1
0

test-backend-ops.cpp 291 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  153. std::vector<float> tv;
  154. tv.reserve(ggml_nelements(t));
  155. std::vector<uint8_t> buf(ggml_nbytes(t));
  156. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  157. const auto * tt = ggml_get_type_traits(t->type);
  158. size_t bs = ggml_blck_size(t->type);
  159. std::vector<float> vq(ggml_blck_size(t->type));
  160. bool quantized = ggml_is_quantized(t->type);
  161. // access elements by index to avoid gaps in views
  162. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  163. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  164. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  165. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  166. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  167. if (t->type == GGML_TYPE_F16) {
  168. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  169. } else if (t->type == GGML_TYPE_BF16) {
  170. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  171. } else if (t->type == GGML_TYPE_F32) {
  172. tv.push_back(*(float *) &buf[i]);
  173. } else if (t->type == GGML_TYPE_I64) {
  174. tv.push_back((float)*(int64_t *) &buf[i]);
  175. } else if (t->type == GGML_TYPE_I32) {
  176. tv.push_back((float)*(int32_t *) &buf[i]);
  177. } else if (t->type == GGML_TYPE_I16) {
  178. tv.push_back((float)*(int16_t *) &buf[i]);
  179. } else if (t->type == GGML_TYPE_I8) {
  180. tv.push_back((float)*(int8_t *) &buf[i]);
  181. } else if (quantized) {
  182. tt->to_float(&buf[i], vq.data(), bs);
  183. tv.insert(tv.end(), vq.begin(), vq.end());
  184. } else {
  185. GGML_ABORT("fatal error");
  186. }
  187. }
  188. }
  189. }
  190. }
  191. return tv;
  192. }
  193. // normalized mean squared error = mse(a, b) / mse(a, 0)
  194. static double nmse(const float * a, const float * b, size_t n) {
  195. double mse_a_b = 0.0;
  196. double mse_a_0 = 0.0;
  197. for (size_t i = 0; i < n; i++) {
  198. float a_i = a[i];
  199. float b_i = b[i];
  200. mse_a_b += (a_i - b_i) * (a_i - b_i);
  201. mse_a_0 += a_i * a_i;
  202. }
  203. return mse_a_b / mse_a_0;
  204. }
  205. // maximum absolute asymmetry between a and b
  206. // asymmetry: (a - b) / (a + b)
  207. // This is more stable than relative error if one of the values fluctuates towards zero.
  208. // n: number of values to compare.
  209. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  210. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  211. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  212. double sum = 0.0f;
  213. size_t nvalid = 0;
  214. for (size_t i = 0; i < n; i++) {
  215. if (!expected_vals.empty()) {
  216. bool matches_any = false;
  217. for (const float & ev : expected_vals) {
  218. if (fabsf(a[i] - ev) < 1e-3f) {
  219. matches_any = true;
  220. break;
  221. }
  222. }
  223. if (!matches_any) {
  224. continue;
  225. }
  226. }
  227. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  228. sum += fabsf(asymm);
  229. nvalid++;
  230. }
  231. return sum/nvalid;
  232. }
  233. // utils for printing the variables of the test cases
  234. template<typename T>
  235. static std::string var_to_str(const T & x) {
  236. return std::to_string(x);
  237. }
  238. template<typename T, size_t N>
  239. static std::string var_to_str(const T (&x)[N]) {
  240. std::string s = "[";
  241. for (size_t i = 0; i < N; i++) {
  242. if (i > 0) {
  243. s += ",";
  244. }
  245. s += var_to_str(x[i]);
  246. }
  247. s += "]";
  248. return s;
  249. }
  250. template<typename T, size_t N>
  251. static std::string var_to_str(const std::array<T, N> & x) {
  252. std::string s = "[";
  253. for (size_t i = 0; i < N; i++) {
  254. if (i > 0) {
  255. s += ",";
  256. }
  257. s += var_to_str(x[i]);
  258. }
  259. s += "]";
  260. return s;
  261. }
  262. static std::string var_to_str(ggml_type type) {
  263. return ggml_type_name(type);
  264. }
  265. static std::string var_to_str(ggml_prec prec) {
  266. return prec == GGML_PREC_F32 ? "f32" : "def";
  267. }
  268. static std::string var_to_str(ggml_op_pool pool) {
  269. switch (pool) {
  270. case GGML_OP_POOL_AVG: return "avg";
  271. case GGML_OP_POOL_MAX: return "max";
  272. default: return std::to_string(pool);
  273. }
  274. }
  275. static std::string var_to_str(ggml_scale_mode mode) {
  276. switch (mode) {
  277. case GGML_SCALE_MODE_NEAREST: return "nearest";
  278. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  279. default: return std::to_string(mode);
  280. }
  281. }
  282. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  283. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  284. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  285. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  286. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  287. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  288. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  289. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  290. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  291. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  292. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  293. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  294. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  295. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  296. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  297. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  298. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  299. #ifdef GGML_USE_SYCL
  300. static bool inline _isinf(float f) {
  301. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  302. }
  303. #else
  304. static bool inline _isinf(float f) { return std::isinf(f); }
  305. #endif
  306. // accept FLT_MAX as infinity
  307. static bool isinf_or_max(float f) {
  308. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  309. }
  310. static bool ggml_is_view_op(enum ggml_op op) {
  311. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  312. }
  313. enum test_mode {
  314. MODE_TEST,
  315. MODE_PERF,
  316. MODE_GRAD,
  317. MODE_SUPPORT,
  318. };
  319. // Output format support similar to llama-bench
  320. enum output_formats { CONSOLE, SQL, CSV };
  321. static const char * output_format_str(output_formats format) {
  322. switch (format) {
  323. case CONSOLE:
  324. return "console";
  325. case SQL:
  326. return "sql";
  327. case CSV:
  328. return "csv";
  329. default:
  330. GGML_ABORT("invalid output format");
  331. }
  332. }
  333. static bool output_format_from_str(const std::string & s, output_formats & format) {
  334. if (s == "console") {
  335. format = CONSOLE;
  336. } else if (s == "sql") {
  337. format = SQL;
  338. } else if (s == "csv") {
  339. format = CSV;
  340. } else {
  341. return false;
  342. }
  343. return true;
  344. }
  345. // Test result structure for SQL output
  346. struct test_result {
  347. std::string test_time;
  348. std::string build_commit;
  349. std::string backend_name;
  350. std::string op_name;
  351. std::string op_params;
  352. std::string test_mode;
  353. bool supported;
  354. bool passed;
  355. std::string error_message;
  356. double time_us;
  357. double flops;
  358. double bandwidth_gb_s;
  359. size_t memory_kb;
  360. int n_runs;
  361. std::string device_description;
  362. std::string backend_reg_name;
  363. test_result() {
  364. // Initialize with default values
  365. time_us = 0.0;
  366. flops = 0.0;
  367. bandwidth_gb_s = 0.0;
  368. memory_kb = 0;
  369. n_runs = 0;
  370. supported = false;
  371. passed = false;
  372. // Set test time
  373. time_t t = time(NULL);
  374. char buf[32];
  375. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  376. test_time = buf;
  377. // Set build info
  378. build_commit = ggml_commit();
  379. }
  380. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  381. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  382. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  383. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  384. backend_name(backend_name),
  385. op_name(op_name),
  386. op_params(op_params),
  387. test_mode(test_mode),
  388. supported(supported),
  389. passed(passed),
  390. error_message(error_message),
  391. time_us(time_us),
  392. flops(flops),
  393. bandwidth_gb_s(bandwidth_gb_s),
  394. memory_kb(memory_kb),
  395. n_runs(n_runs),
  396. device_description(device_description),
  397. backend_reg_name(backend_reg_name) {
  398. // Set test time
  399. time_t t = time(NULL);
  400. char buf[32];
  401. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  402. test_time = buf;
  403. // Set build info
  404. build_commit = ggml_commit();
  405. }
  406. static const std::vector<std::string> & get_fields() {
  407. static const std::vector<std::string> fields = {
  408. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  409. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  410. "device_description", "backend_reg_name"
  411. };
  412. return fields;
  413. }
  414. enum field_type { STRING, BOOL, INT, FLOAT };
  415. static field_type get_field_type(const std::string & field) {
  416. if (field == "supported" || field == "passed") {
  417. return BOOL;
  418. }
  419. if (field == "memory_kb" || field == "n_runs") {
  420. return INT;
  421. }
  422. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  423. return FLOAT;
  424. }
  425. return STRING;
  426. }
  427. std::vector<std::string> get_values() const {
  428. return { test_time,
  429. build_commit,
  430. backend_name,
  431. op_name,
  432. op_params,
  433. test_mode,
  434. std::to_string(supported),
  435. std::to_string(passed),
  436. error_message,
  437. std::to_string(time_us),
  438. std::to_string(flops),
  439. std::to_string(bandwidth_gb_s),
  440. std::to_string(memory_kb),
  441. std::to_string(n_runs),
  442. device_description,
  443. backend_reg_name };
  444. }
  445. };
  446. // Printer classes for different output formats
  447. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  448. struct test_operation_info {
  449. std::string op_name;
  450. std::string op_params;
  451. std::string backend_name;
  452. test_status_t status = test_status_t::OK;
  453. std::string failure_reason;
  454. // Additional information fields that were previously in separate structs
  455. std::string error_component;
  456. std::string error_details;
  457. // Gradient info
  458. int64_t gradient_index = -1;
  459. std::string gradient_param_name;
  460. float gradient_value = 0.0f;
  461. // MAA error info
  462. double maa_error = 0.0;
  463. double maa_threshold = 0.0;
  464. // Flags for different types of information
  465. bool has_error = false;
  466. bool has_gradient_info = false;
  467. bool has_maa_error = false;
  468. bool is_compare_failure = false;
  469. bool is_large_tensor_skip = false;
  470. test_operation_info() = default;
  471. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  472. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  473. op_name(op_name),
  474. op_params(op_params),
  475. backend_name(backend_name),
  476. status(status),
  477. failure_reason(failure_reason) {}
  478. // Set error information
  479. void set_error(const std::string & component, const std::string & details) {
  480. has_error = true;
  481. error_component = component;
  482. error_details = details;
  483. if (status == test_status_t::OK) {
  484. status = test_status_t::FAIL;
  485. }
  486. }
  487. // Set gradient information
  488. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  489. has_gradient_info = true;
  490. gradient_index = index;
  491. gradient_param_name = param_name;
  492. gradient_value = value;
  493. if (status == test_status_t::OK) {
  494. status = test_status_t::FAIL;
  495. }
  496. }
  497. // Set MAA error information
  498. void set_maa_error(double error, double threshold) {
  499. has_maa_error = true;
  500. maa_error = error;
  501. maa_threshold = threshold;
  502. if (status == test_status_t::OK) {
  503. status = test_status_t::FAIL;
  504. }
  505. }
  506. // Set compare failure
  507. void set_compare_failure() {
  508. is_compare_failure = true;
  509. if (status == test_status_t::OK) {
  510. status = test_status_t::FAIL;
  511. }
  512. }
  513. // Set large tensor skip
  514. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  515. };
  516. struct test_summary_info {
  517. size_t tests_passed;
  518. size_t tests_total;
  519. bool is_backend_summary = false; // true for backend summary, false for test summary
  520. test_summary_info() = default;
  521. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  522. tests_passed(tests_passed),
  523. tests_total(tests_total),
  524. is_backend_summary(is_backend_summary) {}
  525. };
  526. struct testing_start_info {
  527. size_t device_count;
  528. testing_start_info() = default;
  529. testing_start_info(size_t device_count) : device_count(device_count) {}
  530. };
  531. struct backend_init_info {
  532. size_t device_index;
  533. size_t total_devices;
  534. std::string device_name;
  535. bool skipped = false;
  536. std::string skip_reason;
  537. std::string description;
  538. size_t memory_total_mb = 0;
  539. size_t memory_free_mb = 0;
  540. bool has_memory_info = false;
  541. backend_init_info() = default;
  542. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  543. const std::string & skip_reason = "", const std::string & description = "",
  544. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  545. device_index(device_index),
  546. total_devices(total_devices),
  547. device_name(device_name),
  548. skipped(skipped),
  549. skip_reason(skip_reason),
  550. description(description),
  551. memory_total_mb(memory_total_mb),
  552. memory_free_mb(memory_free_mb),
  553. has_memory_info(has_memory_info) {}
  554. };
  555. struct backend_status_info {
  556. std::string backend_name;
  557. test_status_t status;
  558. backend_status_info() = default;
  559. backend_status_info(const std::string & backend_name, test_status_t status) :
  560. backend_name(backend_name),
  561. status(status) {}
  562. };
  563. struct overall_summary_info {
  564. size_t backends_passed;
  565. size_t backends_total;
  566. bool all_passed;
  567. overall_summary_info() = default;
  568. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  569. backends_passed(backends_passed),
  570. backends_total(backends_total),
  571. all_passed(all_passed) {}
  572. };
  573. struct printer {
  574. virtual ~printer() {}
  575. FILE * fout = stdout;
  576. virtual void print_header() {}
  577. virtual void print_test_result(const test_result & result) = 0;
  578. virtual void print_footer() {}
  579. virtual void print_operation(const test_operation_info & info) { (void) info; }
  580. virtual void print_summary(const test_summary_info & info) { (void) info; }
  581. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  582. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  583. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  584. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  585. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  586. };
  587. struct console_printer : public printer {
  588. void print_test_result(const test_result & result) override {
  589. if (result.test_mode == "test") {
  590. print_test_console(result);
  591. } else if (result.test_mode == "perf") {
  592. print_perf_console(result);
  593. } else if (result.test_mode == "support") {
  594. print_support_console(result);
  595. }
  596. }
  597. void print_operation(const test_operation_info & info) override {
  598. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  599. fflush(stdout);
  600. // Handle large tensor skip first
  601. if (info.is_large_tensor_skip) {
  602. printf("skipping large tensors for speed \n");
  603. return;
  604. }
  605. // Handle not supported status
  606. if (info.status == test_status_t::NOT_SUPPORTED) {
  607. if (!info.failure_reason.empty()) {
  608. printf("not supported [%s]\n", info.failure_reason.c_str());
  609. } else {
  610. printf("not supported [%s]\n", info.backend_name.c_str());
  611. }
  612. return;
  613. }
  614. // Handle errors and additional information
  615. if (info.has_error) {
  616. if (info.error_component == "allocation") {
  617. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  618. } else if (info.error_component == "backend") {
  619. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  620. } else {
  621. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  622. }
  623. }
  624. // Handle gradient info
  625. if (info.has_gradient_info) {
  626. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  627. info.gradient_param_name.c_str(), info.gradient_value);
  628. }
  629. // Handle MAA error
  630. if (info.has_maa_error) {
  631. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  632. }
  633. // Handle compare failure
  634. if (info.is_compare_failure) {
  635. printf("compare failed ");
  636. }
  637. // Print final status
  638. if (info.status == test_status_t::OK) {
  639. printf("\033[1;32mOK\033[0m\n");
  640. } else {
  641. printf("\033[1;31mFAIL\033[0m\n");
  642. }
  643. }
  644. void print_summary(const test_summary_info & info) override {
  645. if (info.is_backend_summary) {
  646. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  647. } else {
  648. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  649. }
  650. }
  651. void print_backend_status(const backend_status_info & info) override {
  652. printf(" Backend %s: ", info.backend_name.c_str());
  653. if (info.status == test_status_t::OK) {
  654. printf("\033[1;32mOK\033[0m\n");
  655. } else {
  656. printf("\033[1;31mFAIL\033[0m\n");
  657. }
  658. }
  659. void print_testing_start(const testing_start_info & info) override {
  660. printf("Testing %zu devices\n\n", info.device_count);
  661. }
  662. void print_backend_init(const backend_init_info & info) override {
  663. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  664. if (info.skipped) {
  665. printf(" %s\n", info.skip_reason.c_str());
  666. return;
  667. }
  668. if (!info.description.empty()) {
  669. printf(" Device description: %s\n", info.description.c_str());
  670. }
  671. if (info.has_memory_info) {
  672. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  673. }
  674. printf("\n");
  675. }
  676. void print_overall_summary(const overall_summary_info & info) override {
  677. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  678. if (info.all_passed) {
  679. printf("\033[1;32mOK\033[0m\n");
  680. } else {
  681. printf("\033[1;31mFAIL\033[0m\n");
  682. }
  683. }
  684. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  685. if (failed_tests.empty()) {
  686. return;
  687. }
  688. printf("\nFailing tests:\n");
  689. for (const auto & test_name : failed_tests) {
  690. printf(" %s\n", test_name.c_str());
  691. }
  692. }
  693. private:
  694. void print_test_console(const test_result & result) {
  695. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  696. fflush(stdout);
  697. if (!result.supported) {
  698. printf("not supported [%s] ", result.backend_name.c_str());
  699. printf("\n");
  700. return;
  701. }
  702. if (result.passed) {
  703. printf("\033[1;32mOK\033[0m\n");
  704. } else {
  705. printf("\033[1;31mFAIL\033[0m\n");
  706. }
  707. }
  708. void print_perf_console(const test_result & result) {
  709. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  710. fflush(stdout);
  711. if (!result.supported) {
  712. printf("not supported\n");
  713. return;
  714. }
  715. // align while also leaving some margin for variations in parameters
  716. int align = 8;
  717. int last = (len + align - 1) / align * align;
  718. if (last - len < 5) {
  719. last += align;
  720. }
  721. printf("%*s", last - len, "");
  722. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  723. if (result.flops > 0) {
  724. auto format_flops = [](double flops) -> std::string {
  725. char buf[256];
  726. if (flops >= 1e12) {
  727. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  728. } else if (flops >= 1e9) {
  729. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  730. } else if (flops >= 1e6) {
  731. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  732. } else {
  733. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  734. }
  735. return buf;
  736. };
  737. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  738. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  739. format_flops(result.flops).c_str());
  740. } else {
  741. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  742. }
  743. printf("\n");
  744. }
  745. void print_support_console(const test_result & result) {
  746. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  747. fflush(stdout);
  748. if (result.supported) {
  749. printf("\033[1;32mSUPPORTED\033[0m\n");
  750. } else {
  751. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  752. }
  753. }
  754. };
  755. struct sql_printer : public printer {
  756. static std::string get_sql_field_type(const std::string & field) {
  757. switch (test_result::get_field_type(field)) {
  758. case test_result::STRING:
  759. return "TEXT";
  760. case test_result::BOOL:
  761. case test_result::INT:
  762. return "INTEGER";
  763. case test_result::FLOAT:
  764. return "REAL";
  765. default:
  766. GGML_ABORT("invalid field type");
  767. }
  768. }
  769. void print_header() override {
  770. std::vector<std::string> fields = test_result::get_fields();
  771. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  772. for (size_t i = 0; i < fields.size(); i++) {
  773. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  774. i < fields.size() - 1 ? "," : "");
  775. }
  776. fprintf(fout, ");\n\n");
  777. }
  778. void print_test_result(const test_result & result) override {
  779. fprintf(fout, "INSERT INTO test_backend_ops (");
  780. std::vector<std::string> fields = test_result::get_fields();
  781. for (size_t i = 0; i < fields.size(); i++) {
  782. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  783. }
  784. fprintf(fout, ") VALUES (");
  785. std::vector<std::string> values = result.get_values();
  786. for (size_t i = 0; i < values.size(); i++) {
  787. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  788. }
  789. fprintf(fout, ");\n");
  790. }
  791. };
  792. struct csv_printer : public printer {
  793. void print_header() override {
  794. std::vector<std::string> fields = test_result::get_fields();
  795. std::vector<std::string> fields_csv = get_fields_csv();
  796. for (size_t i = 0; i < fields.size(); i++) {
  797. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  798. continue;
  799. }
  800. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  801. }
  802. printf("\n");
  803. }
  804. void print_test_result(const test_result & result) override {
  805. std::vector<std::string> values = result.get_values();
  806. std::vector<std::string> fields = test_result::get_fields();
  807. std::vector<std::string> fields_csv = get_fields_csv();
  808. for (size_t i = 0; i < values.size(); i++) {
  809. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  810. continue;
  811. }
  812. // Escape quotes and wrap in quotes for CSV
  813. std::string escaped_value = values[i];
  814. size_t pos = 0;
  815. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  816. escaped_value.replace(pos, 1, "\"\"");
  817. pos += 2;
  818. }
  819. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  820. }
  821. printf("\n");
  822. }
  823. static std::vector<std::string> get_fields_csv() {
  824. return {
  825. "op_name",
  826. "op_params",
  827. "supported",
  828. "error_message",
  829. "test_mode",
  830. "backend_reg_name",
  831. "backend_name",
  832. };
  833. }
  834. };
  835. static std::unique_ptr<printer> create_printer(output_formats format) {
  836. switch (format) {
  837. case CONSOLE:
  838. return std::make_unique<console_printer>();
  839. case SQL:
  840. return std::make_unique<sql_printer>();
  841. case CSV:
  842. return std::make_unique<csv_printer>();
  843. }
  844. GGML_ABORT("invalid output format");
  845. }
  846. struct test_case {
  847. virtual ~test_case() {}
  848. virtual std::string op_desc(ggml_tensor * t) {
  849. return ggml_op_desc(t);
  850. }
  851. virtual std::string vars() {
  852. return "";
  853. }
  854. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  855. virtual double max_nmse_err() {
  856. return 1e-7;
  857. }
  858. virtual double max_maa_err() {
  859. return 1e-4;
  860. }
  861. virtual float grad_eps() {
  862. return 1e-1f;
  863. }
  864. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  865. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  866. virtual bool grad_precise() {
  867. return false;
  868. }
  869. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  870. virtual int64_t grad_nmax() {
  871. return 10000;
  872. }
  873. // No effect if empty.
