ggml.c 632 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml-impl.h"
  3. #include "ggml-quants.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. #include <stdarg.h>
  21. #include <signal.h>
  22. #ifdef GGML_USE_METAL
  23. #include <unistd.h>
  24. #endif
  25. #if defined(_MSC_VER)
  26. // disable "possible loss of data" to avoid hundreds of casts
  27. // we should just be careful :)
  28. #pragma warning(disable: 4244 4267)
  29. // disable POSIX deprecation warnigns
  30. // these functions are never going away, anyway
  31. #pragma warning(disable: 4996)
  32. #endif
  33. #if defined(_WIN32)
  34. #include <windows.h>
  35. typedef volatile LONG atomic_int;
  36. typedef atomic_int atomic_bool;
  37. static void atomic_store(atomic_int * ptr, LONG val) {
  38. InterlockedExchange(ptr, val);
  39. }
  40. static LONG atomic_load(atomic_int * ptr) {
  41. return InterlockedCompareExchange(ptr, 0, 0);
  42. }
  43. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  44. return InterlockedExchangeAdd(ptr, inc);
  45. }
  46. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  47. return atomic_fetch_add(ptr, -(dec));
  48. }
  49. typedef HANDLE pthread_t;
  50. typedef DWORD thread_ret_t;
  51. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  52. (void) unused;
  53. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  54. if (handle == NULL)
  55. {
  56. return EAGAIN;
  57. }
  58. *out = handle;
  59. return 0;
  60. }
  61. static int pthread_join(pthread_t thread, void * unused) {
  62. (void) unused;
  63. int ret = (int) WaitForSingleObject(thread, INFINITE);
  64. CloseHandle(thread);
  65. return ret;
  66. }
  67. static int sched_yield (void) {
  68. Sleep (0);
  69. return 0;
  70. }
  71. #else
  72. #include <pthread.h>
  73. #include <stdatomic.h>
  74. typedef void * thread_ret_t;
  75. #include <sys/types.h>
  76. #include <sys/stat.h>
  77. #include <unistd.h>
  78. #endif
  79. #ifdef GGML_USE_CPU_HBM
  80. #include <hbwmalloc.h>
  81. #endif
  82. /*#define GGML_PERF*/
  83. #define GGML_DEBUG 0
  84. #define GGML_GELU_FP16
  85. #define GGML_GELU_QUICK_FP16
  86. #define GGML_SILU_FP16
  87. // #define GGML_CROSS_ENTROPY_EXP_FP16
  88. // #define GGML_FLASH_ATTN_EXP_FP16
  89. #define GGML_SOFT_MAX_UNROLL 4
  90. #define GGML_VEC_DOT_UNROLL 2
  91. #define GGML_VEC_MAD_UNROLL 32
  92. //
  93. // logging
  94. //
  95. #if (GGML_DEBUG >= 1)
  96. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  97. #else
  98. #define GGML_PRINT_DEBUG(...)
  99. #endif
  100. #if (GGML_DEBUG >= 5)
  101. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  102. #else
  103. #define GGML_PRINT_DEBUG_5(...)
  104. #endif
  105. #if (GGML_DEBUG >= 10)
  106. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  107. #else
  108. #define GGML_PRINT_DEBUG_10(...)
  109. #endif
  110. #define GGML_PRINT(...) printf(__VA_ARGS__)
  111. //
  112. // end of logging block
  113. //
  114. #ifdef GGML_USE_ACCELERATE
  115. // uncomment to use vDSP for soft max computation
  116. // note: not sure if it is actually faster
  117. //#define GGML_SOFT_MAX_ACCELERATE
  118. #endif
  119. #if defined(_MSC_VER) || defined(__MINGW32__)
  120. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  121. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  122. #else
  123. inline static void * ggml_aligned_malloc(size_t size) {
  124. if (size == 0) {
  125. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  126. return NULL;
  127. }
  128. void * aligned_memory = NULL;
  129. #ifdef GGML_USE_CPU_HBM
  130. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  131. #elif GGML_USE_METAL
  132. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  133. #else
  134. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  135. #endif
  136. if (result != 0) {
  137. // Handle allocation failure
  138. const char *error_desc = "unknown allocation error";
  139. switch (result) {
  140. case EINVAL:
  141. error_desc = "invalid alignment value";
  142. break;
  143. case ENOMEM:
  144. error_desc = "insufficient memory";
  145. break;
  146. }
  147. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  148. return NULL;
  149. }
  150. return aligned_memory;
  151. }
  152. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  153. #ifdef GGML_USE_CPU_HBM
  154. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  155. #else
  156. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  157. #endif
  158. #endif
  159. #define UNUSED GGML_UNUSED
  160. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  161. //
  162. // tensor access macros
  163. //
  164. #define GGML_TENSOR_UNARY_OP_LOCALS \
  165. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  166. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  167. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  168. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  169. #define GGML_TENSOR_BINARY_OP_LOCALS \
  170. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  171. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  172. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  173. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  174. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  175. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  176. #if defined(GGML_USE_ACCELERATE)
  177. #include <Accelerate/Accelerate.h>
  178. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  179. #include "ggml-opencl.h"
  180. #endif
  181. #elif defined(GGML_USE_OPENBLAS)
  182. #if defined(GGML_BLAS_USE_MKL)
  183. #include <mkl.h>
  184. #else
  185. #include <cblas.h>
  186. #endif
  187. #elif defined(GGML_USE_CUBLAS)
  188. #include "ggml-cuda.h"
  189. #elif defined(GGML_USE_CLBLAST)
  190. #include "ggml-opencl.h"
  191. #endif
  192. // floating point type used to accumulate sums
  193. typedef double ggml_float;
  194. //
  195. // global data
  196. //
  197. // precomputed gelu table for f16 (128 KB)
  198. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  199. // precomputed quick gelu table for f16 (128 KB)
  200. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  201. // precomputed silu table for f16 (128 KB)
  202. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  203. // precomputed exp table for f16 (128 KB)
  204. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  205. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  206. float ggml_table_f32_f16[1 << 16];
  207. // note: do not use these inside ggml.c
  208. // these are meant to be used via the ggml.h API
  209. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  210. return (float) GGML_FP16_TO_FP32(x);
  211. }
  212. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  213. return GGML_FP32_TO_FP16(x);
  214. }
  215. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  216. for (int i = 0; i < n; i++) {
  217. y[i] = GGML_FP16_TO_FP32(x[i]);
  218. }
  219. }
  220. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  221. int i = 0;
  222. #if defined(__F16C__)
  223. for (; i + 7 < n; i += 8) {
  224. __m256 x_vec = _mm256_loadu_ps(x + i);
  225. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  226. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  227. }
  228. for(; i + 3 < n; i += 4) {
  229. __m128 x_vec = _mm_loadu_ps(x + i);
  230. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  231. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  232. }
  233. #endif
  234. for (; i < n; i++) {
  235. y[i] = GGML_FP32_TO_FP16(x[i]);
  236. }
  237. }
  238. //
  239. // timing
  240. //
  241. #if defined(_MSC_VER) || defined(__MINGW32__)
  242. static int64_t timer_freq, timer_start;
  243. void ggml_time_init(void) {
  244. LARGE_INTEGER t;
  245. QueryPerformanceFrequency(&t);
  246. timer_freq = t.QuadPart;
  247. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  248. // and the uptime is high enough.
  249. // We subtract the program start time to reduce the likelihood of that happening.
  250. QueryPerformanceCounter(&t);
  251. timer_start = t.QuadPart;
  252. }
  253. int64_t ggml_time_ms(void) {
  254. LARGE_INTEGER t;
  255. QueryPerformanceCounter(&t);
  256. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  257. }
  258. int64_t ggml_time_us(void) {
  259. LARGE_INTEGER t;
  260. QueryPerformanceCounter(&t);
  261. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  262. }
  263. #else
  264. void ggml_time_init(void) {}
  265. int64_t ggml_time_ms(void) {
  266. struct timespec ts;
  267. clock_gettime(CLOCK_MONOTONIC, &ts);
  268. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  269. }
  270. int64_t ggml_time_us(void) {
  271. struct timespec ts;
  272. clock_gettime(CLOCK_MONOTONIC, &ts);
  273. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  274. }
  275. #endif
  276. int64_t ggml_cycles(void) {
  277. return clock();
  278. }
  279. int64_t ggml_cycles_per_ms(void) {
  280. return CLOCKS_PER_SEC/1000;
  281. }
  282. #ifdef GGML_PERF
  283. #define ggml_perf_time_ms() ggml_time_ms()
  284. #define ggml_perf_time_us() ggml_time_us()
  285. #define ggml_perf_cycles() ggml_cycles()
  286. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  287. #else
  288. #define ggml_perf_time_ms() 0
  289. #define ggml_perf_time_us() 0
  290. #define ggml_perf_cycles() 0
  291. #define ggml_perf_cycles_per_ms() 0
  292. #endif
  293. //
  294. // cache line
  295. //
  296. #if defined(__cpp_lib_hardware_interference_size)
  297. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  298. #else
  299. #if defined(__POWER9_VECTOR__)
  300. #define CACHE_LINE_SIZE 128
  301. #else
  302. #define CACHE_LINE_SIZE 64
  303. #endif
  304. #endif
  305. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  306. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  307. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  308. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  309. [GGML_TYPE_I8] = {
  310. .type_name = "i8",
  311. .blck_size = 1,
  312. .type_size = sizeof(int8_t),
  313. .is_quantized = false,
  314. },
  315. [GGML_TYPE_I16] = {
  316. .type_name = "i16",
  317. .blck_size = 1,
  318. .type_size = sizeof(int16_t),
  319. .is_quantized = false,
  320. },
  321. [GGML_TYPE_I32] = {
  322. .type_name = "i32",
  323. .blck_size = 1,
  324. .type_size = sizeof(int32_t),
  325. .is_quantized = false,
  326. },
  327. [GGML_TYPE_F32] = {
  328. .type_name = "f32",
  329. .blck_size = 1,
  330. .type_size = sizeof(float),
  331. .is_quantized = false,
  332. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  333. .vec_dot_type = GGML_TYPE_F32,
  334. },
  335. [GGML_TYPE_F16] = {
  336. .type_name = "f16",
  337. .blck_size = 1,
  338. .type_size = sizeof(ggml_fp16_t),
  339. .is_quantized = false,
  340. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  341. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  342. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  343. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  344. .vec_dot_type = GGML_TYPE_F16,
  345. },
  346. [GGML_TYPE_Q4_0] = {
  347. .type_name = "q4_0",
  348. .blck_size = QK4_0,
  349. .type_size = sizeof(block_q4_0),
  350. .is_quantized = true,
  351. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  352. .from_float = quantize_row_q4_0,
  353. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  354. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  355. .vec_dot_type = GGML_TYPE_Q8_0,
  356. },
  357. [GGML_TYPE_Q4_1] = {
  358. .type_name = "q4_1",
  359. .blck_size = QK4_1,
  360. .type_size = sizeof(block_q4_1),
  361. .is_quantized = true,
  362. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  363. .from_float = quantize_row_q4_1,
  364. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  365. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  366. .vec_dot_type = GGML_TYPE_Q8_1,
  367. },
  368. [4] = { // GGML_TYPE_Q4_2
  369. .type_name = "DEPRECATED",
  370. .blck_size = 0,
  371. .type_size = 0,
  372. .is_quantized = false,
  373. .to_float = NULL,
  374. .from_float = NULL,
  375. .from_float_reference = NULL,
  376. .vec_dot = NULL,
  377. .vec_dot_type = GGML_TYPE_COUNT,
  378. },
  379. [5] = { // GGML_TYPE_Q4_3
  380. .type_name = "DEPRECATED",
  381. .blck_size = 0,
  382. .type_size = 0,
  383. .is_quantized = false,
  384. .to_float = NULL,
  385. .from_float = NULL,
  386. .from_float_reference = NULL,
  387. .vec_dot = NULL,
  388. .vec_dot_type = GGML_TYPE_COUNT,
  389. },
  390. [GGML_TYPE_Q5_0] = {
  391. .type_name = "q5_0",
  392. .blck_size = QK5_0,
  393. .type_size = sizeof(block_q5_0),
  394. .is_quantized = true,
  395. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  396. .from_float = quantize_row_q5_0,
  397. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  398. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  399. .vec_dot_type = GGML_TYPE_Q8_0,
  400. },
  401. [GGML_TYPE_Q5_1] = {
  402. .type_name = "q5_1",
  403. .blck_size = QK5_1,
  404. .type_size = sizeof(block_q5_1),
  405. .is_quantized = true,
  406. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  407. .from_float = quantize_row_q5_1,
  408. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  409. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  410. .vec_dot_type = GGML_TYPE_Q8_1,
  411. },
  412. [GGML_TYPE_Q8_0] = {
  413. .type_name = "q8_0",
  414. .blck_size = QK8_0,
  415. .type_size = sizeof(block_q8_0),
  416. .is_quantized = true,
  417. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  418. .from_float = quantize_row_q8_0,
  419. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  420. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  421. .vec_dot_type = GGML_TYPE_Q8_0,
  422. },
  423. [GGML_TYPE_Q8_1] = {
  424. .type_name = "q8_1",
  425. .blck_size = QK8_1,
  426. .type_size = sizeof(block_q8_1),
  427. .is_quantized = true,
  428. .from_float = quantize_row_q8_1,
  429. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  430. .vec_dot_type = GGML_TYPE_Q8_1,
  431. },
  432. [GGML_TYPE_Q2_K] = {
  433. .type_name = "q2_K",
  434. .blck_size = QK_K,
  435. .type_size = sizeof(block_q2_K),
  436. .is_quantized = true,
  437. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  438. .from_float = quantize_row_q2_K,
  439. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  440. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  441. .vec_dot_type = GGML_TYPE_Q8_K,
  442. },
  443. [GGML_TYPE_Q3_K] = {
  444. .type_name = "q3_K",
  445. .blck_size = QK_K,
  446. .type_size = sizeof(block_q3_K),
  447. .is_quantized = true,
  448. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  449. .from_float = quantize_row_q3_K,
  450. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  451. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  452. .vec_dot_type = GGML_TYPE_Q8_K,
  453. },
  454. [GGML_TYPE_Q4_K] = {
  455. .type_name = "q4_K",
  456. .blck_size = QK_K,
  457. .type_size = sizeof(block_q4_K),
  458. .is_quantized = true,
  459. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  460. .from_float = quantize_row_q4_K,
  461. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  462. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  463. .vec_dot_type = GGML_TYPE_Q8_K,
  464. },
  465. [GGML_TYPE_Q5_K] = {
  466. .type_name = "q5_K",
  467. .blck_size = QK_K,
  468. .type_size = sizeof(block_q5_K),
  469. .is_quantized = true,
  470. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  471. .from_float = quantize_row_q5_K,
  472. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  473. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  474. .vec_dot_type = GGML_TYPE_Q8_K,
  475. },
  476. [GGML_TYPE_Q6_K] = {
  477. .type_name = "q6_K",
  478. .blck_size = QK_K,
  479. .type_size = sizeof(block_q6_K),
  480. .is_quantized = true,
  481. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  482. .from_float = quantize_row_q6_K,
  483. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  484. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  485. .vec_dot_type = GGML_TYPE_Q8_K,
  486. },
  487. [GGML_TYPE_Q8_K] = {
  488. .type_name = "q8_K",
  489. .blck_size = QK_K,
  490. .type_size = sizeof(block_q8_K),
  491. .is_quantized = true,
  492. .from_float = quantize_row_q8_K,
  493. }
  494. };
  495. // For internal test use
  496. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  497. GGML_ASSERT(type < GGML_TYPE_COUNT);
  498. return type_traits[type];
  499. }
  500. //
  501. // simd mappings
  502. //
  503. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  504. // we then implement the fundamental computation operations below using only these macros
  505. // adding support for new architectures requires to define the corresponding SIMD macros
  506. //
  507. // GGML_F32_STEP / GGML_F16_STEP
  508. // number of elements to process in a single step
  509. //
  510. // GGML_F32_EPR / GGML_F16_EPR
  511. // number of elements to fit in a single register
  512. //
  513. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  514. #define GGML_SIMD
  515. // F32 NEON
  516. #define GGML_F32_STEP 16
  517. #define GGML_F32_EPR 4
  518. #define GGML_F32x4 float32x4_t
  519. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  520. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  521. #define GGML_F32x4_LOAD vld1q_f32
  522. #define GGML_F32x4_STORE vst1q_f32
  523. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  524. #define GGML_F32x4_ADD vaddq_f32
  525. #define GGML_F32x4_MUL vmulq_f32
  526. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  527. #define GGML_F32x4_REDUCE(res, x) \
  528. { \
  529. int offset = GGML_F32_ARR >> 1; \
  530. for (int i = 0; i < offset; ++i) { \
  531. x[i] = vaddq_f32(x[i], x[offset+i]); \
  532. } \
  533. offset >>= 1; \
  534. for (int i = 0; i < offset; ++i) { \
  535. x[i] = vaddq_f32(x[i], x[offset+i]); \
  536. } \
  537. offset >>= 1; \
  538. for (int i = 0; i < offset; ++i) { \
  539. x[i] = vaddq_f32(x[i], x[offset+i]); \
  540. } \
  541. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  542. }
  543. #define GGML_F32_VEC GGML_F32x4
  544. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  545. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  546. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  547. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  548. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  549. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  550. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  551. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  552. // F16 NEON
  553. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  554. #define GGML_F16_STEP 32
  555. #define GGML_F16_EPR 8
  556. #define GGML_F16x8 float16x8_t
  557. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  558. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  559. #define GGML_F16x8_LOAD vld1q_f16
  560. #define GGML_F16x8_STORE vst1q_f16
  561. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  562. #define GGML_F16x8_ADD vaddq_f16
  563. #define GGML_F16x8_MUL vmulq_f16
  564. #define GGML_F16x8_REDUCE(res, x) \
  565. do { \
  566. int offset = GGML_F16_ARR >> 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f16(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f16(x[i], x[offset+i]); \
  573. } \
  574. offset >>= 1; \
  575. for (int i = 0; i < offset; ++i) { \
  576. x[i] = vaddq_f16(x[i], x[offset+i]); \
  577. } \
  578. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  579. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  580. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  581. } while (0)
  582. #define GGML_F16_VEC GGML_F16x8
  583. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  584. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  585. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  586. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  587. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  588. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  589. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  590. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  591. #else
  592. // if FP16 vector arithmetic is not supported, we use FP32 instead
  593. // and take advantage of the vcvt_ functions to convert to/from FP16
  594. #define GGML_F16_STEP 16
  595. #define GGML_F16_EPR 4
  596. #define GGML_F32Cx4 float32x4_t
  597. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  598. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  599. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  600. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  601. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  602. #define GGML_F32Cx4_ADD vaddq_f32
  603. #define GGML_F32Cx4_MUL vmulq_f32
  604. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  605. #define GGML_F16_VEC GGML_F32Cx4
  606. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  607. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  608. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  609. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  610. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  611. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  612. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  613. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  614. #endif
  615. #elif defined(__AVX__)
  616. #define GGML_SIMD
  617. // F32 AVX
  618. #define GGML_F32_STEP 32
  619. #define GGML_F32_EPR 8
  620. #define GGML_F32x8 __m256
  621. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  622. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  623. #define GGML_F32x8_LOAD _mm256_loadu_ps
  624. #define GGML_F32x8_STORE _mm256_storeu_ps
  625. #if defined(__FMA__)
  626. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  627. #else
  628. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  629. #endif
  630. #define GGML_F32x8_ADD _mm256_add_ps
  631. #define GGML_F32x8_MUL _mm256_mul_ps
  632. #define GGML_F32x8_REDUCE(res, x) \
  633. do { \
  634. int offset = GGML_F32_ARR >> 1; \
  635. for (int i = 0; i < offset; ++i) { \
  636. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  637. } \
  638. offset >>= 1; \
  639. for (int i = 0; i < offset; ++i) { \
  640. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  641. } \
  642. offset >>= 1; \
  643. for (int i = 0; i < offset; ++i) { \
  644. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  645. } \
  646. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  647. _mm256_extractf128_ps(x[0], 1)); \
  648. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  649. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  650. } while (0)
  651. // TODO: is this optimal ?
  652. #define GGML_F32_VEC GGML_F32x8
  653. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  654. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  655. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  656. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  657. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  658. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  659. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  660. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  661. // F16 AVX
  662. #define GGML_F16_STEP 32
  663. #define GGML_F16_EPR 8
  664. // F16 arithmetic is not supported by AVX, so we use F32 instead
  665. #define GGML_F32Cx8 __m256
  666. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  667. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  668. #if defined(__F16C__)
  669. // the _mm256_cvt intrinsics require F16C
  670. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  671. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  672. #else
  673. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  674. float tmp[8];
  675. for (int i = 0; i < 8; i++) {
  676. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  677. }
  678. return _mm256_loadu_ps(tmp);
  679. }
  680. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  681. float arr[8];
  682. _mm256_storeu_ps(arr, y);
  683. for (int i = 0; i < 8; i++)
  684. x[i] = GGML_FP32_TO_FP16(arr[i]);
  685. }
  686. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  687. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  688. #endif
  689. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  690. #define GGML_F32Cx8_ADD _mm256_add_ps
  691. #define GGML_F32Cx8_MUL _mm256_mul_ps
  692. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  693. #define GGML_F16_VEC GGML_F32Cx8
  694. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  695. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  696. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  697. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  698. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  699. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  700. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  701. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  702. #elif defined(__POWER9_VECTOR__)
  703. #define GGML_SIMD
  704. // F32 POWER9
  705. #define GGML_F32_STEP 32
  706. #define GGML_F32_EPR 4
  707. #define GGML_F32x4 vector float
  708. #define GGML_F32x4_ZERO 0.0f
  709. #define GGML_F32x4_SET1 vec_splats
  710. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  711. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  712. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  713. #define GGML_F32x4_ADD vec_add
  714. #define GGML_F32x4_MUL vec_mul
  715. #define GGML_F32x4_REDUCE(res, x) \
  716. { \
  717. int offset = GGML_F32_ARR >> 1; \
  718. for (int i = 0; i < offset; ++i) { \
  719. x[i] = vec_add(x[i], x[offset+i]); \
  720. } \
  721. offset >>= 1; \
  722. for (int i = 0; i < offset; ++i) { \
  723. x[i] = vec_add(x[i], x[offset+i]); \
  724. } \
  725. offset >>= 1; \
  726. for (int i = 0; i < offset; ++i) { \
  727. x[i] = vec_add(x[i], x[offset+i]); \
  728. } \
  729. res = vec_extract(x[0], 0) + \
  730. vec_extract(x[0], 1) + \
  731. vec_extract(x[0], 2) + \
  732. vec_extract(x[0], 3); \
  733. }
  734. #define GGML_F32_VEC GGML_F32x4
  735. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  736. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  737. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  738. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  739. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  740. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  741. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  742. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  743. // F16 POWER9
  744. #define GGML_F16_STEP GGML_F32_STEP
  745. #define GGML_F16_EPR GGML_F32_EPR
  746. #define GGML_F16_VEC GGML_F32x4
  747. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  748. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  749. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  750. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  751. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  752. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  753. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  754. vec_extract_fp32_from_shortl(vec_xl(0, p))
  755. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  756. #define GGML_F16_VEC_STORE(p, r, i) \
  757. if (i & 0x1) \
  758. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  759. r[i - GGML_ENDIAN_BYTE(0)]), \
  760. 0, p - GGML_F16_EPR)
  761. #elif defined(__wasm_simd128__)
  762. #define GGML_SIMD
  763. // F32 WASM
  764. #define GGML_F32_STEP 16
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 v128_t
  767. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  768. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  769. #define GGML_F32x4_LOAD wasm_v128_load
  770. #define GGML_F32x4_STORE wasm_v128_store
  771. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  772. #define GGML_F32x4_ADD wasm_f32x4_add
  773. #define GGML_F32x4_MUL wasm_f32x4_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  787. } \
  788. res = wasm_f32x4_extract_lane(x[0], 0) + \
  789. wasm_f32x4_extract_lane(x[0], 1) + \
  790. wasm_f32x4_extract_lane(x[0], 2) + \
  791. wasm_f32x4_extract_lane(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 WASM
  803. #define GGML_F16_STEP 16
  804. #define GGML_F16_EPR 4
  805. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  806. float tmp[4];
  807. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  808. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  809. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  810. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  811. return wasm_v128_load(tmp);
  812. }
  813. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  814. float tmp[4];
  815. wasm_v128_store(tmp, x);
  816. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  817. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  818. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  819. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  820. }
  821. #define GGML_F16x4 v128_t
  822. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  825. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  826. #define GGML_F16x4_FMA GGML_F32x4_FMA
  827. #define GGML_F16x4_ADD wasm_f32x4_add
  828. #define GGML_F16x4_MUL wasm_f32x4_mul
  829. #define GGML_F16x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F16_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F16_VEC GGML_F16x4
  849. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  850. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  851. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  852. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  853. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  854. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  855. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  856. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  857. #elif defined(__SSE3__)
  858. #define GGML_SIMD
  859. // F32 SSE
  860. #define GGML_F32_STEP 32
  861. #define GGML_F32_EPR 4
  862. #define GGML_F32x4 __m128
  863. #define GGML_F32x4_ZERO _mm_setzero_ps()
  864. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  865. #define GGML_F32x4_LOAD _mm_loadu_ps
  866. #define GGML_F32x4_STORE _mm_storeu_ps
  867. #if defined(__FMA__)
  868. // TODO: Does this work?
  869. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  870. #else
  871. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  872. #endif
  873. #define GGML_F32x4_ADD _mm_add_ps
  874. #define GGML_F32x4_MUL _mm_mul_ps
  875. #define GGML_F32x4_REDUCE(res, x) \
  876. { \
  877. int offset = GGML_F32_ARR >> 1; \
  878. for (int i = 0; i < offset; ++i) { \
  879. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  880. } \
  881. offset >>= 1; \
  882. for (int i = 0; i < offset; ++i) { \
  883. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  884. } \
  885. offset >>= 1; \
  886. for (int i = 0; i < offset; ++i) { \
  887. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  888. } \
  889. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  890. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  891. }
  892. // TODO: is this optimal ?
  893. #define GGML_F32_VEC GGML_F32x4
  894. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  895. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  896. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  897. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  898. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  899. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  900. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  901. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  902. // F16 SSE
  903. #define GGML_F16_STEP 32
  904. #define GGML_F16_EPR 4
  905. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  906. float tmp[4];
  907. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  908. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  909. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  910. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  911. return _mm_loadu_ps(tmp);
  912. }
  913. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  914. float arr[4];
  915. _mm_storeu_ps(arr, y);
  916. x[0] = GGML_FP32_TO_FP16(arr[0]);
  917. x[1] = GGML_FP32_TO_FP16(arr[1]);
  918. x[2] = GGML_FP32_TO_FP16(arr[2]);
  919. x[3] = GGML_FP32_TO_FP16(arr[3]);
  920. }
  921. #define GGML_F32Cx4 __m128
  922. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  923. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  925. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  926. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  927. #define GGML_F32Cx4_ADD _mm_add_ps
  928. #define GGML_F32Cx4_MUL _mm_mul_ps
  929. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  930. #define GGML_F16_VEC GGML_F32Cx4
  931. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  932. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  933. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  934. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  935. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  936. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  937. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  938. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  939. #endif
  940. // GGML_F32_ARR / GGML_F16_ARR
  941. // number of registers to use per step
  942. #ifdef GGML_SIMD
  943. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  944. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  945. #endif
  946. //
  947. // fundamental operations
  948. //
  949. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  950. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  951. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  952. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  953. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  954. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  955. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  956. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  957. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  958. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  959. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  960. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  961. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  962. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  963. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  964. #ifdef GGML_SIMD
  965. float sumf = 0.0f;
  966. const int np = (n & ~(GGML_F32_STEP - 1));
  967. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  968. GGML_F32_VEC ax[GGML_F32_ARR];
  969. GGML_F32_VEC ay[GGML_F32_ARR];
  970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  971. for (int j = 0; j < GGML_F32_ARR; j++) {
  972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  974. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  975. }
  976. }
  977. // reduce sum0..sum3 to sum0
  978. GGML_F32_VEC_REDUCE(sumf, sum);
  979. // leftovers
  980. for (int i = np; i < n; ++i) {
  981. sumf += x[i]*y[i];
  982. }
  983. #else
  984. // scalar
  985. ggml_float sumf = 0.0;
  986. for (int i = 0; i < n; ++i) {
  987. sumf += (ggml_float)(x[i]*y[i]);
  988. }
  989. #endif
  990. *s = sumf;
  991. }
  992. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  993. ggml_float sumf = 0.0;
  994. #if defined(GGML_SIMD)
  995. const int np = (n & ~(GGML_F16_STEP - 1));
  996. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  997. GGML_F16_VEC ax[GGML_F16_ARR];
  998. GGML_F16_VEC ay[GGML_F16_ARR];
  999. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1000. for (int j = 0; j < GGML_F16_ARR; j++) {
  1001. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1002. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1003. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1004. }
  1005. }
  1006. // reduce sum0..sum3 to sum0
  1007. GGML_F16_VEC_REDUCE(sumf, sum);
  1008. // leftovers
  1009. for (int i = np; i < n; ++i) {
  1010. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1011. }
  1012. #else
  1013. for (int i = 0; i < n; ++i) {
  1014. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1015. }
  1016. #endif
  1017. *s = sumf;
  1018. }
  1019. // compute GGML_VEC_DOT_UNROLL dot products at once
  1020. // xs - x row stride in bytes
  1021. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1022. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1023. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1024. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1025. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1026. }
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1035. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1036. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1037. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1038. }
  1039. }
  1040. }
  1041. // reduce sum0..sum3 to sum0
  1042. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1043. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1044. }
  1045. // leftovers
  1046. for (int i = np; i < n; ++i) {
  1047. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1048. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1049. }
  1050. }
  1051. #else
  1052. for (int i = 0; i < n; ++i) {
  1053. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1054. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1055. }
  1056. }
  1057. #endif
  1058. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1059. s[i] = sumf[i];
  1060. }
  1061. }
  1062. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1063. #if defined(GGML_SIMD)
  1064. const int np = (n & ~(GGML_F32_STEP - 1));
  1065. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1066. GGML_F32_VEC ax[GGML_F32_ARR];
  1067. GGML_F32_VEC ay[GGML_F32_ARR];
  1068. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1069. for (int j = 0; j < GGML_F32_ARR; j++) {
  1070. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1071. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1073. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1074. }
  1075. }
  1076. // leftovers
  1077. for (int i = np; i < n; ++i) {
  1078. y[i] += x[i]*v;
  1079. }
  1080. #else
  1081. // scalar
  1082. for (int i = 0; i < n; ++i) {
  1083. y[i] += x[i]*v;
  1084. }
  1085. #endif
  1086. }
  1087. // xs and vs are byte strides of x and v
  1088. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1089. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1090. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1091. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1092. x[i] = (const float *) ((const char *) xv + i*xs);
  1093. v[i] = (const float *) ((const char *) vv + i*vs);
  1094. }
  1095. #if defined(GGML_SIMD)
  1096. const int np = (n & ~(GGML_F32_STEP - 1));
  1097. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1098. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1099. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1100. }
  1101. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1102. GGML_F32_VEC ay[GGML_F32_ARR];
  1103. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1104. for (int j = 0; j < GGML_F32_ARR; j++) {
  1105. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1106. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1107. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1108. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1109. }
  1110. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1111. }
  1112. }
  1113. // leftovers
  1114. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1115. for (int i = np; i < n; ++i) {
  1116. y[i] += x[k][i]*v[k][0];
  1117. }
  1118. }
  1119. #else
  1120. // scalar
  1121. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1122. for (int i = 0; i < n; ++i) {
  1123. y[i] += x[k][i]*v[k][0];
  1124. }
  1125. }
  1126. #endif
  1127. }
  1128. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1129. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1130. #if defined(GGML_USE_ACCELERATE)
  1131. vDSP_vsmul(y, 1, &v, y, 1, n);
  1132. #elif defined(GGML_SIMD)
  1133. const int np = (n & ~(GGML_F32_STEP - 1));
  1134. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1140. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1141. }
  1142. }
  1143. // leftovers
  1144. for (int i = np; i < n; ++i) {
  1145. y[i] *= v;
  1146. }
  1147. #else
  1148. // scalar
  1149. for (int i = 0; i < n; ++i) {
  1150. y[i] *= v;
  1151. }
  1152. #endif
  1153. }
  1154. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1155. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1156. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1157. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1158. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1159. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1160. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1161. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1162. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1163. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1164. static const float GELU_COEF_A = 0.044715f;
  1165. static const float GELU_QUICK_COEF = -1.702f;
  1166. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1167. inline static float ggml_gelu_f32(float x) {
  1168. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1169. }
  1170. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1171. const uint16_t * i16 = (const uint16_t *) x;
  1172. for (int i = 0; i < n; ++i) {
  1173. y[i] = ggml_table_gelu_f16[i16[i]];
  1174. }
  1175. }
  1176. #ifdef GGML_GELU_FP16
  1177. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1178. uint16_t t;
  1179. for (int i = 0; i < n; ++i) {
  1180. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1181. memcpy(&t, &fp16, sizeof(uint16_t));
  1182. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1183. }
  1184. }
  1185. #else
  1186. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1187. for (int i = 0; i < n; ++i) {
  1188. y[i] = ggml_gelu_f32(x[i]);
  1189. }
  1190. }
  1191. #endif
  1192. inline static float ggml_gelu_quick_f32(float x) {
  1193. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1194. }
  1195. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1196. // const uint16_t * i16 = (const uint16_t *) x;
  1197. // for (int i = 0; i < n; ++i) {
  1198. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1199. // }
  1200. //}
  1201. #ifdef GGML_GELU_QUICK_FP16
  1202. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1203. uint16_t t;
  1204. for (int i = 0; i < n; ++i) {
  1205. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1206. memcpy(&t, &fp16, sizeof(uint16_t));
  1207. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1208. }
  1209. }
  1210. #else
  1211. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1212. for (int i = 0; i < n; ++i) {
  1213. y[i] = ggml_gelu_quick_f32(x[i]);
  1214. }
  1215. }
  1216. #endif
  1217. // Sigmoid Linear Unit (SiLU) function
  1218. inline static float ggml_silu_f32(float x) {
  1219. return x/(1.0f + expf(-x));
  1220. }
  1221. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1222. // const uint16_t * i16 = (const uint16_t *) x;
  1223. // for (int i = 0; i < n; ++i) {
  1224. // y[i] = ggml_table_silu_f16[i16[i]];
  1225. // }
  1226. //}
  1227. #ifdef GGML_SILU_FP16
  1228. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1229. uint16_t t;
  1230. for (int i = 0; i < n; ++i) {
  1231. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1232. memcpy(&t, &fp16, sizeof(uint16_t));
  1233. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1234. }
  1235. }
  1236. #else
  1237. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1238. for (int i = 0; i < n; ++i) {
  1239. y[i] = ggml_silu_f32(x[i]);
  1240. }
  1241. }
  1242. #endif
  1243. inline static float ggml_silu_backward_f32(float x, float dy) {
  1244. const float s = 1.0f/(1.0f + expf(-x));
  1245. return dy*s*(1.0f + x*(1.0f - s));
  1246. }
  1247. #ifdef GGML_SILU_FP16
  1248. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1249. for (int i = 0; i < n; ++i) {
  1250. // we did not use x[i] to compute forward silu but its f16 equivalent
  1251. // take derivative at f16 of x[i]:
  1252. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1253. float usedx = GGML_FP16_TO_FP32(fp16);
  1254. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1255. }
  1256. }
  1257. #else
  1258. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1259. for (int i = 0; i < n; ++i) {
  1260. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1261. }
  1262. }
  1263. #endif
  1264. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1265. #ifndef GGML_USE_ACCELERATE
  1266. ggml_float sum = 0.0;
  1267. for (int i = 0; i < n; ++i) {
  1268. sum += (ggml_float)x[i];
  1269. }
  1270. *s = sum;
  1271. #else
  1272. vDSP_sve(x, 1, s, n);
  1273. #endif
  1274. }
  1275. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1276. ggml_float sum = 0.0;
  1277. for (int i = 0; i < n; ++i) {
  1278. sum += (ggml_float)x[i];
  1279. }
  1280. *s = sum;
  1281. }
  1282. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1283. float sum = 0.0f;
  1284. for (int i = 0; i < n; ++i) {
  1285. sum += GGML_FP16_TO_FP32(x[i]);
  1286. }
  1287. *s = sum;
  1288. }
  1289. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1290. #ifndef GGML_USE_ACCELERATE
  1291. float max = -INFINITY;
  1292. for (int i = 0; i < n; ++i) {
  1293. max = MAX(max, x[i]);
  1294. }
  1295. *s = max;
  1296. #else
  1297. vDSP_maxv(x, 1, s, n);
  1298. #endif
  1299. }
  1300. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1301. ggml_vec_norm_f32(n, s, x);
  1302. *s = 1.f/(*s);
  1303. }
  1304. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1305. float max = -INFINITY;
  1306. int idx = 0;
  1307. for (int i = 0; i < n; ++i) {
  1308. max = MAX(max, x[i]);
  1309. if (max == x[i]) { idx = i; }
  1310. }
  1311. *s = idx;
  1312. }
  1313. //
  1314. // data types
  1315. //
  1316. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1317. "NONE",
  1318. "DUP",
  1319. "ADD",
  1320. "ADD1",
  1321. "ACC",
  1322. "SUB",
  1323. "MUL",
  1324. "DIV",
  1325. "SQR",
  1326. "SQRT",
  1327. "LOG",
  1328. "SUM",
  1329. "SUM_ROWS",
  1330. "MEAN",
  1331. "ARGMAX",
  1332. "REPEAT",
  1333. "REPEAT_BACK",
  1334. "CONCAT",
  1335. "SILU_BACK",
  1336. "NORM",
  1337. "RMS_NORM",
  1338. "RMS_NORM_BACK",
  1339. "GROUP_NORM",
  1340. "MUL_MAT",
  1341. "OUT_PROD",
  1342. "SCALE",
  1343. "SET",
  1344. "CPY",
  1345. "CONT",
  1346. "RESHAPE",
  1347. "VIEW",
  1348. "PERMUTE",
  1349. "TRANSPOSE",
  1350. "GET_ROWS",
  1351. "GET_ROWS_BACK",
  1352. "DIAG",
  1353. "DIAG_MASK_INF",
  1354. "DIAG_MASK_ZERO",
  1355. "SOFT_MAX",
  1356. "SOFT_MAX_BACK",
  1357. "ROPE",
  1358. "ROPE_BACK",
  1359. "ALIBI",
  1360. "CLAMP",
  1361. "CONV_1D",
  1362. "CONV_1D_STAGE_0",
  1363. "CONV_1D_STAGE_1",
  1364. "CONV_TRANSPOSE_1D",
  1365. "CONV_2D",
  1366. "CONV_2D_STAGE_0",
  1367. "CONV_2D_STAGE_1",
  1368. "CONV_TRANSPOSE_2D",
  1369. "POOL_1D",
  1370. "POOL_2D",
  1371. "UPSCALE",
  1372. "FLASH_ATTN",
  1373. "FLASH_FF",
  1374. "FLASH_ATTN_BACK",
  1375. "WIN_PART",
  1376. "WIN_UNPART",
  1377. "GET_REL_POS",
  1378. "ADD_REL_POS",
  1379. "UNARY",
  1380. "MAP_UNARY",
  1381. "MAP_BINARY",
  1382. "MAP_CUSTOM1_F32",
  1383. "MAP_CUSTOM2_F32",
  1384. "MAP_CUSTOM3_F32",
  1385. "MAP_CUSTOM1",
  1386. "MAP_CUSTOM2",
  1387. "MAP_CUSTOM3",
  1388. "CROSS_ENTROPY_LOSS",
  1389. "CROSS_ENTROPY_LOSS_BACK",
  1390. };
  1391. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1392. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1393. "none",
  1394. "x",
  1395. "x+y",
  1396. "x+y",
  1397. "view(x,nb,offset)+=y->x",
  1398. "x-y",
  1399. "x*y",
  1400. "x/y",
  1401. "x^2",
  1402. "√x",
  1403. "log(x)",
  1404. "Σx",
  1405. "Σx_k",
  1406. "Σx/n",
  1407. "argmax(x)",
  1408. "repeat(x)",
  1409. "repeat_back(x)",
  1410. "concat(x, y)",
  1411. "silu_back(x)",
  1412. "norm(x)",
  1413. "rms_norm(x)",
  1414. "rms_norm_back(x)",
  1415. "group_norm(x)",
  1416. "X*Y",
  1417. "X*Y",
  1418. "x*v",
  1419. "y-\\>view(x)",
  1420. "x-\\>y",
  1421. "cont(x)",
  1422. "reshape(x)",
  1423. "view(x)",
  1424. "permute(x)",
  1425. "transpose(x)",
  1426. "get_rows(x)",
  1427. "get_rows_back(x)",
  1428. "diag(x)",
  1429. "diag_mask_inf(x)",
  1430. "diag_mask_zero(x)",
  1431. "soft_max(x)",
  1432. "soft_max_back(x)",
  1433. "rope(x)",
  1434. "rope_back(x)",
  1435. "alibi(x)",
  1436. "clamp(x)",
  1437. "conv_1d(x)",
  1438. "conv_1d_stage_0(x)",
  1439. "conv_1d_stage_1(x)",
  1440. "conv_transpose_1d(x)",
  1441. "conv_2d(x)",
  1442. "conv_2d_stage_0(x)",
  1443. "conv_2d_stage_1(x)",
  1444. "conv_transpose_2d(x)",
  1445. "pool_1d(x)",
  1446. "pool_2d(x)",
  1447. "upscale(x)",
  1448. "flash_attn(x)",
  1449. "flash_ff(x)",
  1450. "flash_attn_back(x)",
  1451. "win_part(x)",
  1452. "win_unpart(x)",
  1453. "get_rel_pos(x)",
  1454. "add_rel_pos(x)",
  1455. "unary(x)",
  1456. "f(x)",
  1457. "f(x,y)",
  1458. "custom_f32(x)",
  1459. "custom_f32(x,y)",
  1460. "custom_f32(x,y,z)",
  1461. "custom(x)",
  1462. "custom(x,y)",
  1463. "custom(x,y,z)",
  1464. "cross_entropy_loss(x,y)",
  1465. "cross_entropy_loss_back(x,y)",
  1466. };
  1467. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1468. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1469. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1470. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1471. // WARN:
  1472. // Mis-confguration can lead to problem that's hard to reason about:
  1473. // * At best it crash or talks nosense.
  1474. // * At worst it talks slightly difference but hard to perceive.
  1475. //
  1476. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1477. // Take care about compile options (e.g., GGML_USE_xxx).
  1478. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1479. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1480. static void ggml_setup_op_has_task_pass(void) {
  1481. { // INIT
  1482. bool * p = GGML_OP_HAS_INIT;
  1483. p[GGML_OP_ACC ] = true;
  1484. p[GGML_OP_MUL_MAT ] = true;
  1485. p[GGML_OP_OUT_PROD ] = true;
  1486. p[GGML_OP_SET ] = true;
  1487. p[GGML_OP_GET_ROWS_BACK ] = true;
  1488. p[GGML_OP_DIAG_MASK_INF ] = true;
  1489. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1490. p[GGML_OP_CONV_1D ] = true;
  1491. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1492. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1493. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1494. p[GGML_OP_CONV_2D ] = true;
  1495. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1496. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1497. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1498. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1499. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1500. p[GGML_OP_ADD_REL_POS ] = true;
  1501. }
  1502. { // FINALIZE
  1503. bool * p = GGML_OP_HAS_FINALIZE;
  1504. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1505. }
  1506. }
  1507. //
  1508. // ggml context
  1509. //
  1510. struct ggml_context {
  1511. size_t mem_size;
  1512. void * mem_buffer;
  1513. bool mem_buffer_owned;
  1514. bool no_alloc;
  1515. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1516. int n_objects;
  1517. struct ggml_object * objects_begin;
  1518. struct ggml_object * objects_end;
  1519. struct ggml_scratch scratch;
  1520. struct ggml_scratch scratch_save;
  1521. };
  1522. struct ggml_context_container {
  1523. bool used;
  1524. struct ggml_context context;
  1525. };
  1526. //
  1527. // NUMA support
  1528. //
  1529. #define GGML_NUMA_MAX_NODES 8
  1530. #define GGML_NUMA_MAX_CPUS 512
  1531. struct ggml_numa_node {
  1532. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1533. uint32_t n_cpus;
  1534. };
  1535. struct ggml_numa_nodes {
  1536. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1537. uint32_t n_nodes;
  1538. uint32_t total_cpus; // hardware threads on system
  1539. };
  1540. //
  1541. // ggml state
  1542. //
  1543. struct ggml_state {
  1544. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1545. struct ggml_numa_nodes numa;
  1546. };
  1547. // global state
  1548. static struct ggml_state g_state;
  1549. static atomic_int g_state_barrier = 0;
  1550. // barrier via spin lock
  1551. inline static void ggml_critical_section_start(void) {
  1552. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1553. while (processing > 0) {
  1554. // wait for other threads to finish
  1555. atomic_fetch_sub(&g_state_barrier, 1);
  1556. sched_yield(); // TODO: reconsider this
  1557. processing = atomic_fetch_add(&g_state_barrier, 1);
  1558. }
  1559. }
  1560. // TODO: make this somehow automatically executed
  1561. // some sort of "sentry" mechanism
  1562. inline static void ggml_critical_section_end(void) {
  1563. atomic_fetch_sub(&g_state_barrier, 1);
  1564. }
  1565. void ggml_numa_init(void) {
  1566. if (g_state.numa.n_nodes > 0) {
  1567. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1568. return;
  1569. }
  1570. #ifdef __linux__
  1571. struct stat st;
  1572. char path[256];
  1573. int rv;
  1574. // enumerate nodes
  1575. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1576. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1577. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1578. if (stat(path, &st) != 0) { break; }
  1579. ++g_state.numa.n_nodes;
  1580. }
  1581. // enumerate CPUs
  1582. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1583. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1584. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1585. if (stat(path, &st) != 0) { break; }
  1586. ++g_state.numa.total_cpus;
  1587. }
  1588. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1589. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1590. g_state.numa.n_nodes = 0;
  1591. return;
  1592. }
  1593. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1594. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1595. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1596. node->n_cpus = 0;
  1597. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1598. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1599. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1600. if (stat(path, &st) == 0) {
  1601. node->cpus[node->n_cpus++] = c;
  1602. GGML_PRINT_DEBUG(" %u", c);
  1603. }
  1604. }
  1605. GGML_PRINT_DEBUG("\n");
  1606. }
  1607. if (ggml_is_numa()) {
  1608. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1609. if (fptr != NULL) {
  1610. char buf[42];
  1611. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1612. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1613. }
  1614. fclose(fptr);
  1615. }
  1616. }
  1617. #else
  1618. // TODO
  1619. #endif
  1620. }
  1621. bool ggml_is_numa(void) {
  1622. return g_state.numa.n_nodes > 1;
  1623. }
  1624. ////////////////////////////////////////////////////////////////////////////////
  1625. void ggml_print_object(const struct ggml_object * obj) {
  1626. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1627. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1628. }
  1629. void ggml_print_objects(const struct ggml_context * ctx) {
  1630. struct ggml_object * obj = ctx->objects_begin;
  1631. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1632. while (obj != NULL) {
  1633. ggml_print_object(obj);
  1634. obj = obj->next;
  1635. }
  1636. GGML_PRINT("%s: --- end ---\n", __func__);
  1637. }
  1638. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1640. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1641. }
  1642. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1644. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1645. }
  1646. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1647. size_t nbytes;
  1648. size_t blck_size = ggml_blck_size(tensor->type);
  1649. if (blck_size == 1) {
  1650. nbytes = ggml_type_size(tensor->type);
  1651. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1652. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1653. }
  1654. }
  1655. else {
  1656. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1657. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1658. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1659. }
  1660. }
  1661. return nbytes;
  1662. }
  1663. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1664. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1665. }
  1666. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1667. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1668. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1669. }
  1670. int ggml_blck_size(enum ggml_type type) {
  1671. return type_traits[type].blck_size;
  1672. }
  1673. size_t ggml_type_size(enum ggml_type type) {
  1674. return type_traits[type].type_size;
  1675. }
  1676. float ggml_type_sizef(enum ggml_type type) {
  1677. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1678. }
  1679. const char * ggml_type_name(enum ggml_type type) {
  1680. return type_traits[type].type_name;
  1681. }
  1682. bool ggml_is_quantized(enum ggml_type type) {
  1683. return type_traits[type].is_quantized;
  1684. }
  1685. const char * ggml_op_name(enum ggml_op op) {
  1686. return GGML_OP_NAME[op];
  1687. }
  1688. const char * ggml_op_symbol(enum ggml_op op) {
  1689. return GGML_OP_SYMBOL[op];
  1690. }
  1691. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1692. return ggml_type_size(tensor->type);
  1693. }
  1694. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1695. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1696. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1697. }
  1698. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1699. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1700. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1701. }
  1702. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1703. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1704. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1705. }
  1706. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1708. return (t0->ne[0] == t1->ne[0]) &&
  1709. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1710. (t1->ne[3]%t0->ne[3] == 0);
  1711. }
  1712. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1713. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1714. return (t0->ne[1] == t1->ne[1]) &&
  1715. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1716. (t1->ne[3]%t0->ne[3] == 0);
  1717. }
  1718. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1719. enum ggml_type wtype = GGML_TYPE_COUNT;
  1720. switch (ftype) {
  1721. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1722. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1723. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1724. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1725. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1726. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1727. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1728. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1729. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1730. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1731. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1732. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1733. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1734. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1735. }
  1736. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1737. return wtype;
  1738. }
  1739. size_t ggml_tensor_overhead(void) {
  1740. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1741. }
  1742. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1743. return tensor->nb[0] > tensor->nb[1];
  1744. }
  1745. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1747. return
  1748. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1749. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1750. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1751. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1752. }
  1753. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1755. return
  1756. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1757. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1758. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1759. }
  1760. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1761. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1762. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1763. }
  1764. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1765. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1766. return
  1767. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1768. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1769. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1770. }
  1771. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1772. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1773. return
  1774. (t0->ne[0] == t1->ne[0] ) &&
  1775. (t0->ne[1] == t1->ne[1] ) &&
  1776. (t0->ne[2] == t1->ne[2] ) &&
  1777. (t0->ne[3] == t1->ne[3] );
  1778. }
  1779. // check if t1 can be represented as a repeatition of t0
  1780. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return
  1783. (t1->ne[0]%t0->ne[0] == 0) &&
  1784. (t1->ne[1]%t0->ne[1] == 0) &&
  1785. (t1->ne[2]%t0->ne[2] == 0) &&
  1786. (t1->ne[3]%t0->ne[3] == 0);
  1787. }
  1788. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1790. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1791. }
  1792. static inline int ggml_up32(int n) {
  1793. return (n + 31) & ~31;
  1794. }
  1795. //static inline int ggml_up64(int n) {
  1796. // return (n + 63) & ~63;
  1797. //}
  1798. static inline int ggml_up(int n, int m) {
  1799. // assert m is a power of 2
  1800. GGML_ASSERT((m & (m - 1)) == 0);
  1801. return (n + m - 1) & ~(m - 1);
  1802. }
  1803. // assert that pointer is aligned to GGML_MEM_ALIGN
  1804. #define ggml_assert_aligned(ptr) \
  1805. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1806. ////////////////////////////////////////////////////////////////////////////////
  1807. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1808. // make this function thread safe
  1809. ggml_critical_section_start();
  1810. static bool is_first_call = true;
  1811. if (is_first_call) {
  1812. // initialize time system (required on Windows)
  1813. ggml_time_init();
  1814. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1815. {
  1816. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1817. ggml_fp16_t ii;
  1818. for (int i = 0; i < (1 << 16); ++i) {
  1819. uint16_t ui = i;
  1820. memcpy(&ii, &ui, sizeof(ii));
  1821. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1822. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1823. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1824. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1825. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1826. }
  1827. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1828. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1829. }
  1830. // initialize g_state
  1831. {
  1832. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1833. g_state = (struct ggml_state) {
  1834. /*.contexts =*/ { { 0 } },
  1835. /*.numa =*/ {
  1836. .n_nodes = 0,
  1837. .total_cpus = 0,
  1838. },
  1839. };
  1840. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1841. g_state.contexts[i].used = false;
  1842. }
  1843. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1844. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1845. }
  1846. #if defined(GGML_USE_CUBLAS)
  1847. ggml_init_cublas();
  1848. #elif defined(GGML_USE_CLBLAST)
  1849. ggml_cl_init();
  1850. #endif
  1851. ggml_setup_op_has_task_pass();
  1852. is_first_call = false;
  1853. }
  1854. // find non-used context in g_state
  1855. struct ggml_context * ctx = NULL;
  1856. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1857. if (!g_state.contexts[i].used) {
  1858. g_state.contexts[i].used = true;
  1859. ctx = &g_state.contexts[i].context;
  1860. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1861. break;
  1862. }
  1863. }
  1864. if (ctx == NULL) {
  1865. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1866. ggml_critical_section_end();
  1867. return NULL;
  1868. }
  1869. // allow to call ggml_init with 0 size
  1870. if (params.mem_size == 0) {
  1871. params.mem_size = GGML_MEM_ALIGN;
  1872. }
  1873. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1874. *ctx = (struct ggml_context) {
  1875. /*.mem_size =*/ mem_size,
  1876. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1877. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1878. /*.no_alloc =*/ params.no_alloc,
  1879. /*.no_alloc_save =*/ params.no_alloc,
  1880. /*.n_objects =*/ 0,
  1881. /*.objects_begin =*/ NULL,
  1882. /*.objects_end =*/ NULL,
  1883. /*.scratch =*/ { 0, 0, NULL, },
  1884. /*.scratch_save =*/ { 0, 0, NULL, },
  1885. };
  1886. GGML_ASSERT(ctx->mem_buffer != NULL);
  1887. ggml_assert_aligned(ctx->mem_buffer);
  1888. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1889. ggml_critical_section_end();
  1890. return ctx;
  1891. }
  1892. void ggml_free(struct ggml_context * ctx) {
  1893. // make this function thread safe
  1894. ggml_critical_section_start();
  1895. bool found = false;
  1896. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1897. if (&g_state.contexts[i].context == ctx) {
  1898. g_state.contexts[i].used = false;
  1899. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1900. __func__, i, ggml_used_mem(ctx));
  1901. if (ctx->mem_buffer_owned) {
  1902. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1903. }
  1904. found = true;
  1905. break;
  1906. }
  1907. }
  1908. if (!found) {
  1909. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1910. }
  1911. ggml_critical_section_end();
  1912. }
  1913. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1914. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1915. }
  1916. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1917. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1918. ctx->scratch = scratch;
  1919. return result;
  1920. }
  1921. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1922. return ctx->no_alloc;
  1923. }
  1924. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1925. ctx->no_alloc = no_alloc;
  1926. }
  1927. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1928. return ctx->mem_buffer;
  1929. }
  1930. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1931. return ctx->mem_size;
  1932. }
  1933. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1934. size_t max_size = 0;
  1935. struct ggml_object * obj = ctx->objects_begin;
  1936. while (obj != NULL) {
  1937. if (obj->type == GGML_OBJECT_TENSOR) {
  1938. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1939. const size_t size = ggml_nbytes(tensor);
  1940. if (max_size < size) {
  1941. max_size = size;
  1942. }
  1943. }
  1944. obj = obj->next;
  1945. }
  1946. return max_size;
  1947. }
  1948. // IMPORTANT:
  1949. // when creating "opt" tensors, always save and load the scratch buffer
  1950. // this is an error prone process, but it is necessary to support inplace
  1951. // operators when using scratch buffers
  1952. // TODO: implement a better way
  1953. static void ggml_scratch_save(struct ggml_context * ctx) {
  1954. // this is needed to allow opt tensors to store their data
  1955. // TODO: again, need to find a better way
  1956. ctx->no_alloc_save = ctx->no_alloc;
  1957. ctx->no_alloc = false;
  1958. ctx->scratch_save = ctx->scratch;
  1959. ctx->scratch.data = NULL;
  1960. }
  1961. static void ggml_scratch_load(struct ggml_context * ctx) {
  1962. ctx->no_alloc = ctx->no_alloc_save;
  1963. ctx->scratch = ctx->scratch_save;
  1964. }
  1965. ////////////////////////////////////////////////////////////////////////////////
  1966. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  1967. // always insert objects at the end of the context's memory pool
  1968. struct ggml_object * obj_cur = ctx->objects_end;
  1969. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  1970. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  1971. const size_t cur_end = cur_offs + cur_size;
  1972. // align to GGML_MEM_ALIGN
  1973. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  1974. char * const mem_buffer = ctx->mem_buffer;
  1975. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  1976. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  1977. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  1978. __func__, cur_end + size_needed, ctx->mem_size);
  1979. assert(false);
  1980. return NULL;
  1981. }
  1982. *obj_new = (struct ggml_object) {
  1983. .offs = cur_end + GGML_OBJECT_SIZE,
  1984. .size = size_needed,
  1985. .next = NULL,
  1986. .type = type,
  1987. };
  1988. ggml_assert_aligned(mem_buffer + obj_new->offs);
  1989. if (obj_cur != NULL) {
  1990. obj_cur->next = obj_new;
  1991. } else {
  1992. // this is the first object in this context
  1993. ctx->objects_begin = obj_new;
  1994. }
  1995. ctx->objects_end = obj_new;
  1996. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  1997. return obj_new;
  1998. }
  1999. static struct ggml_tensor * ggml_new_tensor_impl(
  2000. struct ggml_context * ctx,
  2001. enum ggml_type type,
  2002. int n_dims,
  2003. const int64_t * ne,
  2004. struct ggml_tensor * view_src,
  2005. size_t view_offs) {
  2006. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2007. // find the base tensor and absolute offset
  2008. if (view_src != NULL && view_src->view_src != NULL) {
  2009. view_offs += view_src->view_offs;
  2010. view_src = view_src->view_src;
  2011. }
  2012. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2013. for (int i = 1; i < n_dims; i++) {
  2014. data_size *= ne[i];
  2015. }
  2016. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2017. void * data = view_src != NULL ? view_src->data : NULL;
  2018. if (data != NULL) {
  2019. data = (char *) data + view_offs;
  2020. }
  2021. size_t obj_alloc_size = 0;
  2022. if (view_src == NULL && !ctx->no_alloc) {
  2023. if (ctx->scratch.data != NULL) {
  2024. // allocate tensor data in the scratch buffer
  2025. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2026. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2027. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2028. assert(false);
  2029. return NULL;
  2030. }
  2031. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2032. ctx->scratch.offs += data_size;
  2033. } else {
  2034. // allocate tensor data in the context's memory pool
  2035. obj_alloc_size = data_size;
  2036. }
  2037. }
  2038. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2039. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2040. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2041. *result = (struct ggml_tensor) {
  2042. /*.type =*/ type,
  2043. /*.backend =*/ GGML_BACKEND_CPU,
  2044. /*.buffer =*/ NULL,
  2045. /*.n_dims =*/ n_dims,
  2046. /*.ne =*/ { 1, 1, 1, 1 },
  2047. /*.nb =*/ { 0, 0, 0, 0 },
  2048. /*.op =*/ GGML_OP_NONE,
  2049. /*.op_params =*/ { 0 },
  2050. /*.is_param =*/ false,
  2051. /*.grad =*/ NULL,
  2052. /*.src =*/ { NULL },
  2053. /*.perf_runs =*/ 0,
  2054. /*.perf_cycles =*/ 0,
  2055. /*.perf_time_us =*/ 0,
  2056. /*.view_src =*/ view_src,
  2057. /*.view_offs =*/ view_offs,
  2058. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2059. /*.name =*/ { 0 },
  2060. /*.extra =*/ NULL,
  2061. /*.padding =*/ { 0 },
  2062. };
  2063. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2064. //ggml_assert_aligned(result->data);
  2065. for (int i = 0; i < n_dims; i++) {
  2066. result->ne[i] = ne[i];
  2067. }
  2068. result->nb[0] = ggml_type_size(type);
  2069. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2070. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2071. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2072. }
  2073. ctx->n_objects++;
  2074. return result;
  2075. }
  2076. struct ggml_tensor * ggml_new_tensor(
  2077. struct ggml_context * ctx,
  2078. enum ggml_type type,
  2079. int n_dims,
  2080. const int64_t * ne) {
  2081. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2082. }
  2083. struct ggml_tensor * ggml_new_tensor_1d(
  2084. struct ggml_context * ctx,
  2085. enum ggml_type type,
  2086. int64_t ne0) {
  2087. return ggml_new_tensor(ctx, type, 1, &ne0);
  2088. }
  2089. struct ggml_tensor * ggml_new_tensor_2d(
  2090. struct ggml_context * ctx,
  2091. enum ggml_type type,
  2092. int64_t ne0,
  2093. int64_t ne1) {
  2094. const int64_t ne[2] = { ne0, ne1 };
  2095. return ggml_new_tensor(ctx, type, 2, ne);
  2096. }
  2097. struct ggml_tensor * ggml_new_tensor_3d(
  2098. struct ggml_context * ctx,
  2099. enum ggml_type type,
  2100. int64_t ne0,
  2101. int64_t ne1,
  2102. int64_t ne2) {
  2103. const int64_t ne[3] = { ne0, ne1, ne2 };
  2104. return ggml_new_tensor(ctx, type, 3, ne);
  2105. }
