common.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <sstream>
  7. #ifdef _WIN32
  8. #define DIRECTORY_SEPARATOR '\\'
  9. #else
  10. #define DIRECTORY_SEPARATOR '/'
  11. #endif // _WIN32
  12. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  13. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  14. #define print_build_info() do { \
  15. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  16. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  17. } while(0)
  18. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  19. struct common_lora_adapter_info {
  20. std::string path;
  21. float scale;
  22. };
  23. struct common_lora_adapter_container : common_lora_adapter_info {
  24. struct llama_lora_adapter * adapter;
  25. };
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern char const * LLAMA_COMMIT;
  29. extern char const * LLAMA_COMPILER;
  30. extern char const * LLAMA_BUILD_TARGET;
  31. struct common_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. struct cpu_params {
  36. int n_threads = -1;
  37. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  38. bool mask_valid = false; // Default: any CPU
  39. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  40. bool strict_cpu = false; // Use strict CPU placement
  41. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  42. };
  43. int32_t cpu_get_num_physical_cores();
  44. int32_t cpu_get_num_math();
  45. //
  46. // Common params
  47. //
  48. enum llama_example {
  49. LLAMA_EXAMPLE_COMMON,
  50. LLAMA_EXAMPLE_SPECULATIVE,
  51. LLAMA_EXAMPLE_MAIN,
  52. LLAMA_EXAMPLE_INFILL,
  53. LLAMA_EXAMPLE_EMBEDDING,
  54. LLAMA_EXAMPLE_PERPLEXITY,
  55. LLAMA_EXAMPLE_RETRIEVAL,
  56. LLAMA_EXAMPLE_PASSKEY,
  57. LLAMA_EXAMPLE_IMATRIX,
  58. LLAMA_EXAMPLE_BENCH,
  59. LLAMA_EXAMPLE_SERVER,
  60. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  61. LLAMA_EXAMPLE_EXPORT_LORA,
  62. LLAMA_EXAMPLE_LLAVA,
  63. LLAMA_EXAMPLE_LOOKUP,
  64. LLAMA_EXAMPLE_PARALLEL,
  65. LLAMA_EXAMPLE_COUNT,
  66. };
  67. enum common_sampler_type {
  68. COMMON_SAMPLER_TYPE_NONE = 0,
  69. COMMON_SAMPLER_TYPE_TOP_K = 1,
  70. COMMON_SAMPLER_TYPE_TOP_P = 2,
  71. COMMON_SAMPLER_TYPE_MIN_P = 3,
  72. COMMON_SAMPLER_TYPE_TFS_Z = 4,
  73. COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
  74. COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
  75. COMMON_SAMPLER_TYPE_XTC = 7,
  76. COMMON_SAMPLER_TYPE_INFILL = 8,
  77. };
  78. // dimensionality reduction methods, used by cvector-generator
  79. enum dimre_method {
  80. DIMRE_METHOD_PCA,
  81. DIMRE_METHOD_MEAN,
  82. };
  83. // sampler parameters
  84. struct common_sampler_params {
  85. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  86. int32_t n_prev = 64; // number of previous tokens to remember
  87. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  88. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  89. int32_t top_k = 40; // <= 0 to use vocab size
  90. float top_p = 0.95f; // 1.0 = disabled
  91. float min_p = 0.05f; // 0.0 = disabled
  92. float xtc_probability = 0.00f; // 0.0 = disabled
  93. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  94. float tfs_z = 1.00f; // 1.0 = disabled
  95. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  96. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  97. float dynatemp_range = 0.00f; // 0.0 = disabled
  98. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  99. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  100. float penalty_repeat = 1.00f; // 1.0 = disabled
  101. float penalty_freq = 0.00f; // 0.0 = disabled
  102. float penalty_present = 0.00f; // 0.0 = disabled
  103. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  104. float mirostat_tau = 5.00f; // target entropy
  105. float mirostat_eta = 0.10f; // learning rate
  106. bool penalize_nl = false; // consider newlines as a repeatable token
  107. bool ignore_eos = false;
  108. bool no_perf = false; // disable performance metrics
  109. std::vector<enum common_sampler_type> samplers = {
  110. COMMON_SAMPLER_TYPE_TOP_K,
  111. COMMON_SAMPLER_TYPE_TFS_Z,
  112. COMMON_SAMPLER_TYPE_TYPICAL_P,
  113. COMMON_SAMPLER_TYPE_TOP_P,
  114. COMMON_SAMPLER_TYPE_MIN_P,
  115. COMMON_SAMPLER_TYPE_XTC,
  116. COMMON_SAMPLER_TYPE_TEMPERATURE,
  117. };
  118. std::string grammar; // optional BNF-like grammar to constrain sampling
  119. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  120. // print the parameters into a string
  121. std::string print() const;
  122. };
  123. struct common_params {
  124. int32_t n_predict = -1; // new tokens to predict
  125. int32_t n_ctx = 0; // context size
  126. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  127. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  128. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  129. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  130. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  131. int32_t n_parallel = 1; // number of parallel sequences to decode
  132. int32_t n_sequences = 1; // number of sequences to decode
  133. float p_split = 0.1f; // speculative decoding split probability
