ggml.h 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // const int nx = 2;
  133. // const int ny = 3;
  134. //
  135. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  136. //
  137. // for (int y = 0; y < ny; y++) {
  138. // for (int x = 0; x < nx; x++) {
  139. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  140. // }
  141. // }
  142. //
  143. // ...
  144. // }
  145. //
  146. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  147. //
  148. // ## The matrix multiplication operator (ggml_mul_mat)
  149. //
  150. // TODO
  151. //
  152. //
  153. // ## Multi-threading
  154. //
  155. // TODO
  156. //
  157. //
  158. // ## Overview of ggml.c
  159. //
  160. // TODO
  161. //
  162. //
  163. // ## SIMD optimizations
  164. //
  165. // TODO
  166. //
  167. //
  168. // ## Debugging ggml
  169. //
  170. // TODO
  171. //
  172. //
  173. #ifdef GGML_SHARED
  174. # if defined(_WIN32) && !defined(__MINGW32__)
  175. # ifdef GGML_BUILD
  176. # define GGML_API __declspec(dllexport)
  177. # else
  178. # define GGML_API __declspec(dllimport)
  179. # endif
  180. # else
  181. # define GGML_API __attribute__ ((visibility ("default")))
  182. # endif
  183. #else
  184. # define GGML_API
  185. #endif
  186. // TODO: support for clang
  187. #ifdef __GNUC__
  188. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  189. #elif defined(_MSC_VER)
  190. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  191. #else
  192. # define GGML_DEPRECATED(func, hint) func
  193. #endif
  194. #include <stdint.h>
  195. #include <stddef.h>
  196. #include <stdbool.h>
  197. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  198. #define GGML_FILE_VERSION 1
  199. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  200. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  201. #define GGML_MAX_DIMS 4
  202. #define GGML_MAX_NODES 4096
  203. #define GGML_MAX_PARAMS 256
  204. #define GGML_MAX_CONTEXTS 64
  205. #define GGML_MAX_SRC 6
  206. #define GGML_MAX_NAME 64
  207. #define GGML_MAX_OP_PARAMS 32
  208. #define GGML_DEFAULT_N_THREADS 4
  209. #if UINTPTR_MAX == 0xFFFFFFFF
  210. #define GGML_MEM_ALIGN 4
  211. #else
  212. #define GGML_MEM_ALIGN 16
  213. #endif
  214. #define GGML_EXIT_SUCCESS 0
  215. #define GGML_EXIT_ABORTED 1
  216. #define GGUF_MAGIC 0x46554747 // "GGUF"
  217. #define GGUF_VERSION 2
  218. #define GGUF_DEFAULT_ALIGNMENT 32
  219. #define GGML_UNUSED(x) (void)(x)
  220. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  221. #define GGML_ASSERT(x) \
  222. do { \
  223. if (!(x)) { \
  224. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  225. abort(); \
  226. } \
  227. } while (0)
  228. // used to copy the number of elements and stride in bytes of tensors into local variables.
  229. // main purpose is to reduce code duplication and improve readability.
  230. //
  231. // example:
  232. //
  233. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  234. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  235. //
  236. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  237. const type prefix##0 = (pointer)->array[0]; \
  238. GGML_UNUSED(prefix##0);
  239. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  240. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  241. const type prefix##1 = (pointer)->array[1]; \
  242. GGML_UNUSED(prefix##1);
  243. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  244. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  245. const type prefix##2 = (pointer)->array[2]; \
  246. GGML_UNUSED(prefix##2);
  247. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  248. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  249. const type prefix##3 = (pointer)->array[3]; \
  250. GGML_UNUSED(prefix##3);
  251. #ifdef __cplusplus
  252. extern "C" {
  253. #endif
  254. #if defined(__ARM_NEON) && defined(__CUDACC__)
  255. typedef half ggml_fp16_t;
  256. #elif defined(__ARM_NEON)
  257. typedef __fp16 ggml_fp16_t;
  258. #else
  259. typedef uint16_t ggml_fp16_t;
  260. #endif
  261. // convert FP16 <-> FP32
  262. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  263. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  264. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  265. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  266. struct ggml_object;
  267. struct ggml_context;
  268. enum ggml_type {
  269. GGML_TYPE_F32 = 0,
  270. GGML_TYPE_F16 = 1,
  271. GGML_TYPE_Q4_0 = 2,
  272. GGML_TYPE_Q4_1 = 3,
  273. // GGML_TYPE_Q4_2 = 4, support has been removed
  274. // GGML_TYPE_Q4_3 (5) support has been removed
  275. GGML_TYPE_Q5_0 = 6,
  276. GGML_TYPE_Q5_1 = 7,
  277. GGML_TYPE_Q8_0 = 8,
  278. GGML_TYPE_Q8_1 = 9,
  279. // k-quantizations
  280. GGML_TYPE_Q2_K = 10,
  281. GGML_TYPE_Q3_K = 11,
  282. GGML_TYPE_Q4_K = 12,
  283. GGML_TYPE_Q5_K = 13,
  284. GGML_TYPE_Q6_K = 14,
  285. GGML_TYPE_Q8_K = 15,
  286. GGML_TYPE_I8,
  287. GGML_TYPE_I16,
  288. GGML_TYPE_I32,
  289. GGML_TYPE_COUNT,
  290. };
  291. enum ggml_backend {
  292. GGML_BACKEND_CPU = 0,
  293. GGML_BACKEND_GPU = 10,
  294. GGML_BACKEND_GPU_SPLIT = 20,
  295. };
  296. // model file types
  297. enum ggml_ftype {
  298. GGML_FTYPE_UNKNOWN = -1,
  299. GGML_FTYPE_ALL_F32 = 0,
  300. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  301. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  302. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  303. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  304. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  305. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  306. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  307. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  308. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  309. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  310. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  311. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  312. };
  313. // available tensor operations:
  314. enum ggml_op {
  315. GGML_OP_NONE = 0,
  316. GGML_OP_DUP,
  317. GGML_OP_ADD,
  318. GGML_OP_ADD1,
  319. GGML_OP_ACC,
  320. GGML_OP_SUB,
  321. GGML_OP_MUL,
  322. GGML_OP_DIV,
  323. GGML_OP_SQR,
  324. GGML_OP_SQRT,
  325. GGML_OP_LOG,
  326. GGML_OP_SUM,
  327. GGML_OP_SUM_ROWS,
  328. GGML_OP_MEAN,
  329. GGML_OP_ARGMAX,
  330. GGML_OP_REPEAT,
  331. GGML_OP_REPEAT_BACK,
  332. GGML_OP_CONCAT,
  333. GGML_OP_SILU_BACK,
  334. GGML_OP_NORM, // normalize
  335. GGML_OP_RMS_NORM,
  336. GGML_OP_RMS_NORM_BACK,
  337. GGML_OP_GROUP_NORM,
  338. GGML_OP_MUL_MAT,
  339. GGML_OP_OUT_PROD,
  340. GGML_OP_SCALE,
  341. GGML_OP_SET,
  342. GGML_OP_CPY,
  343. GGML_OP_CONT,
  344. GGML_OP_RESHAPE,
  345. GGML_OP_VIEW,
  346. GGML_OP_PERMUTE,
  347. GGML_OP_TRANSPOSE,
