1
0

sampling.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. #include "sampling.h"
  2. #include "common.h"
  3. #include <cmath>
  4. #include <unordered_map>
  5. // the ring buffer works similarly to std::deque, but with a fixed capacity
  6. // TODO: deduplicate with llama-impl.h
  7. template<typename T>
  8. struct ring_buffer {
  9. ring_buffer(size_t cap) : capacity(cap), data(cap) {}
  10. T & front() {
  11. if (sz == 0) {
  12. throw std::runtime_error("ring buffer is empty");
  13. }
  14. return data[first];
  15. }
  16. const T & front() const {
  17. if (sz == 0) {
  18. throw std::runtime_error("ring buffer is empty");
  19. }
  20. return data[first];
  21. }
  22. T & back() {
  23. if (sz == 0) {
  24. throw std::runtime_error("ring buffer is empty");
  25. }
  26. return data[pos];
  27. }
  28. const T & back() const {
  29. if (sz == 0) {
  30. throw std::runtime_error("ring buffer is empty");
  31. }
  32. return data[pos];
  33. }
  34. void push_back(const T & value) {
  35. if (sz == capacity) {
  36. // advance the start when buffer is full
  37. first = (first + 1) % capacity;
  38. } else {
  39. sz++;
  40. }
  41. data[pos] = value;
  42. pos = (pos + 1) % capacity;
  43. }
  44. T pop_front() {
  45. if (sz == 0) {
  46. throw std::runtime_error("ring buffer is empty");
  47. }
  48. T value = data[first];
  49. first = (first + 1) % capacity;
  50. sz--;
  51. return value;
  52. }
  53. const T & rat(size_t i) const {
  54. if (i >= sz) {
  55. throw std::runtime_error("ring buffer: index out of bounds");
  56. }
  57. return data[(first + sz - i - 1) % capacity];
  58. }
  59. std::vector<T> to_vector() const {
  60. std::vector<T> result;
  61. result.reserve(sz);
  62. for (size_t i = 0; i < sz; i++) {
  63. result.push_back(data[(first + i) % capacity]);
  64. }
  65. return result;
  66. }
  67. void clear() {
  68. // here only reset the status of the buffer
  69. sz = 0;
  70. first = 0;
  71. pos = 0;
  72. }
  73. bool empty() const {
  74. return sz == 0;
  75. }
  76. size_t size() const {
  77. return sz;
  78. }
  79. size_t capacity = 0;
  80. size_t sz = 0;
  81. size_t first = 0;
  82. size_t pos = 0;
  83. std::vector<T> data;
  84. };
  85. struct common_sampler {
  86. common_sampler_params params;
  87. struct llama_sampler * grmr;
  88. struct llama_sampler * chain;
  89. ring_buffer<llama_token> prev;
  90. std::vector<llama_token_data> cur;
  91. llama_token_data_array cur_p;
  92. void set_logits(struct llama_context * ctx, int idx) {
  93. const auto * logits = llama_get_logits_ith(ctx, idx);
  94. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  95. cur.resize(n_vocab);
  96. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  97. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  98. }
  99. cur_p = { cur.data(), cur.size(), -1, false };
  100. }
  101. };
  102. std::string common_sampler_params::print() const {
  103. char result[1024];
  104. snprintf(result, sizeof(result),
  105. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  106. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
  107. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  108. penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
  109. top_k, tfs_z, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
  110. mirostat, mirostat_eta, mirostat_tau);
  111. return std::string(result);
  112. }
  113. struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
  114. llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
  115. lparams.no_perf = params.no_perf;
  116. auto * result = new common_sampler {
  117. /* .params = */ params,
  118. /* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
  119. /* .chain = */ llama_sampler_chain_init(lparams),
  120. /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
  121. /* .cur = */ {},
  122. /* .cur_p = */ {},
  123. };
  124. llama_sampler_chain_add(result->chain,
  125. llama_sampler_init_logit_bias(
  126. llama_n_vocab(model),
  127. params.logit_bias.size(),
  128. params.logit_bias.data()));
  129. llama_sampler_chain_add(result->chain,
  130. llama_sampler_init_penalties(
  131. llama_n_vocab (model),
  132. llama_token_eos(model),
  133. llama_token_nl (model),
  134. params.penalty_last_n,
  135. params.penalty_repeat,
  136. params.penalty_freq,
  137. params.penalty_present,
  138. params.penalize_nl,
  139. params.ignore_eos));
  140. if (params.temp > 0.0f) {
  141. if (params.mirostat == 0) {
  142. for (const auto & cnstr : params.samplers) {
  143. switch (cnstr) {
  144. case COMMON_SAMPLER_TYPE_TOP_K:
  145. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
  146. break;
  147. case COMMON_SAMPLER_TYPE_TOP_P:
  148. llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
  149. break;
  150. case COMMON_SAMPLER_TYPE_MIN_P:
  151. llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