  134. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  135. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  136. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  137. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  138. int32_t grp_attn_n = 1; // group-attention factor
  139. int32_t grp_attn_w = 512; // group-attention width
  140. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  141. float rope_freq_base = 0.0f; // RoPE base frequency
  142. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  143. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  144. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  145. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  146. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  147. int32_t yarn_orig_ctx = 0; // YaRN original context length
  148. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  149. struct cpu_params cpuparams;
  150. struct cpu_params cpuparams_batch;
  151. struct cpu_params draft_cpuparams;
  152. struct cpu_params draft_cpuparams_batch;
  153. ggml_backend_sched_eval_callback cb_eval = nullptr;
  154. void * cb_eval_user_data = nullptr;
  155. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  156. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  157. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  158. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  159. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  160. struct common_sampler_params sparams;
  161. std::string model = ""; // model path // NOLINT
  162. std::string model_draft = ""; // draft model for speculative decoding // NOLINT
  163. std::string model_alias = "unknown"; // model alias // NOLINT
  164. std::string model_url = ""; // model url to download // NOLINT
  165. std::string hf_token = ""; // HF token // NOLINT
  166. std::string hf_repo = ""; // HF repo // NOLINT
  167. std::string hf_file = ""; // HF file // NOLINT
  168. std::string prompt = ""; // NOLINT
  169. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  170. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  171. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  172. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  173. std::string logdir = ""; // directory in which to save YAML log files // NOLINT
  174. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  175. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  176. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  177. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  178. std::vector<std::string> in_files; // all input files
  179. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  180. std::vector<llama_model_kv_override> kv_overrides;
  181. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  182. std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  183. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  184. int32_t verbosity = 0;
  185. int32_t control_vector_layer_start = -1; // layer range for control vector
  186. int32_t control_vector_layer_end = -1; // layer range for control vector
  187. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  188. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  189. // (which is more convenient to use for plotting)
  190. //
  191. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  192. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  193. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  194. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  195. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  196. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  197. bool kl_divergence = false; // compute KL divergence
  198. bool usage = false; // print usage
  199. bool use_color = false; // use color to distinguish generations and inputs
  200. bool special = false; // enable special token output
  201. bool interactive = false; // interactive mode
  202. bool interactive_first = false; // wait for user input immediately
  203. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  204. bool prompt_cache_all = false; // save user input and generations to prompt cache
  205. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  206. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  207. bool multiline_input = false; // reverse the usage of `\`
  208. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  209. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  210. bool flash_attn = false; // flash attention
  211. bool no_perf = false; // disable performance metrics
  212. bool ctx_shift = true; // context shift on inifinite text generation
  213. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  214. bool logits_all = false; // return logits for all tokens in the batch
  215. bool use_mmap = true; // use mmap for faster loads
  216. bool use_mlock = false; // use mlock to keep model in memory
  217. bool verbose_prompt = false; // print prompt tokens before generation
  218. bool display_prompt = true; // print prompt before generation
  219. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  220. bool no_kv_offload = false; // disable KV offloading
  221. bool warmup = true; // warmup run
  222. bool check_tensors = false; // validate tensor data
  223. std::string cache_type_k = "f16"; // KV cache data type for the K
