1
0

server-task.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (size_t i = 0; i < this->lora.size(); ++i) {
  30. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  65. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  66. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  67. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"lora", lora},
  75. };
  76. }
  77. auto grammar_triggers = json::array();
  78. for (const auto & trigger : sampling.grammar_triggers) {
  79. server_grammar_trigger ct(trigger);
  80. grammar_triggers.push_back(ct.to_json());
  81. }
  82. return json {
  83. {"seed", sampling.seed},
  84. {"temperature", sampling.temp},
  85. {"dynatemp_range", sampling.dynatemp_range},
  86. {"dynatemp_exponent", sampling.dynatemp_exponent},
  87. {"top_k", sampling.top_k},
  88. {"top_p", sampling.top_p},
  89. {"min_p", sampling.min_p},
  90. {"top_n_sigma", sampling.top_n_sigma},
  91. {"xtc_probability", sampling.xtc_probability},
  92. {"xtc_threshold", sampling.xtc_threshold},
  93. {"typical_p", sampling.typ_p},
  94. {"repeat_last_n", sampling.penalty_last_n},
  95. {"repeat_penalty", sampling.penalty_repeat},
  96. {"presence_penalty", sampling.penalty_present},
  97. {"frequency_penalty", sampling.penalty_freq},
  98. {"dry_multiplier", sampling.dry_multiplier},
  99. {"dry_base", sampling.dry_base},
  100. {"dry_allowed_length", sampling.dry_allowed_length},
  101. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  102. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  103. {"mirostat", sampling.mirostat},
  104. {"mirostat_tau", sampling.mirostat_tau},
  105. {"mirostat_eta", sampling.mirostat_eta},
  106. {"stop", antiprompt},
  107. {"max_tokens", n_predict},
  108. {"n_predict", n_predict}, // TODO: deduplicate?
  109. {"n_keep", n_keep},
  110. {"n_discard", n_discard},
  111. {"ignore_eos", sampling.ignore_eos},
  112. {"stream", stream},
  113. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  114. {"n_probs", sampling.n_probs},
  115. {"min_keep", sampling.min_keep},
  116. {"grammar", sampling.grammar},
  117. {"grammar_lazy", sampling.grammar_lazy},
  118. {"grammar_triggers", grammar_triggers},
  119. {"preserved_tokens", sampling.preserved_tokens},
  120. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  121. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  122. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  123. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  124. {"samplers", samplers},
  125. {"speculative.n_max", speculative.n_max},
  126. {"speculative.n_min", speculative.n_min},
  127. {"speculative.p_min", speculative.p_min},
  128. {"timings_per_token", timings_per_token},
  129. {"post_sampling_probs", post_sampling_probs},
  130. {"lora", lora},
  131. };
  132. }
  133. //
  134. // server_task
  135. //
  136. task_params server_task::params_from_json_cmpl(
  137. const llama_context * ctx,
  138. const common_params & params_base,
  139. const json & data) {
  140. const llama_model * model = llama_get_model(ctx);
  141. const llama_vocab * vocab = llama_model_get_vocab(model);
  142. task_params params;
  143. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  144. task_params defaults;
  145. defaults.sampling = params_base.sampling;
  146. defaults.speculative = params_base.speculative;
  147. defaults.n_keep = params_base.n_keep;
  148. defaults.n_predict = params_base.n_predict;
  149. defaults.n_cache_reuse = params_base.n_cache_reuse;
  150. defaults.antiprompt = params_base.antiprompt;
  151. // enabling this will output extra debug information in the HTTP responses from the server
  152. params.verbose = params_base.verbosity > 9;
  153. params.timings_per_token = json_value(data, "timings_per_token", false);
  154. params.stream = json_value(data, "stream", false);
  155. auto stream_opt = json_value(data, "stream_options", json::object());
  156. params.include_usage = json_value(stream_opt, "include_usage", false);
  157. params.cache_prompt = json_value(data, "cache_prompt", true);
  158. params.return_tokens = json_value(data, "return_tokens", false);
  159. params.return_progress = json_value(data, "return_progress", false);
  160. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  161. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  162. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  163. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  164. params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
  165. params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
  166. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  167. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  168. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  169. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  170. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  171. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  172. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  173. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  174. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  175. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  176. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  177. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  178. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  179. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  180. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  181. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  182. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  183. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  184. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  185. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  186. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  187. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  188. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  189. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  190. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  191. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  192. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  193. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  194. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  195. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  196. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  197. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  198. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  199. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  200. // Use OpenAI API logprobs only if n_probs wasn't provided
  201. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  202. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  203. }
  204. if (data.contains("lora")) {
  205. if (data.at("lora").is_array()) {
  206. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  207. } else {
  208. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  209. }
  210. } else {
  211. params.lora = params_base.lora_adapters;
  212. }
  213. // TODO: add more sanity checks for the input parameters
  214. if (params.sampling.penalty_last_n < -1) {
  215. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  216. }
  217. if (params.sampling.dry_penalty_last_n < -1) {
  218. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  219. }
  220. if (params.sampling.penalty_last_n == -1) {
  221. // note: should be the slot's context and not the full context, but it's ok
  222. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  223. }
  224. if (params.sampling.dry_penalty_last_n == -1) {
  225. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  226. }
  227. if (params.sampling.dry_base < 1.0f) {
  228. params.sampling.dry_base = defaults.sampling.dry_base;
  229. }
  230. // sequence breakers for DRY
  231. {
  232. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  233. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  234. if (data.contains("dry_sequence_breakers")) {
  235. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  236. if (params.sampling.dry_sequence_breakers.empty()) {
  237. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  238. }
  239. }
  240. }
  241. // process "json_schema" and "grammar"
  242. if (data.contains("json_schema") && !data.contains("grammar")) {
  243. try {
  244. auto schema = json_value(data, "json_schema", json::object());
  245. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  246. params.sampling.grammar = json_schema_to_grammar(schema);
  247. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  248. } catch (const std::exception & e) {
  249. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  250. }
  251. } else {
  252. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  253. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  254. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  255. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  256. }
  257. {
  258. auto it = data.find("chat_format");
  259. if (it != data.end()) {
  260. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  261. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  262. } else {
  263. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  264. }
  265. common_reasoning_format reasoning_format = params_base.reasoning_format;
  266. if (data.contains("reasoning_format")) {
  267. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  268. }
  269. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  270. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  271. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  272. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  273. if (data.contains("chat_parser")) {
  274. params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
  275. }
  276. }
  277. {
  278. const auto preserved_tokens = data.find("preserved_tokens");
  279. if (preserved_tokens != data.end()) {
  280. for (const auto & t : *preserved_tokens) {
  281. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  282. if (ids.size() == 1) {
  283. SRV_DBG("Preserved token: %d\n", ids[0]);
  284. params.sampling.preserved_tokens.insert(ids[0]);
  285. } else {
  286. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  287. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  288. }
  289. }
  290. }
  291. const auto grammar_triggers = data.find("grammar_triggers");
  292. if (grammar_triggers != data.end()) {
  293. for (const auto & t : *grammar_triggers) {
  294. server_grammar_trigger ct(t);
  295. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  296. const auto & word = ct.value.value;
  297. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  298. if (ids.size() == 1) {
  299. auto token = ids[0];
  300. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  301. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  302. }