  874. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  875. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  876. virtual std::vector<float> grad_expect() {
  877. return {};
  878. }
  879. virtual void initialize_tensors(ggml_context * ctx) {
  880. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  881. init_tensor_uniform(t);
  882. }
  883. }
  884. virtual size_t op_size(ggml_tensor * t) {
  885. size_t size = ggml_nbytes(t);
  886. // add source tensors
  887. for (int i = 0; i < GGML_MAX_SRC; i++) {
  888. if (t->src[i] != NULL) {
  889. size += ggml_nbytes(t->src[i]);
  890. }
  891. }
  892. return size;
  893. }
  894. virtual uint64_t op_flops(ggml_tensor * t) {
  895. GGML_UNUSED(t);
  896. return 0;
  897. }
  898. virtual bool run_whole_graph() { return false; }
  899. ggml_cgraph * gf = nullptr;
  900. ggml_cgraph * gb = nullptr;
  901. static const int sentinel_size = 1024;
  902. test_mode mode;
  903. std::vector<ggml_tensor *> sentinels;
  904. std::string current_op_name;
  905. void add_sentinel(ggml_context * ctx) {
  906. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  907. return;
  908. }
  909. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  910. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  911. sentinels.push_back(sentinel);
  912. }
  913. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  914. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  915. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  916. add_sentinel(ctx);
  917. return t;
  918. }
  919. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  920. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  921. add_sentinel(ctx);
  922. return t;
  923. }
  924. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  925. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  926. add_sentinel(ctx);
  927. return t;
  928. }
  929. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  930. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  931. add_sentinel(ctx);
  932. return t;
  933. }
  934. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  935. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  936. add_sentinel(ctx);
  937. return t;
  938. }
  939. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  940. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  941. if (op_names_filter) {
  942. const auto op_name = op_desc(op);
  943. const auto op_full_name = op_name + "(" + vars() + ")";
  944. std::string_view filter(op_names_filter);
  945. while (!filter.empty()) {
  946. auto comma_pos = filter.find_first_of(',');
  947. const auto lparen_pos = filter.find_first_of('(');
  948. if (lparen_pos < comma_pos) {
  949. auto rparen_pos = filter.find_first_of(')');
  950. comma_pos = filter.find_first_of(',', rparen_pos);
  951. const auto op_filter = filter.substr(0, comma_pos);
  952. if (op_filter == op_full_name) {
  953. return true;
  954. }
  955. } else {
  956. const auto op_filter = filter.substr(0, comma_pos);
  957. if (op_filter == op_name) {
  958. return true;
  959. }
  960. }
  961. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  962. }
  963. return false;
  964. } else {
  965. return true;
  966. }
  967. }
  968. test_status_t eval(ggml_backend_t backend1,
  969. ggml_backend_t backend2,
  970. const char * op_names_filter,
  971. printer * output_printer) {
  972. mode = MODE_TEST;
  973. ggml_init_params params = {
  974. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  975. /* .mem_base = */ NULL,
  976. /* .no_alloc = */ true,
  977. };
  978. ggml_context * ctx = ggml_init(params);
  979. GGML_ASSERT(ctx);
  980. gf = ggml_new_graph(ctx);
  981. // pre-graph sentinel
  982. add_sentinel(ctx);
  983. ggml_tensor * out = build_graph(ctx);
  984. current_op_name = op_desc(out);
  985. if (!matches_filter(out, op_names_filter)) {
  986. //printf(" %s: skipping\n", op_desc(out).c_str());
  987. ggml_free(ctx);
  988. return test_status_t::SKIPPED;
  989. }
  990. // check if the backends support the ops
  991. bool supported = true;
  992. for (ggml_backend_t backend : {backend1, backend2}) {
  993. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  994. if (!ggml_backend_supports_op(backend, t)) {
  995. supported = false;
  996. break;
  997. }
  998. }
  999. }
  1000. if (!supported) {
  1001. // Create test result for unsupported operation
  1002. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1003. false, false, "not supported");
  1004. if (output_printer) {
  1005. output_printer->print_test_result(result);
  1006. }
  1007. ggml_free(ctx);
  1008. return test_status_t::NOT_SUPPORTED;
  1009. }
  1010. // post-graph sentinel
  1011. add_sentinel(ctx);
  1012. // allocate
  1013. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1014. if (buf == NULL) {
  1015. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1016. ggml_free(ctx);
  1017. return test_status_t::FAIL;
  1018. }
  1019. // build graph
  1020. ggml_build_forward_expand(gf, out);
  1021. // add sentinels as graph nodes so that they are checked in the callback
  1022. for (ggml_tensor * sentinel : sentinels) {
  1023. ggml_graph_add_node(gf, sentinel);
  1024. }
  1025. // randomize tensors
  1026. initialize_tensors(ctx);
  1027. // compare
  1028. struct callback_userdata {
  1029. bool ok;
  1030. double max_err;
  1031. ggml_backend_t backend1;
  1032. ggml_backend_t backend2;
  1033. };
  1034. callback_userdata ud {
  1035. true,
  1036. max_nmse_err(),
  1037. backend1,
  1038. backend2
  1039. };
  1040. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1041. callback_userdata * ud = (callback_userdata *) user_data;
  1042. const char * bn1 = ggml_backend_name(ud->backend1);
  1043. const char * bn2 = ggml_backend_name(ud->backend2);
  1044. if (t1->op == GGML_OP_NONE) {
  1045. // sentinels must be unchanged
  1046. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1047. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1048. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1049. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1050. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1051. printf("sentinel mismatch: %s ", t1->name);
  1052. ud->ok = false;
  1053. return true;
  1054. }
  1055. }
  1056. std::vector<float> f1 = tensor_to_float(t1);
  1057. std::vector<float> f2 = tensor_to_float(t2);
  1058. for (size_t i = 0; i < f1.size(); i++) {
  1059. // check for nans
  1060. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1061. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1062. ud->ok = false;
  1063. return true;
  1064. }
  1065. // check for infs: both must be inf of the same sign, or both must be finite
  1066. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1067. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1068. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1069. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1070. ud->ok = false;
  1071. return true;
  1072. }
  1073. } else {
  1074. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1075. ud->ok = false;
  1076. return true;
  1077. }
  1078. }
  1079. }
  1080. double err = nmse(f1.data(), f2.data(), f1.size());
  1081. if (err > ud->max_err) {
  1082. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1083. //for (int i = 0; i < (int) f1.size(); i++) {
  1084. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1085. //}
  1086. //printf("\n");
  1087. //exit(1);
  1088. ud->ok = false;
  1089. }
  1090. return true;
  1091. GGML_UNUSED(index);
  1092. };
  1093. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1094. ggml_backend_buffer_free(buf);
  1095. ggml_free(ctx);
  1096. // Create test result
  1097. bool test_passed = ud.ok && cmp_ok;
  1098. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1099. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1100. error_msg);
  1101. if (output_printer) {
  1102. output_printer->print_test_result(result);
  1103. }
  1104. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1105. }
  1106. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1107. mode = MODE_PERF;
  1108. static const size_t graph_nodes = 8192;
  1109. ggml_init_params params = {
  1110. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1111. /* .mem_base = */ NULL,
  1112. /* .no_alloc = */ true,
  1113. };
  1114. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1115. GGML_ASSERT(ctx);
  1116. ggml_tensor * out = build_graph(ctx.get());
  1117. current_op_name = op_desc(out);
  1118. if (!matches_filter(out, op_names_filter)) {
  1119. //printf(" %s: skipping\n", op_desc(out).c_str());
  1120. return true;
  1121. }
  1122. if (!ggml_backend_supports_op(backend, out)) {
  1123. // Create test result for unsupported performance test
  1124. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1125. "not supported");
  1126. output_printer->print_test_result(result);
  1127. return true;
  1128. }
  1129. // allocate
  1130. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1131. if (buf == NULL) {
  1132. printf("failed to allocate tensors\n");
  1133. return false;
  1134. }
  1135. // randomize tensors
  1136. initialize_tensors(ctx.get());
  1137. // build graph
  1138. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1139. ggml_build_forward_expand(gf, out);
  1140. // warmup run
  1141. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1142. if (status != GGML_STATUS_SUCCESS) {
  1143. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1144. return false;
  1145. }
  1146. // determine number of runs
  1147. int n_runs;
  1148. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1149. if (op_flops(out) > 0) {
  1150. // based on flops
  1151. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1152. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1153. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1154. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1155. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1156. } else {
  1157. // based on memory size
  1158. const size_t GB = 1ULL << 30;
  1159. const size_t target_size_cpu = 8 * GB;
  1160. const size_t target_size_gpu = 32 * GB;
  1161. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1162. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1163. }
  1164. // duplicate the op
  1165. for (int i = 1; i < n_runs; i++) {
  1166. ggml_graph_add_node(gf, out);
  1167. }
  1168. // calculate memory
  1169. size_t mem = n_runs * op_size(out);
  1170. auto tensor_op_size = [](ggml_tensor * t) {
  1171. size_t size = ggml_nbytes(t);
  1172. // add source tensors
  1173. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1174. if (t->src[i] != NULL) {
  1175. size += ggml_nbytes(t->src[i]);
  1176. }
  1177. }
  1178. return size;
  1179. };
  1180. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1181. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1182. continue;
  1183. }
  1184. mem += tensor_op_size(ggml_graph_node(gf, i));
  1185. }
  1186. // run
  1187. int64_t total_time_us = 0;
  1188. int64_t total_mem = 0;
  1189. int total_runs = 0;
  1190. do {
  1191. int64_t start_time = ggml_time_us();
  1192. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1193. if (status != GGML_STATUS_SUCCESS) {
  1194. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1195. return false;
  1196. }
  1197. int64_t end_time = ggml_time_us();
  1198. total_time_us += end_time - start_time;
  1199. total_mem += mem;
  1200. total_runs += n_runs;
  1201. } while (total_time_us < 1000*1000); // run for at least 1 second
  1202. // Create test result
  1203. double avg_time_us = (double) total_time_us / total_runs;
  1204. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1205. double calculated_bandwidth =
  1206. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1207. size_t calculated_memory_kb = op_size(out) / 1024;
  1208. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1209. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1210. if (output_printer) {
  1211. output_printer->print_test_result(result);
  1212. }
  1213. return true;
  1214. }
  1215. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1216. mode = MODE_SUPPORT;
  1217. static const size_t graph_nodes = 8192;
  1218. ggml_init_params params = {
  1219. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1220. /* .mem_base = */ NULL,
  1221. /* .no_alloc = */ true,
  1222. };
  1223. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1224. GGML_ASSERT(ctx);
  1225. ggml_tensor * out = build_graph(ctx.get());
  1226. current_op_name = op_desc(out);
  1227. if (!matches_filter(out, op_names_filter)) {
  1228. return true;
  1229. }
  1230. bool supported = ggml_backend_supports_op(backend, out);
  1231. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1232. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1233. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1234. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1235. output_printer->print_test_result(result);
  1236. return true;
  1237. }
  1238. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1239. mode = MODE_GRAD;
  1240. const std::vector<float> expect = grad_expect();
  1241. ggml_init_params params = {
  1242. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1243. /* .mem_base = */ NULL,
  1244. /* .no_alloc = */ true,
  1245. };
  1246. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1247. GGML_ASSERT(ctx);
  1248. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1249. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1250. ggml_tensor * out = build_graph(ctx.get());
  1251. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1252. return true;
  1253. }
  1254. if (out->type != GGML_TYPE_F32) {
  1255. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1256. test_status_t::NOT_SUPPORTED,
  1257. out->name + std::string("->type != FP32")));
  1258. return true;
  1259. }
  1260. // Print operation info first
  1261. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1262. // check if the backend supports the ops
  1263. bool supported = true;
  1264. bool any_params = false;
  1265. std::string failure_reason;
  1266. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1267. if (!ggml_backend_supports_op(backend, t)) {
  1268. supported = false;
  1269. failure_reason = ggml_backend_name(backend);
  1270. break;
  1271. }
  1272. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1273. any_params = true;
  1274. if (t->type != GGML_TYPE_F32) {
  1275. supported = false;
  1276. failure_reason = std::string(t->name) + "->type != FP32";
  1277. break;
  1278. }
  1279. }
  1280. }
  1281. if (!any_params) {
  1282. supported = false;
  1283. failure_reason = op_desc(out);
  1284. }
  1285. if (!supported) {
  1286. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1287. test_status_t::NOT_SUPPORTED, failure_reason));
  1288. return true;
  1289. }
  1290. int64_t ngrads = 0;
  1291. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1292. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1293. ngrads += ggml_nelements(t);
  1294. }
  1295. }
  1296. if (ngrads > grad_nmax()) {
  1297. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1298. info.set_large_tensor_skip();
  1299. output_printer->print_operation(info);
  1300. return true;
  1301. }
  1302. if (!ggml_is_scalar(out)) {
  1303. out = ggml_sum(ctx.get(), out);
  1304. ggml_set_name(out, "sum_of_out");
  1305. }
  1306. ggml_set_loss(out);
  1307. ggml_build_forward_expand(gf, out);
  1308. ggml_graph_cpy(gf, gb);
  1309. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1310. if (expect.size() != 1 || expect[0] != 0.0f) {
  1311. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1312. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1313. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1314. }
  1315. }
  1316. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1317. if (!ggml_backend_supports_op(backend, t)) {
  1318. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1319. test_status_t::NOT_SUPPORTED,
  1320. ggml_backend_name(backend)));
  1321. supported = false;
  1322. break;
  1323. }
  1324. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1325. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1326. test_status_t::NOT_SUPPORTED,
  1327. std::string(t->name) + "->type != FP32"));
  1328. supported = false;
  1329. break;
  1330. }
  1331. }
  1332. if (!supported) {
  1333. return true;
  1334. }
  1335. // allocate
  1336. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1337. if (buf == NULL) {
  1338. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1339. info.set_error("allocation", "");
  1340. output_printer->print_operation(info);
  1341. return false;
  1342. }
  1343. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1344. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1345. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1346. if (status != GGML_STATUS_SUCCESS) {
  1347. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1348. return false;
  1349. }
  1350. status = ggml_backend_graph_compute(backend, gb);
  1351. if (status != GGML_STATUS_SUCCESS) {
  1352. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1353. return false;
  1354. }
  1355. bool ok = true;
  1356. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1357. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1358. continue;
  1359. }
  1360. const char * bn = ggml_backend_name(backend);
  1361. const int64_t ne = ggml_nelements(t);
  1362. std::vector<float> ga;
  1363. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1364. if (grad) {
  1365. ga = tensor_to_float(grad);
  1366. } else {
  1367. ga.resize(ne); // default value is 0.0f
  1368. }
  1369. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1370. // check for nans
  1371. if (!std::isfinite(ga[i])) {
  1372. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1373. info.set_gradient_info(i, bn, ga[i]);
  1374. output_printer->print_operation(info);
  1375. ok = false;
  1376. break;
  1377. }
  1378. }
  1379. if (!ok) {
  1380. break;
  1381. }
  1382. std::vector<float> gn(ne); // gradient numeric
  1383. GGML_ASSERT(ga.size() == gn.size());
  1384. std::vector<float> x0 = tensor_to_float(t); // original t data
  1385. GGML_ASSERT(ggml_is_scalar(out));
  1386. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1387. const float eps = grad_eps();
  1388. for (int64_t i = 0; i < ne; ++i) {
  1389. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1390. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1391. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1392. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1393. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1394. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1395. status = ggml_backend_graph_compute(backend, gf);
  1396. if (status != GGML_STATUS_SUCCESS) {
  1397. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1398. return false;
  1399. }
  1400. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1401. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1402. status = ggml_backend_graph_compute(backend, gf);
  1403. if (status != GGML_STATUS_SUCCESS) {
  1404. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1405. return false;
  1406. }
  1407. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1408. if (grad_precise()) {
  1409. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1410. status = ggml_backend_graph_compute(backend, gf);
  1411. if (status != GGML_STATUS_SUCCESS) {
  1412. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1413. return false;
  1414. }
  1415. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1416. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1417. status = ggml_backend_graph_compute(backend, gf);
  1418. if (status != GGML_STATUS_SUCCESS) {
  1419. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1420. return false;
  1421. }
  1422. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1423. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1424. } else {
  1425. gn[i] = (fu - fd) / (2.0f*eps);
  1426. }
  1427. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1428. }
  1429. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1430. if (err > max_maa_err()) {
  1431. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1432. info.set_maa_error(err, max_maa_err());
  1433. output_printer->print_operation(info);
  1434. ok = false;
  1435. break;
  1436. }
  1437. if (!ok) {
  1438. break;
  1439. }
  1440. }
  1441. // Create final test result
  1442. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1443. if (!ok) {
  1444. final_info.set_compare_failure();
  1445. }
  1446. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1447. output_printer->print_operation(final_info);
  1448. if (ok) {
  1449. return true;
  1450. }
  1451. return false;
  1452. }
  1453. };
  1454. // ###################################
  1455. // ## Section 2: GGML Op Defintions ##
  1456. // ###################################
  1457. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1458. // GGML_OP_EXAMPLE
  1459. struct test_example : public test_case {
  1460. // Always define these 2 or variants thereof:
  1461. const ggml_type type; // The type of the input tensors.