  152. break;
  153. case COMMON_SAMPLER_TYPE_XTC:
  154. llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
  155. break;
  156. case COMMON_SAMPLER_TYPE_TFS_Z:
  157. llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
  158. break;
  159. case COMMON_SAMPLER_TYPE_TYPICAL_P:
  160. llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
  161. break;
  162. case COMMON_SAMPLER_TYPE_TEMPERATURE:
  163. llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
  164. break;
  165. case COMMON_SAMPLER_TYPE_INFILL:
  166. llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
  167. break;
  168. default:
  169. GGML_ASSERT(false && "unknown sampler type");
  170. }
  171. }
  172. llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
  173. llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
  174. } else if (params.mirostat == 1) {
  175. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  176. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
  177. } else if (params.mirostat == 2) {
  178. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  179. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
  180. } else {
  181. GGML_ASSERT(false && "unknown mirostat version");
  182. }
  183. } else {
  184. if (params.n_probs > 0) {
  185. // some use cases require to sample greedily, but still obtain the probabilities of the top tokens
  186. // ref: https://github.com/ggerganov/llama.cpp/pull/9605
  187. //
  188. // the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
  189. // it is much faster, since we avoid sorting all tokens and should give a good approximation
  190. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
  191. llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
  192. }
  193. llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
  194. }
  195. return result;
  196. }
  197. void common_sampler_free(struct common_sampler * gsmpl) {
  198. if (gsmpl) {
  199. llama_sampler_free(gsmpl->grmr);
  200. llama_sampler_free(gsmpl->chain);
  201. delete gsmpl;
  202. }
  203. }
  204. void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
  205. if (accept_grammar) {
  206. llama_sampler_accept(gsmpl->grmr, token);
  207. }
  208. llama_sampler_accept(gsmpl->chain, token);
  209. gsmpl->prev.push_back(token);
  210. }
  211. void common_sampler_reset(struct common_sampler * gsmpl) {
  212. llama_sampler_reset(gsmpl->grmr);
  213. llama_sampler_reset(gsmpl->chain);
  214. }
  215. struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
  216. return new common_sampler {
  217. /* .params = */ gsmpl->params,
  218. /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
  219. /* .chain = */ llama_sampler_clone(gsmpl->chain),
  220. /* .prev = */ gsmpl->prev,
  221. /* .cur = */ gsmpl->cur,
  222. /* .cur_p = */ gsmpl->cur_p,
  223. };
  224. }
  225. void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
  226. // TODO: measure grammar performance
  227. if (gsmpl) {
  228. llama_perf_sampler_print(gsmpl->chain);
  229. }
  230. if (ctx) {
  231. llama_perf_context_print(ctx);
  232. }
  233. }
  234. llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
  235. gsmpl->set_logits(ctx, idx);
  236. auto & grmr = gsmpl->grmr;
  237. auto & chain = gsmpl->chain;
  238. auto & cur_p = gsmpl->cur_p; // initialized by set_logits
  239. if (grammar_first) {
  240. llama_sampler_apply(grmr, &cur_p);
  241. }
  242. llama_sampler_apply(chain, &cur_p);
  243. GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
  244. const llama_token id = cur_p.data[cur_p.selected].id;
  245. if (grammar_first) {
  246. return id;
  247. }
  248. // check if it the sampled token fits the grammar
  249. {
  250. llama_token_data single_token_data = { id, 1.0f, 0.0f };
  251. llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
  252. llama_sampler_apply(grmr, &single_token_data_array);
  253. const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  254. if (is_valid) {
  255. return id;
  256. }
  257. }
  258. // resampling:
  259. // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
  260. gsmpl->set_logits(ctx, idx);
  261. llama_sampler_apply(grmr, &cur_p);
  262. llama_sampler_apply(chain, &cur_p);
  263. GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
  264. return cur_p.data[cur_p.selected].id;
  265. }
  266. uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
  267. return llama_sampler_get_seed(gsmpl->chain);
  268. }
  269. // helpers
  270. llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
  271. return &gsmpl->cur_p;
  272. }
  273. llama_token common_sampler_last(const struct common_sampler * gsmpl) {
  274. return gsmpl->prev.rat(0);
  275. }
  276. std::string common_sampler_print(const struct common_sampler * gsmpl) {
  277. std::string result = "logits ";
  278. for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
