| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- #include "build-info.h"
- #include "llama.h"
- #include <cstdio>
- #include <cstring>
- #include <vector>
- #include <string>
- struct quant_option {
- std::string name;
- llama_ftype ftype;
- std::string desc;
- };
- static const std::vector<struct quant_option> QUANT_OPTIONS = {
- {
- "Q4_0",
- LLAMA_FTYPE_MOSTLY_Q4_0,
- " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
- },
- {
- "Q4_1",
- LLAMA_FTYPE_MOSTLY_Q4_1,
- " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
- },
- {
- "Q5_0",
- LLAMA_FTYPE_MOSTLY_Q5_0,
- " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
- },
- {
- "Q5_1",
- LLAMA_FTYPE_MOSTLY_Q5_1,
- " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
- },
- #ifdef GGML_USE_K_QUANTS
- {
- "Q2_K",
- LLAMA_FTYPE_MOSTLY_Q2_K,
- " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
- },
- {
- "Q3_K",
- LLAMA_FTYPE_MOSTLY_Q3_K_M,
- "alias for Q3_K_M"
- },
- {
- "Q3_K_S",
- LLAMA_FTYPE_MOSTLY_Q3_K_S,
- " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
- },
- {
- "Q3_K_M",
- LLAMA_FTYPE_MOSTLY_Q3_K_M,
- " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
- },
- {
- "Q3_K_L",
- LLAMA_FTYPE_MOSTLY_Q3_K_L,
- " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
- },
- {
- "Q4_K",
- LLAMA_FTYPE_MOSTLY_Q4_K_M,
- "alias for Q4_K_M",
- },
- {
- "Q4_K_S",
- LLAMA_FTYPE_MOSTLY_Q4_K_S,
- " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
- },
- {
- "Q4_K_M",
- LLAMA_FTYPE_MOSTLY_Q4_K_M,
- " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
- },
- {
- "Q5_K",
- LLAMA_FTYPE_MOSTLY_Q5_K_M,
- "alias for Q5_K_M",
- },
- {
- "Q5_K_S",
- LLAMA_FTYPE_MOSTLY_Q5_K_S,
- " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
- },
- {
- "Q5_K_M",
- LLAMA_FTYPE_MOSTLY_Q5_K_M,
- " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
- },
- {
- "Q6_K",
- LLAMA_FTYPE_MOSTLY_Q6_K,
- " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
- },
- #endif
- {
- "Q8_0",
- LLAMA_FTYPE_MOSTLY_Q8_0,
- " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
- },
- {
- "F16",
- LLAMA_FTYPE_MOSTLY_F16,
- "13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
- },
- {
- "F32",
- LLAMA_FTYPE_ALL_F32,
- "26.00G @ 7B - absolutely huge, lossless - not recommended",
- },
- };
- bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
- std::string ftype_str;
- for (auto ch : ftype_str_in) {
- ftype_str.push_back(std::toupper(ch));
- }
- for (auto & it : QUANT_OPTIONS) {
- if (it.name == ftype_str) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- try {
- int ftype_int = std::stoi(ftype_str);
- for (auto & it : QUANT_OPTIONS) {
- if (it.ftype == ftype_int) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- }
- catch (...) {
- // stoi failed
- }
- return false;
- }
- // usage:
- // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
- //
- void usage(const char * executable) {
- fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
- fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
- fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
- fprintf(stderr, "\nAllowed quantization types:\n");
- for (auto & it : QUANT_OPTIONS) {
- printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
- }
- exit(1);
- }
- int main(int argc, char ** argv) {
- if (argc < 3) {
- usage(argv[0]);
- }
- llama_model_quantize_params params = llama_model_quantize_default_params();
- int arg_idx = 1;
- for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
- if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
- params.quantize_output_tensor = false;
- } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
- params.allow_requantize = true;
- } else {
- usage(argv[0]);
- }
- }
- if (argc - arg_idx < 3) {
- usage(argv[0]);
- }
- llama_init_backend();
- // parse command line arguments
- const std::string fname_inp = argv[arg_idx];
- arg_idx++;
- std::string fname_out;
- std::string ftype_str;
- if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- std::string fpath;
- const size_t pos = fname_inp.find_last_of('/');
- if (pos != std::string::npos) {
- fpath = fname_inp.substr(0, pos + 1);
- }
- // export as [inp path]/ggml-model-[ftype].bin
- fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
- arg_idx++;
- }
- else {
- fname_out = argv[arg_idx];
- arg_idx++;
- if (argc <= arg_idx) {
- fprintf(stderr, "%s: missing ftype\n", __func__);
- return 1;
- }
- if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
- return 1;
- }
- arg_idx++;
- }
- // parse nthreads
- if (argc > arg_idx) {
- try {
- params.nthread = std::stoi(argv[arg_idx]);
- }
- catch (const std::exception & e) {
- fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
- return 1;
- }
- }
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
- if (params.nthread > 0) {
- fprintf(stderr, " using %d threads", params.nthread);
- }
- fprintf(stderr, "\n");
- const int64_t t_main_start_us = llama_time_us();
- int64_t t_quantize_us = 0;
- // load the model
- {
- const int64_t t_start_us = llama_time_us();
- if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
- fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
- return 1;
- }
- t_quantize_us = llama_time_us() - t_start_us;
- }
- // report timing
- {
- const int64_t t_main_end_us = llama_time_us();
- printf("\n");
- printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
- }
- return 0;
- }
|