  1462. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1463. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1464. // Or they may need additional parameters.
  1465. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1466. // In most cases these are just the properties of the struct that you defined above.
  1467. // This is needed for info prints.
  1468. std::string vars() override {
  1469. return VARS_TO_STR2(type, ne);
  1470. }
  1471. // Define a constructor for the struct.
  1472. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1473. // and just use initializer lists.
  1474. test_example(ggml_type type = GGML_TYPE_F32,
  1475. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1476. : type(type), ne(ne) {}
  1477. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1478. ggml_tensor * build_graph(ggml_context * ctx) override {
  1479. // Step 1: create input tensors that don't depend on any other tensors:
  1480. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1481. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1482. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1483. ggml_set_name(b, "b");
  1484. // Step 2: use the op that you want to test in the GGML compute graph.
  1485. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1486. ggml_set_name(out, "out");
  1487. // Step 3: return the output tensor.
  1488. return out;
  1489. }
  1490. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1491. // immediately after you create the tensors.
  1492. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1493. };
  1494. // GGML_OP_UNARY
  1495. struct test_unary : public test_case {
  1496. const ggml_unary_op op;
  1497. const ggml_type type;
  1498. const std::array<int64_t, 4> ne_a;
  1499. int v; // view (1 : non-contiguous a)
  1500. std::string vars() override {
  1501. return VARS_TO_STR3(type, ne_a, v);
  1502. }
  1503. test_unary(ggml_unary_op op,
  1504. ggml_type type = GGML_TYPE_F32,
  1505. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1506. int v = 0)
  1507. : op(op), type(type), ne_a(ne_a), v(v) {}
  1508. ggml_tensor * build_graph(ggml_context * ctx) override {
  1509. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1510. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1511. ggml_tensor * a;
  1512. if (v & 1) {
  1513. auto ne = ne_a; ne[0] *= 3;
  1514. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1515. if (grad_supported) {
  1516. ggml_set_param(a);
  1517. }
  1518. ggml_set_name(a, "a");
  1519. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1520. ggml_set_name(a, "view_of_a");
  1521. } else {
  1522. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1523. if (grad_supported) {
  1524. ggml_set_param(a);
  1525. }
  1526. ggml_set_name(a, "a");
  1527. }
  1528. ggml_tensor * out = ggml_unary(ctx, a, op);
  1529. ggml_set_name(out, "out");
  1530. return out;
  1531. }
  1532. void initialize_tensors(ggml_context * ctx) override {
  1533. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1534. // test extended range of values to check for NaNs in GELU
  1535. init_tensor_uniform(t, -150.f, 150.f);
  1536. }
  1537. }
  1538. float grad_eps() override {
  1539. return 15.0f;
  1540. }
  1541. std::vector<float> grad_expect() override {
  1542. if (op == GGML_UNARY_OP_ABS) {
  1543. return {-1.0f, 1.0f};
  1544. }
  1545. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1546. return {0.0f};
  1547. }
  1548. if (op == GGML_UNARY_OP_RELU) {
  1549. return {0.0f, 1.0f};
  1550. }
  1551. return {};
  1552. }
  1553. };
  1554. // GGML_OP_GLU
  1555. struct test_glu : public test_case {
  1556. const ggml_glu_op op;
  1557. const ggml_type type;
  1558. const std::array<int64_t, 4> ne_a;
  1559. int v; // view (1 : non-contiguous a)
  1560. bool swapped;
  1561. std::string vars() override {
  1562. return VARS_TO_STR4(type, ne_a, v, swapped);
  1563. }
  1564. test_glu(ggml_glu_op op,
  1565. ggml_type type = GGML_TYPE_F32,
  1566. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1567. int v = 0,
  1568. bool swapped = false)
  1569. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1570. ggml_tensor * build_graph(ggml_context * ctx) override {
  1571. ggml_tensor * a;
  1572. if (v & 1) {
  1573. auto ne = ne_a; ne[0] *= 3;
  1574. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1575. ggml_set_name(a, "a");
  1576. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1577. ggml_set_name(a, "view_of_a");
  1578. } else {
  1579. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1580. ggml_set_name(a, "a");
  1581. }
  1582. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1583. ggml_set_name(out, "out");
  1584. return out;
  1585. }
  1586. void initialize_tensors(ggml_context * ctx) override {
  1587. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1588. // test extended range of values to check for NaNs in GELU
  1589. init_tensor_uniform(t, -150.f, 150.f);
  1590. }
  1591. }
  1592. };
  1593. struct test_glu_split : public test_case {
  1594. const ggml_glu_op op;
  1595. const ggml_type type;
  1596. const std::array<int64_t, 4> ne_a;
  1597. int v; // view (1 : non-contiguous a)
  1598. std::string vars() override {
  1599. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1600. }
  1601. test_glu_split(ggml_glu_op op,
  1602. ggml_type type = GGML_TYPE_F32,
  1603. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1604. int v = 0)
  1605. : op(op), type(type), ne_a(ne_a), v(v) {}
  1606. ggml_tensor * build_graph(ggml_context * ctx) override {
  1607. ggml_tensor * a;
  1608. ggml_tensor * b;
  1609. if (v & 1) {
  1610. auto ne = ne_a; ne[0] *= 3;
  1611. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1612. ggml_set_param(a);
  1613. ggml_set_name(a, "a");
  1614. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1615. ggml_set_name(a, "view_of_a");
  1616. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1617. ggml_set_param(b);
  1618. ggml_set_name(b, "b");
  1619. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1620. ggml_set_name(a, "view_of_b");
  1621. } else {
  1622. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1623. ggml_set_param(a);
  1624. ggml_set_name(a, "a");
  1625. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1626. ggml_set_param(b);
  1627. ggml_set_name(b, "b");
  1628. }
  1629. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1630. ggml_set_name(out, "out");
  1631. return out;
  1632. }
  1633. void initialize_tensors(ggml_context * ctx) override {
  1634. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1635. // test extended range of values to check for NaNs in GELU
  1636. init_tensor_uniform(t, -150.f, 150.f);
  1637. }
  1638. }
  1639. };
  1640. struct test_swiglu_oai : public test_case {
  1641. const ggml_type type;
  1642. const std::array<int64_t, 4> ne_a;
  1643. int v; // view (1 : non-contiguous a)
  1644. float alpha;
  1645. float limit;
  1646. std::string vars() override {
  1647. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1648. }
  1649. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1650. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1651. int v = 0,
  1652. float alpha = 1.702f,
  1653. float limit = 7.0f)
  1654. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1655. ggml_tensor * build_graph(ggml_context * ctx) override {
  1656. ggml_tensor * a;
  1657. ggml_tensor * b;
  1658. if (v & 1) {
  1659. auto ne = ne_a; ne[0] *= 3;
  1660. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1661. ggml_set_param(a);
  1662. ggml_set_name(a, "a");
  1663. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1664. ggml_set_name(a, "view_of_a");
  1665. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1666. ggml_set_param(b);
  1667. ggml_set_name(b, "b");
  1668. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1669. ggml_set_name(a, "view_of_b");
  1670. } else {
  1671. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1672. ggml_set_param(a);
  1673. ggml_set_name(a, "a");
  1674. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1675. ggml_set_param(b);
  1676. ggml_set_name(b, "b");
  1677. }
  1678. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1679. ggml_set_name(out, "out");
  1680. return out;
  1681. }
  1682. void initialize_tensors(ggml_context * ctx) override {
  1683. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1684. // test extended range of values to check for NaNs in GELU
  1685. init_tensor_uniform(t, -150.f, 150.f);
  1686. }
  1687. }
  1688. };
  1689. // GGML_OP_GET_ROWS
  1690. struct test_get_rows : public test_case {
  1691. const ggml_type type;
  1692. const int n; // cols
  1693. const int m; // rows
  1694. const int r; // rows to get
  1695. const int be1; // batch size
  1696. const int be2; // batch size
  1697. const bool v; // view (non-contiguous src1)
  1698. std::string vars() override {
  1699. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1700. }
  1701. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1702. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1703. ggml_tensor * build_graph(ggml_context * ctx) override {
  1704. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1705. ggml_set_name(in, "in");
  1706. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1707. ggml_set_name(rows, "rows");
  1708. if (v) {
  1709. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1710. ggml_set_name(rows, "view_of_rows");
  1711. }
  1712. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1713. if (grad_supported) {
  1714. ggml_set_param(in);
  1715. // rows is a constant input -> no gradients
  1716. }
  1717. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1718. ggml_set_name(out, "out");
  1719. return out;
  1720. }
  1721. void initialize_tensors(ggml_context * ctx) override {
  1722. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1723. if (t->type == GGML_TYPE_I32) {
  1724. if (ggml_is_view_op(t->op)) { continue; }
  1725. // rows
  1726. std::vector<int> data(r*be1*be2);
  1727. for (int i = 0; i < r*be1*be2; i++) {
  1728. data[i] = rand() % m;
  1729. }
  1730. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1731. } else {
  1732. init_tensor_uniform(t);
  1733. }
  1734. }
  1735. }
  1736. };
  1737. // GGML_OP_GET_ROWS_BACK
  1738. struct test_get_rows_back : public test_case {
  1739. const ggml_type type;
  1740. const int n; // cols
  1741. const int m; // rows
  1742. const int r; // rows to get
  1743. const int b; // batch size
  1744. const bool v; // view (non-contiguous src1)
  1745. std::string vars() override {
  1746. return VARS_TO_STR6(type, n, m, r, b, v);
  1747. }
  1748. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1749. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1750. ggml_tensor * build_graph(ggml_context * ctx) override {
  1751. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1752. ggml_set_name(in_forward, "in_forward");
  1753. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1754. ggml_set_name(rows, "rows");
  1755. if (v) {
  1756. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1757. ggml_set_name(rows, "view_of_rows");
  1758. }
  1759. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1760. ggml_set_name(grad, "grad");
  1761. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1762. ggml_set_name(out, "out");
  1763. return out;
  1764. }
  1765. void initialize_tensors(ggml_context * ctx) override {
  1766. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1767. if (t->type == GGML_TYPE_I32) {
  1768. if (ggml_is_view_op(t->op)) { continue; }
  1769. // rows
  1770. std::vector<int> data(r*b);
  1771. for (int i = 0; i < r*b; i++) {
  1772. data[i] = rand() % m;
  1773. }
  1774. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1775. } else {
  1776. init_tensor_uniform(t);
  1777. }
  1778. }
  1779. }
  1780. };
  1781. // GGML_OP_SET_ROWS
  1782. struct test_set_rows : public test_case {
  1783. const ggml_type type;
  1784. const ggml_type type_idx;
  1785. const std::array<int64_t, 4> ne;
  1786. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1787. const int r; // rows to set
  1788. const bool v; // view (non-contiguous src1)
  1789. std::string vars() override {
  1790. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1791. }
  1792. test_set_rows(ggml_type type,
  1793. ggml_type type_idx,
  1794. std::array<int64_t, 4> ne,
  1795. std::array<int, 2> nr23,
  1796. int r, bool v = false)
  1797. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1798. ggml_tensor * build_graph(ggml_context * ctx) override {
  1799. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1800. ggml_set_name(dst, "dst");
  1801. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1802. ggml_set_name(src, "src");
  1803. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1804. ggml_set_name(row_idxs, "row_idxs");
  1805. if (v) {
  1806. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1807. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1808. ggml_set_name(row_idxs, "view_of_rows");
  1809. }
  1810. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1811. ggml_set_name(out, "out");
  1812. return out;
  1813. }
  1814. void initialize_tensors(ggml_context * ctx) override {
  1815. std::random_device rd;
  1816. std::default_random_engine rng(rd());
  1817. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1818. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1819. if (ggml_is_view_op(t->op)) {
  1820. continue;
  1821. }
  1822. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1823. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1824. // generate a shuffled subset of row indices
  1825. std::vector<int64_t> data(ne[1]);
  1826. for (int i = 0; i < ne[1]; i++) {
  1827. data[i] = i;
  1828. }
  1829. std::shuffle(data.begin(), data.end(), rng);
  1830. data.resize(t->ne[0]);
  1831. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1832. if (t->type == GGML_TYPE_I32) {
  1833. // TODO: Make a template or something
  1834. std::vector<int32_t> data_i32(t->ne[0]);
  1835. for (int i = 0; i < t->ne[0]; i++) {
  1836. data_i32[i] = static_cast<int32_t>(data[i]);
  1837. }
  1838. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1839. } else {
  1840. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1841. }
  1842. }
  1843. }
  1844. } else {
  1845. init_tensor_uniform(t);
  1846. }
  1847. }
  1848. }
  1849. double max_nmse_err() override {
  1850. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1851. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1852. // estimate what the max nmse error would be if one quantized value is
  1853. // off by one. The test values are distributed in [-1,1], so it'll be
  1854. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1855. // which is roughly 0.25 times the number of elements.