  303. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  304. common_grammar_trigger trigger;
  305. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  306. trigger.value = word;
  307. trigger.token = token;
  308. params.sampling.grammar_triggers.push_back(std::move(trigger));
  309. } else {
  310. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  311. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  312. }
  313. } else {
  314. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  315. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  316. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  317. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  318. } else {
  319. throw std::runtime_error("Unknown grammar trigger type");
  320. }
  321. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  322. }
  323. }
  324. }
  325. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  326. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  327. }
  328. }
  329. {
  330. params.sampling.logit_bias.clear();
  331. const auto & logit_bias = data.find("logit_bias");
  332. if (logit_bias != data.end() && logit_bias->is_array()) {
  333. const int n_vocab = llama_vocab_n_tokens(vocab);
  334. for (const auto & el : *logit_bias) {
  335. // TODO: we may want to throw errors here, in case "el" is incorrect
  336. if (el.is_array() && el.size() == 2) {
  337. float bias;
  338. if (el[1].is_number()) {
  339. bias = el[1].get<float>();
  340. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  341. bias = -INFINITY;
  342. } else {
  343. continue;
  344. }
  345. if (el[0].is_number_integer()) {
  346. llama_token tok = el[0].get<llama_token>();
  347. if (tok >= 0 && tok < n_vocab) {
  348. params.sampling.logit_bias.push_back({tok, bias});
  349. }
  350. } else if (el[0].is_string()) {
  351. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  352. for (auto tok : toks) {
  353. params.sampling.logit_bias.push_back({tok, bias});
  354. }
  355. }
  356. }
  357. }
  358. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  359. const int n_vocab = llama_vocab_n_tokens(vocab);
  360. for (const auto & el : logit_bias->items()) {
  361. float bias;
  362. const auto & key = el.key();
  363. const auto & value = el.value();
  364. if (value.is_number()) {
  365. bias = value.get<float>();
  366. } else if (value.is_boolean() && !value.get<bool>()) {
  367. bias = -INFINITY;
  368. } else {
  369. continue;
  370. }
  371. char *end;
  372. llama_token tok = strtol(key.c_str(), &end, 10);
  373. if (*end == 0) {
  374. if (tok >= 0 && tok < n_vocab) {
  375. params.sampling.logit_bias.push_back({tok, bias});
  376. }
  377. } else {
  378. auto toks = common_tokenize(vocab, key, false);
  379. for (auto tok : toks) {
  380. params.sampling.logit_bias.push_back({tok, bias});
  381. }
  382. }
  383. }
  384. }
  385. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  386. if (params.sampling.ignore_eos) {
  387. params.sampling.logit_bias.insert(
  388. params.sampling.logit_bias.end(),
  389. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  390. }
  391. }
  392. {
  393. params.antiprompt.clear();
  394. const auto & stop = data.find("stop");
  395. if (stop != data.end() && stop->is_array()) {
  396. for (const auto & word : *stop) {
  397. if (!word.empty()) {
  398. params.antiprompt.push_back(word);
  399. }
  400. }
  401. }
  402. // set reverse prompt from cli args if not set in the request
  403. if (params.antiprompt.empty()) {
  404. params.antiprompt = defaults.antiprompt;
  405. }
  406. }
  407. {
  408. const auto samplers = data.find("samplers");
  409. if (samplers != data.end()) {
  410. if (samplers->is_array()) {
  411. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  412. } else if (samplers->is_string()){
  413. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  414. }
  415. } else {
  416. params.sampling.samplers = defaults.sampling.samplers;
  417. }
  418. }
  419. if (params.n_cmpl > params_base.n_parallel) {
  420. throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
  421. }
  422. return params;
  423. }
  424. //
  425. // result_timings
  426. //
  427. json result_timings::to_json() const {
  428. json base = {
  429. {"cache_n", cache_n},
  430. {"prompt_n", prompt_n},
  431. {"prompt_ms", prompt_ms},
  432. {"prompt_per_token_ms", prompt_per_token_ms},
  433. {"prompt_per_second", prompt_per_second},
  434. {"predicted_n", predicted_n},
  435. {"predicted_ms", predicted_ms},
  436. {"predicted_per_token_ms", predicted_per_token_ms},
  437. {"predicted_per_second", predicted_per_second},
  438. };
  439. if (draft_n > 0) {
  440. base["draft_n"] = draft_n;
  441. base["draft_n_accepted"] = draft_n_accepted;
  442. }
  443. return base;
  444. }
  445. //
  446. // result_prompt_progress
  447. //
  448. json result_prompt_progress::to_json() const {
  449. return json {
  450. {"total", total},
  451. {"cache", cache},
  452. {"processed", processed},
  453. {"time_ms", time_ms},
  454. };
  455. }
  456. static inline std::string stop_type_to_str(stop_type type) {
  457. switch (type) {
  458. case STOP_TYPE_EOS: return "eos";
  459. case STOP_TYPE_WORD: return "word";
  460. case STOP_TYPE_LIMIT: return "limit";
  461. default: return "none";
  462. }
  463. }
  464. //
  465. // completion_token_output
  466. //
  467. json completion_token_output::to_json(bool post_sampling_probs) const {
