mtmd.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. #include "clip.h"
  2. #include "clip-impl.h"
  3. #include "mtmd.h"
  4. #include "mtmd-audio.h"
  5. #include "llama.h"
  6. #include <algorithm>
  7. #include <cerrno>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <limits>
  12. #include <vector>
  13. // represents raw image data, layout is RGBRGBRGB...
  14. // length of data must be nx * ny * 3
  15. struct mtmd_bitmap {
  16. uint32_t nx;
  17. uint32_t ny;
  18. std::vector<unsigned char> data;
  19. std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
  20. bool is_audio = false; // true if the bitmap is audio
  21. };
  22. struct mtmd_image_tokens {
  23. uint32_t nx; // number of tokens in x direction
  24. uint32_t ny; // number of tokens in y direction
  25. bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
  26. uint32_t n_tokens() const { return nx * ny; }
  27. clip_image_f32_batch batch_f32; // preprocessed image patches
  28. std::string id; // optional user-defined ID, useful for KV cache tracking
  29. mtmd_image_tokens clone() {
  30. return mtmd_image_tokens{
  31. nx,
  32. ny,
  33. use_mrope_pos,
  34. batch_f32.clone(),
  35. id
  36. };
  37. }
  38. };
  39. using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens>;
  40. struct mtmd_audio_tokens {
  41. uint32_t n_tokens; // number of tokens
  42. clip_image_f32_batch batch_f32; // preprocessed image patches
  43. std::string id; // optional user-defined ID, useful for KV cache tracking
  44. mtmd_audio_tokens clone() {
  45. return mtmd_audio_tokens{
  46. n_tokens,
  47. batch_f32.clone(),
  48. id
  49. };
  50. }
  51. };
  52. using mtmd_audio_tokens_ptr = std::unique_ptr<mtmd_audio_tokens>;
  53. struct mtmd_input_chunk {
  54. mtmd_input_chunk_type type;
  55. std::vector<llama_token> tokens_text;
  56. mtmd_image_tokens_ptr tokens_image;
  57. mtmd_audio_tokens_ptr tokens_audio;
  58. };
  59. struct mtmd_input_chunks {
  60. std::vector<mtmd_input_chunk> entries;
  61. };
  62. // slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
  63. // models not having it (llava-1.6) will process embeddings without any special tokens in-between
  64. enum mtmd_slice_tmpl {
  65. MTMD_SLICE_TMPL_NONE,
  66. MTMD_SLICE_TMPL_MINICPMV_2_5,
  67. MTMD_SLICE_TMPL_MINICPMV_2_6,
  68. MTMD_SLICE_TMPL_LLAMA4,
  69. // TODO @ngxson : add support for idefics (SmolVLM)
  70. };
  71. const char * mtmd_default_marker() {
  72. return "<__media__>";
  73. }
  74. mtmd_context_params mtmd_context_params_default() {
  75. mtmd_context_params params;
  76. params.use_gpu = true;
  77. params.print_timings = true;
  78. params.n_threads = 4;
  79. params.verbosity = GGML_LOG_LEVEL_INFO;
  80. params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
  81. params.media_marker = mtmd_default_marker();
  82. return params;
  83. }
  84. struct mtmd_context {
  85. struct clip_ctx * ctx_v; // vision
  86. struct clip_ctx * ctx_a; // audio
  87. const struct llama_model * text_model;
  88. std::vector<float> image_embd_v; // image embedding vector
  89. bool print_timings;
  90. int n_threads;
  91. std::string media_marker;
  92. const int n_embd_text;
  93. // these are not token, but strings used to mark the beginning and end of image/audio embeddings
  94. std::string img_beg;
  95. std::string img_end;
  96. std::string aud_beg;
  97. std::string aud_end;
  98. // for llava-uhd style models, we need special tokens in-between slices
  99. // minicpmv calls them "slices", llama 4 calls them "tiles"
  100. mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
  101. llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
  102. llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
  103. llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
  104. llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
  105. llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
  106. llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice end
  107. llama_token tok_sli_img_mid = LLAMA_TOKEN_NULL; // between 2 slices
  108. llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
  109. bool tok_row_end_trail = false;
  110. bool ov_img_first = false;
  111. bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
  112. // for whisper, we pre-calculate the mel filter bank
  113. whisper_preprocessor::whisper_filters w_filters;
