utils.h 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. int32_t repeat_last_n = 64; // last n tokens to penalize
  16. int32_t n_ctx = 512; //context size
  17. bool memory_f16 = false; // use f16 instead of f32 for memory kv
  18. // sampling parameters
  19. int32_t top_k = 40;
  20. float top_p = 0.95f;
  21. float temp = 0.80f;
  22. float repeat_penalty = 1.30f;
  23. int32_t n_batch = 8; // batch size for prompt processing
  24. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  25. std::string prompt = "";
  26. std::string antiprompt = ""; // string upon seeing which more user input is prompted
  27. bool random_prompt = false;
  28. bool use_color = false; // use color to distinguish generations and inputs
  29. bool interactive = false; // interactive mode
  30. bool instruct = false; // instruction mode (used for Alpaca models)
  31. bool ignore_eos = false; // do not stop generating after eos
  32. };
  33. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  34. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  35. std::string gpt_random_prompt(std::mt19937 & rng);
  36. //
  37. // Vocab utils
  38. //
  39. struct gpt_vocab {
  40. using id = int32_t;
  41. using token = std::string;
  42. std::map<token, id> token_to_id;
  43. std::map<id, token> id_to_token;
  44. };
  45. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  46. // poor-man's JSON parsing
  47. std::map<std::string, int32_t> json_parse(const std::string & fname);
  48. // split text into tokens
  49. //
  50. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  51. //
  52. // Regex (Python):
  53. // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
  54. //
  55. // Regex (C++):
  56. // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
  57. //
  58. std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
  59. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  60. // ref: https://github.com/google/sentencepiece
  61. std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
  62. // load the tokens from encoder.json
  63. bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
  64. // sample next token given probabilities for each embedding
  65. //
  66. // - consider only the top K tokens
  67. // - from them, consider only the top tokens with cumulative probability > P
  68. //
  69. gpt_vocab::id llama_sample_top_p_top_k(
  70. const gpt_vocab & vocab,
  71. const float * logits,
  72. std::vector<gpt_vocab::id> & last_n_tokens,
  73. double repeat_penalty,
  74. int top_k,
  75. double top_p,
  76. double temp,
  77. std::mt19937 & rng);
  78. // filer to top K tokens from list of logits
  79. void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
  80. //
  81. // Quantization
  82. //
  83. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  84. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);