ggml-metal.m 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #import <MetalPerformanceShaders/MetalPerformanceShaders.h>
  6. #ifdef GGML_METAL_NDEBUG
  7. #define metal_printf(...)
  8. #else
  9. #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
  10. #endif
  11. #define UNUSED(x) (void)(x)
  12. struct ggml_metal_buffer {
  13. const char * name;
  14. void * data;
  15. size_t size;
  16. id<MTLBuffer> metal;
  17. };
  18. struct ggml_metal_context {
  19. float * logits;
  20. id<MTLDevice> device;
  21. id<MTLCommandQueue> queue;
  22. id<MTLLibrary> library;
  23. int n_buffers;
  24. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  25. // custom kernels
  26. #define GGML_METAL_DECL_KERNEL(name) \
  27. id<MTLFunction> function_##name; \
  28. id<MTLComputePipelineState> pipeline_##name
  29. GGML_METAL_DECL_KERNEL(add);
  30. GGML_METAL_DECL_KERNEL(mul);
  31. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  32. GGML_METAL_DECL_KERNEL(scale);
  33. GGML_METAL_DECL_KERNEL(silu);
  34. GGML_METAL_DECL_KERNEL(relu);
  35. GGML_METAL_DECL_KERNEL(gelu);
  36. GGML_METAL_DECL_KERNEL(soft_max);
  37. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  38. GGML_METAL_DECL_KERNEL(get_rows_f16);
  39. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  40. GGML_METAL_DECL_KERNEL(get_rows_q4_1);
  41. GGML_METAL_DECL_KERNEL(get_rows_q2_k);
  42. GGML_METAL_DECL_KERNEL(get_rows_q3_k);
  43. GGML_METAL_DECL_KERNEL(get_rows_q4_k);
  44. GGML_METAL_DECL_KERNEL(get_rows_q5_k);
  45. GGML_METAL_DECL_KERNEL(get_rows_q6_k);
  46. GGML_METAL_DECL_KERNEL(rms_norm);
  47. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  48. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  49. GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
  50. GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
  51. GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32);
  52. GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
  53. GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
  54. GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
  55. GGML_METAL_DECL_KERNEL(rope);
  56. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  57. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  58. #undef GGML_METAL_DECL_KERNEL
  59. };
  60. // MSL code
  61. // TODO: move the contents here when ready
  62. // for now it is easier to work in a separate file
  63. static NSString * const msl_library_source = @"see metal.metal";
  64. // Here to assist with NSBundle Path Hack
  65. @interface GGMLMetalClass : NSObject
  66. @end
  67. @implementation GGMLMetalClass
  68. @end
  69. struct ggml_metal_context * ggml_metal_init(void) {
  70. fprintf(stderr, "%s: allocating\n", __func__);
  71. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  72. ctx->device = MTLCreateSystemDefaultDevice();
  73. ctx->queue = [ctx->device newCommandQueue];
  74. ctx->n_buffers = 0;
  75. // determine if we can use MPS
  76. if (MPSSupportsMTLDevice(ctx->device)) {
  77. fprintf(stderr, "%s: using MPS\n", __func__);
  78. } else {
  79. fprintf(stderr, "%s: not using MPS\n", __func__);
  80. GGML_ASSERT(false && "MPS not supported");
  81. }
  82. #if 0
  83. // compile from source string and show compile log
  84. {
  85. NSError * error = nil;
  86. ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
  87. if (error) {
  88. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  89. exit(1);
  90. }
  91. }
  92. #else
  93. UNUSED(msl_library_source);
  94. // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
  95. {
  96. NSError * error = nil;
  97. //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
  98. NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
  99. NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
  100. fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
  101. NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
  102. if (error) {
  103. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  104. exit(1);
  105. }
  106. ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
  107. if (error) {
  108. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  109. exit(1);
  110. }
  111. }
  112. #endif
  113. // load kernels
  114. {
  115. #define GGML_METAL_ADD_KERNEL(name) \
  116. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  117. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
  118. fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
  119. GGML_METAL_ADD_KERNEL(add);
  120. GGML_METAL_ADD_KERNEL(mul);
  121. GGML_METAL_ADD_KERNEL(mul_row);
  122. GGML_METAL_ADD_KERNEL(scale);
  123. GGML_METAL_ADD_KERNEL(silu);
  124. GGML_METAL_ADD_KERNEL(relu);
  125. GGML_METAL_ADD_KERNEL(gelu);
  126. GGML_METAL_ADD_KERNEL(soft_max);
  127. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  128. GGML_METAL_ADD_KERNEL(get_rows_f16);
  129. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  130. GGML_METAL_ADD_KERNEL(get_rows_q4_1);
  131. GGML_METAL_ADD_KERNEL(get_rows_q2_k);
  132. GGML_METAL_ADD_KERNEL(get_rows_q3_k);
  133. GGML_METAL_ADD_KERNEL(get_rows_q4_k);
  134. GGML_METAL_ADD_KERNEL(get_rows_q5_k);
  135. GGML_METAL_ADD_KERNEL(get_rows_q6_k);
  136. GGML_METAL_ADD_KERNEL(rms_norm);
  137. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  138. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  139. GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
  140. GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