  114. // TODO @ngxson : add timings
  115. mtmd_context(const char * mmproj_fname,
  116. const llama_model * text_model,
  117. const mtmd_context_params & ctx_params) :
  118. text_model (text_model),
  119. print_timings(ctx_params.print_timings),
  120. n_threads (ctx_params.n_threads),
  121. media_marker (ctx_params.media_marker),
  122. n_embd_text (llama_model_n_embd(text_model))
  123. {
  124. if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) {
  125. throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead");
  126. }
  127. if (media_marker.empty()) {
  128. throw std::runtime_error("media_marker must not be empty");
  129. }
  130. clip_context_params ctx_clip_params;
  131. ctx_clip_params.use_gpu = ctx_params.use_gpu;
  132. ctx_clip_params.verbosity = ctx_params.verbosity;
  133. auto res = clip_init(mmproj_fname, ctx_clip_params);
  134. ctx_v = res.ctx_v;
  135. ctx_a = res.ctx_a;
  136. if (!ctx_v && !ctx_a) {
  137. throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
  138. }
  139. // if both vision and audio mmproj are present, we need to validate their n_embd
  140. if (ctx_v && ctx_a) {
  141. int n_embd_v = clip_n_mmproj_embd(ctx_v);
  142. int n_embd_a = clip_n_mmproj_embd(ctx_a);
  143. if (n_embd_v != n_embd_a) {
  144. throw std::runtime_error(string_format(
  145. "mismatch between vision and audio mmproj (n_embd_v = %d, n_embd_a = %d)\n",
  146. n_embd_v, n_embd_a));
  147. }
  148. }
  149. // since we already validate n_embd of vision and audio mmproj,
  150. // we can safely assume that they are the same
  151. int n_embd_clip = clip_n_mmproj_embd(ctx_v ? ctx_v : ctx_a);
  152. if (n_embd_text != n_embd_clip) {
  153. throw std::runtime_error(string_format(
  154. "mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n"
  155. "hint: you may be using wrong mmproj\n",
  156. n_embd_text, n_embd_clip));
  157. }
  158. if (ctx_v) {
  159. init_vision();
  160. }
  161. if (ctx_a) {
  162. init_audio();
  163. }
  164. }
  165. void init_vision() {
  166. GGML_ASSERT(ctx_v != nullptr);
  167. use_mrope = clip_is_qwen2vl(ctx_v);
  168. projector_type proj = clip_get_projector_type(ctx_v);
  169. int minicpmv_version = clip_is_minicpmv(ctx_v);
  170. if (minicpmv_version == 2) {
  171. // minicpmv 2.5 format:
  172. // <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
  173. slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
  174. tok_ov_img_start = lookup_token("<image>");
  175. tok_ov_img_end = lookup_token("</image>");
  176. tok_slices_start = lookup_token("<slice>");
  177. tok_slices_end = lookup_token("</slice>");
  178. tok_sli_img_start = tok_ov_img_start;
  179. tok_sli_img_end = tok_ov_img_end;
  180. tok_row_end = lookup_token("\n");
  181. tok_row_end_trail = false; // no trailing end-of-row token
  182. ov_img_first = true;
  183. } else if (minicpmv_version == 3 || minicpmv_version == 4) {
  184. // minicpmv 2.6 format:
  185. // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
  186. slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
  187. tok_ov_img_start = lookup_token("<image>");
  188. tok_ov_img_end = lookup_token("</image>");
  189. tok_sli_img_start = lookup_token("<slice>");
  190. tok_sli_img_end = lookup_token("</slice>");
  191. tok_row_end = lookup_token("\n");
  192. tok_row_end_trail = false; // no trailing end-of-row token
  193. ov_img_first = true;
  194. } else if (minicpmv_version != 0) {
  195. GGML_ASSERT(false && "unsupported minicpmv version");
  196. } else if (proj == PROJECTOR_TYPE_LLAMA4) {
  197. // llama 4 format:
  198. // <|image_start|>
  199. // (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
  200. // (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
  201. // ... <|tile_y_separator|> <-- trailing end-of-row token
  202. // <|image|> (overview) <-- overview image is last
  203. // <|image_end|>
  204. slice_tmpl = MTMD_SLICE_TMPL_LLAMA4;
  205. tok_ov_img_start = lookup_token("<|image|>");
  206. tok_sli_img_mid = lookup_token("<|tile_x_separator|>");
  207. tok_row_end = lookup_token("<|tile_y_separator|>");
  208. tok_row_end_trail = true; // add trailing end-of-row token
  209. ov_img_first = false; // overview image is last
  210. }
  211. // set boi/eoi
  212. if (proj == PROJECTOR_TYPE_GEMMA3) {
  213. // <start_of_image> ... (image embeddings) ... <end_of_image>
  214. img_beg = "<start_of_image>";