  1856. double err_estimate = 1.0f/8.0f;
  1857. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1858. err_estimate /= 2.0f;
  1859. }
  1860. if (type == GGML_TYPE_Q8_0) {
  1861. err_estimate /= 8.0f;
  1862. }
  1863. err_estimate *= err_estimate;
  1864. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1865. return err_estimate;
  1866. }
  1867. return 1e-7;
  1868. }
  1869. };
  1870. // GGML_OP_ARGMAX
  1871. struct test_argmax : public test_case {
  1872. const ggml_type type;
  1873. const std::array<int64_t, 4> ne;
  1874. std::string vars() override {
  1875. return VARS_TO_STR2(type, ne);
  1876. }
  1877. test_argmax(ggml_type type = GGML_TYPE_F32,
  1878. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1879. : type(type), ne(ne) {}
  1880. ggml_tensor * build_graph(ggml_context * ctx) override {
  1881. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1882. ggml_set_name(a, "a");
  1883. ggml_tensor * out = ggml_argmax(ctx, a);
  1884. ggml_set_name(out, "out");
  1885. return out;
  1886. }
  1887. void initialize_tensors(ggml_context * ctx) override {
  1888. std::random_device rd;
  1889. std::default_random_engine rng(rd());
  1890. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1891. if (t->type == GGML_TYPE_F32) {
  1892. // initialize with unique values to avoid ties
  1893. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1894. std::vector<float> data(t->ne[0]);
  1895. for (int i = 0; i < t->ne[0]; i++) {
  1896. data[i] = i;
  1897. }
  1898. std::shuffle(data.begin(), data.end(), rng);
  1899. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1900. }
  1901. } else {
  1902. init_tensor_uniform(t);
  1903. }
  1904. }
  1905. }
  1906. double max_nmse_err() override {
  1907. return 0.0;
  1908. }
  1909. };
  1910. // GGML_OP_COUNT_EQUAL
  1911. struct test_count_equal : public test_case {
  1912. const ggml_type type;
  1913. const std::array<int64_t, 4> ne;
  1914. std::string vars() override {
  1915. return VARS_TO_STR2(type, ne);
  1916. }
  1917. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1918. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1919. : type(type), ne(ne) {}
  1920. ggml_tensor * build_graph(ggml_context * ctx) override {
  1921. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1922. ggml_set_name(a, "a");
  1923. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1924. ggml_set_name(a_argmax, "a_argmax");
  1925. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1926. ggml_set_name(b, "b");
  1927. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1928. ggml_set_name(b_argmax, "b_argmax");
  1929. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1930. ggml_set_name(out, "out");
  1931. return out;
  1932. }
  1933. double max_nmse_err() override {
  1934. return 0.0;
  1935. }
  1936. void initialize_tensors(ggml_context * ctx) override {
  1937. std::random_device rd;
  1938. std::default_random_engine rng(rd());
  1939. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1940. if (t->type == GGML_TYPE_F32) {
  1941. // initialize with unique values to avoid ties
  1942. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1943. std::vector<float> data(t->ne[0]);
  1944. for (int i = 0; i < t->ne[0]; i++) {
  1945. data[i] = i;
  1946. }
  1947. std::shuffle(data.begin(), data.end(), rng);
  1948. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1949. }
  1950. } else {
  1951. init_tensor_uniform(t);
  1952. }
  1953. }
  1954. }
  1955. };
  1956. // GGML_OP_REPEAT
  1957. struct test_repeat : public test_case {
  1958. const ggml_type type;
  1959. const std::array<int64_t, 4> ne;
  1960. const std::array<int, 4> nr;
  1961. std::string vars() override {
  1962. return VARS_TO_STR3(type, ne, nr);
  1963. }
  1964. size_t op_size(ggml_tensor * t) override {
  1965. return ggml_nbytes(t) * 2;
  1966. }
  1967. test_repeat(ggml_type type = GGML_TYPE_F32,
  1968. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1969. std::array<int, 4> nr = {2, 2, 2, 2})
  1970. : type(type), ne(ne), nr(nr) {}
  1971. ggml_tensor * build_graph(ggml_context * ctx) override {
  1972. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1973. ggml_set_name(target, "target");
  1974. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1975. ggml_set_param(src);
  1976. ggml_set_name(src, "src");
  1977. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1978. ggml_set_name(out, "out");
  1979. return out;
  1980. }
  1981. };
  1982. // GGML_OP_REPEAT_BACK
  1983. struct test_repeat_back : public test_case {
  1984. const ggml_type type;
  1985. const std::array<int64_t, 4> ne;
  1986. const std::array<int, 4> nr;
  1987. const bool v; // whether src is a noncontiguous view
  1988. std::string vars() override {
  1989. return VARS_TO_STR4(type, ne, nr, v);
  1990. }
  1991. size_t op_size(ggml_tensor * t) override {
  1992. return ggml_nbytes(t) * 2;
  1993. }
  1994. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1995. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1996. std::array<int, 4> nr = {2, 2, 2, 2},
  1997. bool v = false)
  1998. : type(type), ne(ne), nr(nr), v(v) {}
  1999. ggml_tensor * build_graph(ggml_context * ctx) override {
  2000. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2001. ggml_set_name(src, "src");
  2002. if (v) {
  2003. GGML_ASSERT(ne[0] % 2 == 0);
  2004. GGML_ASSERT(ne[1] % 2 == 0);
  2005. GGML_ASSERT(ne[2] % 2 == 0);
  2006. GGML_ASSERT(ne[3] % 2 == 0);
  2007. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2008. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2009. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2010. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2011. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2012. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2013. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2014. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2015. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2016. }
  2017. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2018. ggml_set_name(target, "target");
  2019. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2020. ggml_set_name(out, "out");
  2021. return out;
  2022. }
  2023. };
  2024. // GGML_OP_DUP
  2025. struct test_dup : public test_case {
  2026. const ggml_type type;
  2027. const std::array<int64_t, 4> ne;
  2028. const std::array<int64_t, 4> permute;
  2029. bool _use_permute;
  2030. std::string vars() override {
  2031. std::string v = VARS_TO_STR2(type, ne);
  2032. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2033. return v;
  2034. }
  2035. test_dup(ggml_type type = GGML_TYPE_F32,
  2036. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2037. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2038. : type(type), ne(ne), permute(permute),
  2039. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2040. ggml_tensor * build_graph(ggml_context * ctx) override {
  2041. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2042. ggml_set_param(src);
  2043. ggml_set_name(src, "src");
  2044. if (_use_permute) {
  2045. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2046. ggml_set_name(src, "src_permuted");
  2047. }
  2048. ggml_tensor * out = ggml_dup(ctx, src);
  2049. ggml_set_name(out, "out");
  2050. return out;
  2051. }
  2052. };
  2053. // GGML_OP_SET
  2054. struct test_set : public test_case {
  2055. const ggml_type type_src;
  2056. const ggml_type type_dst;
  2057. const std::array<int64_t, 4> ne;
  2058. const int dim;
  2059. std::string vars() override {
  2060. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2061. }
  2062. size_t op_size(ggml_tensor * t) override {
  2063. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2064. }
  2065. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2066. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2067. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2068. ggml_tensor * build_graph(ggml_context * ctx) override {
  2069. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2070. ggml_set_param(src);
  2071. ggml_set_name(src, "src");
  2072. auto ne_dst = ne;
  2073. for (int i = 0; i < dim; ++i) {
  2074. ne_dst[i] *= 2;
  2075. }
  2076. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2077. ggml_set_param(dst);
  2078. ggml_set_name(dst, "dst");
  2079. size_t offset = 0;
  2080. for (int i = 0; i < dim; ++i) {
  2081. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2082. }
  2083. ggml_tensor * out = ggml_set(ctx, dst, src,
  2084. // The backward pass requires setting a contiguous region:
  2085. src->nb[1], src->nb[2], src->nb[3], offset);
  2086. ggml_set_name(out, "out");
  2087. return out;
  2088. }
  2089. };
  2090. // GGML_OP_CPY
  2091. struct test_cpy : public test_case {
  2092. const ggml_type type_src;
  2093. const ggml_type type_dst;
  2094. const std::array<int64_t, 4> ne;
  2095. const std::array<int64_t, 4> permute_src;
  2096. const std::array<int64_t, 4> permute_dst;
  2097. bool _src_use_permute;
  2098. bool _dst_use_permute;
  2099. std::string vars() override {
  2100. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2101. }
  2102. double max_nmse_err() override {
  2103. if (type_src == type_dst) {
  2104. return 0.0;
  2105. }
  2106. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2107. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2108. // estimate what the max nmse error would be if one quantized value is
  2109. // off by one. The test values are distributed in [-150,150], so it'll be
  2110. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2111. // which is roughly 0.25*150^2 times the number of elements.
  2112. double err_estimate = 1.0f/8.0f * 150.0f;
  2113. if (type_dst == GGML_TYPE_IQ4_NL) {
  2114. // iq4_nl values are a bit more spread out
  2115. err_estimate *= 2.0f;
  2116. }
  2117. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2118. err_estimate /= 2.0f;
  2119. }
  2120. if (type_dst == GGML_TYPE_Q8_0) {
  2121. err_estimate /= 8.0f;
  2122. }
  2123. err_estimate *= err_estimate;
  2124. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2125. return err_estimate;
  2126. }
  2127. return 1e-6;
  2128. }
  2129. size_t op_size(ggml_tensor * t) override {
  2130. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2131. }
  2132. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2133. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2134. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2135. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2136. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2137. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2138. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2139. ggml_tensor * build_graph(ggml_context * ctx) override {
  2140. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2141. ggml_set_param(src);
  2142. ggml_set_name(src, "src");
  2143. if (_src_use_permute) {
  2144. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2145. ggml_set_name(src, "src_permuted");
  2146. }
  2147. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2148. ggml_set_name(dst, "dst");
  2149. if (_dst_use_permute) {
  2150. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2151. ggml_set_name(dst, "dst_permuted");
  2152. }
  2153. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2154. ggml_set_name(out, "out");
  2155. return out;
  2156. }
  2157. void initialize_tensors(ggml_context * ctx) override {
  2158. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2159. // test extended range of values to check if casting between f32 and i32 is consistent
  2160. init_tensor_uniform(t, -150.f, 150.f);
  2161. }
  2162. }
  2163. };
  2164. // GGML_OP_CONT
  2165. struct test_cont : public test_case {
  2166. const ggml_type type;
  2167. const std::array<int64_t, 4> ne;
  2168. std::string vars() override {
  2169. return VARS_TO_STR2(type, ne);
  2170. }
  2171. test_cont(ggml_type type = GGML_TYPE_F32,
  2172. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2173. : type(type), ne(ne) {}
  2174. ggml_tensor * build_graph(ggml_context * ctx) override {
  2175. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2176. ggml_set_param(src);
  2177. ggml_set_name(src, "src");
  2178. src = ggml_transpose(ctx, src);
  2179. ggml_set_name(src, "src_transposed");
  2180. ggml_tensor * out = ggml_cont(ctx, src);
  2181. ggml_set_name(out, "out");
  2182. return out;
  2183. }
  2184. };
  2185. // GGML_OP_ADD
  2186. // GGML_OP_SUB
  2187. // GGML_OP_MUL
  2188. // GGML_OP_DIV
  2189. struct test_bin_bcast : public test_case {
  2190. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2191. op_t op;
  2192. const ggml_type type;
  2193. const std::array<int64_t, 4> ne;
  2194. const std::array<int, 4> nr;
  2195. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2196. bool run_whole_graph() override { return true; }
  2197. std::string vars() override {
  2198. return VARS_TO_STR4(type, ne, nr, nf);
  2199. }
  2200. size_t op_size(ggml_tensor * t) override {
  2201. return ggml_nbytes(t) * 3;
  2202. }
  2203. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2204. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2205. std::array<int, 4> nr = {1, 2, 1, 1},
  2206. int nf = 1)
  2207. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2208. ggml_tensor * build_graph(ggml_context * ctx) override {
  2209. GGML_ASSERT(nf <= 16);
  2210. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2211. ggml_set_name(a, "a");
  2212. ggml_tensor * b[16];
  2213. for (int i = 0; i < nf; ++i) {
  2214. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2215. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2216. }
  2217. // The backward pass supports broadcasting only for GGML_ADD:
  2218. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2219. if (grad_supported) {
  2220. ggml_set_param(a);
  2221. ggml_set_param(b[0]);
  2222. }
  2223. ggml_tensor * out = a;
  2224. for (int i = 0; i < nf; ++i) {
  2225. out = op(ctx, out, b[i]);
  2226. }
  2227. ggml_set_name(out, "out");
  2228. return out;
  2229. }
  2230. void initialize_tensors(ggml_context * ctx) override {
  2231. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2232. if (op == ggml_mul || op == ggml_div) {
  2233. // MUL and DIV have numerical issues around zero:
  2234. init_tensor_uniform(t, 0.9f, 1.1f);
  2235. } else {
  2236. init_tensor_uniform(t);
  2237. }
  2238. }
  2239. }
  2240. float grad_eps() override {
  2241. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2242. }
  2243. bool grad_precise() override {
  2244. return op == ggml_div;
  2245. }
  2246. double max_maa_err() override {
  2247. return op == ggml_add ? 1e-4 : 1e-3;
  2248. }
  2249. };
  2250. // GGML_OP_ADD_ID
  2251. struct test_add_id : public test_case {
  2252. const ggml_type type_a;
  2253. const ggml_type type_b;
  2254. const int64_t n_embd;
  2255. const int64_t n_experts;
  2256. const int64_t n_experts_used;
  2257. const int64_t n_token;
  2258. std::string vars() override {
  2259. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2260. }
  2261. size_t op_size(ggml_tensor * t) override {
  2262. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2263. }
  2264. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2265. ggml_type type_b = GGML_TYPE_F32,
  2266. int64_t n_embd = 128,
  2267. int64_t n_experts = 16,
  2268. int64_t n_experts_used = 8,
  2269. int64_t n_token = 10)
  2270. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2271. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2272. ggml_tensor * build_graph(ggml_context * ctx) override {
  2273. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2274. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2275. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2276. if (n_experts_used != n_experts) {
  2277. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2278. ggml_set_name(ids, "view_of_ids");
  2279. }
  2280. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2281. ggml_set_name(out, "out");
  2282. return out;
  2283. }
  2284. void initialize_tensors(ggml_context * ctx) override {
  2285. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2286. if (t->type == GGML_TYPE_I32) {
  2287. if (ggml_is_view_op(t->op)) { continue; }
  2288. std::random_device rd;
  2289. std::default_random_engine rng(rd());
  2290. // ids
  2291. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2292. std::vector<int32_t> data(t->ne[0]);
  2293. for (int i = 0; i < t->ne[0]; i++) {
  2294. data[i] = i % n_experts;
  2295. }
  2296. std::shuffle(data.begin(), data.end(), rng);
  2297. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2298. }
  2299. } else {
  2300. init_tensor_uniform(t);
  2301. }
  2302. }
  2303. }
  2304. };
  2305. // GGML_OP_ADD1
  2306. struct test_add1 : public test_case {
  2307. const ggml_type type;
  2308. const std::array<int64_t, 4> ne;
  2309. std::string vars() override {
  2310. return VARS_TO_STR2(type, ne);
  2311. }
  2312. test_add1(ggml_type type = GGML_TYPE_F32,
  2313. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2314. : type(type), ne(ne) {}
  2315. ggml_tensor * build_graph(ggml_context * ctx) override {
  2316. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2317. ggml_set_param(a);
  2318. ggml_set_name(a, "a");
  2319. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2320. // ggml_set_param(b); // TODO: implement
  2321. ggml_set_name(b, "b");
  2322. ggml_tensor * out = ggml_add1(ctx, a, b);
  2323. ggml_set_name(out, "out");
  2324. return out;
  2325. }
  2326. float grad_eps() override {
  2327. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2328. }
  2329. };
  2330. // GGML_OP_SCALE
  2331. struct test_scale : public test_case {
  2332. const ggml_type type;
  2333. const std::array<int64_t, 4> ne;
  2334. float scale;
  2335. float bias;
  2336. bool inplace;
  2337. std::string vars() override {
  2338. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2339. }
  2340. test_scale(ggml_type type = GGML_TYPE_F32,
  2341. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2342. float scale = 2.0f,
  2343. float bias = 0.0f,
  2344. bool inplace = false)
  2345. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2346. ggml_tensor * build_graph(ggml_context * ctx) override {
  2347. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2348. ggml_set_param(a);
  2349. ggml_set_name(a, "a");
  2350. ggml_tensor * out;
  2351. if (inplace) {
  2352. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2353. } else {
  2354. out = ggml_scale_bias(ctx, a, scale, bias);
  2355. }
  2356. ggml_set_name(out, "out");
  2357. return out;
  2358. }
  2359. };
  2360. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2361. struct test_softcap : public test_case {
  2362. const ggml_type type;
  2363. const std::array<int64_t, 4> ne;
  2364. float softcap;
  2365. std::string op_desc(ggml_tensor * t) override {
  2366. GGML_UNUSED(t);
  2367. return "SOFTCAP";
  2368. }
  2369. bool run_whole_graph() override { return true; }
  2370. std::string vars() override {
  2371. return VARS_TO_STR3(type, ne, softcap);
  2372. }
  2373. test_softcap(ggml_type type = GGML_TYPE_F32,
  2374. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2375. float softcap = 30.0f)
  2376. : type(type), ne(ne), softcap(softcap) {}
  2377. ggml_tensor * build_graph(ggml_context * ctx) override {
  2378. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2379. ggml_set_param(a);
  2380. ggml_set_name(a, "a");
  2381. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2382. ggml_set_name(out, "out");
  2383. return out;
  2384. }
  2385. };
  2386. // GGML_OP_SILU_BACK
  2387. struct test_silu_back : public test_case {
  2388. const ggml_type type;
  2389. const std::array<int64_t, 4> ne;
  2390. float eps;
  2391. std::string vars() override {
  2392. return VARS_TO_STR3(type, ne, eps);
  2393. }
  2394. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2395. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2396. float eps = 1e-6f)
  2397. : type(type), ne(ne), eps(eps) {}
  2398. ggml_tensor * build_graph(ggml_context * ctx) override {
  2399. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2400. ggml_set_name(a, "a");
  2401. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2402. ggml_set_name(grad, "grad");
  2403. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2404. ggml_set_name(out, "out");
  2405. return out;
  2406. }
  2407. bool grad_precise() override {
  2408. return true;
  2409. }
  2410. };
  2411. // GGML_OP_NORM
  2412. struct test_norm : public test_case {
  2413. const ggml_type type;
  2414. const std::array<int64_t, 4> ne;
  2415. const bool v; // whether a is a non-contiguous view
  2416. const float eps;
  2417. std::string vars() override {
  2418. return VARS_TO_STR4(type, ne, v, eps);
  2419. }
  2420. test_norm(ggml_type type = GGML_TYPE_F32,
  2421. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2422. bool v = false,
  2423. float eps = 1e-6f)
  2424. : type(type), ne(ne), v(v), eps(eps) {}
  2425. ggml_tensor * build_graph(ggml_context * ctx) override {
  2426. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2427. ggml_set_name(a, "a");
  2428. if (v) {
  2429. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2430. ggml_set_name(a, "view of a");
  2431. }
  2432. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2433. ggml_set_name(out, "out");
  2434. return out;
  2435. }
  2436. };
  2437. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2438. struct test_norm_mul_add : public test_case {
  2439. const ggml_type type;
  2440. const std::array<int64_t, 4> ne;
  2441. float eps;
  2442. const bool broadcast;
  2443. std::string op_desc(ggml_tensor * t) override {
  2444. GGML_UNUSED(t);
  2445. return "NORM_MUL_ADD";
  2446. }
