (int i = 0; i < ctx->n_buffers; ++i) {
  164. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  165. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  166. fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  167. return false;
  168. }
  169. }
  170. size_t page_size = getpagesize();
  171. size_t aligned_size = size;
  172. if ((aligned_size % page_size) != 0) {
  173. aligned_size += (page_size - (aligned_size % page_size));
  174. }
  175. ctx->buffers[ctx->n_buffers].name = name;
  176. ctx->buffers[ctx->n_buffers].data = data;
  177. ctx->buffers[ctx->n_buffers].size = size;
  178. if (ctx->device.maxBufferLength < aligned_size) {
  179. fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
  180. return false;
  181. }
  182. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
  183. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  184. fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  185. return false;
  186. } else {
  187. fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  188. }
  189. ++ctx->n_buffers;
  190. }
  191. return true;
  192. }
  193. void ggml_metal_set_tensor(
  194. struct ggml_metal_context * ctx,
  195. struct ggml_tensor * t) {
  196. metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
  197. size_t offs;
  198. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  199. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  200. }
  201. void ggml_metal_get_tensor(
  202. struct ggml_metal_context * ctx,
  203. struct ggml_tensor * t) {
  204. metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
  205. size_t offs;
  206. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  207. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  208. }
  209. void ggml_metal_graph_compute(
  210. struct ggml_metal_context * ctx,
  211. struct ggml_cgraph * gf) {
  212. metal_printf("%s: evaluating graph\n", __func__);
  213. size_t offs_src0 = 0;
  214. size_t offs_src1 = 0;
  215. size_t offs_dst = 0;
  216. id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
  217. id<MTLComputeCommandEncoder> encoder = nil;
  218. for (int i = 0; i < gf->n_nodes; ++i) {
  219. //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  220. struct ggml_tensor * src0 = gf->nodes[i]->src0;
  221. struct ggml_tensor * src1 = gf->nodes[i]->src1;
  222. struct ggml_tensor * dst = gf->nodes[i];
  223. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  224. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  225. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  226. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  227. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  228. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  229. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  230. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  231. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  232. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  233. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  234. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  235. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  236. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  237. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  238. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  239. const int64_t ne0 = dst ? dst->ne[0] : 0;
  240. const int64_t ne1 = dst ? dst->ne[1] : 0;
  241. const int64_t ne2 = dst ? dst->ne[2] : 0;
  242. const int64_t ne3 = dst ? dst->ne[3] : 0;
  243. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  244. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  245. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  246. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  247. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  248. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  249. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  250. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  251. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  252. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  253. //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  254. //if (src0) {
  255. // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  256. // ggml_is_contiguous(src0), src0->name);
  257. //}
  258. //if (src1) {
  259. // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  260. // ggml_is_contiguous(src1), src1->name);
  261. //}
  262. //if (dst) {
  263. // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  264. // dst->name);
  265. //}
  266. switch (dst->op) {
  267. case GGML_OP_RESHAPE:
  268. case GGML_OP_VIEW:
  269. case GGML_OP_TRANSPOSE:
  270. case GGML_OP_PERMUTE:
  271. {
  272. // noop
  273. } break;
  274. case GGML_OP_ADD:
  275. {
  276. if (encoder == nil) {
  277. encoder = [command_buffer computeCommandEncoder];
  278. }
  279. [encoder setComputePipelineState:ctx->pipeline_add];
  280. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  281. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  282. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  283. const int64_t n = ggml_nelements(dst);
  284. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  285. } break;
  286. case GGML_OP_MUL:
  287. {
  288. if (encoder == nil) {
  289. encoder = [command_buffer computeCommandEncoder];
  290. }
  291. if (ggml_nelements(src1) == ne10) {
  292. // src1 is a row
  293. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  294. } else {
  295. [encoder setComputePipelineState:ctx->pipeline_mul];
  296. }
  297. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  298. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  299. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  300. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  301. const int64_t n = ggml_nelements(dst);
  302. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  303. } break;
  304. case GGML_OP_SCALE:
  305. {
  306. if (encoder == nil) {
  307. encoder = [command_buffer computeCommandEncoder];
  308. }
  309. const float scale = *(const float *) src1->data;
  310. [encoder setComputePipelineState:ctx->pipeline_scale];
  311. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  312. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  313. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  314. const int64_t n = ggml_nelements(dst);