  215. img_end = "<end_of_image>";
  216. } else if (proj == PROJECTOR_TYPE_IDEFICS3) {
  217. // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
  218. img_beg = "<fake_token_around_image><global-img>";
  219. img_end = "<fake_token_around_image>";
  220. } else if (proj == PROJECTOR_TYPE_PIXTRAL) {
  221. // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
  222. img_end = "[IMG_END]";
  223. } else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) {
  224. // <|vision_start|> ... (image embeddings) ... <|vision_end|>
  225. img_beg = "<|vision_start|>";
  226. img_end = "<|vision_end|>";
  227. } else if (proj == PROJECTOR_TYPE_LLAMA4) {
  228. // (more details in mtmd_context constructor)
  229. img_beg = "<|image_start|>";
  230. img_end = "<|image_end|>";
  231. LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n"
  232. " https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__);
  233. } else if (proj == PROJECTOR_TYPE_INTERNVL) {
  234. // <img> ... (image embeddings) ... </img>
  235. img_beg = "<img>";
  236. img_end = "</img>";
  237. }
  238. }
  239. void init_audio() {
  240. GGML_ASSERT(ctx_a != nullptr);
  241. projector_type proj = clip_get_projector_type(ctx_a);
  242. if (clip_has_whisper_encoder(ctx_a)) {
  243. // TODO @ngxson : check if model n_mel is 128 or 80
  244. w_filters = whisper_precalc_filters::get_128_bins();
  245. }
  246. LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n"
  247. " https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__);
  248. if (proj == PROJECTOR_TYPE_QWEN2A) {
  249. // <|audio_bos|> ... (embeddings) ... <|audio_eos|>
  250. aud_beg = "<|audio_bos|>";
  251. aud_end = "<|audio_eos|>";
  252. }
  253. }
  254. // get clip ctx based on chunk type
  255. clip_ctx * get_clip_ctx(const mtmd_input_chunk * chunk) const {
  256. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  257. return ctx_v;
  258. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
  259. return ctx_a;
  260. }
  261. GGML_ABORT("unknown chunk type");
  262. }
  263. projector_type proj_type_v() const {
  264. return ctx_v ? clip_get_projector_type(ctx_v) : PROJECTOR_TYPE_UNKNOWN;
  265. }
  266. projector_type proj_type_a() const {
  267. return ctx_a ? clip_get_projector_type(ctx_a) : PROJECTOR_TYPE_UNKNOWN;
  268. }
  269. ~mtmd_context() {
  270. clip_free(ctx_a);
  271. clip_free(ctx_v);
  272. }
  273. private:
  274. llama_token lookup_token(const std::string & token_text) {
  275. const llama_vocab * vocab = llama_model_get_vocab(text_model);
  276. const int n_vocab = llama_vocab_n_tokens(vocab);
  277. for (int i = 0; i < n_vocab; i++) {
  278. if (token_to_piece(vocab, i, true) == token_text) {
  279. return i;
  280. }
  281. }
  282. return LLAMA_TOKEN_NULL;
  283. }
  284. std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
  285. std::string piece;
  286. piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
  287. const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
  288. if (n_chars < 0) {
  289. piece.resize(-n_chars);
  290. int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
  291. GGML_ASSERT(check == -n_chars);
  292. } else {
  293. piece.resize(n_chars);
  294. }
  295. return piece;
  296. }
  297. };
  298. mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
  299. const struct llama_model * text_model,
  300. const struct mtmd_context_params ctx_params) {
  301. try {
  302. return new mtmd_context(mmproj_fname, text_model, ctx_params);
  303. } catch (const std::exception & e) {
  304. LOG_ERR("%s: error: %s\n", __func__, e.what());
  305. return nullptr;
  306. }
  307. }
  308. void mtmd_free(mtmd_context * ctx) {
  309. if (ctx) {
  310. delete ctx;
  311. }
  312. }
  313. struct mtmd_tokenizer {
  314. mtmd_context * ctx;
  315. std::vector<const mtmd_bitmap *> bitmaps;
  316. std::string input_text;
  317. bool add_special;
  318. bool parse_special;
  319. const llama_vocab * vocab;
  320. mtmd_input_chunks cur;
  321. mtmd_tokenizer(mtmd_context * ctx,
  322. const mtmd_input_text * text,
  323. const mtmd_bitmap ** bitmaps,
  324. size_t n_bitmaps) : ctx(ctx), bitmaps(bitmaps, bitmaps + n_bitmaps) {
  325. add_special = text->add_special;
  326. parse_special = text->parse_special;
  327. input_text = text->text;
  328. vocab = llama_model_get_vocab(ctx->text_model);
  329. // for compatibility, we convert image marker to media marker