  2447. bool run_whole_graph() override { return true; }
  2448. std::string vars() override {
  2449. return VARS_TO_STR4(type, ne, eps, broadcast);
  2450. }
  2451. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2452. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2453. float eps = 1e-5f,
  2454. bool broadcast = false)
  2455. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2456. ggml_tensor * build_graph(ggml_context * ctx) override {
  2457. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2458. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2459. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2460. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2461. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2462. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2463. // Use a, w and b early to avoid OP_NONE in graph
  2464. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2465. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2466. ggml_tensor * m = ggml_mul(ctx, n, w);
  2467. ggml_tensor * out = ggml_add(ctx, m, b);
  2468. ggml_set_name(out, "out");
  2469. return out;
  2470. }
  2471. };
  2472. // GGML_OP_RMS_NORM
  2473. struct test_rms_norm : public test_case {
  2474. const ggml_type type;
  2475. const std::array<int64_t, 4> ne;
  2476. const bool v; // whether a is a non-contiguous view
  2477. const float eps;
  2478. const bool inplace; // whether to do the operation inplace
  2479. std::string vars() override {
  2480. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2481. }
  2482. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2483. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2484. bool v = false,
  2485. float eps = 1e-6f,
  2486. bool inplace = false)
  2487. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2488. ggml_tensor * build_graph(ggml_context * ctx) override {
  2489. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2490. ggml_set_param(a);
  2491. ggml_set_name(a, "a");
  2492. if (v) {
  2493. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2494. ggml_set_name(a, "view of a");
  2495. }
  2496. ggml_tensor * out;
  2497. if (inplace) {
  2498. out = ggml_rms_norm_inplace(ctx, a, eps);
  2499. } else {
  2500. out = ggml_rms_norm(ctx, a, eps);
  2501. }
  2502. ggml_set_name(out, "out");
  2503. return out;
  2504. }
  2505. void initialize_tensors(ggml_context * ctx) override {
  2506. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2507. init_tensor_uniform(t, -10.f, 10.f);
  2508. }
  2509. }
  2510. float grad_eps() override {
  2511. return 1.0f;
  2512. }
  2513. bool grad_precise() override {
  2514. return true;
  2515. }
  2516. };
  2517. // GGML_OP_RMS_NORM_BACK
  2518. struct test_rms_norm_back : public test_case {
  2519. const ggml_type type;
  2520. const std::array<int64_t, 4> ne;
  2521. const float eps;
  2522. std::string vars() override {
  2523. return VARS_TO_STR3(type, ne, eps);
  2524. }
  2525. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2526. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2527. float eps = 1e-6f)
  2528. : type(type), ne(ne), eps(eps) {}
  2529. ggml_tensor * build_graph(ggml_context * ctx) override {
  2530. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2531. ggml_set_name(a, "a");
  2532. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2533. ggml_set_name(b, "b");
  2534. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2535. ggml_set_name(out, "out");
  2536. return out;
  2537. }
  2538. void initialize_tensors(ggml_context * ctx) override {
  2539. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2540. init_tensor_uniform(t, -10.f, 10.f);
  2541. }
  2542. }
  2543. };
  2544. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2545. struct test_rms_norm_mul_add : public test_case {
  2546. const ggml_type type;
  2547. const std::array<int64_t, 4> ne;
  2548. const float eps;
  2549. const bool broadcast;
  2550. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2551. std::string op_desc(ggml_tensor * t) override {
  2552. GGML_UNUSED(t);
  2553. return "RMS_NORM_MUL_ADD";
  2554. }
  2555. bool run_whole_graph() override { return true; }
  2556. std::string vars() override {
  2557. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2558. }
  2559. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2560. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2561. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2562. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2563. ggml_tensor * build_graph(ggml_context * ctx) override {
  2564. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2565. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2566. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2567. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2568. ggml_set_param(a);
  2569. ggml_set_name(a, "a");
  2570. ggml_set_param(b);
  2571. ggml_set_name(b, "b");
  2572. ggml_set_param(c);
  2573. ggml_set_name(c, "c");
  2574. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2575. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2576. if (multi_add) {
  2577. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2578. }
  2579. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2580. ggml_set_name(out, "out");
  2581. return out;
  2582. }
  2583. void initialize_tensors(ggml_context * ctx) override {
  2584. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2585. init_tensor_uniform(t, -10.f, 10.f);
  2586. }
  2587. }
  2588. float grad_eps() override {
  2589. return 1.0f;
  2590. }
  2591. bool grad_precise() override {
  2592. return true;
  2593. }
  2594. };
  2595. // GGML_OP_SSM_CONV
  2596. struct test_ssm_conv : public test_case {
  2597. const ggml_type type;
  2598. const std::array<int64_t, 4> ne_a;
  2599. const std::array<int64_t, 4> ne_b;
  2600. std::string vars() override {
  2601. return VARS_TO_STR3(type, ne_a, ne_b);
  2602. }
  2603. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2604. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2605. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2606. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2607. ggml_tensor * build_graph(ggml_context * ctx) override {
  2608. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2609. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2610. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2611. return out;
  2612. }
  2613. };
  2614. // GGML_OP_SSM_SCAN
  2615. struct test_ssm_scan : public test_case {
  2616. const ggml_type type;
  2617. const int64_t d_state;
  2618. const int64_t head_dim;
  2619. const int64_t n_head;
  2620. const int64_t n_group;
  2621. const int64_t n_seq_tokens;
  2622. const int64_t n_seqs;
  2623. std::string vars() override {
  2624. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2625. }
  2626. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2627. int64_t d_state = 32,
  2628. int64_t head_dim = 1, // non-zero for Mamba-2
  2629. int64_t n_head = 32,
  2630. int64_t n_group = 1,
  2631. int64_t n_seq_tokens = 32,
  2632. int64_t n_seqs = 32)
  2633. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2634. ggml_tensor * build_graph(ggml_context * ctx) override {
  2635. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2636. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2637. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2638. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2639. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2640. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2641. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2642. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2643. return out;
  2644. }
  2645. // similar to test_mul_mat_id
  2646. void initialize_tensors(ggml_context * ctx) override {
  2647. std::random_device rd;
  2648. std::default_random_engine rng(rd());
  2649. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2650. if (t->type == GGML_TYPE_I32) {
  2651. if (ggml_is_view_op(t->op)) { continue; }
  2652. // ids
  2653. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2654. std::vector<int32_t> data(t->ne[0]);
  2655. for (int i = 0; i < t->ne[0]; i++) {
  2656. data[i] = i;
  2657. }
  2658. std::shuffle(data.begin(), data.end(), rng);
  2659. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2660. }
  2661. } else {
  2662. init_tensor_uniform(t);
  2663. }
  2664. }
  2665. }
  2666. };
  2667. // GGML_OP_RWKV_WKV6
  2668. struct test_rwkv_wkv6 : public test_case {
  2669. const ggml_type type;
  2670. const int64_t head_count;
  2671. const int64_t head_size;
  2672. const int64_t n_seq_tokens;
  2673. const int64_t n_seqs;
  2674. std::string vars() override {
  2675. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2676. }
  2677. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2678. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2679. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2680. ggml_tensor * build_graph(ggml_context * ctx) override {
  2681. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2682. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2683. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2684. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2685. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2686. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2687. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2688. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2689. return out;
  2690. }
  2691. };
  2692. // GGML_OP_GATED_LINEAR_ATTN
  2693. struct test_gla : public test_case {
  2694. const ggml_type type;
  2695. const int64_t head_count;
  2696. const int64_t head_size;
  2697. const int64_t n_seq_tokens;
  2698. const int64_t n_seqs;
  2699. std::string vars() override {
  2700. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2701. }
  2702. test_gla(ggml_type type = GGML_TYPE_F32,
  2703. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2704. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2705. ggml_tensor * build_graph(ggml_context * ctx) override {
  2706. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2707. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2708. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2709. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2710. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2711. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2712. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2713. return out;
  2714. }
  2715. };
  2716. // GGML_OP_RWKV_WKV7
  2717. struct test_rwkv_wkv7 : public test_case {
  2718. const ggml_type type;
  2719. const int64_t head_count;
  2720. const int64_t head_size;
  2721. const int64_t n_seq_tokens;
  2722. const int64_t n_seqs;
  2723. std::string vars() override {
  2724. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2725. }
  2726. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2727. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2728. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2729. ggml_tensor * build_graph(ggml_context * ctx) override {
  2730. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2731. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2732. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2733. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2734. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2735. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2736. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2737. // Outputs may become NaN with long seqlen without these normalization
  2738. a = ggml_l2_norm(ctx, a, 1e-7F);
  2739. b = ggml_l2_norm(ctx, b, 1e-7F);
  2740. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2741. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2742. return out;
  2743. }
  2744. };
  2745. // GGML_OP_MUL_MAT
  2746. struct test_mul_mat : public test_case {
  2747. const ggml_type type_a;
  2748. const ggml_type type_b;
  2749. const int64_t m;
  2750. const int64_t n;
  2751. const int64_t k;
  2752. const std::array<int64_t, 2> bs; // dims 3 and 4
  2753. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2754. const std::array<int64_t, 4> per; // permutation of dimensions
  2755. const bool v; // whether a and b are non-contiguous views
  2756. const uint32_t o; // number of outputs
  2757. std::string vars() override {
  2758. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
  2759. }
  2760. double max_nmse_err() override {
  2761. return 5e-4;
  2762. }
  2763. int64_t grad_nmax() override {
  2764. return 20000;
  2765. }
  2766. uint64_t op_flops(ggml_tensor * t) override {
  2767. GGML_UNUSED(t);
  2768. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2769. }
  2770. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2771. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2772. std::array<int64_t, 2> bs = {10, 10},
  2773. std::array<int64_t, 2> nr = {2, 2},
  2774. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2775. bool v = false, uint32_t o = 1)
  2776. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
  2777. ggml_tensor * build_graph(ggml_context * ctx) override {
  2778. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2779. ggml_tensor * a;
  2780. ggml_tensor * b;
  2781. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2782. if (npermuted > 0) {
  2783. GGML_ASSERT(npermuted == 2);
  2784. GGML_ASSERT(!v); // not handled
  2785. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2786. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2787. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2788. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2789. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2790. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2791. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2792. if (!ggml_is_quantized(type_a)) {
  2793. if (bs[1] == 1 && nr[1] == 1) {
  2794. ggml_set_param(a);
  2795. }
  2796. ggml_set_param(b);
  2797. }
  2798. ggml_set_name(a, "a");
  2799. ggml_set_name(b, "b");
  2800. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2801. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2802. ggml_set_name(a, "a_permuted");
  2803. ggml_set_name(b, "b_permuted");
  2804. } else {
  2805. if (v) {
  2806. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2807. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2808. if (!ggml_is_quantized(type_a)) {
  2809. if (bs[1] == 1 && nr[1] == 1) {
  2810. ggml_set_param(a);
  2811. }
  2812. ggml_set_param(b);
  2813. }
  2814. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2815. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2816. } else {
  2817. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2818. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2819. if (!ggml_is_quantized(type_a)) {
  2820. if (bs[1] == 1 && nr[1] == 1) {
  2821. ggml_set_param(a);
  2822. }
  2823. ggml_set_param(b);
  2824. }
  2825. }
  2826. ggml_set_name(a, "a");
  2827. ggml_set_name(b, "b");
  2828. }
  2829. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2830. ggml_set_name(out, "out");
  2831. for (uint32_t i = 1; i < o; ++i) {
  2832. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2833. ggml_set_name(out2, "out2");
  2834. out = ggml_add(ctx, out, out2);
  2835. }
  2836. return out;
  2837. }
  2838. bool run_whole_graph() override { return o > 1; }
  2839. std::string op_desc(ggml_tensor * t) override {
  2840. GGML_UNUSED(t);
  2841. return ggml_op_name(GGML_OP_MUL_MAT);
  2842. }
  2843. };
  2844. // GGML_OP_MUL_MAT_ID
  2845. struct test_mul_mat_id : public test_case {
  2846. const ggml_type type_a;
  2847. const ggml_type type_b;
  2848. const int n_mats;
  2849. const int n_used;
  2850. const bool b; // broadcast b matrix
  2851. const int64_t m;
  2852. const int64_t n;
  2853. const int64_t k;
  2854. const uint32_t o; // number of outputs
  2855. std::string vars() override {
  2856. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2857. }
  2858. double max_nmse_err() override {
  2859. return 5e-4;
  2860. }
  2861. uint64_t op_flops(ggml_tensor * t) override {
  2862. GGML_UNUSED(t);
  2863. return 2 * m * k * n * n_used;
  2864. }
  2865. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2866. int n_mats = 8, int n_used = 2, bool b = false,
  2867. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2868. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2869. m(m), n(n), k(k), o(o) {
  2870. GGML_ASSERT(n_used <= n_mats);
  2871. }
  2872. ggml_tensor * build_graph(ggml_context * ctx) override {
  2873. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2874. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2875. ggml_set_name(as, "as");
  2876. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2877. ggml_set_name(ids, "ids");
  2878. if (n_used != n_mats) {
  2879. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2880. ggml_set_name(ids, "view_of_ids");
  2881. }
  2882. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2883. ggml_set_name(b, "b");
  2884. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2885. ggml_set_name(out, "out");
  2886. for (uint32_t i = 1; i < o; ++i) {
  2887. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2888. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2889. ggml_set_name(out2, "out2");
  2890. out = ggml_add(ctx, out, out2);
  2891. }
  2892. return out;
  2893. }
  2894. void initialize_tensors(ggml_context * ctx) override {
  2895. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2896. if (t->type == GGML_TYPE_I32) {
  2897. if (ggml_is_view_op(t->op)) { continue; }
  2898. std::random_device rd;
  2899. std::default_random_engine rng(rd());
  2900. // ids
  2901. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2902. std::vector<int32_t> data(t->ne[0]);
  2903. for (int i = 0; i < t->ne[0]; i++) {
  2904. data[i] = i % n_mats;
  2905. }
  2906. std::shuffle(data.begin(), data.end(), rng);
  2907. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2908. }
  2909. } else {
  2910. init_tensor_uniform(t);
  2911. }
  2912. }
  2913. }
  2914. bool run_whole_graph() override { return o > 1; }
  2915. std::string op_desc(ggml_tensor * t) override {
  2916. GGML_UNUSED(t);
  2917. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2918. }
  2919. };
  2920. // GGML_OP_OUT_PROD
  2921. struct test_out_prod : public test_case {
  2922. const ggml_type type_a;
  2923. const ggml_type type_b;
  2924. const int64_t m;
  2925. const int64_t n;
  2926. const int64_t k;
  2927. const std::array<int64_t, 2> bs; // dims 3 and 4
  2928. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2929. const bool trans_b;
  2930. std::string vars() override {
  2931. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2932. }
  2933. double max_nmse_err() override {
  2934. return 5e-4;
  2935. }
  2936. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2937. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2938. std::array<int64_t, 2> bs = {10, 10},
  2939. std::array<int64_t, 2> nr = {2, 2},
  2940. bool trans_b = false)
  2941. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2942. ggml_tensor * build_graph(ggml_context * ctx) override {
  2943. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2944. ggml_set_name(a, "a");
  2945. ggml_tensor * b;
  2946. if (trans_b) {
  2947. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2948. b = ggml_transpose(ctx, b);
  2949. } else {
  2950. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2951. }
  2952. ggml_set_name(b, "b");
  2953. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2954. ggml_set_name(out, "out");
  2955. return out;
  2956. }
  2957. };
  2958. // GGML_OP_SQR
  2959. struct test_sqr : public test_case {
  2960. const ggml_type type;
  2961. const std::array<int64_t, 4> ne;
  2962. std::string vars() override {
  2963. return VARS_TO_STR2(type, ne);
  2964. }
  2965. test_sqr(ggml_type type = GGML_TYPE_F32,
  2966. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2967. : type(type), ne(ne) {}
  2968. ggml_tensor * build_graph(ggml_context * ctx) override {
  2969. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2970. ggml_set_param(a);
  2971. ggml_set_name(a, "a");
  2972. ggml_tensor * out = ggml_sqr(ctx, a);
  2973. ggml_set_name(out, "out");
  2974. return out;
  2975. }
  2976. float grad_eps() override {
  2977. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2978. }
  2979. };
  2980. // GGML_OP_SQRT
  2981. struct test_sqrt : public test_case {
  2982. const ggml_type type;
  2983. const std::array<int64_t, 4> ne;
  2984. std::string vars() override {
  2985. return VARS_TO_STR2(type, ne);
  2986. }
  2987. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2988. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2989. : type(type), ne(ne) {}
  2990. ggml_tensor * build_graph(ggml_context * ctx) override {
  2991. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2992. ggml_set_param(a);
  2993. ggml_set_name(a, "a");
  2994. ggml_tensor * out = ggml_sqrt(ctx, a);
  2995. ggml_set_name(out, "out");
  2996. return out;
  2997. }
  2998. void initialize_tensors(ggml_context * ctx) override {
  2999. // fill with positive values
  3000. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3001. init_tensor_uniform(t, 50.0f, 100.0f);
  3002. }
  3003. }
  3004. float grad_eps() override {
  3005. return 20.0f;
  3006. }
  3007. bool grad_precise() override {
  3008. return true;
  3009. }
  3010. };
  3011. // GGML_OP_LOG
  3012. struct test_log : public test_case {
  3013. const ggml_type type;
  3014. const std::array<int64_t, 4> ne;
  3015. std::string vars() override {
  3016. return VARS_TO_STR2(type, ne);
  3017. }
  3018. test_log(ggml_type type = GGML_TYPE_F32,
  3019. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3020. : type(type), ne(ne) {}