  2106. struct ggml_tensor * ggml_new_tensor_4d(
  2107. struct ggml_context * ctx,
  2108. enum ggml_type type,
  2109. int64_t ne0,
  2110. int64_t ne1,
  2111. int64_t ne2,
  2112. int64_t ne3) {
  2113. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2114. return ggml_new_tensor(ctx, type, 4, ne);
  2115. }
  2116. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2117. ggml_scratch_save(ctx);
  2118. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2119. ggml_scratch_load(ctx);
  2120. ggml_set_i32(result, value);
  2121. return result;
  2122. }
  2123. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2124. ggml_scratch_save(ctx);
  2125. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2126. ggml_scratch_load(ctx);
  2127. ggml_set_f32(result, value);
  2128. return result;
  2129. }
  2130. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2131. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2132. }
  2133. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2134. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2135. assert(params_size <= GGML_MAX_OP_PARAMS);
  2136. memcpy(tensor->op_params, params, params_size);
  2137. }
  2138. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2139. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2140. return ((const int32_t *)(tensor->op_params))[i];
  2141. }
  2142. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2143. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2144. ((int32_t *)(tensor->op_params))[i] = value;
  2145. }
  2146. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2147. memset(tensor->data, 0, ggml_nbytes(tensor));
  2148. return tensor;
  2149. }
  2150. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2151. const int n = ggml_nrows(tensor);
  2152. const int nc = tensor->ne[0];
  2153. const size_t n1 = tensor->nb[1];
  2154. char * const data = tensor->data;
  2155. switch (tensor->type) {
  2156. case GGML_TYPE_I8:
  2157. {
  2158. assert(tensor->nb[0] == sizeof(int8_t));
  2159. for (int i = 0; i < n; i++) {
  2160. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2161. }
  2162. } break;
  2163. case GGML_TYPE_I16:
  2164. {
  2165. assert(tensor->nb[0] == sizeof(int16_t));
  2166. for (int i = 0; i < n; i++) {
  2167. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2168. }
  2169. } break;
  2170. case GGML_TYPE_I32:
  2171. {
  2172. assert(tensor->nb[0] == sizeof(int32_t));
  2173. for (int i = 0; i < n; i++) {
  2174. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2175. }
  2176. } break;
  2177. case GGML_TYPE_F16:
  2178. {
  2179. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2180. for (int i = 0; i < n; i++) {
  2181. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2182. }
  2183. } break;
  2184. case GGML_TYPE_F32:
  2185. {
  2186. assert(tensor->nb[0] == sizeof(float));
  2187. for (int i = 0; i < n; i++) {
  2188. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2189. }
  2190. } break;
  2191. default:
  2192. {
  2193. GGML_ASSERT(false);
  2194. } break;
  2195. }
  2196. return tensor;
  2197. }
  2198. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2199. const int n = ggml_nrows(tensor);
  2200. const int nc = tensor->ne[0];
  2201. const size_t n1 = tensor->nb[1];
  2202. char * const data = tensor->data;
  2203. switch (tensor->type) {
  2204. case GGML_TYPE_I8:
  2205. {
  2206. assert(tensor->nb[0] == sizeof(int8_t));
  2207. for (int i = 0; i < n; i++) {
  2208. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2209. }
  2210. } break;
  2211. case GGML_TYPE_I16:
  2212. {
  2213. assert(tensor->nb[0] == sizeof(int16_t));
  2214. for (int i = 0; i < n; i++) {
  2215. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2216. }
  2217. } break;
  2218. case GGML_TYPE_I32:
  2219. {
  2220. assert(tensor->nb[0] == sizeof(int32_t));
  2221. for (int i = 0; i < n; i++) {
  2222. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2223. }
  2224. } break;
  2225. case GGML_TYPE_F16:
  2226. {
  2227. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2228. for (int i = 0; i < n; i++) {
  2229. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2230. }
  2231. } break;
  2232. case GGML_TYPE_F32:
  2233. {
  2234. assert(tensor->nb[0] == sizeof(float));
  2235. for (int i = 0; i < n; i++) {
  2236. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2237. }
  2238. } break;
  2239. default:
  2240. {
  2241. GGML_ASSERT(false);
  2242. } break;
  2243. }
  2244. return tensor;
  2245. }
  2246. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2247. const int64_t ne2 = tensor->ne[2];
  2248. const int64_t ne1 = tensor->ne[1];
  2249. const int64_t ne0 = tensor->ne[0];
  2250. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2251. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2252. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2253. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2254. if (i0) {
  2255. * i0 = i0_;
  2256. }
  2257. if (i1) {
  2258. * i1 = i1_;
  2259. }
  2260. if (i2) {
  2261. * i2 = i2_;
  2262. }
  2263. if (i3) {
  2264. * i3 = i3_;
  2265. }
  2266. }
  2267. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2268. if (!ggml_is_contiguous(tensor)) {
  2269. int64_t id[4] = { 0, 0, 0, 0 };
  2270. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2271. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2272. }
  2273. switch (tensor->type) {
  2274. case GGML_TYPE_I8:
  2275. {
  2276. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2277. return ((int8_t *)(tensor->data))[i];
  2278. }
  2279. case GGML_TYPE_I16:
  2280. {
  2281. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2282. return ((int16_t *)(tensor->data))[i];
  2283. }
  2284. case GGML_TYPE_I32:
  2285. {
  2286. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2287. return ((int32_t *)(tensor->data))[i];
  2288. }
  2289. case GGML_TYPE_F16:
  2290. {
  2291. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2292. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2293. }
  2294. case GGML_TYPE_F32:
  2295. {
  2296. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2297. return ((float *)(tensor->data))[i];
  2298. }
  2299. default:
  2300. {
  2301. GGML_ASSERT(false);
  2302. }
  2303. }
  2304. return 0.0f;
  2305. }
  2306. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2307. if (!ggml_is_contiguous(tensor)) {
  2308. int64_t id[4] = { 0, 0, 0, 0 };
  2309. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2310. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2311. return;
  2312. }
  2313. switch (tensor->type) {
  2314. case GGML_TYPE_I8:
  2315. {
  2316. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2317. ((int8_t *)(tensor->data))[i] = value;
  2318. } break;
  2319. case GGML_TYPE_I16:
  2320. {
  2321. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2322. ((int16_t *)(tensor->data))[i] = value;
  2323. } break;
  2324. case GGML_TYPE_I32:
  2325. {
  2326. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2327. ((int32_t *)(tensor->data))[i] = value;
  2328. } break;
  2329. case GGML_TYPE_F16:
  2330. {
  2331. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2332. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2333. } break;
  2334. case GGML_TYPE_F32:
  2335. {
  2336. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2337. ((float *)(tensor->data))[i] = value;
  2338. } break;
  2339. default:
  2340. {
  2341. GGML_ASSERT(false);
  2342. } break;
  2343. }
  2344. }
  2345. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2346. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2347. switch (tensor->type) {
  2348. case GGML_TYPE_I8:
  2349. return ((int8_t *) data)[0];
  2350. case GGML_TYPE_I16:
  2351. return ((int16_t *) data)[0];
  2352. case GGML_TYPE_I32:
  2353. return ((int32_t *) data)[0];
  2354. case GGML_TYPE_F16:
  2355. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2356. case GGML_TYPE_F32:
  2357. return ((float *) data)[0];
  2358. default:
  2359. GGML_ASSERT(false);
  2360. }
  2361. return 0.0f;
  2362. }
  2363. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2364. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2365. switch (tensor->type) {
  2366. case GGML_TYPE_I8:
  2367. {
  2368. ((int8_t *)(data))[0] = value;
  2369. } break;
  2370. case GGML_TYPE_I16:
  2371. {
  2372. ((int16_t *)(data))[0] = value;
  2373. } break;
  2374. case GGML_TYPE_I32:
  2375. {
  2376. ((int32_t *)(data))[0] = value;
  2377. } break;
  2378. case GGML_TYPE_F16:
  2379. {
  2380. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2381. } break;
  2382. case GGML_TYPE_F32:
  2383. {
  2384. ((float *)(data))[0] = value;
  2385. } break;
  2386. default:
  2387. {
  2388. GGML_ASSERT(false);
  2389. } break;
  2390. }
  2391. }
  2392. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2393. if (!ggml_is_contiguous(tensor)) {
  2394. int64_t id[4] = { 0, 0, 0, 0 };
  2395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2396. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2397. }
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2402. return ((int8_t *)(tensor->data))[i];
  2403. }
  2404. case GGML_TYPE_I16:
  2405. {
  2406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2407. return ((int16_t *)(tensor->data))[i];
  2408. }
  2409. case GGML_TYPE_I32:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2412. return ((int32_t *)(tensor->data))[i];
  2413. }
  2414. case GGML_TYPE_F16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2417. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2418. }
  2419. case GGML_TYPE_F32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2422. return ((float *)(tensor->data))[i];
  2423. }
  2424. default:
  2425. {
  2426. GGML_ASSERT(false);
  2427. }
  2428. }
  2429. return 0.0f;
  2430. }
  2431. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2432. if (!ggml_is_contiguous(tensor)) {
  2433. int64_t id[4] = { 0, 0, 0, 0 };
  2434. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2435. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2436. return;
  2437. }
  2438. switch (tensor->type) {
  2439. case GGML_TYPE_I8:
  2440. {
  2441. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2442. ((int8_t *)(tensor->data))[i] = value;
  2443. } break;
  2444. case GGML_TYPE_I16:
  2445. {
  2446. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2447. ((int16_t *)(tensor->data))[i] = value;
  2448. } break;
  2449. case GGML_TYPE_I32:
  2450. {
  2451. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2452. ((int32_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_F16:
  2455. {
  2456. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2457. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2458. } break;
  2459. case GGML_TYPE_F32:
  2460. {
  2461. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2462. ((float *)(tensor->data))[i] = value;
  2463. } break;
  2464. default:
  2465. {
  2466. GGML_ASSERT(false);
  2467. } break;
  2468. }
  2469. }
  2470. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2471. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2472. switch (tensor->type) {
  2473. case GGML_TYPE_I8:
  2474. return ((int8_t *) data)[0];
  2475. case GGML_TYPE_I16:
  2476. return ((int16_t *) data)[0];
  2477. case GGML_TYPE_I32:
  2478. return ((int32_t *) data)[0];
  2479. case GGML_TYPE_F16:
  2480. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2481. case GGML_TYPE_F32:
  2482. return ((float *) data)[0];
  2483. default:
  2484. GGML_ASSERT(false);
  2485. }
  2486. return 0.0f;
  2487. }
  2488. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2489. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2490. switch (tensor->type) {
  2491. case GGML_TYPE_I8:
  2492. {
  2493. ((int8_t *)(data))[0] = value;
  2494. } break;
  2495. case GGML_TYPE_I16:
  2496. {
  2497. ((int16_t *)(data))[0] = value;
  2498. } break;
  2499. case GGML_TYPE_I32:
  2500. {
  2501. ((int32_t *)(data))[0] = value;
  2502. } break;
  2503. case GGML_TYPE_F16:
  2504. {
  2505. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2506. } break;
  2507. case GGML_TYPE_F32:
  2508. {
  2509. ((float *)(data))[0] = value;
  2510. } break;
  2511. default:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. }
  2517. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2518. return tensor->data;
  2519. }
  2520. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2521. assert(tensor->type == GGML_TYPE_F32);
  2522. return (float *)(tensor->data);
  2523. }
  2524. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2525. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2526. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2527. }
  2528. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2529. return tensor->name;
  2530. }
  2531. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2532. strncpy(tensor->name, name, sizeof(tensor->name));
  2533. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2534. return tensor;
  2535. }
  2536. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2537. va_list args;
  2538. va_start(args, fmt);
  2539. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2540. va_end(args);
  2541. return tensor;
  2542. }
  2543. struct ggml_tensor * ggml_view_tensor(
  2544. struct ggml_context * ctx,
  2545. struct ggml_tensor * src) {
  2546. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2547. ggml_format_name(result, "%s (view)", src->name);
  2548. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2549. result->nb[i] = src->nb[i];
  2550. }
  2551. return result;
  2552. }
  2553. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2554. struct ggml_object * obj = ctx->objects_begin;
  2555. char * const mem_buffer = ctx->mem_buffer;
  2556. while (obj != NULL) {
  2557. if (obj->type == GGML_OBJECT_TENSOR) {
  2558. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2559. }
  2560. obj = obj->next;
  2561. }
  2562. return NULL;
  2563. }
  2564. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2565. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2566. obj = obj->next;
  2567. char * const mem_buffer = ctx->mem_buffer;
  2568. while (obj != NULL) {
  2569. if (obj->type == GGML_OBJECT_TENSOR) {
  2570. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2571. }
  2572. obj = obj->next;
  2573. }
  2574. return NULL;
  2575. }
  2576. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2577. struct ggml_object * obj = ctx->objects_begin;
  2578. char * const mem_buffer = ctx->mem_buffer;
  2579. while (obj != NULL) {
  2580. if (obj->type == GGML_OBJECT_TENSOR) {
  2581. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2582. if (strcmp(cur->name, name) == 0) {
  2583. return cur;
  2584. }
  2585. }
  2586. obj = obj->next;
  2587. }
  2588. return NULL;
  2589. }
  2590. ////////////////////////////////////////////////////////////////////////////////
  2591. // ggml_dup
  2592. static struct ggml_tensor * ggml_dup_impl(
  2593. struct ggml_context * ctx,
  2594. struct ggml_tensor * a,
  2595. bool inplace) {
  2596. bool is_node = false;
  2597. if (!inplace && (a->grad)) {
  2598. is_node = true;
  2599. }
  2600. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2601. result->op = GGML_OP_DUP;
  2602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2603. result->src[0] = a;
  2604. return result;
  2605. }
  2606. struct ggml_tensor * ggml_dup(
  2607. struct ggml_context * ctx,
  2608. struct ggml_tensor * a) {
  2609. return ggml_dup_impl(ctx, a, false);
  2610. }
  2611. struct ggml_tensor * ggml_dup_inplace(
  2612. struct ggml_context * ctx,
  2613. struct ggml_tensor * a) {
  2614. return ggml_dup_impl(ctx, a, true);
  2615. }
  2616. // ggml_add
  2617. static struct ggml_tensor * ggml_add_impl(
  2618. struct ggml_context * ctx,
  2619. struct ggml_tensor * a,
  2620. struct ggml_tensor * b,
  2621. bool inplace) {
  2622. // TODO: support less-strict constraint
  2623. // GGML_ASSERT(ggml_can_repeat(b, a));
  2624. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2625. bool is_node = false;
  2626. if (!inplace && (a->grad || b->grad)) {
  2627. // TODO: support backward pass for broadcasting
  2628. GGML_ASSERT(ggml_are_same_shape(a, b));
  2629. is_node = true;
  2630. }
  2631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2632. result->op = GGML_OP_ADD;
  2633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2634. result->src[0] = a;
  2635. result->src[1] = b;
  2636. return result;
  2637. }
  2638. struct ggml_tensor * ggml_add(
  2639. struct ggml_context * ctx,
  2640. struct ggml_tensor * a,
  2641. struct ggml_tensor * b) {
  2642. return ggml_add_impl(ctx, a, b, false);
  2643. }
  2644. struct ggml_tensor * ggml_add_inplace(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a,
  2647. struct ggml_tensor * b) {
  2648. return ggml_add_impl(ctx, a, b, true);
  2649. }
  2650. // ggml_add_cast
  2651. static struct ggml_tensor * ggml_add_cast_impl(
  2652. struct ggml_context * ctx,
  2653. struct ggml_tensor * a,
  2654. struct ggml_tensor * b,
  2655. enum ggml_type type) {
  2656. // TODO: support less-strict constraint
  2657. // GGML_ASSERT(ggml_can_repeat(b, a));
  2658. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2659. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2660. bool is_node = false;
  2661. if (a->grad || b->grad) {
  2662. // TODO: support backward pass for broadcasting
  2663. GGML_ASSERT(ggml_are_same_shape(a, b));
  2664. is_node = true;
  2665. }
  2666. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2667. result->op = GGML_OP_ADD;
  2668. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2669. result->src[0] = a;
  2670. result->src[1] = b;
  2671. return result;
  2672. }
  2673. struct ggml_tensor * ggml_add_cast(
  2674. struct ggml_context * ctx,
  2675. struct ggml_tensor * a,
  2676. struct ggml_tensor * b,
  2677. enum ggml_type type) {
  2678. return ggml_add_cast_impl(ctx, a, b, type);
  2679. }
  2680. // ggml_add1
  2681. static struct ggml_tensor * ggml_add1_impl(
  2682. struct ggml_context * ctx,
  2683. struct ggml_tensor * a,
  2684. struct ggml_tensor * b,
  2685. bool inplace) {
  2686. GGML_ASSERT(ggml_is_scalar(b));
  2687. GGML_ASSERT(ggml_is_padded_1d(a));
  2688. bool is_node = false;
  2689. if (a->grad || b->grad) {
  2690. is_node = true;
  2691. }
  2692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2693. result->op = GGML_OP_ADD1;
  2694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2695. result->src[0] = a;
  2696. result->src[1] = b;
  2697. return result;
  2698. }
  2699. struct ggml_tensor * ggml_add1(
  2700. struct ggml_context * ctx,
  2701. struct ggml_tensor * a,
  2702. struct ggml_tensor * b) {
  2703. return ggml_add1_impl(ctx, a, b, false);
  2704. }
  2705. struct ggml_tensor * ggml_add1_inplace(
  2706. struct ggml_context * ctx,
  2707. struct ggml_tensor * a,
  2708. struct ggml_tensor * b) {
  2709. return ggml_add1_impl(ctx, a, b, true);
  2710. }
  2711. // ggml_acc
  2712. static struct ggml_tensor * ggml_acc_impl(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b,
  2716. size_t nb1,
  2717. size_t nb2,
  2718. size_t nb3,
  2719. size_t offset,
  2720. bool inplace) {
  2721. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2722. GGML_ASSERT(ggml_is_contiguous(a));
  2723. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2724. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2725. bool is_node = false;
  2726. if (!inplace && (a->grad || b->grad)) {
  2727. is_node = true;
  2728. }
  2729. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2730. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2731. ggml_set_op_params(result, params, sizeof(params));
  2732. result->op = GGML_OP_ACC;
  2733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2734. result->src[0] = a;
  2735. result->src[1] = b;
  2736. return result;
  2737. }
  2738. struct ggml_tensor * ggml_acc(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b,
  2742. size_t nb1,
  2743. size_t nb2,
  2744. size_t nb3,
  2745. size_t offset) {
  2746. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2747. }
  2748. struct ggml_tensor * ggml_acc_inplace(
  2749. struct ggml_context * ctx,
  2750. struct ggml_tensor * a,
  2751. struct ggml_tensor * b,
  2752. size_t nb1,
  2753. size_t nb2,
  2754. size_t nb3,
  2755. size_t offset) {
  2756. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2757. }
  2758. // ggml_sub
  2759. static struct ggml_tensor * ggml_sub_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. bool inplace) {
  2764. GGML_ASSERT(ggml_are_same_shape(a, b));
  2765. bool is_node = false;
  2766. if (!inplace && (a->grad || b->grad)) {
  2767. is_node = true;
  2768. }
  2769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2770. result->op = GGML_OP_SUB;
  2771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2772. result->src[0] = a;
  2773. result->src[1] = b;
  2774. return result;
  2775. }
  2776. struct ggml_tensor * ggml_sub(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b) {
  2780. return ggml_sub_impl(ctx, a, b, false);
  2781. }
  2782. struct ggml_tensor * ggml_sub_inplace(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a,
  2785. struct ggml_tensor * b) {
  2786. return ggml_sub_impl(ctx, a, b, true);
  2787. }
  2788. // ggml_mul
  2789. static struct ggml_tensor * ggml_mul_impl(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. struct ggml_tensor * b,
  2793. bool inplace) {
  2794. // TODO: support less-strict constraint
  2795. // GGML_ASSERT(ggml_can_repeat(b, a));
  2796. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2797. bool is_node = false;
  2798. if (!inplace && (a->grad || b->grad)) {
  2799. // TODO: support backward pass for broadcasting
  2800. GGML_ASSERT(ggml_are_same_shape(a, b));
  2801. is_node = true;
  2802. }
  2803. if (inplace) {
  2804. GGML_ASSERT(!is_node);
  2805. }
  2806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2807. result->op = GGML_OP_MUL;
  2808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2809. result->src[0] = a;
  2810. result->src[1] = b;
  2811. return result;
  2812. }
  2813. struct ggml_tensor * ggml_mul(
  2814. struct ggml_context * ctx,
  2815. struct ggml_tensor * a,
  2816. struct ggml_tensor * b) {
  2817. return ggml_mul_impl(ctx, a, b, false);
  2818. }
  2819. struct ggml_tensor * ggml_mul_inplace(
  2820. struct ggml_context * ctx,
  2821. struct ggml_tensor * a,
  2822. struct ggml_tensor * b) {
  2823. return ggml_mul_impl(ctx, a, b, true);
  2824. }
  2825. // ggml_div
  2826. static struct ggml_tensor * ggml_div_impl(
  2827. struct ggml_context * ctx,
  2828. struct ggml_tensor * a,
  2829. struct ggml_tensor * b,
  2830. bool inplace) {
  2831. GGML_ASSERT(ggml_are_same_shape(a, b));
  2832. bool is_node = false;
  2833. if (!inplace && (a->grad || b->grad)) {
  2834. is_node = true;
  2835. }
  2836. if (inplace) {
  2837. GGML_ASSERT(!is_node);
  2838. }
  2839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2840. result->op = GGML_OP_DIV;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src[0] = a;
  2843. result->src[1] = b;
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_div(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_div_impl(ctx, a, b, false);
  2851. }
  2852. struct ggml_tensor * ggml_div_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_div_impl(ctx, a, b, true);
  2857. }
  2858. // ggml_sqr
  2859. static struct ggml_tensor * ggml_sqr_impl(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. bool inplace) {
  2863. bool is_node = false;
  2864. if (!inplace && (a->grad)) {
  2865. is_node = true;
  2866. }
  2867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2868. result->op = GGML_OP_SQR;
  2869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2870. result->src[0] = a;
  2871. return result;
  2872. }
  2873. struct ggml_tensor * ggml_sqr(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a) {
  2876. return ggml_sqr_impl(ctx, a, false);
  2877. }
  2878. struct ggml_tensor * ggml_sqr_inplace(
  2879. struct ggml_context * ctx,
  2880. struct ggml_tensor * a) {
  2881. return ggml_sqr_impl(ctx, a, true);
  2882. }
  2883. // ggml_sqrt
  2884. static struct ggml_tensor * ggml_sqrt_impl(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a,
  2887. bool inplace) {
  2888. bool is_node = false;
  2889. if (!inplace && (a->grad)) {
  2890. is_node = true;
  2891. }
  2892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2893. result->op = GGML_OP_SQRT;
  2894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2895. result->src[0] = a;
  2896. return result;
  2897. }
  2898. struct ggml_tensor * ggml_sqrt(
  2899. struct ggml_context * ctx,
  2900. struct ggml_tensor * a) {
  2901. return ggml_sqrt_impl(ctx, a, false);
  2902. }
  2903. struct ggml_tensor * ggml_sqrt_inplace(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a) {
  2906. return ggml_sqrt_impl(ctx, a, true);
  2907. }
  2908. // ggml_log
  2909. static struct ggml_tensor * ggml_log_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. bool inplace) {
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad)) {
  2915. is_node = true;
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_LOG;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_log(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_log_impl(ctx, a, false);
  2927. }
  2928. struct ggml_tensor * ggml_log_inplace(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a) {
  2931. return ggml_log_impl(ctx, a, true);
  2932. }
  2933. // ggml_sum
  2934. struct ggml_tensor * ggml_sum(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a) {
  2937. bool is_node = false;
  2938. if (a->grad) {
  2939. is_node = true;
  2940. }
  2941. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2942. result->op = GGML_OP_SUM;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src[0] = a;
  2945. return result;
  2946. }
  2947. // ggml_sum_rows
  2948. struct ggml_tensor * ggml_sum_rows(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. bool is_node = false;
  2952. if (a->grad) {
  2953. is_node = true;
  2954. }
  2955. int64_t ne[4] = {1,1,1,1};
  2956. for (int i=1; i<a->n_dims; ++i) {
  2957. ne[i] = a->ne[i];
  2958. }
  2959. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2960. result->op = GGML_OP_SUM_ROWS;
  2961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2962. result->src[0] = a;
  2963. return result;
  2964. }
  2965. // ggml_mean
  2966. struct ggml_tensor * ggml_mean(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a) {
  2969. bool is_node = false;
  2970. if (a->grad) {
  2971. GGML_ASSERT(false); // TODO: implement
  2972. is_node = true;
  2973. }
  2974. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2975. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2976. result->op = GGML_OP_MEAN;
  2977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2978. result->src[0] = a;
  2979. return result;
  2980. }
  2981. // ggml_argmax
  2982. struct ggml_tensor * ggml_argmax(
  2983. struct ggml_context * ctx,
  2984. struct ggml_tensor * a) {
  2985. GGML_ASSERT(ggml_is_matrix(a));
  2986. bool is_node = false;
  2987. if (a->grad) {
  2988. GGML_ASSERT(false);
  2989. is_node = true;
  2990. }
  2991. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  2992. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  2993. result->op = GGML_OP_ARGMAX;
  2994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2995. result->src[0] = a;
  2996. return result;
  2997. }
  2998. // ggml_repeat
  2999. struct ggml_tensor * ggml_repeat(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. struct ggml_tensor * b) {
  3003. GGML_ASSERT(ggml_can_repeat(a, b));
  3004. bool is_node = false;
  3005. if (a->grad) {
  3006. is_node = true;
  3007. }
  3008. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3009. result->op = GGML_OP_REPEAT;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. return result;
  3013. }
  3014. // ggml_repeat_back
  3015. struct ggml_tensor * ggml_repeat_back(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b) {
  3019. GGML_ASSERT(ggml_can_repeat(b, a));
  3020. bool is_node = false;
  3021. if (a->grad) {
  3022. is_node = true;
  3023. }
  3024. if (ggml_are_same_shape(a, b) && !is_node) {
  3025. return a;
  3026. }
  3027. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3028. result->op = GGML_OP_REPEAT_BACK;
  3029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3030. result->src[0] = a;
  3031. return result;
  3032. }
  3033. // ggml_concat
  3034. struct ggml_tensor * ggml_concat(
  3035. struct ggml_context* ctx,
  3036. struct ggml_tensor* a,
  3037. struct ggml_tensor* b) {
  3038. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3039. bool is_node = false;
  3040. if (a->grad || b->grad) {
  3041. is_node = true;
  3042. }
  3043. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3044. result->op = GGML_OP_CONCAT;
  3045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3046. result->src[0] = a;
  3047. result->src[1] = b;
  3048. return result;
  3049. }
  3050. // ggml_abs
  3051. struct ggml_tensor * ggml_abs(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a) {
  3054. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3055. }
  3056. struct ggml_tensor * ggml_abs_inplace(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a) {
  3059. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3060. }
  3061. // ggml_sgn
  3062. struct ggml_tensor * ggml_sgn(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a) {
  3065. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3066. }
  3067. struct ggml_tensor * ggml_sgn_inplace(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3071. }
  3072. // ggml_neg
  3073. struct ggml_tensor * ggml_neg(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a) {
  3076. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3077. }
  3078. struct ggml_tensor * ggml_neg_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3082. }
  3083. // ggml_step
  3084. struct ggml_tensor * ggml_step(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3088. }
  3089. struct ggml_tensor * ggml_step_inplace(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3093. }
  3094. // ggml_tanh
  3095. struct ggml_tensor * ggml_tanh(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3099. }
  3100. struct ggml_tensor * ggml_tanh_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3104. }
  3105. // ggml_elu
  3106. struct ggml_tensor * ggml_elu(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3110. }
  3111. struct ggml_tensor * ggml_elu_inplace(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3115. }
  3116. // ggml_relu
  3117. struct ggml_tensor * ggml_relu(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3121. }
  3122. struct ggml_tensor * ggml_relu_inplace(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3126. }
  3127. // ggml_gelu
  3128. struct ggml_tensor * ggml_gelu(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3132. }
  3133. struct ggml_tensor * ggml_gelu_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3137. }
  3138. // ggml_gelu_quick
  3139. struct ggml_tensor * ggml_gelu_quick(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3143. }
  3144. struct ggml_tensor * ggml_gelu_quick_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3148. }
  3149. // ggml_silu
  3150. struct ggml_tensor * ggml_silu(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3154. }
  3155. struct ggml_tensor * ggml_silu_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3159. }
  3160. // ggml_silu_back
  3161. struct ggml_tensor * ggml_silu_back(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a,
  3164. struct ggml_tensor * b) {
  3165. bool is_node = false;
  3166. if (a->grad || b->grad) {
  3167. // TODO: implement backward
  3168. is_node = true;
  3169. }
  3170. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3171. result->op = GGML_OP_SILU_BACK;
  3172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3173. result->src[0] = a;
  3174. result->src[1] = b;
  3175. return result;
  3176. }
  3177. // ggml_norm
  3178. static struct ggml_tensor * ggml_norm_impl(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. float eps,
  3182. bool inplace) {
  3183. bool is_node = false;
  3184. if (!inplace && (a->grad)) {
  3185. GGML_ASSERT(false); // TODO: implement backward
  3186. is_node = true;
  3187. }
  3188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3189. ggml_set_op_params(result, &eps, sizeof(eps));
  3190. result->op = GGML_OP_NORM;
  3191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3192. result->src[0] = a;
  3193. return result;
  3194. }
  3195. struct ggml_tensor * ggml_norm(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. float eps) {
  3199. return ggml_norm_impl(ctx, a, eps, false);
  3200. }
  3201. struct ggml_tensor * ggml_norm_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a,
  3204. float eps) {
  3205. return ggml_norm_impl(ctx, a, eps, true);
  3206. }
  3207. // ggml_rms_norm
  3208. static struct ggml_tensor * ggml_rms_norm_impl(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a,
  3211. float eps,
  3212. bool inplace) {
  3213. bool is_node = false;
  3214. if (!inplace && (a->grad)) {
  3215. is_node = true;
  3216. }
  3217. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3218. ggml_set_op_params(result, &eps, sizeof(eps));
  3219. result->op = GGML_OP_RMS_NORM;
  3220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3221. result->src[0] = a;
  3222. return result;
  3223. }
  3224. struct ggml_tensor * ggml_rms_norm(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a,
  3227. float eps) {
  3228. return ggml_rms_norm_impl(ctx, a, eps, false);
  3229. }
  3230. struct ggml_tensor * ggml_rms_norm_inplace(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a,
  3233. float eps) {
  3234. return ggml_rms_norm_impl(ctx, a, eps, true);
  3235. }
  3236. // ggml_rms_norm_back
  3237. struct ggml_tensor * ggml_rms_norm_back(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b,
  3241. float eps) {
  3242. bool is_node = false;
  3243. if (a->grad) {
  3244. // TODO: implement backward
  3245. is_node = true;
  3246. }
  3247. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3248. ggml_set_op_params(result, &eps, sizeof(eps));
  3249. result->op = GGML_OP_RMS_NORM_BACK;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src[0] = a;
  3252. result->src[1] = b;
  3253. return result;
  3254. }
  3255. // ggml_group_norm
  3256. static struct ggml_tensor * ggml_group_norm_impl(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. int n_groups,
  3260. bool inplace) {
  3261. bool is_node = false;
  3262. if (!inplace && (a->grad)) {
  3263. GGML_ASSERT(false); // TODO: implement backward
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3267. result->op = GGML_OP_GROUP_NORM;
  3268. result->op_params[0] = n_groups;
  3269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3270. result->src[0] = a;
  3271. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3272. return result;
  3273. }
  3274. struct ggml_tensor * ggml_group_norm(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a,
  3277. int n_groups) {
  3278. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3279. }
  3280. struct ggml_tensor * ggml_group_norm_inplace(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. int n_groups) {
  3284. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3285. }
  3286. // ggml_mul_mat
  3287. struct ggml_tensor * ggml_mul_mat(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. struct ggml_tensor * b) {
  3291. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3292. GGML_ASSERT(!ggml_is_transposed(a));
  3293. bool is_node = false;
  3294. if (a->grad || b->grad) {
  3295. is_node = true;
  3296. }
  3297. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3299. result->op = GGML_OP_MUL_MAT;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. result->src[1] = b;
  3303. return result;
  3304. }
  3305. // ggml_out_prod
  3306. struct ggml_tensor * ggml_out_prod(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. struct ggml_tensor * b) {
  3310. GGML_ASSERT(ggml_can_out_prod(a, b));
  3311. GGML_ASSERT(!ggml_is_transposed(a));
  3312. bool is_node = false;
  3313. if (a->grad || b->grad) {
  3314. is_node = true;
  3315. }
  3316. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3317. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3318. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3319. result->op = GGML_OP_OUT_PROD;
  3320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3321. result->src[0] = a;
  3322. result->src[1] = b;
  3323. return result;
  3324. }
  3325. // ggml_scale
  3326. static struct ggml_tensor * ggml_scale_impl(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. struct ggml_tensor * b,
  3330. bool inplace) {
  3331. GGML_ASSERT(ggml_is_scalar(b));
  3332. GGML_ASSERT(ggml_is_padded_1d(a));
  3333. bool is_node = false;
  3334. if (a->grad || b->grad) {
  3335. is_node = true;
  3336. }
  3337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3338. result->op = GGML_OP_SCALE;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_scale(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a,
  3347. struct ggml_tensor * b) {
  3348. return ggml_scale_impl(ctx, a, b, false);
  3349. }
  3350. struct ggml_tensor * ggml_scale_inplace(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. return ggml_scale_impl(ctx, a, b, true);
  3355. }
  3356. // ggml_set
  3357. static struct ggml_tensor * ggml_set_impl(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a,
  3360. struct ggml_tensor * b,
  3361. size_t nb1,
  3362. size_t nb2,
  3363. size_t nb3,
  3364. size_t offset,
  3365. bool inplace) {
  3366. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3367. bool is_node = false;
  3368. if (a->grad || b->grad) {
  3369. is_node = true;
  3370. }
  3371. // make a view of the destination
  3372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3373. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3374. ggml_set_op_params(result, params, sizeof(params));
  3375. result->op = GGML_OP_SET;
  3376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3377. result->src[0] = a;
  3378. result->src[1] = b;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_set(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. struct ggml_tensor * b,
  3385. size_t nb1,
  3386. size_t nb2,
  3387. size_t nb3,
  3388. size_t offset) {
  3389. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3390. }
  3391. struct ggml_tensor * ggml_set_inplace(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a,
  3394. struct ggml_tensor * b,
  3395. size_t nb1,
  3396. size_t nb2,
  3397. size_t nb3,
  3398. size_t offset) {
  3399. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3400. }
  3401. struct ggml_tensor * ggml_set_1d(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b,
  3405. size_t offset) {
  3406. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3407. }
  3408. struct ggml_tensor * ggml_set_1d_inplace(
  3409. struct ggml_context * ctx,
  3410. struct ggml_tensor * a,
  3411. struct ggml_tensor * b,
  3412. size_t offset) {
  3413. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3414. }
  3415. struct ggml_tensor * ggml_set_2d(
  3416. struct ggml_context * ctx,
  3417. struct ggml_tensor * a,
  3418. struct ggml_tensor * b,
  3419. size_t nb1,
  3420. size_t offset) {
  3421. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3422. }
  3423. struct ggml_tensor * ggml_set_2d_inplace(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. struct ggml_tensor * b,
  3427. size_t nb1,
  3428. size_t offset) {
  3429. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3430. }
  3431. // ggml_cpy
  3432. static struct ggml_tensor * ggml_cpy_impl(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. struct ggml_tensor * b,
  3436. bool inplace) {
  3437. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3438. bool is_node = false;
  3439. if (!inplace && (a->grad || b->grad)) {
  3440. is_node = true;
  3441. }
  3442. // make a view of the destination
  3443. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3444. if (strlen(b->name) > 0) {
  3445. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3446. } else {
  3447. ggml_format_name(result, "%s (copy)", a->name);
  3448. }
  3449. result->op = GGML_OP_CPY;
  3450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3451. result->src[0] = a;
  3452. result->src[1] = b;
  3453. return result;
  3454. }
  3455. struct ggml_tensor * ggml_cpy(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b) {
  3459. return ggml_cpy_impl(ctx, a, b, false);
  3460. }
  3461. struct ggml_tensor * ggml_cpy_inplace(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. return ggml_cpy_impl(ctx, a, b, true);
  3466. }
  3467. // ggml_cont
  3468. static struct ggml_tensor * ggml_cont_impl(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. bool inplace) {
  3472. bool is_node = false;
  3473. if (!inplace && a->grad) {
  3474. is_node = true;
  3475. }
  3476. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3477. ggml_format_name(result, "%s (cont)", a->name);
  3478. result->op = GGML_OP_CONT;
  3479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3480. result->src[0] = a;
  3481. return result;
  3482. }
  3483. struct ggml_tensor * ggml_cont(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a) {
  3486. return ggml_cont_impl(ctx, a, false);
  3487. }
  3488. struct ggml_tensor * ggml_cont_inplace(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a) {
  3491. return ggml_cont_impl(ctx, a, true);
  3492. }
  3493. // make contiguous, with new shape
  3494. GGML_API struct ggml_tensor * ggml_cont_1d(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. int64_t ne0) {
  3498. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3499. }
  3500. GGML_API struct ggml_tensor * ggml_cont_2d(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. int64_t ne0,
  3504. int64_t ne1) {
  3505. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3506. }
  3507. GGML_API struct ggml_tensor * ggml_cont_3d(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. int64_t ne0,
  3511. int64_t ne1,
  3512. int64_t ne2) {
  3513. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3514. }
  3515. struct ggml_tensor * ggml_cont_4d(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. int64_t ne0,
  3519. int64_t ne1,
  3520. int64_t ne2,
  3521. int64_t ne3) {
  3522. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3523. bool is_node = false;
  3524. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3525. ggml_format_name(result, "%s (cont)", a->name);
  3526. result->op = GGML_OP_CONT;
  3527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3528. result->src[0] = a;
  3529. return result;
  3530. }
  3531. // ggml_reshape
  3532. struct ggml_tensor * ggml_reshape(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a,
  3535. struct ggml_tensor * b) {
  3536. GGML_ASSERT(ggml_is_contiguous(a));
  3537. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3538. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3539. bool is_node = false;
  3540. if (a->grad) {
  3541. is_node = true;
  3542. }
  3543. if (b->grad) {
  3544. // gradient propagation is not supported
  3545. //GGML_ASSERT(false);
  3546. }
  3547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3548. ggml_format_name(result, "%s (reshaped)", a->name);
  3549. result->op = GGML_OP_RESHAPE;
  3550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3551. result->src[0] = a;
  3552. return result;
  3553. }
  3554. struct ggml_tensor * ggml_reshape_1d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0) {
  3558. GGML_ASSERT(ggml_is_contiguous(a));
  3559. GGML_ASSERT(ggml_nelements(a) == ne0);
  3560. bool is_node = false;
  3561. if (a->grad) {
  3562. is_node = true;
  3563. }
  3564. const int64_t ne[1] = { ne0 };
  3565. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3566. ggml_format_name(result, "%s (reshaped)", a->name);
  3567. result->op = GGML_OP_RESHAPE;
  3568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3569. result->src[0] = a;
  3570. return result;
  3571. }
  3572. struct ggml_tensor * ggml_reshape_2d(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. int64_t ne0,
  3576. int64_t ne1) {
  3577. GGML_ASSERT(ggml_is_contiguous(a));
  3578. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3579. bool is_node = false;
  3580. if (a->grad) {
  3581. is_node = true;
  3582. }
  3583. const int64_t ne[2] = { ne0, ne1 };
  3584. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3585. ggml_format_name(result, "%s (reshaped)", a->name);
  3586. result->op = GGML_OP_RESHAPE;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src[0] = a;
  3589. return result;
  3590. }
  3591. struct ggml_tensor * ggml_reshape_3d(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. int64_t ne0,
  3595. int64_t ne1,
  3596. int64_t ne2) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. is_node = true;
  3602. }
  3603. const int64_t ne[3] = { ne0, ne1, ne2 };
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3605. ggml_format_name(result, "%s (reshaped)", a->name);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_reshape_4d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1,
  3616. int64_t ne2,
  3617. int64_t ne3) {
  3618. GGML_ASSERT(ggml_is_contiguous(a));
  3619. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3620. bool is_node = false;
  3621. if (a->grad) {
  3622. is_node = true;
  3623. }
  3624. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3625. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3626. ggml_format_name(result, "%s (reshaped)", a->name);
  3627. result->op = GGML_OP_RESHAPE;
  3628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3629. result->src[0] = a;
  3630. return result;
  3631. }
  3632. static struct ggml_tensor * ggml_view_impl(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a,
  3635. int n_dims,
  3636. const int64_t * ne,
  3637. size_t offset) {
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3643. ggml_format_name(result, "%s (view)", a->name);
  3644. ggml_set_op_params(result, &offset, sizeof(offset));
  3645. result->op = GGML_OP_VIEW;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. // ggml_view_1d
  3651. struct ggml_tensor * ggml_view_1d(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. int64_t ne0,
  3655. size_t offset) {
  3656. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3657. return result;
  3658. }
  3659. // ggml_view_2d
  3660. struct ggml_tensor * ggml_view_2d(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a,
  3663. int64_t ne0,
  3664. int64_t ne1,
  3665. size_t nb1,
  3666. size_t offset) {
  3667. const int64_t ne[2] = { ne0, ne1 };
  3668. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3669. result->nb[1] = nb1;
  3670. result->nb[2] = result->nb[1]*ne1;
  3671. result->nb[3] = result->nb[2];
  3672. return result;
  3673. }
  3674. // ggml_view_3d
  3675. struct ggml_tensor * ggml_view_3d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1,
  3680. int64_t ne2,
  3681. size_t nb1,
  3682. size_t nb2,
  3683. size_t offset) {
  3684. const int64_t ne[3] = { ne0, ne1, ne2 };
  3685. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3686. result->nb[1] = nb1;
  3687. result->nb[2] = nb2;
  3688. result->nb[3] = result->nb[2]*ne2;
  3689. return result;
  3690. }
  3691. // ggml_view_4d
  3692. struct ggml_tensor * ggml_view_4d(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. int64_t ne0,
  3696. int64_t ne1,
  3697. int64_t ne2,
  3698. int64_t ne3,
  3699. size_t nb1,
  3700. size_t nb2,
  3701. size_t nb3,
  3702. size_t offset) {
  3703. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3704. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3705. result->nb[1] = nb1;
  3706. result->nb[2] = nb2;
  3707. result->nb[3] = nb3;
  3708. return result;
  3709. }
  3710. // ggml_permute
  3711. struct ggml_tensor * ggml_permute(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. int axis0,
  3715. int axis1,
  3716. int axis2,
  3717. int axis3) {
  3718. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3719. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3720. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3721. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3722. GGML_ASSERT(axis0 != axis1);
  3723. GGML_ASSERT(axis0 != axis2);
  3724. GGML_ASSERT(axis0 != axis3);
  3725. GGML_ASSERT(axis1 != axis2);
  3726. GGML_ASSERT(axis1 != axis3);
  3727. GGML_ASSERT(axis2 != axis3);
  3728. bool is_node = false;
  3729. if (a->grad) {
  3730. is_node = true;
  3731. }
  3732. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3733. ggml_format_name(result, "%s (permuted)", a->name);
  3734. int ne[GGML_MAX_DIMS];
  3735. int nb[GGML_MAX_DIMS];
  3736. ne[axis0] = a->ne[0];
  3737. ne[axis1] = a->ne[1];
  3738. ne[axis2] = a->ne[2];
  3739. ne[axis3] = a->ne[3];
  3740. nb[axis0] = a->nb[0];
  3741. nb[axis1] = a->nb[1];
  3742. nb[axis2] = a->nb[2];
  3743. nb[axis3] = a->nb[3];
  3744. result->ne[0] = ne[0];
  3745. result->ne[1] = ne[1];
  3746. result->ne[2] = ne[2];
  3747. result->ne[3] = ne[3];
  3748. result->nb[0] = nb[0];
  3749. result->nb[1] = nb[1];
  3750. result->nb[2] = nb[2];
  3751. result->nb[3] = nb[3];
  3752. result->op = GGML_OP_PERMUTE;
  3753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3754. result->src[0] = a;
  3755. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3756. ggml_set_op_params(result, params, sizeof(params));
  3757. return result;
  3758. }
  3759. // ggml_transpose
  3760. struct ggml_tensor * ggml_transpose(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a) {
  3763. bool is_node = false;
  3764. if (a->grad) {
  3765. is_node = true;
  3766. }
  3767. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3768. ggml_format_name(result, "%s (transposed)", a->name);
  3769. result->ne[0] = a->ne[1];
  3770. result->ne[1] = a->ne[0];
  3771. result->nb[0] = a->nb[1];
  3772. result->nb[1] = a->nb[0];
  3773. result->op = GGML_OP_TRANSPOSE;
  3774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3775. result->src[0] = a;
  3776. return result;
  3777. }
  3778. // ggml_get_rows
  3779. struct ggml_tensor * ggml_get_rows(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b) {
  3783. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3784. bool is_node = false;
  3785. if (a->grad || b->grad) {
  3786. is_node = true;
  3787. }
  3788. // TODO: implement non F32 return
  3789. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3790. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3791. result->op = GGML_OP_GET_ROWS;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. result->src[1] = b;
  3795. return result;
  3796. }
  3797. // ggml_get_rows_back
  3798. struct ggml_tensor * ggml_get_rows_back(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b,
  3802. struct ggml_tensor * c) {
  3803. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3804. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3805. bool is_node = false;
  3806. if (a->grad || b->grad) {
  3807. is_node = true;
  3808. }
  3809. // TODO: implement non F32 return
  3810. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3811. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3812. result->op = GGML_OP_GET_ROWS_BACK;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src[0] = a;
  3815. result->src[1] = b;
  3816. return result;
  3817. }
  3818. // ggml_diag
  3819. struct ggml_tensor * ggml_diag(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a) {
  3822. GGML_ASSERT(a->ne[1] == 1);
  3823. bool is_node = false;
  3824. if (a->grad) {
  3825. is_node = true;
  3826. }
  3827. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3828. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3829. result->op = GGML_OP_DIAG;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src[0] = a;
  3832. return result;
  3833. }
  3834. // ggml_diag_mask_inf
  3835. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a,
  3838. int n_past,
  3839. bool inplace) {
  3840. bool is_node = false;
  3841. if (a->grad) {
  3842. is_node = true;
  3843. }
  3844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3845. int32_t params[] = { n_past };
  3846. ggml_set_op_params(result, params, sizeof(params));
  3847. result->op = GGML_OP_DIAG_MASK_INF;
  3848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3849. result->src[0] = a;
  3850. return result;
  3851. }
  3852. struct ggml_tensor * ggml_diag_mask_inf(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. int n_past) {
  3856. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3857. }
  3858. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. int n_past) {
  3862. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3863. }
  3864. // ggml_diag_mask_zero
  3865. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. int n_past,
  3869. bool inplace) {
  3870. bool is_node = false;
  3871. if (a->grad) {
  3872. is_node = true;
  3873. }
  3874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3875. int32_t params[] = { n_past };
  3876. ggml_set_op_params(result, params, sizeof(params));
  3877. result->op = GGML_OP_DIAG_MASK_ZERO;
  3878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3879. result->src[0] = a;
  3880. return result;
  3881. }
  3882. struct ggml_tensor * ggml_diag_mask_zero(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. int n_past) {
  3886. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3887. }
  3888. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. int n_past) {
  3892. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3893. }
  3894. // ggml_soft_max
  3895. static struct ggml_tensor * ggml_soft_max_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. bool inplace) {
  3899. bool is_node = false;
  3900. if (a->grad) {
  3901. is_node = true;
  3902. }
  3903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3904. result->op = GGML_OP_SOFT_MAX;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_soft_max(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a) {
  3912. return ggml_soft_max_impl(ctx, a, false);
  3913. }
  3914. struct ggml_tensor * ggml_soft_max_inplace(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a) {
  3917. return ggml_soft_max_impl(ctx, a, true);
  3918. }
  3919. // ggml_soft_max_back
  3920. static struct ggml_tensor * ggml_soft_max_back_impl(
  3921. struct ggml_context * ctx,
  3922. struct ggml_tensor * a,
  3923. struct ggml_tensor * b,
  3924. bool inplace) {
  3925. bool is_node = false;
  3926. if (a->grad || b->grad) {
  3927. is_node = true; // TODO : implement backward pass
  3928. }
  3929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3930. result->op = GGML_OP_SOFT_MAX_BACK;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src[0] = a;
  3933. result->src[1] = b;
  3934. return result;
  3935. }
  3936. struct ggml_tensor * ggml_soft_max_back(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_soft_max_back_impl(ctx, a, b, false);
  3941. }
  3942. struct ggml_tensor * ggml_soft_max_back_inplace(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b) {
  3946. return ggml_soft_max_back_impl(ctx, a, b, true);
  3947. }
  3948. // ggml_rope
  3949. static struct ggml_tensor * ggml_rope_impl(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. int n_dims,
  3954. int mode,
  3955. int n_ctx,
  3956. float freq_base,
  3957. float freq_scale,
  3958. float xpos_base,
  3959. bool xpos_down,
  3960. bool inplace) {
  3961. GGML_ASSERT(ggml_is_vector(b));
  3962. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3963. GGML_ASSERT(a->ne[2] == b->ne[0]);
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  3970. memcpy(params + 4, &freq_base, sizeof(float));
  3971. memcpy(params + 5, &freq_scale, sizeof(float));
  3972. memcpy(params + 6, &xpos_base, sizeof(float));
  3973. memcpy(params + 7, &xpos_down, sizeof(bool));
  3974. ggml_set_op_params(result, params, sizeof(params));
  3975. result->op = GGML_OP_ROPE;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. result->src[1] = b;
  3979. return result;
  3980. }
  3981. struct ggml_tensor * ggml_rope(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. int n_dims,
  3986. int mode,
  3987. int n_ctx) {
  3988. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  3989. }
  3990. struct ggml_tensor * ggml_rope_inplace(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b,
  3994. int n_dims,
  3995. int mode,
  3996. int n_ctx) {
  3997. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  3998. }
  3999. struct ggml_tensor * ggml_rope_custom(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b,
  4003. int n_dims,
  4004. int mode,
  4005. int n_ctx,
  4006. float freq_base,
  4007. float freq_scale) {
  4008. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  4009. }
  4010. struct ggml_tensor * ggml_rope_custom_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b,
  4014. int n_dims,
  4015. int mode,
  4016. int n_ctx,
  4017. float freq_base,
  4018. float freq_scale) {
  4019. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  4020. }
  4021. struct ggml_tensor * ggml_rope_xpos_inplace(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. struct ggml_tensor * b,
  4025. int n_dims,
  4026. float base,
  4027. bool down) {
  4028. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  4029. }
  4030. // ggml_rope_back
  4031. struct ggml_tensor * ggml_rope_back(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b,
  4035. int n_dims,
  4036. int mode,
  4037. int n_ctx,
  4038. float freq_base,
  4039. float freq_scale,
  4040. float xpos_base,
  4041. bool xpos_down) {
  4042. GGML_ASSERT(ggml_is_vector(b));
  4043. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4044. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4045. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4046. bool is_node = false;
  4047. if (a->grad) {
  4048. is_node = false; // TODO: implement backward
  4049. }
  4050. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4051. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  4052. memcpy(params + 4, &freq_base, sizeof(float));
  4053. memcpy(params + 5, &freq_scale, sizeof(float));
  4054. memcpy(params + 6, &xpos_base, sizeof(float));
  4055. memcpy(params + 7, &xpos_down, sizeof(bool));
  4056. ggml_set_op_params(result, params, sizeof(params));
  4057. result->op = GGML_OP_ROPE_BACK;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. result->src[1] = b;
  4061. return result;
  4062. }
  4063. // ggml_alibi
  4064. struct ggml_tensor * ggml_alibi(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. int n_past,
  4068. int n_head,
  4069. float bias_max) {
  4070. GGML_ASSERT(n_past >= 0);
  4071. bool is_node = false;
  4072. if (a->grad) {
  4073. GGML_ASSERT(false); // TODO: implement backward
  4074. is_node = true;
  4075. }
  4076. // TODO: when implement backward, fix this:
  4077. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4078. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4079. int32_t op_params[3] = { n_past, n_head };
  4080. memcpy(op_params + 2, &bias_max, sizeof(float));
  4081. ggml_set_op_params(result, op_params, sizeof(op_params));
  4082. result->op = GGML_OP_ALIBI;
  4083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4084. result->src[0] = a;
  4085. return result;
  4086. }
  4087. // ggml_clamp
  4088. struct ggml_tensor * ggml_clamp(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. float min,
  4092. float max) {
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. GGML_ASSERT(false); // TODO: implement backward
  4096. is_node = true;
  4097. }
  4098. // TODO: when implement backward, fix this:
  4099. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4100. float params[] = { min, max };
  4101. ggml_set_op_params(result, params, sizeof(params));
  4102. result->op = GGML_OP_CLAMP;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_conv_1d
  4108. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4109. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4110. }
  4111. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4112. // a: [OC,IC, K]
  4113. // b: [N, IC, IL]
  4114. // result: [N, OL, IC*K]
  4115. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a,
  4118. struct ggml_tensor * b,
  4119. int s0,
  4120. int p0,
  4121. int d0) {
  4122. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4123. bool is_node = false;
  4124. if (a->grad || b->grad) {
  4125. GGML_ASSERT(false); // TODO: implement backward
  4126. is_node = true;
  4127. }
  4128. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4129. const int64_t ne[4] = {
  4130. a->ne[1] * a->ne[0],
  4131. OL,
  4132. b->ne[2],
  4133. 1,
  4134. };
  4135. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4136. int32_t params[] = { s0, p0, d0 };
  4137. ggml_set_op_params(result, params, sizeof(params));
  4138. result->op = GGML_OP_CONV_1D_STAGE_0;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src[0] = a;
  4141. result->src[1] = b;
  4142. return result;
  4143. }
  4144. // ggml_conv_1d_stage_1
  4145. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4146. // a: [OC, IC, K]
  4147. // b: [N, OL, IC * K]
  4148. // result: [N, OC, OL]
  4149. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b) {
  4153. bool is_node = false;
  4154. if (a->grad || b->grad) {
  4155. GGML_ASSERT(false); // TODO: implement backward
  4156. is_node = true;
  4157. }
  4158. const int64_t ne[4] = {
  4159. b->ne[1],
  4160. a->ne[2],
  4161. b->ne[2],
  4162. 1,
  4163. };
  4164. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4165. result->op = GGML_OP_CONV_1D_STAGE_1;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. result->src[1] = b;
  4169. return result;
  4170. }
  4171. // ggml_conv_1d
  4172. GGML_API struct ggml_tensor * ggml_conv_1d(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b,
  4176. int s0,
  4177. int p0,
  4178. int d0) {
  4179. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4180. result = ggml_conv_1d_stage_1(ctx, a, result);
  4181. return result;
  4182. }
  4183. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4184. // struct ggml_context * ctx,
  4185. // struct ggml_tensor * a,
  4186. // struct ggml_tensor * b,
  4187. // int s0,
  4188. // int p0,
  4189. // int d0) {
  4190. // GGML_ASSERT(ggml_is_matrix(b));
  4191. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4192. // bool is_node = false;
  4193. // if (a->grad || b->grad) {
  4194. // GGML_ASSERT(false); // TODO: implement backward
  4195. // is_node = true;
  4196. // }
  4197. // const int64_t ne[4] = {
  4198. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4199. // a->ne[2], 1, 1,
  4200. // };
  4201. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4202. // int32_t params[] = { s0, p0, d0 };
  4203. // ggml_set_op_params(result, params, sizeof(params));
  4204. // result->op = GGML_OP_CONV_1D;
  4205. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. // result->src[0] = a;
  4207. // result->src[1] = b;
  4208. // return result;
  4209. // }
  4210. // ggml_conv_1d_ph
  4211. struct ggml_tensor* ggml_conv_1d_ph(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int s,
  4216. int d) {
  4217. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4218. }
  4219. // ggml_conv_transpose_1d
  4220. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4221. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4222. }
  4223. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. int s0,
  4228. int p0,
  4229. int d0) {
  4230. GGML_ASSERT(ggml_is_matrix(b));
  4231. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4232. GGML_ASSERT(a->ne[3] == 1);
  4233. GGML_ASSERT(p0 == 0);
  4234. GGML_ASSERT(d0 == 1);
  4235. bool is_node = false;
  4236. if (a->grad || b->grad) {
  4237. GGML_ASSERT(false); // TODO: implement backward
  4238. is_node = true;
  4239. }
  4240. const int64_t ne[4] = {
  4241. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4242. a->ne[1], b->ne[2], 1,
  4243. };
  4244. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4245. int32_t params[] = { s0, p0, d0 };
  4246. ggml_set_op_params(result, params, sizeof(params));
  4247. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. // ggml_conv_2d
  4254. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4255. // a: [OC,IC, KH, KW]
  4256. // b: [N, IC, IH, IW]
  4257. // result: [N, OH, OW, IC*KH*KW]
  4258. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. struct ggml_tensor * b,
  4262. int s0,
  4263. int s1,
  4264. int p0,
  4265. int p1,
  4266. int d0,
  4267. int d1) {
  4268. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4269. bool is_node = false;
  4270. if (a->grad || b->grad) {
  4271. GGML_ASSERT(false); // TODO: implement backward
  4272. is_node = true;
  4273. }
  4274. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4275. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4276. const int64_t ne[4] = {
  4277. a->ne[2] * a->ne[1] * a->ne[0],
  4278. OW,
  4279. OH,
  4280. b->ne[3],
  4281. };
  4282. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4283. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4284. ggml_set_op_params(result, params, sizeof(params));
  4285. result->op = GGML_OP_CONV_2D_STAGE_0;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src[0] = a;
  4288. result->src[1] = b;
  4289. return result;
  4290. }
  4291. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4292. // a: [OC, IC, KH, KW]
  4293. // b: [N, OH, OW, IC * KH * KW]
  4294. // result: [N, OC, OH, OW]
  4295. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. GGML_ASSERT(false); // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. const int64_t ne[4] = {
  4305. b->ne[1],
  4306. b->ne[2],
  4307. a->ne[3],
  4308. b->ne[3],
  4309. };
  4310. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4311. result->op = GGML_OP_CONV_2D_STAGE_1;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src[0] = a;
  4314. result->src[1] = b;
  4315. return result;
  4316. }
  4317. // a: [OC,IC, KH, KW]
  4318. // b: [N, IC, IH, IW]
  4319. // result: [N, OC, OH, OW]
  4320. struct ggml_tensor * ggml_conv_2d(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b,
  4324. int s0,
  4325. int s1,
  4326. int p0,
  4327. int p1,
  4328. int d0,
  4329. int d1) {
  4330. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4331. result = ggml_conv_2d_stage_1(ctx, a, result);
  4332. return result;
  4333. }
  4334. // ggml_conv_2d_sk_p0
  4335. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b) {
  4339. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4340. }
  4341. // ggml_conv_2d_s1_ph
  4342. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b) {
  4346. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4347. }
  4348. // ggml_conv_transpose_2d_p0
  4349. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4350. return (ins - 1) * s - 2 * p + ks;
  4351. }
  4352. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. struct ggml_tensor * b,
  4356. int stride) {
  4357. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4358. bool is_node = false;
  4359. if (a->grad || b->grad) {
  4360. GGML_ASSERT(false); // TODO: implement backward
  4361. is_node = true;
  4362. }
  4363. const int64_t ne[4] = {
  4364. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4365. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4366. a->ne[2], b->ne[3],
  4367. };
  4368. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4369. ggml_set_op_params_i32(result, 0, stride);
  4370. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. result->src[1] = b;
  4374. return result;
  4375. }
  4376. // ggml_pool_*
  4377. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  4378. return (ins + 2 * p - ks) / s + 1;
  4379. }
  4380. // ggml_pool_1d
  4381. struct ggml_tensor * ggml_pool_1d(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. enum ggml_op_pool op,
  4385. int k0,
  4386. int s0,
  4387. int p0) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. GGML_ASSERT(false); // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. const int64_t ne[3] = {
  4394. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4395. a->ne[1],
  4396. };
  4397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4398. int32_t params[] = { op, k0, s0, p0 };
  4399. ggml_set_op_params(result, params, sizeof(params));
  4400. result->op = GGML_OP_POOL_1D;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src[0] = a;
  4403. return result;
  4404. }
  4405. // ggml_pool_2d
  4406. struct ggml_tensor * ggml_pool_2d(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. enum ggml_op_pool op,
  4410. int k0,
  4411. int k1,
  4412. int s0,
  4413. int s1,
  4414. int p0,
  4415. int p1) {
  4416. bool is_node = false;
  4417. if (a->grad) {
  4418. GGML_ASSERT(false); // TODO: implement backward
  4419. is_node = true;
  4420. }
  4421. const int64_t ne[3] = {
  4422. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4423. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4424. a->ne[2],
  4425. };
  4426. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4427. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4428. ggml_set_op_params(result, params, sizeof(params));
  4429. result->op = GGML_OP_POOL_2D;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src[0] = a;
  4432. return result;
  4433. }
  4434. // ggml_upscale
  4435. static struct ggml_tensor * ggml_upscale_impl(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int scale_factor) {
  4439. bool is_node = false;
  4440. if (a->grad) {
  4441. GGML_ASSERT(false); // TODO: implement backward
  4442. is_node = true;
  4443. }
  4444. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4445. a->ne[0] * scale_factor,
  4446. a->ne[1] * scale_factor,
  4447. a->ne[2], a->ne[3]);
  4448. result->op = GGML_OP_UPSCALE;
  4449. result->op_params[0] = scale_factor;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. result->src[1] = NULL;
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_upscale(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int scale_factor) {
  4459. return ggml_upscale_impl(ctx, a, scale_factor);
  4460. }
  4461. // ggml_flash_attn
  4462. struct ggml_tensor * ggml_flash_attn(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * q,
  4465. struct ggml_tensor * k,
  4466. struct ggml_tensor * v,
  4467. bool masked) {
  4468. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4469. // TODO: check if vT can be multiplied by (k*qT)
  4470. bool is_node = false;
  4471. if (q->grad || k->grad || v->grad) {
  4472. is_node = true;
  4473. }
  4474. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4475. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4476. int32_t t = masked ? 1 : 0;
  4477. ggml_set_op_params(result, &t, sizeof(t));
  4478. result->op = GGML_OP_FLASH_ATTN;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src[0] = q;
  4481. result->src[1] = k;
  4482. result->src[2] = v;
  4483. return result;
  4484. }
  4485. // ggml_flash_ff
  4486. struct ggml_tensor * ggml_flash_ff(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b0,
  4490. struct ggml_tensor * b1,
  4491. struct ggml_tensor * c0,
  4492. struct ggml_tensor * c1) {
  4493. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4494. // TODO: more checks
  4495. bool is_node = false;
  4496. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4497. is_node = true;
  4498. }
  4499. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4500. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4501. result->op = GGML_OP_FLASH_FF;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b0;
  4505. result->src[2] = b1;
  4506. result->src[3] = c0;
  4507. result->src[4] = c1;
  4508. return result;
  4509. }
  4510. // ggml_flash_attn_back
  4511. struct ggml_tensor * ggml_flash_attn_back(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * q,
  4514. struct ggml_tensor * k,
  4515. struct ggml_tensor * v,
  4516. struct ggml_tensor * d,
  4517. bool masked) {
  4518. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4519. // TODO: check if vT can be multiplied by (k*qT)
  4520. // d shape [D,N,ne2,ne3]
  4521. // q shape [D,N,ne2,ne3]
  4522. // k shape [D,M,kvne2,ne3]
  4523. // v shape [M,D,kvne2,ne3]
  4524. const int64_t D = q->ne[0];
  4525. const int64_t N = q->ne[1];
  4526. const int64_t M = k->ne[1];
  4527. const int64_t ne2 = q->ne[2];
  4528. const int64_t ne3 = q->ne[3];
  4529. const int64_t kvne2 = k->ne[2];
  4530. GGML_ASSERT(k->ne[0] == D);
  4531. GGML_ASSERT(v->ne[0] == M);
  4532. GGML_ASSERT(v->ne[1] == D);
  4533. GGML_ASSERT(d->ne[0] == D);
  4534. GGML_ASSERT(d->ne[1] == N);
  4535. GGML_ASSERT(k->ne[2] == kvne2);
  4536. GGML_ASSERT(k->ne[3] == ne3);
  4537. GGML_ASSERT(v->ne[2] == kvne2);
  4538. GGML_ASSERT(v->ne[3] == ne3);
  4539. GGML_ASSERT(d->ne[2] == ne2);
  4540. GGML_ASSERT(d->ne[3] == ne3);
  4541. GGML_ASSERT(ne2 % kvne2 == 0);
  4542. bool is_node = false;
  4543. if (q->grad || k->grad || v->grad) {
  4544. // when using this operation (in backwards pass) these grads are set.