  330. string_replace_all(input_text, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker);
  331. }
  332. int32_t tokenize(mtmd_input_chunks * output) {
  333. cur.entries.clear();
  334. std::vector<std::string> parts = split_text(input_text, ctx->media_marker);
  335. size_t i_bm = 0; // index of the current bitmap
  336. for (auto & part : parts) {
  337. if (part == ctx->media_marker) {
  338. // this is a marker, we should add the next bitmap
  339. if (i_bm >= bitmaps.size()) {
  340. LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
  341. __func__, bitmaps.size(), parts.size() - 1);
  342. return 1;
  343. }
  344. const mtmd_bitmap * bitmap = bitmaps[i_bm++];
  345. int32_t res = add_media(bitmap);
  346. if (res != 0) {
  347. return res;
  348. }
  349. } else {
  350. // this is a text part, we should add it as text
  351. add_text(part, parse_special);
  352. }
  353. }
  354. if (add_special && llama_vocab_get_add_bos(vocab)) {
  355. // if first chunk is text, we add BOS token to first text chunk
  356. // otherwise, create a new text chunk with BOS token
  357. if (!cur.entries.empty() && cur.entries[0].type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  358. // add BOS token to the beginning of first text chunk
  359. cur.entries[0].tokens_text.insert(cur.entries[0].tokens_text.begin(), llama_vocab_bos(vocab));
  360. } else {
  361. // create a new text chunk with BOS token at the beginning
  362. mtmd_input_chunk bos_chunk{
  363. MTMD_INPUT_CHUNK_TYPE_TEXT,
  364. {llama_vocab_bos(vocab)},
  365. nullptr, // image tokens
  366. nullptr, // audio tokens
  367. };
  368. cur.entries.insert(cur.entries.begin(), std::move(bos_chunk));
  369. }
  370. }
  371. if (add_special && llama_vocab_get_add_eos(vocab)) {
  372. // if last chunk is text, we add EOS token to it
  373. add_text({llama_vocab_eos(vocab)});
  374. }
  375. if (i_bm != bitmaps.size()) {
  376. LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
  377. __func__, bitmaps.size(), parts.size() - 1);
  378. return 1;
  379. }
  380. *output = std::move(cur);
  381. return 0;
  382. }
  383. void add_text(const std::string & txt, bool parse_special) {
  384. LOG_DBG("%s: %s\n", __func__, txt.c_str());
  385. auto tokens = mtmd_tokenize_text_internal(vocab, txt, /* add_special */ false, parse_special);
  386. add_text(tokens);
  387. }
  388. void add_text(const std::vector<llama_token> & tokens) {
  389. if (tokens.empty()) {
  390. return;
  391. }
  392. // if last entry is also a text chunk, add tokens to it instead of creating new chunk
  393. if (!cur.entries.empty() && cur.entries.back().type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  394. cur.entries.back().tokens_text.insert(
  395. cur.entries.back().tokens_text.end(),
  396. tokens.begin(),
  397. tokens.end());
  398. } else {
  399. mtmd_input_chunk chunk{
  400. MTMD_INPUT_CHUNK_TYPE_TEXT,
  401. tokens,
  402. nullptr, // image tokens
  403. nullptr, // audio tokens
  404. };
  405. cur.entries.emplace_back(std::move(chunk));
  406. }
  407. }
  408. int32_t add_media(const mtmd_bitmap * bitmap) {
  409. if (!bitmap->is_audio) {
  410. // handle image
  411. if (!ctx->ctx_v) {
  412. LOG_ERR("%s: error: model does not support vision input\n", __func__);
  413. return 2;
  414. }
  415. if (!ctx->img_beg.empty()) {
  416. add_text(ctx->img_beg, true); // add image begin token
  417. }
  418. // convert mtmd_bitmap to clip_image_u8
  419. clip_image_u8_ptr img_u8(clip_image_u8_init());
  420. img_u8->nx = bitmap->nx;
  421. img_u8->ny = bitmap->ny;
  422. img_u8->buf.resize(bitmap->data.size());
  423. std::memcpy(img_u8->buf.data(), bitmap->data.data(), img_u8->nx * img_u8->ny * 3);
  424. // preprocess image
  425. clip_image_f32_batch batch_f32;
  426. bool ok = clip_image_preprocess(ctx->ctx_v, img_u8.get(), &batch_f32);
  427. if (!ok) {
  428. LOG_ERR("Unable to preprocess image\n");
  429. return 2;
  430. }
  431. // handle llava-uhd style preprocessing
  432. if (
  433. ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
  434. || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
  435. || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
  436. ) {
  437. const int n_col = batch_f32.grid_x;
  438. const int n_row = batch_f32.grid_y;
  439. // split batch into chunks of single images
  440. // NOTE: batch_f32 will be invalidated after this call