  468. json probs_for_token = json::array();
  469. for (const auto & p : probs) {
  470. std::string txt(p.txt);
  471. txt.resize(validate_utf8(txt));
  472. probs_for_token.push_back(json {
  473. {"id", p.tok},
  474. {"token", txt},
  475. {"bytes", str_to_bytes(p.txt)},
  476. {
  477. post_sampling_probs ? "prob" : "logprob",
  478. post_sampling_probs ? p.prob : logarithm(p.prob)
  479. },
  480. });
  481. }
  482. return probs_for_token;
  483. }
  484. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  485. json out = json::array();
  486. for (const auto & p : probs) {
  487. std::string txt(p.text_to_send);
  488. txt.resize(validate_utf8(txt));
  489. out.push_back(json {
  490. {"id", p.tok},
  491. {"token", txt},
  492. {"bytes", str_to_bytes(p.text_to_send)},
  493. {
  494. post_sampling_probs ? "prob" : "logprob",
  495. post_sampling_probs ? p.prob : logarithm(p.prob)
  496. },
  497. {
  498. post_sampling_probs ? "top_probs" : "top_logprobs",
  499. p.to_json(post_sampling_probs)
  500. },
  501. });
  502. }
  503. return out;
  504. }
  505. float completion_token_output::logarithm(float x) {
  506. // nlohmann::json converts -inf to null, so we need to prevent that
  507. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  508. }
  509. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  510. std::vector<unsigned char> bytes;
  511. for (unsigned char c : str) {
  512. bytes.push_back(c);
  513. }
  514. return bytes;
  515. }
  516. //
  517. // server_task_result_cmpl_final
  518. //
  519. json server_task_result_cmpl_final::to_json() {
  520. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  521. switch (res_type) {
  522. case TASK_RESPONSE_TYPE_NONE:
  523. return to_json_non_oaicompat();
  524. case TASK_RESPONSE_TYPE_OAI_CMPL:
  525. return to_json_oaicompat();
  526. case TASK_RESPONSE_TYPE_OAI_CHAT:
  527. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  528. case TASK_RESPONSE_TYPE_ANTHROPIC:
  529. return stream ? to_json_anthropic_stream() : to_json_anthropic();
  530. default:
  531. GGML_ASSERT(false && "Invalid task_response_type");
  532. }
  533. }
  534. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  535. json res = json {
  536. {"index", index},
  537. {"content", content},
  538. {"tokens", tokens},
  539. {"id_slot", id_slot},
  540. {"stop", true},
  541. {"model", oaicompat_model},
  542. {"tokens_predicted", n_decoded},
  543. {"tokens_evaluated", n_prompt_tokens},
  544. {"generation_settings", generation_params.to_json()},
  545. {"prompt", prompt},
  546. {"has_new_line", has_new_line},
  547. {"truncated", truncated},
  548. {"stop_type", stop_type_to_str(stop)},
  549. {"stopping_word", stopping_word},
  550. {"tokens_cached", n_tokens_cached},
  551. {"timings", timings.to_json()},
  552. };
  553. if (!stream && !probs_output.empty()) {
  554. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  555. }
  556. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  557. }
  558. json server_task_result_cmpl_final::to_json_oaicompat() {
  559. std::time_t t = std::time(0);
  560. json logprobs = json(nullptr); // OAI default to null
  561. if (!stream && probs_output.size() > 0) {
  562. logprobs = json{
  563. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  564. };
  565. }
  566. json finish_reason = "length";
  567. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  568. finish_reason = "stop";
  569. }
  570. json res = json {
  571. {"choices", json::array({
  572. json{
  573. {"text", content},
  574. {"index", index},
  575. {"logprobs", logprobs},
  576. {"finish_reason", finish_reason},
  577. }
  578. })},
  579. {"created", t},
  580. {"model", oaicompat_model},
  581. {"system_fingerprint", build_info},
  582. {"object", "text_completion"},
  583. {"usage", json {
  584. {"completion_tokens", n_decoded},
  585. {"prompt_tokens", n_prompt_tokens},
  586. {"total_tokens", n_decoded + n_prompt_tokens}
  587. }},
  588. {"id", oaicompat_cmpl_id}
  589. };
  590. // extra fields for debugging purposes
  591. if (verbose) {
  592. res["__verbose"] = to_json_non_oaicompat();
  593. }
  594. if (timings.prompt_n >= 0) {
  595. res.push_back({"timings", timings.to_json()});
  596. }
  597. return res;
  598. }
  599. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  600. std::string finish_reason = "length";
  601. common_chat_msg msg;
  602. if (!oaicompat_msg.empty()) {
  603. msg = oaicompat_msg;
  604. } else {
  605. msg.role = "assistant";
  606. msg.content = content;
  607. }
  608. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  609. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  610. }
  611. json choice {
  612. {"finish_reason", finish_reason},
  613. {"index", index},
  614. {"message", msg.to_json_oaicompat<json>()},
  615. };
  616. if (!stream && probs_output.size() > 0) {
  617. choice["logprobs"] = json{
  618. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  619. };
  620. }
  621. std::time_t t = std::time(0);
  622. json res = json {
  623. {"choices", json::array({choice})},
  624. {"created", t},
  625. {"model", oaicompat_model},
  626. {"system_fingerprint", build_info},
  627. {"object", "chat.completion"},
  628. {"usage", json {
  629. {"completion_tokens", n_decoded},
  630. {"prompt_tokens", n_prompt_tokens},
  631. {"total_tokens", n_decoded + n_prompt_tokens}
  632. }},
