tensor_mapping.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "transformer.embd.wte", # phi2
  17. ),
  18. # Token type embeddings
  19. MODEL_TENSOR.TOKEN_TYPES: (
  20. "embeddings.token_type_embeddings", # bert
  21. ),
  22. # Normalization of token embeddings
  23. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  24. "word_embeddings_layernorm", # bloom
  25. ),
  26. # Position embeddings
  27. MODEL_TENSOR.POS_EMBD: (
  28. "transformer.wpe", # gpt2
  29. "embeddings.position_embeddings", # bert
  30. ),
  31. # Output
  32. MODEL_TENSOR.OUTPUT: (
  33. "embed_out", # gptneox
  34. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  35. "output", # llama-pth bloom
  36. "word_embeddings_for_head", # persimmon
  37. "lm_head.linear", # phi2
  38. ),
  39. # Output norm
  40. MODEL_TENSOR.OUTPUT_NORM: (
  41. "gpt_neox.final_layer_norm", # gptneox
  42. "transformer.ln_f", # gpt2 gpt-j falcon
  43. "model.norm", # llama-hf baichuan
  44. "norm", # llama-pth
  45. "embeddings.LayerNorm", # bert
  46. "transformer.norm_f", # mpt
  47. "ln_f", # refact bloom qwen
  48. "language_model.encoder.final_layernorm", # persimmon
  49. "lm_head.ln", # phi2
  50. ),
  51. # Rope frequencies
  52. MODEL_TENSOR.ROPE_FREQS: (
  53. "rope.freqs", # llama-pth
  54. ),
  55. }
  56. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  57. # Attention norm
  58. MODEL_TENSOR.ATTN_NORM: (
  59. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  60. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  61. "transformer.blocks.{bid}.norm_1", # mpt
  62. "transformer.h.{bid}.input_layernorm", # falcon7b
  63. "h.{bid}.input_layernorm", # bloom
  64. "transformer.h.{bid}.ln_mlp", # falcon40b
  65. "model.layers.{bid}.input_layernorm", # llama-hf
  66. "layers.{bid}.attention_norm", # llama-pth
  67. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  68. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  69. "model.layers.{bid}.ln1", # yi
  70. "transformer.h.{bid}.ln", # phi2
  71. "model.layers.layers.{bid}.norm", # plamo
  72. ),
  73. # Attention norm 2
  74. MODEL_TENSOR.ATTN_NORM_2: (
  75. "transformer.h.{bid}.ln_attn", # falcon40b
  76. ),
  77. # Attention query-key-value
  78. MODEL_TENSOR.ATTN_QKV: (
  79. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  80. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  81. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  82. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  83. "h.{bid}.self_attention.query_key_value", # bloom
  84. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  85. "transformer.h.{bid}.mixer.Wqkv", # phi2
  86. ),
  87. # Attention query
  88. MODEL_TENSOR.ATTN_Q: (
  89. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  90. "layers.{bid}.attention.wq", # llama-pth
  91. "encoder.layer.{bid}.attention.self.query", # bert
  92. "transformer.h.{bid}.attn.q_proj", # gpt-j
  93. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  94. ),
  95. # Attention key
  96. MODEL_TENSOR.ATTN_K: (
  97. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  98. "layers.{bid}.attention.wk", # llama-pth
  99. "encoder.layer.{bid}.attention.self.key", # bert
  100. "transformer.h.{bid}.attn.k_proj", # gpt-j
  101. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  102. ),
  103. # Attention value
  104. MODEL_TENSOR.ATTN_V: (
  105. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  106. "layers.{bid}.attention.wv", # llama-pth
  107. "encoder.layer.{bid}.attention.self.value", # bert
  108. "transformer.h.{bid}.attn.v_proj", # gpt-j
  109. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  110. ),
  111. # Attention output
  112. MODEL_TENSOR.ATTN_OUT: (
  113. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  114. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  115. "transformer.blocks.{bid}.attn.out_proj", # mpt
  116. "transformer.h.{bid}.self_attention.dense", # falcon
  117. "h.{bid}.self_attention.dense", # bloom
  118. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  119. "layers.{bid}.attention.wo", # llama-pth
  120. "encoder.layer.{bid}.attention.output.dense", # bert
  121. "transformer.h.{bid}.attn.out_proj", # gpt-j
  122. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  123. "transformer.h.{bid}.mixer.out_proj", # phi2
  124. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  125. ),
  126. # Rotary embeddings
  127. MODEL_TENSOR.ATTN_ROT_EMBD: (
  128. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  129. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  130. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  131. ),
  132. # Feed-forward norm
  133. MODEL_TENSOR.FFN_NORM: (
  134. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  135. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  136. "h.{bid}.post_attention_layernorm", # bloom
  137. "transformer.blocks.{bid}.norm_2", # mpt
  138. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  139. "layers.{bid}.ffn_norm", # llama-pth