  279. const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
  280. result += std::string("-> ") + llama_sampler_name(smpl) + " ";
  281. }
  282. return result;
  283. }
  284. std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
  285. n = std::min(n, (int) gsmpl->prev.size());
  286. if (n <= 0) {
  287. return "";
  288. }
  289. std::string result;
  290. result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
  291. for (int i = n - 1; i >= 0; i--) {
  292. const llama_token id = gsmpl->prev.rat(i);
  293. GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
  294. result += common_token_to_piece(ctx_main, id);
  295. }
  296. return result;
  297. }
  298. char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
  299. switch (cnstr) {
  300. case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
  301. case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
  302. case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
  303. case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
  304. case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
  305. case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
  306. case COMMON_SAMPLER_TYPE_XTC: return 'x';
  307. case COMMON_SAMPLER_TYPE_INFILL: return 'i';
  308. default : return '?';
  309. }
  310. }
  311. std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
  312. switch (cnstr) {
  313. case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
  314. case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
  315. case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
  316. case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
  317. case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
  318. case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
  319. case COMMON_SAMPLER_TYPE_XTC: return "xtc";
  320. case COMMON_SAMPLER_TYPE_INFILL: return "infill";
  321. default : return "";
  322. }
  323. }
  324. std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  325. std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
  326. { "top_k", COMMON_SAMPLER_TYPE_TOP_K },
  327. { "top_p", COMMON_SAMPLER_TYPE_TOP_P },
  328. { "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  329. { "min_p", COMMON_SAMPLER_TYPE_MIN_P },
  330. { "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
  331. { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
  332. { "xtc", COMMON_SAMPLER_TYPE_XTC },
  333. { "infill", COMMON_SAMPLER_TYPE_INFILL },
  334. };
  335. // since samplers names are written multiple ways
  336. // make it ready for both system names and input names
  337. std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
  338. { "top-k", COMMON_SAMPLER_TYPE_TOP_K },
  339. { "top-p", COMMON_SAMPLER_TYPE_TOP_P },
  340. { "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
  341. { "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  342. { "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
  343. { "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  344. { "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
  345. { "min-p", COMMON_SAMPLER_TYPE_MIN_P },
  346. { "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
  347. { "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
  348. { "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
  349. };
  350. std::vector<common_sampler_type> samplers;
  351. samplers.reserve(names.size());
  352. for (const auto & name : names) {
  353. auto sampler = sampler_canonical_name_map.find(name);
  354. if (sampler != sampler_canonical_name_map.end()) {
  355. samplers.push_back(sampler->second);
  356. } else {
  357. if (allow_alt_names) {
  358. sampler = sampler_alt_name_map.find(name);
  359. if (sampler != sampler_alt_name_map.end()) {
  360. samplers.push_back(sampler->second);
  361. }
  362. }
  363. }
  364. }
  365. return samplers;
  366. }
  367. std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
  368. std::unordered_map<char, common_sampler_type> sampler_name_map = {
  369. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
  370. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
  371. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
  372. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
  373. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
  374. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
  375. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
  376. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
  377. };
  378. std::vector<common_sampler_type> samplers;
  379. samplers.reserve(chars.size());
  380. for (const auto & c : chars) {
  381. const auto sampler = sampler_name_map.find(c);
  382. if (sampler != sampler_name_map.end()) {
  383. samplers.push_back(sampler->second);
  384. }
  385. }
  386. return samplers;
  387. }