  4545. // we don't want to create (big) grad of our result, so is_node is false.
  4546. is_node = false;
  4547. }
  4548. // store gradients of q, k and v as continuous tensors concatenated in result.
  4549. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4550. const int64_t elem_q = ggml_nelements(q);
  4551. const int64_t elem_k = ggml_nelements(k);
  4552. const int64_t elem_v = ggml_nelements(v);
  4553. enum ggml_type result_type = GGML_TYPE_F32;
  4554. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4555. const size_t tsize = ggml_type_size(result_type);
  4556. const size_t offs_q = 0;
  4557. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4558. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4559. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4560. const size_t nelements = (end + tsize - 1)/tsize;
  4561. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4562. int32_t masked_i = masked ? 1 : 0;
  4563. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4564. result->op = GGML_OP_FLASH_ATTN_BACK;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src[0] = q;
  4567. result->src[1] = k;
  4568. result->src[2] = v;
  4569. result->src[3] = d;
  4570. return result;
  4571. }
  4572. // ggml_win_part
  4573. struct ggml_tensor * ggml_win_part(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. int w) {
  4577. GGML_ASSERT(a->ne[3] == 1);
  4578. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4579. bool is_node = false;
  4580. if (a->grad) {
  4581. GGML_ASSERT(false); // TODO: implement backward
  4582. is_node = true;
  4583. }
  4584. // padding
  4585. const int px = (w - a->ne[1]%w)%w;
  4586. const int py = (w - a->ne[2]%w)%w;
  4587. const int npx = (px + a->ne[1])/w;
  4588. const int npy = (py + a->ne[2])/w;
  4589. const int np = npx*npy;
  4590. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4591. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4592. int32_t params[] = { npx, npy, w };
  4593. ggml_set_op_params(result, params, sizeof(params));
  4594. result->op = GGML_OP_WIN_PART;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src[0] = a;
  4597. return result;
  4598. }
  4599. // ggml_win_unpart
  4600. struct ggml_tensor * ggml_win_unpart(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. int w0,
  4604. int h0,
  4605. int w) {
  4606. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. GGML_ASSERT(false); // TODO: implement backward
  4610. is_node = true;
  4611. }
  4612. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4613. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4614. int32_t params[] = { w };
  4615. ggml_set_op_params(result, params, sizeof(params));
  4616. result->op = GGML_OP_WIN_UNPART;
  4617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4618. result->src[0] = a;
  4619. return result;
  4620. }
  4621. // ggml_get_rel_pos
  4622. struct ggml_tensor * ggml_get_rel_pos(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. int qh,
  4626. int kh) {
  4627. GGML_ASSERT(qh == kh);
  4628. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. GGML_ASSERT(false); // TODO: implement backward
  4632. is_node = true;
  4633. }
  4634. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4635. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4636. result->op = GGML_OP_GET_REL_POS;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = NULL;
  4640. return result;
  4641. }
  4642. // ggml_add_rel_pos
  4643. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. struct ggml_tensor * pw,
  4647. struct ggml_tensor * ph,
  4648. bool inplace) {
  4649. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4650. GGML_ASSERT(ggml_is_contiguous(a));
  4651. GGML_ASSERT(ggml_is_contiguous(pw));
  4652. GGML_ASSERT(ggml_is_contiguous(ph));
  4653. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4654. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4655. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4656. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4657. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4658. bool is_node = false;
  4659. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4660. is_node = true;
  4661. }
  4662. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4663. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4664. result->op = GGML_OP_ADD_REL_POS;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. result->src[1] = pw;
  4668. result->src[2] = ph;
  4669. return result;
  4670. }
  4671. struct ggml_tensor * ggml_add_rel_pos(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. struct ggml_tensor * pw,
  4675. struct ggml_tensor * ph) {
  4676. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4677. }
  4678. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. struct ggml_tensor * pw,
  4682. struct ggml_tensor * ph) {
  4683. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4684. }
  4685. // gmml_unary
  4686. static struct ggml_tensor * ggml_unary_impl(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. enum ggml_unary_op op,
  4690. bool inplace) {
  4691. bool is_node = false;
  4692. if (!inplace && (a->grad)) {
  4693. is_node = true;
  4694. }
  4695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4696. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4697. result->op = GGML_OP_UNARY;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. return result;
  4701. }
  4702. struct ggml_tensor * ggml_unary(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. enum ggml_unary_op op) {
  4706. return ggml_unary_impl(ctx, a, op, false);
  4707. }
  4708. struct ggml_tensor * ggml_unary_inplace(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. enum ggml_unary_op op) {
  4712. return ggml_unary_impl(ctx, a, op, true);
  4713. }
  4714. // ggml_map_unary
  4715. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. const ggml_unary_op_f32_t fun,
  4719. bool inplace) {
  4720. bool is_node = false;
  4721. if (!inplace && a->grad) {
  4722. is_node = true;
  4723. }
  4724. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4725. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4726. result->op = GGML_OP_MAP_UNARY;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src[0] = a;
  4729. return result;
  4730. }
  4731. struct ggml_tensor * ggml_map_unary_f32(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. const ggml_unary_op_f32_t fun) {
  4735. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4736. }
  4737. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. const ggml_unary_op_f32_t fun) {
  4741. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4742. }
  4743. // ggml_map_binary
  4744. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. const ggml_binary_op_f32_t fun,
  4749. bool inplace) {
  4750. GGML_ASSERT(ggml_are_same_shape(a, b));
  4751. bool is_node = false;
  4752. if (!inplace && (a->grad || b->grad)) {
  4753. is_node = true;
  4754. }
  4755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4756. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4757. result->op = GGML_OP_MAP_BINARY;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src[0] = a;
  4760. result->src[1] = b;
  4761. return result;
  4762. }
  4763. struct ggml_tensor * ggml_map_binary_f32(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a,
  4766. struct ggml_tensor * b,
  4767. const ggml_binary_op_f32_t fun) {
  4768. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4769. }
  4770. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. struct ggml_tensor * b,
  4774. const ggml_binary_op_f32_t fun) {
  4775. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4776. }
  4777. // ggml_map_custom1_f32
  4778. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. const ggml_custom1_op_f32_t fun,
  4782. bool inplace) {
  4783. bool is_node = false;
  4784. if (!inplace && a->grad) {
  4785. is_node = true;
  4786. }
  4787. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4788. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4789. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. return result;
  4793. }
  4794. struct ggml_tensor * ggml_map_custom1_f32(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. const ggml_custom1_op_f32_t fun) {
  4798. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4799. }
  4800. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. const ggml_custom1_op_f32_t fun) {
  4804. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4805. }
  4806. // ggml_map_custom2_f32
  4807. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. struct ggml_tensor * b,
  4811. const ggml_custom2_op_f32_t fun,
  4812. bool inplace) {
  4813. bool is_node = false;
  4814. if (!inplace && (a->grad || b->grad)) {
  4815. is_node = true;
  4816. }
  4817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4818. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4819. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. result->src[1] = b;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_map_custom2_f32(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. struct ggml_tensor * b,
  4829. const ggml_custom2_op_f32_t fun) {
  4830. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4831. }
  4832. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. struct ggml_tensor * b,
  4836. const ggml_custom2_op_f32_t fun) {
  4837. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4838. }
  4839. // ggml_map_custom3_f32
  4840. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. struct ggml_tensor * b,
  4844. struct ggml_tensor * c,
  4845. const ggml_custom3_op_f32_t fun,
  4846. bool inplace) {
  4847. bool is_node = false;
  4848. if (!inplace && (a->grad || b->grad || c->grad)) {
  4849. is_node = true;
  4850. }
  4851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4852. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4853. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src[0] = a;
  4856. result->src[1] = b;
  4857. result->src[2] = c;
  4858. return result;
  4859. }
  4860. struct ggml_tensor * ggml_map_custom3_f32(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * b,
  4864. struct ggml_tensor * c,
  4865. const ggml_custom3_op_f32_t fun) {
  4866. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4867. }
  4868. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * b,
  4872. struct ggml_tensor * c,
  4873. const ggml_custom3_op_f32_t fun) {
  4874. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4875. }
  4876. // ggml_map_custom1
  4877. struct ggml_map_custom1_op_params {
  4878. ggml_custom1_op_t fun;
  4879. int n_tasks;
  4880. void * userdata;
  4881. };
  4882. static struct ggml_tensor * ggml_map_custom1_impl(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. const ggml_custom1_op_t fun,
  4886. int n_tasks,
  4887. void * userdata,
  4888. bool inplace) {
  4889. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4890. bool is_node = false;
  4891. if (!inplace && a->grad) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. struct ggml_map_custom1_op_params params = {
  4896. /*.fun =*/ fun,
  4897. /*.n_tasks =*/ n_tasks,
  4898. /*.userdata =*/ userdata
  4899. };
  4900. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4901. result->op = GGML_OP_MAP_CUSTOM1;
  4902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4903. result->src[0] = a;
  4904. return result;
  4905. }
  4906. struct ggml_tensor * ggml_map_custom1(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. const ggml_custom1_op_t fun,
  4910. int n_tasks,
  4911. void * userdata) {
  4912. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4913. }
  4914. struct ggml_tensor * ggml_map_custom1_inplace(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. const ggml_custom1_op_t fun,
  4918. int n_tasks,
  4919. void * userdata) {
  4920. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4921. }
  4922. // ggml_map_custom2
  4923. struct ggml_map_custom2_op_params {
  4924. ggml_custom2_op_t fun;
  4925. int n_tasks;
  4926. void * userdata;
  4927. };
  4928. static struct ggml_tensor * ggml_map_custom2_impl(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. struct ggml_tensor * b,
  4932. const ggml_custom2_op_t fun,
  4933. int n_tasks,
  4934. void * userdata,
  4935. bool inplace) {
  4936. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4937. bool is_node = false;
  4938. if (!inplace && (a->grad || b->grad)) {
  4939. is_node = true;
  4940. }
  4941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4942. struct ggml_map_custom2_op_params params = {
  4943. /*.fun =*/ fun,
  4944. /*.n_tasks =*/ n_tasks,
  4945. /*.userdata =*/ userdata
  4946. };
  4947. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4948. result->op = GGML_OP_MAP_CUSTOM2;
  4949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4950. result->src[0] = a;
  4951. result->src[1] = b;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_map_custom2(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. const ggml_custom2_op_t fun,
  4959. int n_tasks,
  4960. void * userdata) {
  4961. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4962. }
  4963. struct ggml_tensor * ggml_map_custom2_inplace(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. struct ggml_tensor * b,
  4967. const ggml_custom2_op_t fun,
  4968. int n_tasks,
  4969. void * userdata) {
  4970. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  4971. }
  4972. // ggml_map_custom3
  4973. struct ggml_map_custom3_op_params {
  4974. ggml_custom3_op_t fun;
  4975. int n_tasks;
  4976. void * userdata;
  4977. };
  4978. static struct ggml_tensor * ggml_map_custom3_impl(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. struct ggml_tensor * c,
  4983. const ggml_custom3_op_t fun,
  4984. int n_tasks,
  4985. void * userdata,
  4986. bool inplace) {
  4987. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4988. bool is_node = false;
  4989. if (!inplace && (a->grad || b->grad || c->grad)) {
  4990. is_node = true;
  4991. }
  4992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4993. struct ggml_map_custom3_op_params params = {
  4994. /*.fun =*/ fun,
  4995. /*.n_tasks =*/ n_tasks,
  4996. /*.userdata =*/ userdata
  4997. };
  4998. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4999. result->op = GGML_OP_MAP_CUSTOM3;
  5000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5001. result->src[0] = a;
  5002. result->src[1] = b;
  5003. result->src[2] = c;
  5004. return result;
  5005. }
  5006. struct ggml_tensor * ggml_map_custom3(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. struct ggml_tensor * c,
  5011. const ggml_custom3_op_t fun,
  5012. int n_tasks,
  5013. void * userdata) {
  5014. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5015. }
  5016. struct ggml_tensor * ggml_map_custom3_inplace(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. struct ggml_tensor * b,
  5020. struct ggml_tensor * c,
  5021. const ggml_custom3_op_t fun,
  5022. int n_tasks,
  5023. void * userdata) {
  5024. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5025. }
  5026. // ggml_cross_entropy_loss
  5027. struct ggml_tensor * ggml_cross_entropy_loss(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. struct ggml_tensor * b) {
  5031. GGML_ASSERT(ggml_are_same_shape(a, b));
  5032. bool is_node = false;
  5033. if (a->grad || b->grad) {
  5034. is_node = true;
  5035. }
  5036. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5037. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src[0] = a;
  5040. result->src[1] = b;
  5041. return result;
  5042. }
  5043. // ggml_cross_entropy_loss_back
  5044. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. struct ggml_tensor * b,
  5048. struct ggml_tensor * c) {
  5049. GGML_ASSERT(ggml_are_same_shape(a, b));
  5050. GGML_ASSERT(ggml_is_scalar(c));
  5051. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5052. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5053. result->grad = NULL;
  5054. result->src[0] = a;
  5055. result->src[1] = b;
  5056. result->src[2] = c;
  5057. return result;
  5058. }
  5059. ////////////////////////////////////////////////////////////////////////////////
  5060. void ggml_set_param(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * tensor) {
  5063. tensor->is_param = true;
  5064. GGML_ASSERT(tensor->grad == NULL);
  5065. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5066. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5067. }
  5068. // ggml_compute_forward_dup
  5069. static void ggml_compute_forward_dup_same_cont(
  5070. const struct ggml_compute_params * params,
  5071. const struct ggml_tensor * src0,
  5072. struct ggml_tensor * dst) {
  5073. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5074. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5075. GGML_ASSERT(src0->type == dst->type);
  5076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. const size_t nb00 = src0->nb[0];
  5080. const size_t nb0 = dst->nb[0];
  5081. const int ith = params->ith; // thread index
  5082. const int nth = params->nth; // number of threads
  5083. // parallelize by elements
  5084. const int ne = ggml_nelements(dst);
  5085. const int dr = (ne + nth - 1) / nth;
  5086. const int ie0 = dr * ith;
  5087. const int ie1 = MIN(ie0 + dr, ne);
  5088. if (ie0 < ie1) {
  5089. memcpy(
  5090. ((char *) dst->data + ie0*nb0),
  5091. ((char *) src0->data + ie0*nb00),
  5092. (ie1 - ie0) * ggml_type_size(src0->type));
  5093. }
  5094. }
  5095. static void ggml_compute_forward_dup_f16(
  5096. const struct ggml_compute_params * params,
  5097. const struct ggml_tensor * src0,
  5098. struct ggml_tensor * dst) {
  5099. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5101. return;
  5102. }
  5103. GGML_TENSOR_UNARY_OP_LOCALS
  5104. const int ith = params->ith; // thread index
  5105. const int nth = params->nth; // number of threads
  5106. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5107. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5108. return;
  5109. }
  5110. // parallelize by rows
  5111. const int nr = ne01;
  5112. // number of rows per thread
  5113. const int dr = (nr + nth - 1) / nth;
  5114. // row range for this thread
  5115. const int ir0 = dr * ith;
  5116. const int ir1 = MIN(ir0 + dr, nr);
  5117. if (src0->type == dst->type &&
  5118. ne00 == ne0 &&
  5119. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5120. // copy by rows
  5121. const size_t rs = ne00*nb00;
  5122. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5123. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5124. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5125. memcpy(
  5126. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5127. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5128. rs);
  5129. }
  5130. }
  5131. }
  5132. return;
  5133. }
  5134. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5135. if (ggml_is_contiguous(dst)) {
  5136. if (nb00 == sizeof(ggml_fp16_t)) {
  5137. if (dst->type == GGML_TYPE_F16) {
  5138. size_t id = 0;
  5139. const size_t rs = ne00 * nb00;
  5140. char * dst_ptr = (char *) dst->data;
  5141. for (int i03 = 0; i03 < ne03; i03++) {
  5142. for (int i02 = 0; i02 < ne02; i02++) {
  5143. id += rs * ir0;
  5144. for (int i01 = ir0; i01 < ir1; i01++) {
  5145. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5146. memcpy(dst_ptr + id, src0_ptr, rs);
  5147. id += rs;
  5148. }
  5149. id += rs * (ne01 - ir1);
  5150. }
  5151. }
  5152. } else if (dst->type == GGML_TYPE_F32) {
  5153. size_t id = 0;
  5154. float * dst_ptr = (float *) dst->data;
  5155. for (int i03 = 0; i03 < ne03; i03++) {
  5156. for (int i02 = 0; i02 < ne02; i02++) {
  5157. id += ne00 * ir0;
  5158. for (int i01 = ir0; i01 < ir1; i01++) {
  5159. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5160. for (int i00 = 0; i00 < ne00; i00++) {
  5161. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5162. id++;
  5163. }
  5164. }
  5165. id += ne00 * (ne01 - ir1);
  5166. }
  5167. }
  5168. } else if (type_traits[dst->type].from_float) {
  5169. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5170. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5171. size_t id = 0;
  5172. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5173. char * dst_ptr = (char *) dst->data;
  5174. for (int i03 = 0; i03 < ne03; i03++) {
  5175. for (int i02 = 0; i02 < ne02; i02++) {
  5176. id += rs * ir0;
  5177. for (int i01 = ir0; i01 < ir1; i01++) {
  5178. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5179. for (int i00 = 0; i00 < ne00; i00++) {
  5180. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5181. }
  5182. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5183. id += rs;
  5184. }
  5185. id += rs * (ne01 - ir1);
  5186. }
  5187. }
  5188. } else {
  5189. GGML_ASSERT(false); // TODO: implement
  5190. }
  5191. } else {
  5192. //printf("%s: this is not optimal - fix me\n", __func__);
  5193. if (dst->type == GGML_TYPE_F32) {
  5194. size_t id = 0;
  5195. float * dst_ptr = (float *) dst->data;
  5196. for (int i03 = 0; i03 < ne03; i03++) {
  5197. for (int i02 = 0; i02 < ne02; i02++) {
  5198. id += ne00 * ir0;
  5199. for (int i01 = ir0; i01 < ir1; i01++) {
  5200. for (int i00 = 0; i00 < ne00; i00++) {
  5201. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5202. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5203. id++;
  5204. }
  5205. }
  5206. id += ne00 * (ne01 - ir1);
  5207. }
  5208. }
  5209. } else if (dst->type == GGML_TYPE_F16) {
  5210. size_t id = 0;
  5211. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5212. for (int i03 = 0; i03 < ne03; i03++) {
  5213. for (int i02 = 0; i02 < ne02; i02++) {
  5214. id += ne00 * ir0;
  5215. for (int i01 = ir0; i01 < ir1; i01++) {
  5216. for (int i00 = 0; i00 < ne00; i00++) {
  5217. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5218. dst_ptr[id] = *src0_ptr;
  5219. id++;
  5220. }
  5221. }
  5222. id += ne00 * (ne01 - ir1);
  5223. }
  5224. }
  5225. } else {
  5226. GGML_ASSERT(false); // TODO: implement
  5227. }
  5228. }
  5229. return;
  5230. }
  5231. // dst counters
  5232. int64_t i10 = 0;
  5233. int64_t i11 = 0;
  5234. int64_t i12 = 0;
  5235. int64_t i13 = 0;
  5236. if (dst->type == GGML_TYPE_F16) {
  5237. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5239. i10 += ne00 * ir0;
  5240. while (i10 >= ne0) {
  5241. i10 -= ne0;
  5242. if (++i11 == ne1) {
  5243. i11 = 0;
  5244. if (++i12 == ne2) {
  5245. i12 = 0;
  5246. if (++i13 == ne3) {
  5247. i13 = 0;
  5248. }
  5249. }
  5250. }
  5251. }
  5252. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5254. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5255. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5256. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5257. if (++i10 == ne00) {
  5258. i10 = 0;
  5259. if (++i11 == ne01) {
  5260. i11 = 0;
  5261. if (++i12 == ne02) {
  5262. i12 = 0;
  5263. if (++i13 == ne03) {
  5264. i13 = 0;
  5265. }
  5266. }
  5267. }
  5268. }
  5269. }
  5270. }
  5271. i10 += ne00 * (ne01 - ir1);
  5272. while (i10 >= ne0) {
  5273. i10 -= ne0;
  5274. if (++i11 == ne1) {
  5275. i11 = 0;
  5276. if (++i12 == ne2) {
  5277. i12 = 0;
  5278. if (++i13 == ne3) {
  5279. i13 = 0;
  5280. }
  5281. }
  5282. }
  5283. }
  5284. }
  5285. }
  5286. } else if (dst->type == GGML_TYPE_F32) {
  5287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5289. i10 += ne00 * ir0;
  5290. while (i10 >= ne0) {
  5291. i10 -= ne0;
  5292. if (++i11 == ne1) {
  5293. i11 = 0;
  5294. if (++i12 == ne2) {
  5295. i12 = 0;
  5296. if (++i13 == ne3) {
  5297. i13 = 0;
  5298. }
  5299. }
  5300. }
  5301. }
  5302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5304. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5305. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5306. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5307. if (++i10 == ne0) {
  5308. i10 = 0;
  5309. if (++i11 == ne1) {
  5310. i11 = 0;
  5311. if (++i12 == ne2) {
  5312. i12 = 0;
  5313. if (++i13 == ne3) {
  5314. i13 = 0;
  5315. }
  5316. }
  5317. }
  5318. }
  5319. }
  5320. }
  5321. i10 += ne00 * (ne01 - ir1);
  5322. while (i10 >= ne0) {
  5323. i10 -= ne0;
  5324. if (++i11 == ne1) {
  5325. i11 = 0;
  5326. if (++i12 == ne2) {
  5327. i12 = 0;
  5328. if (++i13 == ne3) {
  5329. i13 = 0;
  5330. }
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. } else {
  5337. GGML_ASSERT(false); // TODO: implement
  5338. }
  5339. }
  5340. static void ggml_compute_forward_dup_f32(
  5341. const struct ggml_compute_params * params,
  5342. const struct ggml_tensor * src0,
  5343. struct ggml_tensor * dst) {
  5344. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5346. return;
  5347. }
  5348. GGML_TENSOR_UNARY_OP_LOCALS
  5349. const int ith = params->ith; // thread index
  5350. const int nth = params->nth; // number of threads
  5351. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5352. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5353. return;
  5354. }
  5355. // parallelize by rows
  5356. const int nr = ne01;
  5357. // number of rows per thread
  5358. const int dr = (nr + nth - 1) / nth;
  5359. // row range for this thread
  5360. const int ir0 = dr * ith;
  5361. const int ir1 = MIN(ir0 + dr, nr);
  5362. if (src0->type == dst->type &&
  5363. ne00 == ne0 &&
  5364. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5365. // copy by rows
  5366. const size_t rs = ne00*nb00;
  5367. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5368. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5369. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5370. memcpy(
  5371. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5372. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5373. rs);
  5374. }
  5375. }
  5376. }
  5377. return;
  5378. }
  5379. if (ggml_is_contiguous(dst)) {
  5380. // TODO: simplify
  5381. if (nb00 == sizeof(float)) {
  5382. if (dst->type == GGML_TYPE_F32) {
  5383. size_t id = 0;
  5384. const size_t rs = ne00 * nb00;
  5385. char * dst_ptr = (char *) dst->data;
  5386. for (int i03 = 0; i03 < ne03; i03++) {
  5387. for (int i02 = 0; i02 < ne02; i02++) {
  5388. id += rs * ir0;
  5389. for (int i01 = ir0; i01 < ir1; i01++) {
  5390. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5391. memcpy(dst_ptr + id, src0_ptr, rs);
  5392. id += rs;
  5393. }
  5394. id += rs * (ne01 - ir1);
  5395. }
  5396. }
  5397. } else if (type_traits[dst->type].from_float) {
  5398. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5399. size_t id = 0;
  5400. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5401. char * dst_ptr = (char *) dst->data;
  5402. for (int i03 = 0; i03 < ne03; i03++) {
  5403. for (int i02 = 0; i02 < ne02; i02++) {
  5404. id += rs * ir0;
  5405. for (int i01 = ir0; i01 < ir1; i01++) {
  5406. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5407. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5408. id += rs;
  5409. }
  5410. id += rs * (ne01 - ir1);
  5411. }
  5412. }
  5413. } else {
  5414. GGML_ASSERT(false); // TODO: implement
  5415. }
  5416. } else {
  5417. //printf("%s: this is not optimal - fix me\n", __func__);
  5418. if (dst->type == GGML_TYPE_F32) {
  5419. size_t id = 0;
  5420. float * dst_ptr = (float *) dst->data;
  5421. for (int i03 = 0; i03 < ne03; i03++) {
  5422. for (int i02 = 0; i02 < ne02; i02++) {
  5423. id += ne00 * ir0;
  5424. for (int i01 = ir0; i01 < ir1; i01++) {
  5425. for (int i00 = 0; i00 < ne00; i00++) {
  5426. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5427. dst_ptr[id] = *src0_ptr;
  5428. id++;
  5429. }
  5430. }
  5431. id += ne00 * (ne01 - ir1);
  5432. }
  5433. }
  5434. } else if (dst->type == GGML_TYPE_F16) {
  5435. size_t id = 0;
  5436. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5437. for (int i03 = 0; i03 < ne03; i03++) {
  5438. for (int i02 = 0; i02 < ne02; i02++) {
  5439. id += ne00 * ir0;
  5440. for (int i01 = ir0; i01 < ir1; i01++) {
  5441. for (int i00 = 0; i00 < ne00; i00++) {
  5442. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5443. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5444. id++;
  5445. }
  5446. }
  5447. id += ne00 * (ne01 - ir1);
  5448. }
  5449. }
  5450. } else {
  5451. GGML_ASSERT(false); // TODO: implement
  5452. }
  5453. }
  5454. return;
  5455. }
  5456. // dst counters
  5457. int64_t i10 = 0;
  5458. int64_t i11 = 0;
  5459. int64_t i12 = 0;
  5460. int64_t i13 = 0;
  5461. if (dst->type == GGML_TYPE_F32) {
  5462. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5463. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5464. i10 += ne00 * ir0;
  5465. while (i10 >= ne0) {
  5466. i10 -= ne0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5478. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5479. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5480. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5481. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5482. if (++i10 == ne0) {
  5483. i10 = 0;
  5484. if (++i11 == ne1) {
  5485. i11 = 0;
  5486. if (++i12 == ne2) {
  5487. i12 = 0;
  5488. if (++i13 == ne3) {
  5489. i13 = 0;
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. i10 += ne00 * (ne01 - ir1);
  5497. while (i10 >= ne0) {
  5498. i10 -= ne0;
  5499. if (++i11 == ne1) {
  5500. i11 = 0;
  5501. if (++i12 == ne2) {
  5502. i12 = 0;
  5503. if (++i13 == ne3) {
  5504. i13 = 0;
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. }
  5511. } else if (dst->type == GGML_TYPE_F16) {
  5512. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5513. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5514. i10 += ne00 * ir0;
  5515. while (i10 >= ne0) {
  5516. i10 -= ne0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5529. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5530. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5531. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5532. if (++i10 == ne0) {
  5533. i10 = 0;
  5534. if (++i11 == ne1) {
  5535. i11 = 0;
  5536. if (++i12 == ne2) {
  5537. i12 = 0;
  5538. if (++i13 == ne3) {
  5539. i13 = 0;
  5540. }
  5541. }
  5542. }
  5543. }
  5544. }
  5545. }
  5546. i10 += ne00 * (ne01 - ir1);
  5547. while (i10 >= ne0) {
  5548. i10 -= ne0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. }
  5561. } else {
  5562. GGML_ASSERT(false); // TODO: implement
  5563. }
  5564. }
  5565. static void ggml_compute_forward_dup(
  5566. const struct ggml_compute_params * params,
  5567. const struct ggml_tensor * src0,
  5568. struct ggml_tensor * dst) {
  5569. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5570. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5571. return;
  5572. }
  5573. switch (src0->type) {
  5574. case GGML_TYPE_F16:
  5575. {
  5576. ggml_compute_forward_dup_f16(params, src0, dst);
  5577. } break;
  5578. case GGML_TYPE_F32:
  5579. {
  5580. ggml_compute_forward_dup_f32(params, src0, dst);
  5581. } break;
  5582. default:
  5583. {
  5584. GGML_ASSERT(false);
  5585. } break;
  5586. }
  5587. }
  5588. // ggml_compute_forward_add
  5589. static void ggml_compute_forward_add_f32(
  5590. const struct ggml_compute_params * params,
  5591. const struct ggml_tensor * src0,
  5592. const struct ggml_tensor * src1,
  5593. struct ggml_tensor * dst) {
  5594. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5596. return;
  5597. }
  5598. const int ith = params->ith;
  5599. const int nth = params->nth;
  5600. const int nr = ggml_nrows(src0);
  5601. GGML_TENSOR_BINARY_OP_LOCALS
  5602. GGML_ASSERT( nb0 == sizeof(float));
  5603. GGML_ASSERT(nb00 == sizeof(float));
  5604. // rows per thread
  5605. const int dr = (nr + nth - 1)/nth;
  5606. // row range for this thread
  5607. const int ir0 = dr*ith;
  5608. const int ir1 = MIN(ir0 + dr, nr);
  5609. if (nb10 == sizeof(float)) {
  5610. for (int ir = ir0; ir < ir1; ++ir) {
  5611. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5612. const int64_t i03 = ir/(ne02*ne01);
  5613. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5614. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5615. const int64_t i13 = i03 % ne13;
  5616. const int64_t i12 = i02 % ne12;
  5617. const int64_t i11 = i01 % ne11;
  5618. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5619. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5620. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5621. #ifdef GGML_USE_ACCELERATE
  5622. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5623. #else
  5624. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5625. #endif
  5626. }
  5627. } else {
  5628. // src1 is not contiguous
  5629. for (int ir = ir0; ir < ir1; ++ir) {
  5630. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5631. const int64_t i03 = ir/(ne02*ne01);
  5632. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5633. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5634. const int64_t i13 = i03 % ne13;
  5635. const int64_t i12 = i02 % ne12;
  5636. const int64_t i11 = i01 % ne11;
  5637. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5638. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5639. for (int i0 = 0; i0 < ne0; i0++) {
  5640. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5641. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5642. }
  5643. }
  5644. }
  5645. }
  5646. static void ggml_compute_forward_add_f16_f32(
  5647. const struct ggml_compute_params * params,
  5648. const struct ggml_tensor * src0,
  5649. const struct ggml_tensor * src1,
  5650. struct ggml_tensor * dst) {
  5651. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5653. return;
  5654. }
  5655. const int ith = params->ith;
  5656. const int nth = params->nth;
  5657. const int nr = ggml_nrows(src0);
  5658. GGML_TENSOR_BINARY_OP_LOCALS
  5659. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5660. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5661. if (dst->type == GGML_TYPE_F32) {
  5662. GGML_ASSERT( nb0 == sizeof(float));
  5663. }
  5664. else {
  5665. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5666. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5667. }
  5668. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5669. // rows per thread
  5670. const int dr = (nr + nth - 1)/nth;
  5671. // row range for this thread
  5672. const int ir0 = dr*ith;
  5673. const int ir1 = MIN(ir0 + dr, nr);
  5674. if (nb10 == sizeof(float)) {
  5675. if (dst->type == GGML_TYPE_F16) {
  5676. for (int ir = ir0; ir < ir1; ++ir) {
  5677. // src0, src1 and dst are same shape => same indices
  5678. const int i3 = ir/(ne2*ne1);
  5679. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5680. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5681. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5682. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5683. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5684. for (int i = 0; i < ne0; i++) {
  5685. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5686. }
  5687. }
  5688. } else {
  5689. for (int ir = ir0; ir < ir1; ++ir) {
  5690. // src0, src1 and dst are same shape => same indices
  5691. const int i3 = ir/(ne2*ne1);
  5692. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5693. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5694. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5695. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5696. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5697. for (int i = 0; i < ne0; i++) {
  5698. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5699. }
  5700. }
  5701. }
  5702. }
  5703. else {
  5704. // src1 is not contiguous
  5705. GGML_ASSERT(false);
  5706. }
  5707. }
  5708. static void ggml_compute_forward_add_f16_f16(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. const struct ggml_tensor * src1,
  5712. struct ggml_tensor * dst) {
  5713. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5715. return;
  5716. }
  5717. const int ith = params->ith;
  5718. const int nth = params->nth;
  5719. const int nr = ggml_nrows(src0);
  5720. GGML_TENSOR_BINARY_OP_LOCALS
  5721. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5722. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5723. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5724. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5725. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5726. // rows per thread
  5727. const int dr = (nr + nth - 1)/nth;
  5728. // row range for this thread
  5729. const int ir0 = dr*ith;
  5730. const int ir1 = MIN(ir0 + dr, nr);
  5731. if (nb10 == sizeof(ggml_fp16_t)) {
  5732. for (int ir = ir0; ir < ir1; ++ir) {
  5733. // src0, src1 and dst are same shape => same indices
  5734. const int i3 = ir/(ne2*ne1);
  5735. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5736. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5737. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5738. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5739. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5740. for (int i = 0; i < ne0; i++) {
  5741. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5742. }
  5743. }
  5744. }
  5745. else {
  5746. // src1 is not contiguous
  5747. GGML_ASSERT(false);
  5748. }
  5749. }
  5750. static void ggml_compute_forward_add_q_f32(
  5751. const struct ggml_compute_params * params,
  5752. const struct ggml_tensor * src0,
  5753. const struct ggml_tensor * src1,
  5754. struct ggml_tensor * dst) {
  5755. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5757. return;
  5758. }
  5759. const int nr = ggml_nrows(src0);
  5760. GGML_TENSOR_BINARY_OP_LOCALS
  5761. const int ith = params->ith;
  5762. const int nth = params->nth;
  5763. const enum ggml_type type = src0->type;
  5764. const enum ggml_type dtype = dst->type;
  5765. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5766. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5767. // we don't support permuted src0 or src1
  5768. GGML_ASSERT(nb00 == ggml_type_size(type));
  5769. GGML_ASSERT(nb10 == sizeof(float));
  5770. // dst cannot be transposed or permuted
  5771. GGML_ASSERT(nb0 <= nb1);
  5772. GGML_ASSERT(nb1 <= nb2);
  5773. GGML_ASSERT(nb2 <= nb3);
  5774. GGML_ASSERT(ggml_is_quantized(src0->type));
  5775. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5776. // rows per thread
  5777. const int dr = (nr + nth - 1)/nth;
  5778. // row range for this thread
  5779. const int ir0 = dr*ith;
  5780. const int ir1 = MIN(ir0 + dr, nr);
  5781. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5782. for (int ir = ir0; ir < ir1; ++ir) {
  5783. // src0 indices
  5784. const int i03 = ir/(ne02*ne01);
  5785. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5786. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5787. // src1 and dst are same shape as src0 => same indices
  5788. const int i13 = i03;
  5789. const int i12 = i02;
  5790. const int i11 = i01;
  5791. const int i3 = i03;
  5792. const int i2 = i02;
  5793. const int i1 = i01;
  5794. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5795. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5796. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5797. assert(ne00 % 32 == 0);
  5798. // unquantize row from src0 to temp buffer
  5799. dequantize_row_q(src0_row, wdata, ne00);
  5800. // add src1
  5801. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5802. // quantize row to dst
  5803. if (quantize_row_q != NULL) {
  5804. quantize_row_q(wdata, dst_row, ne00);
  5805. } else {
  5806. memcpy(dst_row, wdata, ne0*nb0);
  5807. }
  5808. }
  5809. }
  5810. static void ggml_compute_forward_add(
  5811. const struct ggml_compute_params * params,
  5812. const struct ggml_tensor * src0,
  5813. const struct ggml_tensor * src1,
  5814. struct ggml_tensor * dst) {
  5815. switch (src0->type) {
  5816. case GGML_TYPE_F32:
  5817. {
  5818. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5819. } break;
  5820. case GGML_TYPE_F16:
  5821. {
  5822. if (src1->type == GGML_TYPE_F16) {
  5823. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5824. }
  5825. else if (src1->type == GGML_TYPE_F32) {
  5826. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5827. }
  5828. else {
  5829. GGML_ASSERT(false);
  5830. }
  5831. } break;
  5832. case GGML_TYPE_Q4_0:
  5833. case GGML_TYPE_Q4_1:
  5834. case GGML_TYPE_Q5_0:
  5835. case GGML_TYPE_Q5_1:
  5836. case GGML_TYPE_Q8_0:
  5837. case GGML_TYPE_Q2_K:
  5838. case GGML_TYPE_Q3_K:
  5839. case GGML_TYPE_Q4_K:
  5840. case GGML_TYPE_Q5_K:
  5841. case GGML_TYPE_Q6_K:
  5842. {
  5843. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5844. } break;
  5845. default:
  5846. {
  5847. GGML_ASSERT(false);
  5848. } break;
  5849. }
  5850. }
  5851. // ggml_compute_forward_add1
  5852. static void ggml_compute_forward_add1_f32(
  5853. const struct ggml_compute_params * params,
  5854. const struct ggml_tensor * src0,
  5855. const struct ggml_tensor * src1,
  5856. struct ggml_tensor * dst) {
  5857. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5858. GGML_ASSERT(ggml_is_scalar(src1));
  5859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5860. return;
  5861. }
  5862. const int ith = params->ith;
  5863. const int nth = params->nth;
  5864. const int nr = ggml_nrows(src0);
  5865. GGML_TENSOR_UNARY_OP_LOCALS
  5866. GGML_ASSERT( nb0 == sizeof(float));
  5867. GGML_ASSERT(nb00 == sizeof(float));
  5868. // rows per thread
  5869. const int dr = (nr + nth - 1)/nth;
  5870. // row range for this thread
  5871. const int ir0 = dr*ith;
  5872. const int ir1 = MIN(ir0 + dr, nr);
  5873. for (int ir = ir0; ir < ir1; ++ir) {
  5874. // src0 and dst are same shape => same indices
  5875. const int i3 = ir/(ne2*ne1);
  5876. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5877. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5878. #ifdef GGML_USE_ACCELERATE
  5879. UNUSED(ggml_vec_add1_f32);
  5880. vDSP_vadd(
  5881. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5882. (float *) ((char *) src1->data), 0,
  5883. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5884. ne0);
  5885. #else
  5886. ggml_vec_add1_f32(ne0,
  5887. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5888. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5889. *(float *) src1->data);
  5890. #endif
  5891. }
  5892. }
  5893. static void ggml_compute_forward_add1_f16_f32(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. const struct ggml_tensor * src1,
  5897. struct ggml_tensor * dst) {
  5898. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5899. GGML_ASSERT(ggml_is_scalar(src1));
  5900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5901. return;
  5902. }
  5903. // scalar to add
  5904. const float v = *(float *) src1->data;
  5905. const int ith = params->ith;
  5906. const int nth = params->nth;
  5907. const int nr = ggml_nrows(src0);
  5908. GGML_TENSOR_UNARY_OP_LOCALS
  5909. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5910. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5911. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5912. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5913. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5914. // rows per thread
  5915. const int dr = (nr + nth - 1)/nth;
  5916. // row range for this thread
  5917. const int ir0 = dr*ith;
  5918. const int ir1 = MIN(ir0 + dr, nr);
  5919. for (int ir = ir0; ir < ir1; ++ir) {
  5920. // src0 and dst are same shape => same indices
  5921. const int i3 = ir/(ne2*ne1);
  5922. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5923. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5924. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5925. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5926. for (int i = 0; i < ne0; i++) {
  5927. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5928. }
  5929. }
  5930. }
  5931. static void ggml_compute_forward_add1_f16_f16(
  5932. const struct ggml_compute_params * params,
  5933. const struct ggml_tensor * src0,
  5934. const struct ggml_tensor * src1,
  5935. struct ggml_tensor * dst) {
  5936. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5937. GGML_ASSERT(ggml_is_scalar(src1));
  5938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5939. return;
  5940. }
  5941. // scalar to add
  5942. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5943. const int ith = params->ith;
  5944. const int nth = params->nth;
  5945. const int nr = ggml_nrows(src0);
  5946. GGML_TENSOR_UNARY_OP_LOCALS
  5947. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5948. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5949. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5950. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5951. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5952. // rows per thread
  5953. const int dr = (nr + nth - 1)/nth;
  5954. // row range for this thread
  5955. const int ir0 = dr*ith;
  5956. const int ir1 = MIN(ir0 + dr, nr);
  5957. for (int ir = ir0; ir < ir1; ++ir) {
  5958. // src0 and dst are same shape => same indices
  5959. const int i3 = ir/(ne2*ne1);
  5960. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5961. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5962. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5963. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5964. for (int i = 0; i < ne0; i++) {
  5965. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5966. }
  5967. }
  5968. }
  5969. static void ggml_compute_forward_add1_q_f32(
  5970. const struct ggml_compute_params * params,
  5971. const struct ggml_tensor * src0,
  5972. const struct ggml_tensor * src1,
  5973. struct ggml_tensor * dst) {
  5974. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5975. GGML_ASSERT(ggml_is_scalar(src1));
  5976. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5977. return;
  5978. }
  5979. // scalar to add
  5980. const float v = *(float *) src1->data;
  5981. const int ith = params->ith;
  5982. const int nth = params->nth;
  5983. const int nr = ggml_nrows(src0);
  5984. GGML_TENSOR_UNARY_OP_LOCALS
  5985. const enum ggml_type type = src0->type;
  5986. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5987. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  5988. // we don't support permuted src0
  5989. GGML_ASSERT(nb00 == ggml_type_size(type));
  5990. // dst cannot be transposed or permuted
  5991. GGML_ASSERT(nb0 <= nb1);
  5992. GGML_ASSERT(nb1 <= nb2);
  5993. GGML_ASSERT(nb2 <= nb3);
  5994. GGML_ASSERT(ggml_is_quantized(src0->type));
  5995. GGML_ASSERT(dst->type == src0->type);
  5996. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5997. // rows per thread
  5998. const int dr = (nr + nth - 1)/nth;
  5999. // row range for this thread
  6000. const int ir0 = dr*ith;
  6001. const int ir1 = MIN(ir0 + dr, nr);
  6002. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6003. for (int ir = ir0; ir < ir1; ++ir) {
  6004. // src0 and dst are same shape => same indices
  6005. const int i3 = ir/(ne2*ne1);
  6006. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6007. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6008. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6009. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6010. assert(ne0 % 32 == 0);
  6011. // unquantize row from src0 to temp buffer
  6012. dequantize_row_q(src0_row, wdata, ne0);
  6013. // add src1
  6014. ggml_vec_acc1_f32(ne0, wdata, v);
  6015. // quantize row to dst
  6016. quantize_row_q(wdata, dst_row, ne0);
  6017. }
  6018. }
  6019. static void ggml_compute_forward_add1(
  6020. const struct ggml_compute_params * params,
  6021. const struct ggml_tensor * src0,
  6022. const struct ggml_tensor * src1,
  6023. struct ggml_tensor * dst) {
  6024. switch (src0->type) {
  6025. case GGML_TYPE_F32:
  6026. {
  6027. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6028. } break;
  6029. case GGML_TYPE_F16:
  6030. {
  6031. if (src1->type == GGML_TYPE_F16) {
  6032. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6033. }
  6034. else if (src1->type == GGML_TYPE_F32) {
  6035. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6036. }
  6037. else {
  6038. GGML_ASSERT(false);
  6039. }
  6040. } break;
  6041. case GGML_TYPE_Q4_0:
  6042. case GGML_TYPE_Q4_1:
  6043. case GGML_TYPE_Q5_0:
  6044. case GGML_TYPE_Q5_1:
  6045. case GGML_TYPE_Q8_0:
  6046. case GGML_TYPE_Q8_1:
  6047. case GGML_TYPE_Q2_K:
  6048. case GGML_TYPE_Q3_K:
  6049. case GGML_TYPE_Q4_K:
  6050. case GGML_TYPE_Q5_K:
  6051. case GGML_TYPE_Q6_K:
  6052. {
  6053. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6054. } break;
  6055. default:
  6056. {
  6057. GGML_ASSERT(false);
  6058. } break;
  6059. }
  6060. }
  6061. // ggml_compute_forward_acc
  6062. static void ggml_compute_forward_acc_f32(
  6063. const struct ggml_compute_params * params,
  6064. const struct ggml_tensor * src0,
  6065. const struct ggml_tensor * src1,
  6066. struct ggml_tensor * dst) {
  6067. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6068. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6069. // view src0 and dst with these strides and data offset inbytes during acc
  6070. // nb0 is implicitely element_size because src0 and dst are contiguous
  6071. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6072. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6073. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6074. size_t offset = ((int32_t *) dst->op_params)[3];
  6075. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6076. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6077. // memcpy needs to be synchronized across threads to avoid race conditions.
  6078. // => do it in INIT phase
  6079. memcpy(
  6080. ((char *) dst->data),
  6081. ((char *) src0->data),
  6082. ggml_nbytes(dst));
  6083. }
  6084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. const int ith = params->ith;
  6088. const int nth = params->nth;
  6089. const int nr = ggml_nrows(src1);
  6090. const int nc = src1->ne[0];
  6091. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6092. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6093. // src0 and dst as viewed during acc
  6094. const size_t nb0 = ggml_element_size(src0);
  6095. const size_t nb00 = nb0;
  6096. const size_t nb01 = nb1;
  6097. const size_t nb02 = nb2;
  6098. const size_t nb03 = nb3;
  6099. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6100. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6101. GGML_ASSERT(nb10 == sizeof(float));
  6102. // rows per thread
  6103. const int dr = (nr + nth - 1)/nth;
  6104. // row range for this thread
  6105. const int ir0 = dr*ith;
  6106. const int ir1 = MIN(ir0 + dr, nr);
  6107. for (int ir = ir0; ir < ir1; ++ir) {
  6108. // src0 and dst are viewed with shape of src1 and offset
  6109. // => same indices
  6110. const int i3 = ir/(ne12*ne11);
  6111. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6112. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6113. #ifdef GGML_USE_ACCELERATE
  6114. vDSP_vadd(
  6115. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6116. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6117. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6118. #else
  6119. ggml_vec_add_f32(nc,
  6120. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6121. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6122. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6123. #endif
  6124. }
  6125. }
  6126. static void ggml_compute_forward_acc(
  6127. const struct ggml_compute_params * params,
  6128. const struct ggml_tensor * src0,
  6129. const struct ggml_tensor * src1,
  6130. struct ggml_tensor * dst) {
  6131. switch (src0->type) {
  6132. case GGML_TYPE_F32:
  6133. {
  6134. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6135. } break;
  6136. case GGML_TYPE_F16:
  6137. case GGML_TYPE_Q4_0:
  6138. case GGML_TYPE_Q4_1:
  6139. case GGML_TYPE_Q5_0:
  6140. case GGML_TYPE_Q5_1:
  6141. case GGML_TYPE_Q8_0:
  6142. case GGML_TYPE_Q8_1:
  6143. case GGML_TYPE_Q2_K:
  6144. case GGML_TYPE_Q3_K:
  6145. case GGML_TYPE_Q4_K:
  6146. case GGML_TYPE_Q5_K:
  6147. case GGML_TYPE_Q6_K:
  6148. default:
  6149. {
  6150. GGML_ASSERT(false);
  6151. } break;
  6152. }
  6153. }
  6154. // ggml_compute_forward_sub
  6155. static void ggml_compute_forward_sub_f32(
  6156. const struct ggml_compute_params * params,
  6157. const struct ggml_tensor * src0,
  6158. const struct ggml_tensor * src1,
  6159. struct ggml_tensor * dst) {
  6160. assert(params->ith == 0);
  6161. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6163. return;
  6164. }
  6165. const int nr = ggml_nrows(src0);
  6166. GGML_TENSOR_BINARY_OP_LOCALS
  6167. GGML_ASSERT( nb0 == sizeof(float));
  6168. GGML_ASSERT(nb00 == sizeof(float));
  6169. if (nb10 == sizeof(float)) {
  6170. for (int ir = 0; ir < nr; ++ir) {
  6171. // src0, src1 and dst are same shape => same indices
  6172. const int i3 = ir/(ne2*ne1);
  6173. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6174. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6175. #ifdef GGML_USE_ACCELERATE
  6176. vDSP_vsub(
  6177. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6178. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6179. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6180. ne0);
  6181. #else
  6182. ggml_vec_sub_f32(ne0,
  6183. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6184. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6185. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6186. #endif
  6187. // }
  6188. // }
  6189. }
  6190. } else {
  6191. // src1 is not contiguous
  6192. for (int ir = 0; ir < nr; ++ir) {
  6193. // src0, src1 and dst are same shape => same indices
  6194. const int i3 = ir/(ne2*ne1);
  6195. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6196. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6197. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6198. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6199. for (int i0 = 0; i0 < ne0; i0++) {
  6200. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6201. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6202. }
  6203. }
  6204. }
  6205. }
  6206. static void ggml_compute_forward_sub(
  6207. const struct ggml_compute_params * params,
  6208. const struct ggml_tensor * src0,
  6209. const struct ggml_tensor * src1,
  6210. struct ggml_tensor * dst) {
  6211. switch (src0->type) {
  6212. case GGML_TYPE_F32:
  6213. {
  6214. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6215. } break;
  6216. default:
  6217. {
  6218. GGML_ASSERT(false);
  6219. } break;
  6220. }
  6221. }
  6222. // ggml_compute_forward_mul
  6223. static void ggml_compute_forward_mul_f32(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. const struct ggml_tensor * src1,
  6227. struct ggml_tensor * dst) {
  6228. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6230. return;
  6231. }
  6232. const int ith = params->ith;
  6233. const int nth = params->nth;
  6234. #ifdef GGML_USE_CLBLAST
  6235. if (src1->backend == GGML_BACKEND_GPU) {
  6236. if (ith == 0) {
  6237. ggml_cl_mul(src0, src1, dst);
  6238. }
  6239. return;
  6240. }
  6241. #endif
  6242. const int64_t nr = ggml_nrows(src0);
  6243. GGML_TENSOR_BINARY_OP_LOCALS
  6244. GGML_ASSERT( nb0 == sizeof(float));
  6245. GGML_ASSERT(nb00 == sizeof(float));
  6246. GGML_ASSERT(ne00 == ne10);
  6247. if (nb10 == sizeof(float)) {
  6248. for (int64_t ir = ith; ir < nr; ir += nth) {
  6249. // src0 and dst are same shape => same indices
  6250. const int64_t i03 = ir/(ne02*ne01);
  6251. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6252. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6253. const int64_t i13 = i03 % ne13;
  6254. const int64_t i12 = i02 % ne12;
  6255. const int64_t i11 = i01 % ne11;
  6256. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6257. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6258. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6259. #ifdef GGML_USE_ACCELERATE
  6260. UNUSED(ggml_vec_mul_f32);
  6261. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6262. #else
  6263. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6264. #endif
  6265. // }
  6266. // }
  6267. }
  6268. } else {
  6269. // src1 is not contiguous
  6270. for (int64_t ir = ith; ir < nr; ir += nth) {
  6271. // src0 and dst are same shape => same indices
  6272. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6273. const int64_t i03 = ir/(ne02*ne01);
  6274. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6275. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6276. const int64_t i13 = i03 % ne13;
  6277. const int64_t i12 = i02 % ne12;
  6278. const int64_t i11 = i01 % ne11;
  6279. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6280. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6281. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6282. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6283. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6284. }
  6285. }
  6286. }
  6287. }
  6288. static void ggml_compute_forward_mul(
  6289. const struct ggml_compute_params * params,
  6290. const struct ggml_tensor * src0,
  6291. const struct ggml_tensor * src1,
  6292. struct ggml_tensor * dst) {
  6293. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6294. switch (src0->type) {
  6295. case GGML_TYPE_F32:
  6296. {
  6297. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6298. } break;
  6299. default:
  6300. {
  6301. GGML_ASSERT(false);
  6302. } break;
  6303. }
  6304. }
  6305. // ggml_compute_forward_div
  6306. static void ggml_compute_forward_div_f32(
  6307. const struct ggml_compute_params * params,
  6308. const struct ggml_tensor * src0,
  6309. const struct ggml_tensor * src1,
  6310. struct ggml_tensor * dst) {
  6311. assert(params->ith == 0);
  6312. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6314. return;
  6315. }
  6316. const int nr = ggml_nrows(src0);
  6317. GGML_TENSOR_BINARY_OP_LOCALS
  6318. GGML_ASSERT( nb0 == sizeof(float));
  6319. GGML_ASSERT(nb00 == sizeof(float));
  6320. if (nb10 == sizeof(float)) {
  6321. for (int ir = 0; ir < nr; ++ir) {
  6322. // src0, src1 and dst are same shape => same indices
  6323. const int i3 = ir/(ne2*ne1);
  6324. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6325. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6326. #ifdef GGML_USE_ACCELERATE
  6327. UNUSED(ggml_vec_div_f32);
  6328. vDSP_vdiv(
  6329. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6330. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6331. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6332. ne0);
  6333. #else
  6334. ggml_vec_div_f32(ne0,
  6335. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6336. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6337. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6338. #endif
  6339. // }
  6340. // }
  6341. }
  6342. } else {
  6343. // src1 is not contiguous
  6344. for (int ir = 0; ir < nr; ++ir) {
  6345. // src0, src1 and dst are same shape => same indices
  6346. const int i3 = ir/(ne2*ne1);
  6347. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6348. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6349. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6350. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6351. for (int i0 = 0; i0 < ne0; i0++) {
  6352. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6353. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6354. }
  6355. }
  6356. }
  6357. }
  6358. static void ggml_compute_forward_div(
  6359. const struct ggml_compute_params * params,
  6360. const struct ggml_tensor * src0,
  6361. const struct ggml_tensor * src1,
  6362. struct ggml_tensor * dst) {
  6363. switch (src0->type) {
  6364. case GGML_TYPE_F32:
  6365. {
  6366. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6367. } break;
  6368. default:
  6369. {
  6370. GGML_ASSERT(false);
  6371. } break;
  6372. }
  6373. }
  6374. // ggml_compute_forward_sqr
  6375. static void ggml_compute_forward_sqr_f32(
  6376. const struct ggml_compute_params * params,
  6377. const struct ggml_tensor * src0,
  6378. struct ggml_tensor * dst) {
  6379. assert(params->ith == 0);
  6380. assert(ggml_are_same_shape(src0, dst));
  6381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6382. return;
  6383. }
  6384. const int n = ggml_nrows(src0);
  6385. const int nc = src0->ne[0];
  6386. assert( dst->nb[0] == sizeof(float));
  6387. assert(src0->nb[0] == sizeof(float));
  6388. for (int i = 0; i < n; i++) {
  6389. ggml_vec_sqr_f32(nc,
  6390. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6391. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6392. }
  6393. }
  6394. static void ggml_compute_forward_sqr(
  6395. const struct ggml_compute_params * params,
  6396. const struct ggml_tensor * src0,
  6397. struct ggml_tensor * dst) {
  6398. switch (src0->type) {
  6399. case GGML_TYPE_F32:
  6400. {
  6401. ggml_compute_forward_sqr_f32(params, src0, dst);
  6402. } break;
  6403. default:
  6404. {
  6405. GGML_ASSERT(false);
  6406. } break;
  6407. }
  6408. }
  6409. // ggml_compute_forward_sqrt
  6410. static void ggml_compute_forward_sqrt_f32(
  6411. const struct ggml_compute_params * params,
  6412. const struct ggml_tensor * src0,
  6413. struct ggml_tensor * dst) {
  6414. assert(params->ith == 0);
  6415. assert(ggml_are_same_shape(src0, dst));
  6416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6417. return;
  6418. }
  6419. const int n = ggml_nrows(src0);
  6420. const int nc = src0->ne[0];
  6421. assert( dst->nb[0] == sizeof(float));
  6422. assert(src0->nb[0] == sizeof(float));
  6423. for (int i = 0; i < n; i++) {
  6424. ggml_vec_sqrt_f32(nc,
  6425. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6426. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6427. }
  6428. }
  6429. static void ggml_compute_forward_sqrt(
  6430. const struct ggml_compute_params * params,
  6431. const struct ggml_tensor * src0,
  6432. struct ggml_tensor * dst) {
  6433. switch (src0->type) {
  6434. case GGML_TYPE_F32:
  6435. {
  6436. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6437. } break;
  6438. default:
  6439. {
  6440. GGML_ASSERT(false);
  6441. } break;
  6442. }
  6443. }
  6444. // ggml_compute_forward_log
  6445. static void ggml_compute_forward_log_f32(
  6446. const struct ggml_compute_params * params,
  6447. const struct ggml_tensor * src0,
  6448. struct ggml_tensor * dst) {
  6449. GGML_ASSERT(params->ith == 0);
  6450. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6452. return;
  6453. }
  6454. const int n = ggml_nrows(src0);
  6455. const int nc = src0->ne[0];
  6456. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6458. for (int i = 0; i < n; i++) {
  6459. ggml_vec_log_f32(nc,
  6460. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6461. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6462. }
  6463. }
  6464. static void ggml_compute_forward_log(
  6465. const struct ggml_compute_params * params,
  6466. const struct ggml_tensor * src0,
  6467. struct ggml_tensor * dst) {
  6468. switch (src0->type) {
  6469. case GGML_TYPE_F32:
  6470. {
  6471. ggml_compute_forward_log_f32(params, src0, dst);
  6472. } break;
  6473. default:
  6474. {
  6475. GGML_ASSERT(false);
  6476. } break;
  6477. }
  6478. }
  6479. // ggml_compute_forward_sum
  6480. static void ggml_compute_forward_sum_f32(
  6481. const struct ggml_compute_params * params,
  6482. const struct ggml_tensor * src0,
  6483. struct ggml_tensor * dst) {
  6484. assert(params->ith == 0);
  6485. assert(ggml_is_scalar(dst));
  6486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6487. return;
  6488. }
  6489. assert(ggml_is_scalar(dst));
  6490. assert(src0->nb[0] == sizeof(float));
  6491. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6492. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6493. ggml_float sum = 0;
  6494. ggml_float row_sum = 0;
  6495. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6496. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6497. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6498. ggml_vec_sum_f32_ggf(ne00,
  6499. &row_sum,
  6500. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6501. sum += row_sum;
  6502. }
  6503. }
  6504. }
  6505. ((float *) dst->data)[0] = sum;
  6506. }
  6507. static void ggml_compute_forward_sum_f16(
  6508. const struct ggml_compute_params * params,
  6509. const struct ggml_tensor * src0,
  6510. struct ggml_tensor * dst) {
  6511. assert(params->ith == 0);
  6512. assert(ggml_is_scalar(dst));
  6513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6514. return;
  6515. }
  6516. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6517. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6518. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6519. float sum = 0;
  6520. float row_sum = 0;
  6521. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6522. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6523. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6524. ggml_vec_sum_f16_ggf(ne00,
  6525. &row_sum,
  6526. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6527. sum += row_sum;
  6528. }
  6529. }
  6530. }
  6531. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6532. }
  6533. static void ggml_compute_forward_sum(
  6534. const struct ggml_compute_params * params,
  6535. const struct ggml_tensor * src0,
  6536. struct ggml_tensor * dst) {
  6537. switch (src0->type) {
  6538. case GGML_TYPE_F32:
  6539. {
  6540. ggml_compute_forward_sum_f32(params, src0, dst);
  6541. } break;
  6542. case GGML_TYPE_F16:
  6543. {
  6544. ggml_compute_forward_sum_f16(params, src0, dst);
  6545. } break;
  6546. default:
  6547. {
  6548. GGML_ASSERT(false);
  6549. } break;
  6550. }
  6551. }
  6552. // ggml_compute_forward_sum_rows
  6553. static void ggml_compute_forward_sum_rows_f32(
  6554. const struct ggml_compute_params * params,
  6555. const struct ggml_tensor * src0,
  6556. struct ggml_tensor * dst) {
  6557. GGML_ASSERT(params->ith == 0);
  6558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6559. return;
  6560. }
  6561. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6562. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6563. GGML_TENSOR_UNARY_OP_LOCALS
  6564. GGML_ASSERT(ne0 == 1);
  6565. GGML_ASSERT(ne1 == ne01);
  6566. GGML_ASSERT(ne2 == ne02);
  6567. GGML_ASSERT(ne3 == ne03);
  6568. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6569. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6570. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6571. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6572. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6573. float row_sum = 0;
  6574. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6575. dst_row[0] = row_sum;
  6576. }
  6577. }
  6578. }
  6579. }
  6580. static void ggml_compute_forward_sum_rows(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * src0,
  6583. struct ggml_tensor * dst) {
  6584. switch (src0->type) {
  6585. case GGML_TYPE_F32:
  6586. {
  6587. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6588. } break;
  6589. default:
  6590. {
  6591. GGML_ASSERT(false);
  6592. } break;
  6593. }
  6594. }
  6595. // ggml_compute_forward_mean
  6596. static void ggml_compute_forward_mean_f32(
  6597. const struct ggml_compute_params * params,
  6598. const struct ggml_tensor * src0,
  6599. struct ggml_tensor * dst) {
  6600. assert(params->ith == 0);
  6601. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6602. return;
  6603. }
  6604. assert(src0->nb[0] == sizeof(float));
  6605. GGML_TENSOR_UNARY_OP_LOCALS
  6606. assert(ne0 == 1);
  6607. assert(ne1 == ne01);
  6608. assert(ne2 == ne02);
  6609. assert(ne3 == ne03);
  6610. UNUSED(ne0);
  6611. UNUSED(ne1);
  6612. UNUSED(ne2);
  6613. UNUSED(ne3);
  6614. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6616. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6617. ggml_vec_sum_f32(ne00,
  6618. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6619. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6620. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_mean(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. struct ggml_tensor * dst) {
  6629. switch (src0->type) {
  6630. case GGML_TYPE_F32:
  6631. {
  6632. ggml_compute_forward_mean_f32(params, src0, dst);
  6633. } break;
  6634. default:
  6635. {
  6636. GGML_ASSERT(false);
  6637. } break;
  6638. }
  6639. }
  6640. // ggml_compute_forward_argmax
  6641. static void ggml_compute_forward_argmax_f32(
  6642. const struct ggml_compute_params * params,
  6643. const struct ggml_tensor * src0,
  6644. struct ggml_tensor * dst) {
  6645. assert(params->ith == 0);
  6646. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6647. return;
  6648. }
  6649. assert(src0->nb[0] == sizeof(float));
  6650. assert(dst->nb[0] == sizeof(float));
  6651. const int64_t ne00 = src0->ne[0];
  6652. const int64_t ne01 = src0->ne[1];
  6653. const size_t nb01 = src0->nb[1];
  6654. const size_t nb0 = dst->nb[0];
  6655. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6656. float * src = (float *) ((char *) src0->data + i1*nb01);
  6657. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6658. int v = 0;
  6659. ggml_vec_argmax_f32(ne00, &v, src);
  6660. dst_[0] = v;
  6661. }
  6662. }
  6663. static void ggml_compute_forward_argmax(
  6664. const struct ggml_compute_params * params,
  6665. const struct ggml_tensor * src0,
  6666. struct ggml_tensor * dst) {
  6667. switch (src0->type) {
  6668. case GGML_TYPE_F32:
  6669. {
  6670. ggml_compute_forward_argmax_f32(params, src0, dst);
  6671. } break;
  6672. default:
  6673. {
  6674. GGML_ASSERT(false);
  6675. } break;
  6676. }
  6677. }
  6678. // ggml_compute_forward_repeat
  6679. static void ggml_compute_forward_repeat_f32(
  6680. const struct ggml_compute_params * params,
  6681. const struct ggml_tensor * src0,
  6682. struct ggml_tensor * dst) {
  6683. GGML_ASSERT(params->ith == 0);
  6684. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6686. return;
  6687. }
  6688. GGML_TENSOR_UNARY_OP_LOCALS
  6689. // guaranteed to be an integer due to the check in ggml_can_repeat
  6690. const int nr0 = (int)(ne0/ne00);
  6691. const int nr1 = (int)(ne1/ne01);
  6692. const int nr2 = (int)(ne2/ne02);
  6693. const int nr3 = (int)(ne3/ne03);
  6694. // TODO: support for transposed / permuted tensors
  6695. GGML_ASSERT(nb0 == sizeof(float));
  6696. GGML_ASSERT(nb00 == sizeof(float));
  6697. // TODO: maybe this is not optimal?