  441. auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id);
  442. GGML_ASSERT(chunks.size() > 0);
  443. auto ov_chunk = std::move(chunks.front());
  444. chunks.erase(chunks.begin());
  445. // add overview image (first)
  446. if (ctx->ov_img_first) {
  447. if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
  448. add_text({ctx->tok_ov_img_start});
  449. }
  450. cur.entries.emplace_back(std::move(ov_chunk));
  451. if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
  452. add_text({ctx->tok_ov_img_end});
  453. }
  454. }
  455. // add slices (or tiles)
  456. if (!chunks.empty()) {
  457. GGML_ASSERT((int)chunks.size() == n_row * n_col);
  458. if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
  459. add_text({ctx->tok_slices_start});
  460. }
  461. for (int y = 0; y < n_row; y++) {
  462. for (int x = 0; x < n_col; x++) {
  463. const bool is_last_in_row = (x == n_col - 1);
  464. if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
  465. add_text({ctx->tok_sli_img_start});
  466. }
  467. cur.entries.emplace_back(std::move(chunks[y * n_col + x]));
  468. if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
  469. add_text({ctx->tok_sli_img_end});
  470. }
  471. if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
  472. add_text({ctx->tok_sli_img_mid});
  473. }
  474. }
  475. if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
  476. add_text({ctx->tok_row_end});
  477. }
  478. }
  479. if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
  480. add_text({ctx->tok_slices_end});
  481. }
  482. }
  483. // add overview image (last)
  484. if (!ctx->ov_img_first) {
  485. if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
  486. add_text({ctx->tok_ov_img_start});
  487. }
  488. cur.entries.emplace_back(std::move(ov_chunk));
  489. if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
  490. add_text({ctx->tok_ov_img_end});
  491. }
  492. }
  493. } else {
  494. size_t n_tokens = 0;
  495. for (const auto & entry : batch_f32.entries) {
  496. n_tokens += clip_n_output_tokens(ctx->ctx_v, entry.get());
  497. }
  498. mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
  499. if (ctx->use_mrope) {
  500. // for Qwen2VL, we need this information for M-RoPE decoding positions
  501. image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_v, batch_f32.entries[0].get());
  502. image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_v, batch_f32.entries[0].get());
  503. image_tokens->use_mrope_pos = true;
  504. } else {
  505. // other models, we only need the total number of tokens
  506. image_tokens->nx = n_tokens;
  507. image_tokens->ny = 1;
  508. }
  509. image_tokens->batch_f32 = std::move(batch_f32);
  510. image_tokens->id = bitmap->id; // optional
  511. LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
  512. LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
  513. LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
  514. mtmd_input_chunk chunk{
  515. MTMD_INPUT_CHUNK_TYPE_IMAGE,
  516. {}, // text tokens
  517. std::move(image_tokens),
  518. nullptr, // audio tokens
  519. };
  520. cur.entries.emplace_back(std::move(chunk));
  521. }
  522. if (!ctx->img_end.empty()) {
  523. add_text(ctx->img_end, true); // add image end token
  524. }
  525. } else {
  526. // handle audio
  527. if (!ctx->ctx_a) {
  528. LOG_ERR("%s: error: model does not support audio input\n", __func__);
  529. return 2;
  530. }
  531. if (bitmap->data.size() == 0) {
  532. LOG_ERR("%s: error: empty audio data\n", __func__);
  533. return 2;
  534. }
  535. if (!ctx->aud_beg.empty()) {
  536. add_text(ctx->aud_beg, true); // add audio begin token
  537. }
  538. // preprocess audio
  539. GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded
  540. std::vector<whisper_preprocessor::whisper_mel> mel_spec_chunks;
  541. const float * samples = (const float *)bitmap->data.data();
  542. size_t n_samples = bitmap->data.size() / sizeof(float);
  543. bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks);
  544. if (!ok) {
  545. LOG_ERR("Unable to preprocess audio\n");
  546. return 2;
  547. }
  548. // consider each mel_spec as a separate audio chunk
  549. // TODO: maybe support batching, but this may come with memory cost
  550. for (auto & mel_spec : mel_spec_chunks) {
  551. clip_image_f32_ptr mel_f32(clip_image_f32_init());
