common.h 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. #include <unordered_map>
  9. #include <tuple>
  10. #ifdef _WIN32
  11. #define DIRECTORY_SEPARATOR '\\'
  12. #else
  13. #define DIRECTORY_SEPARATOR '/'
  14. #endif // _WIN32
  15. //
  16. // CLI argument parsing
  17. //
  18. int32_t get_num_physical_cores();
  19. struct gpt_params {
  20. uint32_t seed = -1; // RNG seed
  21. int32_t n_threads = get_num_physical_cores();
  22. int32_t n_predict = -1; // new tokens to predict
  23. int32_t n_ctx = 512; // context size
  24. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  25. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  26. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  27. int32_t n_gpu_layers = 0; // number of layers to store in VRAM
  28. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  29. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  30. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  31. int32_t n_beams = 0; // if non-zero then use beam search of given width.
  32. float rope_freq_base = 10000.0f; // RoPE base frequency
  33. float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
  34. // sampling parameters
  35. int32_t top_k = 40; // <= 0 to use vocab size
  36. float top_p = 0.95f; // 1.0 = disabled
  37. float tfs_z = 1.00f; // 1.0 = disabled
  38. float typical_p = 1.00f; // 1.0 = disabled
  39. float temp = 0.80f; // 1.0 = disabled
  40. float repeat_penalty = 1.10f; // 1.0 = disabled
  41. int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  42. float frequency_penalty = 0.00f; // 0.0 = disabled
  43. float presence_penalty = 0.00f; // 0.0 = disabled
  44. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  45. float mirostat_tau = 5.00f; // target entropy
  46. float mirostat_eta = 0.10f; // learning rate
  47. std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
  48. // Classifier-Free Guidance
  49. // https://arxiv.org/abs/2306.17806
  50. std::string cfg_negative_prompt; // string to help guidance
  51. float cfg_scale = 1.f; // How strong is guidance
  52. std::string model = "models/7B/ggml-model-f16.gguf"; // model path
  53. std::string model_alias = "unknown"; // model alias
  54. std::string prompt = "";
  55. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  56. std::string input_prefix = ""; // string to prefix user inputs with
  57. std::string input_suffix = ""; // string to suffix user inputs with
  58. std::string grammar = ""; // optional BNF-like grammar to constrain sampling
  59. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  60. std::string logdir = ""; // directory in which to save YAML log files
  61. std::string lora_adapter = ""; // lora adapter path
  62. std::string lora_base = ""; // base model path for the lora adapter
  63. int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  64. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  65. // (which is more convenient to use for plotting)
  66. //
  67. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  68. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  69. bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
  70. bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
  71. bool memory_f16 = true; // use f16 instead of f32 for memory kv
  72. bool random_prompt = false; // do not randomize prompt if none provided
  73. bool use_color = false; // use color to distinguish generations and inputs
  74. bool interactive = false; // interactive mode
  75. bool prompt_cache_all = false; // save user input and generations to prompt cache
  76. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  77. bool embedding = false; // get only sentence embedding
  78. bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  79. bool interactive_first = false; // wait for user input immediately
  80. bool multiline_input = false; // reverse the usage of `\`
  81. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  82. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  83. bool ignore_eos = false; // ignore generated EOS tokens
  84. bool instruct = false; // instruction mode (used for Alpaca models)
  85. bool penalize_nl = true; // consider newlines as a repeatable token
  86. bool perplexity = false; // compute perplexity over the prompt
  87. bool use_mmap = true; // use mmap for faster loads
  88. bool use_mlock = false; // use mlock to keep model in memory
  89. bool mem_test = false; // compute maximum memory usage
  90. bool numa = false; // attempt optimizations that help on some NUMA systems
  91. bool export_cgraph = false; // export the computation graph
  92. bool verbose_prompt = false; // print prompt tokens before generation
  93. };
  94. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  95. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  96. std::string gpt_random_prompt(std::mt19937 & rng);
  97. //
  98. // Model utils
  99. //
  100. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  101. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  102. //
  103. // Vocab utils
  104. //
  105. // tokenizes a string into a vector of tokens
  106. // should work similar to Python's `tokenizer.encode`
  107. std::vector<llama_token> llama_tokenize(
  108. struct llama_context * ctx,
  109. const std::string & text,
  110. bool add_bos);
  111. // tokenizes a token into a piece
  112. // should work similar to Python's `tokenizer.id_to_piece`
  113. std::string llama_token_to_piece(
  114. const struct llama_context * ctx,
  115. llama_token token);
  116. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  117. // that takes into account the tokenizer type and decides how to handle the leading space
  118. //
  119. // detokenizes a vector of tokens into a string
  120. // should work similar to Python's `tokenizer.decode`
  121. // removes the leading space from the first non-BOS token
  122. std::string llama_detokenize_spm(
  123. llama_context * ctx,
  124. const std::vector<llama_token> & tokens);
  125. // detokenizes a vector of tokens into a string
  126. // should work similar to Python's `tokenizer.decode`
  127. std::string llama_detokenize_bpe(
  128. llama_context * ctx,
  129. const std::vector<llama_token> & tokens);
  130. bool create_directory_with_parents(const std::string & path);
  131. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
  132. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
  133. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
  134. std::string get_sortable_timestamp();
  135. void dump_non_result_info_yaml(
  136. FILE * stream, const gpt_params & params, const llama_context * lctx,
  137. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);