  141. GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32);
  142. GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
  143. GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
  144. GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
  145. GGML_METAL_ADD_KERNEL(rope);
  146. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  147. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  148. #undef GGML_METAL_ADD_KERNEL
  149. }
  150. return ctx;
  151. }
  152. void ggml_metal_free(struct ggml_metal_context * ctx) {
  153. fprintf(stderr, "%s: deallocating\n", __func__);
  154. free(ctx);
  155. }
  156. // finds the Metal buffer that contains the tensor data on the GPU device
  157. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  158. // Metal buffer based on the host memory pointer
  159. //
  160. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  161. //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  162. for (int i = 0; i < ctx->n_buffers; ++i) {
  163. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  164. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  165. *offs = (size_t) ioffs;
  166. //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  167. return ctx->buffers[i].metal;
  168. }
  169. }
  170. fprintf(stderr, "%s: error: buffer is nil\n", __func__);
  171. return nil;
  172. }
  173. bool ggml_metal_add_buffer(
  174. struct ggml_metal_context * ctx,
  175. const char * name,
  176. void * data,
  177. size_t size) {
  178. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  179. fprintf(stderr, "%s: too many buffers\n", __func__);
  180. return false;
  181. }
  182. if (data) {
  183. // verify that the buffer does not overlap with any of the existing buffers
  184. for (int i = 0; i < ctx->n_buffers; ++i) {
  185. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  186. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  187. fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  188. return false;
  189. }
  190. }
  191. size_t page_size = getpagesize();
  192. size_t aligned_size = size;
  193. if ((aligned_size % page_size) != 0) {
  194. aligned_size += (page_size - (aligned_size % page_size));
  195. }
  196. ctx->buffers[ctx->n_buffers].name = name;
  197. ctx->buffers[ctx->n_buffers].data = data;
  198. ctx->buffers[ctx->n_buffers].size = size;
  199. if (ctx->device.maxBufferLength < aligned_size) {
  200. fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
  201. return false;
  202. }
  203. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
  204. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  205. fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  206. return false;
  207. } else {
  208. fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  209. }
  210. ++ctx->n_buffers;
  211. }
  212. return true;
  213. }
  214. void ggml_metal_set_tensor(
  215. struct ggml_metal_context * ctx,
  216. struct ggml_tensor * t) {
  217. metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
  218. size_t offs;
  219. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  220. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  221. }
  222. void ggml_metal_get_tensor(
  223. struct ggml_metal_context * ctx,
  224. struct ggml_tensor * t) {
  225. metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
  226. size_t offs;
  227. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  228. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  229. }
  230. void ggml_metal_graph_compute(
  231. struct ggml_metal_context * ctx,
  232. struct ggml_cgraph * gf) {
  233. metal_printf("%s: evaluating graph\n", __func__);
  234. size_t offs_src0 = 0;
  235. size_t offs_src1 = 0;
  236. size_t offs_dst = 0;
  237. id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
  238. id<MTLComputeCommandEncoder> encoder = nil;
  239. for (int i = 0; i < gf->n_nodes; ++i) {
  240. //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  241. struct ggml_tensor * src0 = gf->nodes[i]->src0;
  242. struct ggml_tensor * src1 = gf->nodes[i]->src1;
  243. struct ggml_tensor * dst = gf->nodes[i];
  244. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  245. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  246. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  247. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  248. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  249. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  250. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  251. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  252. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  253. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  254. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  255. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  256. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  257. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  258. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  259. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  260. const int64_t ne0 = dst ? dst->ne[0] : 0;
  261. const int64_t ne1 = dst ? dst->ne[1] : 0;
  262. const int64_t ne2 = dst ? dst->ne[2] : 0;
  263. const int64_t ne3 = dst ? dst->ne[3] : 0;