  552. mel_f32->nx = mel_spec.n_len;
  553. mel_f32->ny = mel_spec.n_mel;
  554. mel_f32->buf = std::move(mel_spec.data);
  555. size_t n_tokens = clip_n_output_tokens(ctx->ctx_a, mel_f32.get());
  556. clip_image_f32_batch batch_f32;
  557. batch_f32.is_audio = true;
  558. batch_f32.entries.push_back(std::move(mel_f32));
  559. mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens);
  560. audio_tokens->n_tokens = n_tokens;
  561. audio_tokens->batch_f32 = std::move(batch_f32);
  562. audio_tokens->id = bitmap->id; // optional
  563. LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens);
  564. mtmd_input_chunk chunk{
  565. MTMD_INPUT_CHUNK_TYPE_AUDIO,
  566. {}, // text tokens
  567. nullptr, // image tokens
  568. std::move(audio_tokens),
  569. };
  570. cur.entries.emplace_back(std::move(chunk));
  571. }
  572. if (!ctx->aud_end.empty()) {
  573. add_text(ctx->aud_end, true); // add audio end token
  574. }
  575. }
  576. return 0;
  577. }
  578. std::vector<mtmd_input_chunk> split_batch_to_chunk(clip_image_f32_batch && batch_f32, const std::string & id) {
  579. std::vector<mtmd_input_chunk> chunks;
  580. for (auto & entry : batch_f32.entries) {
  581. mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
  582. image_tokens->nx = clip_n_output_tokens(ctx->ctx_v, entry.get());
  583. image_tokens->ny = 1;
  584. image_tokens->batch_f32.entries.push_back(std::move(entry));
  585. image_tokens->id = id;
  586. mtmd_input_chunk chunk{
  587. MTMD_INPUT_CHUNK_TYPE_IMAGE,
  588. {}, // text tokens
  589. std::move(image_tokens),
  590. nullptr, // audio tokens
  591. };
  592. chunks.emplace_back(std::move(chunk));
  593. }
  594. return chunks;
  595. }
  596. // for example: "a <__media__> b <__media__> c" --> "a", "<__media__>", "b", "<__media__>", "c"
  597. static std::vector<std::string> split_text(const std::string & input, const std::string & delimiter) {
  598. std::vector<std::string> result;
  599. if (input.empty()) {
  600. return result;
  601. }
  602. size_t start = 0;
  603. size_t pos = 0;
  604. while ((pos = input.find(delimiter, start)) != std::string::npos) {
  605. if (pos > start) {
  606. result.push_back(input.substr(start, pos - start));
  607. }
  608. result.push_back(delimiter);
  609. start = pos + delimiter.length();
  610. }
  611. if (start < input.length()) {
  612. result.push_back(input.substr(start));
  613. }
  614. return result;
  615. }
  616. // copied from common_tokenize
  617. static std::vector<llama_token> mtmd_tokenize_text_internal(
  618. const struct llama_vocab * vocab,
  619. const std::string & text,
  620. bool add_special,
  621. bool parse_special) {
  622. // upper limit for the number of tokens
  623. int n_tokens = text.length() + 2 * add_special;
  624. std::vector<llama_token> result(n_tokens);
  625. n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  626. if (n_tokens < 0) {
  627. result.resize(-n_tokens);
  628. int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  629. GGML_ASSERT(check == -n_tokens);
  630. } else {
  631. result.resize(n_tokens);
  632. }
  633. return result;
  634. }
  635. };
  636. int32_t mtmd_tokenize(mtmd_context * ctx,
  637. mtmd_input_chunks * output,
  638. const mtmd_input_text * text,
  639. const mtmd_bitmap ** bitmaps,
  640. size_t n_bitmaps) {
  641. mtmd_tokenizer tokenizer(ctx, text, bitmaps, n_bitmaps);
  642. return tokenizer.tokenize(output);
  643. }
  644. int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) {
  645. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  646. LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n");
  647. return 0;
  648. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  649. if (!ctx->ctx_v) {
  650. LOG_ERR("%s: model does not support vision input\n", __func__);
  651. return 1;
  652. }
  653. return mtmd_encode(ctx, chunk->tokens_image.get());
  654. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
  655. if (!ctx->ctx_a) {
  656. LOG_ERR("%s: model does not support audio input\n", __func__);
  657. return 1;
  658. }
  659. int n_mmproj_embd = ctx->n_embd_text;
  660. ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd);
  661. bool ok = clip_image_batch_encode(
  662. ctx->ctx_a,
  663. ctx->n_threads,
  664. &chunk->tokens_audio->batch_f32,
  665. ctx->image_embd_v.data());
  666. return ok ? 0 : 1;
  667. }