  348. GGML_OP_GET_ROWS,
  349. GGML_OP_GET_ROWS_BACK,
  350. GGML_OP_DIAG,
  351. GGML_OP_DIAG_MASK_INF,
  352. GGML_OP_DIAG_MASK_ZERO,
  353. GGML_OP_SOFT_MAX,
  354. GGML_OP_SOFT_MAX_BACK,
  355. GGML_OP_ROPE,
  356. GGML_OP_ROPE_BACK,
  357. GGML_OP_ALIBI,
  358. GGML_OP_CLAMP,
  359. GGML_OP_CONV_1D,
  360. GGML_OP_CONV_2D,
  361. GGML_OP_CONV_TRANSPOSE_2D,
  362. GGML_OP_POOL_1D,
  363. GGML_OP_POOL_2D,
  364. GGML_OP_UPSCALE, // nearest interpolate
  365. GGML_OP_FLASH_ATTN,
  366. GGML_OP_FLASH_FF,
  367. GGML_OP_FLASH_ATTN_BACK,
  368. GGML_OP_WIN_PART,
  369. GGML_OP_WIN_UNPART,
  370. GGML_OP_GET_REL_POS,
  371. GGML_OP_ADD_REL_POS,
  372. GGML_OP_UNARY,
  373. GGML_OP_MAP_UNARY,
  374. GGML_OP_MAP_BINARY,
  375. GGML_OP_MAP_CUSTOM1_F32,
  376. GGML_OP_MAP_CUSTOM2_F32,
  377. GGML_OP_MAP_CUSTOM3_F32,
  378. GGML_OP_MAP_CUSTOM1,
  379. GGML_OP_MAP_CUSTOM2,
  380. GGML_OP_MAP_CUSTOM3,
  381. GGML_OP_CROSS_ENTROPY_LOSS,
  382. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  383. GGML_OP_COUNT,
  384. };
  385. enum ggml_unary_op {
  386. GGML_UNARY_OP_ABS,
  387. GGML_UNARY_OP_SGN,
  388. GGML_UNARY_OP_NEG,
  389. GGML_UNARY_OP_STEP,
  390. GGML_UNARY_OP_TANH,
  391. GGML_UNARY_OP_ELU,
  392. GGML_UNARY_OP_RELU,
  393. GGML_UNARY_OP_GELU,
  394. GGML_UNARY_OP_GELU_QUICK,
  395. GGML_UNARY_OP_SILU,
  396. };
  397. enum ggml_object_type {
  398. GGML_OBJECT_TENSOR,
  399. GGML_OBJECT_GRAPH,
  400. GGML_OBJECT_WORK_BUFFER
  401. };
  402. // ggml object
  403. struct ggml_object {
  404. size_t offs;
  405. size_t size;
  406. struct ggml_object * next;
  407. enum ggml_object_type type;
  408. char padding[4];
  409. };
  410. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  411. // n-dimensional tensor
  412. struct ggml_tensor {
  413. enum ggml_type type;
  414. enum ggml_backend backend;
  415. int n_dims;
  416. int64_t ne[GGML_MAX_DIMS]; // number of elements
  417. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  418. // nb[0] = sizeof(type)
  419. // nb[1] = nb[0] * ne[0] + padding
  420. // nb[i] = nb[i-1] * ne[i-1]
  421. // compute data
  422. enum ggml_op op;
  423. // op params - allocated as int32_t for alignment
  424. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  425. bool is_param;
  426. struct ggml_tensor * grad;
  427. struct ggml_tensor * src[GGML_MAX_SRC];
  428. // performance
  429. int perf_runs;
  430. int64_t perf_cycles;
  431. int64_t perf_time_us;
  432. void * data;
  433. char name[GGML_MAX_NAME];
  434. void * extra; // extra things e.g. for ggml-cuda.cu
  435. char padding[4];
  436. };
  437. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  438. // the compute plan that needs to be prepared for ggml_graph_compute()
  439. // since https://github.com/ggerganov/ggml/issues/287
  440. struct ggml_cplan {
  441. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  442. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  443. int n_threads;
  444. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  445. int n_tasks[GGML_MAX_NODES];
  446. // abort ggml_graph_compute when true
  447. bool (*abort_callback)(void * data);
  448. void * abort_callback_data;
  449. };
  450. // next prime after GGML_MAX_NODES
  451. // #define GGML_GRAPH_HASHTABLE_SIZE 4099
  452. // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
  453. #define GGML_GRAPH_HASHTABLE_SIZE 8273
  454. // computation graph
  455. struct ggml_cgraph {
  456. int n_nodes;
  457. int n_leafs;
  458. struct ggml_tensor * nodes[GGML_MAX_NODES];
  459. struct ggml_tensor * grads[GGML_MAX_NODES];
  460. struct ggml_tensor * leafs[GGML_MAX_NODES];
  461. void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  462. // performance
  463. int perf_runs;
  464. int64_t perf_cycles;
  465. int64_t perf_time_us;
  466. };
  467. static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
  468. // scratch buffer
  469. struct ggml_scratch {
  470. size_t offs;
  471. size_t size;
  472. void * data;
  473. };
  474. struct ggml_init_params {
  475. // memory pool
  476. size_t mem_size; // bytes
  477. void * mem_buffer; // if NULL, memory will be allocated internally
  478. bool no_alloc; // don't allocate memory for the tensor data
  479. };
  480. // compute types
  481. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  482. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  483. enum ggml_task_type {
  484. GGML_TASK_INIT = 0,
  485. GGML_TASK_COMPUTE,
  486. GGML_TASK_FINALIZE,
  487. };
  488. struct ggml_compute_params {
  489. enum ggml_task_type type;
  490. // ith = thread index, nth = number of threads
  491. int ith, nth;
  492. // work buffer for all threads
  493. size_t wsize;
  494. void * wdata;
  495. };
  496. // misc
  497. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  498. GGML_API int64_t ggml_time_ms(void);
  499. GGML_API int64_t ggml_time_us(void);
  500. GGML_API int64_t ggml_cycles(void);
  501. GGML_API int64_t ggml_cycles_per_ms(void);
  502. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  503. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  504. GGML_API void ggml_print_object (const struct ggml_object * obj);
  505. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  506. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  507. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  508. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  509. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  510. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  511. GGML_API int ggml_blck_size (enum ggml_type type);
  512. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  513. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  514. GGML_API const char * ggml_type_name(enum ggml_type type);
  515. GGML_API const char * ggml_op_name (enum ggml_op op);
  516. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  517. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  518. GGML_API bool ggml_is_quantized(enum ggml_type type);
  519. // TODO: temporary until model loading of ggml examples is refactored
  520. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  521. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  522. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  523. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  524. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  525. // use this to compute the memory overhead of a tensor
  526. GGML_API size_t ggml_tensor_overhead(void);
  527. // main
  528. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  529. GGML_API void ggml_free(struct ggml_context * ctx);