  264. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  265. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  266. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  267. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  268. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  269. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  270. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  271. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  272. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  273. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  274. //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  275. //if (src0) {
  276. // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  277. // ggml_is_contiguous(src0), src0->name);
  278. //}
  279. //if (src1) {
  280. // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  281. // ggml_is_contiguous(src1), src1->name);
  282. //}
  283. //if (dst) {
  284. // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  285. // dst->name);
  286. //}
  287. switch (dst->op) {
  288. case GGML_OP_RESHAPE:
  289. case GGML_OP_VIEW:
  290. case GGML_OP_TRANSPOSE:
  291. case GGML_OP_PERMUTE:
  292. {
  293. // noop
  294. } break;
  295. case GGML_OP_ADD:
  296. {
  297. if (encoder == nil) {
  298. encoder = [command_buffer computeCommandEncoder];
  299. }
  300. [encoder setComputePipelineState:ctx->pipeline_add];
  301. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  302. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  303. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  304. const int64_t n = ggml_nelements(dst);
  305. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  306. } break;
  307. case GGML_OP_MUL:
  308. {
  309. if (encoder == nil) {
  310. encoder = [command_buffer computeCommandEncoder];
  311. }
  312. if (ggml_nelements(src1) == ne10) {
  313. // src1 is a row
  314. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  315. } else {
  316. [encoder setComputePipelineState:ctx->pipeline_mul];
  317. }
  318. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  319. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  320. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  321. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  322. const int64_t n = ggml_nelements(dst);
  323. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  324. } break;
  325. case GGML_OP_SCALE:
  326. {
  327. if (encoder == nil) {
  328. encoder = [command_buffer computeCommandEncoder];
  329. }
  330. const float scale = *(const float *) src1->data;
  331. [encoder setComputePipelineState:ctx->pipeline_scale];
  332. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  333. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  334. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  335. const int64_t n = ggml_nelements(dst);
  336. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  337. } break;
  338. case GGML_OP_SILU:
  339. {
  340. if (encoder == nil) {
  341. encoder = [command_buffer computeCommandEncoder];
  342. }
  343. [encoder setComputePipelineState:ctx->pipeline_silu];
  344. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  345. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  346. const int64_t n = ggml_nelements(dst);
  347. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  348. } break;
  349. case GGML_OP_RELU:
  350. {
  351. if (encoder == nil) {
  352. encoder = [command_buffer computeCommandEncoder];
  353. }
  354. [encoder setComputePipelineState:ctx->pipeline_relu];
  355. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  356. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  357. const int64_t n = ggml_nelements(dst);
  358. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  359. } break;
  360. case GGML_OP_GELU:
  361. {
  362. if (encoder == nil) {
  363. encoder = [command_buffer computeCommandEncoder];
  364. }
  365. [encoder setComputePipelineState:ctx->pipeline_gelu];
  366. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  367. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  368. const int64_t n = ggml_nelements(dst);
  369. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  370. } break;
  371. case GGML_OP_SOFT_MAX:
  372. {
  373. if (encoder == nil) {
  374. encoder = [command_buffer computeCommandEncoder];
  375. }
  376. const int nth = 32;
  377. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  378. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  379. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  380. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  381. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  382. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  383. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  384. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  385. } break;
  386. case GGML_OP_DIAG_MASK_INF:
  387. {
  388. if (encoder == nil) {
  389. encoder = [command_buffer computeCommandEncoder];
  390. }
  391. const int n_past = ((int32_t *)(src1->data))[0];
  392. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  393. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  394. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  395. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  396. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  397. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  398. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  399. } break;
  400. case GGML_OP_MUL_MAT:
  401. {
  402. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  403. GGML_ASSERT(ne00 == ne10);