  633. {"id", oaicompat_cmpl_id}
  634. };
  635. // extra fields for debugging purposes
  636. if (verbose) {
  637. res["__verbose"] = to_json_non_oaicompat();
  638. }
  639. if (timings.prompt_n >= 0) {
  640. res.push_back({"timings", timings.to_json()});
  641. }
  642. return res;
  643. }
  644. common_chat_msg task_result_state::update_chat_msg(
  645. const std::string & text_added,
  646. bool is_partial,
  647. std::vector<common_chat_msg_diff> & diffs) {
  648. generated_text += text_added;
  649. auto msg_prv_copy = chat_msg;
  650. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  651. auto new_msg = common_chat_parse(
  652. generated_text,
  653. is_partial,
  654. oaicompat_chat_syntax);
  655. if (!new_msg.empty()) {
  656. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  657. chat_msg = new_msg;
  658. diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
  659. }
  660. return chat_msg;
  661. }
  662. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  663. std::time_t t = std::time(0);
  664. std::string finish_reason = "length";
  665. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  666. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  667. }
  668. json deltas = json::array();
  669. for (const auto & diff : oaicompat_msg_diffs) {
  670. deltas.push_back({
  671. {"choices", json::array({
  672. json {
  673. {"finish_reason", nullptr},
  674. {"index", 0},
  675. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  676. },
  677. })},
  678. {"created", t},
  679. {"id", oaicompat_cmpl_id},
  680. {"model", oaicompat_model},
  681. {"system_fingerprint", build_info},
  682. {"object", "chat.completion.chunk"},
  683. });
  684. }
  685. deltas.push_back({
  686. {"choices", json::array({
  687. json {
  688. {"finish_reason", finish_reason},
  689. {"index", 0},
  690. {"delta", json::object()},
  691. },
  692. })},
  693. {"created", t},
  694. {"id", oaicompat_cmpl_id},
  695. {"model", oaicompat_model},
  696. {"system_fingerprint", build_info},
  697. {"object", "chat.completion.chunk"},
  698. });
  699. if (include_usage) {
  700. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  701. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  702. deltas.push_back({
  703. {"choices", json::array()},
  704. {"created", t},
  705. {"id", oaicompat_cmpl_id},
  706. {"model", oaicompat_model},
  707. {"system_fingerprint", build_info},
  708. {"object", "chat.completion.chunk"},
  709. {"usage", json {
  710. {"completion_tokens", n_decoded},
  711. {"prompt_tokens", n_prompt_tokens},
  712. {"total_tokens", n_decoded + n_prompt_tokens},
  713. }},
  714. });
  715. }
  716. if (timings.prompt_n >= 0) {
  717. deltas.back().push_back({"timings", timings.to_json()});
  718. }
  719. // extra fields for debugging purposes
  720. if (verbose && !deltas.empty()) {
  721. deltas.front()["__verbose"] = to_json_non_oaicompat();
  722. }
  723. return deltas;
  724. }
  725. json server_task_result_cmpl_final::to_json_anthropic() {
  726. std::string stop_reason = "max_tokens";
  727. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  728. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  729. }
  730. json content_blocks = json::array();
  731. common_chat_msg msg;
  732. if (!oaicompat_msg.empty()) {
  733. msg = oaicompat_msg;
  734. } else {
  735. msg.role = "assistant";
  736. msg.content = content;
  737. }
  738. if (!msg.content.empty()) {
  739. content_blocks.push_back({
  740. {"type", "text"},
  741. {"text", msg.content}
  742. });
  743. }
  744. for (const auto & tool_call : msg.tool_calls) {
  745. json tool_use_block = {
  746. {"type", "tool_use"},
  747. {"id", tool_call.id},
  748. {"name", tool_call.name}
  749. };
  750. try {
  751. tool_use_block["input"] = json::parse(tool_call.arguments);
  752. } catch (const std::exception &) {
  753. tool_use_block["input"] = json::object();
  754. }
  755. content_blocks.push_back(tool_use_block);
  756. }
  757. json res = {
  758. {"id", oaicompat_cmpl_id},
  759. {"type", "message"},
  760. {"role", "assistant"},
  761. {"content", content_blocks},
  762. {"model", oaicompat_model},
  763. {"stop_reason", stop_reason},
  764. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
  765. {"usage", {
  766. {"input_tokens", n_prompt_tokens},
  767. {"output_tokens", n_decoded}
  768. }}
  769. };
  770. return res;
  771. }
  772. json server_task_result_cmpl_final::to_json_anthropic_stream() {
  773. json events = json::array();
  774. std::string stop_reason = "max_tokens";
  775. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  776. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  777. }
  778. bool has_text = !oaicompat_msg.content.empty();
  779. size_t num_tool_calls = oaicompat_msg.tool_calls.size();
  780. bool text_block_started = false;
  781. std::unordered_set<size_t> tool_calls_started;
  782. for (const auto & diff : oaicompat_msg_diffs) {
  783. if (!diff.content_delta.empty()) {
  784. if (!text_block_started) {
  785. events.push_back({
  786. {"event", "content_block_start"},
  787. {"data", {
  788. {"type", "content_block_start"},
  789. {"index", 0},
  790. {"content_block", {
  791. {"type", "text"},
  792. {"text", ""}
  793. }}
  794. }}
  795. });
  796. text_block_started = true;
  797. }
  798. events.push_back({
  799. {"event", "content_block_delta"},
  800. {"data", {
  801. {"type", "content_block_delta"},