  3021. ggml_tensor * build_graph(ggml_context * ctx) override {
  3022. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3023. ggml_set_param(a);
  3024. ggml_set_name(a, "a");
  3025. ggml_tensor * out = ggml_log(ctx, a);
  3026. ggml_set_name(out, "out");
  3027. return out;
  3028. }
  3029. void initialize_tensors(ggml_context * ctx) override {
  3030. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3031. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3032. init_tensor_uniform(t, 0.9f, 1.1f);
  3033. }
  3034. }
  3035. bool grad_precise() override {
  3036. return true;
  3037. }
  3038. };
  3039. // GGML_OP_SIN
  3040. struct test_sin : public test_case {
  3041. const ggml_type type;
  3042. const std::array<int64_t, 4> ne;
  3043. std::string vars() override {
  3044. return VARS_TO_STR2(type, ne);
  3045. }
  3046. test_sin(ggml_type type = GGML_TYPE_F32,
  3047. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3048. : type(type), ne(ne) {}
  3049. ggml_tensor * build_graph(ggml_context * ctx) override {
  3050. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3051. ggml_set_param(a);
  3052. ggml_set_name(a, "a");
  3053. ggml_tensor * out = ggml_sin(ctx, a);
  3054. ggml_set_name(out, "out");
  3055. return out;
  3056. }
  3057. void initialize_tensors(ggml_context * ctx) override {
  3058. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3059. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3060. }
  3061. }
  3062. double max_maa_err() override {
  3063. return 1e-3;
  3064. }
  3065. float grad_eps() override {
  3066. return 0.2f;
  3067. }
  3068. bool grad_precise() override {
  3069. return true;
  3070. }
  3071. };
  3072. // GGML_OP_COS
  3073. struct test_cos : public test_case {
  3074. const ggml_type type;
  3075. const std::array<int64_t, 4> ne;
  3076. std::string vars() override {
  3077. return VARS_TO_STR2(type, ne);
  3078. }
  3079. test_cos(ggml_type type = GGML_TYPE_F32,
  3080. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3081. : type(type), ne(ne) {}
  3082. ggml_tensor * build_graph(ggml_context * ctx) override {
  3083. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3084. ggml_set_param(a);
  3085. ggml_set_name(a, "a");
  3086. ggml_tensor * out = ggml_cos(ctx, a);
  3087. ggml_set_name(out, "out");
  3088. return out;
  3089. }
  3090. void initialize_tensors(ggml_context * ctx) override {
  3091. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3092. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3093. }
  3094. }
  3095. double max_maa_err() override {
  3096. return 1e-3;
  3097. }
  3098. float grad_eps() override {
  3099. return 0.2f;
  3100. }
  3101. bool grad_precise() override {
  3102. return true;
  3103. }
  3104. };
  3105. // GGML_OP_CLAMP
  3106. struct test_clamp : public test_case {
  3107. const ggml_type type;
  3108. const std::array<int64_t, 4> ne;
  3109. float min;
  3110. float max;
  3111. std::string vars() override {
  3112. return VARS_TO_STR4(type, ne, min, max);
  3113. }
  3114. test_clamp(ggml_type type = GGML_TYPE_F32,
  3115. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3116. float min = -0.5f, float max = 0.5f)
  3117. : type(type), ne(ne), min(min), max(max) {}
  3118. ggml_tensor * build_graph(ggml_context * ctx) override {
  3119. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3120. ggml_set_name(a, "a");
  3121. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3122. ggml_set_name(out, "out");
  3123. return out;
  3124. }
  3125. float grad_eps() override {
  3126. return 1e-2f;
  3127. }
  3128. std::vector<float> grad_expect() override {
  3129. return {0.0f, 1.0f};
  3130. }
  3131. };
  3132. // GGML_OP_FLOOR
  3133. struct test_floor : public test_case {
  3134. const ggml_type type;
  3135. const std::array<int64_t, 4> ne;
  3136. std::string vars() override {
  3137. return VARS_TO_STR2(type, ne);
  3138. }
  3139. test_floor(ggml_type type = GGML_TYPE_F32,
  3140. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3141. : type(type), ne(ne) {}
  3142. ggml_tensor * build_graph(ggml_context * ctx) override {
  3143. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3144. ggml_set_param(a);
  3145. ggml_set_name(a, "a");
  3146. ggml_tensor * out = ggml_floor(ctx, a);
  3147. ggml_set_name(out, "out");
  3148. return out;
  3149. }
  3150. void initialize_tensors(ggml_context * ctx) override {
  3151. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3152. init_tensor_uniform(t, -10.0f, 10.0f);
  3153. }
  3154. }
  3155. };
  3156. // GGML_OP_CEIL
  3157. struct test_ceil : public test_case {
  3158. const ggml_type type;
  3159. const std::array<int64_t, 4> ne;
  3160. std::string vars() override {
  3161. return VARS_TO_STR2(type, ne);
  3162. }
  3163. test_ceil(ggml_type type = GGML_TYPE_F32,
  3164. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3165. : type(type), ne(ne) {}
  3166. ggml_tensor * build_graph(ggml_context * ctx) override {
  3167. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3168. ggml_set_param(a);
  3169. ggml_set_name(a, "a");
  3170. ggml_tensor * out = ggml_ceil(ctx, a);
  3171. ggml_set_name(out, "out");
  3172. return out;
  3173. }
  3174. void initialize_tensors(ggml_context * ctx) override {
  3175. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3176. init_tensor_uniform(t, -10.0f, 10.0f);
  3177. }
  3178. }
  3179. };
  3180. // GGML_OP_ROUND
  3181. struct test_round : public test_case {
  3182. const ggml_type type;
  3183. const std::array<int64_t, 4> ne;
  3184. std::string vars() override {
  3185. return VARS_TO_STR2(type, ne);
  3186. }
  3187. test_round(ggml_type type = GGML_TYPE_F32,
  3188. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3189. : type(type), ne(ne) {}
  3190. ggml_tensor * build_graph(ggml_context * ctx) override {
  3191. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3192. ggml_set_param(a);
  3193. ggml_set_name(a, "a");
  3194. ggml_tensor * out = ggml_round(ctx, a);
  3195. ggml_set_name(out, "out");
  3196. return out;
  3197. }
  3198. void initialize_tensors(ggml_context * ctx) override {
  3199. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3200. init_tensor_uniform(t, -10.0f, 10.0f);
  3201. }
  3202. }
  3203. };
  3204. // GGML_OP_TRUNC
  3205. struct test_trunc : public test_case {
  3206. const ggml_type type;
  3207. const std::array<int64_t, 4> ne;
  3208. std::string vars() override {
  3209. return VARS_TO_STR2(type, ne);
  3210. }
  3211. test_trunc(ggml_type type = GGML_TYPE_F32,
  3212. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3213. : type(type), ne(ne) {}
  3214. ggml_tensor * build_graph(ggml_context * ctx) override {
  3215. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3216. ggml_set_param(a);
  3217. ggml_set_name(a, "a");
  3218. ggml_tensor * out = ggml_trunc(ctx, a);
  3219. ggml_set_name(out, "out");
  3220. return out;
  3221. }
  3222. void initialize_tensors(ggml_context * ctx) override {
  3223. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3224. init_tensor_uniform(t, -10.0f, 10.0f);
  3225. }
  3226. }
  3227. };
  3228. // GGML_OP_DIAG_MASK_INF
  3229. struct test_diag_mask_inf : public test_case {
  3230. const ggml_type type;
  3231. const std::array<int64_t, 4> ne;
  3232. const int n_past;
  3233. std::string vars() override {
  3234. return VARS_TO_STR3(type, ne, n_past);
  3235. }
  3236. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3237. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3238. int n_past = 5)
  3239. : type(type), ne(ne), n_past(n_past) {}
  3240. ggml_tensor * build_graph(ggml_context * ctx) override {
  3241. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3242. ggml_set_param(a);
  3243. ggml_set_name(a, "a");
  3244. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3245. ggml_set_name(out, "out");
  3246. return out;
  3247. }
  3248. };
  3249. // GGML_OP_SOFT_MAX
  3250. struct test_soft_max : public test_case {
  3251. const ggml_type type;
  3252. const std::array<int64_t, 4> ne;
  3253. const bool mask;
  3254. const bool sinks;
  3255. const ggml_type m_prec;
  3256. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3257. const float scale;
  3258. const float max_bias;
  3259. const bool inplace;
  3260. std::string vars() override {
  3261. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3262. }
  3263. // the 1024 test with bias occasionally fails:
  3264. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3265. virtual double max_nmse_err() override {
  3266. return 1e-6;
  3267. }
  3268. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3269. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3270. bool mask = false,
  3271. bool sinks = false,
  3272. ggml_type m_prec = GGML_TYPE_F32,
  3273. std::array<int64_t, 2> nr23 = {1, 1},
  3274. float scale = 1.0f,
  3275. float max_bias = 0.0f,
  3276. bool inplace = false)
  3277. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3278. ggml_tensor * build_graph(ggml_context * ctx) override {
  3279. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3280. ggml_set_param(a);
  3281. ggml_set_name(a, "a");
  3282. ggml_tensor * mask = nullptr;
  3283. if (this->mask) {
  3284. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3285. ggml_set_name(mask, "mask");
  3286. }
  3287. ggml_tensor * sinks = nullptr;
  3288. if (this->sinks) {
  3289. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3290. ggml_set_name(sinks, "sinks");
  3291. }
  3292. ggml_tensor * out;
  3293. if (inplace) {
  3294. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3295. } else {
  3296. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3297. }
  3298. ggml_soft_max_add_sinks(out, sinks);
  3299. ggml_set_name(out, "out");
  3300. return out;
  3301. }
  3302. bool grad_precise() override {
  3303. return true;
  3304. }
  3305. };
  3306. // GGML_OP_SOFT_MAX_BACK
  3307. struct test_soft_max_back : public test_case {
  3308. const ggml_type type;
  3309. const std::array<int64_t, 4> ne;
  3310. const float scale;
  3311. const float max_bias;
  3312. std::string vars() override {
  3313. return VARS_TO_STR4(type, ne, scale, max_bias);
  3314. }
  3315. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3316. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3317. float scale = 1.0f,
  3318. float max_bias = 0.0f)
  3319. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3320. ggml_tensor * build_graph(ggml_context * ctx) override {
  3321. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3322. ggml_set_name(a, "a");
  3323. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3324. ggml_set_name(a, "a");
  3325. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3326. ggml_set_name(out, "out");
  3327. return out;
  3328. }
  3329. };
  3330. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3331. struct test_rope : public test_case {
  3332. const ggml_type type;
  3333. const std::array<int64_t, 4> ne_a;
  3334. int n_dims;
  3335. int mode;
  3336. int n_ctx; // used to generate positions
  3337. float fs; // freq_scale
  3338. float ef; // ext_factor
  3339. float af; // attn_factor
  3340. bool ff;
  3341. int v; // view (1 : non-contiguous a)
  3342. bool forward;
  3343. bool inplace;
  3344. std::string vars() override {
  3345. // forward can be inferred from the op, does not need to be printed
  3346. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3347. }
  3348. test_rope(ggml_type type = GGML_TYPE_F32,
  3349. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3350. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3351. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3352. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3353. ggml_tensor * build_graph(ggml_context * ctx) override {
  3354. ggml_tensor * a;
  3355. if (v & 1) {
  3356. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3357. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3358. if (forward) {
  3359. ggml_set_param(a);
  3360. }
  3361. ggml_set_name(a, "a");
  3362. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3363. ggml_set_name(a, "view_of_a");
  3364. } else {
  3365. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3366. if (forward) {
  3367. ggml_set_param(a);
  3368. }
  3369. ggml_set_name(a, "a");
  3370. }
  3371. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3372. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3373. ggml_tensor * pos;
  3374. if (is_mrope || is_vision) {
  3375. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3376. } else {
  3377. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3378. }
  3379. ggml_set_name(pos, "pos");
  3380. ggml_tensor * freq = nullptr;
  3381. if (ff) {
  3382. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3383. ggml_set_name(freq, "freq");
  3384. }
  3385. ggml_tensor * out;
  3386. if (is_mrope) {
  3387. if (is_vision) {
  3388. GGML_ASSERT(n_dims/4 > 0);
  3389. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3390. if (forward) {
  3391. if (inplace) {
  3392. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3393. } else {
  3394. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3395. }
  3396. } else {
  3397. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3398. }
  3399. } else {
  3400. GGML_ASSERT(n_dims/3 > 0);
  3401. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3402. if (forward) {
  3403. if (inplace) {
  3404. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3405. } else {
  3406. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3407. }
  3408. } else {
  3409. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3410. }
  3411. }
  3412. } else {
  3413. if (forward) {
  3414. if (inplace) {
  3415. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3416. } else {
  3417. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3418. }
  3419. } else {
  3420. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3421. }
  3422. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3423. }
  3424. ggml_set_name(out, "out");
  3425. return out;
  3426. }
  3427. void initialize_tensors(ggml_context * ctx) override {
  3428. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3429. if (t->type == GGML_TYPE_I32) {
  3430. // pos
  3431. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3432. std::vector<int> data(num_pos_ids);
  3433. for (int i = 0; i < num_pos_ids; i++) {
  3434. data[i] = rand() % n_ctx;
  3435. }
  3436. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3437. } else {
  3438. if (t->ne[0] == n_dims/2) {
  3439. // frequency factors in the range [0.9f, 1.1f]
  3440. init_tensor_uniform(t, 0.9f, 1.1f);
  3441. } else {
  3442. init_tensor_uniform(t);
  3443. }
  3444. }
  3445. }
  3446. }
  3447. double max_maa_err() override {
  3448. return 1e-3;
  3449. }
  3450. bool grad_precise() override {
  3451. return true;
  3452. }
  3453. };
  3454. // GGML_OP_POOL2D
  3455. struct test_pool2d : public test_case {
  3456. enum ggml_op_pool pool_type;
  3457. const ggml_type type_input;
  3458. const std::array<int64_t, 4> ne_input;
  3459. // kernel size
  3460. const int k0;
  3461. const int k1;
  3462. // stride
  3463. const int s0;
  3464. const int s1;
  3465. // padding
  3466. const int p0;
  3467. const int p1;
  3468. std::string vars() override {
  3469. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3470. }
  3471. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3472. ggml_type type_input = GGML_TYPE_F32,
  3473. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3474. int k0 = 3, int k1 = 3,
  3475. int s0 = 1, int s1 = 1,
  3476. int p0 = 1, int p1 = 1)
  3477. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3478. ggml_tensor * build_graph(ggml_context * ctx) override {
  3479. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3480. ggml_set_param(input);
  3481. ggml_set_name(input, "input");
  3482. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3483. ggml_set_name(out, "out");
  3484. return out;
  3485. }
  3486. };
  3487. // GGML_OP_CONV_TRANSPOSE_1D
  3488. struct test_conv_transpose_1d : public test_case {
  3489. const std::array<int64_t, 4> ne_input;
  3490. const std::array<int64_t, 4> ne_kernel;
  3491. const int s0; // stride
  3492. const int p0; // padding
  3493. const int d0; // dilation
  3494. std::string vars() override {
  3495. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3496. }
  3497. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3498. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3499. int s0 = 1, int p0 = 0, int d0 = 1)
  3500. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3501. ggml_tensor * build_graph(ggml_context * ctx) override {
  3502. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3503. ggml_set_name(input, "input");
  3504. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3505. ggml_set_name(kernel, "kernel");
  3506. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3507. ggml_set_name(out, "out");
  3508. return out;
  3509. }
  3510. };
  3511. // GGML_OP_CONV_TRANSPOSE_2D
  3512. struct test_conv_transpose_2d : public test_case {
  3513. const std::array<int64_t, 4> ne_input;
  3514. const std::array<int64_t, 4> ne_kernel;
  3515. const int stride;
  3516. std::string vars() override {
  3517. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3518. }
  3519. double max_nmse_err() override {
  3520. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3521. }
  3522. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3523. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3524. int stride = 1)
  3525. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3526. ggml_tensor * build_graph(ggml_context * ctx) override {
  3527. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3528. ggml_set_name(input, "input");
  3529. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3530. ggml_set_name(kernel, "kernel");
  3531. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3532. ggml_set_name(out, "out");
  3533. return out;
  3534. }
  3535. };
  3536. // GGML_OP_IM2COL
  3537. struct test_im2col : public test_case {
  3538. const ggml_type type_input;
  3539. const ggml_type type_kernel;
  3540. const ggml_type dst_type;
  3541. const std::array<int64_t, 4> ne_input;
  3542. const std::array<int64_t, 4> ne_kernel;
  3543. // stride
  3544. const int s0;
  3545. const int s1;
  3546. // padding
  3547. const int p0;
  3548. const int p1;
  3549. // dilation
  3550. const int d0;
  3551. const int d1;
  3552. // mode
  3553. const bool is_2D;
  3554. std::string vars() override {
  3555. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3556. }
  3557. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3558. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3559. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3560. int s0 = 1, int s1 = 1,
  3561. int p0 = 1, int p1 = 1,
  3562. int d0 = 1, int d1 = 1,
  3563. bool is_2D = true)
  3564. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3565. ggml_tensor * build_graph(ggml_context * ctx) override {
  3566. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3567. ggml_set_param(input);
  3568. ggml_set_name(input, "input");
  3569. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3570. ggml_set_name(kernel, "kernel");
  3571. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3572. ggml_set_name(out, "out");
  3573. return out;
  3574. }
  3575. };
  3576. // GGML_OP_IM2COL_3D
  3577. struct test_im2col_3d : public test_case {
  3578. const ggml_type type_input;
  3579. const ggml_type type_kernel;
  3580. const ggml_type dst_type;
  3581. const std::array<int64_t, 4> ne_input;
  3582. const std::array<int64_t, 4> ne_kernel;
  3583. // stride
  3584. const int s0;
  3585. const int s1;
  3586. const int s2;
  3587. // padding
  3588. const int p0;
  3589. const int p1;
  3590. const int p2;
  3591. // dilation
  3592. const int d0;
  3593. const int d1;
  3594. const int d2;
  3595. const int64_t IC;
  3596. const bool v;
  3597. std::string vars() override {
  3598. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3599. }
  3600. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3601. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3602. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3603. int64_t IC = 3,
  3604. int s0 = 1, int s1 = 1, int s2 = 1,
  3605. int p0 = 1, int p1 = 1, int p2 = 1,
  3606. int d0 = 1, int d1 = 1, int d2 = 1,
  3607. bool v = false)
  3608. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3609. ggml_tensor * build_graph(ggml_context * ctx) override {
  3610. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3611. ggml_set_param(input);
  3612. ggml_set_name(input, "input");
  3613. if (v) {
  3614. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3615. ggml_set_name(input, "view_of_input");
  3616. }
  3617. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3618. ggml_set_name(kernel, "kernel");
  3619. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3620. ggml_set_name(out, "out");
  3621. return out;
  3622. }
  3623. };
  3624. // CONV_2D
  3625. struct test_conv_2d : public test_case {
  3626. const std::array<int64_t, 4> ne_input;
  3627. const std::array<int64_t, 4> ne_kernel;
  3628. const ggml_type type_kernel;
  3629. const int stride0;
  3630. const int stride1;
  3631. const int padding0;
  3632. const int padding1;
  3633. const int dilation0;
  3634. const int dilation1;
  3635. // Whether the inputs are contiguous in the channel dim or the width dim
  3636. const bool cwhn;
  3637. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3638. // uses ggml_conv_2d:
  3639. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3640. // CONV_2D graph will be built, while
  3641. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3642. // IM2COL -> MUL_MM graph will be built.