  530. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  531. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  532. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  533. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  534. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  535. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  536. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  537. GGML_API struct ggml_tensor * ggml_new_tensor(
  538. struct ggml_context * ctx,
  539. enum ggml_type type,
  540. int n_dims,
  541. const int64_t *ne);
  542. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  543. struct ggml_context * ctx,
  544. enum ggml_type type,
  545. int64_t ne0);
  546. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  547. struct ggml_context * ctx,
  548. enum ggml_type type,
  549. int64_t ne0,
  550. int64_t ne1);
  551. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  552. struct ggml_context * ctx,
  553. enum ggml_type type,
  554. int64_t ne0,
  555. int64_t ne1,
  556. int64_t ne2);
  557. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  558. struct ggml_context * ctx,
  559. enum ggml_type type,
  560. int64_t ne0,
  561. int64_t ne1,
  562. int64_t ne2,
  563. int64_t ne3);
  564. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  565. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  566. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  567. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  568. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  569. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  570. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  571. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  572. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  573. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  574. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  575. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  576. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  577. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  578. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  579. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  580. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  581. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  582. //
  583. // operations on tensors with backpropagation
  584. //
  585. GGML_API struct ggml_tensor * ggml_dup(
  586. struct ggml_context * ctx,
  587. struct ggml_tensor * a);
  588. // in-place, returns view(a)
  589. GGML_API struct ggml_tensor * ggml_dup_inplace(
  590. struct ggml_context * ctx,
  591. struct ggml_tensor * a);
  592. GGML_API struct ggml_tensor * ggml_add(
  593. struct ggml_context * ctx,
  594. struct ggml_tensor * a,
  595. struct ggml_tensor * b);
  596. GGML_API struct ggml_tensor * ggml_add_inplace(
  597. struct ggml_context * ctx,
  598. struct ggml_tensor * a,
  599. struct ggml_tensor * b);
  600. GGML_API struct ggml_tensor * ggml_add1(
  601. struct ggml_context * ctx,
  602. struct ggml_tensor * a,
  603. struct ggml_tensor * b);
  604. GGML_API struct ggml_tensor * ggml_add1_inplace(
  605. struct ggml_context * ctx,
  606. struct ggml_tensor * a,
  607. struct ggml_tensor * b);
  608. GGML_API struct ggml_tensor * ggml_acc(
  609. struct ggml_context * ctx,
  610. struct ggml_tensor * a,
  611. struct ggml_tensor * b,
  612. size_t nb1,
  613. size_t nb2,
  614. size_t nb3,
  615. size_t offset);
  616. GGML_API struct ggml_tensor * ggml_acc_inplace(
  617. struct ggml_context * ctx,
  618. struct ggml_tensor * a,
  619. struct ggml_tensor * b,
  620. size_t nb1,
  621. size_t nb2,
  622. size_t nb3,
  623. size_t offset);
  624. GGML_API struct ggml_tensor * ggml_sub(
  625. struct ggml_context * ctx,
  626. struct ggml_tensor * a,
  627. struct ggml_tensor * b);
  628. GGML_API struct ggml_tensor * ggml_sub_inplace(
  629. struct ggml_context * ctx,
  630. struct ggml_tensor * a,
  631. struct ggml_tensor * b);
  632. GGML_API struct ggml_tensor * ggml_mul(
  633. struct ggml_context * ctx,
  634. struct ggml_tensor * a,
  635. struct ggml_tensor * b);
  636. GGML_API struct ggml_tensor * ggml_mul_inplace(
  637. struct ggml_context * ctx,
  638. struct ggml_tensor * a,
  639. struct ggml_tensor * b);
  640. GGML_API struct ggml_tensor * ggml_div(
  641. struct ggml_context * ctx,
  642. struct ggml_tensor * a,
  643. struct ggml_tensor * b);
  644. GGML_API struct ggml_tensor * ggml_div_inplace(
  645. struct ggml_context * ctx,
  646. struct ggml_tensor * a,
  647. struct ggml_tensor * b);
  648. GGML_API struct ggml_tensor * ggml_sqr(
  649. struct ggml_context * ctx,
  650. struct ggml_tensor * a);
  651. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  652. struct ggml_context * ctx,
  653. struct ggml_tensor * a);
  654. GGML_API struct ggml_tensor * ggml_sqrt(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a);
  657. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  658. struct ggml_context * ctx,
  659. struct ggml_tensor * a);
  660. GGML_API struct ggml_tensor * ggml_log(
  661. struct ggml_context * ctx,
  662. struct ggml_tensor * a);
  663. GGML_API struct ggml_tensor * ggml_log_inplace(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a);
  666. // return scalar
  667. GGML_API struct ggml_tensor * ggml_sum(
  668. struct ggml_context * ctx,
  669. struct ggml_tensor * a);
  670. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  671. GGML_API struct ggml_tensor * ggml_sum_rows(
  672. struct ggml_context * ctx,
  673. struct ggml_tensor * a);
  674. // mean along rows
  675. GGML_API struct ggml_tensor * ggml_mean(
  676. struct ggml_context * ctx,
  677. struct ggml_tensor * a);
  678. // argmax along rows
  679. GGML_API struct ggml_tensor * ggml_argmax(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a);
  682. // if a is the same shape as b, and a is not parameter, return a
  683. // otherwise, return a new tensor: repeat(a) to fit in b
  684. GGML_API struct ggml_tensor * ggml_repeat(
  685. struct ggml_context * ctx,
  686. struct ggml_tensor * a,
  687. struct ggml_tensor * b);
  688. GGML_API struct ggml_tensor * ggml_repeat_back(
  689. struct ggml_context * ctx,
  690. struct ggml_tensor * a,
  691. struct ggml_tensor * b);
  692. // concat a and b on dim 2
  693. // used in stable-diffusion
  694. GGML_API struct ggml_tensor * ggml_concat(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b);
  698. GGML_API struct ggml_tensor * ggml_abs(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a);
  701. GGML_API struct ggml_tensor * ggml_abs_inplace(
  702. struct ggml_context * ctx,
  703. struct ggml_tensor * a);
  704. GGML_API struct ggml_tensor * ggml_sgn(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a);
  710. GGML_API struct ggml_tensor * ggml_neg(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a);