  802. {"index", 0},
  803. {"delta", {
  804. {"type", "text_delta"},
  805. {"text", diff.content_delta}
  806. }}
  807. }}
  808. });
  809. }
  810. if (diff.tool_call_index != std::string::npos) {
  811. size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
  812. if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
  813. const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
  814. events.push_back({
  815. {"event", "content_block_start"},
  816. {"data", {
  817. {"type", "content_block_start"},
  818. {"index", content_block_index},
  819. {"content_block", {
  820. {"type", "tool_use"},
  821. {"id", full_tool_call.id},
  822. {"name", full_tool_call.name}
  823. }}
  824. }}
  825. });
  826. tool_calls_started.insert(diff.tool_call_index);
  827. }
  828. if (!diff.tool_call_delta.arguments.empty()) {
  829. events.push_back({
  830. {"event", "content_block_delta"},
  831. {"data", {
  832. {"type", "content_block_delta"},
  833. {"index", content_block_index},
  834. {"delta", {
  835. {"type", "input_json_delta"},
  836. {"partial_json", diff.tool_call_delta.arguments}
  837. }}
  838. }}
  839. });
  840. }
  841. }
  842. }
  843. if (has_text) {
  844. events.push_back({
  845. {"event", "content_block_stop"},
  846. {"data", {
  847. {"type", "content_block_stop"},
  848. {"index", 0}
  849. }}
  850. });
  851. }
  852. for (size_t i = 0; i < num_tool_calls; i++) {
  853. size_t content_block_index = (has_text ? 1 : 0) + i;
  854. events.push_back({
  855. {"event", "content_block_stop"},
  856. {"data", {
  857. {"type", "content_block_stop"},
  858. {"index", content_block_index}
  859. }}
  860. });
  861. }
  862. events.push_back({
  863. {"event", "message_delta"},
  864. {"data", {
  865. {"type", "message_delta"},
  866. {"delta", {
  867. {"stop_reason", stop_reason},
  868. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
  869. }},
  870. {"usage", {
  871. {"output_tokens", n_decoded}
  872. }}
  873. }}
  874. });
  875. events.push_back({
  876. {"event", "message_stop"},
  877. {"data", {
  878. {"type", "message_stop"}
  879. }}
  880. });
  881. return events;
  882. }
  883. //
  884. // server_task_result_cmpl_partial
  885. //
  886. json server_task_result_cmpl_partial::to_json() {
  887. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  888. switch (res_type) {
  889. case TASK_RESPONSE_TYPE_NONE:
  890. return to_json_non_oaicompat();
  891. case TASK_RESPONSE_TYPE_OAI_CMPL:
  892. return to_json_oaicompat();
  893. case TASK_RESPONSE_TYPE_OAI_CHAT:
  894. return to_json_oaicompat_chat();
  895. case TASK_RESPONSE_TYPE_ANTHROPIC:
  896. return to_json_anthropic();
  897. default:
  898. GGML_ASSERT(false && "Invalid task_response_type");
  899. }
  900. }
  901. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  902. // non-OAI-compat JSON
  903. json res = json {
  904. {"index", index},
  905. {"content", content},
  906. {"tokens", tokens},
  907. {"stop", false},
  908. {"id_slot", id_slot},
  909. {"tokens_predicted", n_decoded},
  910. {"tokens_evaluated", n_prompt_tokens},
  911. };
  912. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  913. if (timings.prompt_n > 0) {
  914. res.push_back({"timings", timings.to_json()});
  915. }
  916. if (is_progress) {
  917. res.push_back({"prompt_progress", progress.to_json()});
  918. }
  919. if (!prob_output.probs.empty()) {
  920. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  921. }
  922. return res;
  923. }
  924. json server_task_result_cmpl_partial::to_json_oaicompat() {
  925. std::time_t t = std::time(0);
  926. json logprobs = json(nullptr); // OAI default to null
  927. if (prob_output.probs.size() > 0) {
  928. logprobs = json{
  929. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  930. };
  931. }
  932. json res = json {
  933. {"choices", json::array({
  934. json{
  935. {"text", content},
  936. {"index", index},
  937. {"logprobs", logprobs},
  938. {"finish_reason", nullptr},
  939. }
  940. })},
  941. {"created", t},
  942. {"model", oaicompat_model},
  943. {"system_fingerprint", build_info},
  944. {"object", "text_completion"},
  945. {"id", oaicompat_cmpl_id}
  946. };
  947. // extra fields for debugging purposes
  948. if (verbose) {
  949. res["__verbose"] = to_json_non_oaicompat();
  950. }
  951. if (timings.prompt_n >= 0) {
  952. res.push_back({"timings", timings.to_json()});
  953. }
  954. if (is_progress) {
  955. res.push_back({"prompt_progress", progress.to_json()});
  956. }
  957. return res;
  958. }
  959. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  960. bool first = n_decoded == 1;
  961. std::time_t t = std::time(0);
  962. json choices;
  963. std::vector<json> deltas;
  964. auto add_delta = [&](const json & delta) {
  965. deltas.push_back({
  966. {"choices", json::array({
  967. json {
  968. {"finish_reason", nullptr},
  969. {"index", index},
  970. {"delta", delta},
  971. },
  972. })},
  973. {"created", t},
  974. {"id", oaicompat_cmpl_id},
  975. {"model", oaicompat_model},
  976. {"system_fingerprint", build_info},
  977. {"object", "chat.completion.chunk"},
  978. });
  979. };
  980. // We have to send an initial update to conform to openai behavior
  981. if (first || is_progress) {
  982. add_delta({
  983. {"role", "assistant"},
  984. {"content", nullptr},
  985. });
  986. }
  987. for (const auto & diff : oaicompat_msg_diffs) {