  6698. for (int i3 = 0; i3 < nr3; i3++) {
  6699. for (int k3 = 0; k3 < ne03; k3++) {
  6700. for (int i2 = 0; i2 < nr2; i2++) {
  6701. for (int k2 = 0; k2 < ne02; k2++) {
  6702. for (int i1 = 0; i1 < nr1; i1++) {
  6703. for (int k1 = 0; k1 < ne01; k1++) {
  6704. for (int i0 = 0; i0 < nr0; i0++) {
  6705. ggml_vec_cpy_f32(ne00,
  6706. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6707. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6708. }
  6709. }
  6710. }
  6711. }
  6712. }
  6713. }
  6714. }
  6715. }
  6716. static void ggml_compute_forward_repeat_f16(
  6717. const struct ggml_compute_params * params,
  6718. const struct ggml_tensor * src0,
  6719. struct ggml_tensor * dst) {
  6720. GGML_ASSERT(params->ith == 0);
  6721. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6723. return;
  6724. }
  6725. GGML_TENSOR_UNARY_OP_LOCALS;
  6726. // guaranteed to be an integer due to the check in ggml_can_repeat
  6727. const int nr0 = (int)(ne0/ne00);
  6728. const int nr1 = (int)(ne1/ne01);
  6729. const int nr2 = (int)(ne2/ne02);
  6730. const int nr3 = (int)(ne3/ne03);
  6731. // TODO: support for transposed / permuted tensors
  6732. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6733. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6734. // TODO: maybe this is not optimal?
  6735. for (int i3 = 0; i3 < nr3; i3++) {
  6736. for (int k3 = 0; k3 < ne03; k3++) {
  6737. for (int i2 = 0; i2 < nr2; i2++) {
  6738. for (int k2 = 0; k2 < ne02; k2++) {
  6739. for (int i1 = 0; i1 < nr1; i1++) {
  6740. for (int k1 = 0; k1 < ne01; k1++) {
  6741. for (int i0 = 0; i0 < nr0; i0++) {
  6742. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6743. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6744. // ggml_vec_cpy_f16(ne00, y, x)
  6745. for (int i = 0; i < ne00; ++i) {
  6746. y[i] = x[i];
  6747. }
  6748. }
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. }
  6755. }
  6756. static void ggml_compute_forward_repeat(
  6757. const struct ggml_compute_params * params,
  6758. const struct ggml_tensor * src0,
  6759. struct ggml_tensor * dst) {
  6760. switch (src0->type) {
  6761. case GGML_TYPE_F16:
  6762. {
  6763. ggml_compute_forward_repeat_f16(params, src0, dst);
  6764. } break;
  6765. case GGML_TYPE_F32:
  6766. {
  6767. ggml_compute_forward_repeat_f32(params, src0, dst);
  6768. } break;
  6769. default:
  6770. {
  6771. GGML_ASSERT(false);
  6772. } break;
  6773. }
  6774. }
  6775. // ggml_compute_forward_repeat_back
  6776. static void ggml_compute_forward_repeat_back_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. struct ggml_tensor * dst) {
  6780. GGML_ASSERT(params->ith == 0);
  6781. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. GGML_TENSOR_UNARY_OP_LOCALS
  6786. // guaranteed to be an integer due to the check in ggml_can_repeat
  6787. const int nr0 = (int)(ne00/ne0);
  6788. const int nr1 = (int)(ne01/ne1);
  6789. const int nr2 = (int)(ne02/ne2);
  6790. const int nr3 = (int)(ne03/ne3);
  6791. // TODO: support for transposed / permuted tensors
  6792. GGML_ASSERT(nb0 == sizeof(float));
  6793. GGML_ASSERT(nb00 == sizeof(float));
  6794. if (ggml_is_contiguous(dst)) {
  6795. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6796. } else {
  6797. for (int k3 = 0; k3 < ne3; k3++) {
  6798. for (int k2 = 0; k2 < ne2; k2++) {
  6799. for (int k1 = 0; k1 < ne1; k1++) {
  6800. ggml_vec_set_f32(ne0,
  6801. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6802. 0);
  6803. }
  6804. }
  6805. }
  6806. }
  6807. // TODO: maybe this is not optimal?
  6808. for (int i3 = 0; i3 < nr3; i3++) {
  6809. for (int k3 = 0; k3 < ne3; k3++) {
  6810. for (int i2 = 0; i2 < nr2; i2++) {
  6811. for (int k2 = 0; k2 < ne2; k2++) {
  6812. for (int i1 = 0; i1 < nr1; i1++) {
  6813. for (int k1 = 0; k1 < ne1; k1++) {
  6814. for (int i0 = 0; i0 < nr0; i0++) {
  6815. ggml_vec_acc_f32(ne0,
  6816. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6817. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6818. }
  6819. }
  6820. }
  6821. }
  6822. }
  6823. }
  6824. }
  6825. }
  6826. static void ggml_compute_forward_repeat_back(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_F32:
  6832. {
  6833. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6834. } break;
  6835. default:
  6836. {
  6837. GGML_ASSERT(false);
  6838. } break;
  6839. }
  6840. }
  6841. // ggml_compute_forward_concat
  6842. static void ggml_compute_forward_concat_f32(
  6843. const struct ggml_compute_params * params,
  6844. const struct ggml_tensor * src0,
  6845. const struct ggml_tensor * src1,
  6846. struct ggml_tensor * dst) {
  6847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6848. return;
  6849. }
  6850. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6851. const int ith = params->ith;
  6852. GGML_TENSOR_BINARY_OP_LOCALS
  6853. // TODO: support for transposed / permuted tensors
  6854. GGML_ASSERT(nb0 == sizeof(float));
  6855. GGML_ASSERT(nb00 == sizeof(float));
  6856. GGML_ASSERT(nb10 == sizeof(float));
  6857. for (int i3 = 0; i3 < ne3; i3++) {
  6858. for (int i2 = ith; i2 < ne2; i2++) {
  6859. if (i2 < ne02) { // src0
  6860. for (int i1 = 0; i1 < ne1; i1++) {
  6861. for (int i0 = 0; i0 < ne0; i0++) {
  6862. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6863. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6864. *y = *x;
  6865. }
  6866. }
  6867. } // src1
  6868. else {
  6869. for (int i1 = 0; i1 < ne1; i1++) {
  6870. for (int i0 = 0; i0 < ne0; i0++) {
  6871. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6872. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6873. *y = *x;
  6874. }
  6875. }
  6876. }
  6877. }
  6878. }
  6879. }
  6880. static void ggml_compute_forward_concat(
  6881. const struct ggml_compute_params* params,
  6882. const struct ggml_tensor* src0,
  6883. const struct ggml_tensor* src1,
  6884. struct ggml_tensor* dst) {
  6885. switch (src0->type) {
  6886. case GGML_TYPE_F32:
  6887. {
  6888. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6889. } break;
  6890. default:
  6891. {
  6892. GGML_ASSERT(false);
  6893. } break;
  6894. }
  6895. }
  6896. // ggml_compute_forward_abs
  6897. static void ggml_compute_forward_abs_f32(
  6898. const struct ggml_compute_params * params,
  6899. const struct ggml_tensor * src0,
  6900. struct ggml_tensor * dst) {
  6901. assert(params->ith == 0);
  6902. assert(ggml_are_same_shape(src0, dst));
  6903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6904. return;
  6905. }
  6906. const int n = ggml_nrows(src0);
  6907. const int nc = src0->ne[0];
  6908. assert(dst->nb[0] == sizeof(float));
  6909. assert(src0->nb[0] == sizeof(float));
  6910. for (int i = 0; i < n; i++) {
  6911. ggml_vec_abs_f32(nc,
  6912. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6913. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6914. }
  6915. }
  6916. static void ggml_compute_forward_abs(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. struct ggml_tensor * dst) {
  6920. switch (src0->type) {
  6921. case GGML_TYPE_F32:
  6922. {
  6923. ggml_compute_forward_abs_f32(params, src0, dst);
  6924. } break;
  6925. default:
  6926. {
  6927. GGML_ASSERT(false);
  6928. } break;
  6929. }
  6930. }
  6931. // ggml_compute_forward_sgn
  6932. static void ggml_compute_forward_sgn_f32(
  6933. const struct ggml_compute_params * params,
  6934. const struct ggml_tensor * src0,
  6935. struct ggml_tensor * dst) {
  6936. assert(params->ith == 0);
  6937. assert(ggml_are_same_shape(src0, dst));
  6938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6939. return;
  6940. }
  6941. const int n = ggml_nrows(src0);
  6942. const int nc = src0->ne[0];
  6943. assert(dst->nb[0] == sizeof(float));
  6944. assert(src0->nb[0] == sizeof(float));
  6945. for (int i = 0; i < n; i++) {
  6946. ggml_vec_sgn_f32(nc,
  6947. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6948. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6949. }
  6950. }
  6951. static void ggml_compute_forward_sgn(
  6952. const struct ggml_compute_params * params,
  6953. const struct ggml_tensor * src0,
  6954. struct ggml_tensor * dst) {
  6955. switch (src0->type) {
  6956. case GGML_TYPE_F32:
  6957. {
  6958. ggml_compute_forward_sgn_f32(params, src0, dst);
  6959. } break;
  6960. default:
  6961. {
  6962. GGML_ASSERT(false);
  6963. } break;
  6964. }
  6965. }
  6966. // ggml_compute_forward_neg
  6967. static void ggml_compute_forward_neg_f32(
  6968. const struct ggml_compute_params * params,
  6969. const struct ggml_tensor * src0,
  6970. struct ggml_tensor * dst) {
  6971. assert(params->ith == 0);
  6972. assert(ggml_are_same_shape(src0, dst));
  6973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6974. return;
  6975. }
  6976. const int n = ggml_nrows(src0);
  6977. const int nc = src0->ne[0];
  6978. assert(dst->nb[0] == sizeof(float));
  6979. assert(src0->nb[0] == sizeof(float));
  6980. for (int i = 0; i < n; i++) {
  6981. ggml_vec_neg_f32(nc,
  6982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6984. }
  6985. }
  6986. static void ggml_compute_forward_neg(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. struct ggml_tensor * dst) {
  6990. switch (src0->type) {
  6991. case GGML_TYPE_F32:
  6992. {
  6993. ggml_compute_forward_neg_f32(params, src0, dst);
  6994. } break;
  6995. default:
  6996. {
  6997. GGML_ASSERT(false);
  6998. } break;
  6999. }
  7000. }
  7001. // ggml_compute_forward_step
  7002. static void ggml_compute_forward_step_f32(
  7003. const struct ggml_compute_params * params,
  7004. const struct ggml_tensor * src0,
  7005. struct ggml_tensor * dst) {
  7006. assert(params->ith == 0);
  7007. assert(ggml_are_same_shape(src0, dst));
  7008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7009. return;
  7010. }
  7011. const int n = ggml_nrows(src0);
  7012. const int nc = src0->ne[0];
  7013. assert(dst->nb[0] == sizeof(float));
  7014. assert(src0->nb[0] == sizeof(float));
  7015. for (int i = 0; i < n; i++) {
  7016. ggml_vec_step_f32(nc,
  7017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7019. }
  7020. }
  7021. static void ggml_compute_forward_step(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * src0,
  7024. struct ggml_tensor * dst) {
  7025. switch (src0->type) {
  7026. case GGML_TYPE_F32:
  7027. {
  7028. ggml_compute_forward_step_f32(params, src0, dst);
  7029. } break;
  7030. default:
  7031. {
  7032. GGML_ASSERT(false);
  7033. } break;
  7034. }
  7035. }
  7036. // ggml_compute_forward_tanh
  7037. static void ggml_compute_forward_tanh_f32(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. struct ggml_tensor * dst) {
  7041. assert(params->ith == 0);
  7042. assert(ggml_are_same_shape(src0, dst));
  7043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7044. return;
  7045. }
  7046. const int n = ggml_nrows(src0);
  7047. const int nc = src0->ne[0];
  7048. assert(dst->nb[0] == sizeof(float));
  7049. assert(src0->nb[0] == sizeof(float));
  7050. for (int i = 0; i < n; i++) {
  7051. ggml_vec_tanh_f32(nc,
  7052. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7053. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7054. }
  7055. }
  7056. static void ggml_compute_forward_tanh(
  7057. const struct ggml_compute_params * params,
  7058. const struct ggml_tensor * src0,
  7059. struct ggml_tensor * dst) {
  7060. switch (src0->type) {
  7061. case GGML_TYPE_F32:
  7062. {
  7063. ggml_compute_forward_tanh_f32(params, src0, dst);
  7064. } break;
  7065. default:
  7066. {
  7067. GGML_ASSERT(false);
  7068. } break;
  7069. }
  7070. }
  7071. // ggml_compute_forward_elu
  7072. static void ggml_compute_forward_elu_f32(
  7073. const struct ggml_compute_params * params,
  7074. const struct ggml_tensor * src0,
  7075. struct ggml_tensor * dst) {
  7076. assert(params->ith == 0);
  7077. assert(ggml_are_same_shape(src0, dst));
  7078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7079. return;
  7080. }
  7081. const int n = ggml_nrows(src0);
  7082. const int nc = src0->ne[0];
  7083. assert(dst->nb[0] == sizeof(float));
  7084. assert(src0->nb[0] == sizeof(float));
  7085. for (int i = 0; i < n; i++) {
  7086. ggml_vec_elu_f32(nc,
  7087. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7088. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7089. }
  7090. }
  7091. static void ggml_compute_forward_elu(
  7092. const struct ggml_compute_params * params,
  7093. const struct ggml_tensor * src0,
  7094. struct ggml_tensor * dst) {
  7095. switch (src0->type) {
  7096. case GGML_TYPE_F32:
  7097. {
  7098. ggml_compute_forward_elu_f32(params, src0, dst);
  7099. } break;
  7100. default:
  7101. {
  7102. GGML_ASSERT(false);
  7103. } break;
  7104. }
  7105. }
  7106. // ggml_compute_forward_relu
  7107. static void ggml_compute_forward_relu_f32(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. struct ggml_tensor * dst) {
  7111. assert(params->ith == 0);
  7112. assert(ggml_are_same_shape(src0, dst));
  7113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7114. return;
  7115. }
  7116. const int n = ggml_nrows(src0);
  7117. const int nc = src0->ne[0];
  7118. assert(dst->nb[0] == sizeof(float));
  7119. assert(src0->nb[0] == sizeof(float));
  7120. for (int i = 0; i < n; i++) {
  7121. ggml_vec_relu_f32(nc,
  7122. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7123. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7124. }
  7125. }
  7126. static void ggml_compute_forward_relu(
  7127. const struct ggml_compute_params * params,
  7128. const struct ggml_tensor * src0,
  7129. struct ggml_tensor * dst) {
  7130. switch (src0->type) {
  7131. case GGML_TYPE_F32:
  7132. {
  7133. ggml_compute_forward_relu_f32(params, src0, dst);
  7134. } break;
  7135. default:
  7136. {
  7137. GGML_ASSERT(false);
  7138. } break;
  7139. }
  7140. }
  7141. // ggml_compute_forward_gelu
  7142. static void ggml_compute_forward_gelu_f32(
  7143. const struct ggml_compute_params * params,
  7144. const struct ggml_tensor * src0,
  7145. struct ggml_tensor * dst) {
  7146. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7147. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7148. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7150. return;
  7151. }
  7152. const int ith = params->ith;
  7153. const int nth = params->nth;
  7154. const int nc = src0->ne[0];
  7155. const int nr = ggml_nrows(src0);
  7156. // rows per thread
  7157. const int dr = (nr + nth - 1)/nth;
  7158. // row range for this thread
  7159. const int ir0 = dr*ith;
  7160. const int ir1 = MIN(ir0 + dr, nr);
  7161. for (int i1 = ir0; i1 < ir1; i1++) {
  7162. ggml_vec_gelu_f32(nc,
  7163. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7164. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7165. #ifndef NDEBUG
  7166. for (int k = 0; k < nc; k++) {
  7167. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7168. UNUSED(x);
  7169. assert(!isnan(x));
  7170. assert(!isinf(x));
  7171. }
  7172. #endif
  7173. }
  7174. }
  7175. static void ggml_compute_forward_gelu(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. struct ggml_tensor * dst) {
  7179. switch (src0->type) {
  7180. case GGML_TYPE_F32:
  7181. {
  7182. ggml_compute_forward_gelu_f32(params, src0, dst);
  7183. } break;
  7184. default:
  7185. {
  7186. GGML_ASSERT(false);
  7187. } break;
  7188. }
  7189. }
  7190. // ggml_compute_forward_gelu_quick
  7191. static void ggml_compute_forward_gelu_quick_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7196. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7197. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7198. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7199. return;
  7200. }
  7201. const int ith = params->ith;
  7202. const int nth = params->nth;
  7203. const int nc = src0->ne[0];
  7204. const int nr = ggml_nrows(src0);
  7205. // rows per thread
  7206. const int dr = (nr + nth - 1)/nth;
  7207. // row range for this thread
  7208. const int ir0 = dr*ith;
  7209. const int ir1 = MIN(ir0 + dr, nr);
  7210. for (int i1 = ir0; i1 < ir1; i1++) {
  7211. ggml_vec_gelu_quick_f32(nc,
  7212. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7213. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7214. #ifndef NDEBUG
  7215. for (int k = 0; k < nc; k++) {
  7216. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7217. UNUSED(x);
  7218. assert(!isnan(x));
  7219. assert(!isinf(x));
  7220. }
  7221. #endif
  7222. }
  7223. }
  7224. static void ggml_compute_forward_gelu_quick(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. struct ggml_tensor * dst) {
  7228. switch (src0->type) {
  7229. case GGML_TYPE_F32:
  7230. {
  7231. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7232. } break;
  7233. default:
  7234. {
  7235. GGML_ASSERT(false);
  7236. } break;
  7237. }
  7238. }
  7239. // ggml_compute_forward_silu
  7240. static void ggml_compute_forward_silu_f32(
  7241. const struct ggml_compute_params * params,
  7242. const struct ggml_tensor * src0,
  7243. struct ggml_tensor * dst) {
  7244. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7245. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7246. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7248. return;
  7249. }
  7250. const int ith = params->ith;
  7251. const int nth = params->nth;
  7252. const int nc = src0->ne[0];
  7253. const int nr = ggml_nrows(src0);
  7254. // rows per thread
  7255. const int dr = (nr + nth - 1)/nth;
  7256. // row range for this thread
  7257. const int ir0 = dr*ith;
  7258. const int ir1 = MIN(ir0 + dr, nr);
  7259. for (int i1 = ir0; i1 < ir1; i1++) {
  7260. ggml_vec_silu_f32(nc,
  7261. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7262. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7263. #ifndef NDEBUG
  7264. for (int k = 0; k < nc; k++) {
  7265. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7266. UNUSED(x);
  7267. assert(!isnan(x));
  7268. assert(!isinf(x));
  7269. }
  7270. #endif
  7271. }
  7272. }
  7273. static void ggml_compute_forward_silu(
  7274. const struct ggml_compute_params * params,
  7275. const struct ggml_tensor * src0,
  7276. struct ggml_tensor * dst) {
  7277. switch (src0->type) {
  7278. case GGML_TYPE_F32:
  7279. {
  7280. ggml_compute_forward_silu_f32(params, src0, dst);
  7281. } break;
  7282. default:
  7283. {
  7284. GGML_ASSERT(false);
  7285. } break;
  7286. }
  7287. }
  7288. // ggml_compute_forward_silu_back
  7289. static void ggml_compute_forward_silu_back_f32(
  7290. const struct ggml_compute_params * params,
  7291. const struct ggml_tensor * src0,
  7292. const struct ggml_tensor * grad,
  7293. struct ggml_tensor * dst) {
  7294. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7295. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7296. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7297. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7298. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7300. return;
  7301. }
  7302. const int ith = params->ith;
  7303. const int nth = params->nth;
  7304. const int nc = src0->ne[0];
  7305. const int nr = ggml_nrows(src0);
  7306. // rows per thread
  7307. const int dr = (nr + nth - 1)/nth;
  7308. // row range for this thread
  7309. const int ir0 = dr*ith;
  7310. const int ir1 = MIN(ir0 + dr, nr);
  7311. for (int i1 = ir0; i1 < ir1; i1++) {
  7312. ggml_vec_silu_backward_f32(nc,
  7313. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7314. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7315. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7316. #ifndef NDEBUG
  7317. for (int k = 0; k < nc; k++) {
  7318. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7319. UNUSED(x);
  7320. assert(!isnan(x));
  7321. assert(!isinf(x));
  7322. }
  7323. #endif
  7324. }
  7325. }
  7326. static void ggml_compute_forward_silu_back(
  7327. const struct ggml_compute_params * params,
  7328. const struct ggml_tensor * src0,
  7329. const struct ggml_tensor * grad,
  7330. struct ggml_tensor * dst) {
  7331. switch (src0->type) {
  7332. case GGML_TYPE_F32:
  7333. {
  7334. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7335. } break;
  7336. default:
  7337. {
  7338. GGML_ASSERT(false);
  7339. } break;
  7340. }
  7341. }
  7342. // ggml_compute_forward_norm
  7343. static void ggml_compute_forward_norm_f32(
  7344. const struct ggml_compute_params * params,
  7345. const struct ggml_tensor * src0,
  7346. struct ggml_tensor * dst) {
  7347. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7349. return;
  7350. }
  7351. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7352. const int ith = params->ith;
  7353. const int nth = params->nth;
  7354. GGML_TENSOR_UNARY_OP_LOCALS
  7355. float eps;
  7356. memcpy(&eps, dst->op_params, sizeof(float));
  7357. // TODO: optimize
  7358. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7359. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7360. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7361. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7362. ggml_float sum = 0.0;
  7363. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7364. sum += (ggml_float)x[i00];
  7365. }
  7366. float mean = sum/ne00;
  7367. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7368. ggml_float sum2 = 0.0;
  7369. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7370. float v = x[i00] - mean;
  7371. y[i00] = v;
  7372. sum2 += (ggml_float)(v*v);
  7373. }
  7374. float variance = sum2/ne00;
  7375. const float scale = 1.0f/sqrtf(variance + eps);
  7376. ggml_vec_scale_f32(ne00, y, scale);
  7377. }
  7378. }
  7379. }
  7380. }
  7381. static void ggml_compute_forward_norm(
  7382. const struct ggml_compute_params * params,
  7383. const struct ggml_tensor * src0,
  7384. struct ggml_tensor * dst) {
  7385. switch (src0->type) {
  7386. case GGML_TYPE_F32:
  7387. {
  7388. ggml_compute_forward_norm_f32(params, src0, dst);
  7389. } break;
  7390. default:
  7391. {
  7392. GGML_ASSERT(false);
  7393. } break;
  7394. }
  7395. }
  7396. // ggml_compute_forward_group_rms_norm
  7397. static void ggml_compute_forward_rms_norm_f32(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7403. return;
  7404. }
  7405. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7406. const int ith = params->ith;
  7407. const int nth = params->nth;
  7408. GGML_TENSOR_UNARY_OP_LOCALS
  7409. float eps;
  7410. memcpy(&eps, dst->op_params, sizeof(float));
  7411. // TODO: optimize
  7412. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7414. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7415. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7416. ggml_float sum = 0.0;
  7417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7418. sum += (ggml_float)(x[i00] * x[i00]);
  7419. }
  7420. const float mean = sum/ne00;
  7421. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7422. memcpy(y, x, ne00 * sizeof(float));
  7423. // for (int i00 = 0; i00 < ne00; i00++) {
  7424. // y[i00] = x[i00];
  7425. // }
  7426. const float scale = 1.0f/sqrtf(mean + eps);
  7427. ggml_vec_scale_f32(ne00, y, scale);
  7428. }
  7429. }
  7430. }
  7431. }
  7432. static void ggml_compute_forward_rms_norm(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. struct ggml_tensor * dst) {
  7436. switch (src0->type) {
  7437. case GGML_TYPE_F32:
  7438. {
  7439. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7440. } break;
  7441. default:
  7442. {
  7443. GGML_ASSERT(false);
  7444. } break;
  7445. }
  7446. }
  7447. static void ggml_compute_forward_rms_norm_back_f32(
  7448. const struct ggml_compute_params * params,
  7449. const struct ggml_tensor * src0,
  7450. const struct ggml_tensor * src1,
  7451. struct ggml_tensor * dst) {
  7452. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7454. return;
  7455. }
  7456. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7457. const int ith = params->ith;
  7458. const int nth = params->nth;
  7459. GGML_TENSOR_BINARY_OP_LOCALS
  7460. float eps;
  7461. memcpy(&eps, dst->op_params, sizeof(float));
  7462. // TODO: optimize
  7463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7465. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7466. // src1 is same shape as src0 => same indices
  7467. const int64_t i11 = i01;
  7468. const int64_t i12 = i02;
  7469. const int64_t i13 = i03;
  7470. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7471. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7472. ggml_float sum_xx = 0.0;
  7473. ggml_float sum_xdz = 0.0;
  7474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7475. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7476. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7477. }
  7478. //const float mean = (float)(sum_xx)/ne00;
  7479. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7480. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7481. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7482. // we could cache rms from forward pass to improve performance.
  7483. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7484. //const float rms = sqrtf(mean_eps);
  7485. const float rrms = 1.0f / sqrtf(mean_eps);
  7486. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7487. {
  7488. // z = rms_norm(x)
  7489. //
  7490. // rms_norm(src0) =
  7491. // scale(
  7492. // src0,
  7493. // div(
  7494. // 1,
  7495. // sqrt(
  7496. // add(
  7497. // scale(
  7498. // sum(
  7499. // sqr(
  7500. // src0)),
  7501. // (1.0/N)),
  7502. // eps))));
  7503. // postorder:
  7504. // ## op args grad
  7505. // 00 param src0 grad[#00]
  7506. // 01 const 1
  7507. // 02 sqr (#00) grad[#02]
  7508. // 03 sum (#02) grad[#03]
  7509. // 04 const 1/N
  7510. // 05 scale (#03, #04) grad[#05]
  7511. // 06 const eps
  7512. // 07 add (#05, #06) grad[#07]
  7513. // 08 sqrt (#07) grad[#08]
  7514. // 09 div (#01,#08) grad[#09]
  7515. // 10 scale (#00,#09) grad[#10]
  7516. //
  7517. // backward pass, given grad[#10]
  7518. // #10: scale
  7519. // grad[#00] += scale(grad[#10],#09)
  7520. // grad[#09] += sum(mul(grad[#10],#00))
  7521. // #09: div
  7522. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7523. // #08: sqrt
  7524. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7525. // #07: add
  7526. // grad[#05] += grad[#07]
  7527. // #05: scale
  7528. // grad[#03] += scale(grad[#05],#04)
  7529. // #03: sum
  7530. // grad[#02] += repeat(grad[#03], #02)
  7531. // #02:
  7532. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7533. //
  7534. // substitute and simplify:
  7535. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7536. // grad[#02] = repeat(grad[#03], #02)
  7537. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7538. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7539. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7540. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7541. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7542. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7543. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7544. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7545. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7546. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7547. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7548. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7549. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7550. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7551. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7553. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7554. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7555. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7556. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7557. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7558. // a = b*c + d*e
  7559. // a = b*c*f/f + d*e*f/f
  7560. // a = (b*c*f + d*e*f)*(1/f)
  7561. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7562. // a = (b + d*e/c)*c
  7563. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7564. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7565. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7566. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7567. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7568. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7569. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7570. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7571. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7572. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7573. }
  7574. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7575. // post-order:
  7576. // dx := x
  7577. // dx := scale(dx,-mean_xdz/mean_eps)
  7578. // dx := add(dx, dz)
  7579. // dx := scale(dx, rrms)
  7580. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7581. ggml_vec_cpy_f32 (ne00, dx, x);
  7582. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7583. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7584. ggml_vec_acc_f32 (ne00, dx, dz);
  7585. ggml_vec_scale_f32(ne00, dx, rrms);
  7586. }
  7587. }
  7588. }
  7589. }
  7590. static void ggml_compute_forward_rms_norm_back(
  7591. const struct ggml_compute_params * params,
  7592. const struct ggml_tensor * src0,
  7593. const struct ggml_tensor * src1,
  7594. struct ggml_tensor * dst) {
  7595. switch (src0->type) {
  7596. case GGML_TYPE_F32:
  7597. {
  7598. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7599. } break;
  7600. default:
  7601. {
  7602. GGML_ASSERT(false);
  7603. } break;
  7604. }
  7605. }
  7606. // ggml_compute_forward_group_norm
  7607. static void ggml_compute_forward_group_norm_f32(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. struct ggml_tensor * dst) {
  7611. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7613. return;
  7614. }
  7615. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7616. const int ith = params->ith;
  7617. const int nth = params->nth;
  7618. GGML_TENSOR_UNARY_OP_LOCALS
  7619. const float eps = 1e-6f; // TODO: make this a parameter
  7620. // TODO: optimize
  7621. int n_channels = src0->ne[2];
  7622. int n_groups = dst->op_params[0];
  7623. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7624. for (int i = ith; i < n_groups; i+=nth) {
  7625. int start = i * n_channels_per_group;
  7626. int end = start + n_channels_per_group;
  7627. if (end > n_channels) {
  7628. end = n_channels;
  7629. }
  7630. int step = end - start;
  7631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7632. ggml_float sum = 0.0;
  7633. for (int64_t i02 = start; i02 < end; i02++) {
  7634. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7635. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7637. sum += (ggml_float)x[i00];
  7638. }
  7639. }
  7640. }
  7641. float mean = sum / (ne00 * ne01 * step);
  7642. ggml_float sum2 = 0.0;
  7643. for (int64_t i02 = start; i02 < end; i02++) {
  7644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7645. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7646. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7648. float v = x[i00] - mean;
  7649. y[i00] = v;
  7650. sum2 += (ggml_float)(v * v);
  7651. }
  7652. }
  7653. }
  7654. float variance = sum2 / (ne00 * ne01 * step);
  7655. const float scale = 1.0f / sqrtf(variance + eps);
  7656. for (int64_t i02 = start; i02 < end; i02++) {
  7657. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7658. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7659. ggml_vec_scale_f32(ne00, y, scale);
  7660. }
  7661. }
  7662. }
  7663. }
  7664. }
  7665. static void ggml_compute_forward_group_norm(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. switch (src0->type) {
  7670. case GGML_TYPE_F32:
  7671. {
  7672. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7673. } break;
  7674. default:
  7675. {
  7676. GGML_ASSERT(false);
  7677. } break;
  7678. }
  7679. }
  7680. // ggml_compute_forward_mul_mat
  7681. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7682. // helper function to determine if it is better to use BLAS or not
  7683. // for large matrices, BLAS is faster
  7684. static bool ggml_compute_forward_mul_mat_use_blas(
  7685. const struct ggml_tensor * src0,
  7686. const struct ggml_tensor * src1,
  7687. struct ggml_tensor * dst) {
  7688. //const int64_t ne00 = src0->ne[0];
  7689. //const int64_t ne01 = src0->ne[1];
  7690. const int64_t ne10 = src1->ne[0];
  7691. const int64_t ne0 = dst->ne[0];
  7692. const int64_t ne1 = dst->ne[1];
  7693. // TODO: find the optimal values for these
  7694. if (ggml_is_contiguous(src0) &&
  7695. ggml_is_contiguous(src1) &&
  7696. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7697. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7698. return true;
  7699. }
  7700. return false;
  7701. }
  7702. #endif
  7703. static void ggml_compute_forward_mul_mat(
  7704. const struct ggml_compute_params * params,
  7705. const struct ggml_tensor * src0,
  7706. const struct ggml_tensor * src1,
  7707. struct ggml_tensor * dst) {
  7708. int64_t t0 = ggml_perf_time_us();
  7709. UNUSED(t0);
  7710. GGML_TENSOR_BINARY_OP_LOCALS
  7711. const int ith = params->ith;
  7712. const int nth = params->nth;
  7713. const enum ggml_type type = src0->type;
  7714. const bool src1_cont = ggml_is_contiguous(src1);
  7715. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7716. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7717. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7718. GGML_ASSERT(ne0 == ne01);
  7719. GGML_ASSERT(ne1 == ne11);
  7720. GGML_ASSERT(ne2 == ne12);
  7721. GGML_ASSERT(ne3 == ne13);
  7722. // we don't support permuted src0 or src1
  7723. GGML_ASSERT(nb00 == ggml_type_size(type));
  7724. GGML_ASSERT(nb10 == sizeof(float));
  7725. // dst cannot be transposed or permuted
  7726. GGML_ASSERT(nb0 == sizeof(float));
  7727. GGML_ASSERT(nb0 <= nb1);
  7728. GGML_ASSERT(nb1 <= nb2);
  7729. GGML_ASSERT(nb2 <= nb3);
  7730. // broadcast factors
  7731. const int64_t r2 = ne12/ne02;
  7732. const int64_t r3 = ne13/ne03;
  7733. // nb01 >= nb00 - src0 is not transposed
  7734. // compute by src0 rows
  7735. #if defined(GGML_USE_CLBLAST)
  7736. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7737. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7738. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7739. }
  7740. return;
  7741. }
  7742. #endif
  7743. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7744. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7745. if (params->ith != 0) {
  7746. return;
  7747. }
  7748. if (params->type == GGML_TASK_INIT) {
  7749. return;
  7750. }
  7751. if (params->type == GGML_TASK_FINALIZE) {
  7752. return;
  7753. }
  7754. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7755. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7756. // broadcast src0 into src1 across 2nd,3rd dimension
  7757. const int64_t i03 = i13/r3;
  7758. const int64_t i02 = i12/r2;
  7759. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7760. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7761. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7762. if (type != GGML_TYPE_F32) {
  7763. float * const wdata = params->wdata;
  7764. ggml_to_float_t const to_float = type_traits[type].to_float;
  7765. size_t id = 0;
  7766. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7767. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7768. id += ne00;
  7769. }
  7770. assert(id*sizeof(float) <= params->wsize);
  7771. x = wdata;
  7772. }
  7773. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7774. ne11, ne01, ne10,
  7775. 1.0f, y, ne10,
  7776. x, ne00,
  7777. 0.0f, d, ne01);
  7778. }
  7779. }
  7780. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7781. return;
  7782. }
  7783. #endif
  7784. if (params->type == GGML_TASK_INIT) {
  7785. if (src1->type != vec_dot_type) {
  7786. char * wdata = params->wdata;
  7787. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7788. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7789. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7790. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7791. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7792. wdata += row_size;
  7793. }
  7794. }
  7795. }
  7796. }
  7797. return;
  7798. }
  7799. if (params->type == GGML_TASK_FINALIZE) {
  7800. return;
  7801. }
  7802. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7803. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7804. const int64_t nr0 = ne01; // src0 rows
  7805. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7806. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7807. // distribute the thread work across the inner or outer loop based on which one is larger
  7808. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7809. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7810. const int64_t ith0 = ith % nth0;
  7811. const int64_t ith1 = ith / nth0;
  7812. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7813. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7814. const int64_t ir010 = dr0*ith0;
  7815. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7816. const int64_t ir110 = dr1*ith1;
  7817. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7818. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7819. // threads with no work simply yield (not sure if it helps)
  7820. if (ir010 >= ir011 || ir110 >= ir111) {
  7821. sched_yield();
  7822. return;
  7823. }
  7824. assert(ne12 % ne02 == 0);
  7825. assert(ne13 % ne03 == 0);
  7826. // block-tiling attempt
  7827. const int64_t blck_0 = 16;
  7828. const int64_t blck_1 = 16;
  7829. // attempt to reduce false-sharing (does not seem to make a difference)
  7830. float tmp[16];
  7831. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7832. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7833. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7834. const int64_t i13 = (ir1/(ne12*ne11));
  7835. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7836. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7837. // broadcast src0 into src1
  7838. const int64_t i03 = i13/r3;
  7839. const int64_t i02 = i12/r2;
  7840. const int64_t i1 = i11;
  7841. const int64_t i2 = i12;
  7842. const int64_t i3 = i13;
  7843. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7844. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7845. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7846. // the original src1 data pointer, so we should index using the indices directly
  7847. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7848. const char * src1_col = (const char *) wdata +
  7849. (src1_cont || src1->type != vec_dot_type
  7850. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7851. : (i11*nb11 + i12*nb12 + i13*nb13));
  7852. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7853. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7854. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7855. //}
  7856. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7857. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7858. }
  7859. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7860. }
  7861. }
  7862. }
  7863. }
  7864. // ggml_compute_forward_out_prod
  7865. static void ggml_compute_forward_out_prod_f32(
  7866. const struct ggml_compute_params * params,
  7867. const struct ggml_tensor * src0,
  7868. const struct ggml_tensor * src1,
  7869. struct ggml_tensor * dst) {
  7870. // int64_t t0 = ggml_perf_time_us();
  7871. // UNUSED(t0);
  7872. GGML_TENSOR_BINARY_OP_LOCALS
  7873. const int ith = params->ith;
  7874. const int nth = params->nth;
  7875. GGML_ASSERT(ne02 == ne12);
  7876. GGML_ASSERT(ne03 == ne13);
  7877. GGML_ASSERT(ne2 == ne12);
  7878. GGML_ASSERT(ne3 == ne13);
  7879. // we don't support permuted src0 or src1
  7880. GGML_ASSERT(nb00 == sizeof(float));
  7881. // dst cannot be transposed or permuted
  7882. GGML_ASSERT(nb0 == sizeof(float));
  7883. // GGML_ASSERT(nb0 <= nb1);
  7884. // GGML_ASSERT(nb1 <= nb2);
  7885. // GGML_ASSERT(nb2 <= nb3);
  7886. GGML_ASSERT(ne0 == ne00);
  7887. GGML_ASSERT(ne1 == ne10);
  7888. GGML_ASSERT(ne2 == ne02);
  7889. GGML_ASSERT(ne3 == ne03);
  7890. // nb01 >= nb00 - src0 is not transposed
  7891. // compute by src0 rows
  7892. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7893. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7894. if (params->type == GGML_TASK_INIT) {
  7895. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7896. return;
  7897. }
  7898. if (params->type == GGML_TASK_FINALIZE) {
  7899. return;
  7900. }
  7901. // dst[:,:,:,:] = 0
  7902. // for i2,i3:
  7903. // for i1:
  7904. // for i01:
  7905. // for i0:
  7906. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7907. // parallelize by last three dimensions
  7908. // total rows in dst
  7909. const int64_t nr = ne1*ne2*ne3;
  7910. // rows per thread
  7911. const int64_t dr = (nr + nth - 1)/nth;
  7912. // row range for this thread
  7913. const int64_t ir0 = dr*ith;
  7914. const int64_t ir1 = MIN(ir0 + dr, nr);
  7915. // block-tiling attempt
  7916. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7917. const int64_t blck_1 = 16;
  7918. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7919. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7920. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7921. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7922. for (int64_t ir = bir; ir < bir1; ++ir) {
  7923. // dst indices
  7924. const int64_t i3 = ir/(ne2*ne1);
  7925. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7926. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7927. const int64_t i02 = i2;
  7928. const int64_t i03 = i3;
  7929. //const int64_t i10 = i1;
  7930. const int64_t i12 = i2;
  7931. const int64_t i13 = i3;
  7932. #if GGML_VEC_MAD_UNROLL > 2
  7933. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7934. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7935. const int64_t i11 = i01;
  7936. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7937. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7938. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7939. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7940. }
  7941. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  7942. const int64_t i11 = i01;
  7943. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7944. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7945. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7946. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7947. }
  7948. #else
  7949. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  7950. const int64_t i11 = i01;
  7951. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7952. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7953. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7954. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7955. }
  7956. #endif
  7957. }
  7958. }
  7959. }
  7960. //int64_t t1 = ggml_perf_time_us();
  7961. //static int64_t acc = 0;
  7962. //acc += t1 - t0;
  7963. //if (t1 - t0 > 10) {
  7964. // printf("\n");
  7965. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7966. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7967. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7968. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7969. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7970. //}
  7971. }
  7972. static void ggml_compute_forward_out_prod_q_f32(
  7973. const struct ggml_compute_params * params,
  7974. const struct ggml_tensor * src0,
  7975. const struct ggml_tensor * src1,
  7976. struct ggml_tensor * dst) {
  7977. // int64_t t0 = ggml_perf_time_us();
  7978. // UNUSED(t0);
  7979. GGML_TENSOR_BINARY_OP_LOCALS;
  7980. const int ith = params->ith;
  7981. const int nth = params->nth;
  7982. const enum ggml_type type = src0->type;
  7983. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7984. GGML_ASSERT(ne02 == ne12);
  7985. GGML_ASSERT(ne03 == ne13);
  7986. GGML_ASSERT(ne2 == ne12);
  7987. GGML_ASSERT(ne3 == ne13);
  7988. // we don't support permuted src0 dim0
  7989. GGML_ASSERT(nb00 == ggml_type_size(type));
  7990. // dst dim0 cannot be transposed or permuted
  7991. GGML_ASSERT(nb0 == sizeof(float));
  7992. // GGML_ASSERT(nb0 <= nb1);
  7993. // GGML_ASSERT(nb1 <= nb2);
  7994. // GGML_ASSERT(nb2 <= nb3);
  7995. GGML_ASSERT(ne0 == ne00);
  7996. GGML_ASSERT(ne1 == ne10);
  7997. GGML_ASSERT(ne2 == ne02);
  7998. GGML_ASSERT(ne3 == ne03);
  7999. // nb01 >= nb00 - src0 is not transposed
  8000. // compute by src0 rows
  8001. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8002. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8003. if (params->type == GGML_TASK_INIT) {
  8004. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8005. return;
  8006. }
  8007. if (params->type == GGML_TASK_FINALIZE) {
  8008. return;
  8009. }
  8010. // parallelize by last three dimensions
  8011. // total rows in dst
  8012. const int64_t nr = ne1*ne2*ne3;
  8013. // rows per thread
  8014. const int64_t dr = (nr + nth - 1)/nth;
  8015. // row range for this thread
  8016. const int64_t ir0 = dr*ith;
  8017. const int64_t ir1 = MIN(ir0 + dr, nr);
  8018. // dst[:,:,:,:] = 0
  8019. // for i2,i3:
  8020. // for i1:
  8021. // for i01:
  8022. // for i0:
  8023. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8024. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8025. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8026. // dst indices
  8027. const int64_t i3 = ir/(ne2*ne1);
  8028. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8029. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8030. const int64_t i02 = i2;
  8031. const int64_t i03 = i3;
  8032. //const int64_t i10 = i1;
  8033. const int64_t i12 = i2;
  8034. const int64_t i13 = i3;
  8035. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8036. const int64_t i11 = i01;
  8037. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8038. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8039. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8040. dequantize_row_q(s0, wdata, ne0);
  8041. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8042. }
  8043. }
  8044. //int64_t t1 = ggml_perf_time_us();
  8045. //static int64_t acc = 0;
  8046. //acc += t1 - t0;
  8047. //if (t1 - t0 > 10) {
  8048. // printf("\n");
  8049. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8050. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8051. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8052. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8053. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8054. //}
  8055. }
  8056. static void ggml_compute_forward_out_prod(
  8057. const struct ggml_compute_params * params,
  8058. const struct ggml_tensor * src0,
  8059. const struct ggml_tensor * src1,
  8060. struct ggml_tensor * dst) {
  8061. switch (src0->type) {
  8062. case GGML_TYPE_Q4_0:
  8063. case GGML_TYPE_Q4_1:
  8064. case GGML_TYPE_Q5_0:
  8065. case GGML_TYPE_Q5_1:
  8066. case GGML_TYPE_Q8_0:
  8067. case GGML_TYPE_Q2_K:
  8068. case GGML_TYPE_Q3_K:
  8069. case GGML_TYPE_Q4_K:
  8070. case GGML_TYPE_Q5_K:
  8071. case GGML_TYPE_Q6_K:
  8072. {
  8073. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8074. } break;
  8075. case GGML_TYPE_F16:
  8076. {
  8077. GGML_ASSERT(false); // todo
  8078. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8079. } break;
  8080. case GGML_TYPE_F32:
  8081. {
  8082. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8083. } break;
  8084. default:
  8085. {
  8086. GGML_ASSERT(false);
  8087. } break;
  8088. }
  8089. }
  8090. // ggml_compute_forward_scale
  8091. static void ggml_compute_forward_scale_f32(
  8092. const struct ggml_compute_params * params,
  8093. const struct ggml_tensor * src0,
  8094. const struct ggml_tensor * src1,
  8095. struct ggml_tensor * dst) {
  8096. GGML_ASSERT(ggml_is_contiguous(src0));
  8097. GGML_ASSERT(ggml_is_contiguous(dst));
  8098. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8099. GGML_ASSERT(ggml_is_scalar(src1));
  8100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8101. return;
  8102. }
  8103. // scale factor
  8104. const float v = *(float *) src1->data;
  8105. const int ith = params->ith;
  8106. const int nth = params->nth;
  8107. const int nc = src0->ne[0];
  8108. const int nr = ggml_nrows(src0);
  8109. // rows per thread
  8110. const int dr = (nr + nth - 1)/nth;
  8111. // row range for this thread
  8112. const int ir0 = dr*ith;
  8113. const int ir1 = MIN(ir0 + dr, nr);
  8114. const size_t nb01 = src0->nb[1];
  8115. const size_t nb1 = dst->nb[1];
  8116. for (int i1 = ir0; i1 < ir1; i1++) {
  8117. if (dst->data != src0->data) {
  8118. // src0 is same shape as dst => same indices
  8119. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8120. }
  8121. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8122. }
  8123. }
  8124. static void ggml_compute_forward_scale(
  8125. const struct ggml_compute_params * params,
  8126. const struct ggml_tensor * src0,
  8127. const struct ggml_tensor * src1,
  8128. struct ggml_tensor * dst) {
  8129. switch (src0->type) {
  8130. case GGML_TYPE_F32:
  8131. {
  8132. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8133. } break;
  8134. default:
  8135. {
  8136. GGML_ASSERT(false);
  8137. } break;
  8138. }
  8139. }
  8140. // ggml_compute_forward_set
  8141. static void ggml_compute_forward_set_f32(
  8142. const struct ggml_compute_params * params,
  8143. const struct ggml_tensor * src0,
  8144. const struct ggml_tensor * src1,
  8145. struct ggml_tensor * dst) {
  8146. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8147. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8148. // view src0 and dst with these strides and data offset inbytes during set
  8149. // nb0 is implicitely element_size because src0 and dst are contiguous
  8150. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8151. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8152. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8153. size_t offset = ((int32_t *) dst->op_params)[3];
  8154. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8155. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8156. // memcpy needs to be synchronized across threads to avoid race conditions.
  8157. // => do it in INIT phase
  8158. memcpy(
  8159. ((char *) dst->data),
  8160. ((char *) src0->data),
  8161. ggml_nbytes(dst));
  8162. }
  8163. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8164. return;
  8165. }
  8166. const int ith = params->ith;
  8167. const int nth = params->nth;
  8168. const int nr = ggml_nrows(src1);
  8169. const int nc = src1->ne[0];
  8170. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8171. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8172. // src0 and dst as viewed during set
  8173. const size_t nb0 = ggml_element_size(src0);
  8174. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8175. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8176. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8177. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8178. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8179. GGML_ASSERT(nb10 == sizeof(float));
  8180. // rows per thread
  8181. const int dr = (nr + nth - 1)/nth;
  8182. // row range for this thread
  8183. const int ir0 = dr*ith;
  8184. const int ir1 = MIN(ir0 + dr, nr);
  8185. for (int ir = ir0; ir < ir1; ++ir) {
  8186. // src0 and dst are viewed with shape of src1 and offset
  8187. // => same indices
  8188. const int i3 = ir/(ne12*ne11);
  8189. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8190. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8191. ggml_vec_cpy_f32(nc,
  8192. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8193. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8194. }
  8195. }
  8196. static void ggml_compute_forward_set(
  8197. const struct ggml_compute_params * params,
  8198. const struct ggml_tensor * src0,
  8199. const struct ggml_tensor * src1,
  8200. struct ggml_tensor * dst) {
  8201. switch (src0->type) {
  8202. case GGML_TYPE_F32:
  8203. {
  8204. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8205. } break;
  8206. case GGML_TYPE_F16:
  8207. case GGML_TYPE_Q4_0:
  8208. case GGML_TYPE_Q4_1:
  8209. case GGML_TYPE_Q5_0:
  8210. case GGML_TYPE_Q5_1:
  8211. case GGML_TYPE_Q8_0:
  8212. case GGML_TYPE_Q8_1:
  8213. case GGML_TYPE_Q2_K:
  8214. case GGML_TYPE_Q3_K:
  8215. case GGML_TYPE_Q4_K:
  8216. case GGML_TYPE_Q5_K:
  8217. case GGML_TYPE_Q6_K:
  8218. default:
  8219. {
  8220. GGML_ASSERT(false);
  8221. } break;
  8222. }
  8223. }
  8224. // ggml_compute_forward_cpy
  8225. static void ggml_compute_forward_cpy(
  8226. const struct ggml_compute_params * params,
  8227. const struct ggml_tensor * src0,
  8228. struct ggml_tensor * dst) {
  8229. ggml_compute_forward_dup(params, src0, dst);
  8230. }
  8231. // ggml_compute_forward_cont
  8232. static void ggml_compute_forward_cont(
  8233. const struct ggml_compute_params * params,
  8234. const struct ggml_tensor * src0,
  8235. struct ggml_tensor * dst) {
  8236. ggml_compute_forward_dup(params, src0, dst);
  8237. }
  8238. // ggml_compute_forward_reshape
  8239. static void ggml_compute_forward_reshape(
  8240. const struct ggml_compute_params * params,
  8241. const struct ggml_tensor * src0,
  8242. struct ggml_tensor * dst) {
  8243. // NOP
  8244. UNUSED(params);
  8245. UNUSED(src0);
  8246. UNUSED(dst);
  8247. }
  8248. // ggml_compute_forward_view
  8249. static void ggml_compute_forward_view(
  8250. const struct ggml_compute_params * params,
  8251. const struct ggml_tensor * src0) {
  8252. // NOP
  8253. UNUSED(params);
  8254. UNUSED(src0);
  8255. }
  8256. // ggml_compute_forward_permute
  8257. static void ggml_compute_forward_permute(
  8258. const struct ggml_compute_params * params,
  8259. const struct ggml_tensor * src0) {
  8260. // NOP
  8261. UNUSED(params);
  8262. UNUSED(src0);
  8263. }
  8264. // ggml_compute_forward_transpose
  8265. static void ggml_compute_forward_transpose(
  8266. const struct ggml_compute_params * params,
  8267. const struct ggml_tensor * src0) {
  8268. // NOP
  8269. UNUSED(params);
  8270. UNUSED(src0);
  8271. }
  8272. // ggml_compute_forward_get_rows
  8273. static void ggml_compute_forward_get_rows_q(
  8274. const struct ggml_compute_params * params,
  8275. const struct ggml_tensor * src0,
  8276. const struct ggml_tensor * src1,
  8277. struct ggml_tensor * dst) {
  8278. assert(params->ith == 0);
  8279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8280. return;
  8281. }
  8282. const int nc = src0->ne[0];
  8283. const int nr = ggml_nelements(src1);
  8284. const enum ggml_type type = src0->type;
  8285. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8286. assert( dst->ne[0] == nc);
  8287. assert( dst->ne[1] == nr);
  8288. assert(src0->nb[0] == ggml_type_size(type));
  8289. for (int i = 0; i < nr; ++i) {
  8290. const int r = ((int32_t *) src1->data)[i];
  8291. dequantize_row_q(
  8292. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8293. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8294. }
  8295. }
  8296. static void ggml_compute_forward_get_rows_f16(
  8297. const struct ggml_compute_params * params,
  8298. const struct ggml_tensor * src0,
  8299. const struct ggml_tensor * src1,
  8300. struct ggml_tensor * dst) {
  8301. assert(params->ith == 0);
  8302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8303. return;
  8304. }
  8305. const int nc = src0->ne[0];
  8306. const int nr = ggml_nelements(src1);
  8307. assert( dst->ne[0] == nc);
  8308. assert( dst->ne[1] == nr);
  8309. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8310. for (int i = 0; i < nr; ++i) {
  8311. const int r = ((int32_t *) src1->data)[i];
  8312. for (int j = 0; j < nc; ++j) {
  8313. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8314. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8315. }
  8316. }
  8317. }
  8318. static void ggml_compute_forward_get_rows_f32(
  8319. const struct ggml_compute_params * params,
  8320. const struct ggml_tensor * src0,
  8321. const struct ggml_tensor * src1,
  8322. struct ggml_tensor * dst) {
  8323. assert(params->ith == 0);
  8324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8325. return;
  8326. }
  8327. const int nc = src0->ne[0];
  8328. const int nr = ggml_nelements(src1);
  8329. assert( dst->ne[0] == nc);
  8330. assert( dst->ne[1] == nr);
  8331. assert(src0->nb[0] == sizeof(float));
  8332. for (int i = 0; i < nr; ++i) {
  8333. const int r = ((int32_t *) src1->data)[i];
  8334. ggml_vec_cpy_f32(nc,
  8335. (float *) ((char *) dst->data + i*dst->nb[1]),
  8336. (float *) ((char *) src0->data + r*src0->nb[1]));
  8337. }
  8338. }
  8339. static void ggml_compute_forward_get_rows(
  8340. const struct ggml_compute_params * params,
  8341. const struct ggml_tensor * src0,
  8342. const struct ggml_tensor * src1,
  8343. struct ggml_tensor * dst) {
  8344. switch (src0->type) {
  8345. case GGML_TYPE_Q4_0:
  8346. case GGML_TYPE_Q4_1:
  8347. case GGML_TYPE_Q5_0:
  8348. case GGML_TYPE_Q5_1:
  8349. case GGML_TYPE_Q8_0:
  8350. case GGML_TYPE_Q8_1:
  8351. case GGML_TYPE_Q2_K:
  8352. case GGML_TYPE_Q3_K:
  8353. case GGML_TYPE_Q4_K:
  8354. case GGML_TYPE_Q5_K:
  8355. case GGML_TYPE_Q6_K:
  8356. {
  8357. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8358. } break;
  8359. case GGML_TYPE_F16:
  8360. {
  8361. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8362. } break;
  8363. case GGML_TYPE_F32:
  8364. {
  8365. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8366. } break;
  8367. default:
  8368. {
  8369. GGML_ASSERT(false);
  8370. } break;
  8371. }
  8372. //static bool first = true;
  8373. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8374. //if (first) {
  8375. // first = false;
  8376. //} else {
  8377. // for (int k = 0; k < dst->ne[1]; ++k) {
  8378. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8379. // for (int i = 0; i < 16; ++i) {
  8380. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8381. // }
  8382. // printf("\n");
  8383. // }
  8384. // printf("\n");
  8385. // }
  8386. // printf("\n");
  8387. // exit(0);
  8388. //}
  8389. }
  8390. // ggml_compute_forward_get_rows_back
  8391. static void ggml_compute_forward_get_rows_back_f32_f16(
  8392. const struct ggml_compute_params * params,
  8393. const struct ggml_tensor * src0,
  8394. const struct ggml_tensor * src1,
  8395. struct ggml_tensor * dst) {
  8396. GGML_ASSERT(params->ith == 0);
  8397. GGML_ASSERT(ggml_is_contiguous(dst));
  8398. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8399. if (params->type == GGML_TASK_INIT) {
  8400. memset(dst->data, 0, ggml_nbytes(dst));
  8401. }
  8402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8403. return;
  8404. }
  8405. const int nc = src0->ne[0];
  8406. const int nr = ggml_nelements(src1);
  8407. GGML_ASSERT( dst->ne[0] == nc);
  8408. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8409. for (int i = 0; i < nr; ++i) {
  8410. const int r = ((int32_t *) src1->data)[i];
  8411. for (int j = 0; j < nc; ++j) {
  8412. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8413. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8414. }
  8415. }
  8416. }
  8417. static void ggml_compute_forward_get_rows_back_f32(
  8418. const struct ggml_compute_params * params,
  8419. const struct ggml_tensor * src0,
  8420. const struct ggml_tensor * src1,
  8421. struct ggml_tensor * dst) {
  8422. GGML_ASSERT(params->ith == 0);
  8423. GGML_ASSERT(ggml_is_contiguous(dst));
  8424. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8425. if (params->type == GGML_TASK_INIT) {
  8426. memset(dst->data, 0, ggml_nbytes(dst));
  8427. }
  8428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8429. return;
  8430. }
  8431. const int nc = src0->ne[0];
  8432. const int nr = ggml_nelements(src1);
  8433. GGML_ASSERT( dst->ne[0] == nc);
  8434. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8435. for (int i = 0; i < nr; ++i) {
  8436. const int r = ((int32_t *) src1->data)[i];
  8437. ggml_vec_add_f32(nc,
  8438. (float *) ((char *) dst->data + r*dst->nb[1]),
  8439. (float *) ((char *) dst->data + r*dst->nb[1]),
  8440. (float *) ((char *) src0->data + i*src0->nb[1]));
  8441. }
  8442. }
  8443. static void ggml_compute_forward_get_rows_back(
  8444. const struct ggml_compute_params * params,
  8445. const struct ggml_tensor * src0,
  8446. const struct ggml_tensor * src1,
  8447. struct ggml_tensor * dst) {
  8448. switch (src0->type) {
  8449. case GGML_TYPE_F16:
  8450. {
  8451. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8452. } break;
  8453. case GGML_TYPE_F32:
  8454. {
  8455. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8456. } break;
  8457. default:
  8458. {
  8459. GGML_ASSERT(false);
  8460. } break;
  8461. }
  8462. //static bool first = true;
  8463. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8464. //if (first) {
  8465. // first = false;
  8466. //} else {
  8467. // for (int k = 0; k < dst->ne[1]; ++k) {
  8468. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8469. // for (int i = 0; i < 16; ++i) {
  8470. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8471. // }
  8472. // printf("\n");
  8473. // }
  8474. // printf("\n");
  8475. // }
  8476. // printf("\n");
  8477. // exit(0);
  8478. //}
  8479. }
  8480. // ggml_compute_forward_diag
  8481. static void ggml_compute_forward_diag_f32(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0,
  8484. struct ggml_tensor * dst) {
  8485. GGML_ASSERT(params->ith == 0);
  8486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8487. return;
  8488. }
  8489. // TODO: handle transposed/permuted matrices
  8490. GGML_TENSOR_UNARY_OP_LOCALS
  8491. GGML_ASSERT(ne00 == ne0);
  8492. GGML_ASSERT(ne00 == ne1);
  8493. GGML_ASSERT(ne01 == 1);
  8494. GGML_ASSERT(ne02 == ne2);
  8495. GGML_ASSERT(ne03 == ne3);
  8496. GGML_ASSERT(nb00 == sizeof(float));
  8497. GGML_ASSERT(nb0 == sizeof(float));
  8498. for (int i3 = 0; i3 < ne3; i3++) {
  8499. for (int i2 = 0; i2 < ne2; i2++) {
  8500. for (int i1 = 0; i1 < ne1; i1++) {
  8501. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8502. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8503. for (int i0 = 0; i0 < i1; i0++) {
  8504. d[i0] = 0;
  8505. }
  8506. d[i1] = s[i1];
  8507. for (int i0 = i1+1; i0 < ne0; i0++) {
  8508. d[i0] = 0;
  8509. }
  8510. }
  8511. }
  8512. }
  8513. }
  8514. static void ggml_compute_forward_diag(
  8515. const struct ggml_compute_params * params,
  8516. const struct ggml_tensor * src0,
  8517. struct ggml_tensor * dst) {
  8518. switch (src0->type) {
  8519. case GGML_TYPE_F32:
  8520. {
  8521. ggml_compute_forward_diag_f32(params, src0, dst);
  8522. } break;
  8523. default:
  8524. {
  8525. GGML_ASSERT(false);
  8526. } break;
  8527. }
  8528. }
  8529. // ggml_compute_forward_diag_mask_inf
  8530. static void ggml_compute_forward_diag_mask_f32(
  8531. const struct ggml_compute_params * params,
  8532. const struct ggml_tensor * src0,
  8533. struct ggml_tensor * dst,
  8534. const float value) {
  8535. const int ith = params->ith;
  8536. const int nth = params->nth;
  8537. const int n_past = ((int32_t *) dst->op_params)[0];
  8538. const bool inplace = src0->data == dst->data;
  8539. GGML_ASSERT(n_past >= 0);
  8540. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8541. // memcpy needs to be synchronized across threads to avoid race conditions.