  713. GGML_API struct ggml_tensor * ggml_neg_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. GGML_API struct ggml_tensor * ggml_step(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. GGML_API struct ggml_tensor * ggml_step_inplace(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a);
  722. GGML_API struct ggml_tensor * ggml_tanh(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a);
  725. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. GGML_API struct ggml_tensor * ggml_elu(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a);
  731. GGML_API struct ggml_tensor * ggml_elu_inplace(
  732. struct ggml_context * ctx,
  733. struct ggml_tensor * a);
  734. GGML_API struct ggml_tensor * ggml_relu(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a);
  737. GGML_API struct ggml_tensor * ggml_relu_inplace(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a);
  740. // TODO: double-check this computation is correct
  741. GGML_API struct ggml_tensor * ggml_gelu(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a);
  744. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a);
  747. GGML_API struct ggml_tensor * ggml_gelu_quick(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a);
  750. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a);
  753. GGML_API struct ggml_tensor * ggml_silu(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a);
  756. GGML_API struct ggml_tensor * ggml_silu_inplace(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a);
  759. // a - x
  760. // b - dy
  761. GGML_API struct ggml_tensor * ggml_silu_back(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b);
  765. // normalize along rows
  766. GGML_API struct ggml_tensor * ggml_norm(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a,
  769. float eps);
  770. GGML_API struct ggml_tensor * ggml_norm_inplace(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a,
  773. float eps);
  774. GGML_API struct ggml_tensor * ggml_rms_norm(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a,
  777. float eps);
  778. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a,
  781. float eps);
  782. // group normalize along ne0*ne1*n_groups
  783. // used in stable-diffusion
  784. // TODO: eps is hardcoded to 1e-6 for now
  785. GGML_API struct ggml_tensor * ggml_group_norm(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. int n_groups);
  789. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. int n_groups);
  793. // a - x
  794. // b - dy
  795. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b,
  799. float eps);
  800. // A: n columns, m rows
  801. // B: n columns, p rows (i.e. we transpose it internally)
  802. // result is m columns, p rows
  803. GGML_API struct ggml_tensor * ggml_mul_mat(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. // A: m columns, n rows,
  808. // B: p columns, n rows,
  809. // result is m columns, p rows
  810. GGML_API struct ggml_tensor * ggml_out_prod(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a,
  813. struct ggml_tensor * b);
  814. //
  815. // operations on tensors without backpropagation
  816. //
  817. GGML_API struct ggml_tensor * ggml_scale(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a,
  820. struct ggml_tensor * b);
  821. // in-place, returns view(a)
  822. GGML_API struct ggml_tensor * ggml_scale_inplace(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a,
  825. struct ggml_tensor * b);
  826. // b -> view(a,offset,nb1,nb2,3), return modified a
  827. GGML_API struct ggml_tensor * ggml_set(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a,
  830. struct ggml_tensor * b,
  831. size_t nb1,
  832. size_t nb2,
  833. size_t nb3,
  834. size_t offset);
  835. // b -> view(a,offset,nb1,nb2,3), return view(a)
  836. GGML_API struct ggml_tensor * ggml_set_inplace(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a,
  839. struct ggml_tensor * b,
  840. size_t nb1,
  841. size_t nb2,
  842. size_t nb3,
  843. size_t offset);
  844. GGML_API struct ggml_tensor * ggml_set_1d(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a,
  847. struct ggml_tensor * b,
  848. size_t offset);
  849. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a,
  852. struct ggml_tensor * b,
  853. size_t offset);
  854. // b -> view(a,offset,nb1,nb2,3), return modified a
  855. GGML_API struct ggml_tensor * ggml_set_2d(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a,
  858. struct ggml_tensor * b,
  859. size_t nb1,
  860. size_t offset);
  861. // b -> view(a,offset,nb1,nb2,3), return view(a)
  862. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a,
  865. struct ggml_tensor * b,
  866. size_t nb1,
  867. size_t offset);
  868. // a -> b, return view(b)
  869. GGML_API struct ggml_tensor * ggml_cpy(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a,
  872. struct ggml_tensor * b);
  873. // a -> b, in-place, return view(b)
  874. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a,
  877. struct ggml_tensor * b);
  878. // make contiguous
  879. GGML_API struct ggml_tensor * ggml_cont(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a);
  882. // make contiguous, in-place
  883. GGML_API struct ggml_tensor * ggml_cont_inplace(
  884. struct ggml_context * ctx,
  885. struct ggml_tensor * a);
  886. // return view(a), b specifies the new shape
  887. // TODO: when we start computing gradient, make a copy instead of view
  888. GGML_API struct ggml_tensor * ggml_reshape(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a,
  891. struct ggml_tensor * b);
  892. // return view(a)
  893. // TODO: when we start computing gradient, make a copy instead of view
  894. GGML_API struct ggml_tensor * ggml_reshape_1d(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. int64_t ne0);
  898. GGML_API struct ggml_tensor * ggml_reshape_2d(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a,
  901. int64_t ne0,
  902. int64_t ne1);
  903. // return view(a)
  904. // TODO: when we start computing gradient, make a copy instead of view
  905. GGML_API struct ggml_tensor * ggml_reshape_3d(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a,
  908. int64_t ne0,
  909. int64_t ne1,
  910. int64_t ne2);
  911. GGML_API struct ggml_tensor * ggml_reshape_4d(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a,
  914. int64_t ne0,
  915. int64_t ne1,
  916. int64_t ne2,
  917. int64_t ne3);
  918. // offset in bytes
  919. GGML_API struct ggml_tensor * ggml_view_1d(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a,
  922. int64_t ne0,
  923. size_t offset);
  924. GGML_API struct ggml_tensor * ggml_view_2d(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. int64_t ne0,
  928. int64_t ne1,
  929. size_t nb1, // row stride in bytes
  930. size_t offset);
  931. GGML_API struct ggml_tensor * ggml_view_3d(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. int64_t ne0,