  404. GGML_ASSERT(ne02 == ne12);
  405. if (ggml_is_contiguous(src0) &&
  406. ggml_is_contiguous(src1) &&
  407. (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
  408. if (encoder != nil) {
  409. [encoder endEncoding];
  410. encoder = nil;
  411. }
  412. MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  413. MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  414. // for F32 x F32 we use MPS
  415. MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
  416. matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
  417. MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
  418. matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
  419. MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
  420. matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
  421. MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
  422. initWithDevice:ctx->device transposeLeft:false transposeRight:true
  423. resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
  424. // we need to do ne02 multiplications
  425. // TODO: is there a way to do this in parallel - currently very slow ..
  426. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
  427. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  428. size_t offs_src0_cur = offs_src0 + i02*nb02;
  429. size_t offs_src1_cur = offs_src1 + i02*nb12;
  430. size_t offs_dst_cur = offs_dst + i02*nb2;
  431. MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
  432. MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
  433. MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
  434. [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
  435. }
  436. } else {
  437. if (encoder == nil) {
  438. encoder = [command_buffer computeCommandEncoder];
  439. }
  440. int nth0 = 32;
  441. int nth1 = 1;
  442. // use custom matrix x vector kernel
  443. switch (src0t) {
  444. case GGML_TYPE_F16:
  445. {
  446. GGML_ASSERT(ne02 == ne12);
  447. nth0 = 64;
  448. nth1 = 1;
  449. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  450. } break;
  451. case GGML_TYPE_Q4_0:
  452. {
  453. GGML_ASSERT(ne02 == 1);
  454. GGML_ASSERT(ne12 == 1);
  455. nth0 = 8;
  456. nth1 = 8;
  457. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  458. } break;
  459. case GGML_TYPE_Q4_1:
  460. {
  461. GGML_ASSERT(ne02 == 1);
  462. GGML_ASSERT(ne12 == 1);
  463. nth0 = 8;
  464. nth1 = 8;
  465. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
  466. } break;
  467. case GGML_TYPE_Q2_K:
  468. {
  469. GGML_ASSERT(ne02 == 1);
  470. GGML_ASSERT(ne12 == 1);
  471. nth0 = 4;
  472. nth1 = 16;
  473. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
  474. } break;
  475. case GGML_TYPE_Q3_K:
  476. {
  477. GGML_ASSERT(ne02 == 1);
  478. GGML_ASSERT(ne12 == 1);
  479. nth0 = 4;
  480. nth1 = 16;
  481. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32];
  482. } break;
  483. case GGML_TYPE_Q4_K:
  484. {
  485. GGML_ASSERT(ne02 == 1);
  486. GGML_ASSERT(ne12 == 1);
  487. nth0 = 4;
  488. nth1 = 16;
  489. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
  490. } break;
  491. case GGML_TYPE_Q5_K:
  492. {
  493. GGML_ASSERT(ne02 == 1);
  494. GGML_ASSERT(ne12 == 1);
  495. nth0 = 4;
  496. nth1 = 16;
  497. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32];
  498. } break;
  499. case GGML_TYPE_Q6_K:
  500. {
  501. GGML_ASSERT(ne02 == 1);
  502. GGML_ASSERT(ne12 == 1);
  503. nth0 = 4;
  504. nth1 = 16;
  505. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
  506. } break;
  507. default:
  508. {
  509. fprintf(stderr, "Asserting on type %d\n",(int)src0t);
  510. GGML_ASSERT(false && "not implemented");
  511. }
  512. };
  513. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  514. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  515. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  516. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  517. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  518. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
  519. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
  520. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
  521. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
  522. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
  523. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
  524. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
  525. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
  526. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
  527. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
  528. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
  529. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  530. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  531. }
  532. else if (src0t == GGML_TYPE_Q2_K ||
  533. src0t == GGML_TYPE_Q3_K ||
  534. src0t == GGML_TYPE_Q4_K ||
  535. src0t == GGML_TYPE_Q5_K ||
  536. src0t == GGML_TYPE_Q6_K) {
  537. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  538. [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  539. } else {
  540. [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
  541. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  542. }
  543. }
  544. } break;
  545. case GGML_OP_GET_ROWS:
  546. {
  547. if (encoder == nil) {
  548. encoder = [command_buffer computeCommandEncoder];
  549. }
  550. switch (src0->type) {
  551. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  552. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  553. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
