| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902 |
- #include <cstddef>
- #include <cstdint>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <assert.h>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #if CUDART_VERSION >= 12
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
- err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
- exit(1); \
- } \
- } while (0)
- #else
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #endif // CUDART_VERSION >= 11
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
- typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
- typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
- float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- #define QK4_0 32
- #define QR4_0 2
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- //================================= k-quants
- #define QK_K 256
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- typedef struct {
- uint8_t hmask[QK_K/8];
- uint8_t qs[QK_K/4]; // nibbles / quants
- uint8_t scales[3*QK_K/64];
- half d;
- } block_q3_K;
- static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define WARP_SIZE 32
- #define CUDA_ADD_BLOCK_SIZE 256
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_DMMV_Y
- #define GGML_CUDA_DMMV_Y 1
- #endif
- static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] + y[i];
- }
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const float eps = 1e-6;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += WARP_SIZE) {
- const int col = i + tid;
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- const float mean = tmp / ncols;
- const float scale = 1.0f / sqrtf(mean + eps);
- for (int i = 0; i < ncols; i += WARP_SIZE) {
- const int col = i + tid;
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const float d = x[ib].d;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = (vi0 - 8)*d;
- v1 = (vi1 - 8)*d;
- }
- static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = vi0*d + m;
- v1 = vi1*d + m;
- }
- static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const float d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
- v0 = x0*d;
- v1 = x1*d;
- }
- static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
- v0 = x0*d + m;
- v1 = x1*d + m;
- }
- static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const float d = x[ib].d;
- const int8_t vi0 = x[ib].qs[iqs + 0];
- const int8_t vi1 = x[ib].qs[iqs + 1];
- v0 = vi0*d;
- v1 = vi1*d;
- }
- //================================== k-quants
- static __global__ void dequantize_block_q2_K(const void * vx, float * yy) {
- const int i = blockIdx.x;
- const int tid = threadIdx.x;
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const block_q2_K * x = (const block_q2_K *) vx;
- const uint8_t q = x[i].qs[32*n + l];
- float * y = yy + i*QK_K + 128*n;
- float dall = x[i].d;
- float dmin = x[i].dmin;
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- }
- static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q2_K * x = (const block_q2_K *) vx;
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * s = x[ib].scales + 8*n;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
- + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
- + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
- + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
- + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
- + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
- + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
- + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
- result = sum;
- }
- static __global__ void dequantize_block_q3_K(const void * vx, float * yy) {
- int r = threadIdx.x/4;
- int i = blockIdx.x;
- int tid = r/2;
- int is0 = r%2;
- int l0 = 16*is0 + 4*(threadIdx.x%4);
- int n = tid / 4;
- int j = tid - 4*n;
- const block_q3_K * x = (const block_q3_K *) vx;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- float * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- }
- static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q3_K * x = (const block_q3_K *) vx;
- const uint32_t kmask1 = 0x03030303;
- const uint32_t kmask2 = 0x0f0f0f0f;
- uint32_t aux[3];
- uint32_t utmp[4];
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * hm = x[ib].hmask + l;
- const int8_t * s = (const int8_t *)utmp + 8*n;
- memcpy(aux, x[ib].scales, 12);
- utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
- utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
- utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
- utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
- const float dall = x[ib].d;
- const uint8_t m = 1 << (4*n);
- float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
- + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
- + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
- + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
- + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
- + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
- + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
- + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
- result = sum * dall;
- }
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- static __global__ void dequantize_block_q4_K(const void * vx, float * yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- //// assume 64 threads - this is very slightly better than the one below
- //const int tid = threadIdx.x;
- //const int il = tid/16;
- //const int ir = tid%16;
- //const int is = 2*il;
- //const int n = 2;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- }
- static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q4_K * x = (const block_q4_K *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * q = x[ib].qs + 32*j + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
- sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q5_K(const void * vx, float * yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- }
- static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q5_K * x = (const block_q5_K *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * ql = x[ib].qs + 32*j + ir;
- const uint8_t * qh = x[ib].qh + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- uint8_t hm = 1 << is;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
- }
- hm <<= 1;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q6_K(const void * vx, float * yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- float * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- }
- static __device__ void vec_dot_q6_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int ip = iqs / 128; // 0 or 1
- const int il = (iqs - 128*ip)/8; // 0...15
- const int is = 8*ip;
- const float * y = yy + 128*ip + il;
- const float d = x[ib].d;
- const uint8_t * ql = x[ib].ql + 64*ip + il;
- const uint8_t * qh = x[ib].qh + 32*ip + il;
- const int8_t * sc = x[ib].scales + is;
- result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
- + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
- + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
- + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
- + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
- + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
- + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
- + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const half * x = (const half *) vx;
- v0 = __half2float(x[ib + iqs + 0]);
- v1 = __half2float(x[ib + iqs + 1]);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * vx, float * y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- float & v0 = y[iybs + iqs + 0];
- float & v1 = y[iybs + iqs + y_offset];
- dequantize_kernel(vx, ib, iqs, v0, v1);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- float v0, v1;
- dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- // matrix multiplication
- tmp += v0 * y[iybs + iqs + j/qr + 0];
- tmp += v1 * y[iybs + iqs + j/qr + y_offset];
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- }
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- template <int n_thread, dot_kernel_k_t dot_kernel>
- static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const int iter_stride = QK_K;
- const int vals_per_iter = iter_stride / n_thread;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- float tmp = 0; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = ib0 + col/QK_K; // x block index
- const int iqs = col%QK_K; // x quant index
- const int iybs = col - col%QK_K; // y block start index
- float v;
- dot_kernel(vx, ib, iqs, y + iybs, v);
- tmp += v;
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
- const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float theta = p*powf(theta_scale, col/2);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 2 == 0);
- const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
- static size_t g_scratch_offset = 0;
- #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
- #define GGML_CUDA_MAX_EVENTS 64
- static int g_device_count = -1;
- static int g_main_device = 0;
- static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr };
- void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s\n", id, prop.name);
- g_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- // create streams
- for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking));
- }
- // create events
- for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- }
- }
- void ggml_cuda_set_tensor_split(const float * tensor_split) {
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // The allocation error can be bypassed. A null ptr will assigned out of this function.
- // This can fixed the OOM error in WSL.
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_h2d_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- char * dst_char = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const void * x = (const void *) ((const char *) src->data + i1_low*nb1 + i2*nb2 + i3*nb3);
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_char, x, i1_diff*nb1, cudaMemcpyHostToDevice, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_char, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyHostToDevice, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_char + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- inline void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne0 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
- const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
- float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
- float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
- float * dst_ddf_i01 = dst_ddf_i + i01*ne00;
- // compute
- mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- }
- inline void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_dequantize_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = i01_high - i01_low;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne0 = dst->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- i01_diff, ne11, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf_i, ne10,
- &beta, dst_ddf_i, ldc));
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- GGML_ASSERT(mode == 0);
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
- // compute
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i1;
- }
- static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- ggml_cuda_op_t op, bool src0_needs_f32) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
- const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
- const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
- const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
- // strides for iteration over dims 3 and 2
- const int64_t src0_stride = ne00 * ne01;
- const int64_t src1_stride = ne10 * ne11;
- const int64_t dst_stride = ne0 * ne1;
- const int64_t num_iters = ne02 * ne03;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- // dd = data device
- char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
- float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
- float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- // asq = actual size quantized, asf = actual size float
- size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
- for (int id = 0; id < g_device_count; ++id) {
- if (!split && id != g_main_device) {
- continue;
- }
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- int64_t row_low, row_high;
- if (split) {
- row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
- row_low -= row_low % GGML_CUDA_DMMV_Y;
- row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
- row_high -= row_high % GGML_CUDA_DMMV_Y;
- } else {
- row_low = 0;
- row_high = nrows0;
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t row_diff = row_high - row_low;
- cudaSetDevice(id);
- if (src0_on_device) {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) src0_extra->data_device[id];
- } else {
- src0_ddq[id] = (char *) src0_extra->data_device[id];
- }
- } else {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- } else {
- src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
- }
- }
- if (src0_needs_f32 && !src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- }
- if (use_src1) {
- if (src1_on_device) {
- src1_ddf[id] = (float *) src1_extra->data_device[id];
- } else {
- src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
- }
- }
- if (dst_on_device) {
- dst_ddf[id] = (float *) dst_extra->data_device[id];
- } else {
- size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
- dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
- }
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- const int64_t i13 = i03 % ne13;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const int64_t i12 = i02 % ne12;
- const int64_t i0 = i03*ne02 + i02;
- const int64_t i0_offset_low = row_low/ne01;
- const int64_t i0_offset_high = row_high/ne01;
- int64_t i01_low = 0;
- int64_t i01_high = ne01;
- if (split) {
- if (i0 < i0_offset_low || i0 > i0_offset_high) {
- continue;
- }
- if (i0 == i0_offset_low) {
- i01_low = row_low % ne01;
- }
- if (i0 == i0_offset_high) {
- i01_high = row_high % ne01;
- }
- }
- // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
- // Removing the first assert or changing the order of the arguments causes the second assert to fail.
- // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
- // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
- GGML_ASSERT(i01_low == 0 || g_device_count > 1);
- GGML_ASSERT(i01_high == ne01 || g_device_count > 1);
- const int64_t i01_diff = i01_high - i01_low;
- if (i01_diff == 0) {
- continue;
- }
- const int64_t i11 = i13*ne12 + i12;
- cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS];
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
- float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
- float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
- // for split tensors the data pointer needs to be rounded down
- // to the bin edge for i03, i02 bins beyond the first
- if (i0 - i0_offset_low > 0) {
- src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
- src0_ddf_i -= (row_low % ne01)*ne00;
- }
- if (i0 - i0_offset_low > 0) {
- dst_ddf_i -= (row_low % ne0)*ne1;
- }
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
- dst_ddf_i += i01_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (use_src1) {
- if (src1->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_memcpy_src1));
- } else if (src1->backend == GGML_BACKEND_GPU) {
- if (id != g_main_device) {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += i11*src1_stride;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
- cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1));
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1));
- if (!src0_on_device) {
- if (src0_is_f32) {
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- } else {
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- }
- }
- // convert src0 to f32 if it's necessary for the ggml_cuda_op
- if (src0_needs_f32 && !src0_is_f32) {
- to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- // wait with main stream until src1 memcpy is done
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0));
- // do the computation
- op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- for (int64_t j = 0; j < ne1; ++j) {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
- }
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
- }
- }
- }
- }
- }
- // wait until each device is finished, then free their buffers
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaDeviceSynchronize());
- if (src0_asq[id] > 0) {
- ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
- }
- if (src0_asf[id] > 0) {
- ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
- }
- if (src1_asf[id] > 0) {
- ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
- }
- if (dst_asf[id] > 0) {
- ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
- }
- }
- }
- void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true);
- }
- void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true);
- }
- void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true);
- }
- void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // if (strcmp(dst->name, "KQ") == 0 || strcmp(dst->name, "KQV") == 0) {
- // fprintf(stderr, "(%ld, %ld, %ld, %ld) + (%ld, %ld, %ld, %ld) -> (%ld, %ld, %ld, %ld)\n",
- // src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- // src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
- // dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3]);
- // return false;
- // }
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- return true;
- }
- return false;
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- if (src1->ne[1] == 1) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
- } else {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true);
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true);
- }
- void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- int nrows = ggml_nrows(tensor);
- const size_t nb1 = tensor->nb[1];
- ggml_backend backend = tensor->backend;
- struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- for (int id = 0; id < g_device_count; ++id) {
- extra->data_device[id] = nullptr;
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
- cudaSetDevice(id);
- int row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_low -= row_low % GGML_CUDA_DMMV_Y;
- row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
- row_high -= row_high % GGML_CUDA_DMMV_Y;
- GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t nrows_split = row_high - row_low;
- const size_t offset_split = row_low*nb1;
- const size_t size = ggml_nbytes_split(tensor, nrows_split);
- void * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- void * buf_host = (char*)data + offset_split;
- cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
- extra->data_device[id] = buf;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- if (extra->data_device[id] == nullptr) {
- continue;
- }
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- delete extra;
- }
- void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- if (tensor->src0 != nullptr && tensor->src0->op == GGML_OP_RESHAPE) {
- ggml_cuda_assign_buffers(tensor);
- }
- const size_t size = ggml_nbytes(tensor);
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- tensor->backend = GGML_BACKEND_GPU;
- struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
- bool inplace = tensor->src0 != nullptr && tensor->src0->data == tensor->data;
- CUDA_CHECK(cudaSetDevice(g_main_device));
- if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) {
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra;
- extra->data_device[g_main_device] = src0_extra->data_device;
- GGML_ASSERT(false);
- } else {
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra->data_device[g_main_device] = data + g_scratch_offset;
- }
- // fprintf(stderr, "data=%p offset=%ld data_device=%p\n", data, g_scratch_offset, extra->data_device[0]);
- g_scratch_offset += size;
- // fprintf(stderr, "%s: scratch %d, %p - %p\n",
- // tensor->name, g_scratch_index, data + g_scratch_offset, data + g_scratch_offset + size);
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- tensor->extra = extra;
- }
- void ggml_cuda_set_main_device(int main_device) {
- if (main_device > g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- g_main_device = main_device;
- if (g_device_count > 1) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- void ggml_cuda_set_scratch_size(size_t scratch_size) {
- g_scratch_size = scratch_size;
- }
- bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
- || tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT
- || (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU);
- switch (tensor->op) {
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_mul;
- break;
- case GGML_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_silu;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src0, tensor->src1, tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_RESHAPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_nop;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rope;
- break;
- default:
- return false;
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return true;
- }
- func(tensor->src0, tensor->src1, tensor);
- return true;
- }
|