  8542. // => do it in INIT phase
  8543. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8544. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8545. memcpy(
  8546. ((char *) dst->data),
  8547. ((char *) src0->data),
  8548. ggml_nbytes(dst));
  8549. }
  8550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8551. return;
  8552. }
  8553. // TODO: handle transposed/permuted matrices
  8554. const int n = ggml_nrows(src0);
  8555. const int nc = src0->ne[0];
  8556. const int nr = src0->ne[1];
  8557. const int nz = n/nr;
  8558. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8559. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8560. for (int k = 0; k < nz; k++) {
  8561. for (int j = ith; j < nr; j += nth) {
  8562. for (int i = n_past; i < nc; i++) {
  8563. if (i > n_past + j) {
  8564. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8565. }
  8566. }
  8567. }
  8568. }
  8569. }
  8570. static void ggml_compute_forward_diag_mask_inf(
  8571. const struct ggml_compute_params * params,
  8572. const struct ggml_tensor * src0,
  8573. struct ggml_tensor * dst) {
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. static void ggml_compute_forward_diag_mask_zero(
  8586. const struct ggml_compute_params * params,
  8587. const struct ggml_tensor * src0,
  8588. struct ggml_tensor * dst) {
  8589. switch (src0->type) {
  8590. case GGML_TYPE_F32:
  8591. {
  8592. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8593. } break;
  8594. default:
  8595. {
  8596. GGML_ASSERT(false);
  8597. } break;
  8598. }
  8599. }
  8600. // ggml_compute_forward_soft_max
  8601. static void ggml_compute_forward_soft_max_f32(
  8602. const struct ggml_compute_params * params,
  8603. const struct ggml_tensor * src0,
  8604. struct ggml_tensor * dst) {
  8605. GGML_ASSERT(ggml_is_contiguous(src0));
  8606. GGML_ASSERT(ggml_is_contiguous(dst));
  8607. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8609. return;
  8610. }
  8611. // TODO: handle transposed/permuted matrices
  8612. const int ith = params->ith;
  8613. const int nth = params->nth;
  8614. const int nc = src0->ne[0];
  8615. const int nr = ggml_nrows(src0);
  8616. // rows per thread
  8617. const int dr = (nr + nth - 1)/nth;
  8618. // row range for this thread
  8619. const int ir0 = dr*ith;
  8620. const int ir1 = MIN(ir0 + dr, nr);
  8621. for (int i1 = ir0; i1 < ir1; i1++) {
  8622. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8623. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8624. #ifndef NDEBUG
  8625. for (int i = 0; i < nc; ++i) {
  8626. //printf("p[%d] = %f\n", i, p[i]);
  8627. assert(!isnan(sp[i]));
  8628. }
  8629. #endif
  8630. float max = -INFINITY;
  8631. ggml_vec_max_f32(nc, &max, sp);
  8632. ggml_float sum = 0.0;
  8633. uint16_t scvt;
  8634. for (int i = 0; i < nc; i++) {
  8635. if (sp[i] == -INFINITY) {
  8636. dp[i] = 0.0f;
  8637. } else {
  8638. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8639. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8640. memcpy(&scvt, &s, sizeof(scvt));
  8641. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8642. sum += (ggml_float)val;
  8643. dp[i] = val;
  8644. }
  8645. }
  8646. assert(sum > 0.0);
  8647. sum = 1.0/sum;
  8648. ggml_vec_scale_f32(nc, dp, sum);
  8649. #ifndef NDEBUG
  8650. for (int i = 0; i < nc; ++i) {
  8651. assert(!isnan(dp[i]));
  8652. assert(!isinf(dp[i]));
  8653. }
  8654. #endif
  8655. }
  8656. }
  8657. static void ggml_compute_forward_soft_max(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. struct ggml_tensor * dst) {
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_soft_max_back
  8673. static void ggml_compute_forward_soft_max_back_f32(
  8674. const struct ggml_compute_params * params,
  8675. const struct ggml_tensor * src0,
  8676. const struct ggml_tensor * src1,
  8677. struct ggml_tensor * dst) {
  8678. GGML_ASSERT(ggml_is_contiguous(src0));
  8679. GGML_ASSERT(ggml_is_contiguous(src1));
  8680. GGML_ASSERT(ggml_is_contiguous(dst));
  8681. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8682. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8684. return;
  8685. }
  8686. // TODO: handle transposed/permuted matrices
  8687. const int ith = params->ith;
  8688. const int nth = params->nth;
  8689. const int nc = src0->ne[0];
  8690. const int nr = ggml_nrows(src0);
  8691. // rows per thread
  8692. const int dr = (nr + nth - 1)/nth;
  8693. // row range for this thread
  8694. const int ir0 = dr*ith;
  8695. const int ir1 = MIN(ir0 + dr, nr);
  8696. for (int i1 = ir0; i1 < ir1; i1++) {
  8697. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8698. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8699. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8700. #ifndef NDEBUG
  8701. for (int i = 0; i < nc; ++i) {
  8702. //printf("p[%d] = %f\n", i, p[i]);
  8703. assert(!isnan(dy[i]));
  8704. assert(!isnan(y[i]));
  8705. }
  8706. #endif
  8707. // Jii = yi - yi*yi
  8708. // Jij = -yi*yj
  8709. // J = diag(y)-y.T*y
  8710. // dx = J * dy
  8711. // dxk = sum_i(Jki * dyi)
  8712. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8713. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8714. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8715. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8716. // dxk = -yk * dot(y, dy) + yk*dyk
  8717. // dxk = yk * (- dot(y, dy) + dyk)
  8718. // dxk = yk * (dyk - dot(y, dy))
  8719. //
  8720. // post-order:
  8721. // dot_y_dy := dot(y, dy)
  8722. // dx := dy
  8723. // dx := dx - dot_y_dy
  8724. // dx := dx * y
  8725. // linear runtime, no additional memory
  8726. float dot_y_dy = 0;
  8727. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8728. ggml_vec_cpy_f32 (nc, dx, dy);
  8729. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8730. ggml_vec_mul_f32 (nc, dx, dx, y);
  8731. #ifndef NDEBUG
  8732. for (int i = 0; i < nc; ++i) {
  8733. assert(!isnan(dx[i]));
  8734. assert(!isinf(dx[i]));
  8735. }
  8736. #endif
  8737. }
  8738. }
  8739. static void ggml_compute_forward_soft_max_back(
  8740. const struct ggml_compute_params * params,
  8741. const struct ggml_tensor * src0,
  8742. const struct ggml_tensor * src1,
  8743. struct ggml_tensor * dst) {
  8744. switch (src0->type) {
  8745. case GGML_TYPE_F32:
  8746. {
  8747. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8748. } break;
  8749. default:
  8750. {
  8751. GGML_ASSERT(false);
  8752. } break;
  8753. }
  8754. }
  8755. // ggml_compute_forward_alibi
  8756. static void ggml_compute_forward_alibi_f32(
  8757. const struct ggml_compute_params * params,
  8758. const struct ggml_tensor * src0,
  8759. struct ggml_tensor * dst) {
  8760. assert(params->ith == 0);
  8761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8762. return;
  8763. }
  8764. //const int n_past = ((int32_t *) dst->op_params)[0];
  8765. const int n_head = ((int32_t *) dst->op_params)[1];
  8766. float max_bias;
  8767. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8768. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8769. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8770. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8771. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8772. const int64_t n = ggml_nrows(src0);
  8773. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8774. const size_t nb0 = src0->nb[0];
  8775. const size_t nb1 = src0->nb[1];
  8776. const size_t nb2 = src0->nb[2];
  8777. //const int nb3 = src0->nb[3];
  8778. GGML_ASSERT(nb0 == sizeof(float));
  8779. GGML_ASSERT(n_head == ne2);
  8780. // add alibi to src0 (KQ_scaled)
  8781. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8782. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8783. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8784. for (int64_t i = 0; i < ne0; i++) {
  8785. for (int64_t j = 0; j < ne1; j++) {
  8786. for (int64_t k = 0; k < ne2_ne3; k++) {
  8787. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8788. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8789. // TODO: k*nb2 or k*nb3
  8790. float m_k;
  8791. if (k < n_heads_log2_floor) {
  8792. m_k = powf(m0, k + 1);
  8793. } else {
  8794. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8795. }
  8796. pdst[0] = i * m_k + src[0];
  8797. }
  8798. }
  8799. }
  8800. }
  8801. static void ggml_compute_forward_alibi_f16(
  8802. const struct ggml_compute_params * params,
  8803. const struct ggml_tensor * src0,
  8804. struct ggml_tensor * dst) {
  8805. assert(params->ith == 0);
  8806. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8807. return;
  8808. }
  8809. //const int n_past = ((int32_t *) dst->op_params)[0];
  8810. const int n_head = ((int32_t *) dst->op_params)[1];
  8811. float max_bias;
  8812. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8813. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8814. const int ne1 = src0->ne[1]; // seq_len_without_past
  8815. const int ne2 = src0->ne[2]; // n_head -> this is k
  8816. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8817. const int n = ggml_nrows(src0);
  8818. const int ne2_ne3 = n/ne1; // ne2*ne3
  8819. const int nb0 = src0->nb[0];
  8820. const int nb1 = src0->nb[1];
  8821. const int nb2 = src0->nb[2];
  8822. //const int nb3 = src0->nb[3];
  8823. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8824. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8825. GGML_ASSERT(n_head == ne2);
  8826. // add alibi to src0 (KQ_scaled)
  8827. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8828. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8829. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8830. for (int i = 0; i < ne0; i++) {
  8831. for (int j = 0; j < ne1; j++) {
  8832. for (int k = 0; k < ne2_ne3; k++) {
  8833. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8834. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8835. // TODO: k*nb2 or k*nb3
  8836. float m_k;
  8837. if (k < n_heads_log2_floor) {
  8838. m_k = powf(m0, k + 1);
  8839. } else {
  8840. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8841. }
  8842. // we return F32
  8843. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8844. }
  8845. }
  8846. }
  8847. }
  8848. static void ggml_compute_forward_alibi(
  8849. const struct ggml_compute_params * params,
  8850. const struct ggml_tensor * src0,
  8851. struct ggml_tensor * dst) {
  8852. switch (src0->type) {
  8853. case GGML_TYPE_F16:
  8854. {
  8855. ggml_compute_forward_alibi_f16(params, src0, dst);
  8856. } break;
  8857. case GGML_TYPE_F32:
  8858. {
  8859. ggml_compute_forward_alibi_f32(params, src0, dst);
  8860. } break;
  8861. case GGML_TYPE_Q4_0:
  8862. case GGML_TYPE_Q4_1:
  8863. case GGML_TYPE_Q5_0:
  8864. case GGML_TYPE_Q5_1:
  8865. case GGML_TYPE_Q8_0:
  8866. case GGML_TYPE_Q8_1:
  8867. case GGML_TYPE_Q2_K:
  8868. case GGML_TYPE_Q3_K:
  8869. case GGML_TYPE_Q4_K:
  8870. case GGML_TYPE_Q5_K:
  8871. case GGML_TYPE_Q6_K:
  8872. case GGML_TYPE_Q8_K:
  8873. case GGML_TYPE_I8:
  8874. case GGML_TYPE_I16:
  8875. case GGML_TYPE_I32:
  8876. case GGML_TYPE_COUNT:
  8877. {
  8878. GGML_ASSERT(false);
  8879. } break;
  8880. }
  8881. }
  8882. // ggml_compute_forward_clamp
  8883. static void ggml_compute_forward_clamp_f32(
  8884. const struct ggml_compute_params * params,
  8885. const struct ggml_tensor * src0,
  8886. struct ggml_tensor * dst) {
  8887. assert(params->ith == 0);
  8888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8889. return;
  8890. }
  8891. float min;
  8892. float max;
  8893. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8894. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8895. const int ith = params->ith;
  8896. const int nth = params->nth;
  8897. const int n = ggml_nrows(src0);
  8898. const int nc = src0->ne[0];
  8899. const size_t nb00 = src0->nb[0];
  8900. const size_t nb01 = src0->nb[1];
  8901. const size_t nb0 = dst->nb[0];
  8902. const size_t nb1 = dst->nb[1];
  8903. GGML_ASSERT( nb0 == sizeof(float));
  8904. GGML_ASSERT(nb00 == sizeof(float));
  8905. for (int j = ith; j < n; j += nth) {
  8906. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8907. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8908. for (int i = 0; i < nc; i++) {
  8909. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8910. }
  8911. }
  8912. }
  8913. static void ggml_compute_forward_clamp(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. struct ggml_tensor * dst) {
  8917. switch (src0->type) {
  8918. case GGML_TYPE_F32:
  8919. {
  8920. ggml_compute_forward_clamp_f32(params, src0, dst);
  8921. } break;
  8922. case GGML_TYPE_F16:
  8923. case GGML_TYPE_Q4_0:
  8924. case GGML_TYPE_Q4_1:
  8925. case GGML_TYPE_Q5_0:
  8926. case GGML_TYPE_Q5_1:
  8927. case GGML_TYPE_Q8_0:
  8928. case GGML_TYPE_Q8_1:
  8929. case GGML_TYPE_Q2_K:
  8930. case GGML_TYPE_Q3_K:
  8931. case GGML_TYPE_Q4_K:
  8932. case GGML_TYPE_Q5_K:
  8933. case GGML_TYPE_Q6_K:
  8934. case GGML_TYPE_Q8_K:
  8935. case GGML_TYPE_I8:
  8936. case GGML_TYPE_I16:
  8937. case GGML_TYPE_I32:
  8938. case GGML_TYPE_COUNT:
  8939. {
  8940. GGML_ASSERT(false);
  8941. } break;
  8942. }
  8943. }
  8944. // ggml_compute_forward_rope
  8945. static void ggml_compute_forward_rope_f32(
  8946. const struct ggml_compute_params * params,
  8947. const struct ggml_tensor * src0,
  8948. const struct ggml_tensor * src1,
  8949. struct ggml_tensor * dst) {
  8950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8951. return;
  8952. }
  8953. float freq_base;
  8954. float freq_scale;
  8955. // these two only relevant for xPos RoPE:
  8956. float xpos_base;
  8957. bool xpos_down;
  8958. //const int n_past = ((int32_t *) dst->op_params)[0];
  8959. const int n_dims = ((int32_t *) dst->op_params)[1];
  8960. const int mode = ((int32_t *) dst->op_params)[2];
  8961. const int n_ctx = ((int32_t *) dst->op_params)[3];
  8962. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  8963. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  8964. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  8965. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  8966. GGML_TENSOR_UNARY_OP_LOCALS
  8967. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8968. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8969. GGML_ASSERT(nb00 == sizeof(float));
  8970. const int ith = params->ith;
  8971. const int nth = params->nth;
  8972. const int nr = ggml_nrows(dst);
  8973. GGML_ASSERT(n_dims <= ne0);
  8974. GGML_ASSERT(n_dims % 2 == 0);
  8975. // rows per thread
  8976. const int dr = (nr + nth - 1)/nth;
  8977. // row range for this thread
  8978. const int ir0 = dr*ith;
  8979. const int ir1 = MIN(ir0 + dr, nr);
  8980. // row index used to determine which thread to use
  8981. int ir = 0;
  8982. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  8983. const bool is_neox = mode & 2;
  8984. const bool is_glm = mode & 4;
  8985. const int32_t * pos = (const int32_t *) src1->data;
  8986. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8987. for (int64_t i2 = 0; i2 < ne2; i2++) {
  8988. const int64_t p = pos[i2];
  8989. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8990. if (ir++ < ir0) continue;
  8991. if (ir > ir1) break;
  8992. float theta = freq_scale * (float)p;
  8993. if (is_glm) {
  8994. theta = MIN(p, n_ctx - 2);
  8995. float block_theta = MAX(p - (n_ctx - 2), 0);
  8996. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  8997. const float cos_theta = cosf(theta);
  8998. const float sin_theta = sinf(theta);
  8999. const float cos_block_theta = cosf(block_theta);
  9000. const float sin_block_theta = sinf(block_theta);
  9001. theta *= theta_scale;
  9002. block_theta *= theta_scale;
  9003. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9004. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9005. const float x0 = src[0];
  9006. const float x1 = src[n_dims/2];
  9007. const float x2 = src[n_dims];
  9008. const float x3 = src[n_dims/2*3];
  9009. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9010. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9011. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9012. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9013. }
  9014. } else if (!is_neox) {
  9015. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9016. const float cos_theta = cosf(theta);
  9017. const float sin_theta = sinf(theta);
  9018. // zeta scaling for xPos only:
  9019. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9020. if (xpos_down) zeta = 1.0f / zeta;
  9021. theta *= theta_scale;
  9022. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9023. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9024. const float x0 = src[0];
  9025. const float x1 = src[1];
  9026. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9027. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9028. }
  9029. } else {
  9030. // TODO: this might be wrong for ne0 != n_dims - need double check
  9031. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9032. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9033. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9034. const float cos_theta = cosf(theta);
  9035. const float sin_theta = sinf(theta);
  9036. theta *= theta_scale;
  9037. const int64_t i0 = ib*n_dims + ic/2;
  9038. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9039. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9040. const float x0 = src[0];
  9041. const float x1 = src[n_dims/2];
  9042. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9043. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9044. }
  9045. }
  9046. }
  9047. }
  9048. }
  9049. }
  9050. }
  9051. static void ggml_compute_forward_rope_f16(
  9052. const struct ggml_compute_params * params,
  9053. const struct ggml_tensor * src0,
  9054. const struct ggml_tensor * src1,
  9055. struct ggml_tensor * dst) {
  9056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9057. return;
  9058. }
  9059. float freq_base;
  9060. float freq_scale;
  9061. //const int n_past = ((int32_t *) dst->op_params)[0];
  9062. const int n_dims = ((int32_t *) dst->op_params)[1];
  9063. const int mode = ((int32_t *) dst->op_params)[2];
  9064. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9065. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9066. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9067. GGML_TENSOR_UNARY_OP_LOCALS
  9068. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9069. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9070. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9071. const int ith = params->ith;
  9072. const int nth = params->nth;
  9073. const int nr = ggml_nrows(dst);
  9074. GGML_ASSERT(n_dims <= ne0);
  9075. GGML_ASSERT(n_dims % 2 == 0);
  9076. // rows per thread
  9077. const int dr = (nr + nth - 1)/nth;
  9078. // row range for this thread
  9079. const int ir0 = dr*ith;
  9080. const int ir1 = MIN(ir0 + dr, nr);
  9081. // row index used to determine which thread to use
  9082. int ir = 0;
  9083. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9084. const bool is_neox = mode & 2;
  9085. const bool is_glm = mode & 4;
  9086. const int32_t * pos = (const int32_t *) src1->data;
  9087. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9088. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9089. const int64_t p = pos[i2];
  9090. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9091. if (ir++ < ir0) continue;
  9092. if (ir > ir1) break;
  9093. float theta = freq_scale * (float)p;
  9094. if (is_glm) {
  9095. theta = MIN(p, n_ctx - 2);
  9096. float block_theta = MAX(p - (n_ctx - 2), 0);
  9097. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9098. const float cos_theta = cosf(theta);
  9099. const float sin_theta = sinf(theta);
  9100. const float cos_block_theta = cosf(block_theta);
  9101. const float sin_block_theta = sinf(block_theta);
  9102. theta *= theta_scale;
  9103. block_theta *= theta_scale;
  9104. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9105. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9106. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9107. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9108. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9109. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9110. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9111. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9112. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9113. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9114. }
  9115. } else if (!is_neox) {
  9116. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9117. const float cos_theta = cosf(theta);
  9118. const float sin_theta = sinf(theta);
  9119. theta *= theta_scale;
  9120. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9121. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9122. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9123. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9124. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9125. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9126. }
  9127. } else {
  9128. // TODO: this might be wrong for ne0 != n_dims - need double check
  9129. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9130. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9131. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9132. const float cos_theta = cosf(theta);
  9133. const float sin_theta = sinf(theta);
  9134. theta *= theta_scale;
  9135. const int64_t i0 = ib*n_dims + ic/2;
  9136. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9137. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9138. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9139. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9140. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9141. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9142. }
  9143. }
  9144. }
  9145. }
  9146. }
  9147. }
  9148. }
  9149. static void ggml_compute_forward_rope(
  9150. const struct ggml_compute_params * params,
  9151. const struct ggml_tensor * src0,
  9152. const struct ggml_tensor * src1,
  9153. struct ggml_tensor * dst) {
  9154. switch (src0->type) {
  9155. case GGML_TYPE_F16:
  9156. {
  9157. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9158. } break;
  9159. case GGML_TYPE_F32:
  9160. {
  9161. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9162. } break;
  9163. default:
  9164. {
  9165. GGML_ASSERT(false);
  9166. } break;
  9167. }
  9168. }
  9169. // ggml_compute_forward_rope_back
  9170. static void ggml_compute_forward_rope_back_f32(
  9171. const struct ggml_compute_params * params,
  9172. const struct ggml_tensor * src0,
  9173. const struct ggml_tensor * src1,
  9174. struct ggml_tensor * dst) {
  9175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9176. return;
  9177. }
  9178. // y = rope(x, src1)
  9179. // dx = rope_back(dy, src1)
  9180. // src0 is dy, src1 contains options
  9181. float freq_base;
  9182. float freq_scale;
  9183. // these two only relevant for xPos RoPE:
  9184. float xpos_base;
  9185. bool xpos_down;
  9186. //const int n_past = ((int32_t *) dst->op_params)[0];
  9187. const int n_dims = ((int32_t *) dst->op_params)[1];
  9188. const int mode = ((int32_t *) dst->op_params)[2];
  9189. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  9190. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9191. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9192. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  9193. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  9194. GGML_TENSOR_UNARY_OP_LOCALS
  9195. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9196. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9197. assert(nb0 == sizeof(float));
  9198. const int ith = params->ith;
  9199. const int nth = params->nth;
  9200. const int nr = ggml_nrows(dst);
  9201. // rows per thread
  9202. const int dr = (nr + nth - 1)/nth;
  9203. // row range for this thread
  9204. const int ir0 = dr*ith;
  9205. const int ir1 = MIN(ir0 + dr, nr);
  9206. // row index used to determine which thread to use
  9207. int ir = 0;
  9208. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9209. const bool is_neox = mode & 2;
  9210. const int32_t * pos = (const int32_t *) src1->data;
  9211. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9212. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9213. const int64_t p = pos[i2];
  9214. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9215. if (ir++ < ir0) continue;
  9216. if (ir > ir1) break;
  9217. float theta = freq_scale * (float)p;
  9218. if (!is_neox) {
  9219. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9220. const float cos_theta = cosf(theta);
  9221. const float sin_theta = sinf(theta);
  9222. // zeta scaling for xPos only:
  9223. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9224. if (xpos_down) zeta = 1.0f / zeta;
  9225. theta *= theta_scale;
  9226. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9227. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9228. const float dy0 = dy[0];
  9229. const float dy1 = dy[1];
  9230. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  9231. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  9232. }
  9233. } else {
  9234. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9235. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9236. const float cos_theta = cosf(theta);
  9237. const float sin_theta = sinf(theta);
  9238. theta *= theta_scale;
  9239. const int64_t i0 = ib*n_dims + ic/2;
  9240. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9241. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9242. const float dy0 = dy[0];
  9243. const float dy1 = dy[n_dims/2];
  9244. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9245. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9246. }
  9247. }
  9248. }
  9249. }
  9250. }
  9251. }
  9252. }
  9253. static void ggml_compute_forward_rope_back_f16(
  9254. const struct ggml_compute_params * params,
  9255. const struct ggml_tensor * src0,
  9256. const struct ggml_tensor * src1,
  9257. struct ggml_tensor * dst) {
  9258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9259. return;
  9260. }
  9261. // y = rope(x, src1)
  9262. // dx = rope_back(dy, src1)
  9263. // src0 is dy, src1 contains options
  9264. //const int n_past = ((int32_t *) dst->op_params)[0];
  9265. const int n_dims = ((int32_t *) dst->op_params)[1];
  9266. const int mode = ((int32_t *) dst->op_params)[2];
  9267. GGML_TENSOR_UNARY_OP_LOCALS
  9268. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9269. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9270. assert(nb0 == sizeof(ggml_fp16_t));
  9271. const int ith = params->ith;
  9272. const int nth = params->nth;
  9273. const int nr = ggml_nrows(dst);
  9274. // rows per thread
  9275. const int dr = (nr + nth - 1)/nth;
  9276. // row range for this thread
  9277. const int ir0 = dr*ith;
  9278. const int ir1 = MIN(ir0 + dr, nr);
  9279. // row index used to determine which thread to use
  9280. int ir = 0;
  9281. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9282. const bool is_neox = mode & 2;
  9283. const int32_t * pos = (const int32_t *) src1->data;
  9284. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9285. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9286. const int64_t p = pos[i2];
  9287. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9288. if (ir++ < ir0) continue;
  9289. if (ir > ir1) break;
  9290. float theta = (float)p;
  9291. if (!is_neox) {
  9292. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9293. const float cos_theta = cosf(theta);
  9294. const float sin_theta = sinf(theta);
  9295. theta *= theta_scale;
  9296. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9297. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9298. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9299. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9300. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9301. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9302. }
  9303. } else {
  9304. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9305. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9306. const float cos_theta = cosf(theta);
  9307. const float sin_theta = sinf(theta);
  9308. theta *= theta_scale;
  9309. const int64_t i0 = ib*n_dims + ic/2;
  9310. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9311. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9312. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9313. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9314. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9315. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9316. }
  9317. }
  9318. }
  9319. }
  9320. }
  9321. }
  9322. }
  9323. static void ggml_compute_forward_rope_back(
  9324. const struct ggml_compute_params * params,
  9325. const struct ggml_tensor * src0,
  9326. const struct ggml_tensor * src1,
  9327. struct ggml_tensor * dst) {
  9328. switch (src0->type) {
  9329. case GGML_TYPE_F16:
  9330. {
  9331. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9332. } break;
  9333. case GGML_TYPE_F32:
  9334. {
  9335. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9336. } break;
  9337. default:
  9338. {
  9339. GGML_ASSERT(false);
  9340. } break;
  9341. }
  9342. }
  9343. // ggml_compute_forward_conv_1d
  9344. static void ggml_compute_forward_conv_1d_f16_f32(
  9345. const struct ggml_compute_params * params,
  9346. const struct ggml_tensor * src0,
  9347. const struct ggml_tensor * src1,
  9348. struct ggml_tensor * dst) {
  9349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9352. int64_t t0 = ggml_perf_time_us();
  9353. UNUSED(t0);
  9354. GGML_TENSOR_BINARY_OP_LOCALS
  9355. const int ith = params->ith;
  9356. const int nth = params->nth;
  9357. const int nk = ne00;
  9358. // size of the convolution row - the kernel size unrolled across all input channels
  9359. const int ew0 = nk*ne01;
  9360. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9361. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9362. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9363. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9364. GGML_ASSERT(nb10 == sizeof(float));
  9365. if (params->type == GGML_TASK_INIT) {
  9366. memset(params->wdata, 0, params->wsize);
  9367. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9368. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9369. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9370. ggml_fp16_t * dst_data = wdata;
  9371. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9372. for (int64_t ik = 0; ik < nk; ik++) {
  9373. const int idx0 = i0*s0 + ik*d0 - p0;
  9374. if(!(idx0 < 0 || idx0 >= ne10)) {
  9375. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9376. }
  9377. }
  9378. }
  9379. }
  9380. return;
  9381. }
  9382. if (params->type == GGML_TASK_FINALIZE) {
  9383. return;
  9384. }
  9385. // total rows in dst
  9386. const int nr = ne2;
  9387. // rows per thread
  9388. const int dr = (nr + nth - 1)/nth;
  9389. // row range for this thread
  9390. const int ir0 = dr*ith;
  9391. const int ir1 = MIN(ir0 + dr, nr);
  9392. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9393. for (int i2 = 0; i2 < ne2; i2++) {
  9394. for (int i1 = ir0; i1 < ir1; i1++) {
  9395. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9396. for (int i0 = 0; i0 < ne0; i0++) {
  9397. ggml_vec_dot_f16(ew0, dst_data + i0,
  9398. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9399. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9400. }
  9401. }
  9402. }
  9403. }
  9404. static void ggml_compute_forward_conv_1d_f32(
  9405. const struct ggml_compute_params * params,
  9406. const struct ggml_tensor * src0,
  9407. const struct ggml_tensor * src1,
  9408. struct ggml_tensor * dst) {
  9409. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9410. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9411. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9412. int64_t t0 = ggml_perf_time_us();
  9413. UNUSED(t0);
  9414. GGML_TENSOR_BINARY_OP_LOCALS
  9415. const int ith = params->ith;
  9416. const int nth = params->nth;
  9417. const int nk = ne00;
  9418. const int ew0 = nk*ne01;
  9419. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9420. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9421. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9422. GGML_ASSERT(nb00 == sizeof(float));
  9423. GGML_ASSERT(nb10 == sizeof(float));
  9424. if (params->type == GGML_TASK_INIT) {
  9425. memset(params->wdata, 0, params->wsize);
  9426. float * const wdata = (float *) params->wdata + 0;
  9427. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9428. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9429. float * dst_data = wdata;
  9430. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9431. for (int64_t ik = 0; ik < nk; ik++) {
  9432. const int idx0 = i0*s0 + ik*d0 - p0;
  9433. if(!(idx0 < 0 || idx0 >= ne10)) {
  9434. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9435. }
  9436. }
  9437. }
  9438. }
  9439. return;
  9440. }
  9441. if (params->type == GGML_TASK_FINALIZE) {
  9442. return;
  9443. }
  9444. // total rows in dst
  9445. const int nr = ne02;
  9446. // rows per thread
  9447. const int dr = (nr + nth - 1)/nth;
  9448. // row range for this thread
  9449. const int ir0 = dr*ith;
  9450. const int ir1 = MIN(ir0 + dr, nr);
  9451. float * const wdata = (float *) params->wdata + 0;
  9452. for (int i2 = 0; i2 < ne2; i2++) {
  9453. for (int i1 = ir0; i1 < ir1; i1++) {
  9454. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9455. for (int i0 = 0; i0 < ne0; i0++) {
  9456. ggml_vec_dot_f32(ew0, dst_data + i0,
  9457. (float *) ((char *) src0->data + i1*nb02),
  9458. (float *) wdata + i2*nb2 + i0*ew0);
  9459. }
  9460. }
  9461. }
  9462. }
  9463. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9464. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9465. ggml_fp16_t * A,
  9466. ggml_fp16_t * B,
  9467. float * C,
  9468. const int ith, const int nth) {
  9469. // does not seem to make a difference
  9470. int64_t m0, m1, n0, n1;
  9471. // patches per thread
  9472. if (m > n) {
  9473. n0 = 0;
  9474. n1 = n;
  9475. // total patches in dst
  9476. const int np = m;
  9477. // patches per thread
  9478. const int dp = (np + nth - 1)/nth;
  9479. // patch range for this thread
  9480. m0 = dp*ith;
  9481. m1 = MIN(m0 + dp, np);
  9482. } else {
  9483. m0 = 0;
  9484. m1 = m;
  9485. // total patches in dst
  9486. const int np = n;
  9487. // patches per thread
  9488. const int dp = (np + nth - 1)/nth;
  9489. // patch range for this thread
  9490. n0 = dp*ith;
  9491. n1 = MIN(n0 + dp, np);
  9492. }
  9493. // block-tiling attempt
  9494. int64_t blck_n = 16;
  9495. int64_t blck_m = 16;
  9496. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9497. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9498. // if (blck_size > 0) {
  9499. // blck_0 = 4;
  9500. // blck_1 = blck_size / blck_0;
  9501. // if (blck_1 < 0) {
  9502. // blck_1 = 1;
  9503. // }
  9504. // // blck_0 = (int64_t)sqrt(blck_size);
  9505. // // blck_1 = blck_0;
  9506. // }
  9507. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9508. for (int j = n0; j < n1; j+=blck_n) {
  9509. for (int i = m0; i < m1; i+=blck_m) {
  9510. // printf("i j k => %d %d %d\n", i, j, K);
  9511. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9512. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9513. ggml_vec_dot_f16(k,
  9514. C + ii*n + jj,
  9515. A + ii * k,
  9516. B + jj * k);
  9517. }
  9518. }
  9519. }
  9520. }
  9521. }
  9522. // src0: kernel [OC, IC, K]
  9523. // src1: signal [N, IC, IL]
  9524. // dst: result [N, OL, IC*K]
  9525. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9526. const struct ggml_compute_params * params,
  9527. const struct ggml_tensor * src0,
  9528. const struct ggml_tensor * src1,
  9529. struct ggml_tensor * dst) {
  9530. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9531. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9532. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9533. int64_t t0 = ggml_perf_time_us();
  9534. UNUSED(t0);
  9535. GGML_TENSOR_BINARY_OP_LOCALS;
  9536. const int64_t N = ne12;
  9537. const int64_t IC = ne11;
  9538. const int64_t IL = ne10;
  9539. const int64_t K = ne00;
  9540. const int64_t OL = ne1;
  9541. const int ith = params->ith;
  9542. const int nth = params->nth;
  9543. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9544. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9545. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9546. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9547. GGML_ASSERT(nb10 == sizeof(float));
  9548. if (params->type == GGML_TASK_INIT) {
  9549. memset(dst->data, 0, ggml_nbytes(dst));
  9550. return;
  9551. }
  9552. if (params->type == GGML_TASK_FINALIZE) {
  9553. return;
  9554. }
  9555. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9556. {
  9557. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9558. for (int64_t in = 0; in < N; in++) {
  9559. for (int64_t iol = 0; iol < OL; iol++) {
  9560. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9561. // micro kernel
  9562. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9563. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9564. for (int64_t ik = 0; ik < K; ik++) {
  9565. const int64_t iil = iol*s0 + ik*d0 - p0;
  9566. if (!(iil < 0 || iil >= IL)) {
  9567. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9568. }
  9569. }
  9570. }
  9571. }
  9572. }
  9573. }
  9574. }
  9575. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9576. // src0: [OC, IC, K]
  9577. // src1: [N, OL, IC * K]
  9578. // result: [N, OC, OL]
  9579. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. struct ggml_tensor * dst) {
  9584. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9585. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9586. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9587. int64_t t0 = ggml_perf_time_us();
  9588. UNUSED(t0);
  9589. if (params->type == GGML_TASK_INIT) {
  9590. return;
  9591. }
  9592. if (params->type == GGML_TASK_FINALIZE) {
  9593. return;
  9594. }
  9595. GGML_TENSOR_BINARY_OP_LOCALS;
  9596. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9597. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9598. GGML_ASSERT(nb0 == sizeof(float));
  9599. const int N = ne12;
  9600. const int OL = ne11;
  9601. const int OC = ne02;
  9602. const int IC = ne01;
  9603. const int K = ne00;
  9604. const int ith = params->ith;
  9605. const int nth = params->nth;
  9606. int64_t m = OC;
  9607. int64_t n = OL;
  9608. int64_t k = IC * K;
  9609. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9610. for (int i = 0; i < N; i++) {
  9611. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9612. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9613. float * C = (float *)dst->data + i * m * n; // [m, n]
  9614. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9615. }
  9616. }
  9617. static void ggml_compute_forward_conv_1d(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. const struct ggml_tensor * src1,
  9621. struct ggml_tensor * dst) {
  9622. switch(src0->type) {
  9623. case GGML_TYPE_F16:
  9624. {
  9625. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9626. } break;
  9627. case GGML_TYPE_F32:
  9628. {
  9629. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9630. } break;
  9631. default:
  9632. {
  9633. GGML_ASSERT(false);
  9634. } break;
  9635. }
  9636. }
  9637. static void ggml_compute_forward_conv_1d_stage_0(
  9638. const struct ggml_compute_params * params,
  9639. const struct ggml_tensor * src0,
  9640. const struct ggml_tensor * src1,
  9641. struct ggml_tensor * dst) {
  9642. switch(src0->type) {
  9643. case GGML_TYPE_F16:
  9644. {
  9645. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9646. } break;
  9647. default:
  9648. {
  9649. GGML_ASSERT(false);
  9650. } break;
  9651. }
  9652. }
  9653. static void ggml_compute_forward_conv_1d_stage_1(
  9654. const struct ggml_compute_params * params,
  9655. const struct ggml_tensor * src0,
  9656. const struct ggml_tensor * src1,
  9657. struct ggml_tensor * dst) {
  9658. switch(src0->type) {
  9659. case GGML_TYPE_F16:
  9660. {
  9661. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9662. } break;
  9663. default:
  9664. {
  9665. GGML_ASSERT(false);
  9666. } break;
  9667. }
  9668. }
  9669. // ggml_compute_forward_conv_transpose_1d
  9670. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9671. const struct ggml_compute_params * params,
  9672. const struct ggml_tensor * src0,
  9673. const struct ggml_tensor * src1,
  9674. struct ggml_tensor * dst) {
  9675. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9676. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9677. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9678. int64_t t0 = ggml_perf_time_us();
  9679. UNUSED(t0);
  9680. GGML_TENSOR_BINARY_OP_LOCALS
  9681. const int ith = params->ith;
  9682. const int nth = params->nth;
  9683. const int nk = ne00*ne01*ne02;
  9684. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9685. GGML_ASSERT(nb10 == sizeof(float));
  9686. if (params->type == GGML_TASK_INIT) {
  9687. memset(params->wdata, 0, params->wsize);
  9688. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9689. {
  9690. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9692. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9693. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9694. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9696. dst_data[i00*ne02 + i02] = src[i00];
  9697. }
  9698. }
  9699. }
  9700. }
  9701. // permute source data (src1) from (L x Cin) to (Cin x L)
  9702. {
  9703. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9704. ggml_fp16_t * dst_data = wdata;
  9705. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9706. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9707. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9708. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9709. }
  9710. }
  9711. }
  9712. // need to zero dst since we are accumulating into it
  9713. memset(dst->data, 0, ggml_nbytes(dst));
  9714. return;
  9715. }
  9716. if (params->type == GGML_TASK_FINALIZE) {
  9717. return;
  9718. }
  9719. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9720. // total rows in dst
  9721. const int nr = ne1;
  9722. // rows per thread
  9723. const int dr = (nr + nth - 1)/nth;
  9724. // row range for this thread
  9725. const int ir0 = dr*ith;
  9726. const int ir1 = MIN(ir0 + dr, nr);
  9727. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9728. ggml_fp16_t * const wdata_src = wdata + nk;
  9729. for (int i1 = ir0; i1 < ir1; i1++) {
  9730. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9731. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9732. for (int i10 = 0; i10 < ne10; i10++) {
  9733. const int i1n = i10*ne11;
  9734. for (int i00 = 0; i00 < ne00; i00++) {
  9735. float v = 0;
  9736. ggml_vec_dot_f16(ne02, &v,
  9737. (ggml_fp16_t *) wdata_src + i1n,
  9738. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9739. dst_data[i10*s0 + i00] += v;
  9740. }
  9741. }
  9742. }
  9743. }
  9744. static void ggml_compute_forward_conv_transpose_1d_f32(
  9745. const struct ggml_compute_params * params,
  9746. const struct ggml_tensor * src0,
  9747. const struct ggml_tensor * src1,
  9748. struct ggml_tensor * dst) {
  9749. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9750. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9751. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9752. int64_t t0 = ggml_perf_time_us();
  9753. UNUSED(t0);
  9754. GGML_TENSOR_BINARY_OP_LOCALS
  9755. const int ith = params->ith;
  9756. const int nth = params->nth;
  9757. const int nk = ne00*ne01*ne02;
  9758. GGML_ASSERT(nb00 == sizeof(float));
  9759. GGML_ASSERT(nb10 == sizeof(float));
  9760. if (params->type == GGML_TASK_INIT) {
  9761. memset(params->wdata, 0, params->wsize);
  9762. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9763. {
  9764. float * const wdata = (float *) params->wdata + 0;
  9765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9766. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9767. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9768. float * dst_data = wdata + i01*ne00*ne02;
  9769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9770. dst_data[i00*ne02 + i02] = src[i00];
  9771. }
  9772. }
  9773. }
  9774. }
  9775. // prepare source data (src1)
  9776. {
  9777. float * const wdata = (float *) params->wdata + nk;
  9778. float * dst_data = wdata;
  9779. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9780. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9781. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9782. dst_data[i10*ne11 + i11] = src[i10];
  9783. }
  9784. }
  9785. }
  9786. // need to zero dst since we are accumulating into it
  9787. memset(dst->data, 0, ggml_nbytes(dst));
  9788. return;
  9789. }
  9790. if (params->type == GGML_TASK_FINALIZE) {
  9791. return;
  9792. }
  9793. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9794. // total rows in dst
  9795. const int nr = ne1;
  9796. // rows per thread
  9797. const int dr = (nr + nth - 1)/nth;
  9798. // row range for this thread
  9799. const int ir0 = dr*ith;
  9800. const int ir1 = MIN(ir0 + dr, nr);
  9801. float * const wdata = (float *) params->wdata + 0;
  9802. float * const wdata_src = wdata + nk;
  9803. for (int i1 = ir0; i1 < ir1; i1++) {
  9804. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9805. float * wdata_kernel = wdata + i1*ne02*ne00;
  9806. for (int i10 = 0; i10 < ne10; i10++) {
  9807. const int i1n = i10*ne11;
  9808. for (int i00 = 0; i00 < ne00; i00++) {
  9809. float v = 0;
  9810. ggml_vec_dot_f32(ne02, &v,
  9811. wdata_src + i1n,
  9812. wdata_kernel + i00*ne02);
  9813. dst_data[i10*s0 + i00] += v;
  9814. }
  9815. }
  9816. }
  9817. }
  9818. static void ggml_compute_forward_conv_transpose_1d(
  9819. const struct ggml_compute_params * params,
  9820. const struct ggml_tensor * src0,
  9821. const struct ggml_tensor * src1,
  9822. struct ggml_tensor * dst) {
  9823. switch (src0->type) {
  9824. case GGML_TYPE_F16:
  9825. {
  9826. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9827. } break;
  9828. case GGML_TYPE_F32:
  9829. {
  9830. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9831. } break;
  9832. default:
  9833. {
  9834. GGML_ASSERT(false);
  9835. } break;
  9836. }
  9837. }
  9838. // ggml_compute_forward_conv_2d
  9839. // src0: kernel [OC, IC, KH, KW]
  9840. // src1: image [N, IC, IH, IW]
  9841. // dst: result [N, OH, OW, IC*KH*KW]
  9842. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9843. const struct ggml_compute_params * params,
  9844. const struct ggml_tensor * src0,
  9845. const struct ggml_tensor * src1,
  9846. struct ggml_tensor * dst) {
  9847. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9849. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9850. int64_t t0 = ggml_perf_time_us();
  9851. UNUSED(t0);
  9852. GGML_TENSOR_BINARY_OP_LOCALS;
  9853. const int64_t N = ne13;
  9854. const int64_t IC = ne12;
  9855. const int64_t IH = ne11;
  9856. const int64_t IW = ne10;
  9857. // const int64_t OC = ne03;
  9858. // const int64_t IC = ne02;
  9859. const int64_t KH = ne01;
  9860. const int64_t KW = ne00;
  9861. const int64_t OH = ne2;
  9862. const int64_t OW = ne1;
  9863. const int ith = params->ith;
  9864. const int nth = params->nth;
  9865. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9866. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9867. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9868. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9869. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9870. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9871. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9872. GGML_ASSERT(nb10 == sizeof(float));
  9873. if (params->type == GGML_TASK_INIT) {
  9874. memset(dst->data, 0, ggml_nbytes(dst));
  9875. return;
  9876. }
  9877. if (params->type == GGML_TASK_FINALIZE) {
  9878. return;
  9879. }
  9880. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9881. {
  9882. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9883. for (int64_t in = 0; in < N; in++) {
  9884. for (int64_t ioh = 0; ioh < OH; ioh++) {
  9885. for (int64_t iow = 0; iow < OW; iow++) {
  9886. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9887. // micro kernel
  9888. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9889. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9890. for (int64_t ikh = 0; ikh < KH; ikh++) {
  9891. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9892. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9893. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9894. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9895. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9896. }
  9897. }
  9898. }
  9899. }
  9900. }
  9901. }
  9902. }
  9903. }
  9904. }
  9905. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9906. // src0: [OC, IC, KH, KW]
  9907. // src1: [N, OH, OW, IC * KH * KW]
  9908. // result: [N, OC, OH, OW]
  9909. static void ggml_compute_forward_conv_2d_stage_1_f16(
  9910. const struct ggml_compute_params * params,
  9911. const struct ggml_tensor * src0,
  9912. const struct ggml_tensor * src1,
  9913. struct ggml_tensor * dst) {
  9914. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9915. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9916. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9917. int64_t t0 = ggml_perf_time_us();
  9918. UNUSED(t0);
  9919. if (params->type == GGML_TASK_INIT) {
  9920. return;
  9921. }
  9922. if (params->type == GGML_TASK_FINALIZE) {
  9923. return;
  9924. }
  9925. GGML_TENSOR_BINARY_OP_LOCALS;
  9926. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9927. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9928. GGML_ASSERT(nb0 == sizeof(float));
  9929. const int N = ne13;
  9930. const int OH = ne12;
  9931. const int OW = ne11;
  9932. const int OC = ne03;
  9933. const int IC = ne02;
  9934. const int KH = ne01;
  9935. const int KW = ne00;
  9936. const int ith = params->ith;
  9937. const int nth = params->nth;
  9938. int64_t m = OC;
  9939. int64_t n = OH * OW;
  9940. int64_t k = IC * KH * KW;
  9941. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9942. for (int i = 0; i < N; i++) {
  9943. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9944. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9945. float * C = (float *)dst->data + i * m * n; // [m, n]
  9946. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9947. }
  9948. }
  9949. static void ggml_compute_forward_conv_2d_f16_f32(
  9950. const struct ggml_compute_params * params,
  9951. const struct ggml_tensor * src0,
  9952. const struct ggml_tensor * src1,
  9953. struct ggml_tensor * dst) {
  9954. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9955. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9956. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9957. int64_t t0 = ggml_perf_time_us();
  9958. UNUSED(t0);
  9959. GGML_TENSOR_BINARY_OP_LOCALS
  9960. // src1: image [N, IC, IH, IW]
  9961. // src0: kernel [OC, IC, KH, KW]
  9962. // dst: result [N, OC, OH, OW]
  9963. // ne12: IC
  9964. // ne0: OW
  9965. // ne1: OH
  9966. // nk0: KW
  9967. // nk1: KH
  9968. // ne13: N
  9969. const int N = ne13;
  9970. const int IC = ne12;
  9971. const int IH = ne11;
  9972. const int IW = ne10;
  9973. const int OC = ne03;
  9974. // const int IC = ne02;
  9975. const int KH = ne01;
  9976. const int KW = ne00;
  9977. const int OH = ne1;
  9978. const int OW = ne0;
  9979. const int ith = params->ith;
  9980. const int nth = params->nth;
  9981. // const int nk0 = ne00;
  9982. // const int nk1 = ne01;
  9983. // size of the convolution row - the kernel size unrolled across all channels
  9984. // const int ew0 = nk0*nk1*ne02;
  9985. // ew0: IC*KH*KW
  9986. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9987. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9988. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9989. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9990. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9991. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9992. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9993. GGML_ASSERT(nb10 == sizeof(float));
  9994. if (params->type == GGML_TASK_INIT) {
  9995. memset(params->wdata, 0, params->wsize);
  9996. // prepare source data (src1)
  9997. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  9998. {
  9999. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10000. for (int in = 0; in < N; in++) {
  10001. for (int iic = 0; iic < IC; iic++) {
  10002. for (int ioh = 0; ioh < OH; ioh++) {
  10003. for (int iow = 0; iow < OW; iow++) {
  10004. // micro kernel
  10005. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10006. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  10007. for (int ikh = 0; ikh < KH; ikh++) {
  10008. for (int ikw = 0; ikw < KW; ikw++) {
  10009. const int iiw = iow*s0 + ikw*d0 - p0;
  10010. const int iih = ioh*s1 + ikh*d1 - p1;
  10011. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  10012. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10013. }
  10014. }
  10015. }
  10016. }
  10017. }
  10018. }
  10019. }
  10020. }
  10021. return;
  10022. }
  10023. if (params->type == GGML_TASK_FINALIZE) {
  10024. return;
  10025. }
  10026. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10027. // wdata: [N*OH*OW, IC*KH*KW]
  10028. // dst: result [N, OC, OH, OW]
  10029. // src0: kernel [OC, IC, KH, KW]
  10030. int64_t m = OC;
  10031. int64_t n = OH * OW;
  10032. int64_t k = IC * KH * KW;
  10033. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10034. for (int i = 0; i < N; i++) {
  10035. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10036. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10037. float * C = (float *)dst->data + i * m * n; // [m * k]
  10038. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10039. }
  10040. }
  10041. static void ggml_compute_forward_conv_2d(
  10042. const struct ggml_compute_params * params,
  10043. const struct ggml_tensor * src0,
  10044. const struct ggml_tensor * src1,
  10045. struct ggml_tensor * dst) {
  10046. switch (src0->type) {
  10047. case GGML_TYPE_F16:
  10048. {
  10049. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10050. } break;
  10051. case GGML_TYPE_F32:
  10052. {
  10053. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10054. GGML_ASSERT(false);
  10055. } break;
  10056. default:
  10057. {
  10058. GGML_ASSERT(false);
  10059. } break;
  10060. }
  10061. }
  10062. static void ggml_compute_forward_conv_2d_stage_0(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst) {
  10067. switch (src0->type) {
  10068. case GGML_TYPE_F16:
  10069. {
  10070. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10071. } break;
  10072. case GGML_TYPE_F32:
  10073. {
  10074. GGML_ASSERT(false);
  10075. } break;
  10076. default:
  10077. {
  10078. GGML_ASSERT(false);
  10079. } break;
  10080. }
  10081. }
  10082. static void ggml_compute_forward_conv_2d_stage_1(
  10083. const struct ggml_compute_params * params,
  10084. const struct ggml_tensor * src0,
  10085. const struct ggml_tensor * src1,
  10086. struct ggml_tensor * dst) {
  10087. switch (src0->type) {
  10088. case GGML_TYPE_F16:
  10089. {
  10090. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10091. } break;
  10092. case GGML_TYPE_F32:
  10093. {
  10094. GGML_ASSERT(false);
  10095. } break;
  10096. default:
  10097. {
  10098. GGML_ASSERT(false);
  10099. } break;
  10100. }
  10101. }
  10102. // ggml_compute_forward_conv_transpose_2d
  10103. static void ggml_compute_forward_conv_transpose_2d(
  10104. const struct ggml_compute_params * params,
  10105. const struct ggml_tensor * src0,
  10106. const struct ggml_tensor * src1,
  10107. struct ggml_tensor * dst) {
  10108. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10110. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10111. int64_t t0 = ggml_perf_time_us();
  10112. UNUSED(t0);
  10113. GGML_TENSOR_BINARY_OP_LOCALS
  10114. const int ith = params->ith;
  10115. const int nth = params->nth;
  10116. const int nk = ne00*ne01*ne02*ne03;
  10117. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10118. GGML_ASSERT(nb10 == sizeof(float));
  10119. if (params->type == GGML_TASK_INIT) {
  10120. memset(params->wdata, 0, params->wsize);
  10121. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10122. {
  10123. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10124. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10125. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10126. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10127. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10128. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10129. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10130. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10131. }
  10132. }
  10133. }
  10134. }
  10135. }
  10136. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10137. {
  10138. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10139. for (int i12 = 0; i12 < ne12; i12++) {
  10140. for (int i11 = 0; i11 < ne11; i11++) {
  10141. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10142. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10143. for (int i10 = 0; i10 < ne10; i10++) {
  10144. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10145. }
  10146. }
  10147. }
  10148. }
  10149. memset(dst->data, 0, ggml_nbytes(dst));
  10150. return;
  10151. }
  10152. if (params->type == GGML_TASK_FINALIZE) {
  10153. return;
  10154. }
  10155. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10156. // total patches in dst
  10157. const int np = ne2;
  10158. // patches per thread
  10159. const int dp = (np + nth - 1)/nth;
  10160. // patch range for this thread
  10161. const int ip0 = dp*ith;
  10162. const int ip1 = MIN(ip0 + dp, np);
  10163. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10164. ggml_fp16_t * const wdata_src = wdata + nk;
  10165. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10166. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10167. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10168. for (int i11 = 0; i11 < ne11; i11++) {
  10169. for (int i10 = 0; i10 < ne10; i10++) {
  10170. const int i1n = i11*ne10*ne12 + i10*ne12;
  10171. for (int i01 = 0; i01 < ne01; i01++) {
  10172. for (int i00 = 0; i00 < ne00; i00++) {
  10173. float v = 0;
  10174. ggml_vec_dot_f16(ne03, &v,
  10175. wdata_src + i1n,
  10176. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10177. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10178. }
  10179. }
  10180. }
  10181. }
  10182. }
  10183. }
  10184. // ggml_compute_forward_pool_1d_sk_p0
  10185. static void ggml_compute_forward_pool_1d_sk_p0(
  10186. const struct ggml_compute_params * params,
  10187. const enum ggml_op_pool op,
  10188. const struct ggml_tensor * src,
  10189. const int k,
  10190. struct ggml_tensor * dst) {
  10191. assert(src->type == GGML_TYPE_F32);
  10192. assert(params->ith == 0);
  10193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10194. return;
  10195. }
  10196. const char * cdata = (const char *)src->data;
  10197. const char * const data_end = cdata + ggml_nbytes(src);
  10198. float * drow = (float *)dst->data;
  10199. const int64_t rs = dst->ne[0];
  10200. while (cdata < data_end) {
  10201. const float * const srow = (const float *)cdata;
  10202. int j = 0;
  10203. for (int64_t i = 0; i < rs; ++i) {
  10204. switch (op) {
  10205. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10206. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10207. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10208. }
  10209. for (int ki = 0; ki < k; ++ki) {
  10210. switch (op) {
  10211. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10212. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10213. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10214. }
  10215. ++j;
  10216. }
  10217. switch (op) {
  10218. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10219. case GGML_OP_POOL_MAX: break;
  10220. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10221. }
  10222. }
  10223. cdata += src->nb[1];
  10224. drow += rs;
  10225. }
  10226. }
  10227. // ggml_compute_forward_pool_1d
  10228. static void ggml_compute_forward_pool_1d(
  10229. const struct ggml_compute_params * params,
  10230. const struct ggml_tensor * src0,
  10231. struct ggml_tensor * dst) {
  10232. const int32_t * opts = (const int32_t *)dst->op_params;
  10233. enum ggml_op_pool op = opts[0];
  10234. const int k0 = opts[1];
  10235. const int s0 = opts[2];
  10236. const int p0 = opts[3];
  10237. GGML_ASSERT(p0 == 0); // padding not supported
  10238. GGML_ASSERT(k0 == s0); // only s = k supported
  10239. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10240. }
  10241. // ggml_compute_forward_pool_2d_sk_p0
  10242. static void ggml_compute_forward_pool_2d_sk_p0(
  10243. const struct ggml_compute_params * params,
  10244. const enum ggml_op_pool op,
  10245. const struct ggml_tensor * src,
  10246. const int k0,
  10247. const int k1,
  10248. struct ggml_tensor * dst) {
  10249. assert(src->type == GGML_TYPE_F32);
  10250. assert(params->ith == 0);
  10251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10252. return;
  10253. }
  10254. const char * cdata = (const char*)src->data;
  10255. const char * const data_end = cdata + ggml_nbytes(src);
  10256. const int64_t px = dst->ne[0];
  10257. const int64_t py = dst->ne[1];
  10258. const int64_t pa = px * py;
  10259. float * dplane = (float *)dst->data;
  10260. const int ka = k0 * k1;
  10261. while (cdata < data_end) {
  10262. for (int oy = 0; oy < py; ++oy) {
  10263. float * const drow = dplane + oy * px;
  10264. for (int ox = 0; ox < px; ++ox) {
  10265. float * const out = drow + ox;
  10266. switch (op) {
  10267. case GGML_OP_POOL_AVG: *out = 0; break;
  10268. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10269. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10270. }
  10271. const int ix = ox * k0;
  10272. const int iy = oy * k1;
  10273. for (int ky = 0; ky < k1; ++ky) {
  10274. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10275. for (int kx = 0; kx < k0; ++kx) {
  10276. int j = ix + kx;
  10277. switch (op) {
  10278. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10279. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10280. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10281. }
  10282. }
  10283. }
  10284. switch (op) {
  10285. case GGML_OP_POOL_AVG: *out /= ka; break;
  10286. case GGML_OP_POOL_MAX: break;
  10287. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10288. }
  10289. }
  10290. }
  10291. cdata += src->nb[2];
  10292. dplane += pa;
  10293. }
  10294. }
  10295. // ggml_compute_forward_pool_2d
  10296. static void ggml_compute_forward_pool_2d(
  10297. const struct ggml_compute_params * params,
  10298. const struct ggml_tensor * src0,
  10299. struct ggml_tensor * dst) {
  10300. const int32_t * opts = (const int32_t *)dst->op_params;
  10301. enum ggml_op_pool op = opts[0];
  10302. const int k0 = opts[1];
  10303. const int k1 = opts[2];
  10304. const int s0 = opts[3];
  10305. const int s1 = opts[4];
  10306. const int p0 = opts[5];
  10307. const int p1 = opts[6];
  10308. GGML_ASSERT(p0 == 0);
  10309. GGML_ASSERT(p1 == 0); // padding not supported
  10310. GGML_ASSERT(k0 == s0);
  10311. GGML_ASSERT(k1 == s1); // only s = k supported
  10312. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10313. }
  10314. // ggml_compute_forward_upscale
  10315. static void ggml_compute_forward_upscale_f32(
  10316. const struct ggml_compute_params * params,
  10317. const struct ggml_tensor * src0,
  10318. struct ggml_tensor * dst) {
  10319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10320. return;
  10321. }
  10322. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10323. const int ith = params->ith;
  10324. GGML_TENSOR_UNARY_OP_LOCALS
  10325. const int scale_factor = dst->op_params[0];
  10326. // TODO: optimize
  10327. for (int i03 = 0; i03 < ne03; i03++) {
  10328. for (int i02 = ith; i02 < ne02; i02++) {
  10329. for (int m = 0; m < dst->ne[1]; m++) {
  10330. int i01 = m / scale_factor;
  10331. for (int n = 0; n < dst->ne[0]; n++) {
  10332. int i00 = n / scale_factor;
  10333. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10334. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10335. *y = *x;
  10336. }
  10337. }
  10338. }
  10339. }
  10340. }
  10341. static void ggml_compute_forward_upscale(
  10342. const struct ggml_compute_params * params,
  10343. const struct ggml_tensor * src0,
  10344. struct ggml_tensor * dst) {
  10345. switch (src0->type) {
  10346. case GGML_TYPE_F32:
  10347. {
  10348. ggml_compute_forward_upscale_f32(params, src0, dst);
  10349. } break;
  10350. default:
  10351. {
  10352. GGML_ASSERT(false);
  10353. } break;
  10354. }
  10355. }
  10356. // ggml_compute_forward_flash_attn
  10357. static void ggml_compute_forward_flash_attn_f32(
  10358. const struct ggml_compute_params * params,
  10359. const struct ggml_tensor * q,
  10360. const struct ggml_tensor * k,
  10361. const struct ggml_tensor * v,
  10362. const bool masked,
  10363. struct ggml_tensor * dst) {
  10364. int64_t t0 = ggml_perf_time_us();
  10365. UNUSED(t0);
  10366. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10367. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10368. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10369. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10370. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10371. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10372. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10373. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10374. const int ith = params->ith;
  10375. const int nth = params->nth;
  10376. const int64_t D = neq0;
  10377. const int64_t N = neq1;
  10378. const int64_t P = nek1 - N;
  10379. const int64_t M = P + N;
  10380. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10381. GGML_ASSERT(ne0 == D);
  10382. GGML_ASSERT(ne1 == N);
  10383. GGML_ASSERT(P >= 0);
  10384. GGML_ASSERT(nbq0 == sizeof(float));
  10385. GGML_ASSERT(nbk0 == sizeof(float));
  10386. GGML_ASSERT(nbv0 == sizeof(float));
  10387. GGML_ASSERT(neq0 == D);
  10388. GGML_ASSERT(nek0 == D);
  10389. GGML_ASSERT(nev1 == D);
  10390. GGML_ASSERT(neq1 == N);
  10391. GGML_ASSERT(nek1 == N + P);
  10392. GGML_ASSERT(nev1 == D);
  10393. // dst cannot be transposed or permuted
  10394. GGML_ASSERT(nb0 == sizeof(float));
  10395. GGML_ASSERT(nb0 <= nb1);
  10396. GGML_ASSERT(nb1 <= nb2);
  10397. GGML_ASSERT(nb2 <= nb3);
  10398. if (params->type == GGML_TASK_INIT) {
  10399. return;
  10400. }
  10401. if (params->type == GGML_TASK_FINALIZE) {
  10402. return;
  10403. }
  10404. // parallelize by q rows using ggml_vec_dot_f32
  10405. // total rows in q
  10406. const int nr = neq1*neq2*neq3;
  10407. // rows per thread
  10408. const int dr = (nr + nth - 1)/nth;
  10409. // row range for this thread
  10410. const int ir0 = dr*ith;
  10411. const int ir1 = MIN(ir0 + dr, nr);
  10412. const float scale = 1.0f/sqrtf(D);
  10413. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10414. for (int ir = ir0; ir < ir1; ++ir) {
  10415. // q indices
  10416. const int iq3 = ir/(neq2*neq1);
  10417. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10418. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10419. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10420. for (int i = M; i < Mup; ++i) {
  10421. S[i] = -INFINITY;
  10422. }
  10423. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10424. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10425. // k indices
  10426. const int ik3 = iq3;
  10427. const int ik2 = iq2 % nek2;
  10428. const int ik1 = ic;
  10429. // S indices
  10430. const int i1 = ik1;
  10431. ggml_vec_dot_f32(neq0,
  10432. S + i1,
  10433. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10434. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10435. }
  10436. // scale
  10437. ggml_vec_scale_f32(masked_begin, S, scale);
  10438. for (int64_t i = masked_begin; i < M; i++) {
  10439. S[i] = -INFINITY;
  10440. }
  10441. // softmax
  10442. // exclude known -INF S[..] values from max and loop
  10443. // dont forget to set their SW values to zero
  10444. {
  10445. float max = -INFINITY;
  10446. ggml_vec_max_f32(masked_begin, &max, S);
  10447. ggml_float sum = 0.0;
  10448. {
  10449. #ifdef GGML_SOFT_MAX_ACCELERATE
  10450. max = -max;
  10451. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10452. vvexpf(S, S, &Mup);
  10453. ggml_vec_sum_f32(Mup, &sum, S);
  10454. #else
  10455. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10456. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10457. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10458. if (i >= masked_begin) {
  10459. break;
  10460. }
  10461. float * SS = S + i;
  10462. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10463. if (i + j >= masked_begin) {
  10464. break;
  10465. } else if (SS[j] == -INFINITY) {
  10466. SS[j] = 0.0f;
  10467. } else {
  10468. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10469. const float val = expf(SS[j] - max);
  10470. #else
  10471. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10472. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10473. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10474. #endif
  10475. sump[j] += (ggml_float)val;
  10476. SS[j] = val;
  10477. }
  10478. }
  10479. }
  10480. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10481. sum += sump[i];
  10482. }
  10483. #endif
  10484. }
  10485. assert(sum > 0.0);
  10486. sum = 1.0/sum;
  10487. ggml_vec_scale_f32(masked_begin, S, sum);
  10488. #ifndef NDEBUG
  10489. for (int i = 0; i < masked_begin; ++i) {
  10490. assert(!isnan(S[i]));
  10491. assert(!isinf(S[i]));
  10492. }
  10493. #endif
  10494. }
  10495. for (int64_t ic = 0; ic < nev1; ++ic) {
  10496. // dst indices
  10497. const int i1 = iq1;
  10498. const int i2 = iq2;
  10499. const int i3 = iq3;
  10500. // v indices
  10501. const int iv2 = iq2 % nev2;
  10502. const int iv3 = iq3;
  10503. ggml_vec_dot_f32(masked_begin,
  10504. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10505. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10506. S);
  10507. }
  10508. }
  10509. }
  10510. static void ggml_compute_forward_flash_attn_f16(
  10511. const struct ggml_compute_params * params,
  10512. const struct ggml_tensor * q,
  10513. const struct ggml_tensor * k,
  10514. const struct ggml_tensor * v,
  10515. const bool masked,
  10516. struct ggml_tensor * dst) {
  10517. int64_t t0 = ggml_perf_time_us();
  10518. UNUSED(t0);
  10519. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10520. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10521. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10522. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10523. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10524. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10525. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10526. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10527. const int ith = params->ith;
  10528. const int nth = params->nth;
  10529. const int64_t D = neq0;
  10530. const int64_t N = neq1;
  10531. const int64_t P = nek1 - N;
  10532. const int64_t M = P + N;
  10533. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10534. GGML_ASSERT(ne0 == D);
  10535. GGML_ASSERT(ne1 == N);
  10536. GGML_ASSERT(P >= 0);
  10537. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10538. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10539. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10540. GGML_ASSERT(neq0 == D);
  10541. GGML_ASSERT(nek0 == D);
  10542. GGML_ASSERT(nev1 == D);
  10543. GGML_ASSERT(neq1 == N);
  10544. GGML_ASSERT(nek1 == N + P);
  10545. GGML_ASSERT(nev1 == D);
  10546. // dst cannot be transposed or permuted
  10547. GGML_ASSERT(nb0 == sizeof(float));
  10548. GGML_ASSERT(nb0 <= nb1);
  10549. GGML_ASSERT(nb1 <= nb2);
  10550. GGML_ASSERT(nb2 <= nb3);
  10551. if (params->type == GGML_TASK_INIT) {
  10552. return;
  10553. }
  10554. if (params->type == GGML_TASK_FINALIZE) {
  10555. return;
  10556. }
  10557. // parallelize by q rows using ggml_vec_dot_f32
  10558. // total rows in q
  10559. const int nr = neq1*neq2*neq3;
  10560. // rows per thread
  10561. const int dr = (nr + nth - 1)/nth;
  10562. // row range for this thread
  10563. const int ir0 = dr*ith;
  10564. const int ir1 = MIN(ir0 + dr, nr);
  10565. const float scale = 1.0f/sqrtf(D);
  10566. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10567. for (int ir = ir0; ir < ir1; ++ir) {
  10568. // q indices
  10569. const int iq3 = ir/(neq2*neq1);
  10570. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10571. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10572. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10573. for (int i = M; i < Mup; ++i) {
  10574. S[i] = -INFINITY;
  10575. }
  10576. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10577. for (int64_t ic = 0; ic < nek1; ++ic) {
  10578. // k indices
  10579. const int ik3 = iq3;
  10580. const int ik2 = iq2 % nek2;
  10581. const int ik1 = ic;
  10582. // S indices
  10583. const int i1 = ik1;
  10584. ggml_vec_dot_f16(neq0,
  10585. S + i1,
  10586. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10587. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10588. }
  10589. } else {
  10590. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10591. // k indices
  10592. const int ik3 = iq3;
  10593. const int ik2 = iq2 % nek2;
  10594. const int ik1 = ic;
  10595. // S indices
  10596. const int i1 = ik1;
  10597. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10598. S + i1,
  10599. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10600. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10601. }
  10602. }
  10603. // scale
  10604. ggml_vec_scale_f32(nek1, S, scale);
  10605. if (masked) {
  10606. for (int64_t i = P; i < M; i++) {
  10607. if (i > P + iq1) {
  10608. S[i] = -INFINITY;
  10609. }
  10610. }
  10611. }
  10612. // softmax
  10613. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10614. // dont forget to set their S values to zero
  10615. {
  10616. float max = -INFINITY;
  10617. ggml_vec_max_f32(M, &max, S);
  10618. ggml_float sum = 0.0;
  10619. {
  10620. #ifdef GGML_SOFT_MAX_ACCELERATE
  10621. max = -max;
  10622. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10623. vvexpf(S, S, &Mup);
  10624. ggml_vec_sum_f32(Mup, &sum, S);
  10625. #else
  10626. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10627. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10628. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10629. float * SS = S + i;
  10630. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10631. if (SS[j] == -INFINITY) {
  10632. SS[j] = 0.0f;
  10633. } else {
  10634. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10635. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10636. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10637. sump[j] += (ggml_float)val;
  10638. SS[j] = val;
  10639. }
  10640. }
  10641. }
  10642. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10643. sum += sump[i];
  10644. }
  10645. #endif
  10646. }
  10647. assert(sum > 0.0);
  10648. sum = 1.0/sum;
  10649. ggml_vec_scale_f32(M, S, sum);
  10650. #ifndef NDEBUG
  10651. for (int i = 0; i < M; ++i) {
  10652. assert(!isnan(S[i]));
  10653. assert(!isinf(S[i]));
  10654. }
  10655. #endif
  10656. }
  10657. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10658. for (int64_t i = 0; i < M; i++) {
  10659. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10660. }
  10661. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10662. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10663. for (int64_t ic = 0; ic < nev1; ++ic) {
  10664. // dst indices
  10665. const int i1 = iq1;
  10666. const int i2 = iq2;
  10667. const int i3 = iq3;
  10668. // v indices
  10669. const int iv2 = iq2 % nev2;
  10670. const int iv3 = iq3;
  10671. ggml_vec_dot_f16(nev0,
  10672. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10673. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10674. S16);
  10675. }
  10676. } else {
  10677. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10678. // dst indices
  10679. const int i1 = iq1;
  10680. const int i2 = iq2;
  10681. const int i3 = iq3;
  10682. // v indices
  10683. const int iv2 = iq2 % nev2;
  10684. const int iv3 = iq3;
  10685. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10686. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10687. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10688. S16);
  10689. }
  10690. }
  10691. }
  10692. }
  10693. static void ggml_compute_forward_flash_attn(
  10694. const struct ggml_compute_params * params,
  10695. const struct ggml_tensor * q,
  10696. const struct ggml_tensor * k,
  10697. const struct ggml_tensor * v,
  10698. const bool masked,
  10699. struct ggml_tensor * dst) {
  10700. switch (q->type) {
  10701. case GGML_TYPE_F16:
  10702. {
  10703. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10704. } break;
  10705. case GGML_TYPE_F32:
  10706. {
  10707. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10708. } break;
  10709. default:
  10710. {
  10711. GGML_ASSERT(false);
  10712. } break;
  10713. }
  10714. }
  10715. // ggml_compute_forward_flash_ff
  10716. static void ggml_compute_forward_flash_ff_f16(
  10717. const struct ggml_compute_params * params,
  10718. const struct ggml_tensor * a, // F16
  10719. const struct ggml_tensor * b0, // F16 fc_w
  10720. const struct ggml_tensor * b1, // F32 fc_b
  10721. const struct ggml_tensor * c0, // F16 proj_w
  10722. const struct ggml_tensor * c1, // F32 proj_b
  10723. struct ggml_tensor * dst) {
  10724. int64_t t0 = ggml_perf_time_us();
  10725. UNUSED(t0);
  10726. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10727. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10728. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10729. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10730. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10731. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10732. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10733. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10734. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10735. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10736. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10737. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10738. const int ith = params->ith;
  10739. const int nth = params->nth;
  10740. const int64_t D = nea0;
  10741. //const int64_t N = nea1;
  10742. const int64_t M = neb01;
  10743. GGML_ASSERT(ne0 == nea0);
  10744. GGML_ASSERT(ne1 == nea1);
  10745. GGML_ASSERT(ne2 == nea2);
  10746. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10747. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10748. GGML_ASSERT(nbb10 == sizeof(float));
  10749. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10750. GGML_ASSERT(nbc10 == sizeof(float));
  10751. GGML_ASSERT(neb00 == D);
  10752. GGML_ASSERT(neb01 == M);
  10753. GGML_ASSERT(neb10 == M);
  10754. GGML_ASSERT(neb11 == 1);
  10755. GGML_ASSERT(nec00 == M);
  10756. GGML_ASSERT(nec01 == D);
  10757. GGML_ASSERT(nec10 == D);
  10758. GGML_ASSERT(nec11 == 1);
  10759. // dst cannot be transposed or permuted
  10760. GGML_ASSERT(nb0 == sizeof(float));
  10761. GGML_ASSERT(nb0 <= nb1);
  10762. GGML_ASSERT(nb1 <= nb2);
  10763. GGML_ASSERT(nb2 <= nb3);
  10764. if (params->type == GGML_TASK_INIT) {
  10765. return;
  10766. }
  10767. if (params->type == GGML_TASK_FINALIZE) {
  10768. return;
  10769. }
  10770. // parallelize by a rows using ggml_vec_dot_f32
  10771. // total rows in a
  10772. const int nr = nea1*nea2*nea3;
  10773. // rows per thread
  10774. const int dr = (nr + nth - 1)/nth;
  10775. // row range for this thread
  10776. const int ir0 = dr*ith;
  10777. const int ir1 = MIN(ir0 + dr, nr);
  10778. for (int ir = ir0; ir < ir1; ++ir) {
  10779. // a indices
  10780. const int ia3 = ir/(nea2*nea1);
  10781. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10782. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10783. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10784. for (int64_t ic = 0; ic < neb01; ++ic) {
  10785. // b0 indices
  10786. const int ib03 = ia3;
  10787. const int ib02 = ia2;
  10788. const int ib01 = ic;
  10789. // S indices
  10790. const int i1 = ib01;
  10791. ggml_vec_dot_f16(nea0,
  10792. S + i1,
  10793. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10794. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10795. }
  10796. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10797. //ggml_vec_gelu_f32(neb01, S, S);
  10798. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10799. for (int64_t i = 0; i < M; i++) {
  10800. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10801. }
  10802. ggml_vec_gelu_f16(neb01, S16, S16);
  10803. {
  10804. // dst indices
  10805. const int i1 = ia1;
  10806. const int i2 = ia2;
  10807. const int i3 = ia3;
  10808. for (int64_t ic = 0; ic < nec01; ++ic) {
  10809. ggml_vec_dot_f16(neb01,
  10810. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10811. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10812. S16);
  10813. }
  10814. ggml_vec_add_f32(nec01,
  10815. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10816. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10817. (float *) c1->data);
  10818. }
  10819. }
  10820. }
  10821. static void ggml_compute_forward_flash_ff(
  10822. const struct ggml_compute_params * params,
  10823. const struct ggml_tensor * a,
  10824. const struct ggml_tensor * b0,
  10825. const struct ggml_tensor * b1,
  10826. const struct ggml_tensor * c0,
  10827. const struct ggml_tensor * c1,
  10828. struct ggml_tensor * dst) {
  10829. switch (b0->type) {
  10830. case GGML_TYPE_F16:
  10831. {
  10832. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10833. } break;
  10834. case GGML_TYPE_F32:
  10835. {
  10836. GGML_ASSERT(false); // TODO
  10837. } break;
  10838. default:
  10839. {
  10840. GGML_ASSERT(false);
  10841. } break;
  10842. }
  10843. }
  10844. // ggml_compute_forward_flash_attn_back
  10845. static void ggml_compute_forward_flash_attn_back_f32(
  10846. const struct ggml_compute_params * params,
  10847. const struct ggml_tensor * q,
  10848. const struct ggml_tensor * k,
  10849. const struct ggml_tensor * v,
  10850. const struct ggml_tensor * d,
  10851. const bool masked,
  10852. struct ggml_tensor * dst) {
  10853. int64_t t0 = ggml_perf_time_us();
  10854. UNUSED(t0);
  10855. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10856. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10857. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10858. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10859. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10860. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10861. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10862. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10863. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10864. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10865. const int ith = params->ith;
  10866. const int nth = params->nth;
  10867. const int64_t D = neq0;
  10868. const int64_t N = neq1;
  10869. const int64_t P = nek1 - N;
  10870. const int64_t M = P + N;
  10871. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10872. const int mxDM = MAX(D, Mup);
  10873. // GGML_ASSERT(ne0 == D);
  10874. // GGML_ASSERT(ne1 == N);
  10875. GGML_ASSERT(P >= 0);
  10876. GGML_ASSERT(nbq0 == sizeof(float));
  10877. GGML_ASSERT(nbk0 == sizeof(float));
  10878. GGML_ASSERT(nbv0 == sizeof(float));
  10879. GGML_ASSERT(neq0 == D);
  10880. GGML_ASSERT(nek0 == D);
  10881. GGML_ASSERT(nev1 == D);
  10882. GGML_ASSERT(ned0 == D);
  10883. GGML_ASSERT(neq1 == N);
  10884. GGML_ASSERT(nek1 == N + P);
  10885. GGML_ASSERT(nev1 == D);
  10886. GGML_ASSERT(ned1 == N);
  10887. // dst cannot be transposed or permuted
  10888. GGML_ASSERT(nb0 == sizeof(float));
  10889. GGML_ASSERT(nb0 <= nb1);
  10890. GGML_ASSERT(nb1 <= nb2);
  10891. GGML_ASSERT(nb2 <= nb3);
  10892. if (params->type == GGML_TASK_INIT) {
  10893. if (ith == 0) {
  10894. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10895. }
  10896. return;
  10897. }
  10898. if (params->type == GGML_TASK_FINALIZE) {
  10899. return;
  10900. }
  10901. const int64_t elem_q = ggml_nelements(q);
  10902. const int64_t elem_k = ggml_nelements(k);
  10903. enum ggml_type result_type = dst->type;
  10904. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10905. const size_t tsize = ggml_type_size(result_type);
  10906. const size_t offs_q = 0;
  10907. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10908. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10909. void * grad_q = (char *) dst->data;
  10910. void * grad_k = (char *) dst->data + offs_k;
  10911. void * grad_v = (char *) dst->data + offs_v;
  10912. const size_t nbgq1 = nb0*neq0;
  10913. const size_t nbgq2 = nb0*neq0*neq1;
  10914. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10915. const size_t nbgk1 = nb0*nek0;
  10916. const size_t nbgk2 = nb0*nek0*nek1;
  10917. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10918. const size_t nbgv1 = nb0*nev0;
  10919. const size_t nbgv2 = nb0*nev0*nev1;
  10920. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10921. // parallelize by k rows using ggml_vec_dot_f32
  10922. // total rows in k
  10923. const int nr = nek2*nek3;
  10924. // rows per thread
  10925. const int dr = (nr + nth - 1)/nth;
  10926. // row range for this thread
  10927. const int ir0 = dr*ith;
  10928. const int ir1 = MIN(ir0 + dr, nr);
  10929. const float scale = 1.0f/sqrtf(D);
  10930. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10931. // how often k2 (and v2) is repeated in q2
  10932. int nrep = neq2/nek2;
  10933. for (int ir = ir0; ir < ir1; ++ir) {
  10934. // q indices
  10935. const int ik3 = ir/(nek2);
  10936. const int ik2 = ir - ik3*nek2;
  10937. const int iq3 = ik3;
  10938. const int id3 = ik3;
  10939. const int iv3 = ik3;
  10940. const int iv2 = ik2;
  10941. for (int irep = 0; irep < nrep; ++irep) {
  10942. const int iq2 = ik2 + irep*nek2;
  10943. const int id2 = iq2;
  10944. // (ik2 + irep*nek2) % nek2 == ik2
  10945. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10946. const int id1 = iq1;
  10947. // not sure about CACHE_LINE_SIZE_F32..