  554. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
  555. case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break;
  556. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
  557. case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break;
  558. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
  559. default: GGML_ASSERT(false && "not implemented");
  560. }
  561. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  562. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  563. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  564. [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
  565. [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
  566. [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
  567. const int64_t n = ggml_nelements(src1);
  568. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  569. } break;
  570. case GGML_OP_RMS_NORM:
  571. {
  572. if (encoder == nil) {
  573. encoder = [command_buffer computeCommandEncoder];
  574. }
  575. const float eps = 1e-6f;
  576. const int nth = 256;
  577. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  578. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  579. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  580. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  581. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  582. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  583. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  584. const int64_t nrows = ggml_nrows(src0);
  585. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  586. } break;
  587. case GGML_OP_ROPE:
  588. {
  589. if (encoder == nil) {
  590. encoder = [command_buffer computeCommandEncoder];
  591. }
  592. const int n_dims = ((int32_t *) src1->data)[1];
  593. const int mode = ((int32_t *) src1->data)[2];
  594. const int n_past = ((int32_t *)(src1->data))[0];
  595. [encoder setComputePipelineState:ctx->pipeline_rope];
  596. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  597. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  598. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  599. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  600. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  601. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  602. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  603. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  604. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  605. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  606. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  607. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  608. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  609. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  610. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  611. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  612. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  613. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  614. [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
  615. [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
  616. [encoder setBytes:&mode length:sizeof( int) atIndex:20];
  617. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  618. } break;
  619. case GGML_OP_CPY:
  620. {
  621. if (encoder == nil) {
  622. encoder = [command_buffer computeCommandEncoder];
  623. }
  624. const int nth = 32;
  625. switch (src0t) {
  626. case GGML_TYPE_F32:
  627. {
  628. switch (dstt) {
  629. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  630. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  631. default: GGML_ASSERT(false && "not implemented");
  632. };
  633. } break;
  634. default: GGML_ASSERT(false && "not implemented");
  635. }
  636. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  637. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  638. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  639. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  640. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  641. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  642. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  643. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  644. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  645. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  646. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  647. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  648. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  649. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  650. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  651. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  652. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  653. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  654. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  655. } break;
  656. default:
  657. fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  658. GGML_ASSERT(false);
  659. }
  660. }
  661. if (encoder != nil) {
  662. [encoder endEncoding];
  663. encoder = nil;
  664. }
  665. [command_buffer commit];
  666. [command_buffer waitUntilCompleted];
  667. {
  668. const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
  669. UNUSED(time_elapsed);
  670. metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
  671. }
  672. }