  3643. std::string vars() override {
  3644. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3645. }
  3646. double max_nmse_err() override {
  3647. return 5e-4;
  3648. }
  3649. uint64_t op_flops(ggml_tensor * t) override {
  3650. GGML_UNUSED(t);
  3651. // Just counting matmul costs:
  3652. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3653. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3654. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3655. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3656. };
  3657. int64_t W = ne_input[0];
  3658. int64_t H = ne_input[1];
  3659. int64_t KW = ne_kernel[0];
  3660. int64_t KH = ne_kernel[1];
  3661. int64_t Cin = ne_kernel[2];
  3662. int64_t Cout = ne_kernel[3];
  3663. int64_t N = ne_input[3];
  3664. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3665. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3666. int64_t K = Cout;
  3667. int64_t CRS = Cin * KH * KW;
  3668. int64_t NPQ = N * OH * OW;
  3669. return K * NPQ * (2 * CRS - 1);
  3670. }
  3671. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3672. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3673. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3674. ne_input(ne_input),
  3675. ne_kernel(ne_kernel),
  3676. type_kernel(type_kernel),
  3677. stride0(stride0),
  3678. stride1(stride1),
  3679. padding0(padding0),
  3680. padding1(padding1),
  3681. dilation0(dilation0),
  3682. dilation1(dilation1),
  3683. cwhn(cwhn) {}
  3684. ggml_tensor * build_graph(ggml_context * ctx) override {
  3685. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3686. ggml_set_name(input, "input");
  3687. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3688. ggml_set_name(kernel, "kernel");
  3689. if (cwhn) {
  3690. // change memory layout to channel-most-contiguous (CWHN),
  3691. // then permute it back so NE matches the original input
  3692. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3693. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3694. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3695. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3696. }
  3697. ggml_tensor * out =
  3698. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3699. ggml_set_name(out, "out");
  3700. return out;
  3701. }
  3702. };
  3703. // GGML_OP_CONV_2D_DW
  3704. struct test_conv_2d_dw : public test_case {
  3705. const std::array<int64_t, 4> ne_input;
  3706. const std::array<int64_t, 4> ne_kernel;
  3707. const int stride;
  3708. const int padding;
  3709. const int dilation;
  3710. const bool cwhn;
  3711. std::string vars() override {
  3712. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3713. }
  3714. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3715. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3716. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3717. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3718. ggml_tensor * build_graph(ggml_context * ctx) override {
  3719. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3720. ggml_set_name(input, "input");
  3721. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3722. ggml_set_name(kernel, "kernel");
  3723. if (cwhn) {
  3724. // change memory layout to channel-most-contiguous (CWHN),
  3725. // then permute it back so NE matches the original input
  3726. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3727. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3728. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3729. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3730. }
  3731. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3732. ctx, kernel, input,
  3733. stride, stride, padding, padding, dilation, dilation);
  3734. ggml_set_name(out, "out");
  3735. return out;
  3736. }
  3737. };
  3738. // GGML_OP_CONV_3D
  3739. struct test_conv_3d : public test_case {
  3740. // Logical 5D dimensions
  3741. const int64_t N, IC, ID, IH, IW;
  3742. const int64_t OC, KD, KH, KW;
  3743. // Conv params
  3744. const int s0, s1, s2;
  3745. const int p0, p1, p2;
  3746. const int d0, d1, d2;
  3747. // Types
  3748. const ggml_type type_kernel;
  3749. std::string op_desc(ggml_tensor * t) override {
  3750. GGML_UNUSED(t);
  3751. return "CONV_3D";
  3752. }
  3753. std::string vars() override {
  3754. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3755. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3756. }
  3757. double max_nmse_err() override {
  3758. return 5e-4;
  3759. }
  3760. uint64_t op_flops(ggml_tensor * t) override {
  3761. GGML_UNUSED(t);
  3762. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3763. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3764. };
  3765. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3766. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3767. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3768. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3769. }
  3770. test_conv_3d(
  3771. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3772. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3773. int s0, int s1, int s2,
  3774. int p0, int p1, int p2,
  3775. int d0, int d1, int d2,
  3776. ggml_type type_kernel
  3777. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3778. OC(OC), KD(KD), KH(KH), KW(KW),
  3779. s0(s0), s1(s1), s2(s2),
  3780. p0(p0), p1(p1), p2(p2),
  3781. d0(d0), d1(d1), d2(d2),
  3782. type_kernel(type_kernel) {}
  3783. ggml_tensor * build_graph(ggml_context * ctx) override {
  3784. // GGML input tensor is packed as [W, H, D, C*N]
  3785. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3786. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3787. ggml_set_name(input, "input");
  3788. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3789. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3790. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3791. ggml_set_name(kernel, "kernel");
  3792. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3793. ggml_set_name(out, "out");
  3794. return out;
  3795. }
  3796. };
  3797. // GGML_OP_CONCAT
  3798. struct test_concat : public test_case {
  3799. const ggml_type type;
  3800. const std::array<int64_t, 4> ne_a;
  3801. const int64_t ne_b_d;
  3802. const int dim;
  3803. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3804. std::string vars() override {
  3805. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3806. }
  3807. test_concat(ggml_type type = GGML_TYPE_F32,
  3808. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3809. int64_t ne_b_d = 5,
  3810. int dim = 2, int v = 0)
  3811. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3812. ggml_tensor * build_graph(ggml_context * ctx) override {
  3813. auto ne_b = ne_a;
  3814. ne_b[dim] = ne_b_d;
  3815. ggml_tensor * a;
  3816. if (v & 1) {
  3817. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3818. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3819. ggml_set_name(a, "a");
  3820. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3821. ggml_set_name(a, "view_of_a");
  3822. } else {
  3823. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3824. ggml_set_name(a, "a");
  3825. }
  3826. ggml_tensor * b;
  3827. if (v & 2) {
  3828. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3829. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3830. ggml_set_name(b, "b");
  3831. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3832. ggml_set_name(b, "view_of_b");
  3833. } else {
  3834. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3835. ggml_set_name(b, "b");
  3836. }
  3837. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3838. ggml_set_name(out, "out");
  3839. return out;
  3840. }
  3841. };
  3842. // GGML_OP_ARGSORT
  3843. struct test_argsort : public test_case {
  3844. const ggml_type type;
  3845. const std::array<int64_t, 4> ne;
  3846. ggml_sort_order order;
  3847. std::string vars() override {
  3848. return VARS_TO_STR3(type, ne, order);
  3849. }
  3850. test_argsort(ggml_type type = GGML_TYPE_F32,
  3851. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3852. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3853. : type(type), ne(ne), order(order) {}
  3854. ggml_tensor * build_graph(ggml_context * ctx) override {
  3855. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3856. ggml_set_name(a, "a");
  3857. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3858. ggml_set_name(out, "out");
  3859. return out;
  3860. }
  3861. void initialize_tensors(ggml_context * ctx) override {
  3862. std::random_device rd;
  3863. std::default_random_engine rng(rd());
  3864. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3865. if (t->type == GGML_TYPE_I32) {
  3866. // indices
  3867. std::vector<int> data(ggml_nelements(t));
  3868. for (int i = 0; i < ggml_nelements(t); i++) {
  3869. data[i] = rand();
  3870. }
  3871. std::shuffle(data.begin(), data.end(), rng);
  3872. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3873. } else if (t->type == GGML_TYPE_F32) {
  3874. // initialize with unique values to avoid ties
  3875. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3876. std::vector<float> data(t->ne[0]);
  3877. for (int i = 0; i < t->ne[0]; i++) {
  3878. data[i] = i;
  3879. }
  3880. std::shuffle(data.begin(), data.end(), rng);
  3881. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3882. }
  3883. } else {
  3884. GGML_ABORT("fatal error");
  3885. }
  3886. }
  3887. }
  3888. };
  3889. struct test_topk_moe: public test_case {
  3890. const std::array<int64_t, 4> ne;
  3891. const int n_expert_used;
  3892. const bool with_norm;
  3893. const bool delayed_softmax;
  3894. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  3895. int n_expert_used = 1,
  3896. bool with_norm = false,
  3897. bool delayed_softmax = false) :
  3898. ne(ne),
  3899. n_expert_used(n_expert_used),
  3900. with_norm(with_norm),
  3901. delayed_softmax(delayed_softmax) {
  3902. GGML_ASSERT(n_expert_used <= ne[0]);
  3903. GGML_ASSERT(!(with_norm && delayed_softmax));
  3904. }
  3905. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  3906. std::string op_desc(ggml_tensor * t) override {
  3907. GGML_UNUSED(t);
  3908. return "TOPK_MOE";
  3909. }
  3910. bool run_whole_graph() override { return true; }
  3911. ggml_tensor * build_graph(ggml_context * ctx) override {
  3912. const int n_expert = ne[0];
  3913. const int n_tokens = ne[1];
  3914. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  3915. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  3916. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  3917. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  3918. if (delayed_softmax) {
  3919. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3920. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  3921. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3922. }
  3923. if (with_norm) {
  3924. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3925. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  3926. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  3927. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  3928. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3929. }
  3930. ggml_set_name(out, "out");
  3931. return out;
  3932. }
  3933. };
  3934. struct test_mul_mat_vec_fusion : public test_case {
  3935. const ggml_type type;
  3936. const ggml_glu_op glu_op;
  3937. const int64_t m;
  3938. const int64_t n;
  3939. const int64_t k;
  3940. const bool use_id;
  3941. const int n_mats;
  3942. const int n_used;
  3943. const bool b; // broadcast b matrix (only for use_id)
  3944. const bool with_bias;
  3945. const bool with_gate;
  3946. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  3947. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
  3948. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
  3949. if (use_id) {
  3950. GGML_ASSERT(n_used <= n_mats);
  3951. }
  3952. }
  3953. std::string vars() override {
  3954. return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
  3955. }
  3956. std::string op_desc(ggml_tensor * t) override {
  3957. GGML_UNUSED(t);
  3958. return "MUL_MAT_VEC_FUSION";
  3959. }
  3960. bool run_whole_graph() override { return true; }
  3961. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  3962. ggml_tensor * out = nullptr;
  3963. if (with_gate) {
  3964. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  3965. constexpr float alpha = 1.702f;
  3966. constexpr float limit = 7.0f;
  3967. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  3968. } else {
  3969. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  3970. }
  3971. }
  3972. return out;
  3973. }
  3974. ggml_tensor * build_graph(ggml_context * ctx) override {
  3975. if (!use_id) {
  3976. std::array<int64_t, 4> ne = {k, m, 1, 1};
  3977. std::array<int64_t, 4> ne0 = {k, n, 1, 1};
  3978. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  3979. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  3980. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  3981. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  3982. if (with_bias) {
  3983. std::array<int64_t, 4> bias_ne = {ffn_up->ne[0], 1, 1, 1};
  3984. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  3985. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  3986. }
  3987. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  3988. if (with_bias && with_gate) {
  3989. std::array<int64_t, 4> bias_ne = {ffn_gate->ne[0], 1, 1, 1};
  3990. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  3991. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  3992. }
  3993. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  3994. ggml_set_name(out, "out");
  3995. return out;
  3996. } else {
  3997. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  3998. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  3999. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4000. if (n_used != n_mats) {
  4001. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4002. }
  4003. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4004. ggml_set_name(cur, "cur");
  4005. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4006. if (with_bias) {
  4007. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4008. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4009. }
  4010. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4011. if (with_bias && with_gate) {
  4012. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4013. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4014. }
  4015. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4016. ggml_set_name(out, "out");
  4017. return out;
  4018. }
  4019. }
  4020. void initialize_tensors(ggml_context * ctx) override {
  4021. if (!use_id) {
  4022. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4023. init_tensor_uniform(t);
  4024. }
  4025. } else {
  4026. std::random_device rd;
  4027. std::default_random_engine rng(rd());
  4028. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4029. if (t->type == GGML_TYPE_I32) {
  4030. if (ggml_is_view_op(t->op)) { continue; }
  4031. // ids
  4032. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4033. std::vector<int32_t> data(t->ne[0]);
  4034. for (int i = 0; i < t->ne[0]; i++) {
  4035. data[i] = i % n_mats;
  4036. }
  4037. std::shuffle(data.begin(), data.end(), rng);
  4038. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  4039. }
  4040. } else {
  4041. init_tensor_uniform(t);
  4042. }
  4043. }
  4044. }
  4045. }
  4046. double max_nmse_err() override {
  4047. return 5e-3;
  4048. }
  4049. };
  4050. // GGML_OP_SUM
  4051. struct test_sum : public test_case {
  4052. const ggml_type type;
  4053. const std::array<int64_t, 4> ne;
  4054. const std::array<int64_t, 4> permute;
  4055. bool _use_permute;
  4056. std::string vars() override {
  4057. std::string v = VARS_TO_STR2(type, ne);
  4058. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4059. return v;
  4060. }
  4061. test_sum(ggml_type type = GGML_TYPE_F32,
  4062. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4063. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4064. : type(type), ne(ne), permute(permute),
  4065. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4066. ggml_tensor * build_graph(ggml_context * ctx) override {
  4067. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4068. ggml_set_param(a);
  4069. ggml_set_name(a, "a");
  4070. if (_use_permute) {
  4071. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4072. ggml_set_name(a, "a_permuted");
  4073. }
  4074. ggml_tensor * out = ggml_sum(ctx, a);
  4075. ggml_set_name(out, "out");
  4076. return out;
  4077. }
  4078. float grad_eps() override {
  4079. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4080. }
  4081. };
  4082. // GGML_OP_SUM_ROWS
  4083. struct test_sum_rows : public test_case {
  4084. const ggml_type type;
  4085. const std::array<int64_t, 4> ne;
  4086. const bool permute;
  4087. const bool slice;
  4088. std::string vars() override {
  4089. return VARS_TO_STR4(type, ne, permute, slice);
  4090. }
  4091. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4092. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4093. bool permute = false, bool slice = false)
  4094. : type(type), ne(ne), permute(permute), slice(slice) {}
  4095. ggml_tensor * build_graph(ggml_context * ctx) override {
  4096. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4097. ggml_set_param(a);
  4098. ggml_set_name(a, "a");
  4099. if (slice) {
  4100. a = ggml_view_4d(ctx, a,
  4101. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4102. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4103. }
  4104. if (permute) {
  4105. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4106. }
  4107. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4108. ggml_set_name(out, "out");
  4109. return out;
  4110. }
  4111. };
  4112. // GGML_OP_MEAN
  4113. struct test_mean : public test_case {
  4114. const ggml_type type;
  4115. const std::array<int64_t, 4> ne;
  4116. std::string vars() override {
  4117. return VARS_TO_STR2(type, ne);
  4118. }
  4119. test_mean(ggml_type type = GGML_TYPE_F32,
  4120. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4121. : type(type), ne(ne) {}
  4122. ggml_tensor * build_graph(ggml_context * ctx) override {
  4123. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4124. ggml_set_param(a);
  4125. ggml_set_name(a, "a");
  4126. ggml_tensor * out = ggml_mean(ctx, a);
  4127. ggml_set_name(out, "out");
  4128. return out;
  4129. }
  4130. float grad_eps() override {
  4131. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4132. }
  4133. };
  4134. // GGML_OP_UPSCALE
  4135. struct test_upscale : public test_case {
  4136. const ggml_type type;
  4137. const std::array<int64_t, 4> ne;
  4138. const int32_t scale_factor;
  4139. const bool transpose;
  4140. const ggml_scale_mode mode;
  4141. std::string vars() override {
  4142. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4143. }
  4144. test_upscale(ggml_type type = GGML_TYPE_F32,
  4145. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4146. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4147. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4148. ggml_tensor * build_graph(ggml_context * ctx) override {
  4149. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4150. ggml_set_name(a, "a");
  4151. if (transpose) {
  4152. a = ggml_transpose(ctx, a);
  4153. ggml_set_name(a, "a_transposed");
  4154. }
  4155. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4156. ggml_set_name(out, "out");
  4157. return out;
  4158. }
  4159. };
  4160. // GGML_OP_UPSCALE (via ggml_interpolate)
  4161. struct test_interpolate : public test_case {
  4162. const ggml_type type;
  4163. const std::array<int64_t, 4> ne;
  4164. const std::array<int64_t, 4> ne_tgt;
  4165. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4166. std::string vars() override {
  4167. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  4168. }
  4169. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4170. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4171. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4172. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4173. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4174. ggml_tensor * build_graph(ggml_context * ctx) override {
  4175. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4176. ggml_set_name(a, "a");
  4177. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4178. ggml_set_name(out, "out");
  4179. return out;
  4180. }
  4181. };
  4182. // GGML_OP_GROUP_NORM
  4183. struct test_group_norm : public test_case {
  4184. const ggml_type type;
  4185. const std::array<int64_t, 4> ne;
  4186. const int32_t num_groups;
  4187. const float eps;
  4188. std::string vars() override {
  4189. return VARS_TO_STR4(type, ne, num_groups, eps);
  4190. }
  4191. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4192. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4193. int32_t num_groups = 32,
  4194. float eps = 1e-6f)
  4195. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4196. ggml_tensor * build_graph(ggml_context * ctx) override {
  4197. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4198. ggml_set_name(a, "a");
  4199. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4200. ggml_set_name(out, "out");
  4201. return out;
  4202. }
  4203. };
  4204. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4205. struct test_group_norm_mul_add : public test_case {
  4206. const ggml_type type;
  4207. const std::array<int64_t, 4> ne;
  4208. int num_groups;
  4209. float eps;
  4210. std::string op_desc(ggml_tensor * t) override {
  4211. GGML_UNUSED(t);
  4212. return "GROUP_NORM_MUL_ADD";
  4213. }
  4214. bool run_whole_graph() override { return true; }
  4215. std::string vars() override {
  4216. return VARS_TO_STR4(type, ne, num_groups, eps);
  4217. }
  4218. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4219. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4220. int num_groups = 4,
  4221. float eps = 1e-5f)
  4222. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4223. ggml_tensor * build_graph(ggml_context * ctx) override {
  4224. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4225. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4226. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4227. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4228. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4229. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4230. ggml_tensor * m = ggml_mul(ctx, n, w);
  4231. ggml_tensor * out = ggml_add(ctx, m, b);
  4232. ggml_set_name(out, "out");
  4233. return out;
  4234. }
  4235. };
  4236. // GGML_OP_L2_NORM
  4237. struct test_l2_norm : public test_case {
  4238. const ggml_type type;
  4239. const std::array<int64_t, 4> ne;
  4240. const float eps;
  4241. std::string vars() override {
  4242. return VARS_TO_STR2(type, ne);
  4243. }
  4244. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4245. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4246. float eps = 1e-12f)
  4247. : type(type), ne(ne), eps(eps) {}
  4248. ggml_tensor * build_graph(ggml_context * ctx) override {
  4249. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4250. ggml_set_name(a, "a");
  4251. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4252. ggml_set_name(out, "out");
  4253. return out;
  4254. }
  4255. };
  4256. // GGML_OP_ACC
  4257. struct test_acc : public test_case {
  4258. const ggml_type type;
  4259. const std::array<int64_t, 4> ne_a;
  4260. const std::array<int64_t, 4> ne_b;
  4261. std::string vars() override {