  10948. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10949. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10950. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10951. for (int i = M; i < Mup; ++i) {
  10952. S[i] = -INFINITY;
  10953. }
  10954. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10955. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10956. // k indices
  10957. const int ik1 = ic;
  10958. // S indices
  10959. const int i1 = ik1;
  10960. ggml_vec_dot_f32(neq0,
  10961. S + i1,
  10962. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10963. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10964. }
  10965. // scale
  10966. ggml_vec_scale_f32(masked_begin, S, scale);
  10967. for (int64_t i = masked_begin; i < M; i++) {
  10968. S[i] = -INFINITY;
  10969. }
  10970. // softmax
  10971. // exclude known -INF S[..] values from max and loop
  10972. // dont forget to set their SM values to zero
  10973. {
  10974. float max = -INFINITY;
  10975. ggml_vec_max_f32(masked_begin, &max, S);
  10976. ggml_float sum = 0.0;
  10977. {
  10978. #ifdef GGML_SOFT_MAX_ACCELERATE
  10979. max = -max;
  10980. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10981. vvexpf(SM, SM, &Mup);
  10982. ggml_vec_sum_f32(Mup, &sum, SM);
  10983. #else
  10984. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10985. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10986. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10987. if (i >= masked_begin) {
  10988. break;
  10989. }
  10990. float * SR = S + i;
  10991. float * SW = SM + i;
  10992. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10993. if (i + j >= masked_begin) {
  10994. break;
  10995. } else if (SR[j] == -INFINITY) {
  10996. SW[j] = 0.0f;
  10997. } else {
  10998. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10999. const float val = expf(SR[j] - max);
  11000. #else
  11001. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11002. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11003. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11004. #endif
  11005. sump[j] += (ggml_float)val;
  11006. SW[j] = val;
  11007. }
  11008. }
  11009. }
  11010. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11011. sum += sump[i];
  11012. }
  11013. #endif
  11014. }
  11015. assert(sum > 0.0);
  11016. sum = 1.0/sum;
  11017. ggml_vec_scale_f32(masked_begin, SM, sum);
  11018. }
  11019. // step-by-step explanation
  11020. {
  11021. // forward-process shape grads from backward process
  11022. // parallel_for ik2,ik3:
  11023. // for irep:
  11024. // iq2 = ik2 + irep*nek2
  11025. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11026. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11027. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11028. // for iq1:
  11029. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11030. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11031. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11032. // S0 = -Inf [D,1,1,1]
  11033. // ~S1[i] = dot(kcur[:D,i], qcur)
  11034. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11035. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11036. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11037. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11038. // ~S5[i] = dot(vcur[:,i], S4)
  11039. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11040. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11041. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11042. // dst backward-/ grad[dst] = d
  11043. //
  11044. // output gradients with their dependencies:
  11045. //
  11046. // grad[kcur] = grad[S1].T @ qcur
  11047. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11048. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11049. // grad[S4] = grad[S5] @ vcur
  11050. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11051. // grad[qcur] = grad[S1] @ kcur
  11052. // grad[vcur] = grad[S5].T @ S4
  11053. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11054. //
  11055. // in post-order:
  11056. //
  11057. // S1 = qcur @ kcur.T
  11058. // S2 = S1 * scale
  11059. // S3 = diag_mask_inf(S2, P)
  11060. // S4 = softmax(S3)
  11061. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11062. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11063. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11064. // grad[qcur] = grad[S1] @ kcur
  11065. // grad[kcur] = grad[S1].T @ qcur
  11066. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11067. //
  11068. // using less variables (SM=S4):
  11069. //
  11070. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11071. // SM = softmax(S)
  11072. // S = d[:D,iq1,iq2,iq3] @ vcur
  11073. // dot_SM_gradSM = dot(SM, S)
  11074. // S = SM * (S - dot(SM, S))
  11075. // S = diag_mask_zero(S, P) * scale
  11076. //
  11077. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11078. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11079. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11080. }
  11081. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11082. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11083. // for ic:
  11084. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11085. // exclude known future zero S[..] values from operation
  11086. ggml_vec_set_f32(masked_begin, S, 0);
  11087. for (int64_t ic = 0; ic < D; ++ic) {
  11088. ggml_vec_mad_f32(masked_begin,
  11089. S,
  11090. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11091. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11092. }
  11093. // S = SM * (S - dot(SM, S))
  11094. float dot_SM_gradSM = 0;
  11095. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11096. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11097. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11098. // S = diag_mask_zero(S, P) * scale
  11099. // already done by above ggml_vec_set_f32
  11100. // exclude known zero S[..] values from operation
  11101. ggml_vec_scale_f32(masked_begin, S, scale);
  11102. // S shape [M,1]
  11103. // SM shape [M,1]
  11104. // kcur shape [D,M]
  11105. // qcur shape [D,1]
  11106. // vcur shape [M,D]
  11107. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11108. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11109. // for ic:
  11110. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11111. // exclude known zero S[..] values from loop
  11112. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11113. ggml_vec_mad_f32(D,
  11114. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11115. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11116. S[ic]);
  11117. }
  11118. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11119. // for ic:
  11120. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11121. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11122. // exclude known zero S[..] values from loop
  11123. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11124. ggml_vec_mad_f32(D,
  11125. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11126. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11127. S[ic]);
  11128. }
  11129. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11130. // for ic:
  11131. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11132. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11133. // exclude known zero SM[..] values from mad
  11134. for (int64_t ic = 0; ic < D; ++ic) {
  11135. ggml_vec_mad_f32(masked_begin,
  11136. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11137. SM,
  11138. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11139. }
  11140. }
  11141. }
  11142. }
  11143. }
  11144. static void ggml_compute_forward_flash_attn_back(
  11145. const struct ggml_compute_params * params,
  11146. const struct ggml_tensor * q,
  11147. const struct ggml_tensor * k,
  11148. const struct ggml_tensor * v,
  11149. const struct ggml_tensor * d,
  11150. const bool masked,
  11151. struct ggml_tensor * dst) {
  11152. switch (q->type) {
  11153. case GGML_TYPE_F32:
  11154. {
  11155. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11156. } break;
  11157. default:
  11158. {
  11159. GGML_ASSERT(false);
  11160. } break;
  11161. }
  11162. }
  11163. // ggml_compute_forward_win_part
  11164. static void ggml_compute_forward_win_part_f32(
  11165. const struct ggml_compute_params * params,
  11166. const struct ggml_tensor * src0,
  11167. struct ggml_tensor * dst) {
  11168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11169. return;
  11170. }
  11171. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11172. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11173. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11174. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11175. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11176. assert(ne00 == ne0);
  11177. assert(ne3 == nep0*nep1);
  11178. // TODO: optimize / multi-thread
  11179. for (int py = 0; py < nep1; ++py) {
  11180. for (int px = 0; px < nep0; ++px) {
  11181. const int64_t i3 = py*nep0 + px;
  11182. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11183. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11184. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11185. const int64_t i02 = py*w + i2;
  11186. const int64_t i01 = px*w + i1;
  11187. const int64_t i00 = i0;
  11188. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11189. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11190. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11191. ((float *) dst->data)[i] = 0.0f;
  11192. } else {
  11193. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11194. }
  11195. }
  11196. }
  11197. }
  11198. }
  11199. }
  11200. }
  11201. static void ggml_compute_forward_win_part(
  11202. const struct ggml_compute_params * params,
  11203. const struct ggml_tensor * src0,
  11204. struct ggml_tensor * dst) {
  11205. switch (src0->type) {
  11206. case GGML_TYPE_F32:
  11207. {
  11208. ggml_compute_forward_win_part_f32(params, src0, dst);
  11209. } break;
  11210. default:
  11211. {
  11212. GGML_ASSERT(false);
  11213. } break;
  11214. }
  11215. }
  11216. // ggml_compute_forward_win_unpart
  11217. static void ggml_compute_forward_win_unpart_f32(
  11218. const struct ggml_compute_params * params,
  11219. const struct ggml_tensor * src0,
  11220. struct ggml_tensor * dst) {
  11221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11222. return;
  11223. }
  11224. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11225. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11226. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11227. // padding
  11228. const int px = (w - ne1%w)%w;
  11229. //const int py = (w - ne2%w)%w;
  11230. const int npx = (px + ne1)/w;
  11231. //const int npy = (py + ne2)/w;
  11232. assert(ne0 == ne00);
  11233. // TODO: optimize / multi-thread
  11234. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11235. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11236. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11237. const int ip2 = i2/w;
  11238. const int ip1 = i1/w;
  11239. const int64_t i02 = i2%w;
  11240. const int64_t i01 = i1%w;
  11241. const int64_t i00 = i0;
  11242. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11243. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11244. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11245. }
  11246. }
  11247. }
  11248. }
  11249. static void ggml_compute_forward_win_unpart(
  11250. const struct ggml_compute_params * params,
  11251. const struct ggml_tensor * src0,
  11252. struct ggml_tensor * dst) {
  11253. switch (src0->type) {
  11254. case GGML_TYPE_F32:
  11255. {
  11256. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11257. } break;
  11258. default:
  11259. {
  11260. GGML_ASSERT(false);
  11261. } break;
  11262. }
  11263. }
  11264. //gmml_compute_forward_unary
  11265. static void ggml_compute_forward_unary(
  11266. const struct ggml_compute_params * params,
  11267. const struct ggml_tensor * src0,
  11268. struct ggml_tensor * dst) {
  11269. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11270. switch (op) {
  11271. case GGML_UNARY_OP_ABS:
  11272. {
  11273. ggml_compute_forward_abs(params, src0, dst);
  11274. } break;
  11275. case GGML_UNARY_OP_SGN:
  11276. {
  11277. ggml_compute_forward_sgn(params, src0, dst);
  11278. } break;
  11279. case GGML_UNARY_OP_NEG:
  11280. {
  11281. ggml_compute_forward_neg(params, src0, dst);
  11282. } break;
  11283. case GGML_UNARY_OP_STEP:
  11284. {
  11285. ggml_compute_forward_step(params, src0, dst);
  11286. } break;
  11287. case GGML_UNARY_OP_TANH:
  11288. {
  11289. ggml_compute_forward_tanh(params, src0, dst);
  11290. } break;
  11291. case GGML_UNARY_OP_ELU:
  11292. {
  11293. ggml_compute_forward_elu(params, src0, dst);
  11294. } break;
  11295. case GGML_UNARY_OP_RELU:
  11296. {
  11297. ggml_compute_forward_relu(params, src0, dst);
  11298. } break;
  11299. case GGML_UNARY_OP_GELU:
  11300. {
  11301. ggml_compute_forward_gelu(params, src0, dst);
  11302. } break;
  11303. case GGML_UNARY_OP_GELU_QUICK:
  11304. {
  11305. ggml_compute_forward_gelu_quick(params, src0, dst);
  11306. } break;
  11307. case GGML_UNARY_OP_SILU:
  11308. {
  11309. ggml_compute_forward_silu(params, src0, dst);
  11310. } break;
  11311. default:
  11312. {
  11313. GGML_ASSERT(false);
  11314. } break;
  11315. }
  11316. }
  11317. // ggml_compute_forward_get_rel_pos
  11318. static void ggml_compute_forward_get_rel_pos_f16(
  11319. const struct ggml_compute_params * params,
  11320. const struct ggml_tensor * src0,
  11321. struct ggml_tensor * dst) {
  11322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11323. return;
  11324. }
  11325. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11326. GGML_TENSOR_UNARY_OP_LOCALS
  11327. const int64_t w = ne1;
  11328. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11329. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11330. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11331. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11332. const int64_t pos = (w - i1 - 1) + i2;
  11333. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11334. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11335. }
  11336. }
  11337. }
  11338. }
  11339. static void ggml_compute_forward_get_rel_pos(
  11340. const struct ggml_compute_params * params,
  11341. const struct ggml_tensor * src0,
  11342. struct ggml_tensor * dst) {
  11343. switch (src0->type) {
  11344. case GGML_TYPE_F16:
  11345. {
  11346. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11347. } break;
  11348. default:
  11349. {
  11350. GGML_ASSERT(false);
  11351. } break;
  11352. }
  11353. }
  11354. // ggml_compute_forward_add_rel_pos
  11355. static void ggml_compute_forward_add_rel_pos_f32(
  11356. const struct ggml_compute_params * params,
  11357. const struct ggml_tensor * src0,
  11358. const struct ggml_tensor * src1,
  11359. const struct ggml_tensor * src2,
  11360. struct ggml_tensor * dst) {
  11361. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11362. if (!inplace && params->type == GGML_TASK_INIT) {
  11363. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11364. return;
  11365. }
  11366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11367. return;
  11368. }
  11369. int64_t t0 = ggml_perf_time_us();
  11370. UNUSED(t0);
  11371. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11372. float * src1_data = (float *) src1->data;
  11373. float * src2_data = (float *) src2->data;
  11374. float * dst_data = (float *) dst->data;
  11375. const int64_t ne10 = src1->ne[0];
  11376. const int64_t ne11 = src1->ne[1];
  11377. const int64_t ne12 = src1->ne[2];
  11378. const int64_t ne13 = src1->ne[3];
  11379. const int ith = params->ith;
  11380. const int nth = params->nth;
  11381. // total patches in dst
  11382. const int np = ne13;
  11383. // patches per thread
  11384. const int dp = (np + nth - 1)/nth;
  11385. // patch range for this thread
  11386. const int ip0 = dp*ith;
  11387. const int ip1 = MIN(ip0 + dp, np);
  11388. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11389. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11390. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11391. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11392. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11393. const int64_t jp0 = jp1 + i10;
  11394. const float src1_e = src1_data[jp0];
  11395. const float src2_e = src2_data[jp0];
  11396. const int64_t jdh = jp0 * ne10;
  11397. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11398. for (int64_t j = 0; j < ne10; ++j) {
  11399. dst_data[jdh + j ] += src2_e;
  11400. dst_data[jdw + j*ne10] += src1_e;
  11401. }
  11402. }
  11403. }
  11404. }
  11405. }
  11406. }
  11407. static void ggml_compute_forward_add_rel_pos(
  11408. const struct ggml_compute_params * params,
  11409. const struct ggml_tensor * src0,
  11410. const struct ggml_tensor * src1,
  11411. const struct ggml_tensor * src2,
  11412. struct ggml_tensor * dst) {
  11413. switch (src0->type) {
  11414. case GGML_TYPE_F32:
  11415. {
  11416. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11417. } break;
  11418. default:
  11419. {
  11420. GGML_ASSERT(false);
  11421. } break;
  11422. }
  11423. }
  11424. // ggml_compute_forward_map_unary
  11425. static void ggml_compute_forward_map_unary_f32(
  11426. const struct ggml_compute_params * params,
  11427. const struct ggml_tensor * src0,
  11428. struct ggml_tensor * dst,
  11429. const ggml_unary_op_f32_t fun) {
  11430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11432. return;
  11433. }
  11434. const int n = ggml_nrows(src0);
  11435. const int nc = src0->ne[0];
  11436. assert( dst->nb[0] == sizeof(float));
  11437. assert(src0->nb[0] == sizeof(float));
  11438. for (int i = 0; i < n; i++) {
  11439. fun(nc,
  11440. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11441. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11442. }
  11443. }
  11444. static void ggml_compute_forward_map_unary(
  11445. const struct ggml_compute_params * params,
  11446. const struct ggml_tensor * src0,
  11447. struct ggml_tensor * dst,
  11448. const ggml_unary_op_f32_t fun) {
  11449. switch (src0->type) {
  11450. case GGML_TYPE_F32:
  11451. {
  11452. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11453. } break;
  11454. default:
  11455. {
  11456. GGML_ASSERT(false);
  11457. } break;
  11458. }
  11459. }
  11460. // ggml_compute_forward_map_binary
  11461. static void ggml_compute_forward_map_binary_f32(
  11462. const struct ggml_compute_params * params,
  11463. const struct ggml_tensor * src0,
  11464. const struct ggml_tensor * src1,
  11465. struct ggml_tensor * dst,
  11466. const ggml_binary_op_f32_t fun) {
  11467. assert(params->ith == 0);
  11468. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11470. return;
  11471. }
  11472. const int n = ggml_nrows(src0);
  11473. const int nc = src0->ne[0];
  11474. assert( dst->nb[0] == sizeof(float));
  11475. assert(src0->nb[0] == sizeof(float));
  11476. assert(src1->nb[0] == sizeof(float));
  11477. for (int i = 0; i < n; i++) {
  11478. fun(nc,
  11479. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11480. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11481. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11482. }
  11483. }
  11484. static void ggml_compute_forward_map_binary(
  11485. const struct ggml_compute_params * params,
  11486. const struct ggml_tensor * src0,
  11487. const struct ggml_tensor * src1,
  11488. struct ggml_tensor * dst,
  11489. const ggml_binary_op_f32_t fun) {
  11490. switch (src0->type) {
  11491. case GGML_TYPE_F32:
  11492. {
  11493. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11494. } break;
  11495. default:
  11496. {
  11497. GGML_ASSERT(false);
  11498. } break;
  11499. }
  11500. }
  11501. // ggml_compute_forward_map_custom1
  11502. static void ggml_compute_forward_map_custom1_f32(
  11503. const struct ggml_compute_params * params,
  11504. const struct ggml_tensor * a,
  11505. struct ggml_tensor * dst,
  11506. const ggml_custom1_op_f32_t fun) {
  11507. assert(params->ith == 0);
  11508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11509. return;
  11510. }
  11511. fun(dst, a);
  11512. }
  11513. // ggml_compute_forward_map_custom2
  11514. static void ggml_compute_forward_map_custom2_f32(
  11515. const struct ggml_compute_params * params,
  11516. const struct ggml_tensor * a,
  11517. const struct ggml_tensor * b,
  11518. struct ggml_tensor * dst,
  11519. const ggml_custom2_op_f32_t fun) {
  11520. assert(params->ith == 0);
  11521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11522. return;
  11523. }
  11524. fun(dst, a, b);
  11525. }
  11526. // ggml_compute_forward_map_custom3
  11527. static void ggml_compute_forward_map_custom3_f32(
  11528. const struct ggml_compute_params * params,
  11529. const struct ggml_tensor * a,
  11530. const struct ggml_tensor * b,
  11531. const struct ggml_tensor * c,
  11532. struct ggml_tensor * dst,
  11533. const ggml_custom3_op_f32_t fun) {
  11534. assert(params->ith == 0);
  11535. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11536. return;
  11537. }
  11538. fun(dst, a, b, c);
  11539. }
  11540. // ggml_compute_forward_map_custom1
  11541. static void ggml_compute_forward_map_custom1(
  11542. const struct ggml_compute_params * params,
  11543. const struct ggml_tensor * a,
  11544. struct ggml_tensor * dst) {
  11545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11546. return;
  11547. }
  11548. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11549. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11550. }
  11551. // ggml_compute_forward_map_custom2
  11552. static void ggml_compute_forward_map_custom2(
  11553. const struct ggml_compute_params * params,
  11554. const struct ggml_tensor * a,
  11555. const struct ggml_tensor * b,
  11556. struct ggml_tensor * dst) {
  11557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11558. return;
  11559. }
  11560. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11561. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11562. }
  11563. // ggml_compute_forward_map_custom3
  11564. static void ggml_compute_forward_map_custom3(
  11565. const struct ggml_compute_params * params,
  11566. const struct ggml_tensor * a,
  11567. const struct ggml_tensor * b,
  11568. const struct ggml_tensor * c,
  11569. struct ggml_tensor * dst) {
  11570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11571. return;
  11572. }
  11573. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11574. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11575. }
  11576. // ggml_compute_forward_cross_entropy_loss
  11577. static void ggml_compute_forward_cross_entropy_loss_f32(
  11578. const struct ggml_compute_params * params,
  11579. const struct ggml_tensor * src0,
  11580. const struct ggml_tensor * src1,
  11581. struct ggml_tensor * dst) {
  11582. GGML_ASSERT(ggml_is_contiguous(src0));
  11583. GGML_ASSERT(ggml_is_contiguous(src1));
  11584. GGML_ASSERT(ggml_is_scalar(dst));
  11585. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11586. const int ith = params->ith;
  11587. const int nth = params->nth;
  11588. float * sums = (float *) params->wdata;
  11589. // TODO: handle transposed/permuted matrices
  11590. const int nc = src0->ne[0];
  11591. const int nr = ggml_nrows(src0);
  11592. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11593. if (params->type == GGML_TASK_INIT) {
  11594. if (ith == 0) {
  11595. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11596. }
  11597. return;
  11598. }
  11599. if (params->type == GGML_TASK_FINALIZE) {
  11600. if (ith == 0) {
  11601. float * dp = (float *) dst->data;
  11602. ggml_vec_sum_f32(nth, dp, sums);
  11603. dp[0] *= -1.0f / (float) nr;
  11604. }
  11605. return;
  11606. }
  11607. const double eps = 1e-9;
  11608. // rows per thread
  11609. const int dr = (nr + nth - 1)/nth;
  11610. // row range for this thread
  11611. const int ir0 = dr*ith;
  11612. const int ir1 = MIN(ir0 + dr, nr);
  11613. for (int i1 = ir0; i1 < ir1; i1++) {
  11614. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11615. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11616. float * st = ((float *) params->wdata) + nth + ith*nc;
  11617. #ifndef NDEBUG
  11618. for (int i = 0; i < nc; ++i) {
  11619. //printf("p[%d] = %f\n", i, p[i]);
  11620. assert(!isnan(s0[i]));
  11621. assert(!isnan(s1[i]));
  11622. }
  11623. #endif
  11624. // soft_max
  11625. ggml_float sum = 0.0;
  11626. {
  11627. float max = -INFINITY;
  11628. ggml_vec_max_f32(nc, &max, s0);
  11629. uint16_t scvt; UNUSED(scvt);
  11630. for (int i = 0; i < nc; i++) {
  11631. if (s0[i] == -INFINITY) {
  11632. st[i] = 0.0f;
  11633. } else {
  11634. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11635. const float s = s0[i] - max;
  11636. const float val = expf(s);
  11637. #else
  11638. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11639. memcpy(&scvt, &s, sizeof(scvt));
  11640. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11641. #endif
  11642. sum += (ggml_float)val;
  11643. st[i] = val;
  11644. }
  11645. }
  11646. assert(sum > 0.0);
  11647. // sum = 1.0/sum;
  11648. }
  11649. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11650. sum = (1.0 - eps) / sum;
  11651. ggml_vec_scale_f32(nc, st, sum);
  11652. ggml_vec_add1_f32(nc, st, st, eps);
  11653. ggml_vec_log_f32(nc, st, st);
  11654. ggml_vec_mul_f32(nc, st, st, s1);
  11655. float st_sum = 0;
  11656. ggml_vec_sum_f32(nc, &st_sum, st);
  11657. sums[ith] += st_sum;
  11658. #ifndef NDEBUG
  11659. for (int i = 0; i < nc; ++i) {
  11660. assert(!isnan(st[i]));
  11661. assert(!isinf(st[i]));
  11662. }
  11663. #endif
  11664. }
  11665. }
  11666. static void ggml_compute_forward_cross_entropy_loss(
  11667. const struct ggml_compute_params * params,
  11668. const struct ggml_tensor * src0,
  11669. const struct ggml_tensor * src1,
  11670. struct ggml_tensor * dst) {
  11671. switch (src0->type) {
  11672. case GGML_TYPE_F32:
  11673. {
  11674. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11675. } break;
  11676. default:
  11677. {
  11678. GGML_ASSERT(false);
  11679. } break;
  11680. }
  11681. }
  11682. // ggml_compute_forward_cross_entropy_loss_back
  11683. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11684. const struct ggml_compute_params * params,
  11685. const struct ggml_tensor * src0,
  11686. const struct ggml_tensor * src1,
  11687. const struct ggml_tensor * opt0,
  11688. struct ggml_tensor * dst) {
  11689. GGML_ASSERT(ggml_is_contiguous(dst));
  11690. GGML_ASSERT(ggml_is_contiguous(src0));
  11691. GGML_ASSERT(ggml_is_contiguous(src1));
  11692. GGML_ASSERT(ggml_is_contiguous(opt0));
  11693. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11694. const int64_t ith = params->ith;
  11695. const int64_t nth = params->nth;
  11696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11697. return;
  11698. }
  11699. const double eps = 1e-9;
  11700. // TODO: handle transposed/permuted matrices
  11701. const int64_t nc = src0->ne[0];
  11702. const int64_t nr = ggml_nrows(src0);
  11703. // rows per thread
  11704. const int64_t dr = (nr + nth - 1)/nth;
  11705. // row range for this thread
  11706. const int64_t ir0 = dr*ith;
  11707. const int64_t ir1 = MIN(ir0 + dr, nr);
  11708. float * d = (float *) opt0->data;
  11709. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11710. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11711. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11712. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11713. #ifndef NDEBUG
  11714. for (int i = 0; i < nc; ++i) {
  11715. //printf("p[%d] = %f\n", i, p[i]);
  11716. assert(!isnan(s0[i]));
  11717. assert(!isnan(s1[i]));
  11718. }
  11719. #endif
  11720. // soft_max
  11721. ggml_float sum = 0.0;
  11722. {
  11723. float max = -INFINITY;
  11724. ggml_vec_max_f32(nc, &max, s0);
  11725. uint16_t scvt; UNUSED(scvt);
  11726. for (int i = 0; i < nc; i++) {
  11727. if (s0[i] == -INFINITY) {
  11728. ds0[i] = 0.0f;
  11729. } else {
  11730. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11731. const float s = s0[i] - max;
  11732. const float val = expf(s);
  11733. #else
  11734. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11735. memcpy(&scvt, &s, sizeof(scvt));
  11736. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11737. #endif
  11738. sum += (ggml_float)val;
  11739. ds0[i] = val;
  11740. }
  11741. }
  11742. assert(sum > 0.0);
  11743. sum = (1.0 - eps)/sum;
  11744. }
  11745. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11746. ggml_vec_scale_f32(nc, ds0, sum);
  11747. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11748. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11749. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11750. #ifndef NDEBUG
  11751. for (int i = 0; i < nc; ++i) {
  11752. assert(!isnan(ds0[i]));
  11753. assert(!isinf(ds0[i]));
  11754. }
  11755. #endif
  11756. }
  11757. }
  11758. static void ggml_compute_forward_cross_entropy_loss_back(
  11759. const struct ggml_compute_params * params,
  11760. const struct ggml_tensor * src0,
  11761. const struct ggml_tensor * src1,
  11762. const struct ggml_tensor * opt0,
  11763. struct ggml_tensor * dst) {
  11764. switch (src0->type) {
  11765. case GGML_TYPE_F32:
  11766. {
  11767. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11768. } break;
  11769. default:
  11770. {
  11771. GGML_ASSERT(false);
  11772. } break;
  11773. }
  11774. }
  11775. /////////////////////////////////
  11776. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11777. GGML_ASSERT(params);
  11778. if (tensor->op == GGML_OP_NONE) {
  11779. return;
  11780. }
  11781. #ifdef GGML_USE_CUBLAS
  11782. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11783. if (skip_cpu) {
  11784. return;
  11785. }
  11786. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11787. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11788. #endif // GGML_USE_CUBLAS
  11789. switch (tensor->op) {
  11790. case GGML_OP_DUP:
  11791. {
  11792. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11793. } break;
  11794. case GGML_OP_ADD:
  11795. {
  11796. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11797. } break;
  11798. case GGML_OP_ADD1:
  11799. {
  11800. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11801. } break;
  11802. case GGML_OP_ACC:
  11803. {
  11804. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11805. } break;
  11806. case GGML_OP_SUB:
  11807. {
  11808. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11809. } break;
  11810. case GGML_OP_MUL:
  11811. {
  11812. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11813. } break;
  11814. case GGML_OP_DIV:
  11815. {
  11816. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11817. } break;
  11818. case GGML_OP_SQR:
  11819. {
  11820. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11821. } break;
  11822. case GGML_OP_SQRT:
  11823. {
  11824. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11825. } break;
  11826. case GGML_OP_LOG:
  11827. {
  11828. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11829. } break;
  11830. case GGML_OP_SUM:
  11831. {
  11832. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11833. } break;
  11834. case GGML_OP_SUM_ROWS:
  11835. {
  11836. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11837. } break;
  11838. case GGML_OP_MEAN:
  11839. {
  11840. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11841. } break;
  11842. case GGML_OP_ARGMAX:
  11843. {
  11844. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11845. } break;
  11846. case GGML_OP_REPEAT:
  11847. {
  11848. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11849. } break;
  11850. case GGML_OP_REPEAT_BACK:
  11851. {
  11852. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11853. } break;
  11854. case GGML_OP_CONCAT:
  11855. {
  11856. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11857. } break;
  11858. case GGML_OP_SILU_BACK:
  11859. {
  11860. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11861. } break;
  11862. case GGML_OP_NORM:
  11863. {
  11864. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11865. } break;
  11866. case GGML_OP_RMS_NORM:
  11867. {
  11868. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11869. } break;
  11870. case GGML_OP_RMS_NORM_BACK:
  11871. {
  11872. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11873. } break;
  11874. case GGML_OP_GROUP_NORM:
  11875. {
  11876. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11877. } break;
  11878. case GGML_OP_MUL_MAT:
  11879. {
  11880. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11881. } break;
  11882. case GGML_OP_OUT_PROD:
  11883. {
  11884. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11885. } break;
  11886. case GGML_OP_SCALE:
  11887. {
  11888. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11889. } break;
  11890. case GGML_OP_SET:
  11891. {
  11892. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11893. } break;
  11894. case GGML_OP_CPY:
  11895. {
  11896. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11897. } break;
  11898. case GGML_OP_CONT:
  11899. {
  11900. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11901. } break;
  11902. case GGML_OP_RESHAPE:
  11903. {
  11904. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11905. } break;
  11906. case GGML_OP_VIEW:
  11907. {
  11908. ggml_compute_forward_view(params, tensor->src[0]);
  11909. } break;
  11910. case GGML_OP_PERMUTE:
  11911. {
  11912. ggml_compute_forward_permute(params, tensor->src[0]);
  11913. } break;
  11914. case GGML_OP_TRANSPOSE:
  11915. {
  11916. ggml_compute_forward_transpose(params, tensor->src[0]);
  11917. } break;
  11918. case GGML_OP_GET_ROWS:
  11919. {
  11920. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11921. } break;
  11922. case GGML_OP_GET_ROWS_BACK:
  11923. {
  11924. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11925. } break;
  11926. case GGML_OP_DIAG:
  11927. {
  11928. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11929. } break;
  11930. case GGML_OP_DIAG_MASK_INF:
  11931. {
  11932. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11933. } break;
  11934. case GGML_OP_DIAG_MASK_ZERO:
  11935. {
  11936. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11937. } break;
  11938. case GGML_OP_SOFT_MAX:
  11939. {
  11940. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11941. } break;
  11942. case GGML_OP_SOFT_MAX_BACK:
  11943. {
  11944. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11945. } break;
  11946. case GGML_OP_ROPE:
  11947. {
  11948. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11949. } break;
  11950. case GGML_OP_ROPE_BACK:
  11951. {
  11952. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11953. } break;
  11954. case GGML_OP_ALIBI:
  11955. {
  11956. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11957. } break;
  11958. case GGML_OP_CLAMP:
  11959. {
  11960. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11961. } break;
  11962. case GGML_OP_CONV_1D:
  11963. {
  11964. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  11965. } break;
  11966. case GGML_OP_CONV_1D_STAGE_0:
  11967. {
  11968. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11969. } break;
  11970. case GGML_OP_CONV_1D_STAGE_1:
  11971. {
  11972. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11973. } break;
  11974. case GGML_OP_CONV_TRANSPOSE_1D:
  11975. {
  11976. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11977. } break;
  11978. case GGML_OP_CONV_2D:
  11979. {
  11980. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  11981. } break;
  11982. case GGML_OP_CONV_2D_STAGE_0:
  11983. {
  11984. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11985. } break;
  11986. case GGML_OP_CONV_2D_STAGE_1:
  11987. {
  11988. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11989. } break;
  11990. case GGML_OP_CONV_TRANSPOSE_2D:
  11991. {
  11992. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11993. } break;
  11994. case GGML_OP_POOL_1D:
  11995. {
  11996. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11997. } break;
  11998. case GGML_OP_POOL_2D:
  11999. {
  12000. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12001. } break;
  12002. case GGML_OP_UPSCALE:
  12003. {
  12004. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12005. } break;
  12006. case GGML_OP_FLASH_ATTN:
  12007. {
  12008. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12009. GGML_ASSERT(t == 0 || t == 1);
  12010. const bool masked = t != 0;
  12011. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12012. } break;
  12013. case GGML_OP_FLASH_FF:
  12014. {
  12015. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12016. } break;
  12017. case GGML_OP_FLASH_ATTN_BACK:
  12018. {
  12019. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12020. GGML_ASSERT(t == 0 || t == 1);
  12021. bool masked = t != 0;
  12022. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12023. } break;
  12024. case GGML_OP_WIN_PART:
  12025. {
  12026. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12027. } break;
  12028. case GGML_OP_WIN_UNPART:
  12029. {
  12030. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12031. } break;
  12032. case GGML_OP_UNARY:
  12033. {
  12034. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12035. } break;
  12036. case GGML_OP_GET_REL_POS:
  12037. {
  12038. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12039. } break;
  12040. case GGML_OP_ADD_REL_POS:
  12041. {
  12042. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12043. } break;
  12044. case GGML_OP_MAP_UNARY:
  12045. {
  12046. ggml_unary_op_f32_t fun;
  12047. memcpy(&fun, tensor->op_params, sizeof(fun));
  12048. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12049. }
  12050. break;
  12051. case GGML_OP_MAP_BINARY:
  12052. {
  12053. ggml_binary_op_f32_t fun;
  12054. memcpy(&fun, tensor->op_params, sizeof(fun));
  12055. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12056. }
  12057. break;
  12058. case GGML_OP_MAP_CUSTOM1_F32:
  12059. {
  12060. ggml_custom1_op_f32_t fun;
  12061. memcpy(&fun, tensor->op_params, sizeof(fun));
  12062. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12063. }
  12064. break;
  12065. case GGML_OP_MAP_CUSTOM2_F32:
  12066. {
  12067. ggml_custom2_op_f32_t fun;
  12068. memcpy(&fun, tensor->op_params, sizeof(fun));
  12069. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12070. }
  12071. break;
  12072. case GGML_OP_MAP_CUSTOM3_F32:
  12073. {
  12074. ggml_custom3_op_f32_t fun;
  12075. memcpy(&fun, tensor->op_params, sizeof(fun));
  12076. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12077. }
  12078. break;
  12079. case GGML_OP_MAP_CUSTOM1:
  12080. {
  12081. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12082. }
  12083. break;
  12084. case GGML_OP_MAP_CUSTOM2:
  12085. {
  12086. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12087. }
  12088. break;
  12089. case GGML_OP_MAP_CUSTOM3:
  12090. {
  12091. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12092. }
  12093. break;
  12094. case GGML_OP_CROSS_ENTROPY_LOSS:
  12095. {
  12096. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12097. }
  12098. break;
  12099. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12100. {
  12101. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12102. }
  12103. break;
  12104. case GGML_OP_NONE:
  12105. {
  12106. // nop
  12107. } break;
  12108. case GGML_OP_COUNT:
  12109. {
  12110. GGML_ASSERT(false);
  12111. } break;
  12112. }
  12113. }
  12114. ////////////////////////////////////////////////////////////////////////////////
  12115. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12116. static size_t hash(void * p) {
  12117. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12118. }
  12119. static size_t hash_find(void * hash_table[], void * p) {
  12120. size_t h = hash(p);
  12121. // linear probing
  12122. size_t i = h;
  12123. while (hash_table[i] != NULL && hash_table[i] != p) {
  12124. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12125. if (i == h) {
  12126. // visited all hash table entries -> not found
  12127. return GGML_GRAPH_HASHTABLE_SIZE;
  12128. }
  12129. }
  12130. return i;
  12131. }
  12132. static bool hash_insert(void * hash_table[], void * p) {
  12133. size_t i = hash_find(hash_table, p);
  12134. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12135. if (hash_table[i] == p) {
  12136. return true;
  12137. }
  12138. // insert
  12139. GGML_ASSERT(hash_table[i] == NULL);
  12140. hash_table[i] = p;
  12141. return false;
  12142. }
  12143. static bool hash_contains(void * hash_table[], void * p) {
  12144. size_t i = hash_find(hash_table, p);
  12145. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  12146. }
  12147. struct hash_map {
  12148. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  12149. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  12150. };
  12151. static struct hash_map * new_hash_map(void) {
  12152. struct hash_map * result = malloc(sizeof(struct hash_map));
  12153. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  12154. result->keys[i] = NULL;
  12155. result->vals[i] = NULL;
  12156. }
  12157. return result;
  12158. }
  12159. static void free_hash_map(struct hash_map * map) {
  12160. free(map);
  12161. }
  12162. // gradient checkpointing
  12163. static struct ggml_tensor * ggml_recompute_graph_node(
  12164. struct ggml_context * ctx,
  12165. struct ggml_cgraph * graph,
  12166. struct hash_map * replacements,
  12167. struct ggml_tensor * node) {
  12168. if (node == NULL) {
  12169. return NULL;
  12170. }
  12171. if (node->is_param) {
  12172. return node;
  12173. }
  12174. if (!hash_contains(graph->visited_hash_table, node)) {
  12175. return node;
  12176. }
  12177. int count_children = 0;
  12178. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12179. if (node->src[k]) {
  12180. ++count_children;
  12181. }
  12182. }
  12183. if (count_children == 0) {
  12184. return node;
  12185. }
  12186. size_t i = hash_find(replacements->keys, node);
  12187. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12188. if (replacements->keys[i] == node) {
  12189. return (struct ggml_tensor *) replacements->vals[i];
  12190. }
  12191. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12192. // insert clone into replacements
  12193. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  12194. replacements->keys[i] = node;
  12195. replacements->vals[i] = clone;
  12196. clone->op = node->op;
  12197. clone->grad = node->grad;
  12198. clone->is_param = node->is_param;
  12199. clone->extra = node->extra;
  12200. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12201. clone->nb[k] = node->nb[k];
  12202. }
  12203. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12204. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12205. }
  12206. if (node->view_src != NULL) {
  12207. clone->data = (node->view_src->data == NULL)
  12208. ? NULL // view_src not yet allocated
  12209. : (char *) node->view_src->data // view_src already allocated
  12210. + node->view_offs;
  12211. clone->view_src = node->view_src;
  12212. clone->view_offs = node->view_offs;
  12213. }
  12214. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12215. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12216. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12217. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12218. return clone;
  12219. }
  12220. void ggml_build_backward_gradient_checkpointing(
  12221. struct ggml_context * ctx,
  12222. struct ggml_cgraph * gf,
  12223. struct ggml_cgraph * gb,
  12224. struct ggml_cgraph * gb_tmp,
  12225. struct ggml_tensor * * checkpoints,
  12226. int n_checkpoints) {
  12227. *gb_tmp = *gf;
  12228. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12229. if (n_checkpoints <= 0) {
  12230. *gb = *gb_tmp;
  12231. return;
  12232. }
  12233. struct hash_map * replacements = new_hash_map();
  12234. // insert checkpoints in replacements
  12235. for (int i = 0; i < n_checkpoints; ++i) {
  12236. size_t k = hash_find(replacements->keys, checkpoints[i]);
  12237. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12238. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  12239. replacements->keys[k] = checkpoints[i];
  12240. replacements->vals[k] = checkpoints[i];
  12241. }
  12242. *gb = *gf;
  12243. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12244. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12245. // by recomputing them from checkpoints
  12246. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12247. struct ggml_tensor * node = gb_tmp->nodes[i];
  12248. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12249. // insert new tensors recomputing src, reusing already made replacements,
  12250. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12251. // recurse for input tensors,
  12252. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12253. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12254. }
  12255. // insert rewritten backward node with replacements made into resulting backward graph gb
  12256. ggml_build_forward_expand(gb, node);
  12257. }
  12258. free_hash_map(replacements);
  12259. }
  12260. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12261. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12262. if (hash_contains(zero_table, a)) {
  12263. return b;
  12264. } else {
  12265. return ggml_add_impl(ctx, a, b, false);
  12266. }
  12267. }
  12268. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  12269. if (hash_contains(zero_table, a)) {
  12270. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12271. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12272. } else {
  12273. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12274. }
  12275. }
  12276. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12277. if (hash_contains(zero_table, a)) {
  12278. return ggml_repeat(ctx, b, a);
  12279. } else {
  12280. return ggml_add1_impl(ctx, a, b, false);
  12281. }
  12282. }
  12283. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12284. if (hash_contains(zero_table, a)) {
  12285. return ggml_neg(ctx, b);
  12286. } else {
  12287. return ggml_sub_impl(ctx, a, b, false);
  12288. }
  12289. }
  12290. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  12291. struct ggml_tensor * src0 = tensor->src[0];
  12292. struct ggml_tensor * src1 = tensor->src[1];
  12293. switch (tensor->op) {
  12294. case GGML_OP_DUP:
  12295. {
  12296. if (src0->grad) {
  12297. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12298. }
  12299. } break;
  12300. case GGML_OP_ADD:
  12301. {
  12302. if (src0->grad) {
  12303. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12304. }
  12305. if (src1->grad) {
  12306. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12307. }
  12308. } break;
  12309. case GGML_OP_ADD1:
  12310. {
  12311. if (src0->grad) {
  12312. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12313. }
  12314. if (src1->grad) {
  12315. src1->grad = ggml_add_or_set(ctx,
  12316. src1->grad,
  12317. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12318. zero_table);
  12319. }
  12320. } break;
  12321. case GGML_OP_ACC:
  12322. {
  12323. if (src0->grad) {
  12324. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12325. }
  12326. if (src1->grad) {
  12327. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12328. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12329. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12330. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12331. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12332. tensor->grad,
  12333. src1->grad->ne[0],
  12334. src1->grad->ne[1],
  12335. src1->grad->ne[2],
  12336. src1->grad->ne[3],
  12337. nb1, nb2, nb3, offset);
  12338. src1->grad =
  12339. ggml_add_or_set(ctx,
  12340. src1->grad,
  12341. ggml_reshape(ctx,
  12342. ggml_cont(ctx, tensor_grad_view),
  12343. src1->grad),
  12344. zero_table);
  12345. }
  12346. } break;
  12347. case GGML_OP_SUB:
  12348. {
  12349. if (src0->grad) {
  12350. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12351. }
  12352. if (src1->grad) {
  12353. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12354. }
  12355. } break;
  12356. case GGML_OP_MUL:
  12357. {
  12358. if (src0->grad) {
  12359. src0->grad =
  12360. ggml_add_or_set(ctx,
  12361. src0->grad,
  12362. ggml_mul(ctx, src1, tensor->grad),
  12363. zero_table);
  12364. }
  12365. if (src1->grad) {
  12366. src1->grad =
  12367. ggml_add_or_set(ctx,
  12368. src1->grad,
  12369. ggml_mul(ctx, src0, tensor->grad),
  12370. zero_table);
  12371. }
  12372. } break;
  12373. case GGML_OP_DIV:
  12374. {
  12375. if (src0->grad) {
  12376. src0->grad =
  12377. ggml_add_or_set(ctx,
  12378. src0->grad,
  12379. ggml_div(ctx, tensor->grad, src1),
  12380. zero_table);
  12381. }
  12382. if (src1->grad) {
  12383. src1->grad =
  12384. ggml_sub_or_set(ctx,
  12385. src1->grad,
  12386. ggml_mul(ctx,
  12387. tensor->grad,
  12388. ggml_div(ctx, tensor, src1)),
  12389. zero_table);
  12390. }
  12391. } break;
  12392. case GGML_OP_SQR:
  12393. {
  12394. if (src0->grad) {
  12395. src0->grad =
  12396. ggml_add_or_set(ctx,
  12397. src0->grad,
  12398. ggml_scale(ctx,
  12399. ggml_mul(ctx, src0, tensor->grad),
  12400. ggml_new_f32(ctx, 2.0f)),
  12401. zero_table);
  12402. }
  12403. } break;
  12404. case GGML_OP_SQRT:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad =
  12408. ggml_add_or_set(ctx,
  12409. src0->grad,
  12410. ggml_scale(ctx,
  12411. ggml_div(ctx,
  12412. tensor->grad,
  12413. tensor),
  12414. ggml_new_f32(ctx, 0.5f)),
  12415. zero_table);
  12416. }
  12417. } break;
  12418. case GGML_OP_LOG:
  12419. {
  12420. if (src0->grad) {
  12421. src0->grad =
  12422. ggml_add_or_set(ctx,
  12423. src0->grad,
  12424. ggml_div(ctx,
  12425. tensor->grad,
  12426. src0),
  12427. zero_table);
  12428. }
  12429. } break;
  12430. case GGML_OP_SUM:
  12431. {
  12432. if (src0->grad) {
  12433. src0->grad =
  12434. ggml_add1_or_set(ctx,
  12435. src0->grad,
  12436. tensor->grad,
  12437. zero_table);
  12438. }
  12439. } break;
  12440. case GGML_OP_SUM_ROWS:
  12441. {
  12442. if (src0->grad) {
  12443. src0->grad =
  12444. ggml_add_or_set(ctx,
  12445. src0->grad,
  12446. ggml_repeat(ctx,
  12447. tensor->grad,
  12448. src0->grad),
  12449. zero_table);
  12450. }
  12451. } break;
  12452. case GGML_OP_MEAN:
  12453. case GGML_OP_ARGMAX:
  12454. {