  935. int64_t ne1,
  936. int64_t ne2,
  937. size_t nb1, // row stride in bytes
  938. size_t nb2, // slice stride in bytes
  939. size_t offset);
  940. GGML_API struct ggml_tensor * ggml_view_4d(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a,
  943. int64_t ne0,
  944. int64_t ne1,
  945. int64_t ne2,
  946. int64_t ne3,
  947. size_t nb1, // row stride in bytes
  948. size_t nb2, // slice stride in bytes
  949. size_t nb3,
  950. size_t offset);
  951. GGML_API struct ggml_tensor * ggml_permute(
  952. struct ggml_context * ctx,
  953. struct ggml_tensor * a,
  954. int axis0,
  955. int axis1,
  956. int axis2,
  957. int axis3);
  958. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  959. GGML_API struct ggml_tensor * ggml_transpose(
  960. struct ggml_context * ctx,
  961. struct ggml_tensor * a);
  962. GGML_API struct ggml_tensor * ggml_get_rows(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. struct ggml_tensor * b);
  966. GGML_API struct ggml_tensor * ggml_get_rows_back(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a,
  969. struct ggml_tensor * b,
  970. struct ggml_tensor * c);
  971. GGML_API struct ggml_tensor * ggml_diag(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a);
  974. // set elements above the diagonal to -INF
  975. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  976. struct ggml_context * ctx,
  977. struct ggml_tensor * a,
  978. int n_past);
  979. // in-place, returns view(a)
  980. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. int n_past);
  984. // set elements above the diagonal to 0
  985. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a,
  988. int n_past);
  989. // in-place, returns view(a)
  990. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  991. struct ggml_context * ctx,
  992. struct ggml_tensor * a,
  993. int n_past);
  994. GGML_API struct ggml_tensor * ggml_soft_max(
  995. struct ggml_context * ctx,
  996. struct ggml_tensor * a);
  997. // in-place, returns view(a)
  998. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  999. struct ggml_context * ctx,
  1000. struct ggml_tensor * a);
  1001. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1002. struct ggml_context * ctx,
  1003. struct ggml_tensor * a,
  1004. struct ggml_tensor * b);
  1005. // in-place, returns view(a)
  1006. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a,
  1009. struct ggml_tensor * b);
  1010. // rotary position embedding
  1011. // if mode & 1 == 1, skip n_past elements
  1012. // if mode & 2 == 1, GPT-NeoX style
  1013. // if mode & 4 == 1, ChatGLM style
  1014. // TODO: avoid creating a new tensor every time
  1015. GGML_API struct ggml_tensor * ggml_rope(
  1016. struct ggml_context * ctx,
  1017. struct ggml_tensor * a,
  1018. int n_past,
  1019. int n_dims,
  1020. int mode,
  1021. int n_ctx);
  1022. // in-place, returns view(a)
  1023. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. int n_past,
  1027. int n_dims,
  1028. int mode,
  1029. int n_ctx);
  1030. // custom RoPE
  1031. GGML_API struct ggml_tensor * ggml_rope_custom(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a,
  1034. int n_past,
  1035. int n_dims,
  1036. int mode,
  1037. int n_ctx,
  1038. float freq_base,
  1039. float freq_scale);
  1040. // in-place, returns view(a)
  1041. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1042. struct ggml_context * ctx,
  1043. struct ggml_tensor * a,
  1044. int n_past,
  1045. int n_dims,
  1046. int mode,
  1047. int n_ctx,
  1048. float freq_base,
  1049. float freq_scale);
  1050. // xPos RoPE, in-place, returns view(a)
  1051. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1052. struct ggml_context * ctx,
  1053. struct ggml_tensor * a,
  1054. int n_past,
  1055. int n_dims,
  1056. float base,
  1057. bool down);
  1058. // rotary position embedding backward, i.e compute dx from dy
  1059. // a - dy
  1060. GGML_API struct ggml_tensor * ggml_rope_back(
  1061. struct ggml_context * ctx,
  1062. struct ggml_tensor * a,
  1063. int n_past,
  1064. int n_dims,
  1065. int mode,
  1066. int n_ctx,
  1067. float freq_base,
  1068. float freq_scale,
  1069. float xpos_base,
  1070. bool xpos_down);
  1071. // alibi position embedding
  1072. // in-place, returns view(a)
  1073. struct ggml_tensor * ggml_alibi(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a,
  1076. int n_past,
  1077. int n_head,
  1078. float bias_max);
  1079. // clamp
  1080. // in-place, returns view(a)
  1081. struct ggml_tensor * ggml_clamp(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. float min,
  1085. float max);
  1086. GGML_API struct ggml_tensor * ggml_conv_1d(
  1087. struct ggml_context * ctx,
  1088. struct ggml_tensor * a,
  1089. struct ggml_tensor * b,
  1090. int s0, // stride
  1091. int p0, // padding
  1092. int d0); // dilation
  1093. // conv_1d with padding = half
  1094. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1095. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1096. struct ggml_context * ctx,
  1097. struct ggml_tensor * a,
  1098. struct ggml_tensor * b,
  1099. int s,
  1100. int d);
  1101. GGML_API struct ggml_tensor * ggml_conv_2d(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. struct ggml_tensor * b,
  1105. int s0,
  1106. int s1,
  1107. int p0,
  1108. int p1,
  1109. int d0,
  1110. int d1);
  1111. // kernel size is a->ne[0] x a->ne[1]
  1112. // stride is equal to kernel size
  1113. // padding is zero
  1114. // example:
  1115. // a: 16 16 3 768
  1116. // b: 1024 1024 3 1
  1117. // res: 64 64 768 1
  1118. // used in sam
  1119. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1120. struct ggml_context * ctx,
  1121. struct ggml_tensor * a,
  1122. struct ggml_tensor * b);
  1123. // kernel size is a->ne[0] x a->ne[1]
  1124. // stride is 1
  1125. // padding is half
  1126. // example:
  1127. // a: 3 3 256 256
  1128. // b: 64 64 256 1
  1129. // res: 64 64 256 1
  1130. // used in sam
  1131. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a,
  1134. struct ggml_tensor * b);
  1135. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1136. struct ggml_context * ctx,
  1137. struct ggml_tensor * a,
  1138. struct ggml_tensor * b,
  1139. int stride);
  1140. enum ggml_op_pool {
  1141. GGML_OP_POOL_MAX,
  1142. GGML_OP_POOL_AVG,
  1143. GGML_OP_POOL_COUNT,
  1144. };
  1145. GGML_API struct ggml_tensor * ggml_pool_1d(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. enum ggml_op_pool op,
  1149. int k0, // kernel size
  1150. int s0, // stride
  1151. int p0); // padding
  1152. GGML_API struct ggml_tensor * ggml_pool_2d(
  1153. struct ggml_context * ctx,
  1154. struct ggml_tensor * a,
  1155. enum ggml_op_pool op,
  1156. int k0,
  1157. int k1,
  1158. int s0,
  1159. int s1,