  140. "encoder.layer.{bid}.output.LayerNorm", # bert
  141. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  142. "model.layers.{bid}.ln2", # yi
  143. ),
  144. MODEL_TENSOR.FFN_GATE_INP: (
  145. "layers.{bid}.feed_forward.gate", # mixtral
  146. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  147. ),
  148. # Feed-forward up
  149. MODEL_TENSOR.FFN_UP: (
  150. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  151. "transformer.h.{bid}.mlp.c_fc", # gpt2
  152. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  153. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  154. "h.{bid}.mlp.dense_h_to_4h", # bloom
  155. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  156. "layers.{bid}.feed_forward.w3", # llama-pth
  157. "encoder.layer.{bid}.intermediate.dense", # bert
  158. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  159. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  160. "transformer.h.{bid}.mlp.w1", # qwen
  161. "transformer.h.{bid}.mlp.fc1", # phi2
  162. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  163. ),
  164. MODEL_TENSOR.FFN_UP_EXP: (
  165. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  166. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  167. ),
  168. # Feed-forward gate
  169. MODEL_TENSOR.FFN_GATE: (
  170. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  171. "layers.{bid}.feed_forward.w1", # llama-pth
  172. "transformer.h.{bid}.mlp.w2", # qwen
  173. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  174. ),
  175. MODEL_TENSOR.FFN_GATE_EXP: (
  176. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  177. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  178. ),
  179. # Feed-forward down
  180. MODEL_TENSOR.FFN_DOWN: (
  181. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  182. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  183. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  184. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  185. "h.{bid}.mlp.dense_4h_to_h", # bloom
  186. "model.layers.{bid}.mlp.down_proj", # llama-hf
  187. "layers.{bid}.feed_forward.w2", # llama-pth
  188. "encoder.layer.{bid}.output.dense", # bert
  189. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  190. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  191. "transformer.h.{bid}.mlp.fc2", # phi2
  192. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  193. ),
  194. MODEL_TENSOR.FFN_DOWN_EXP: (
  195. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  196. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  197. ),
  198. MODEL_TENSOR.ATTN_Q_NORM: (
  199. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  200. ),
  201. MODEL_TENSOR.ATTN_K_NORM: (
  202. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  203. ),
  204. MODEL_TENSOR.ROPE_FREQS: (
  205. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  206. ),
  207. }
  208. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  209. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  210. self.mapping = {}
  211. for tensor, keys in self.mappings_cfg.items():
  212. if tensor not in MODEL_TENSORS[arch]:
  213. continue
  214. tensor_name = TENSOR_NAMES[tensor]
  215. self.mapping[tensor_name] = (tensor, tensor_name)
  216. for key in keys:
  217. self.mapping[key] = (tensor, tensor_name)
  218. for bid in range(n_blocks):
  219. for tensor, keys in self.block_mappings_cfg.items():
  220. if tensor not in MODEL_TENSORS[arch]:
  221. continue
  222. # TODO: make this configurable
  223. n_experts = 8
  224. for xid in range(n_experts):
  225. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  226. self.mapping[tensor_name] = (tensor, tensor_name)
  227. for key in keys:
  228. key = key.format(bid = bid, xid = xid)
  229. self.mapping[key] = (tensor, tensor_name)
  230. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  231. result = self.mapping.get(key)
  232. if result is not None:
  233. return result
  234. for suffix in try_suffixes:
  235. if key.endswith(suffix):
  236. result = self.mapping.get(key[:-len(suffix)])
  237. if result is not None:
  238. return result[0], result[1] + suffix
  239. return None
  240. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  241. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  242. if result is None:
  243. return None
  244. return result[1]
  245. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  246. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  247. if result is None:
  248. return None
  249. return result[0]
  250. def __getitem__(self, key: str) -> str:
  251. try:
  252. return self.mapping[key][1]
  253. except KeyError:
  254. raise KeyError(key)
  255. def __contains__(self, key: str) -> bool:
  256. return key in self.mapping
  257. def __repr__(self) -> str:
  258. return repr(self.mapping)
  259. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  260. return TensorNameMap(arch, n_blocks)