  12455. GGML_ASSERT(false); // TODO: implement
  12456. } break;
  12457. case GGML_OP_REPEAT:
  12458. {
  12459. // necessary for llama
  12460. if (src0->grad) {
  12461. src0->grad = ggml_add_or_set(ctx,
  12462. src0->grad,
  12463. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12464. zero_table);
  12465. }
  12466. } break;
  12467. case GGML_OP_REPEAT_BACK:
  12468. {
  12469. if (src0->grad) {
  12470. // TODO: test this
  12471. src0->grad = ggml_add_or_set(ctx,
  12472. src0->grad,
  12473. ggml_repeat(ctx, tensor->grad, src0->grad),
  12474. zero_table);
  12475. }
  12476. } break;
  12477. case GGML_OP_CONCAT:
  12478. {
  12479. GGML_ASSERT(false); // TODO: implement
  12480. } break;
  12481. case GGML_OP_SILU_BACK:
  12482. {
  12483. GGML_ASSERT(false); // TODO: not implemented
  12484. } break;
  12485. case GGML_OP_NORM:
  12486. {
  12487. GGML_ASSERT(false); // TODO: not implemented
  12488. } break;
  12489. case GGML_OP_RMS_NORM:
  12490. {
  12491. // necessary for llama
  12492. if (src0->grad) {
  12493. float eps;
  12494. memcpy(&eps, tensor->op_params, sizeof(float));
  12495. src0->grad = ggml_add_or_set(ctx,
  12496. src0->grad,
  12497. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12498. zero_table);
  12499. }
  12500. } break;
  12501. case GGML_OP_RMS_NORM_BACK:
  12502. {
  12503. GGML_ASSERT(false); // TODO: not implemented
  12504. } break;
  12505. case GGML_OP_GROUP_NORM:
  12506. {
  12507. GGML_ASSERT(false); // TODO: not implemented
  12508. } break;
  12509. case GGML_OP_MUL_MAT:
  12510. {
  12511. // https://cs231n.github.io/optimization-2/#staged
  12512. // # forward pass
  12513. // s0 = np.random.randn(5, 10)
  12514. // s1 = np.random.randn(10, 3)
  12515. // t = s0.dot(s1)
  12516. // # now suppose we had the gradient on t from above in the circuit
  12517. // dt = np.random.randn(*t.shape) # same shape as t
  12518. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12519. // ds1 = t.T.dot(dt)
  12520. // tensor.shape [m,p,qq,rr]
  12521. // src0.shape [n,m,q1,r1]
  12522. // src1.shape [n,p,qq,rr]
  12523. // necessary for llama
  12524. if (src0->grad) {
  12525. struct ggml_tensor * s1_tg =
  12526. ggml_out_prod(ctx, // [n,m,qq,rr]
  12527. src1, // [n,p,qq,rr]
  12528. tensor->grad); // [m,p,qq,rr]
  12529. const int64_t qq = s1_tg->ne[2];
  12530. const int64_t rr = s1_tg->ne[3];
  12531. const int64_t q1 = src0->ne[2];
  12532. const int64_t r1 = src0->ne[3];
  12533. const bool ne2_broadcasted = qq > q1;
  12534. const bool ne3_broadcasted = rr > r1;
  12535. if (ne2_broadcasted || ne3_broadcasted) {
  12536. // sum broadcast repetitions of s1_tg into shape of src0
  12537. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12538. }
  12539. src0->grad =
  12540. ggml_add_or_set(ctx,
  12541. src0->grad, // [n,m,q1,r1]
  12542. s1_tg, // [n,m,q1,r1]
  12543. zero_table);
  12544. }
  12545. if (src1->grad) {
  12546. src1->grad =
  12547. ggml_add_or_set(ctx,
  12548. src1->grad, // [n,p,qq,rr]
  12549. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12550. // ggml_cont(ctx, // [m,n,q1,r1]
  12551. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12552. // tensor->grad), // [m,p,qq,rr]
  12553. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12554. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12555. // // and then use ggml_out_prod
  12556. ggml_out_prod(ctx, // [n,p,qq,rr]
  12557. src0, // [n,m,q1,r1]
  12558. ggml_transpose(ctx, // [p,m,qq,rr]
  12559. tensor->grad)), // [m,p,qq,rr]
  12560. zero_table);
  12561. }
  12562. } break;
  12563. case GGML_OP_OUT_PROD:
  12564. {
  12565. GGML_ASSERT(false); // TODO: not implemented
  12566. } break;
  12567. case GGML_OP_SCALE:
  12568. {
  12569. // necessary for llama
  12570. if (src0->grad) {
  12571. src0->grad =
  12572. ggml_add_or_set(ctx,
  12573. src0->grad,
  12574. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12575. zero_table);
  12576. }
  12577. if (src1->grad) {
  12578. src1->grad =
  12579. ggml_add_or_set(ctx,
  12580. src1->grad,
  12581. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12582. zero_table);
  12583. }
  12584. } break;
  12585. case GGML_OP_SET:
  12586. {
  12587. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12588. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12589. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12590. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12591. struct ggml_tensor * tensor_grad_view = NULL;
  12592. if (src0->grad || src1->grad) {
  12593. GGML_ASSERT(src0->type == tensor->type);
  12594. GGML_ASSERT(tensor->grad->type == tensor->type);
  12595. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12596. tensor_grad_view = ggml_view_4d(ctx,
  12597. tensor->grad,
  12598. src1->grad->ne[0],
  12599. src1->grad->ne[1],
  12600. src1->grad->ne[2],
  12601. src1->grad->ne[3],
  12602. nb1, nb2, nb3, offset);
  12603. }
  12604. if (src0->grad) {
  12605. src0->grad = ggml_add_or_set(ctx,
  12606. src0->grad,
  12607. ggml_acc_impl(ctx,
  12608. tensor->grad,
  12609. ggml_neg(ctx, tensor_grad_view),
  12610. nb1, nb2, nb3, offset, false),
  12611. zero_table);
  12612. }
  12613. if (src1->grad) {
  12614. src1->grad =
  12615. ggml_add_or_set(ctx,
  12616. src1->grad,
  12617. ggml_reshape(ctx,
  12618. ggml_cont(ctx, tensor_grad_view),
  12619. src1->grad),
  12620. zero_table);
  12621. }
  12622. } break;
  12623. case GGML_OP_CPY:
  12624. {
  12625. // necessary for llama
  12626. // cpy overwrites value of src1 by src0 and returns view(src1)
  12627. // the overwriting is mathematically equivalent to:
  12628. // tensor = src0 * 1 + src1 * 0
  12629. if (src0->grad) {
  12630. // dsrc0 = dtensor * 1
  12631. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12632. }
  12633. if (src1->grad) {
  12634. // dsrc1 = dtensor * 0 -> noop
  12635. }
  12636. } break;
  12637. case GGML_OP_CONT:
  12638. {
  12639. // same as cpy
  12640. if (src0->grad) {
  12641. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12642. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12643. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12644. }
  12645. } break;
  12646. case GGML_OP_RESHAPE:
  12647. {
  12648. // necessary for llama
  12649. if (src0->grad) {
  12650. src0->grad =
  12651. ggml_add_or_set(ctx, src0->grad,
  12652. ggml_reshape(ctx,
  12653. ggml_is_contiguous(tensor->grad)
  12654. ? tensor->grad
  12655. : ggml_cont(ctx, tensor->grad),
  12656. src0->grad),
  12657. zero_table);
  12658. }
  12659. } break;
  12660. case GGML_OP_VIEW:
  12661. {
  12662. // necessary for llama
  12663. if (src0->grad) {
  12664. size_t offset;
  12665. memcpy(&offset, tensor->op_params, sizeof(offset));
  12666. size_t nb1 = tensor->nb[1];
  12667. size_t nb2 = tensor->nb[2];
  12668. size_t nb3 = tensor->nb[3];
  12669. if (src0->type != src0->grad->type) {
  12670. // gradient is typically F32, but src0 could be other type
  12671. size_t ng = ggml_element_size(src0->grad);
  12672. size_t n0 = ggml_element_size(src0);
  12673. GGML_ASSERT(offset % n0 == 0);
  12674. GGML_ASSERT(nb1 % n0 == 0);
  12675. GGML_ASSERT(nb2 % n0 == 0);
  12676. GGML_ASSERT(nb3 % n0 == 0);
  12677. offset = (offset / n0) * ng;
  12678. nb1 = (nb1 / n0) * ng;
  12679. nb2 = (nb2 / n0) * ng;
  12680. nb3 = (nb3 / n0) * ng;
  12681. }
  12682. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12683. }
  12684. } break;
  12685. case GGML_OP_PERMUTE:
  12686. {
  12687. // necessary for llama
  12688. if (src0->grad) {
  12689. int32_t * axes = (int32_t *) tensor->op_params;
  12690. int axis0 = axes[0] & 0x3;
  12691. int axis1 = axes[1] & 0x3;
  12692. int axis2 = axes[2] & 0x3;
  12693. int axis3 = axes[3] & 0x3;
  12694. int axes_backward[4] = {0,0,0,0};
  12695. axes_backward[axis0] = 0;
  12696. axes_backward[axis1] = 1;
  12697. axes_backward[axis2] = 2;
  12698. axes_backward[axis3] = 3;
  12699. src0->grad =
  12700. ggml_add_or_set(ctx, src0->grad,
  12701. ggml_permute(ctx,
  12702. tensor->grad,
  12703. axes_backward[0],
  12704. axes_backward[1],
  12705. axes_backward[2],
  12706. axes_backward[3]),
  12707. zero_table);
  12708. }
  12709. } break;
  12710. case GGML_OP_TRANSPOSE:
  12711. {
  12712. // necessary for llama
  12713. if (src0->grad) {
  12714. src0->grad =
  12715. ggml_add_or_set(ctx, src0->grad,
  12716. ggml_transpose(ctx, tensor->grad),
  12717. zero_table);
  12718. }
  12719. } break;
  12720. case GGML_OP_GET_ROWS:
  12721. {
  12722. // necessary for llama (only for tokenizer)
  12723. if (src0->grad) {
  12724. src0->grad =
  12725. ggml_add_or_set(ctx, src0->grad,
  12726. // last ggml_get_rows_back argument src0->grad is only
  12727. // necessary to setup correct output shape
  12728. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12729. zero_table);
  12730. }
  12731. if (src1->grad) {
  12732. // noop
  12733. }
  12734. } break;
  12735. case GGML_OP_GET_ROWS_BACK:
  12736. {
  12737. GGML_ASSERT(false); // TODO: not implemented
  12738. } break;
  12739. case GGML_OP_DIAG:
  12740. {
  12741. GGML_ASSERT(false); // TODO: not implemented
  12742. } break;
  12743. case GGML_OP_DIAG_MASK_INF:
  12744. {
  12745. // necessary for llama
  12746. if (src0->grad) {
  12747. const int n_past = ((int32_t *) tensor->op_params)[0];
  12748. src0->grad =
  12749. ggml_add_or_set(ctx, src0->grad,
  12750. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12751. zero_table);
  12752. }
  12753. } break;
  12754. case GGML_OP_DIAG_MASK_ZERO:
  12755. {
  12756. // necessary for llama
  12757. if (src0->grad) {
  12758. const int n_past = ((int32_t *) tensor->op_params)[0];
  12759. src0->grad =
  12760. ggml_add_or_set(ctx, src0->grad,
  12761. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12762. zero_table);
  12763. }
  12764. } break;
  12765. case GGML_OP_SOFT_MAX:
  12766. {
  12767. // necessary for llama
  12768. if (src0->grad) {
  12769. src0->grad =
  12770. ggml_add_or_set(ctx, src0->grad,
  12771. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12772. zero_table);
  12773. }
  12774. } break;
  12775. case GGML_OP_SOFT_MAX_BACK:
  12776. {
  12777. GGML_ASSERT(false); // TODO: not implemented
  12778. } break;
  12779. case GGML_OP_ROPE:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12784. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12785. const int mode = ((int32_t *) tensor->op_params)[2];
  12786. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12787. float freq_base;
  12788. float freq_scale;
  12789. float xpos_base;
  12790. bool xpos_down;
  12791. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12792. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12793. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12794. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12795. src0->grad = ggml_add_or_set(ctx,
  12796. src0->grad,
  12797. ggml_rope_back(ctx,
  12798. tensor->grad,
  12799. src1,
  12800. n_dims,
  12801. mode,
  12802. n_ctx,
  12803. freq_base,
  12804. freq_scale,
  12805. xpos_base,
  12806. xpos_down),
  12807. zero_table);
  12808. }
  12809. } break;
  12810. case GGML_OP_ROPE_BACK:
  12811. {
  12812. if (src0->grad) {
  12813. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12814. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12815. const int mode = ((int32_t *) tensor->op_params)[2];
  12816. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12817. float freq_base;
  12818. float freq_scale;
  12819. float xpos_base;
  12820. bool xpos_down;
  12821. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12822. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12823. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12824. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12825. src0->grad = ggml_add_or_set(ctx,
  12826. src0->grad,
  12827. ggml_rope_impl(ctx,
  12828. tensor->grad,
  12829. src1,
  12830. n_dims,
  12831. mode,
  12832. n_ctx,
  12833. freq_base,
  12834. freq_scale,
  12835. xpos_base,
  12836. xpos_down,
  12837. false),
  12838. zero_table);
  12839. }
  12840. } break;
  12841. case GGML_OP_ALIBI:
  12842. {
  12843. GGML_ASSERT(false); // TODO: not implemented
  12844. } break;
  12845. case GGML_OP_CLAMP:
  12846. {
  12847. GGML_ASSERT(false); // TODO: not implemented
  12848. } break;
  12849. case GGML_OP_CONV_1D:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_CONV_1D_STAGE_0:
  12854. {
  12855. GGML_ASSERT(false); // TODO: not implemented
  12856. } break;
  12857. case GGML_OP_CONV_1D_STAGE_1:
  12858. {
  12859. GGML_ASSERT(false); // TODO: not implemented
  12860. } break;
  12861. case GGML_OP_CONV_TRANSPOSE_1D:
  12862. {
  12863. GGML_ASSERT(false); // TODO: not implemented
  12864. } break;
  12865. case GGML_OP_CONV_2D:
  12866. {
  12867. GGML_ASSERT(false); // TODO: not implemented
  12868. } break;
  12869. case GGML_OP_CONV_2D_STAGE_0:
  12870. {
  12871. GGML_ASSERT(false); // TODO: not implemented
  12872. } break;
  12873. case GGML_OP_CONV_2D_STAGE_1:
  12874. {
  12875. GGML_ASSERT(false); // TODO: not implemented
  12876. } break;
  12877. case GGML_OP_CONV_TRANSPOSE_2D:
  12878. {
  12879. GGML_ASSERT(false); // TODO: not implemented
  12880. } break;
  12881. case GGML_OP_POOL_1D:
  12882. {
  12883. GGML_ASSERT(false); // TODO: not implemented
  12884. } break;
  12885. case GGML_OP_POOL_2D:
  12886. {
  12887. GGML_ASSERT(false); // TODO: not implemented
  12888. } break;
  12889. case GGML_OP_UPSCALE:
  12890. {
  12891. GGML_ASSERT(false); // TODO: not implemented
  12892. } break;
  12893. case GGML_OP_FLASH_ATTN:
  12894. {
  12895. struct ggml_tensor * flash_grad = NULL;
  12896. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12897. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12898. GGML_ASSERT(t == 0 || t == 1);
  12899. bool masked = t != 0;
  12900. flash_grad =
  12901. ggml_flash_attn_back(ctx,
  12902. src0,
  12903. src1,
  12904. tensor->src[2],
  12905. tensor->grad,
  12906. masked);
  12907. }
  12908. struct ggml_tensor * src2 = tensor->src[2];
  12909. const int64_t elem_q = ggml_nelements(src0);
  12910. const int64_t elem_k = ggml_nelements(src1);
  12911. const int64_t elem_v = ggml_nelements(src2);
  12912. enum ggml_type result_type = flash_grad->type;
  12913. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12914. const size_t tsize = ggml_type_size(result_type);
  12915. const size_t offs_q = 0;
  12916. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12917. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12918. if (src0->grad) {
  12919. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12920. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12921. src0->grad = ggml_add_or_set(ctx,
  12922. src0->grad,
  12923. grad_q,
  12924. zero_table);
  12925. }
  12926. if (src1->grad) {
  12927. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12928. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12929. src1->grad = ggml_add_or_set(ctx,
  12930. src1->grad,
  12931. grad_k,
  12932. zero_table);
  12933. }
  12934. if (src2->grad) {
  12935. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12936. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12937. src2->grad = ggml_add_or_set(ctx,
  12938. src2->grad,
  12939. grad_v,
  12940. zero_table);
  12941. }
  12942. } break;
  12943. case GGML_OP_FLASH_FF:
  12944. {
  12945. GGML_ASSERT(false); // not supported
  12946. } break;
  12947. case GGML_OP_FLASH_ATTN_BACK:
  12948. {
  12949. GGML_ASSERT(false); // not supported
  12950. } break;
  12951. case GGML_OP_WIN_PART:
  12952. case GGML_OP_WIN_UNPART:
  12953. case GGML_OP_UNARY:
  12954. {
  12955. switch (ggml_get_unary_op(tensor)) {
  12956. case GGML_UNARY_OP_ABS:
  12957. {
  12958. if (src0->grad) {
  12959. src0->grad =
  12960. ggml_add_or_set(ctx,
  12961. src0->grad,
  12962. ggml_mul(ctx,
  12963. ggml_sgn(ctx, src0),
  12964. tensor->grad),
  12965. zero_table);
  12966. }
  12967. } break;
  12968. case GGML_UNARY_OP_SGN:
  12969. {
  12970. if (src0->grad) {
  12971. // noop
  12972. }
  12973. } break;
  12974. case GGML_UNARY_OP_NEG:
  12975. {
  12976. if (src0->grad) {
  12977. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12978. }
  12979. } break;
  12980. case GGML_UNARY_OP_STEP:
  12981. {
  12982. if (src0->grad) {
  12983. // noop
  12984. }
  12985. } break;
  12986. case GGML_UNARY_OP_TANH:
  12987. {
  12988. GGML_ASSERT(false); // TODO: not implemented
  12989. } break;
  12990. case GGML_UNARY_OP_ELU:
  12991. {
  12992. GGML_ASSERT(false); // TODO: not implemented
  12993. } break;
  12994. case GGML_UNARY_OP_RELU:
  12995. {
  12996. if (src0->grad) {
  12997. src0->grad = ggml_add_or_set(ctx,
  12998. src0->grad,
  12999. ggml_mul(ctx,
  13000. ggml_step(ctx, src0),
  13001. tensor->grad),
  13002. zero_table);
  13003. }
  13004. } break;
  13005. case GGML_UNARY_OP_GELU:
  13006. {
  13007. GGML_ASSERT(false); // TODO: not implemented
  13008. } break;
  13009. case GGML_UNARY_OP_GELU_QUICK:
  13010. {
  13011. GGML_ASSERT(false); // TODO: not implemented
  13012. } break;
  13013. case GGML_UNARY_OP_SILU:
  13014. {
  13015. // necessary for llama
  13016. if (src0->grad) {
  13017. src0->grad = ggml_add_or_set(ctx,
  13018. src0->grad,
  13019. ggml_silu_back(ctx, src0, tensor->grad),
  13020. zero_table);
  13021. }
  13022. } break;
  13023. default:
  13024. GGML_ASSERT(false);
  13025. }
  13026. } break;
  13027. case GGML_OP_GET_REL_POS:
  13028. case GGML_OP_ADD_REL_POS:
  13029. case GGML_OP_MAP_UNARY:
  13030. case GGML_OP_MAP_BINARY:
  13031. case GGML_OP_MAP_CUSTOM1_F32:
  13032. case GGML_OP_MAP_CUSTOM2_F32:
  13033. case GGML_OP_MAP_CUSTOM3_F32:
  13034. case GGML_OP_MAP_CUSTOM1:
  13035. case GGML_OP_MAP_CUSTOM2:
  13036. case GGML_OP_MAP_CUSTOM3:
  13037. {
  13038. GGML_ASSERT(false); // not supported
  13039. } break;
  13040. case GGML_OP_CROSS_ENTROPY_LOSS:
  13041. {
  13042. if (src0->grad) {
  13043. src0->grad = ggml_add_or_set(ctx,
  13044. src0->grad,
  13045. ggml_cross_entropy_loss_back(ctx,
  13046. src0,
  13047. src1,
  13048. tensor->grad),
  13049. zero_table);
  13050. }
  13051. } break;
  13052. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13053. {
  13054. GGML_ASSERT(false); // not supported
  13055. } break;
  13056. case GGML_OP_NONE:
  13057. {
  13058. // nop
  13059. } break;
  13060. case GGML_OP_COUNT:
  13061. {
  13062. GGML_ASSERT(false);
  13063. } break;
  13064. }
  13065. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13066. if (tensor->src[i] && tensor->src[i]->grad) {
  13067. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13068. }
  13069. }
  13070. }
  13071. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13072. if (node->grad == NULL) {
  13073. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13074. // it can also happen during forward pass, if the user performs computations with constants
  13075. if (node->op != GGML_OP_NONE) {
  13076. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13077. }
  13078. }
  13079. // check if already visited
  13080. if (hash_insert(cgraph->visited_hash_table, node)) {
  13081. return;
  13082. }
  13083. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13084. const int k =
  13085. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13086. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13087. /* unknown order, just fall back to using i*/ i;
  13088. if (node->src[k]) {
  13089. ggml_visit_parents(cgraph, node->src[k]);
  13090. }
  13091. }
  13092. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13093. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13094. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13095. if (strlen(node->name) == 0) {
  13096. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13097. }
  13098. cgraph->leafs[cgraph->n_leafs] = node;
  13099. cgraph->n_leafs++;
  13100. } else {
  13101. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13102. if (strlen(node->name) == 0) {
  13103. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13104. }
  13105. cgraph->nodes[cgraph->n_nodes] = node;
  13106. cgraph->grads[cgraph->n_nodes] = node->grad;
  13107. cgraph->n_nodes++;
  13108. }
  13109. }
  13110. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13111. if (!expand) {
  13112. cgraph->n_nodes = 0;
  13113. cgraph->n_leafs = 0;
  13114. }
  13115. const int n0 = cgraph->n_nodes;
  13116. UNUSED(n0);
  13117. ggml_visit_parents(cgraph, tensor);
  13118. const int n_new = cgraph->n_nodes - n0;
  13119. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13120. if (n_new > 0) {
  13121. // the last added node should always be starting point
  13122. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13123. }
  13124. }
  13125. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13126. ggml_build_forward_impl(cgraph, tensor, true);
  13127. }
  13128. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13129. struct ggml_cgraph result = {
  13130. /*.n_nodes =*/ 0,
  13131. /*.n_leafs =*/ 0,
  13132. /*.nodes =*/ { NULL },
  13133. /*.grads =*/ { NULL },
  13134. /*.leafs =*/ { NULL },
  13135. /*.hash_table =*/ { NULL },
  13136. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13137. /*.perf_runs =*/ 0,
  13138. /*.perf_cycles =*/ 0,
  13139. /*.perf_time_us =*/ 0,
  13140. };
  13141. ggml_build_forward_impl(&result, tensor, false);
  13142. return result;
  13143. }
  13144. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13145. GGML_ASSERT(gf->n_nodes > 0);
  13146. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13147. if (keep) {
  13148. for (int i = 0; i < gf->n_nodes; i++) {
  13149. struct ggml_tensor * node = gf->nodes[i];
  13150. if (node->grad) {
  13151. node->grad = ggml_dup_tensor(ctx, node);
  13152. gf->grads[i] = node->grad;
  13153. }
  13154. }
  13155. }
  13156. // remember original gradients which start with zero values
  13157. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  13158. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  13159. for (int i = 0; i < gf->n_nodes; i++) {
  13160. if (gf->grads[i]) {
  13161. hash_insert(zero_table, gf->grads[i]);
  13162. }
  13163. }
  13164. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13165. struct ggml_tensor * node = gf->nodes[i];
  13166. // inplace operations to add gradients are not created by ggml_compute_backward
  13167. // use allocator to automatically make inplace operations
  13168. if (node->grad) {
  13169. ggml_compute_backward(ctx, node, zero_table);
  13170. }
  13171. }
  13172. for (int i = 0; i < gf->n_nodes; i++) {
  13173. struct ggml_tensor * node = gf->nodes[i];
  13174. if (node->is_param) {
  13175. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13176. ggml_build_forward_expand(gb, node->grad);
  13177. }
  13178. }
  13179. free(zero_table);
  13180. }
  13181. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13182. struct ggml_cgraph result = *gf;
  13183. ggml_build_backward_expand(ctx, gf, &result, keep);
  13184. return result;
  13185. }
  13186. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13187. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13188. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13189. *cgraph = (struct ggml_cgraph) {
  13190. /*.n_nodes =*/ 0,
  13191. /*.n_leafs =*/ 0,
  13192. /*.nodes =*/ { NULL },
  13193. /*.grads =*/ { NULL },
  13194. /*.leafs =*/ { NULL },
  13195. /*.hash_table =*/ { NULL },
  13196. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13197. /*.perf_runs =*/ 0,
  13198. /*.perf_cycles =*/ 0,
  13199. /*.perf_time_us =*/ 0,
  13200. };
  13201. return cgraph;
  13202. }
  13203. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13204. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13205. ggml_build_forward_impl(cgraph, tensor, false);
  13206. return cgraph;
  13207. }
  13208. size_t ggml_graph_overhead(void) {
  13209. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13210. }
  13211. //
  13212. // thread data
  13213. //
  13214. // synchronization is done via busy loops
  13215. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13216. //
  13217. #ifdef __APPLE__
  13218. //#include <os/lock.h>
  13219. //
  13220. //typedef os_unfair_lock ggml_lock_t;
  13221. //
  13222. //#define ggml_lock_init(x) UNUSED(x)
  13223. //#define ggml_lock_destroy(x) UNUSED(x)
  13224. //#define ggml_lock_lock os_unfair_lock_lock
  13225. //#define ggml_lock_unlock os_unfair_lock_unlock
  13226. //
  13227. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13228. typedef int ggml_lock_t;
  13229. #define ggml_lock_init(x) UNUSED(x)
  13230. #define ggml_lock_destroy(x) UNUSED(x)
  13231. #define ggml_lock_lock(x) UNUSED(x)
  13232. #define ggml_lock_unlock(x) UNUSED(x)
  13233. #define GGML_LOCK_INITIALIZER 0
  13234. typedef pthread_t ggml_thread_t;
  13235. #define ggml_thread_create pthread_create
  13236. #define ggml_thread_join pthread_join
  13237. #else
  13238. //typedef pthread_spinlock_t ggml_lock_t;
  13239. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13240. //#define ggml_lock_destroy pthread_spin_destroy
  13241. //#define ggml_lock_lock pthread_spin_lock
  13242. //#define ggml_lock_unlock pthread_spin_unlock
  13243. typedef int ggml_lock_t;
  13244. #define ggml_lock_init(x) UNUSED(x)
  13245. #define ggml_lock_destroy(x) UNUSED(x)
  13246. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13247. #define ggml_lock_lock(x) _mm_pause()
  13248. #else
  13249. #define ggml_lock_lock(x) UNUSED(x)
  13250. #endif
  13251. #define ggml_lock_unlock(x) UNUSED(x)
  13252. #define GGML_LOCK_INITIALIZER 0
  13253. typedef pthread_t ggml_thread_t;
  13254. #define ggml_thread_create pthread_create
  13255. #define ggml_thread_join pthread_join
  13256. #endif
  13257. // Android's libc implementation "bionic" does not support setting affinity
  13258. #if defined(__linux__) && !defined(__BIONIC__)
  13259. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13260. if (!ggml_is_numa()) {
  13261. return;
  13262. }
  13263. // run thread on node_num thread_n / (threads per node)
  13264. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13265. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13266. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13267. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13268. CPU_ZERO_S(setsize, cpus);
  13269. for (size_t i = 0; i < node->n_cpus; ++i) {
  13270. CPU_SET_S(node->cpus[i], setsize, cpus);
  13271. }
  13272. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13273. if (rv) {
  13274. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13275. strerror(rv));
  13276. }
  13277. CPU_FREE(cpus);
  13278. }
  13279. static void clear_numa_thread_affinity(void) {
  13280. if (!ggml_is_numa()) {
  13281. return;
  13282. }
  13283. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13284. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13285. CPU_ZERO_S(setsize, cpus);
  13286. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13287. CPU_SET_S(i, setsize, cpus);
  13288. }
  13289. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13290. if (rv) {
  13291. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13292. strerror(rv));
  13293. }
  13294. CPU_FREE(cpus);
  13295. }
  13296. #else
  13297. // TODO: Windows etc.
  13298. // (the linux implementation may also work on BSD, someone should test)
  13299. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13300. static void clear_numa_thread_affinity(void) {}
  13301. #endif
  13302. struct ggml_compute_state_shared {
  13303. const struct ggml_cgraph * cgraph;
  13304. const struct ggml_cplan * cplan;
  13305. int64_t perf_node_start_cycles;
  13306. int64_t perf_node_start_time_us;
  13307. const int n_threads;
  13308. // synchronization primitives
  13309. atomic_int n_active; // num active threads
  13310. atomic_int node_n; // active graph node
  13311. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13312. void * abort_callback_data;
  13313. };
  13314. struct ggml_compute_state {
  13315. ggml_thread_t thrd;
  13316. int ith;
  13317. struct ggml_compute_state_shared * shared;
  13318. };
  13319. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13320. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13321. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13322. node->perf_runs++;
  13323. node->perf_cycles += cycles_cur;
  13324. node->perf_time_us += time_us_cur;
  13325. }
  13326. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13327. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13328. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13329. const struct ggml_cplan * cplan = state->shared->cplan;
  13330. const int * n_tasks_arr = cplan->n_tasks;
  13331. const int n_threads = state->shared->n_threads;
  13332. set_numa_thread_affinity(state->ith, n_threads);
  13333. int node_n = -1;
  13334. while (true) {
  13335. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13336. state->shared->node_n += 1;
  13337. return (thread_ret_t) GGML_EXIT_ABORTED;
  13338. }
  13339. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13340. // all other threads are finished and spinning
  13341. // do finalize and init here so we don't have synchronize again
  13342. struct ggml_compute_params params = {
  13343. /*.type =*/ GGML_TASK_FINALIZE,
  13344. /*.ith =*/ 0,
  13345. /*.nth =*/ 0,
  13346. /*.wsize =*/ cplan->work_size,
  13347. /*.wdata =*/ cplan->work_data,
  13348. };
  13349. if (node_n != -1) {
  13350. /* FINALIZE */
  13351. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13352. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13353. params.nth = n_tasks_arr[node_n];
  13354. ggml_compute_forward(&params, node);
  13355. }
  13356. ggml_graph_compute_perf_stats_node(node, state->shared);
  13357. }
  13358. // distribute new work or execute it direct if 1T
  13359. while (++node_n < cgraph->n_nodes) {
  13360. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13361. struct ggml_tensor * node = cgraph->nodes[node_n];
  13362. const int n_tasks = n_tasks_arr[node_n];
  13363. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13364. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13365. params.nth = n_tasks;
  13366. /* INIT */
  13367. if (GGML_OP_HAS_INIT[node->op]) {
  13368. params.type = GGML_TASK_INIT;
  13369. ggml_compute_forward(&params, node);
  13370. }
  13371. if (n_tasks == 1) {
  13372. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13373. // they do something more efficient than spinning (?)
  13374. params.type = GGML_TASK_COMPUTE;
  13375. ggml_compute_forward(&params, node);
  13376. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13377. params.type = GGML_TASK_FINALIZE;
  13378. ggml_compute_forward(&params, node);
  13379. }
  13380. ggml_graph_compute_perf_stats_node(node, state->shared);
  13381. } else {
  13382. break;
  13383. }
  13384. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13385. break;
  13386. }
  13387. }
  13388. atomic_store(&state->shared->n_active, n_threads);
  13389. atomic_store(&state->shared->node_n, node_n);
  13390. } else {
  13391. // wait for other threads to finish
  13392. const int last = node_n;
  13393. while (true) {
  13394. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13395. // depending on the workload and the operating system.
  13396. // since it is not clear what is the best approach, it should potentially become user-configurable
  13397. // ref: https://github.com/ggerganov/ggml/issues/291
  13398. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13399. sched_yield();
  13400. #endif
  13401. node_n = atomic_load(&state->shared->node_n);
  13402. if (node_n != last) break;
  13403. };
  13404. }
  13405. // check if we should stop
  13406. if (node_n >= cgraph->n_nodes) break;
  13407. /* COMPUTE */
  13408. struct ggml_tensor * node = cgraph->nodes[node_n];
  13409. const int n_tasks = n_tasks_arr[node_n];
  13410. struct ggml_compute_params params = {
  13411. /*.type =*/ GGML_TASK_COMPUTE,
  13412. /*.ith =*/ state->ith,
  13413. /*.nth =*/ n_tasks,
  13414. /*.wsize =*/ cplan->work_size,
  13415. /*.wdata =*/ cplan->work_data,
  13416. };
  13417. if (state->ith < n_tasks) {
  13418. ggml_compute_forward(&params, node);
  13419. }
  13420. }
  13421. return GGML_EXIT_SUCCESS;
  13422. }
  13423. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13424. if (n_threads <= 0) {
  13425. n_threads = GGML_DEFAULT_N_THREADS;
  13426. }
  13427. size_t work_size = 0;
  13428. struct ggml_cplan cplan;
  13429. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13430. // thread scheduling for the different operations + work buffer size estimation
  13431. for (int i = 0; i < cgraph->n_nodes; i++) {
  13432. int n_tasks = 1;
  13433. struct ggml_tensor * node = cgraph->nodes[i];
  13434. switch (node->op) {
  13435. case GGML_OP_CPY:
  13436. case GGML_OP_DUP:
  13437. {
  13438. n_tasks = n_threads;
  13439. size_t cur = 0;
  13440. if (ggml_is_quantized(node->type)) {
  13441. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13442. }
  13443. work_size = MAX(work_size, cur);
  13444. } break;
  13445. case GGML_OP_ADD:
  13446. case GGML_OP_ADD1:
  13447. {
  13448. n_tasks = n_threads;
  13449. size_t cur = 0;
  13450. if (ggml_is_quantized(node->src[0]->type)) {
  13451. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13452. }
  13453. work_size = MAX(work_size, cur);
  13454. } break;
  13455. case GGML_OP_ACC:
  13456. {
  13457. n_tasks = n_threads;
  13458. size_t cur = 0;
  13459. if (ggml_is_quantized(node->src[0]->type)) {
  13460. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13461. }
  13462. work_size = MAX(work_size, cur);
  13463. } break;
  13464. case GGML_OP_SUB:
  13465. case GGML_OP_DIV:
  13466. case GGML_OP_SQR:
  13467. case GGML_OP_SQRT:
  13468. case GGML_OP_LOG:
  13469. case GGML_OP_SUM:
  13470. case GGML_OP_SUM_ROWS:
  13471. case GGML_OP_MEAN:
  13472. case GGML_OP_ARGMAX:
  13473. case GGML_OP_REPEAT:
  13474. case GGML_OP_REPEAT_BACK:
  13475. {
  13476. n_tasks = 1;
  13477. } break;
  13478. case GGML_OP_UNARY:
  13479. {
  13480. switch (ggml_get_unary_op(node)) {
  13481. case GGML_UNARY_OP_ABS:
  13482. case GGML_UNARY_OP_SGN:
  13483. case GGML_UNARY_OP_NEG:
  13484. case GGML_UNARY_OP_STEP:
  13485. case GGML_UNARY_OP_TANH:
  13486. case GGML_UNARY_OP_ELU:
  13487. case GGML_UNARY_OP_RELU:
  13488. {
  13489. n_tasks = 1;
  13490. } break;
  13491. case GGML_UNARY_OP_GELU:
  13492. case GGML_UNARY_OP_GELU_QUICK:
  13493. case GGML_UNARY_OP_SILU:
  13494. {
  13495. n_tasks = n_threads;
  13496. } break;
  13497. }
  13498. } break;
  13499. case GGML_OP_SILU_BACK:
  13500. case GGML_OP_MUL:
  13501. case GGML_OP_NORM:
  13502. case GGML_OP_RMS_NORM:
  13503. case GGML_OP_RMS_NORM_BACK:
  13504. case GGML_OP_GROUP_NORM:
  13505. {
  13506. n_tasks = n_threads;
  13507. } break;
  13508. case GGML_OP_CONCAT:
  13509. case GGML_OP_MUL_MAT:
  13510. {
  13511. n_tasks = n_threads;
  13512. // TODO: use different scheduling for different matrix sizes
  13513. //const int nr0 = ggml_nrows(node->src[0]);
  13514. //const int nr1 = ggml_nrows(node->src[1]);
  13515. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13516. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13517. size_t cur = 0;
  13518. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13519. #if defined(GGML_USE_CUBLAS)
  13520. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13521. n_tasks = 1; // TODO: this actually is doing nothing
  13522. // the threads are still spinning
  13523. } else
  13524. #elif defined(GGML_USE_CLBLAST)
  13525. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13526. n_tasks = 1; // TODO: this actually is doing nothing
  13527. // the threads are still spinning
  13528. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13529. } else
  13530. #endif
  13531. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13532. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13533. n_tasks = 1; // TODO: this actually is doing nothing
  13534. // the threads are still spinning
  13535. if (node->src[0]->type != GGML_TYPE_F32) {
  13536. // here we need memory just for single 2D matrix from src0
  13537. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13538. }
  13539. } else
  13540. #endif
  13541. if (node->src[1]->type != vec_dot_type) {
  13542. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13543. } else {
  13544. cur = 0;
  13545. }
  13546. work_size = MAX(work_size, cur);
  13547. } break;
  13548. case GGML_OP_OUT_PROD:
  13549. {
  13550. n_tasks = n_threads;
  13551. size_t cur = 0;
  13552. if (ggml_is_quantized(node->src[0]->type)) {
  13553. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13554. }
  13555. work_size = MAX(work_size, cur);
  13556. } break;
  13557. case GGML_OP_SCALE:
  13558. {
  13559. n_tasks = 1;
  13560. } break;
  13561. case GGML_OP_SET:
  13562. case GGML_OP_CONT:
  13563. case GGML_OP_RESHAPE:
  13564. case GGML_OP_VIEW:
  13565. case GGML_OP_PERMUTE:
  13566. case GGML_OP_TRANSPOSE:
  13567. case GGML_OP_GET_ROWS:
  13568. case GGML_OP_GET_ROWS_BACK:
  13569. case GGML_OP_DIAG:
  13570. {
  13571. n_tasks = 1;
  13572. } break;
  13573. case GGML_OP_DIAG_MASK_ZERO:
  13574. case GGML_OP_DIAG_MASK_INF:
  13575. case GGML_OP_SOFT_MAX:
  13576. case GGML_OP_SOFT_MAX_BACK:
  13577. case GGML_OP_ROPE:
  13578. case GGML_OP_ROPE_BACK:
  13579. case GGML_OP_ADD_REL_POS:
  13580. {
  13581. n_tasks = n_threads;
  13582. } break;
  13583. case GGML_OP_ALIBI:
  13584. {
  13585. n_tasks = 1; //TODO
  13586. } break;
  13587. case GGML_OP_CLAMP:
  13588. {
  13589. n_tasks = 1; //TODO
  13590. } break;
  13591. case GGML_OP_CONV_1D:
  13592. {
  13593. n_tasks = n_threads;
  13594. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13595. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13596. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13597. const int64_t ne00 = node->src[0]->ne[0];
  13598. const int64_t ne01 = node->src[0]->ne[1];
  13599. const int64_t ne02 = node->src[0]->ne[2];
  13600. const int64_t ne10 = node->src[1]->ne[0];
  13601. const int64_t ne11 = node->src[1]->ne[1];
  13602. const int64_t ne0 = node->ne[0];
  13603. const int64_t ne1 = node->ne[1];
  13604. const int64_t nk = ne00;
  13605. const int64_t ew0 = nk * ne01;
  13606. UNUSED(ne02);
  13607. UNUSED(ne10);
  13608. UNUSED(ne11);
  13609. size_t cur = 0;
  13610. if (node->src[0]->type == GGML_TYPE_F16 &&
  13611. node->src[1]->type == GGML_TYPE_F32) {
  13612. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13613. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13614. node->src[1]->type == GGML_TYPE_F32) {
  13615. cur = sizeof(float)*(ne0*ne1*ew0);
  13616. } else {
  13617. GGML_ASSERT(false);
  13618. }
  13619. work_size = MAX(work_size, cur);
  13620. } break;
  13621. case GGML_OP_CONV_1D_STAGE_0:
  13622. {
  13623. n_tasks = n_threads;
  13624. } break;
  13625. case GGML_OP_CONV_1D_STAGE_1:
  13626. {
  13627. n_tasks = n_threads;
  13628. } break;
  13629. case GGML_OP_CONV_TRANSPOSE_1D:
  13630. {
  13631. n_tasks = n_threads;
  13632. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13633. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13634. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13635. const int64_t ne00 = node->src[0]->ne[0]; // K
  13636. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13637. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13638. const int64_t ne10 = node->src[1]->ne[0]; // L
  13639. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13640. size_t cur = 0;
  13641. if (node->src[0]->type == GGML_TYPE_F16 &&
  13642. node->src[1]->type == GGML_TYPE_F32) {
  13643. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13644. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13645. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13646. node->src[1]->type == GGML_TYPE_F32) {
  13647. cur += sizeof(float)*ne00*ne01*ne02;
  13648. cur += sizeof(float)*ne10*ne11;
  13649. } else {
  13650. GGML_ASSERT(false);
  13651. }
  13652. work_size = MAX(work_size, cur);
  13653. } break;
  13654. case GGML_OP_CONV_2D:
  13655. {
  13656. n_tasks = n_threads;
  13657. const int64_t ne00 = node->src[0]->ne[0]; // W
  13658. const int64_t ne01 = node->src[0]->ne[1]; // H
  13659. const int64_t ne02 = node->src[0]->ne[2]; // C
  13660. const int64_t ne03 = node->src[0]->ne[3]; // N
  13661. const int64_t ne10 = node->src[1]->ne[0]; // W
  13662. const int64_t ne11 = node->src[1]->ne[1]; // H
  13663. const int64_t ne12 = node->src[1]->ne[2]; // C
  13664. const int64_t ne0 = node->ne[0];
  13665. const int64_t ne1 = node->ne[1];
  13666. const int64_t ne2 = node->ne[2];
  13667. const int64_t ne3 = node->ne[3];
  13668. const int64_t nk = ne00*ne01;
  13669. const int64_t ew0 = nk * ne02;
  13670. UNUSED(ne03);
  13671. UNUSED(ne2);
  13672. size_t cur = 0;
  13673. if (node->src[0]->type == GGML_TYPE_F16 &&
  13674. node->src[1]->type == GGML_TYPE_F32) {
  13675. // im2col: [N*OH*OW, IC*KH*KW]
  13676. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13677. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13678. node->src[1]->type == GGML_TYPE_F32) {
  13679. cur = sizeof(float)* (ne10*ne11*ne12);
  13680. } else {
  13681. GGML_ASSERT(false);
  13682. }
  13683. work_size = MAX(work_size, cur);
  13684. } break;
  13685. case GGML_OP_CONV_2D_STAGE_0:
  13686. {
  13687. n_tasks = n_threads;
  13688. } break;
  13689. case GGML_OP_CONV_2D_STAGE_1:
  13690. {
  13691. n_tasks = n_threads;
  13692. } break;
  13693. case GGML_OP_CONV_TRANSPOSE_2D:
  13694. {
  13695. n_tasks = n_threads;
  13696. const int64_t ne00 = node->src[0]->ne[0]; // W
  13697. const int64_t ne01 = node->src[0]->ne[1]; // H
  13698. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13699. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13700. const int64_t ne10 = node->src[1]->ne[0]; // W
  13701. const int64_t ne11 = node->src[1]->ne[1]; // H
  13702. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13703. size_t cur = 0;
  13704. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13705. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13706. work_size = MAX(work_size, cur);
  13707. } break;
  13708. case GGML_OP_POOL_1D:
  13709. case GGML_OP_POOL_2D:
  13710. {
  13711. n_tasks = 1;
  13712. } break;
  13713. case GGML_OP_UPSCALE:
  13714. {
  13715. n_tasks = n_threads;
  13716. } break;
  13717. case GGML_OP_FLASH_ATTN:
  13718. {
  13719. n_tasks = n_threads;
  13720. size_t cur = 0;
  13721. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13722. if (node->src[1]->type == GGML_TYPE_F32) {
  13723. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13724. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13725. }
  13726. if (node->src[1]->type == GGML_TYPE_F16) {
  13727. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13728. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13729. }
  13730. work_size = MAX(work_size, cur);
  13731. } break;
  13732. case GGML_OP_FLASH_FF:
  13733. {
  13734. n_tasks = n_threads;
  13735. size_t cur = 0;
  13736. if (node->src[1]->type == GGML_TYPE_F32) {
  13737. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13738. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13739. }
  13740. if (node->src[1]->type == GGML_TYPE_F16) {
  13741. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13742. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13743. }
  13744. work_size = MAX(work_size, cur);
  13745. } break;
  13746. case GGML_OP_FLASH_ATTN_BACK:
  13747. {
  13748. n_tasks = n_threads;
  13749. size_t cur = 0;
  13750. const int64_t D = node->src[0]->ne[0];
  13751. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13752. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13753. if (node->src[1]->type == GGML_TYPE_F32) {
  13754. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13755. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13756. }
  13757. if (node->src[1]->type == GGML_TYPE_F16) {
  13758. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13759. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13760. }
  13761. work_size = MAX(work_size, cur);
  13762. } break;
  13763. case GGML_OP_WIN_PART:
  13764. case GGML_OP_WIN_UNPART:
  13765. case GGML_OP_GET_REL_POS:
  13766. case GGML_OP_MAP_UNARY:
  13767. case GGML_OP_MAP_BINARY:
  13768. case GGML_OP_MAP_CUSTOM1_F32:
  13769. case GGML_OP_MAP_CUSTOM2_F32:
  13770. case GGML_OP_MAP_CUSTOM3_F32:
  13771. {
  13772. n_tasks = 1;
  13773. } break;
  13774. case GGML_OP_MAP_CUSTOM1:
  13775. {
  13776. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13777. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13778. n_tasks = n_threads;
  13779. } else {
  13780. n_tasks = MIN(p->n_tasks, n_threads);
  13781. }
  13782. } break;
  13783. case GGML_OP_MAP_CUSTOM2:
  13784. {
  13785. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13786. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13787. n_tasks = n_threads;
  13788. } else {
  13789. n_tasks = MIN(p->n_tasks, n_threads);
  13790. }
  13791. } break;
  13792. case GGML_OP_MAP_CUSTOM3:
  13793. {
  13794. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13795. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13796. n_tasks = n_threads;
  13797. } else {
  13798. n_tasks = MIN(p->n_tasks, n_threads);
  13799. }
  13800. } break;
  13801. case GGML_OP_CROSS_ENTROPY_LOSS:
  13802. {
  13803. n_tasks = n_threads;
  13804. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13805. work_size = MAX(work_size, cur);
  13806. } break;
  13807. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13808. {
  13809. n_tasks = n_threads;
  13810. } break;
  13811. case GGML_OP_NONE:
  13812. {
  13813. n_tasks = 1;
  13814. } break;
  13815. case GGML_OP_COUNT:
  13816. {
  13817. GGML_ASSERT(false);
  13818. } break;
  13819. }
  13820. cplan.n_tasks[i] = n_tasks;
  13821. }
  13822. if (work_size > 0) {
  13823. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13824. }
  13825. cplan.n_threads = n_threads;
  13826. cplan.work_size = work_size;
  13827. cplan.work_data = NULL;
  13828. return cplan;
  13829. }
  13830. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13831. {
  13832. GGML_ASSERT(cplan);
  13833. GGML_ASSERT(cplan->n_threads > 0);
  13834. if (cplan->work_size > 0) {
  13835. GGML_ASSERT(cplan->work_data);
  13836. }
  13837. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13838. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13839. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13840. }
  13841. }
  13842. }
  13843. const int n_threads = cplan->n_threads;
  13844. struct ggml_compute_state_shared state_shared = {
  13845. /*.cgraph =*/ cgraph,
  13846. /*.cgraph_plan =*/ cplan,
  13847. /*.perf_node_start_cycles =*/ 0,
  13848. /*.perf_node_start_time_us =*/ 0,
  13849. /*.n_threads =*/ n_threads,
  13850. /*.n_active =*/ n_threads,
  13851. /*.node_n =*/ -1,
  13852. /*.abort_callback =*/ NULL,
  13853. /*.abort_callback_data =*/ NULL,
  13854. };
  13855. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13856. // create thread pool
  13857. if (n_threads > 1) {
  13858. for (int j = 1; j < n_threads; ++j) {
  13859. workers[j] = (struct ggml_compute_state) {
  13860. .thrd = 0,
  13861. .ith = j,
  13862. .shared = &state_shared,
  13863. };
  13864. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13865. GGML_ASSERT(rc == 0);
  13866. UNUSED(rc);
  13867. }
  13868. }
  13869. workers[0].ith = 0;
  13870. workers[0].shared = &state_shared;
  13871. const int64_t perf_start_cycles = ggml_perf_cycles();
  13872. const int64_t perf_start_time_us = ggml_perf_time_us();
  13873. // this is a work thread too
  13874. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13875. // don't leave affinity set on the main thread
  13876. clear_numa_thread_affinity();
  13877. // join or kill thread pool
  13878. if (n_threads > 1) {
  13879. for (int j = 1; j < n_threads; j++) {
  13880. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13881. GGML_ASSERT(rc == 0);
  13882. }
  13883. }
  13884. // performance stats (graph)
  13885. {
  13886. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13887. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13888. cgraph->perf_runs++;
  13889. cgraph->perf_cycles += perf_cycles_cur;
  13890. cgraph->perf_time_us += perf_time_us_cur;
  13891. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13892. __func__, cgraph->perf_runs,
  13893. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13894. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13895. (double) perf_time_us_cur / 1000.0,
  13896. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13897. }
  13898. return compute_status;
  13899. }
  13900. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13901. for (int i = 0; i < cgraph->n_nodes; i++) {
  13902. struct ggml_tensor * grad = cgraph->grads[i];
  13903. if (grad) {
  13904. ggml_set_zero(grad);
  13905. }
  13906. }
  13907. }
  13908. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13909. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13910. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13911. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13912. ggml_graph_compute(cgraph, &cplan);
  13913. }
  13914. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13915. for (int i = 0; i < cgraph->n_leafs; i++) {
  13916. struct ggml_tensor * leaf = cgraph->leafs[i];
  13917. if (strcmp(leaf->name, name) == 0) {
  13918. return leaf;
  13919. }
  13920. }
  13921. for (int i = 0; i < cgraph->n_nodes; i++) {
  13922. struct ggml_tensor * node = cgraph->nodes[i];
  13923. if (strcmp(node->name, name) == 0) {
  13924. return node;
  13925. }
  13926. }
  13927. return NULL;
  13928. }
  13929. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13930. const int64_t * ne = tensor->ne;
  13931. const size_t * nb = tensor->nb;
  13932. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13933. ggml_type_name(tensor->type),
  13934. ggml_op_name (tensor->op),
  13935. tensor->n_dims,
  13936. ne[0], ne[1], ne[2], ne[3],
  13937. nb[0], nb[1], nb[2], nb[3],
  13938. tensor->data,
  13939. tensor->name);
  13940. }
  13941. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13942. const int64_t * ne = tensor->ne;
  13943. const size_t * nb = tensor->nb;
  13944. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13945. arg,
  13946. ggml_type_name(tensor->type),
  13947. ggml_op_name (tensor->op),
  13948. tensor->n_dims,
  13949. ne[0], ne[1], ne[2], ne[3],
  13950. nb[0], nb[1], nb[2], nb[3],
  13951. tensor->data,
  13952. tensor->name);
  13953. }
  13954. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13955. uint64_t size_eval = 0;
  13956. // compute size of intermediate results
  13957. // TODO: does not take into account scratch buffers !!!!