  1160. int p0,
  1161. int p1);
  1162. // nearest interpolate
  1163. // used in stable-diffusion
  1164. GGML_API struct ggml_tensor * ggml_upscale(
  1165. struct ggml_context * ctx,
  1166. struct ggml_tensor * a,
  1167. int scale_factor);
  1168. GGML_API struct ggml_tensor * ggml_flash_attn(
  1169. struct ggml_context * ctx,
  1170. struct ggml_tensor * q,
  1171. struct ggml_tensor * k,
  1172. struct ggml_tensor * v,
  1173. bool masked);
  1174. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * q,
  1177. struct ggml_tensor * k,
  1178. struct ggml_tensor * v,
  1179. struct ggml_tensor * d,
  1180. bool masked);
  1181. GGML_API struct ggml_tensor * ggml_flash_ff(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * b0,
  1185. struct ggml_tensor * b1,
  1186. struct ggml_tensor * c0,
  1187. struct ggml_tensor * c1);
  1188. // partition into non-overlapping windows with padding if needed
  1189. // example:
  1190. // a: 768 64 64 1
  1191. // w: 14
  1192. // res: 768 14 14 25
  1193. // used in sam
  1194. GGML_API struct ggml_tensor * ggml_win_part(
  1195. struct ggml_context * ctx,
  1196. struct ggml_tensor * a,
  1197. int w);
  1198. // reverse of ggml_win_part
  1199. // used in sam
  1200. GGML_API struct ggml_tensor * ggml_win_unpart(
  1201. struct ggml_context * ctx,
  1202. struct ggml_tensor * a,
  1203. int w0,
  1204. int h0,
  1205. int w);
  1206. GGML_API struct ggml_tensor * ggml_unary(
  1207. struct ggml_context * ctx,
  1208. struct ggml_tensor * a,
  1209. enum ggml_unary_op op);
  1210. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1211. struct ggml_context * ctx,
  1212. struct ggml_tensor * a,
  1213. enum ggml_unary_op op);
  1214. // used in sam
  1215. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1216. struct ggml_context * ctx,
  1217. struct ggml_tensor * a,
  1218. int qh,
  1219. int kh);
  1220. // used in sam
  1221. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1222. struct ggml_context * ctx,
  1223. struct ggml_tensor * a,
  1224. struct ggml_tensor * pw,
  1225. struct ggml_tensor * ph);
  1226. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1227. struct ggml_context * ctx,
  1228. struct ggml_tensor * a,
  1229. struct ggml_tensor * pw,
  1230. struct ggml_tensor * ph);
  1231. // custom operators
  1232. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1233. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1234. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1235. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1236. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1237. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1238. struct ggml_context * ctx,
  1239. struct ggml_tensor * a,
  1240. ggml_unary_op_f32_t fun),
  1241. "use ggml_map_custom1 instead");
  1242. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1243. struct ggml_context * ctx,
  1244. struct ggml_tensor * a,
  1245. ggml_unary_op_f32_t fun),
  1246. "use ggml_map_custom1_inplace instead");
  1247. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a,
  1250. struct ggml_tensor * b,
  1251. ggml_binary_op_f32_t fun),
  1252. "use ggml_map_custom2 instead");
  1253. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1254. struct ggml_context * ctx,
  1255. struct ggml_tensor * a,
  1256. struct ggml_tensor * b,
  1257. ggml_binary_op_f32_t fun),
  1258. "use ggml_map_custom2_inplace instead");
  1259. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1260. struct ggml_context * ctx,
  1261. struct ggml_tensor * a,
  1262. ggml_custom1_op_f32_t fun),
  1263. "use ggml_map_custom1 instead");
  1264. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. ggml_custom1_op_f32_t fun),
  1268. "use ggml_map_custom1_inplace instead");
  1269. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1270. struct ggml_context * ctx,
  1271. struct ggml_tensor * a,
  1272. struct ggml_tensor * b,
  1273. ggml_custom2_op_f32_t fun),
  1274. "use ggml_map_custom2 instead");
  1275. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1276. struct ggml_context * ctx,
  1277. struct ggml_tensor * a,
  1278. struct ggml_tensor * b,
  1279. ggml_custom2_op_f32_t fun),
  1280. "use ggml_map_custom2_inplace instead");
  1281. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1282. struct ggml_context * ctx,
  1283. struct ggml_tensor * a,
  1284. struct ggml_tensor * b,
  1285. struct ggml_tensor * c,
  1286. ggml_custom3_op_f32_t fun),
  1287. "use ggml_map_custom3 instead");
  1288. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1289. struct ggml_context * ctx,
  1290. struct ggml_tensor * a,
  1291. struct ggml_tensor * b,
  1292. struct ggml_tensor * c,
  1293. ggml_custom3_op_f32_t fun),
  1294. "use ggml_map_custom3_inplace instead");
  1295. // custom operators v2
  1296. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1297. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1298. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1299. #define GGML_N_TASKS_MAX -1
  1300. GGML_API struct ggml_tensor * ggml_map_custom1(
  1301. struct ggml_context * ctx,
  1302. struct ggml_tensor * a,
  1303. ggml_custom1_op_t fun,
  1304. int n_tasks,
  1305. void * userdata);
  1306. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1307. struct ggml_context * ctx,
  1308. struct ggml_tensor * a,
  1309. ggml_custom1_op_t fun,
  1310. int n_tasks,
  1311. void * userdata);
  1312. GGML_API struct ggml_tensor * ggml_map_custom2(
  1313. struct ggml_context * ctx,
  1314. struct ggml_tensor * a,
  1315. struct ggml_tensor * b,
  1316. ggml_custom2_op_t fun,
  1317. int n_tasks,
  1318. void * userdata);
  1319. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1320. struct ggml_context * ctx,
  1321. struct ggml_tensor * a,
  1322. struct ggml_tensor * b,
  1323. ggml_custom2_op_t fun,
  1324. int n_tasks,
  1325. void * userdata);
  1326. GGML_API struct ggml_tensor * ggml_map_custom3(
  1327. struct ggml_context * ctx,
  1328. struct ggml_tensor * a,
  1329. struct ggml_tensor * b,
  1330. struct ggml_tensor * c,
  1331. ggml_custom3_op_t fun,
  1332. int n_tasks,
  1333. void * userdata);
  1334. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1335. struct ggml_context * ctx,
  1336. struct ggml_tensor * a,
  1337. struct ggml_tensor * b,
  1338. struct ggml_tensor * c,
  1339. ggml_custom3_op_t fun,
  1340. int n_tasks,
  1341. void * userdata);
  1342. // loss function
  1343. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1344. struct ggml_context * ctx,
  1345. struct ggml_tensor * a,
  1346. struct ggml_tensor * b);
  1347. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1348. struct ggml_context * ctx,
  1349. struct ggml_tensor * a,
  1350. struct ggml_tensor * b,
  1351. struct ggml_tensor * c);
  1352. //