  668. LOG_ERR("%s: unknown chunk type %d\n", __func__, (int)chunk->type);
  669. return 1;
  670. }
  671. int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
  672. clip_ctx * ctx_clip = ctx->ctx_v;
  673. if (!ctx_clip) {
  674. LOG_ERR("%s: this API does not support non-vision input, please use mtmd_encode_chunk instead\n", __func__);
  675. return 1;
  676. }
  677. int n_mmproj_embd = clip_n_mmproj_embd(ctx_clip);
  678. ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
  679. bool ok = false;
  680. if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) {
  681. // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
  682. const auto & entries = image_tokens->batch_f32.entries;
  683. for (size_t i = 0; i < entries.size(); i++) {
  684. int n_tokens_per_image = clip_n_output_tokens(ctx_clip, entries[i].get());
  685. ok = clip_image_encode(
  686. ctx_clip,
  687. ctx->n_threads,
  688. entries[i].get(),
  689. ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
  690. }
  691. } else {
  692. ok = clip_image_batch_encode(
  693. ctx_clip,
  694. ctx->n_threads,
  695. &image_tokens->batch_f32,
  696. ctx->image_embd_v.data());
  697. }
  698. return ok ? 0 : 1;
  699. }
  700. float * mtmd_get_output_embd(mtmd_context * ctx) {
  701. return ctx->image_embd_v.data();
  702. }
  703. bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
  704. if (ctx->ctx_v && clip_get_projector_type(ctx->ctx_v) == PROJECTOR_TYPE_GEMMA3) {
  705. return true;
  706. }
  707. return false;
  708. }
  709. bool mtmd_decode_use_mrope(mtmd_context * ctx) {
  710. return ctx->use_mrope;
  711. }
  712. bool mtmd_support_vision(mtmd_context * ctx) {
  713. return ctx->ctx_v != nullptr;
  714. }
  715. bool mtmd_support_audio(mtmd_context * ctx) {
  716. return ctx->ctx_a != nullptr;
  717. }
  718. int mtmd_get_audio_bitrate(mtmd_context * ctx) {
  719. if (!ctx->ctx_a) {
  720. return -1;
  721. }
  722. // for now, we assume that all audio models have the same bitrate
  723. return 16000; // 16kHz
  724. }
  725. //
  726. // public API functions
  727. //
  728. // mtmd_bitmap
  729. mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
  730. uint32_t ny,
  731. const unsigned char * data) {
  732. mtmd_bitmap * bitmap = new mtmd_bitmap;
  733. bitmap->nx = nx;
  734. bitmap->ny = ny;
  735. size_t data_size = (size_t)nx * ny * 3;
  736. bitmap->data.resize(data_size);
  737. std::memcpy(bitmap->data.data(), data, data_size);
  738. return bitmap;
  739. }
  740. mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples,
  741. const float * data) {
  742. mtmd_bitmap * bitmap = new mtmd_bitmap;
  743. bitmap->nx = n_samples;
  744. bitmap->ny = 1;
  745. bitmap->is_audio = true;
  746. size_t data_size = n_samples * sizeof(float);
  747. bitmap->data.resize(data_size);
  748. std::memcpy(bitmap->data.data(), data, data_size);
  749. return bitmap;
  750. }
  751. uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
  752. return bitmap->nx;
  753. }
  754. uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
  755. return bitmap->ny;
  756. }
  757. const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
  758. return bitmap->data.data();
  759. }
  760. size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) {
  761. return bitmap->data.size();
  762. }
  763. bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) {
  764. return bitmap->is_audio;
  765. }
  766. const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
  767. return bitmap->id.c_str();
  768. }
  769. void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
  770. if (id) {
  771. bitmap->id = std::string(id);
  772. } else {
  773. bitmap->id.clear();
  774. }
  775. }
  776. void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
  777. if (bitmap) {
  778. delete bitmap;
  779. }
  780. }
  781. // mtmd_input_chunks
  782. mtmd_input_chunks * mtmd_input_chunks_init() {
  783. return new mtmd_input_chunks;
  784. }
  785. size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
  786. return chunks->entries.size();
  787. }
  788. const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
  789. if (idx >= chunks->entries.size()) {
  790. return nullptr;
  791. }
  792. return &chunks->entries[idx];
  793. }
  794. void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
  795. if (chunks) {
  796. delete chunks;
  797. }
  798. }
  799. // mtmd_input_chunk