  224. std::string cache_type_v = "f16"; // KV cache data type for the V
  225. // multimodal models (see examples/llava)
  226. std::string mmproj = ""; // path to multimodal projector // NOLINT
  227. std::vector<std::string> image; // path to image file(s)
  228. // embedding
  229. bool embedding = false; // get only sentence embedding
  230. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  231. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  232. std::string embd_sep = "\n"; // separator of embendings
  233. bool reranking = false; // enable reranking support on server
  234. // server params
  235. int32_t port = 8080; // server listens on this network port
  236. int32_t timeout_read = 600; // http read timeout in seconds
  237. int32_t timeout_write = timeout_read; // http write timeout in seconds
  238. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  239. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  240. std::string hostname = "127.0.0.1";
  241. std::string public_path = ""; // NOLINT
  242. std::string chat_template = ""; // NOLINT
  243. bool enable_chat_template = true;
  244. std::vector<std::string> api_keys;
  245. std::string ssl_file_key = ""; // NOLINT
  246. std::string ssl_file_cert = ""; // NOLINT
  247. // "advanced" endpoints are disabled by default for better security
  248. bool webui = true;
  249. bool endpoint_slots = false;
  250. bool endpoint_props = false; // only control POST requests, not GET
  251. bool endpoint_metrics = false;
  252. bool log_json = false;
  253. std::string slot_save_path;
  254. float slot_prompt_similarity = 0.5f;
  255. // batched-bench params
  256. bool is_pp_shared = false;
  257. std::vector<int32_t> n_pp;
  258. std::vector<int32_t> n_tg;
  259. std::vector<int32_t> n_pl;
  260. // retrieval params
  261. std::vector<std::string> context_files; // context files to embed
  262. int32_t chunk_size = 64; // chunk size for context embedding
  263. std::string chunk_separator = "\n"; // chunk separator for context embedding
  264. // passkey params
  265. int32_t n_junk = 250; // number of times to repeat the junk text
  266. int32_t i_pos = -1; // position of the passkey in the junk text
  267. // imatrix params
  268. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  269. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  270. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  271. int32_t i_chunk = 0; // start processing from this chunk
  272. bool process_output = false; // collect data for the output tensor
  273. bool compute_ppl = true; // whether to compute perplexity
  274. // cvector-generator params
  275. int n_pca_batch = 100;
  276. int n_pca_iterations = 1000;
  277. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  278. std::string cvector_outfile = "control_vector.gguf";
  279. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  280. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  281. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  282. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  283. // batched-bench params
  284. bool batched_bench_output_jsonl = false;
  285. };
  286. // call once at the start of a program if it uses libcommon
  287. // initializes the logging system and prints info about the build
  288. void common_init();
  289. std::string common_params_get_system_info(const common_params & params);
  290. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  291. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  292. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  293. bool set_process_priority(enum ggml_sched_priority prio);
  294. //
  295. // String utils
  296. //
  297. #ifdef __GNUC__
  298. #ifdef __MINGW32__
  299. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  300. #else
  301. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  302. #endif
  303. #else
  304. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  305. #endif
  306. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  307. std::string string_format(const char * fmt, ...);
  308. std::vector<std::string> string_split(std::string input, char separator);
  309. std::string string_strip(const std::string & str);
  310. std::string string_get_sortable_timestamp();
  311. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  312. template<class T>
  313. static std::vector<T> string_split(const std::string & str, char delim) {
  314. std::vector<T> values;
  315. std::istringstream str_stream(str);
  316. std::string token;
  317. while (std::getline(str_stream, token, delim)) {
  318. T value;
  319. std::istringstream token_stream(token);
  320. token_stream >> value;
  321. values.push_back(value);
  322. }
  323. return values;
  324. }
  325. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  326. void string_process_escapes(std::string & input);
  327. std::string string_from(bool value);
  328. std::string string_from(const std::vector<int> & values);
  329. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  330. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  331. //
  332. // Filesystem utils
  333. //
  334. bool fs_validate_filename(const std::string & filename);