  1353. // automatic differentiation
  1354. //
  1355. GGML_API void ggml_set_param(
  1356. struct ggml_context * ctx,
  1357. struct ggml_tensor * tensor);
  1358. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1359. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1360. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1361. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1362. // graph allocation in a context
  1363. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
  1364. GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1365. GGML_API size_t ggml_graph_overhead(void);
  1366. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1367. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1368. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1369. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1370. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1371. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1372. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1373. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1374. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1375. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1376. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1377. // print info and performance information for the graph
  1378. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1379. // dump the graph into a file using the dot format
  1380. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1381. //
  1382. // optimization
  1383. //
  1384. // optimization methods
  1385. enum ggml_opt_type {
  1386. GGML_OPT_ADAM,
  1387. GGML_OPT_LBFGS,
  1388. };
  1389. // linesearch methods
  1390. enum ggml_linesearch {
  1391. GGML_LINESEARCH_DEFAULT = 1,
  1392. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1393. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1394. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1395. };
  1396. // optimization return values
  1397. enum ggml_opt_result {
  1398. GGML_OPT_OK = 0,
  1399. GGML_OPT_DID_NOT_CONVERGE,
  1400. GGML_OPT_NO_CONTEXT,
  1401. GGML_OPT_INVALID_WOLFE,
  1402. GGML_OPT_FAIL,
  1403. GGML_LINESEARCH_FAIL = -128,
  1404. GGML_LINESEARCH_MINIMUM_STEP,
  1405. GGML_LINESEARCH_MAXIMUM_STEP,
  1406. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1407. GGML_LINESEARCH_INVALID_PARAMETERS,
  1408. };
  1409. typedef void (*ggml_opt_callback)(void * data, float * sched);
  1410. // optimization parameters
  1411. //
  1412. // see ggml.c (ggml_opt_default_params) for default values
  1413. //
  1414. struct ggml_opt_params {
  1415. enum ggml_opt_type type;
  1416. int n_threads;
  1417. // delta-based convergence test
  1418. //
  1419. // if past == 0 - disabled
  1420. // if past > 0:
  1421. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1422. //
  1423. int past;
  1424. float delta;
  1425. // maximum number of iterations without improvement
  1426. //
  1427. // if 0 - disabled
  1428. // if > 0:
  1429. // assume convergence if no cost improvement in this number of iterations
  1430. //
  1431. int max_no_improvement;
  1432. bool print_forward_graph;
  1433. bool print_backward_graph;
  1434. // ADAM parameters
  1435. struct {
  1436. int n_iter;
  1437. float sched; // schedule multiplier (fixed, decay or warmup)
  1438. float decay; // weight decay for AdamW, use 0.0f to disable
  1439. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1440. float alpha; // learning rate
  1441. float beta1;
  1442. float beta2;
  1443. float eps; // epsilon for numerical stability
  1444. float eps_f; // epsilon for convergence test
  1445. float eps_g; // epsilon for convergence test
  1446. float gclip; // gradient clipping
  1447. } adam;
  1448. // LBFGS parameters
  1449. struct {
  1450. int m; // number of corrections to approximate the inv. Hessian
  1451. int n_iter;
  1452. int max_linesearch;
  1453. float eps; // convergence tolerance
  1454. float ftol; // line search tolerance
  1455. float wolfe;
  1456. float min_step;
  1457. float max_step;
  1458. enum ggml_linesearch linesearch;
  1459. } lbfgs;
  1460. };
  1461. struct ggml_opt_context {
  1462. struct ggml_context * ctx;
  1463. struct ggml_opt_params params;
  1464. int iter;
  1465. int64_t nx; // number of parameter elements
  1466. bool just_initialized;
  1467. float loss_before;
  1468. float loss_after;
  1469. struct {
  1470. struct ggml_tensor * m; // first moment
  1471. struct ggml_tensor * v; // second moment
  1472. struct ggml_tensor * pf; // past function values
  1473. float fx_best;
  1474. float fx_prev;
  1475. int n_no_improvement;
  1476. } adam;
  1477. struct {
  1478. struct ggml_tensor * x; // current parameters
  1479. struct ggml_tensor * xp; // previous parameters
  1480. struct ggml_tensor * g; // current gradient
  1481. struct ggml_tensor * gp; // previous gradient
  1482. struct ggml_tensor * d; // search direction
  1483. struct ggml_tensor * pf; // past function values
  1484. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1485. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1486. struct ggml_tensor * lms; // the L-BFGS memory s
  1487. struct ggml_tensor * lmy; // the L-BFGS memory y
  1488. float fx_best;
  1489. float step;
  1490. int j;
  1491. int k;
  1492. int end;
  1493. int n_no_improvement;
  1494. } lbfgs;
  1495. };
  1496. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1497. // optimize the function defined by the tensor f
  1498. GGML_API enum ggml_opt_result ggml_opt(
  1499. struct ggml_context * ctx,
  1500. struct ggml_opt_params params,
  1501. struct ggml_tensor * f);
  1502. // initialize optimizer context
  1503. GGML_API void ggml_opt_init(
  1504. struct ggml_context * ctx,
  1505. struct ggml_opt_context * opt,
  1506. struct ggml_opt_params params,
  1507. int64_t nx);
  1508. // continue optimizing the function defined by the tensor f
  1509. GGML_API enum ggml_opt_result ggml_opt_resume(
  1510. struct ggml_context * ctx,
  1511. struct ggml_opt_context * opt,
  1512. struct ggml_tensor * f);
  1513. // continue optimizing the function defined by the tensor f
  1514. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1515. struct ggml_context * ctx,
  1516. struct ggml_opt_context * opt,
  1517. struct ggml_tensor * f,
  1518. struct ggml_cgraph * gf,
  1519. struct ggml_cgraph * gb,
  1520. ggml_opt_callback callback,
  1521. void * callback_data);
  1522. //
  1523. // quantization
  1524. //
  1525. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1526. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1527. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1528. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1529. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1530. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1531. //