  13958. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13959. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13960. }
  13961. // print
  13962. {
  13963. FILE * fout = stdout;
  13964. fprintf(fout, "\n");
  13965. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13966. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13967. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13968. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13969. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13970. // header
  13971. fprintf(fout, "\n");
  13972. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13973. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13974. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13975. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13976. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13977. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13978. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13979. }
  13980. // header
  13981. fprintf(fout, "\n");
  13982. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13983. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13984. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13985. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13986. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13987. if (cgraph->nodes[i]->src[j]) {
  13988. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13989. }
  13990. }
  13991. fprintf(fout, "\n");
  13992. }
  13993. fprintf(fout, "\n");
  13994. }
  13995. // write binary data
  13996. {
  13997. FILE * fout = fopen(fname, "wb");
  13998. if (!fout) {
  13999. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14000. return;
  14001. }
  14002. // header
  14003. {
  14004. const uint32_t magic = GGML_FILE_MAGIC;
  14005. const uint32_t version = GGML_FILE_VERSION;
  14006. const uint32_t n_leafs = cgraph->n_leafs;
  14007. const uint32_t nodes = cgraph->n_nodes;
  14008. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14009. fwrite(&version, sizeof(uint32_t), 1, fout);
  14010. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14011. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14012. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14013. }
  14014. // leafs
  14015. {
  14016. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14017. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14018. const uint32_t type = tensor->type;
  14019. const uint32_t op = tensor->op;
  14020. const uint32_t n_dims = tensor->n_dims;
  14021. fwrite(&type, sizeof(uint32_t), 1, fout);
  14022. fwrite(&op, sizeof(uint32_t), 1, fout);
  14023. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14024. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14025. const uint64_t ne = tensor->ne[j];
  14026. const uint64_t nb = tensor->nb[j];
  14027. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14028. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14029. }
  14030. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14031. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14032. // dump the data
  14033. // TODO: pad this to 32 byte boundary
  14034. {
  14035. const size_t size = ggml_nbytes(tensor);
  14036. fwrite(tensor->data, sizeof(char), size, fout);
  14037. }
  14038. }
  14039. }
  14040. // nodes
  14041. {
  14042. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14043. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14044. const uint32_t type = tensor->type;
  14045. const uint32_t op = tensor->op;
  14046. const uint32_t n_dims = tensor->n_dims;
  14047. fwrite(&type, sizeof(uint32_t), 1, fout);
  14048. fwrite(&op, sizeof(uint32_t), 1, fout);
  14049. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14050. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14051. const uint64_t ne = tensor->ne[j];
  14052. const uint64_t nb = tensor->nb[j];
  14053. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14054. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14055. }
  14056. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14057. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14058. // output the op arguments
  14059. {
  14060. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14061. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14062. args[j] = tensor->src[j];
  14063. }
  14064. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14065. if (args[j]) {
  14066. int32_t idx = -1;
  14067. // check if leaf
  14068. {
  14069. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14070. if (args[j] == cgraph->leafs[k]) {
  14071. idx = k;
  14072. break;
  14073. }
  14074. }
  14075. }
  14076. // check if node
  14077. if (idx == -1) {
  14078. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14079. if (args[j] == cgraph->nodes[k]) {
  14080. idx = GGML_MAX_NODES + k;
  14081. break;
  14082. }
  14083. }
  14084. }
  14085. if (idx == -1) {
  14086. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14087. fclose(fout);
  14088. return;
  14089. }
  14090. fwrite(&idx, sizeof(int32_t), 1, fout);
  14091. } else {
  14092. const int32_t nul = -1;
  14093. fwrite(&nul, sizeof(int32_t), 1, fout);
  14094. }
  14095. }
  14096. }
  14097. }
  14098. }
  14099. fclose(fout);
  14100. }
  14101. }
  14102. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14103. assert(*ctx_data == NULL);
  14104. assert(*ctx_eval == NULL);
  14105. struct ggml_cgraph result = { 0 };
  14106. struct ggml_tensor * data = NULL;
  14107. // read file into data
  14108. {
  14109. FILE * fin = fopen(fname, "rb");
  14110. if (!fin) {
  14111. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14112. return result;
  14113. }
  14114. size_t fsize = 0;
  14115. fseek(fin, 0, SEEK_END);
  14116. fsize = ftell(fin);
  14117. fseek(fin, 0, SEEK_SET);
  14118. // create the data context
  14119. {
  14120. const size_t overhead = 1*ggml_tensor_overhead();
  14121. struct ggml_init_params params = {
  14122. .mem_size = fsize + overhead,
  14123. .mem_buffer = NULL,
  14124. .no_alloc = false,
  14125. };
  14126. *ctx_data = ggml_init(params);
  14127. if (!*ctx_data) {
  14128. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14129. fclose(fin);
  14130. return result;
  14131. }
  14132. }
  14133. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14134. {
  14135. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14136. if (ret != fsize) {
  14137. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14138. fclose(fin);
  14139. return result;
  14140. }
  14141. }
  14142. fclose(fin);
  14143. }
  14144. // populate result
  14145. {
  14146. char * ptr = (char *) data->data;
  14147. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14148. if (magic != GGML_FILE_MAGIC) {
  14149. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14150. return result;
  14151. }
  14152. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14153. if (version != GGML_FILE_VERSION) {
  14154. fprintf(stderr, "%s: invalid version number\n", __func__);
  14155. return result;
  14156. }
  14157. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14158. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14159. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14160. result.n_leafs = n_leafs;
  14161. result.n_nodes = n_nodes;
  14162. // create the data context
  14163. {
  14164. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14165. struct ggml_init_params params = {
  14166. .mem_size = size_eval + overhead,
  14167. .mem_buffer = NULL,
  14168. .no_alloc = true,
  14169. };
  14170. *ctx_eval = ggml_init(params);
  14171. if (!*ctx_eval) {
  14172. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14173. return result;
  14174. }
  14175. }
  14176. // leafs
  14177. {
  14178. uint32_t type;
  14179. uint32_t op;
  14180. uint32_t n_dims;
  14181. for (uint32_t i = 0; i < n_leafs; ++i) {
  14182. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14183. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14184. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14185. int64_t ne[GGML_MAX_DIMS];
  14186. size_t nb[GGML_MAX_DIMS];
  14187. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14188. uint64_t ne_cur;
  14189. uint64_t nb_cur;
  14190. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14191. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14192. ne[j] = ne_cur;
  14193. nb[j] = nb_cur;
  14194. }
  14195. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14196. tensor->op = (enum ggml_op) op;
  14197. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14198. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14199. tensor->data = (void *) ptr;
  14200. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14201. tensor->nb[j] = nb[j];
  14202. }
  14203. result.leafs[i] = tensor;
  14204. ptr += ggml_nbytes(tensor);
  14205. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14206. }
  14207. }
  14208. ggml_set_no_alloc(*ctx_eval, false);
  14209. // nodes
  14210. {
  14211. uint32_t type;
  14212. uint32_t op;
  14213. uint32_t n_dims;
  14214. for (uint32_t i = 0; i < n_nodes; ++i) {
  14215. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14216. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14217. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14218. enum ggml_op eop = (enum ggml_op) op;
  14219. int64_t ne[GGML_MAX_DIMS];
  14220. size_t nb[GGML_MAX_DIMS];
  14221. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14222. uint64_t ne_cur;
  14223. uint64_t nb_cur;
  14224. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14225. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14226. ne[j] = ne_cur;
  14227. nb[j] = nb_cur;
  14228. }
  14229. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14230. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14231. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14232. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14233. // parse args
  14234. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14235. const int32_t arg_idx = ptr_arg_idx[j];
  14236. if (arg_idx == -1) {
  14237. continue;
  14238. }
  14239. if (arg_idx < GGML_MAX_NODES) {
  14240. args[j] = result.leafs[arg_idx];
  14241. } else {
  14242. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14243. }
  14244. }
  14245. // create the tensor
  14246. // "view" operations are handled differently
  14247. // TODO: handle inplace ops - currently a copy is always made
  14248. struct ggml_tensor * tensor = NULL;
  14249. switch (eop) {
  14250. // TODO: implement other view ops
  14251. case GGML_OP_RESHAPE:
  14252. {
  14253. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14254. } break;
  14255. case GGML_OP_VIEW:
  14256. {
  14257. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14258. size_t offs;
  14259. memcpy(&offs, ptr_op_params, sizeof(offs));
  14260. tensor->data = ((char *) tensor->data) + offs;
  14261. } break;
  14262. case GGML_OP_TRANSPOSE:
  14263. {
  14264. tensor = ggml_transpose(*ctx_eval, args[0]);
  14265. } break;
  14266. case GGML_OP_PERMUTE:
  14267. {
  14268. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14269. } break;
  14270. default:
  14271. {
  14272. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14273. tensor->op = eop;
  14274. } break;
  14275. }
  14276. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14277. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14278. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14279. tensor->nb[j] = nb[j];
  14280. }
  14281. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14282. tensor->src[j] = args[j];
  14283. }
  14284. result.nodes[i] = tensor;
  14285. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14286. }
  14287. }
  14288. }
  14289. return result;
  14290. }
  14291. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14292. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14293. GGML_PRINT("=== GRAPH ===\n");
  14294. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14295. for (int i = 0; i < cgraph->n_nodes; i++) {
  14296. struct ggml_tensor * node = cgraph->nodes[i];
  14297. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14298. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14299. i,
  14300. node->ne[0], node->ne[1], node->ne[2],
  14301. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14302. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14303. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14304. (double) node->perf_time_us / 1000.0,
  14305. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14306. }
  14307. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14308. for (int i = 0; i < cgraph->n_leafs; i++) {
  14309. struct ggml_tensor * node = cgraph->leafs[i];
  14310. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14311. i,
  14312. node->ne[0], node->ne[1],
  14313. ggml_op_name(node->op),
  14314. ggml_get_name(node));
  14315. }
  14316. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14317. if (perf_total_per_op_us[i] == 0) {
  14318. continue;
  14319. }
  14320. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14321. }
  14322. GGML_PRINT("========================================\n");
  14323. }
  14324. // check if node is part of the graph
  14325. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14326. if (cgraph == NULL) {
  14327. return true;
  14328. }
  14329. for (int i = 0; i < cgraph->n_nodes; i++) {
  14330. if (cgraph->nodes[i] == node) {
  14331. return true;
  14332. }
  14333. }
  14334. return false;
  14335. }
  14336. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14337. for (int i = 0; i < cgraph->n_nodes; i++) {
  14338. struct ggml_tensor * parent = cgraph->nodes[i];
  14339. if (parent->grad == node) {
  14340. return parent;
  14341. }
  14342. }
  14343. return NULL;
  14344. }
  14345. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14346. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14347. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14348. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14349. gparent0 ? (void *) gparent0 : (void *) parent,
  14350. gparent0 ? "g" : "x",
  14351. gparent ? (void *) gparent : (void *) node,
  14352. gparent ? "g" : "x",
  14353. gparent ? "empty" : "vee",
  14354. gparent ? "dashed" : "solid",
  14355. label);
  14356. }
  14357. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14358. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14359. (void *) parent, "x",
  14360. (void *) node, "x",
  14361. label);
  14362. }
  14363. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14364. char color[16];
  14365. FILE * fp = fopen(filename, "w");
  14366. GGML_ASSERT(fp);
  14367. fprintf(fp, "digraph G {\n");
  14368. fprintf(fp, " newrank = true;\n");
  14369. fprintf(fp, " rankdir = LR;\n");
  14370. for (int i = 0; i < gb->n_nodes; i++) {
  14371. struct ggml_tensor * node = gb->nodes[i];
  14372. if (ggml_graph_get_parent(gb, node) != NULL) {
  14373. continue;
  14374. }
  14375. if (node->is_param) {
  14376. snprintf(color, sizeof(color), "yellow");
  14377. } else if (node->grad) {
  14378. if (ggml_graph_find(gf, node)) {
  14379. snprintf(color, sizeof(color), "green");
  14380. } else {
  14381. snprintf(color, sizeof(color), "lightblue");
  14382. }
  14383. } else {
  14384. snprintf(color, sizeof(color), "white");
  14385. }
  14386. fprintf(fp, " \"%p\" [ "
  14387. "style = filled; fillcolor = %s; shape = record; "
  14388. "label=\"",
  14389. (void *) node, color);
  14390. if (strlen(node->name) > 0) {
  14391. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14392. } else {
  14393. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14394. }
  14395. if (node->n_dims == 2) {
  14396. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14397. } else {
  14398. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14399. }
  14400. if (node->grad) {
  14401. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14402. } else {
  14403. fprintf(fp, "\"; ]\n");
  14404. }
  14405. }
  14406. for (int i = 0; i < gb->n_leafs; i++) {
  14407. struct ggml_tensor * node = gb->leafs[i];
  14408. snprintf(color, sizeof(color), "pink");
  14409. fprintf(fp, " \"%p\" [ "
  14410. "style = filled; fillcolor = %s; shape = record; "
  14411. "label=\"<x>",
  14412. (void *) node, color);
  14413. if (strlen(node->name) > 0) {
  14414. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14415. } else {
  14416. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14417. }
  14418. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14419. if (ggml_nelements(node) < 5) {
  14420. fprintf(fp, " | (");
  14421. for (int j = 0; j < ggml_nelements(node); j++) {
  14422. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14423. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14424. }
  14425. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14426. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14427. }
  14428. else {
  14429. fprintf(fp, "#");
  14430. }
  14431. if (j < ggml_nelements(node) - 1) {
  14432. fprintf(fp, ", ");
  14433. }
  14434. }
  14435. fprintf(fp, ")");
  14436. }
  14437. fprintf(fp, "\"; ]\n");
  14438. }
  14439. for (int i = 0; i < gb->n_nodes; i++) {
  14440. struct ggml_tensor * node = gb->nodes[i];
  14441. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14442. if (node->src[j]) {
  14443. char label[16];
  14444. snprintf(label, sizeof(label), "src %d", j);
  14445. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14446. }
  14447. }
  14448. }
  14449. for (int i = 0; i < gb->n_leafs; i++) {
  14450. struct ggml_tensor * node = gb->leafs[i];
  14451. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14452. if (node->src[j]) {
  14453. char label[16];
  14454. snprintf(label, sizeof(label), "src %d", j);
  14455. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14456. }
  14457. }
  14458. }
  14459. fprintf(fp, "}\n");
  14460. fclose(fp);
  14461. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14462. }
  14463. ////////////////////////////////////////////////////////////////////////////////
  14464. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14465. int i = 0;
  14466. for (int p = 0; p < np; ++p) {
  14467. const int64_t ne = ggml_nelements(ps[p]) ;
  14468. // TODO: add function to set tensor from array
  14469. for (int64_t j = 0; j < ne; ++j) {
  14470. ggml_set_f32_1d(ps[p], j, x[i++]);
  14471. }
  14472. }
  14473. }
  14474. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14475. int i = 0;
  14476. for (int p = 0; p < np; ++p) {
  14477. const int64_t ne = ggml_nelements(ps[p]) ;
  14478. // TODO: add function to get all elements at once
  14479. for (int64_t j = 0; j < ne; ++j) {
  14480. x[i++] = ggml_get_f32_1d(ps[p], j);
  14481. }
  14482. }
  14483. }
  14484. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14485. int64_t i = 0;
  14486. for (int p = 0; p < np; ++p) {
  14487. const int64_t ne = ggml_nelements(ps[p]) ;
  14488. // TODO: add function to get all elements at once
  14489. for (int64_t j = 0; j < ne; ++j) {
  14490. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14491. }
  14492. }
  14493. }
  14494. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14495. int64_t i = 0;
  14496. for (int p = 0; p < np; ++p) {
  14497. const int64_t ne = ggml_nelements(ps[p]) ;
  14498. // TODO: add function to get all elements at once
  14499. for (int64_t j = 0; j < ne; ++j) {
  14500. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14501. }
  14502. }
  14503. }
  14504. //
  14505. // ADAM
  14506. //
  14507. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14508. //
  14509. static enum ggml_opt_result ggml_opt_adam(
  14510. struct ggml_context * ctx,
  14511. struct ggml_opt_context * opt,
  14512. struct ggml_opt_params params,
  14513. struct ggml_tensor * f,
  14514. struct ggml_cgraph * gf,
  14515. struct ggml_cgraph * gb,
  14516. ggml_opt_callback callback,
  14517. void * callback_data) {
  14518. GGML_ASSERT(ggml_is_scalar(f));
  14519. // these will store the parameters we want to optimize
  14520. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14521. int np = 0;
  14522. int64_t nx = 0;
  14523. for (int i = 0; i < gf->n_nodes; ++i) {
  14524. if (gf->nodes[i]->is_param) {
  14525. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14526. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14527. ps[np++] = gf->nodes[i];
  14528. nx += ggml_nelements(gf->nodes[i]);
  14529. }
  14530. }
  14531. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14532. int iter = opt->iter;
  14533. ggml_opt_init(opt->ctx, opt, params, nx);
  14534. opt->iter = iter;
  14535. }
  14536. // constants
  14537. float sched = params.adam.sched;
  14538. const float alpha = params.adam.alpha;
  14539. const float decay = params.adam.decay * alpha;
  14540. const float beta1 = params.adam.beta1;
  14541. const float beta2 = params.adam.beta2;
  14542. const float eps = params.adam.eps;
  14543. const float gclip = params.adam.gclip;
  14544. const int decay_min_ndim = params.adam.decay_min_ndim;
  14545. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14546. const float accum_norm = 1.0f / (float) n_accum;
  14547. float * g = opt->adam.g->data; // gradients
  14548. float * m = opt->adam.m->data; // first moment
  14549. float * v = opt->adam.v->data; // second moment
  14550. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14551. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14552. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14553. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14554. bool cancel = false;
  14555. // compute the function value
  14556. float fx = 0;
  14557. ggml_set_zero(opt->adam.g);
  14558. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14559. if (callback) {
  14560. callback(callback_data, accum_step, &sched, &cancel);
  14561. if (cancel) {
  14562. return GGML_OPT_CANCEL;
  14563. }
  14564. }
  14565. // ggml_graph_reset (gf);
  14566. ggml_set_f32 (f->grad, 1.0f);
  14567. ggml_graph_compute(gb, &cplan);
  14568. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14569. fx += ggml_get_f32_1d(f, 0);
  14570. }
  14571. fx *= accum_norm;
  14572. opt->adam.fx_prev = fx;
  14573. opt->adam.fx_best = opt->adam.fx_prev;
  14574. if (pf) {
  14575. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14576. }
  14577. opt->loss_before = opt->adam.fx_prev;
  14578. opt->loss_after = opt->adam.fx_prev;
  14579. // initialize
  14580. if (opt->just_initialized) {
  14581. opt->adam.n_no_improvement = 0;
  14582. opt->just_initialized = false;
  14583. }
  14584. float * fx_best = &opt->adam.fx_best;
  14585. float * fx_prev = &opt->adam.fx_prev;
  14586. int * n_no_improvement = &opt->adam.n_no_improvement;
  14587. int iter0 = opt->iter;
  14588. // run the optimizer
  14589. for (int t = 0; t < params.adam.n_iter; ++t) {
  14590. opt->iter = iter0 + t + 1;
  14591. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14592. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14593. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14594. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14595. for (int i = 0; i < np; ++i) {
  14596. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14597. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14598. }
  14599. const int64_t t_start_wall = ggml_time_us();
  14600. const int64_t t_start_cpu = ggml_cycles();
  14601. UNUSED(t_start_wall);
  14602. UNUSED(t_start_cpu);
  14603. {
  14604. float gnorm = 1.0f;
  14605. if (gclip > 0.0f) {
  14606. // gradient clipping
  14607. ggml_float sum = 0.0;
  14608. for (int64_t i = 0; i < nx; ++i) {
  14609. sum += (ggml_float)(g[i]*g[i]);
  14610. }
  14611. ggml_float norm = sqrt(sum);
  14612. if (norm > (ggml_float) gclip) {
  14613. gnorm = (float) ((ggml_float) gclip / norm);
  14614. }
  14615. }
  14616. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14617. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14618. int64_t i = 0;
  14619. for (int p = 0; p < np; ++p) {
  14620. const int64_t ne = ggml_nelements(ps[p]);
  14621. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14622. for (int64_t j = 0; j < ne; ++j) {
  14623. float x = ggml_get_f32_1d(ps[p], j);
  14624. float g_ = g[i]*gnorm;
  14625. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14626. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14627. float mh = m[i]*beta1h;
  14628. float vh = v[i]*beta2h;
  14629. vh = sqrtf(vh) + eps;
  14630. x = x*(1.0f - p_decay) - mh/vh;
  14631. ggml_set_f32_1d(ps[p], j, x);
  14632. ++i;
  14633. }
  14634. }
  14635. }
  14636. fx = 0;
  14637. ggml_set_zero(opt->adam.g);
  14638. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14639. if (callback) {
  14640. callback(callback_data, accum_step, &sched, &cancel);
  14641. if (cancel) {
  14642. return GGML_OPT_CANCEL;;
  14643. }
  14644. }
  14645. // ggml_graph_reset (gf);
  14646. ggml_set_f32 (f->grad, 1.0f);
  14647. ggml_graph_compute(gb, &cplan);
  14648. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14649. fx += ggml_get_f32_1d(f, 0);
  14650. }
  14651. fx *= accum_norm;
  14652. opt->loss_after = fx;
  14653. // check convergence
  14654. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14655. GGML_PRINT_DEBUG("converged\n");
  14656. return GGML_OPT_OK;
  14657. }
  14658. // delta-based convergence test
  14659. if (pf != NULL) {
  14660. // need at least params.past iterations to start checking for convergence
  14661. if (params.past <= iter0 + t) {
  14662. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14663. if (fabsf(rate) < params.delta) {
  14664. return GGML_OPT_OK;
  14665. }
  14666. }
  14667. pf[(iter0 + t)%params.past] = fx;
  14668. }
  14669. // check for improvement
  14670. if (params.max_no_improvement > 0) {
  14671. if (fx_best[0] > fx) {
  14672. fx_best[0] = fx;
  14673. n_no_improvement[0] = 0;
  14674. } else {
  14675. ++n_no_improvement[0];
  14676. if (n_no_improvement[0] >= params.max_no_improvement) {
  14677. return GGML_OPT_OK;
  14678. }
  14679. }
  14680. }
  14681. fx_prev[0] = fx;
  14682. {
  14683. const int64_t t_end_cpu = ggml_cycles();
  14684. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14685. UNUSED(t_end_cpu);
  14686. const int64_t t_end_wall = ggml_time_us();
  14687. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14688. UNUSED(t_end_wall);
  14689. }
  14690. }
  14691. return GGML_OPT_DID_NOT_CONVERGE;
  14692. }
  14693. //
  14694. // L-BFGS
  14695. //
  14696. // the L-BFGS implementation below is based on the following implementation:
  14697. //
  14698. // https://github.com/chokkan/liblbfgs
  14699. //
  14700. struct ggml_lbfgs_iteration_data {
  14701. float alpha;
  14702. float ys;
  14703. float * s;
  14704. float * y;
  14705. };
  14706. static enum ggml_opt_result linesearch_backtracking(
  14707. const struct ggml_opt_params * params,
  14708. int nx,
  14709. float * x,
  14710. float * fx,
  14711. float * g,
  14712. float * d,
  14713. float * step,
  14714. const float * xp,
  14715. struct ggml_tensor * f,
  14716. struct ggml_cgraph * gb,
  14717. struct ggml_cplan * cplan,
  14718. const int np,
  14719. struct ggml_tensor * ps[],
  14720. bool * cancel,
  14721. ggml_opt_callback callback,
  14722. void * callback_data) {
  14723. int count = 0;
  14724. float width = 0.0f;
  14725. float dg = 0.0f;
  14726. float finit = 0.0f;
  14727. float dginit = 0.0f;
  14728. float dgtest = 0.0f;
  14729. const float dec = 0.5f;
  14730. const float inc = 2.1f;
  14731. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14732. const float accum_norm = 1.0f / (float) n_accum;
  14733. if (*step <= 0.f) {
  14734. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14735. }
  14736. // compute the initial gradient in the search direction
  14737. ggml_vec_dot_f32(nx, &dginit, g, d);
  14738. // make sure that d points to a descent direction
  14739. if (0 < dginit) {
  14740. return GGML_LINESEARCH_FAIL;
  14741. }
  14742. // initialize local variables
  14743. finit = *fx;
  14744. dgtest = params->lbfgs.ftol*dginit;
  14745. while (true) {
  14746. ggml_vec_cpy_f32(nx, x, xp);
  14747. ggml_vec_mad_f32(nx, x, d, *step);
  14748. // evaluate the function and gradient values
  14749. {
  14750. ggml_opt_set_params(np, ps, x);
  14751. *fx = 0;
  14752. memset(g, 0, sizeof(float)*nx);
  14753. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14754. if (callback) {
  14755. // LBFG-S does not support learning rate -> ignore learning schedule
  14756. float sched = 0;
  14757. callback(callback_data, accum_step, &sched, cancel);
  14758. if (*cancel) {
  14759. return GGML_OPT_CANCEL;
  14760. }
  14761. }
  14762. // ggml_graph_reset (gf);
  14763. ggml_set_f32 (f->grad, 1.0f);
  14764. ggml_graph_compute(gb, cplan);
  14765. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14766. *fx += ggml_get_f32_1d(f, 0);
  14767. }
  14768. *fx *= accum_norm;
  14769. }
  14770. ++count;
  14771. if (*fx > finit + (*step)*dgtest) {
  14772. width = dec;
  14773. } else {
  14774. // Armijo condition is satisfied
  14775. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14776. return count;
  14777. }
  14778. ggml_vec_dot_f32(nx, &dg, g, d);
  14779. // check the Wolfe condition
  14780. if (dg < params->lbfgs.wolfe * dginit) {
  14781. width = inc;
  14782. } else {
  14783. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14784. // regular Wolfe conditions
  14785. return count;
  14786. }
  14787. if(dg > -params->lbfgs.wolfe*dginit) {
  14788. width = dec;
  14789. } else {
  14790. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14791. return count;
  14792. }
  14793. }
  14794. }
  14795. if (*step < params->lbfgs.min_step) {
  14796. return GGML_LINESEARCH_MINIMUM_STEP;
  14797. }
  14798. if (*step > params->lbfgs.max_step) {
  14799. return GGML_LINESEARCH_MAXIMUM_STEP;
  14800. }
  14801. if (params->lbfgs.max_linesearch <= count) {
  14802. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14803. }
  14804. (*step) *= width;
  14805. }
  14806. GGML_UNREACHABLE();
  14807. }
  14808. static enum ggml_opt_result ggml_opt_lbfgs(
  14809. struct ggml_context * ctx,
  14810. struct ggml_opt_context * opt,
  14811. struct ggml_opt_params params,
  14812. struct ggml_tensor * f,
  14813. struct ggml_cgraph * gf,
  14814. struct ggml_cgraph * gb,
  14815. ggml_opt_callback callback,
  14816. void * callback_data) {
  14817. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14818. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14819. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14820. return GGML_OPT_INVALID_WOLFE;
  14821. }
  14822. }
  14823. const int m = params.lbfgs.m;
  14824. // these will store the parameters we want to optimize
  14825. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14826. int np = 0;
  14827. int nx = 0;
  14828. for (int i = 0; i < gf->n_nodes; ++i) {
  14829. if (gf->nodes[i]->is_param) {
  14830. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14831. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14832. ps[np++] = gf->nodes[i];
  14833. nx += ggml_nelements(gf->nodes[i]);
  14834. }
  14835. }
  14836. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14837. int iter = opt->iter;
  14838. ggml_opt_init(ctx, opt, params, nx);
  14839. opt->iter = iter;
  14840. }
  14841. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14842. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14843. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14844. float * x = opt->lbfgs.x->data; // current parameters
  14845. float * xp = opt->lbfgs.xp->data; // previous parameters
  14846. float * g = opt->lbfgs.g->data; // current gradient
  14847. float * gp = opt->lbfgs.gp->data; // previous gradient
  14848. float * d = opt->lbfgs.d->data; // search direction
  14849. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14850. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14851. const float accum_norm = 1.0f / (float) n_accum;
  14852. float fx = 0.0f; // cost function value
  14853. float xnorm = 0.0f; // ||x||
  14854. float gnorm = 0.0f; // ||g||
  14855. // initialize x from the graph nodes
  14856. ggml_opt_get_params(np, ps, x);
  14857. // the L-BFGS memory
  14858. float * lm_alpha = opt->lbfgs.lmal->data;
  14859. float * lm_ys = opt->lbfgs.lmys->data;
  14860. float * lm_s = opt->lbfgs.lms->data;
  14861. float * lm_y = opt->lbfgs.lmy->data;
  14862. bool cancel = false;
  14863. // evaluate the function value and its gradient
  14864. {
  14865. ggml_opt_set_params(np, ps, x);
  14866. fx = 0;
  14867. memset(g, 0, sizeof(float)*nx);
  14868. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14869. if (callback) {
  14870. // LBFG-S does not support learning rate -> ignore learning schedule
  14871. float sched = 0;
  14872. callback(callback_data, accum_step, &sched, &cancel);
  14873. if (cancel) {
  14874. return GGML_OPT_CANCEL;
  14875. }
  14876. }
  14877. // ggml_graph_reset (gf);
  14878. ggml_set_f32 (f->grad, 1.0f);
  14879. ggml_graph_compute(gb, &cplan);
  14880. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14881. fx += ggml_get_f32_1d(f, 0);
  14882. }
  14883. fx *= accum_norm;
  14884. opt->loss_before = fx;
  14885. opt->loss_after = fx;
  14886. }
  14887. // search direction = -gradient
  14888. ggml_vec_neg_f32(nx, d, g);
  14889. // ||x||, ||g||
  14890. ggml_vec_norm_f32(nx, &xnorm, x);
  14891. ggml_vec_norm_f32(nx, &gnorm, g);
  14892. if (xnorm < 1.0f) {
  14893. xnorm = 1.0f;
  14894. }
  14895. // already optimized
  14896. if (gnorm/xnorm <= params.lbfgs.eps) {
  14897. return GGML_OPT_OK;
  14898. }
  14899. if (opt->just_initialized) {
  14900. if (pf) {
  14901. pf[0] = fx;
  14902. }
  14903. opt->lbfgs.fx_best = fx;
  14904. // initial step
  14905. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14906. opt->lbfgs.j = 0;
  14907. opt->lbfgs.k = 1;
  14908. opt->lbfgs.end = 0;
  14909. opt->lbfgs.n_no_improvement = 0;
  14910. opt->just_initialized = false;
  14911. }
  14912. float * fx_best = &opt->lbfgs.fx_best;
  14913. float * step = &opt->lbfgs.step;
  14914. int * j = &opt->lbfgs.j;
  14915. int * k = &opt->lbfgs.k;
  14916. int * end = &opt->lbfgs.end;
  14917. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14918. int ls = 0;
  14919. int bound = 0;
  14920. float ys = 0.0f;
  14921. float yy = 0.0f;
  14922. float beta = 0.0f;
  14923. int it = 0;
  14924. while (true) {
  14925. // store the current position and gradient vectors
  14926. ggml_vec_cpy_f32(nx, xp, x);
  14927. ggml_vec_cpy_f32(nx, gp, g);
  14928. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14929. // to determine if the optimization should be cancelled
  14930. // this is a simple change, but not doing this atm, since I don't have a nice
  14931. // way to test and don't want to break something with so many changes lined up
  14932. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14933. if (cancel) {
  14934. return GGML_OPT_CANCEL;
  14935. }
  14936. if (ls < 0) {
  14937. // linesearch failed - go back to the previous point and return
  14938. ggml_vec_cpy_f32(nx, x, xp);
  14939. ggml_vec_cpy_f32(nx, g, gp);
  14940. return ls;
  14941. }
  14942. opt->loss_after = fx;
  14943. ggml_vec_norm_f32(nx, &xnorm, x);
  14944. ggml_vec_norm_f32(nx, &gnorm, g);
  14945. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14946. if (xnorm < 1.0f) {
  14947. xnorm = 1.0f;
  14948. }
  14949. if (gnorm/xnorm <= params.lbfgs.eps) {
  14950. // converged
  14951. return GGML_OPT_OK;
  14952. }
  14953. // delta-based convergence test
  14954. if (pf != NULL) {
  14955. // need at least params.past iterations to start checking for convergence
  14956. if (params.past <= k[0]) {
  14957. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14958. if (fabsf(rate) < params.delta) {
  14959. return GGML_OPT_OK;
  14960. }
  14961. }
  14962. pf[k[0]%params.past] = fx;
  14963. }
  14964. // check for improvement
  14965. if (params.max_no_improvement > 0) {
  14966. if (fx < fx_best[0]) {
  14967. fx_best[0] = fx;
  14968. n_no_improvement[0] = 0;
  14969. } else {
  14970. n_no_improvement[0]++;
  14971. if (n_no_improvement[0] >= params.max_no_improvement) {
  14972. return GGML_OPT_OK;
  14973. }
  14974. }
  14975. }
  14976. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14977. // reached the maximum number of iterations
  14978. return GGML_OPT_DID_NOT_CONVERGE;
  14979. }
  14980. // update vectors s and y:
  14981. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14982. // y_{k+1} = g_{k+1} - g_{k}.
  14983. //
  14984. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14985. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14986. // compute scalars ys and yy:
  14987. // ys = y^t \cdot s -> 1 / \rho.
  14988. // yy = y^t \cdot y.
  14989. //
  14990. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14991. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14992. lm_ys[end[0]] = ys;
  14993. // find new search direction
  14994. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14995. bound = (m <= k[0]) ? m : k[0];
  14996. k[0]++;
  14997. it++;
  14998. end[0] = (end[0] + 1)%m;
  14999. // initialize search direction with -g
  15000. ggml_vec_neg_f32(nx, d, g);
  15001. j[0] = end[0];
  15002. for (int i = 0; i < bound; ++i) {
  15003. j[0] = (j[0] + m - 1) % m;
  15004. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15005. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15006. lm_alpha[j[0]] /= lm_ys[j[0]];
  15007. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15008. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15009. }
  15010. ggml_vec_scale_f32(nx, d, ys/yy);
  15011. for (int i = 0; i < bound; ++i) {
  15012. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15013. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15014. beta /= lm_ys[j[0]];
  15015. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15016. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15017. j[0] = (j[0] + 1)%m;
  15018. }
  15019. step[0] = 1.0;
  15020. }
  15021. GGML_UNREACHABLE();
  15022. }
  15023. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15024. struct ggml_opt_params result;
  15025. switch (type) {
  15026. case GGML_OPT_ADAM:
  15027. {
  15028. result = (struct ggml_opt_params) {
  15029. .type = GGML_OPT_ADAM,
  15030. .n_threads = 1,
  15031. .past = 0,
  15032. .delta = 1e-5f,
  15033. .max_no_improvement = 100,
  15034. .print_forward_graph = true,
  15035. .print_backward_graph = true,
  15036. .n_gradient_accumulation = 1,
  15037. .adam = {
  15038. .n_iter = 10000,
  15039. .sched = 1.000f,
  15040. .decay = 0.0f,
  15041. .decay_min_ndim = 2,
  15042. .alpha = 0.001f,
  15043. .beta1 = 0.9f,
  15044. .beta2 = 0.999f,
  15045. .eps = 1e-8f,
  15046. .eps_f = 1e-5f,
  15047. .eps_g = 1e-3f,
  15048. .gclip = 0.0f,
  15049. },
  15050. };
  15051. } break;
  15052. case GGML_OPT_LBFGS:
  15053. {
  15054. result = (struct ggml_opt_params) {
  15055. .type = GGML_OPT_LBFGS,
  15056. .n_threads = 1,
  15057. .past = 0,
  15058. .delta = 1e-5f,
  15059. .max_no_improvement = 0,
  15060. .print_forward_graph = true,
  15061. .print_backward_graph = true,
  15062. .n_gradient_accumulation = 1,
  15063. .lbfgs = {
  15064. .m = 6,
  15065. .n_iter = 100,
  15066. .max_linesearch = 20,
  15067. .eps = 1e-5f,
  15068. .ftol = 1e-4f,
  15069. .wolfe = 0.9f,
  15070. .min_step = 1e-20f,
  15071. .max_step = 1e+20f,
  15072. .linesearch = GGML_LINESEARCH_DEFAULT,
  15073. },
  15074. };
  15075. } break;
  15076. }
  15077. return result;
  15078. }
  15079. GGML_API void ggml_opt_init(
  15080. struct ggml_context * ctx,
  15081. struct ggml_opt_context * opt,
  15082. struct ggml_opt_params params,
  15083. int64_t nx) {
  15084. opt->ctx = ctx;
  15085. opt->params = params;
  15086. opt->iter = 0;
  15087. opt->nx = nx;
  15088. opt->just_initialized = true;
  15089. if (opt->ctx == NULL) {
  15090. struct ggml_init_params ctx_opt_params;
  15091. if (opt->params.type == GGML_OPT_ADAM) {
  15092. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15093. if (opt->params.past > 0) {
  15094. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15095. }
  15096. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15097. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15098. if (opt->params.past > 0) {
  15099. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15100. }
  15101. }
  15102. ctx_opt_params.mem_buffer = NULL;
  15103. ctx_opt_params.no_alloc = false;
  15104. opt->ctx = ggml_init(ctx_opt_params);
  15105. }
  15106. switch (opt->params.type) {
  15107. case GGML_OPT_ADAM:
  15108. {
  15109. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15110. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15111. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15112. opt->adam.pf = params.past > 0
  15113. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15114. : NULL;
  15115. ggml_set_zero(opt->adam.m);
  15116. ggml_set_zero(opt->adam.v);
  15117. if (opt->adam.pf) {
  15118. ggml_set_zero(opt->adam.pf);
  15119. }
  15120. } break;
  15121. case GGML_OPT_LBFGS:
  15122. {
  15123. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15124. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15125. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15126. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15127. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15128. opt->lbfgs.pf = params.past > 0
  15129. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15130. : NULL;
  15131. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15132. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15133. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15134. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15135. ggml_set_zero(opt->lbfgs.x);
  15136. ggml_set_zero(opt->lbfgs.xp);
  15137. ggml_set_zero(opt->lbfgs.g);
  15138. ggml_set_zero(opt->lbfgs.gp);
  15139. ggml_set_zero(opt->lbfgs.d);
  15140. if (opt->lbfgs.pf) {
  15141. ggml_set_zero(opt->lbfgs.pf);
  15142. }
  15143. ggml_set_zero(opt->lbfgs.lmal);
  15144. ggml_set_zero(opt->lbfgs.lmys);
  15145. ggml_set_zero(opt->lbfgs.lms);
  15146. ggml_set_zero(opt->lbfgs.lmy);
  15147. } break;
  15148. }
  15149. }
  15150. enum ggml_opt_result ggml_opt(
  15151. struct ggml_context * ctx,
  15152. struct ggml_opt_params params,
  15153. struct ggml_tensor * f) {
  15154. bool free_ctx = false;
  15155. if (ctx == NULL) {
  15156. struct ggml_init_params params_ctx = {
  15157. .mem_size = 16*1024*1024,
  15158. .mem_buffer = NULL,
  15159. .no_alloc = false,
  15160. };
  15161. ctx = ggml_init(params_ctx);
  15162. if (ctx == NULL) {
  15163. return GGML_OPT_NO_CONTEXT;
  15164. }
  15165. free_ctx = true;
  15166. }
  15167. enum ggml_opt_result result = GGML_OPT_OK;
  15168. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15169. ggml_opt_init(ctx, opt, params, 0);
  15170. result = ggml_opt_resume(ctx, opt, f);
  15171. if (free_ctx) {
  15172. ggml_free(ctx);
  15173. }
  15174. return result;
  15175. }
  15176. enum ggml_opt_result ggml_opt_resume(
  15177. struct ggml_context * ctx,
  15178. struct ggml_opt_context * opt,
  15179. struct ggml_tensor * f) {
  15180. // build forward + backward compute graphs
  15181. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15182. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15183. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15184. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15185. *gf = ggml_build_forward (f);
  15186. *gb = ggml_build_backward(ctx, gf, true);
  15187. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15188. }
  15189. enum ggml_opt_result ggml_opt_resume_g(
  15190. struct ggml_context * ctx,
  15191. struct ggml_opt_context * opt,
  15192. struct ggml_tensor * f,
  15193. struct ggml_cgraph * gf,
  15194. struct ggml_cgraph * gb,
  15195. ggml_opt_callback callback,
  15196. void * callback_data) {
  15197. // build forward + backward compute graphs
  15198. enum ggml_opt_result result = GGML_OPT_OK;
  15199. switch (opt->params.type) {
  15200. case GGML_OPT_ADAM:
  15201. {
  15202. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15203. } break;
  15204. case GGML_OPT_LBFGS:
  15205. {
  15206. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15207. } break;
  15208. }
  15209. if (opt->params.print_forward_graph) {
  15210. ggml_graph_print (gf);
  15211. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15212. }
  15213. if (opt->params.print_backward_graph) {
  15214. ggml_graph_print (gb);
  15215. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15216. }
  15217. return result;
  15218. }
  15219. ////////////////////////////////////////////////////////////////////////////////
  15220. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15221. assert(k % QK4_0 == 0);
  15222. const int nb = k / QK4_0;
  15223. for (int b = 0; b < n; b += k) {
  15224. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15225. quantize_row_q4_0_reference(src + b, y, k);
  15226. for (int i = 0; i < nb; i++) {
  15227. for (int j = 0; j < QK4_0; j += 2) {
  15228. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15229. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15230. hist[vi0]++;
  15231. hist[vi1]++;
  15232. }
  15233. }
  15234. }
  15235. return (n/QK4_0*sizeof(block_q4_0));
  15236. }
  15237. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15238. assert(k % QK4_1 == 0);
  15239. const int nb = k / QK4_1;
  15240. for (int b = 0; b < n; b += k) {
  15241. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15242. quantize_row_q4_1_reference(src + b, y, k);
  15243. for (int i = 0; i < nb; i++) {
  15244. for (int j = 0; j < QK4_1; j += 2) {
  15245. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15246. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15247. hist[vi0]++;
  15248. hist[vi1]++;
  15249. }
  15250. }
  15251. }
  15252. return (n/QK4_1*sizeof(block_q4_1));
  15253. }
  15254. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15255. assert(k % QK5_0 == 0);
  15256. const int nb = k / QK5_0;
  15257. for (int b = 0; b < n; b += k) {
  15258. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15259. quantize_row_q5_0_reference(src + b, y, k);
  15260. for (int i = 0; i < nb; i++) {
  15261. uint32_t qh;
  15262. memcpy(&qh, &y[i].qh, sizeof(qh));
  15263. for (int j = 0; j < QK5_0; j += 2) {
  15264. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15265. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15266. // cast to 16 bins
  15267. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15268. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15269. hist[vi0]++;
  15270. hist[vi1]++;
  15271. }
  15272. }
  15273. }
  15274. return (n/QK5_0*sizeof(block_q5_0));
  15275. }
  15276. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15277. assert(k % QK5_1 == 0);
  15278. const int nb = k / QK5_1;
  15279. for (int b = 0; b < n; b += k) {
  15280. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15281. quantize_row_q5_1_reference(src + b, y, k);
  15282. for (int i = 0; i < nb; i++) {
  15283. uint32_t qh;
  15284. memcpy(&qh, &y[i].qh, sizeof(qh));
  15285. for (int j = 0; j < QK5_1; j += 2) {
  15286. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15287. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15288. // cast to 16 bins
  15289. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15290. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15291. hist[vi0]++;
  15292. hist[vi1]++;
  15293. }
  15294. }
  15295. }
  15296. return (n/QK5_1*sizeof(block_q5_1));
  15297. }
  15298. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15299. assert(k % QK8_0 == 0);
  15300. const int nb = k / QK8_0;
  15301. for (int b = 0; b < n; b += k) {
  15302. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15303. quantize_row_q8_0_reference(src + b, y, k);
  15304. for (int i = 0; i < nb; i++) {
  15305. for (int j = 0; j < QK8_0; ++j) {
  15306. const int8_t vi = y[i].qs[j];
  15307. hist[vi/16 + 8]++;
  15308. }
  15309. }
  15310. }
  15311. return (n/QK8_0*sizeof(block_q8_0));
  15312. }
  15313. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15314. size_t result = 0;
  15315. switch (type) {
  15316. case GGML_TYPE_Q4_0:
  15317. {
  15318. GGML_ASSERT(start % QK4_0 == 0);
  15319. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15320. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15321. } break;
  15322. case GGML_TYPE_Q4_1:
  15323. {
  15324. GGML_ASSERT(start % QK4_1 == 0);
  15325. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15326. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15327. } break;
  15328. case GGML_TYPE_Q5_0:
  15329. {
  15330. GGML_ASSERT(start % QK5_0 == 0);
  15331. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15332. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15333. } break;
  15334. case GGML_TYPE_Q5_1:
  15335. {
  15336. GGML_ASSERT(start % QK5_1 == 0);
  15337. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15338. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15339. } break;
  15340. case GGML_TYPE_Q8_0:
  15341. {
  15342. GGML_ASSERT(start % QK8_0 == 0);
  15343. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15344. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15345. } break;
  15346. case GGML_TYPE_Q2_K:
  15347. {
  15348. GGML_ASSERT(start % QK_K == 0);
  15349. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15350. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15351. } break;
  15352. case GGML_TYPE_Q3_K:
  15353. {
  15354. GGML_ASSERT(start % QK_K == 0);
  15355. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15356. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15357. } break;
  15358. case GGML_TYPE_Q4_K:
  15359. {
  15360. GGML_ASSERT(start % QK_K == 0);
  15361. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15362. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15363. } break;
  15364. case GGML_TYPE_Q5_K:
  15365. {
  15366. GGML_ASSERT(start % QK_K == 0);
  15367. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15368. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15369. } break;
  15370. case GGML_TYPE_Q6_K:
  15371. {
  15372. GGML_ASSERT(start % QK_K == 0);
  15373. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15374. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15375. } break;
  15376. case GGML_TYPE_F16:
  15377. {
  15378. int elemsize = sizeof(ggml_fp16_t);
  15379. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15380. result = n * elemsize;
  15381. } break;
  15382. case GGML_TYPE_F32:
  15383. {
  15384. int elemsize = sizeof(float);
  15385. result = n * elemsize;
  15386. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15387. } break;
  15388. default:
  15389. assert(false);
  15390. }
  15391. return result;
  15392. }
  15393. ////////////////////////////////////////////////////////////////////////////////
  15394. struct gguf_str {
  15395. uint64_t n; // GGUFv2
  15396. char * data;
  15397. };
  15398. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15399. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15400. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15401. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15402. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15403. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15404. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15405. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15406. [GGUF_TYPE_BOOL] = sizeof(bool),
  15407. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15408. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15409. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15410. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15411. [GGUF_TYPE_ARRAY] = 0, // undefined
  15412. };
  15413. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15414. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15415. [GGUF_TYPE_UINT8] = "u8",
  15416. [GGUF_TYPE_INT8] = "i8",
  15417. [GGUF_TYPE_UINT16] = "u16",
  15418. [GGUF_TYPE_INT16] = "i16",
  15419. [GGUF_TYPE_UINT32] = "u32",
  15420. [GGUF_TYPE_INT32] = "i32",
  15421. [GGUF_TYPE_FLOAT32] = "f32",
  15422. [GGUF_TYPE_BOOL] = "bool",
  15423. [GGUF_TYPE_STRING] = "str",
  15424. [GGUF_TYPE_ARRAY] = "arr",
  15425. [GGUF_TYPE_UINT64] = "u64",
  15426. [GGUF_TYPE_INT64] = "i64",
  15427. [GGUF_TYPE_FLOAT64] = "f64",
  15428. };
  15429. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15430. union gguf_value {
  15431. uint8_t uint8;
  15432. int8_t int8;
  15433. uint16_t uint16;
  15434. int16_t int16;
  15435. uint32_t uint32;
  15436. int32_t int32;
  15437. float float32;
  15438. uint64_t uint64;
  15439. int64_t int64;
  15440. double float64;
  15441. bool bool_;
  15442. struct gguf_str str;
  15443. struct {
  15444. enum gguf_type type;
  15445. uint64_t n; // GGUFv2
  15446. void * data;
  15447. } arr;
  15448. };
  15449. struct gguf_kv {
  15450. struct gguf_str key;
  15451. enum gguf_type type;
  15452. union gguf_value value;
  15453. };
  15454. struct gguf_header {
  15455. char magic[4];
  15456. uint32_t version;
  15457. uint64_t n_tensors; // GGUFv2
  15458. uint64_t n_kv; // GGUFv2
  15459. };
  15460. struct gguf_tensor_info {
  15461. struct gguf_str name;
  15462. uint32_t n_dims;
  15463. uint64_t ne[GGML_MAX_DIMS];
  15464. enum ggml_type type;
  15465. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15466. // for writing API
  15467. const void * data;
  15468. size_t size;
  15469. };
  15470. struct gguf_context {
  15471. struct gguf_header header;
  15472. struct gguf_kv * kv;
  15473. struct gguf_tensor_info * infos;
  15474. size_t alignment;
  15475. size_t offset; // offset of `data` from beginning of file
  15476. size_t size; // size of `data` in bytes
  15477. //uint8_t * padding;
  15478. void * data;
  15479. };
  15480. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15481. const size_t n = fread(dst, 1, size, file);
  15482. *offset += n;
  15483. return n == size;
  15484. }
  15485. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15486. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  15487. p->n = 0;
  15488. p->data = NULL;
  15489. bool ok = true;
  15490. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15491. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15492. return ok;
  15493. }
  15494. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  15495. p->n = 0;
  15496. p->data = NULL;
  15497. bool ok = true;
  15498. uint32_t n = 0;
  15499. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  15500. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15501. return ok;
  15502. }
  15503. struct gguf_context * gguf_init_empty(void) {
  15504. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15505. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15506. ctx->header.version = GGUF_VERSION;
  15507. ctx->header.n_tensors = 0;
  15508. ctx->header.n_kv = 0;
  15509. ctx->kv = NULL;
  15510. ctx->infos = NULL;
  15511. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15512. ctx->offset = 0;
  15513. ctx->size = 0;
  15514. ctx->data = NULL;
  15515. return ctx;
  15516. }
  15517. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15518. FILE * file = fopen(fname, "rb");
  15519. if (!file) {
  15520. return NULL;
  15521. }
  15522. // offset from start of file
  15523. size_t offset = 0;
  15524. char magic[4];
  15525. // check the magic before making allocations
  15526. {
  15527. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15528. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15529. if (magic[i] != GGUF_MAGIC[i]) {
  15530. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15531. fclose(file);
  15532. return NULL;
  15533. }
  15534. }
  15535. }
  15536. bool ok = true;
  15537. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15538. // read the header
  15539. {
  15540. strncpy(ctx->header.magic, magic, 4);
  15541. ctx->kv = NULL;
  15542. ctx->infos = NULL;
  15543. ctx->data = NULL;
  15544. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15545. if (ctx->header.version == 1) {
  15546. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15547. uint32_t n_tensors = 0;
  15548. uint32_t n_kv = 0;
  15549. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  15550. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  15551. ctx->header.n_tensors = n_tensors;
  15552. ctx->header.n_kv = n_kv;
  15553. } else {
  15554. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15555. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15556. }
  15557. if (!ok) {
  15558. fprintf(stderr, "%s: failed to read header\n", __func__);
  15559. fclose(file);
  15560. gguf_free(ctx);
  15561. return NULL;
  15562. }
  15563. }
  15564. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15565. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  15566. if (ctx->header.version == 1) {
  15567. gguf_fread_str = gguf_fread_str_v1;
  15568. }
  15569. // read the kv pairs
  15570. {
  15571. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15572. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15573. struct gguf_kv * kv = &ctx->kv[i];
  15574. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15575. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15576. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15577. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15578. switch (kv->type) {
  15579. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15580. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15581. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15582. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15583. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15584. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15585. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15586. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15587. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15588. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15589. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15590. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15591. case GGUF_TYPE_ARRAY:
  15592. {
  15593. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15594. if (ctx->header.version == 1) {
  15595. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15596. uint32_t n = 0;
  15597. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  15598. kv->value.arr.n = n;
  15599. } else {
  15600. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15601. }
  15602. switch (kv->value.arr.type) {
  15603. case GGUF_TYPE_UINT8:
  15604. case GGUF_TYPE_INT8:
  15605. case GGUF_TYPE_UINT16:
  15606. case GGUF_TYPE_INT16:
  15607. case GGUF_TYPE_UINT32:
  15608. case GGUF_TYPE_INT32:
  15609. case GGUF_TYPE_FLOAT32:
  15610. case GGUF_TYPE_UINT64:
  15611. case GGUF_TYPE_INT64:
  15612. case GGUF_TYPE_FLOAT64:
  15613. case GGUF_TYPE_BOOL:
  15614. {
  15615. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15616. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15617. } break;
  15618. case GGUF_TYPE_STRING:
  15619. {
  15620. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15621. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15622. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15623. }
  15624. } break;
  15625. case GGUF_TYPE_ARRAY:
  15626. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15627. }
  15628. } break;
  15629. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15630. }
  15631. if (!ok) {
  15632. break;
  15633. }
  15634. }
  15635. if (!ok) {
  15636. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15637. fclose(file);
  15638. gguf_free(ctx);
  15639. return NULL;
  15640. }
  15641. }
  15642. // read the tensor infos
  15643. {
  15644. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15645. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15646. struct gguf_tensor_info * info = &ctx->infos[i];
  15647. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15648. info->ne[j] = 1;
  15649. }
  15650. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15651. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15652. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15653. if (ctx->header.version == 1) {
  15654. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15655. uint32_t t = 0;
  15656. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  15657. info->ne[j] = t;
  15658. } else {
  15659. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15660. }
  15661. }
  15662. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15663. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15664. if (!ok) {
  15665. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15666. fclose(file);
  15667. gguf_free(ctx);
  15668. return NULL;
  15669. }
  15670. }
  15671. }
  15672. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15673. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15674. if (alignment_idx != -1) {
  15675. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15676. }
  15677. // we require the data section to be aligned, so take into account any padding
  15678. {
  15679. const size_t offset_pad = offset % ctx->alignment;
  15680. if (offset_pad != 0) {
  15681. offset += ctx->alignment - offset_pad;
  15682. fseek(file, offset, SEEK_SET);
  15683. }
  15684. }
  15685. // store the current file offset - this is where the data section starts
  15686. ctx->offset = offset;
  15687. // compute the total size of the data section, taking into account the alignment
  15688. {
  15689. ctx->size = 0;
  15690. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15691. struct gguf_tensor_info * info = &ctx->infos[i];
  15692. const int64_t ne =
  15693. (int64_t) info->ne[0] *
  15694. (int64_t) info->ne[1] *
  15695. (int64_t) info->ne[2] *
  15696. (int64_t) info->ne[3];
  15697. if (ne % ggml_blck_size(info->type) != 0) {
  15698. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15699. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15700. fclose(file);
  15701. gguf_free(ctx);
  15702. return NULL;
  15703. }
  15704. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15705. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15706. }
  15707. }
  15708. // load the tensor data only if requested
  15709. if (params.ctx != NULL) {
  15710. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15711. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15712. // the ggml_tensor structs to the appropriate locations in the binary blob
  15713. // compute the exact size needed for the new ggml_context
  15714. const size_t mem_size =
  15715. params.no_alloc ?
  15716. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15717. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15718. struct ggml_init_params pdata = {
  15719. .mem_size = mem_size,
  15720. .mem_buffer = NULL,
  15721. .no_alloc = params.no_alloc,
  15722. };
  15723. *params.ctx = ggml_init(pdata);
  15724. struct ggml_context * ctx_data = *params.ctx;
  15725. struct ggml_tensor * data = NULL;
  15726. if (!params.no_alloc) {
  15727. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15728. ok = ok && data != NULL;
  15729. // read the binary blob with the tensor data
  15730. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15731. if (!ok) {
  15732. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15733. fclose(file);
  15734. ggml_free(ctx_data);
  15735. gguf_free(ctx);
  15736. return NULL;
  15737. }
  15738. ctx->data = data->data;
  15739. }
  15740. ggml_set_no_alloc(ctx_data, true);
  15741. // create the tensors
  15742. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15743. const int64_t ne[GGML_MAX_DIMS] = {
  15744. ctx->infos[i].ne[0],
  15745. ctx->infos[i].ne[1],
  15746. ctx->infos[i].ne[2],
  15747. ctx->infos[i].ne[3],
  15748. };
  15749. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15750. ok = ok && cur != NULL;
  15751. ggml_set_name(cur, ctx->infos[i].name.data);
  15752. if (!ok) {
  15753. break;
  15754. }
  15755. // point the data member to the appropriate location in the binary blob using the tensor infos
  15756. if (!params.no_alloc) {
  15757. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15758. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15759. }
  15760. }
  15761. if (!ok) {
  15762. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15763. fclose(file);
  15764. ggml_free(ctx_data);
  15765. gguf_free(ctx);
  15766. return NULL;
  15767. }
  15768. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15769. }
  15770. fclose(file);
  15771. return ctx;
  15772. }
  15773. void gguf_free(struct gguf_context * ctx) {
  15774. if (ctx == NULL) {
  15775. return;
  15776. }
  15777. if (ctx->kv) {
  15778. // free string memory - not great..
  15779. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15780. struct gguf_kv * kv = &ctx->kv[i];
  15781. if (kv->key.data) {
  15782. free(kv->key.data);
  15783. }
  15784. if (kv->type == GGUF_TYPE_STRING) {
  15785. if (kv->value.str.data) {
  15786. free(kv->value.str.data);
  15787. }
  15788. }
  15789. if (kv->type == GGUF_TYPE_ARRAY) {
  15790. if (kv->value.arr.data) {
  15791. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15792. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15793. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15794. if (str->data) {
  15795. free(str->data);
  15796. }
  15797. }
  15798. }
  15799. free(kv->value.arr.data);
  15800. }
  15801. }
  15802. }
  15803. free(ctx->kv);
  15804. }
  15805. if (ctx->infos) {
  15806. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15807. struct gguf_tensor_info * info = &ctx->infos[i];
  15808. if (info->name.data) {
  15809. free(info->name.data);
  15810. }
  15811. }
  15812. free(ctx->infos);
  15813. }
  15814. GGML_ALIGNED_FREE(ctx);
  15815. }
  15816. const char * gguf_type_name(enum gguf_type type) {
  15817. return GGUF_TYPE_NAME[type];
  15818. }
  15819. int gguf_get_version(const struct gguf_context * ctx) {
  15820. return ctx->header.version;
  15821. }
  15822. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15823. return ctx->alignment;
  15824. }
  15825. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15826. return ctx->offset;
  15827. }
  15828. void * gguf_get_data(const struct gguf_context * ctx) {
  15829. return ctx->data;
  15830. }
  15831. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15832. return ctx->header.n_kv;
  15833. }
  15834. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15835. // return -1 if key not found
  15836. int keyfound = -1;
  15837. const int n_kv = gguf_get_n_kv(ctx);
  15838. for (int i = 0; i < n_kv; ++i) {
  15839. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15840. keyfound = i;
  15841. break;
  15842. }
  15843. }
  15844. return keyfound;
  15845. }
  15846. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15847. return ctx->kv[key_id].key.data;
  15848. }
  15849. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15850. return ctx->kv[key_id].type;
  15851. }
  15852. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15853. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15854. return ctx->kv[key_id].value.arr.type;
  15855. }
  15856. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15857. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15858. return ctx->kv[key_id].value.arr.data;
  15859. }
  15860. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15861. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15862. struct gguf_kv * kv = &ctx->kv[key_id];
  15863. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15864. return str->data;
  15865. }
  15866. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15867. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15868. return ctx->kv[key_id].value.arr.n;
  15869. }
  15870. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15871. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15872. return ctx->kv[key_id].value.uint8;
  15873. }
  15874. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15875. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15876. return ctx->kv[key_id].value.int8;
  15877. }
  15878. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15879. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15880. return ctx->kv[key_id].value.uint16;
  15881. }
  15882. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15883. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15884. return ctx->kv[key_id].value.int16;
  15885. }
  15886. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15887. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15888. return ctx->kv[key_id].value.uint32;
  15889. }
  15890. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15891. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15892. return ctx->kv[key_id].value.int32;
  15893. }
  15894. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15895. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15896. return ctx->kv[key_id].value.float32;
  15897. }
  15898. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15899. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15900. return ctx->kv[key_id].value.uint64;
  15901. }
  15902. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15903. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15904. return ctx->kv[key_id].value.int64;
  15905. }
  15906. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15907. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15908. return ctx->kv[key_id].value.float64;
  15909. }
  15910. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15911. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15912. return ctx->kv[key_id].value.bool_;
  15913. }
  15914. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15915. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15916. return ctx->kv[key_id].value.str.data;
  15917. }
  15918. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15919. return ctx->header.n_tensors;
  15920. }
  15921. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15922. // return -1 if tensor not found
  15923. int tensorfound = -1;
  15924. const int n_tensors = gguf_get_n_tensors(ctx);
  15925. for (int i = 0; i < n_tensors; ++i) {
  15926. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15927. tensorfound = i;
  15928. break;
  15929. }
  15930. }
  15931. return tensorfound;
  15932. }
  15933. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15934. return ctx->infos[i].offset;
  15935. }
  15936. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15937. return ctx->infos[i].name.data;
  15938. }
  15939. // returns the index
  15940. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15941. const int idx = gguf_find_key(ctx, key);
  15942. if (idx >= 0) {
  15943. return idx;
  15944. }
  15945. const int n_kv = gguf_get_n_kv(ctx);
  15946. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15947. ctx->kv[n_kv].key.n = strlen(key);
  15948. ctx->kv[n_kv].key.data = strdup(key);
  15949. ctx->header.n_kv++;
  15950. return n_kv;
  15951. }
  15952. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15953. const int idx = gguf_get_or_add_key(ctx, key);
  15954. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15955. ctx->kv[idx].value.uint8 = val;
  15956. }
  15957. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15958. const int idx = gguf_get_or_add_key(ctx, key);
  15959. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15960. ctx->kv[idx].value.int8 = val;
  15961. }
  15962. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15963. const int idx = gguf_get_or_add_key(ctx, key);
  15964. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15965. ctx->kv[idx].value.uint16 = val;
  15966. }
  15967. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15968. const int idx = gguf_get_or_add_key(ctx, key);
  15969. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15970. ctx->kv[idx].value.int16 = val;
  15971. }
  15972. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15973. const int idx = gguf_get_or_add_key(ctx, key);
  15974. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15975. ctx->kv[idx].value.uint32 = val;
  15976. }
  15977. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15978. const int idx = gguf_get_or_add_key(ctx, key);
  15979. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15980. ctx->kv[idx].value.int32 = val;
  15981. }
  15982. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15983. const int idx = gguf_get_or_add_key(ctx, key);
  15984. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15985. ctx->kv[idx].value.float32 = val;
  15986. }
  15987. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15988. const int idx = gguf_get_or_add_key(ctx, key);
  15989. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15990. ctx->kv[idx].value.uint64 = val;
  15991. }
  15992. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15993. const int idx = gguf_get_or_add_key(ctx, key);
  15994. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15995. ctx->kv[idx].value.int64 = val;
  15996. }
  15997. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15998. const int idx = gguf_get_or_add_key(ctx, key);
  15999. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16000. ctx->kv[idx].value.float64 = val;
  16001. }
  16002. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16003. const int idx = gguf_get_or_add_key(ctx, key);
  16004. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16005. ctx->kv[idx].value.bool_ = val;
  16006. }
  16007. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16008. const int idx = gguf_get_or_add_key(ctx, key);
  16009. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16010. ctx->kv[idx].value.str.n = strlen(val);
  16011. ctx->kv[idx].value.str.data = strdup(val);
  16012. }
  16013. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16014. const int idx = gguf_get_or_add_key(ctx, key);
  16015. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16016. ctx->kv[idx].value.arr.type = type;
  16017. ctx->kv[idx].value.arr.n = n;
  16018. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16019. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16020. }
  16021. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16022. const int idx = gguf_get_or_add_key(ctx, key);
  16023. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16024. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16025. ctx->kv[idx].value.arr.n = n;
  16026. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16027. for (int i = 0; i < n; i++) {
  16028. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16029. str->n = strlen(data[i]);
  16030. str->data = strdup(data[i]);
  16031. }
  16032. }
  16033. // set or add KV pairs from another context
  16034. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16035. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16036. switch (src->kv[i].type) {
  16037. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16038. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16039. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16040. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16041. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16042. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16043. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16044. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16045. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16046. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16047. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16048. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16049. case GGUF_TYPE_ARRAY:
  16050. {
  16051. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16052. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16053. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16054. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16055. }
  16056. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16057. free(data);
  16058. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16059. GGML_ASSERT(false && "nested arrays not supported");
  16060. } else {
  16061. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16062. }
  16063. } break;
  16064. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16065. }
  16066. }
  16067. }
  16068. void gguf_add_tensor(
  16069. struct gguf_context * ctx,
  16070. const struct ggml_tensor * tensor) {
  16071. const int idx = ctx->header.n_tensors;
  16072. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16073. ctx->infos[idx].name.n = strlen(tensor->name);
  16074. ctx->infos[idx].name.data = strdup(tensor->name);
  16075. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16076. ctx->infos[idx].ne[i] = 1;
  16077. }
  16078. ctx->infos[idx].n_dims = tensor->n_dims;
  16079. for (int i = 0; i < tensor->n_dims; i++) {
  16080. ctx->infos[idx].ne[i] = tensor->ne[i];
  16081. }
  16082. ctx->infos[idx].type = tensor->type;
  16083. ctx->infos[idx].offset = 0;
  16084. ctx->infos[idx].data = tensor->data;
  16085. ctx->infos[idx].size = ggml_nbytes(tensor);
  16086. if (ctx->header.n_tensors > 0) {
  16087. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16088. }
  16089. ctx->header.n_tensors++;
  16090. }
  16091. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16092. const int idx = gguf_find_tensor(ctx, name);
  16093. if (idx < 0) {
  16094. GGML_ASSERT(false && "tensor not found");
  16095. }
  16096. ctx->infos[idx].type = type;
  16097. }
  16098. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16099. const int idx = gguf_find_tensor(ctx, name);
  16100. if (idx < 0) {
  16101. GGML_ASSERT(false && "tensor not found");
  16102. }
  16103. ctx->infos[idx].data = data;
  16104. ctx->infos[idx].size = size;
  16105. // update offsets
  16106. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16107. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16108. }
  16109. }
  16110. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16111. // fwrite(&val->n, sizeof(val->n), 1, file);
  16112. // fwrite(val->data, sizeof(char), val->n, file);
  16113. //}
  16114. //
  16115. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16116. // fwrite(val, sizeof(char), size, file);
  16117. //}
  16118. struct gguf_buf {
  16119. void * data;
  16120. size_t size;
  16121. size_t offset;
  16122. };
  16123. static struct gguf_buf gguf_buf_init(size_t size) {
  16124. struct gguf_buf buf = {
  16125. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16126. /*buf.size =*/ size,
  16127. /*buf.offset =*/ 0,
  16128. };
  16129. return buf;
  16130. }
  16131. static void gguf_buf_free(struct gguf_buf buf) {
  16132. if (buf.data) {
  16133. free(buf.data);
  16134. }
  16135. }
  16136. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16137. if (buf->offset + size > buf->size) {
  16138. buf->size = 1.5*(buf->offset + size);
  16139. if (buf->data) {
  16140. buf->data = realloc(buf->data, buf->size);
  16141. }
  16142. }
  16143. }
  16144. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16145. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16146. if (buf->data) {
  16147. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16148. }
  16149. buf->offset += sizeof(val->n);
  16150. if (buf->data) {
  16151. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16152. }
  16153. buf->offset += val->n;
  16154. }
  16155. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16156. gguf_buf_grow(buf, el_size);
  16157. if (buf->data) {
  16158. memcpy((char *) buf->data + buf->offset, val, el_size);
  16159. }
  16160. buf->offset += el_size;
  16161. }
  16162. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16163. // write header
  16164. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16165. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16166. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16167. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16168. // write key-value pairs
  16169. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16170. struct gguf_kv * kv = &ctx->kv[i];
  16171. gguf_bwrite_str(buf, &kv->key);
  16172. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16173. switch (kv->type) {
  16174. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16175. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16176. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16177. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16178. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16179. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16180. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16181. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16182. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16183. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16184. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16185. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16186. case GGUF_TYPE_ARRAY:
  16187. {
  16188. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16189. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16190. switch (kv->value.arr.type) {
  16191. case GGUF_TYPE_UINT8:
  16192. case GGUF_TYPE_INT8:
  16193. case GGUF_TYPE_UINT16:
  16194. case GGUF_TYPE_INT16:
  16195. case GGUF_TYPE_UINT32:
  16196. case GGUF_TYPE_INT32:
  16197. case GGUF_TYPE_FLOAT32:
  16198. case GGUF_TYPE_UINT64:
  16199. case GGUF_TYPE_INT64:
  16200. case GGUF_TYPE_FLOAT64:
  16201. case GGUF_TYPE_BOOL:
  16202. {
  16203. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16204. } break;
  16205. case GGUF_TYPE_STRING:
  16206. {
  16207. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16208. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16209. }
  16210. } break;
  16211. case GGUF_TYPE_ARRAY:
  16212. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16213. }
  16214. } break;
  16215. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16216. }
  16217. }
  16218. // write tensor infos
  16219. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16220. struct gguf_tensor_info * info = &ctx->infos[i];
  16221. gguf_bwrite_str(buf, &info->name);
  16222. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16223. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16224. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16225. }
  16226. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16227. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16228. }
  16229. // we require the data section to be aligned, so take into account any padding
  16230. {
  16231. const size_t offset = buf->offset;
  16232. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16233. if (offset_pad != offset) {
  16234. uint8_t pad = 0;
  16235. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16236. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16237. }
  16238. }
  16239. }
  16240. if (only_meta) {
  16241. return;
  16242. }
  16243. size_t offset = 0;
  16244. // write tensor data
  16245. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16246. struct gguf_tensor_info * info = &ctx->infos[i];
  16247. const size_t size = info->size;
  16248. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16249. gguf_bwrite_el(buf, info->data, size);
  16250. if (size_pad != size) {
  16251. uint8_t pad = 0;
  16252. for (size_t j = 0; j < size_pad - size; ++j) {
  16253. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16254. }
  16255. }
  16256. GGML_ASSERT(offset == info->offset);
  16257. offset += size_pad;
  16258. }
  16259. }
  16260. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16261. FILE * file = fopen(fname, "wb");
  16262. if (!file) {
  16263. GGML_ASSERT(false && "failed to open file for writing");
  16264. }
  16265. struct gguf_buf buf = gguf_buf_init(16*1024);
  16266. gguf_write_to_buf(ctx, &buf, only_meta);
  16267. fwrite(buf.data, 1, buf.offset, file);
  16268. gguf_buf_free(buf);
  16269. fclose(file);
  16270. }
  16271. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16272. // no allocs - only compute size
  16273. struct gguf_buf buf = gguf_buf_init(0);
  16274. gguf_write_to_buf(ctx, &buf, true);
  16275. return buf.offset;
  16276. }
  16277. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16278. struct gguf_buf buf = gguf_buf_init(16*1024);
  16279. gguf_write_to_buf(ctx, &buf, true);
  16280. memcpy(data, buf.data, buf.offset);
  16281. gguf_buf_free(buf);
  16282. }
  16283. ////////////////////////////////////////////////////////////////////////////////
  16284. int ggml_cpu_has_avx(void) {
  16285. #if defined(__AVX__)
  16286. return 1;
  16287. #else
  16288. return 0;
  16289. #endif
  16290. }
  16291. int ggml_cpu_has_avx2(void) {
  16292. #if defined(__AVX2__)
  16293. return 1;
  16294. #else
  16295. return 0;
  16296. #endif
  16297. }
  16298. int ggml_cpu_has_avx512(void) {
  16299. #if defined(__AVX512F__)
  16300. return 1;
  16301. #else
  16302. return 0;
  16303. #endif
  16304. }
  16305. int ggml_cpu_has_avx512_vbmi(void) {
  16306. #if defined(__AVX512VBMI__)
  16307. return 1;
  16308. #else
  16309. return 0;
  16310. #endif
  16311. }
  16312. int ggml_cpu_has_avx512_vnni(void) {
  16313. #if defined(__AVX512VNNI__)
  16314. return 1;
  16315. #else
  16316. return 0;
  16317. #endif
  16318. }
  16319. int ggml_cpu_has_fma(void) {
  16320. #if defined(__FMA__)
  16321. return 1;
  16322. #else
  16323. return 0;
  16324. #endif
  16325. }
  16326. int ggml_cpu_has_neon(void) {
  16327. #if defined(__ARM_NEON)
  16328. return 1;
  16329. #else
  16330. return 0;
  16331. #endif
  16332. }
  16333. int ggml_cpu_has_arm_fma(void) {
  16334. #if defined(__ARM_FEATURE_FMA)
  16335. return 1;
  16336. #else
  16337. return 0;
  16338. #endif
  16339. }
  16340. int ggml_cpu_has_metal(void) {
  16341. #if defined(GGML_USE_METAL)
  16342. return 1;
  16343. #else
  16344. return 0;
  16345. #endif
  16346. }
  16347. int ggml_cpu_has_f16c(void) {
  16348. #if defined(__F16C__)
  16349. return 1;
  16350. #else
  16351. return 0;
  16352. #endif
  16353. }
  16354. int ggml_cpu_has_fp16_va(void) {
  16355. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16356. return 1;
  16357. #else
  16358. return 0;
  16359. #endif
  16360. }
  16361. int ggml_cpu_has_wasm_simd(void) {
  16362. #if defined(__wasm_simd128__)
  16363. return 1;
  16364. #else
  16365. return 0;
  16366. #endif
  16367. }
  16368. int ggml_cpu_has_blas(void) {
  16369. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16370. return 1;
  16371. #else
  16372. return 0;
  16373. #endif
  16374. }
  16375. int ggml_cpu_has_cublas(void) {
  16376. #if defined(GGML_USE_CUBLAS)
  16377. return 1;
  16378. #else
  16379. return 0;
  16380. #endif
  16381. }
  16382. int ggml_cpu_has_clblast(void) {
  16383. #if defined(GGML_USE_CLBLAST)
  16384. return 1;
  16385. #else
  16386. return 0;
  16387. #endif
  16388. }
  16389. int ggml_cpu_has_gpublas(void) {
  16390. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16391. }
  16392. int ggml_cpu_has_sse3(void) {
  16393. #if defined(__SSE3__)
  16394. return 1;
  16395. #else
  16396. return 0;
  16397. #endif
  16398. }
  16399. int ggml_cpu_has_ssse3(void) {
  16400. #if defined(__SSSE3__)
  16401. return 1;
  16402. #else
  16403. return 0;
  16404. #endif
  16405. }
  16406. int ggml_cpu_has_vsx(void) {
  16407. #if defined(__POWER9_VECTOR__)
  16408. return 1;
  16409. #else
  16410. return 0;
  16411. #endif
  16412. }
  16413. ////////////////////////////////////////////////////////////////////////////////