  315. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  316. } break;
  317. case GGML_OP_SILU:
  318. {
  319. if (encoder == nil) {
  320. encoder = [command_buffer computeCommandEncoder];
  321. }
  322. [encoder setComputePipelineState:ctx->pipeline_silu];
  323. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  324. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  325. const int64_t n = ggml_nelements(dst);
  326. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  327. } break;
  328. case GGML_OP_RELU:
  329. {
  330. if (encoder == nil) {
  331. encoder = [command_buffer computeCommandEncoder];
  332. }
  333. [encoder setComputePipelineState:ctx->pipeline_relu];
  334. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  335. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  336. const int64_t n = ggml_nelements(dst);
  337. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  338. } break;
  339. case GGML_OP_SOFT_MAX:
  340. {
  341. if (encoder == nil) {
  342. encoder = [command_buffer computeCommandEncoder];
  343. }
  344. const int nth = 32;
  345. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  346. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  347. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  348. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  349. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  350. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  351. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  352. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  353. } break;
  354. case GGML_OP_DIAG_MASK_INF:
  355. {
  356. if (encoder == nil) {
  357. encoder = [command_buffer computeCommandEncoder];
  358. }
  359. const int n_past = ((int32_t *)(src1->data))[0];
  360. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  361. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  362. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  363. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  364. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  365. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  366. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  367. } break;
  368. case GGML_OP_MUL_MAT:
  369. {
  370. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  371. GGML_ASSERT(ne00 == ne10);
  372. GGML_ASSERT(ne02 == ne12);
  373. if (ggml_is_contiguous(src0) &&
  374. ggml_is_contiguous(src1) &&
  375. (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
  376. if (encoder != nil) {
  377. [encoder endEncoding];
  378. encoder = nil;
  379. }
  380. MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  381. MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  382. // for F32 x F32 we use MPS
  383. MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
  384. matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
  385. MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
  386. matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
  387. MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
  388. matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
  389. MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
  390. initWithDevice:ctx->device transposeLeft:false transposeRight:true
  391. resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
  392. // we need to do ne02 multiplications
  393. // TODO: is there a way to do this in parallel - currently very slow ..
  394. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
  395. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  396. size_t offs_src0_cur = offs_src0 + i02*nb02;
  397. size_t offs_src1_cur = offs_src1 + i02*nb12;
  398. size_t offs_dst_cur = offs_dst + i02*nb2;
  399. MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
  400. MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
  401. MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
  402. [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
  403. }
  404. } else {
  405. if (encoder == nil) {
  406. encoder = [command_buffer computeCommandEncoder];
  407. }
  408. int nth0 = 32;
  409. int nth1 = 1;
  410. // use custom matrix x vector kernel
  411. switch (src0t) {
  412. case GGML_TYPE_F16:
  413. {
  414. GGML_ASSERT(ne02 == ne12);
  415. nth0 = 64;
  416. nth1 = 1;
  417. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  418. } break;
  419. case GGML_TYPE_Q4_0:
  420. {
  421. GGML_ASSERT(ne02 == 1);
  422. GGML_ASSERT(ne12 == 1);
  423. nth0 = 8;
  424. nth1 = 4;
  425. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  426. } break;
  427. case GGML_TYPE_Q2_K:
  428. {
  429. GGML_ASSERT(ne02 == 1);
  430. GGML_ASSERT(ne12 == 1);
  431. nth0 = 4;
  432. nth1 = 16;
  433. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
  434. } break;
  435. case GGML_TYPE_Q4_K:
  436. {
  437. GGML_ASSERT(ne02 == 1);
  438. GGML_ASSERT(ne12 == 1);
  439. nth0 = 4;
  440. nth1 = 16;
  441. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
  442. } break;
  443. case GGML_TYPE_Q6_K:
  444. {
  445. GGML_ASSERT(ne02 == 1);
  446. GGML_ASSERT(ne12 == 1);
  447. nth0 = 4;
  448. nth1 = 16;
  449. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
  450. } break;
  451. default:
  452. {
  453. fprintf(stderr, "Asserting on type %d\n",(int)src0t);
  454. GGML_ASSERT(false && "not implemented");
  455. }
  456. };
  457. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  458. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  459. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  460. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  461. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  462. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
  463. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
  464. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
  465. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
  466. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
  467. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
  468. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
  469. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
  470. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
  471. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