  335. bool fs_create_directory_with_parents(const std::string & path);
  336. std::string fs_get_cache_directory();
  337. std::string fs_get_cache_file(const std::string & filename);
  338. //
  339. // Model utils
  340. //
  341. struct common_init_result {
  342. struct llama_model * model = nullptr;
  343. struct llama_context * context = nullptr;
  344. std::vector<common_lora_adapter_container> lora_adapters;
  345. };
  346. struct common_init_result common_init_from_params(common_params & params);
  347. struct llama_model_params common_model_params_to_llama (const common_params & params);
  348. struct llama_context_params common_context_params_to_llama(const common_params & params);
  349. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  350. struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  351. struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  352. // clear LoRA adapters from context, then apply new list of adapters
  353. void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
  354. // Batch utils
  355. void common_batch_clear(struct llama_batch & batch);
  356. void common_batch_add(
  357. struct llama_batch & batch,
  358. llama_token id,
  359. llama_pos pos,
  360. const std::vector<llama_seq_id> & seq_ids,
  361. bool logits);
  362. //
  363. // Vocab utils
  364. //
  365. // tokenizes a string into a vector of tokens
  366. // should work similar to Python's `tokenizer.encode`
  367. std::vector<llama_token> common_tokenize(
  368. const struct llama_context * ctx,
  369. const std::string & text,
  370. bool add_special,
  371. bool parse_special = false);
  372. std::vector<llama_token> common_tokenize(
  373. const struct llama_model * model,
  374. const std::string & text,
  375. bool add_special,
  376. bool parse_special = false);
  377. // tokenizes a token into a piece, optionally renders special/control tokens
  378. // should work similar to Python's `tokenizer.id_to_piece`
  379. std::string common_token_to_piece(
  380. const struct llama_context * ctx,
  381. llama_token token,
  382. bool special = true);
  383. // detokenizes a vector of tokens into a string
  384. // should work similar to Python's `tokenizer.decode`
  385. // optionally renders special/control tokens
  386. std::string common_detokenize(
  387. llama_context * ctx,
  388. const std::vector<llama_token> & tokens,
  389. bool special = true);
  390. //
  391. // Chat template utils
  392. //
  393. // same with llama_chat_message, but uses std::string
  394. struct common_chat_msg {
  395. std::string role;
  396. std::string content;
  397. };
  398. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  399. bool common_chat_verify_template(const std::string & tmpl);
  400. // CPP wrapper for llama_chat_apply_template
  401. // If the built-in template is not supported, we default to chatml
  402. // If the custom "tmpl" is not supported, we throw an error
  403. std::string common_chat_apply_template(const struct llama_model * model,
  404. const std::string & tmpl,
  405. const std::vector<common_chat_msg> & chat,
  406. bool add_ass);
  407. // Format single message, while taking into account the position of that message in chat history
  408. std::string common_chat_format_single(const struct llama_model * model,
  409. const std::string & tmpl,
  410. const std::vector<common_chat_msg> & past_msg,
  411. const common_chat_msg & new_msg,
  412. bool add_ass);
  413. // Returns an example of formatted chat
  414. std::string common_chat_format_example(const struct llama_model * model,
  415. const std::string & tmpl);
  416. //
  417. // KV cache utils
  418. //
  419. // Dump the KV cache view with the number of sequences per cell.
  420. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  421. // Dump the KV cache view showing individual sequences in each cell (long output).
  422. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  423. //
  424. // Embedding utils
  425. //
  426. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  427. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  428. //
  429. // Control vector utils
  430. //
  431. struct common_control_vector_data {
  432. int n_embd;
  433. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  434. std::vector<float> data;
  435. };
  436. struct common_control_vector_load_info {
  437. float strength;
  438. std::string fname;
  439. };
  440. // Load control vectors, scale each by strength, and add them together.
  441. // On error, returns {-1, empty}
  442. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  443. //
  444. // Split utils
  445. //
  446. static const char * const LLM_KV_SPLIT_NO = "split.no";
  447. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  448. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  449. //
  450. // YAML utils
  451. //
  452. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  453. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  454. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  455. void yaml_dump_non_result_info(
  456. FILE * stream, const common_params & params, const llama_context * lctx,
  457. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);