  800. enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
  801. return chunk->type;
  802. }
  803. const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
  804. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  805. *n_tokens_output = chunk->tokens_text.size();
  806. return chunk->tokens_text.data();
  807. }
  808. *n_tokens_output = 0;
  809. return nullptr;
  810. }
  811. const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
  812. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  813. return chunk->tokens_image.get();
  814. }
  815. return nullptr;
  816. }
  817. size_t mtmd_input_chunk_get_n_tokens(const mtmd_input_chunk * chunk) {
  818. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  819. return chunk->tokens_text.size();
  820. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  821. return mtmd_image_tokens_get_n_tokens(chunk->tokens_image.get());
  822. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
  823. return chunk->tokens_audio->n_tokens;
  824. } else {
  825. GGML_ABORT("invalid chunk type");
  826. }
  827. }
  828. llama_pos mtmd_input_chunk_get_n_pos(const mtmd_input_chunk * chunk) {
  829. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
  830. return chunk->tokens_text.size();
  831. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  832. return mtmd_image_tokens_get_n_pos(chunk->tokens_image.get());
  833. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
  834. return chunk->tokens_audio->n_tokens;
  835. } else {
  836. GGML_ABORT("invalid chunk type");
  837. }
  838. }
  839. const char * mtmd_input_chunk_get_id(const mtmd_input_chunk * chunk) {
  840. if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
  841. return chunk->tokens_image->id.c_str();
  842. } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
  843. return chunk->tokens_audio->id.c_str();
  844. }
  845. return nullptr;
  846. }
  847. mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
  848. mtmd_input_chunk * copy = new mtmd_input_chunk{
  849. chunk->type,
  850. chunk->tokens_text,
  851. nullptr,
  852. nullptr,
  853. };
  854. if (chunk->tokens_image) {
  855. // copy the image tokens
  856. copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
  857. *copy->tokens_image = chunk->tokens_image->clone();
  858. }
  859. if (chunk->tokens_audio) {
  860. // copy the audio tokens
  861. copy->tokens_audio = mtmd_audio_tokens_ptr(new mtmd_audio_tokens());
  862. *copy->tokens_audio = chunk->tokens_audio->clone();
  863. }
  864. return copy;
  865. }
  866. void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
  867. if (chunk) {
  868. delete chunk;
  869. }
  870. }
  871. // mtmd_image_tokens
  872. size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
  873. return image_tokens->n_tokens();
  874. }
  875. size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
  876. return image_tokens->nx;
  877. }
  878. size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
  879. return image_tokens->ny;
  880. }
  881. const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
  882. return image_tokens->id.c_str();
  883. }
  884. llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
  885. if (image_tokens->use_mrope_pos) {
  886. return 1; // for M-RoPE, the whole image is 1 in temporal dimension
  887. }
  888. return image_tokens->n_tokens();
  889. }
  890. // test function
  891. mtmd_input_chunks * mtmd_test_create_input_chunks() {
  892. mtmd_input_chunks * chunks = mtmd_input_chunks_init();
  893. if (!chunks) {
  894. return nullptr;
  895. }
  896. // create a text chunk
  897. std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
  898. mtmd_input_chunk chunk_text{
  899. MTMD_INPUT_CHUNK_TYPE_TEXT,
  900. std::move(tokens_text),
  901. nullptr, // image tokens
  902. nullptr, // audio tokens
  903. };
  904. chunks->entries.emplace_back(std::move(chunk_text));
  905. // create an image chunk
  906. mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
  907. image_tokens->nx = 4;
  908. image_tokens->ny = 4;
  909. image_tokens->batch_f32.entries.resize(16);
  910. image_tokens->id = "image_1";
  911. mtmd_input_chunk chunk_image{
  912. MTMD_INPUT_CHUNK_TYPE_IMAGE,
  913. {}, // text tokens
  914. std::move(image_tokens),
  915. nullptr, // audio tokens
  916. };
  917. chunks->entries.emplace_back(std::move(chunk_image));
  918. return chunks;
  919. }