  988. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  989. }
  990. if (!deltas.empty()) {
  991. auto & last_json = deltas[deltas.size() - 1];
  992. GGML_ASSERT(last_json.at("choices").size() >= 1);
  993. if (prob_output.probs.size() > 0) {
  994. last_json.at("choices").at(0)["logprobs"] = json {
  995. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  996. };
  997. }
  998. if (timings.prompt_n >= 0) {
  999. last_json.push_back({"timings", timings.to_json()});
  1000. }
  1001. if (is_progress) {
  1002. last_json.push_back({"prompt_progress", progress.to_json()});
  1003. }
  1004. }
  1005. return deltas;
  1006. }
  1007. //
  1008. // server_task_result_embd
  1009. //
  1010. json server_task_result_embd::to_json() {
  1011. return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  1012. ? to_json_oaicompat()
  1013. : to_json_non_oaicompat();
  1014. }
  1015. json server_task_result_embd::to_json_non_oaicompat() {
  1016. return json {
  1017. {"index", index},
  1018. {"embedding", embedding},
  1019. };
  1020. }
  1021. json server_task_result_embd::to_json_oaicompat() {
  1022. return json {
  1023. {"index", index},
  1024. {"embedding", embedding[0]},
  1025. {"tokens_evaluated", n_tokens},
  1026. };
  1027. }
  1028. //
  1029. // server_task_result_rerank
  1030. //
  1031. json server_task_result_rerank::to_json() {
  1032. return json {
  1033. {"index", index},
  1034. {"score", score},
  1035. {"tokens_evaluated", n_tokens},
  1036. };
  1037. }
  1038. json server_task_result_cmpl_partial::to_json_anthropic() {
  1039. json events = json::array();
  1040. bool first = (n_decoded == 1);
  1041. static bool text_block_started = false;
  1042. if (first) {
  1043. text_block_started = false;
  1044. events.push_back({
  1045. {"event", "message_start"},
  1046. {"data", {
  1047. {"type", "message_start"},
  1048. {"message", {
  1049. {"id", oaicompat_cmpl_id},
  1050. {"type", "message"},
  1051. {"role", "assistant"},
  1052. {"content", json::array()},
  1053. {"model", oaicompat_model},
  1054. {"stop_reason", nullptr},
  1055. {"stop_sequence", nullptr},
  1056. {"usage", {
  1057. {"input_tokens", n_prompt_tokens},
  1058. {"output_tokens", 0}
  1059. }}
  1060. }}
  1061. }}
  1062. });
  1063. }
  1064. for (const auto & diff : oaicompat_msg_diffs) {
  1065. if (!diff.content_delta.empty()) {
  1066. if (!text_block_started) {
  1067. events.push_back({
  1068. {"event", "content_block_start"},
  1069. {"data", {
  1070. {"type", "content_block_start"},
  1071. {"index", 0},
  1072. {"content_block", {
  1073. {"type", "text"},
  1074. {"text", ""}
  1075. }}
  1076. }}
  1077. });
  1078. text_block_started = true;
  1079. }
  1080. events.push_back({
  1081. {"event", "content_block_delta"},
  1082. {"data", {
  1083. {"type", "content_block_delta"},
  1084. {"index", 0},
  1085. {"delta", {
  1086. {"type", "text_delta"},
  1087. {"text", diff.content_delta}
  1088. }}
  1089. }}
  1090. });
  1091. }
  1092. if (diff.tool_call_index != std::string::npos) {
  1093. size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
  1094. if (!diff.tool_call_delta.name.empty()) {
  1095. events.push_back({
  1096. {"event", "content_block_start"},
  1097. {"data", {
  1098. {"type", "content_block_start"},
  1099. {"index", content_block_index},
  1100. {"content_block", {
  1101. {"type", "tool_use"},
  1102. {"id", diff.tool_call_delta.id},
  1103. {"name", diff.tool_call_delta.name}
  1104. }}
  1105. }}
  1106. });
  1107. }
  1108. if (!diff.tool_call_delta.arguments.empty()) {
  1109. events.push_back({
  1110. {"event", "content_block_delta"},
  1111. {"data", {
  1112. {"type", "content_block_delta"},
  1113. {"index", content_block_index},
  1114. {"delta", {
  1115. {"type", "input_json_delta"},
  1116. {"partial_json", diff.tool_call_delta.arguments}
  1117. }}
  1118. }}
  1119. });
  1120. }
  1121. }
  1122. }
  1123. return events;
  1124. }
  1125. //
  1126. // server_task_result_error
  1127. //
  1128. json server_task_result_error::to_json() {
  1129. json res = format_error_response(err_msg, err_type);
  1130. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1131. res["n_prompt_tokens"] = n_prompt_tokens;
  1132. res["n_ctx"] = n_ctx;
  1133. }
  1134. return res;
  1135. }
  1136. //
  1137. // server_task_result_metrics
  1138. //
  1139. json server_task_result_metrics::to_json() {
  1140. return json {
  1141. { "idle", n_idle_slots },
  1142. { "processing", n_processing_slots },
  1143. { "deferred", n_tasks_deferred },
  1144. { "t_start", t_start },
  1145. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1146. { "t_tokens_generation_total", t_tokens_generation_total },
  1147. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1148. { "t_prompt_processing_total", t_prompt_processing_total },
  1149. { "n_tokens_max", n_tokens_max },
  1150. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1151. { "t_prompt_processing", t_prompt_processing },
  1152. { "n_tokens_predicted", n_tokens_predicted },
  1153. { "t_tokens_generation", t_tokens_generation },
  1154. { "n_decode_total", n_decode_total },
  1155. { "n_busy_slots_total", n_busy_slots_total },
  1156. { "slots", slots_data },
  1157. };
  1158. }
  1159. //
  1160. // server_task_result_slot_save_load
  1161. //
  1162. json server_task_result_slot_save_load::to_json() {
  1163. if (is_save) {
  1164. return json {
  1165. { "id_slot", id_slot },