  472. if (src0t == GGML_TYPE_Q4_0) {
  473. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  474. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  475. } else if (src0t == GGML_TYPE_Q2_K) {
  476. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  477. [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  478. } else if (src0t == GGML_TYPE_Q4_K) {
  479. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  480. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  481. } else if (src0t == GGML_TYPE_Q6_K) {
  482. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  483. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  484. } else {
  485. [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
  486. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  487. }
  488. }
  489. } break;
  490. case GGML_OP_GET_ROWS:
  491. {
  492. if (encoder == nil) {
  493. encoder = [command_buffer computeCommandEncoder];
  494. }
  495. switch (src0->type) {
  496. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  497. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  498. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
  499. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
  500. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
  501. default: GGML_ASSERT(false && "not implemented");
  502. }
  503. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  504. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  505. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  506. [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
  507. [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
  508. [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
  509. const int64_t n = ggml_nelements(src1);
  510. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  511. } break;
  512. case GGML_OP_RMS_NORM:
  513. {
  514. if (encoder == nil) {
  515. encoder = [command_buffer computeCommandEncoder];
  516. }
  517. const float eps = 1e-6f;
  518. const int nth = 256;
  519. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  520. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  521. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  522. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  523. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  524. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  525. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  526. const int64_t nrows = ggml_nrows(src0);
  527. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  528. } break;
  529. case GGML_OP_ROPE:
  530. {
  531. if (encoder == nil) {
  532. encoder = [command_buffer computeCommandEncoder];
  533. }
  534. const int n_dims = ((int32_t *) src1->data)[1];
  535. const int mode = ((int32_t *) src1->data)[2];
  536. const int n_past = ((int32_t *)(src1->data))[0];
  537. [encoder setComputePipelineState:ctx->pipeline_rope];
  538. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  539. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  540. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  541. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  542. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  543. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  544. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  545. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  546. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  547. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  548. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  549. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  550. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  551. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  552. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  553. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  554. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  555. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  556. [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
  557. [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
  558. [encoder setBytes:&mode length:sizeof( int) atIndex:20];
  559. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  560. } break;
  561. case GGML_OP_CPY:
  562. {
  563. if (encoder == nil) {
  564. encoder = [command_buffer computeCommandEncoder];
  565. }
  566. const int nth = 32;
  567. switch (src0t) {
  568. case GGML_TYPE_F32:
  569. {
  570. switch (dstt) {
  571. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  572. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  573. default: GGML_ASSERT(false && "not implemented");
  574. };
  575. } break;
  576. default: GGML_ASSERT(false && "not implemented");
  577. }
  578. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  579. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  580. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  581. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  582. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  583. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  584. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  585. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  586. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  587. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  588. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  589. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  590. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  591. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  592. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  593. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  594. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  595. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  596. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  597. } break;
  598. default:
  599. fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  600. GGML_ASSERT(false);
  601. }
  602. }
  603. if (encoder != nil) {
  604. [encoder endEncoding];
  605. encoder = nil;
  606. }
  607. [command_buffer commit];
  608. [command_buffer waitUntilCompleted];
  609. {
  610. const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
  611. UNUSED(time_elapsed);
  612. metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
  613. }
  614. }