  1532. // gguf
  1533. //
  1534. enum gguf_type {
  1535. GGUF_TYPE_UINT8 = 0,
  1536. GGUF_TYPE_INT8 = 1,
  1537. GGUF_TYPE_UINT16 = 2,
  1538. GGUF_TYPE_INT16 = 3,
  1539. GGUF_TYPE_UINT32 = 4,
  1540. GGUF_TYPE_INT32 = 5,
  1541. GGUF_TYPE_FLOAT32 = 6,
  1542. GGUF_TYPE_BOOL = 7,
  1543. GGUF_TYPE_STRING = 8,
  1544. GGUF_TYPE_ARRAY = 9,
  1545. GGUF_TYPE_UINT64 = 10,
  1546. GGUF_TYPE_INT64 = 11,
  1547. GGUF_TYPE_FLOAT64 = 12,
  1548. GGUF_TYPE_COUNT, // marks the end of the enum
  1549. };
  1550. struct gguf_context;
  1551. struct gguf_init_params {
  1552. bool no_alloc;
  1553. // if not NULL, create a ggml_context and allocate the tensor data in it
  1554. struct ggml_context ** ctx;
  1555. };
  1556. GGML_API struct gguf_context * gguf_init_empty(void);
  1557. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1558. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1559. GGML_API void gguf_free(struct gguf_context * ctx);
  1560. GGML_API const char * gguf_type_name(enum gguf_type type);
  1561. GGML_API int gguf_get_version (struct gguf_context * ctx);
  1562. GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
  1563. GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
  1564. GGML_API void * gguf_get_data (struct gguf_context * ctx);
  1565. GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
  1566. GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
  1567. GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
  1568. GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
  1569. GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
  1570. // results are undefined if the wrong type is used for the key
  1571. GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
  1572. GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
  1573. GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
  1574. GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
  1575. GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
  1576. GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
  1577. GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
  1578. GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i);
  1579. GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i);
  1580. GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i);
  1581. GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
  1582. GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
  1583. GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
  1584. GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
  1585. GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
  1586. GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
  1587. GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
  1588. GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
  1589. GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
  1590. // overrides existing values or adds a new one
  1591. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1592. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1593. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1594. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1595. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1596. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1597. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1598. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1599. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1600. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1601. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1602. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1603. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1604. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1605. // set or add KV pairs from another context
  1606. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1607. // manage tensor info
  1608. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1609. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1610. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1611. // writing gguf files can be done in 2 ways:
  1612. //
  1613. // - write the entire gguf_context to a binary file in a single pass:
  1614. //
  1615. // gguf_write_to_file(ctx, fname);
  1616. //
  1617. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1618. //
  1619. // FILE * f = fopen(fname, "wb");
  1620. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1621. // fwrite(f, ...);
  1622. // void * data = gguf_meta_get_meta_data(ctx);
  1623. // fseek(f, 0, SEEK_SET);
  1624. // fwrite(f, data, gguf_get_meta_size(ctx));
  1625. // free(data);
  1626. // fclose(f);
  1627. //
  1628. // write the entire context to a binary file
  1629. GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
  1630. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1631. GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
  1632. GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
  1633. //
  1634. // system info
  1635. //
  1636. GGML_API int ggml_cpu_has_avx (void);
  1637. GGML_API int ggml_cpu_has_avx2 (void);
  1638. GGML_API int ggml_cpu_has_avx512 (void);
  1639. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1640. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1641. GGML_API int ggml_cpu_has_fma (void);
  1642. GGML_API int ggml_cpu_has_neon (void);
  1643. GGML_API int ggml_cpu_has_arm_fma (void);
  1644. GGML_API int ggml_cpu_has_f16c (void);
  1645. GGML_API int ggml_cpu_has_fp16_va (void);
  1646. GGML_API int ggml_cpu_has_wasm_simd (void);
  1647. GGML_API int ggml_cpu_has_blas (void);
  1648. GGML_API int ggml_cpu_has_cublas (void);
  1649. GGML_API int ggml_cpu_has_clblast (void);
  1650. GGML_API int ggml_cpu_has_gpublas (void);
  1651. GGML_API int ggml_cpu_has_sse3 (void);
  1652. GGML_API int ggml_cpu_has_ssse3 (void);
  1653. GGML_API int ggml_cpu_has_vsx (void);
  1654. //
  1655. // Internal types and functions exposed for tests and benchmarks
  1656. //
  1657. #ifdef __cplusplus
  1658. // restrict not standard in C++
  1659. #define GGML_RESTRICT
  1660. #else
  1661. #define GGML_RESTRICT restrict
  1662. #endif
  1663. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1664. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1665. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1666. typedef struct {
  1667. const char * type_name;
  1668. int blck_size;
  1669. size_t type_size;
  1670. bool is_quantized;
  1671. ggml_to_float_t to_float;
  1672. ggml_from_float_t from_float;
  1673. ggml_from_float_t from_float_reference;
  1674. ggml_vec_dot_t vec_dot;
  1675. enum ggml_type vec_dot_type;
  1676. } ggml_type_traits_t;
  1677. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1678. #ifdef __cplusplus
  1679. }
  1680. #endif