  1166. { "filename", filename },
  1167. { "n_saved", n_tokens },
  1168. { "n_written", n_bytes },
  1169. { "timings", {
  1170. { "save_ms", t_ms }
  1171. }},
  1172. };
  1173. }
  1174. return json {
  1175. { "id_slot", id_slot },
  1176. { "filename", filename },
  1177. { "n_restored", n_tokens },
  1178. { "n_read", n_bytes },
  1179. { "timings", {
  1180. { "restore_ms", t_ms }
  1181. }},
  1182. };
  1183. }
  1184. //
  1185. // server_task_result_slot_erase
  1186. //
  1187. json server_task_result_slot_erase::to_json() {
  1188. return json {
  1189. { "id_slot", id_slot },
  1190. { "n_erased", n_erased },
  1191. };
  1192. }
  1193. //
  1194. // server_task_result_apply_lora
  1195. //
  1196. json server_task_result_apply_lora::to_json() {
  1197. return json {{ "success", true }};
  1198. }
  1199. //
  1200. // server_prompt_cache
  1201. //
  1202. size_t server_prompt_cache::size() const {
  1203. size_t res = 0;
  1204. for (const auto & state : states) {
  1205. res += state.size();
  1206. }
  1207. return res;
  1208. }
  1209. size_t server_prompt_cache::n_tokens() const {
  1210. size_t res = 0;
  1211. for (const auto & state : states) {
  1212. res += state.n_tokens();
  1213. }
  1214. return res;
  1215. }
  1216. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  1217. // first check if the current state is contained fully in the cache
  1218. for (auto it = states.begin(); it != states.end(); ++it) {
  1219. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1220. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1221. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1222. return nullptr;
  1223. }
  1224. }
  1225. // next, remove any cached prompts that are fully contained in the current prompt
  1226. for (auto it = states.begin(); it != states.end();) {
  1227. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1228. if (len == (int) it->tokens.size()) {
  1229. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1230. it = states.erase(it);
  1231. } else {
  1232. ++it;
  1233. }
  1234. }
  1235. std::vector<uint8_t> state_data;
  1236. // check if we can allocate enough memory for the new state
  1237. try {
  1238. state_data.resize(state_size);
  1239. } catch (const std::bad_alloc & e) {
  1240. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1241. limit_size = std::max<size_t>(1, 0.4*size());
  1242. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1243. update();
  1244. return nullptr;
  1245. }
  1246. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1247. auto & cur = states.emplace_back();
  1248. cur = {
  1249. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1250. /*.data =*/ std::move(state_data),
  1251. /*.checkpoints =*/ prompt.checkpoints,
  1252. };
  1253. return &cur;
  1254. }
  1255. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1256. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1257. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1258. float sim_best = float(lcp_best) / tokens_new.size();
  1259. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1260. auto it_best = states.end();
  1261. // find the most similar cached prompt, that would also preserve the most context
  1262. for (auto it = states.begin(); it != states.end(); ++it) {
  1263. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1264. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1265. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1266. // don't trash large prompts
  1267. if (f_keep_cur < 0.25f) {
  1268. continue;
  1269. }
  1270. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1271. f_keep_best = f_keep_cur;
  1272. sim_best = sim_cur;
  1273. it_best = it;
  1274. }
  1275. }
  1276. if (it_best != states.end()) {
  1277. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1278. const size_t size = it_best->data.size();
  1279. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1280. if (n != size) {
  1281. SRV_WRN("failed to restore state with size %zu\n", size);
  1282. return false;
  1283. }
  1284. it_best->data.clear();
  1285. it_best->data.shrink_to_fit();
  1286. prompt = std::move(*it_best);
  1287. states.erase(it_best);
  1288. }
  1289. return true;
  1290. }
  1291. void server_prompt_cache::update() {
  1292. if (limit_size > 0) {
  1293. // always keep at least one state, regardless of the limits
  1294. while (states.size() > 1 && size() > limit_size) {
  1295. if (states.empty()) {
  1296. break;
  1297. }
  1298. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1299. states.pop_front();
  1300. }
  1301. }
  1302. // average size per token
  1303. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1304. // dynamically increase the token limit if it can fit in the memory limit
  1305. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1306. if (limit_tokens > 0) {
  1307. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1308. if (states.empty()) {
  1309. break;
  1310. }
  1311. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1312. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1313. states.pop_front();
  1314. }
  1315. }
  1316. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1317. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1318. for (const auto & state : states) {
  1319. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1320. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1321. }
  1322. }