  4262. return VARS_TO_STR3(type, ne_a, ne_b);
  4263. }
  4264. test_acc(ggml_type type = GGML_TYPE_F32,
  4265. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4266. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4267. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4268. ggml_tensor * build_graph(ggml_context * ctx) override {
  4269. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4270. ggml_set_param(a);
  4271. ggml_set_name(a, "a");
  4272. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4273. ggml_set_param(b);
  4274. ggml_set_name(b, "b");
  4275. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4276. ggml_set_name(out, "out");
  4277. return out;
  4278. }
  4279. };
  4280. // GGML_OP_PAD
  4281. struct test_pad : public test_case {
  4282. const ggml_type type;
  4283. const std::array<int64_t, 4> ne_a;
  4284. const int pad_0;
  4285. const int pad_1;
  4286. std::string vars() override {
  4287. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4288. }
  4289. test_pad(ggml_type type = GGML_TYPE_F32,
  4290. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4291. int pad_0 = 1, int pad_1 = 1)
  4292. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4293. ggml_tensor * build_graph(ggml_context * ctx) override {
  4294. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4295. ggml_set_name(a, "a");
  4296. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4297. ggml_set_name(out, "out");
  4298. return out;
  4299. }
  4300. };
  4301. struct test_pad_ext : public test_case {
  4302. const ggml_type type;
  4303. const std::array<int64_t, 4> ne_a;
  4304. const int lp0;
  4305. const int rp0;
  4306. const int lp1;
  4307. const int rp1;
  4308. const int lp2;
  4309. const int rp2;
  4310. const int lp3;
  4311. const int rp3;
  4312. const bool v;
  4313. std::string vars() override {
  4314. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4315. }
  4316. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4317. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4318. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4319. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4320. bool v = false)
  4321. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4322. ggml_tensor * build_graph(ggml_context * ctx) override {
  4323. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4324. ggml_set_name(a, "a");
  4325. if (v) {
  4326. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4327. ggml_set_name(a, "view of a");
  4328. }
  4329. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4330. ggml_set_name(out, "out");
  4331. return out;
  4332. }
  4333. };
  4334. // GGML_OP_PAD_REFLECT_1D
  4335. struct test_pad_reflect_1d : public test_case {
  4336. const ggml_type type;
  4337. const std::array<int64_t, 4> ne_a;
  4338. const int pad_0;
  4339. const int pad_1;
  4340. std::string vars() override {
  4341. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4342. }
  4343. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4344. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4345. int pad_0 = 10, int pad_1 = 9)
  4346. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4347. ggml_tensor * build_graph(ggml_context * ctx) override {
  4348. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4349. ggml_set_name(a, "a");
  4350. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4351. ggml_set_name(out, "out");
  4352. return out;
  4353. }
  4354. };
  4355. // GGML_OP_ROLL
  4356. struct test_roll : public test_case {
  4357. const int shift0;
  4358. const int shift1;
  4359. const int shift3;
  4360. const int shift4;
  4361. std::string vars() override {
  4362. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4363. }
  4364. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4365. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4366. ggml_tensor * build_graph(ggml_context * ctx) override {
  4367. int64_t ne[4] = {10, 5, 4, 3};
  4368. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4369. ggml_set_name(a, "a");
  4370. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4371. ggml_set_name(out, "out");
  4372. return out;
  4373. }
  4374. };
  4375. // GGML_OP_ARANGE
  4376. struct test_arange : public test_case {
  4377. const ggml_type type;
  4378. const float start;
  4379. const float stop;
  4380. const float step;
  4381. std::string vars() override {
  4382. return VARS_TO_STR4(type, start, stop, step);
  4383. }
  4384. test_arange(ggml_type type = GGML_TYPE_F32,
  4385. float start = 0.f, float stop = 10.f, float step = 1.f)
  4386. : type(type), start(start), stop(stop), step(step) {}
  4387. ggml_tensor * build_graph(ggml_context * ctx) override {
  4388. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4389. ggml_set_name(out, "out");
  4390. return out;
  4391. }
  4392. };
  4393. // GGML_OP_TIMESTEP_EMBEDDING
  4394. struct test_timestep_embedding : public test_case {
  4395. const ggml_type type;
  4396. const std::array<int64_t, 4> ne_a;
  4397. const int dim;
  4398. const int max_period;
  4399. std::string vars() override {
  4400. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4401. }
  4402. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4403. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4404. int dim = 320, int max_period=10000)
  4405. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4406. ggml_tensor * build_graph(ggml_context * ctx) override {
  4407. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4408. ggml_set_name(a, "a");
  4409. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4410. ggml_set_name(out, "out");
  4411. return out;
  4412. }
  4413. };
  4414. // GGML_OP_LEAKY_RELU
  4415. struct test_leaky_relu : public test_case {
  4416. const ggml_type type;
  4417. const std::array<int64_t, 4> ne_a;
  4418. const float negative_slope;
  4419. std::string vars() override {
  4420. return VARS_TO_STR3(type, ne_a, negative_slope);
  4421. }
  4422. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4423. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4424. float negative_slope = 0.1f)
  4425. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4426. ggml_tensor * build_graph(ggml_context * ctx) override {
  4427. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4428. ggml_set_name(a, "a");
  4429. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4430. ggml_set_name(out, "out");
  4431. return out;
  4432. }
  4433. };
  4434. // GGML_OP_FLASH_ATTN_EXT
  4435. struct test_flash_attn_ext : public test_case {
  4436. const int64_t hsk; // K head size
  4437. const int64_t hsv; // V head size
  4438. const int64_t nh; // num heads
  4439. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4440. const int64_t kv; // kv size
  4441. const int64_t nb; // batch size
  4442. const bool mask; // use mask
  4443. const bool sinks; // use sinks
  4444. const float max_bias; // ALiBi
  4445. const float logit_softcap; // Gemma 2
  4446. const ggml_prec prec;
  4447. const ggml_type type_KV;
  4448. std::array<int32_t, 4> permute;
  4449. std::string vars() override {
  4450. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4451. }
  4452. double max_nmse_err() override {
  4453. return 5e-4;
  4454. }
  4455. uint64_t op_flops(ggml_tensor * t) override {
  4456. GGML_UNUSED(t);
  4457. // Just counting matmul costs:
  4458. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4459. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4460. }
  4461. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4462. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4463. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4464. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4465. ggml_tensor * build_graph(ggml_context * ctx) override {
  4466. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4467. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4468. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4469. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4470. int64_t ne_perm[4];
  4471. for (int i = 0; i < 4; ++i) {
  4472. ne_perm[permute[i]] = ne[i];
  4473. }
  4474. ggml_tensor * t;
  4475. if (is_view) {
  4476. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4477. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4478. } else {
  4479. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4480. }
  4481. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4482. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4483. }
  4484. return t;
  4485. };
  4486. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4487. ggml_set_name(q, "q");
  4488. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4489. ggml_set_name(k, "k");
  4490. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4491. ggml_set_name(v, "v");
  4492. ggml_tensor * m = nullptr;
  4493. if (mask) {
  4494. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4495. ggml_set_name(m, "m");
  4496. }
  4497. ggml_tensor * s = nullptr;
  4498. if (sinks) {
  4499. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4500. ggml_set_name(s, "s");
  4501. }
  4502. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4503. ggml_flash_attn_ext_add_sinks(out, s);
  4504. ggml_flash_attn_ext_set_prec (out, prec);
  4505. ggml_set_name(out, "out");
  4506. return out;
  4507. }
  4508. void initialize_tensors(ggml_context * ctx) override {
  4509. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4510. if (strcmp(t->name, "s") == 0) {
  4511. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4512. init_tensor_uniform(t, -10.0f, 10.0f);
  4513. } else if (strcmp(t->name, "m") == 0) {
  4514. init_tensor_kq_mask(t);
  4515. } else {
  4516. init_tensor_uniform(t);
  4517. }
  4518. }
  4519. }
  4520. bool grad_precise() override {
  4521. return true;
  4522. }
  4523. };
  4524. // GGML_OP_CROSS_ENTROPY_LOSS
  4525. struct test_cross_entropy_loss : public test_case {
  4526. const ggml_type type;
  4527. const std::array<int64_t, 4> ne;
  4528. std::string vars() override {
  4529. return VARS_TO_STR2(type, ne);
  4530. }
  4531. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4532. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4533. : type(type), ne(ne) {}
  4534. ggml_tensor * build_graph(ggml_context * ctx) override {
  4535. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4536. ggml_set_param(logits);
  4537. ggml_set_name(logits, "logits");
  4538. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4539. // The labels are assumed to be constant -> no gradients.
  4540. ggml_set_name(labels, "labels");
  4541. // Ensure labels add up to 1:
  4542. labels = ggml_soft_max(ctx, labels);
  4543. ggml_set_name(labels, "labels_normalized");
  4544. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4545. ggml_set_name(out, "out");
  4546. return out;
  4547. }
  4548. void initialize_tensors(ggml_context * ctx) override {
  4549. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4550. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4551. init_tensor_uniform(t, -100.0f, 100.0f);
  4552. }
  4553. }
  4554. float grad_eps() override {
  4555. return 1.0f;
  4556. }
  4557. bool grad_precise() override {
  4558. return true;
  4559. }
  4560. };
  4561. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4562. struct test_cross_entropy_loss_back : public test_case {
  4563. const ggml_type type;
  4564. const std::array<int64_t, 4> ne;
  4565. std::string vars() override {
  4566. return VARS_TO_STR2(type, ne);
  4567. }
  4568. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4569. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4570. : type(type), ne(ne) {}
  4571. ggml_tensor * build_graph(ggml_context * ctx) override {
  4572. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4573. ggml_set_name(grad, "grad");
  4574. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4575. ggml_set_name(logits, "logits");
  4576. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4577. ggml_set_name(labels, "labels");
  4578. // Ensure labels add up to 1:
  4579. labels = ggml_soft_max(ctx, labels);
  4580. ggml_set_name(labels, "labels_normalized");
  4581. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4582. ggml_set_name(out, "out");
  4583. return out;
  4584. }
  4585. };
  4586. // GGML_OP_OPT_STEP_ADAMW
  4587. struct test_opt_step_adamw : public test_case {
  4588. const ggml_type type;
  4589. const std::array<int64_t, 4> ne;
  4590. std::string vars() override {
  4591. return VARS_TO_STR2(type, ne);
  4592. }
  4593. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4594. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4595. : type(type), ne(ne) {}
  4596. ggml_tensor * build_graph(ggml_context * ctx) override {
  4597. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4598. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4599. ggml_set_name(a, "a");
  4600. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4601. ggml_set_name(grad, "grad");
  4602. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4603. ggml_set_name(grad_m, "grad_m");
  4604. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4605. ggml_set_name(grad_v, "grad_v");
  4606. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4607. ggml_set_name(adamw_params, "adamw_params");
  4608. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4609. ggml_set_name(out, "out");
  4610. return out;
  4611. }
  4612. void initialize_tensors(ggml_context * ctx) override {
  4613. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4614. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4615. }
  4616. }
  4617. bool grad_precise() override {
  4618. return true;
  4619. }
  4620. };
  4621. struct test_opt_step_sgd : public test_case {
  4622. const ggml_type type;
  4623. const std::array<int64_t, 4> ne;
  4624. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4625. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4626. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4627. : type(type), ne(ne) {}
  4628. ggml_tensor * build_graph(ggml_context * ctx) override {
  4629. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4630. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4631. ggml_set_name(a, "a");
  4632. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4633. ggml_set_name(grad, "grad");
  4634. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4635. ggml_set_name(sgd_params, "sgd_params");
  4636. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4637. ggml_set_name(out, "out");
  4638. return out;
  4639. }
  4640. void initialize_tensors(ggml_context * ctx) override {
  4641. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4642. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4643. }
  4644. }
  4645. bool grad_precise() override {
  4646. return true;
  4647. }
  4648. };
  4649. enum llm_norm_type {
  4650. LLM_NORM,
  4651. LLM_NORM_RMS,
  4652. };
  4653. struct llama_hparams {
  4654. uint32_t n_vocab;
  4655. uint32_t n_embd;
  4656. uint32_t n_head;
  4657. uint32_t n_head_kv;
  4658. static constexpr uint32_t n_layer = 1;
  4659. uint32_t n_rot;
  4660. uint32_t n_embd_head; // dimension of values (d_v)
  4661. uint32_t n_ff;
  4662. float f_norm_eps;
  4663. float f_norm_rms_eps;
  4664. // cparams
  4665. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4666. static constexpr uint32_t n_ctx_orig = n_ctx;
  4667. // batch
  4668. int32_t n_tokens;
  4669. // llm_build_context
  4670. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4671. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4672. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4673. return n_embd_head * n_head_kv;
  4674. }
  4675. };
  4676. // LLM base class
  4677. struct test_llm : public test_case {
  4678. llama_hparams hp;
  4679. protected:
  4680. test_llm(llama_hparams hp)
  4681. : hp(std::move(hp)) {
  4682. }
  4683. public:
  4684. struct ggml_tensor * llm_build_norm(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * cur,
  4687. struct ggml_tensor * mw,
  4688. struct ggml_tensor * mb,
  4689. llm_norm_type type) {
  4690. switch (type) {
  4691. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4692. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4693. }
  4694. cur = ggml_mul(ctx, cur, mw);
  4695. if (mb) {
  4696. cur = ggml_add(ctx, cur, mb);
  4697. }
  4698. return cur;
  4699. }
  4700. void llm_build_kv_store(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * k_l,
  4703. struct ggml_tensor * v_l,
  4704. struct ggml_tensor * k_cur,
  4705. struct ggml_tensor * v_cur) {
  4706. // compute the transposed [n_tokens, n_embd] V matrix
  4707. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4708. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4709. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4710. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4711. ( hp.n_ctx)*ggml_element_size(v_l),
  4712. (hp.kv_head)*ggml_element_size(v_l));
  4713. // important: storing RoPE-ed version of K in the KV cache!
  4714. ggml_cpy(ctx, k_cur, k_cache_view);
  4715. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4716. }
  4717. struct ggml_tensor * llm_build_kqv(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * k_l,
  4720. struct ggml_tensor * v_l,
  4721. struct ggml_tensor * q_cur,
  4722. struct ggml_tensor * kq_mask,
  4723. float kq_scale) {
  4724. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4725. struct ggml_tensor * k =
  4726. ggml_view_3d(ctx, k_l,
  4727. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4728. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4729. ggml_row_size(k_l->type, hp.n_embd_head),
  4730. 0);
  4731. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4732. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4733. // split cached v into n_head heads
  4734. struct ggml_tensor * v =
  4735. ggml_view_3d(ctx, v_l,
  4736. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4737. ggml_element_size(v_l)*hp.n_ctx,
  4738. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4739. 0);
  4740. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4741. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4742. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4743. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4744. cur = ggml_mul_mat(ctx, wo, cur);
  4745. return cur;
  4746. }
  4747. void initialize_tensors(ggml_context * ctx) override {
  4748. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4749. if (t->type == GGML_TYPE_I32) {
  4750. // pos
  4751. std::vector<int> data(hp.n_tokens);
  4752. for (int i = 0; i < hp.n_tokens; i++) {
  4753. data[i] = rand() % hp.n_ctx;
  4754. }
  4755. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4756. } else {
  4757. init_tensor_uniform(t);
  4758. }
  4759. }
  4760. }
  4761. };
  4762. // Llama
  4763. struct test_llama : public test_llm {
  4764. static constexpr float freq_base = 10000.0f;
  4765. static constexpr float freq_scale = 1.0f;
  4766. static constexpr float ext_factor = 0.0f;
  4767. static constexpr float attn_factor = 1.0f;
  4768. static constexpr float beta_fast = 32.0f;
  4769. static constexpr float beta_slow = 1.0f;
  4770. bool fused;
  4771. std::string op_desc(ggml_tensor * t) override {
  4772. GGML_UNUSED(t);
  4773. return "LLAMA";
  4774. }
  4775. std::string vars() override {
  4776. auto n_tokens = hp.n_tokens;
  4777. return VARS_TO_STR1(n_tokens);
  4778. }
  4779. double max_nmse_err() override {
  4780. return 2e-3;
  4781. }
  4782. bool run_whole_graph() override { return fused; }
  4783. test_llama(int n_tokens = 1, bool fused = false)
  4784. : test_llm({
  4785. /*n_vocab =*/ 32000,
  4786. /*n_embd =*/ 3200,
  4787. /*n_head =*/ 32,
  4788. /*n_head_kv =*/ 32,
  4789. /*n_rot =*/ 100,
  4790. /*n_embd_head =*/ 100,
  4791. /*n_ff =*/ 8640,
  4792. /*f_norm_eps =*/ 0.f,
  4793. /*f_norm_rms_eps =*/ 1e-5f,
  4794. /*n_tokens =*/ n_tokens,
  4795. })
  4796. , fused(fused)
  4797. {
  4798. }
  4799. ggml_tensor * build_graph(ggml_context * ctx) override {
  4800. struct ggml_tensor * cur;
  4801. struct ggml_tensor * inpL;
  4802. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4803. // inp_pos - contains the positions
  4804. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4805. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4806. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4807. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4808. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4809. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4810. struct ggml_tensor * inpSA = inpL;
  4811. // norm
  4812. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4813. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4814. // self-attention
  4815. {
  4816. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4817. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4818. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4819. // compute Q and K and RoPE them
  4820. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4821. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4822. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4823. Qcur = ggml_rope_ext(
  4824. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4825. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4826. ext_factor, attn_factor, beta_fast, beta_slow
  4827. );
  4828. Kcur = ggml_rope_ext(
  4829. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4830. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4831. ext_factor, attn_factor, beta_fast, beta_slow
  4832. );
  4833. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4834. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4835. }
  4836. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4837. // feed-forward network
  4838. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4839. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4840. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4841. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4842. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4843. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4844. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4845. cur = ggml_silu(ctx, cur);
  4846. cur = ggml_mul(ctx, cur, tmp);
  4847. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4848. cur = ggml_add(ctx, cur, ffn_inp);
  4849. // input for next layer
  4850. inpL = cur;
  4851. }
  4852. cur = inpL;
  4853. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4854. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4855. // lm_head
  4856. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4857. cur = ggml_mul_mat(ctx, output, cur);
  4858. return cur;
  4859. }
  4860. };
  4861. // Falcon
  4862. struct test_falcon : public test_llm {
  4863. static constexpr float freq_base = 10000.0f;
  4864. static constexpr float freq_scale = 1.0f;
  4865. static constexpr float ext_factor = 0.0f;
  4866. static constexpr float attn_factor = 1.0f;
  4867. static constexpr float beta_fast = 32.0f;
  4868. static constexpr float beta_slow = 1.0f;
  4869. std::string op_desc(ggml_tensor * t) override {
  4870. GGML_UNUSED(t);
  4871. return "FALCON";
  4872. }
  4873. std::string vars() override {
  4874. auto n_tokens = hp.n_tokens;
  4875. return VARS_TO_STR1(n_tokens);
  4876. }
  4877. double max_nmse_err() override {
  4878. return 2e-3;
  4879. }
  4880. test_falcon(int n_tokens = 1)
  4881. : test_llm({
  4882. /*n_vocab =*/ 32000,
  4883. /*n_embd =*/ 3200,
  4884. /*n_head =*/ 50,
  4885. /*n_head_kv =*/ 1,
  4886. /*n_rot =*/ 64,
  4887. /*n_embd_head =*/ 64,
  4888. /*n_ff =*/ 8640,
  4889. /*f_norm_eps =*/ 1e-5f,
  4890. /*f_norm_rms_eps =*/ 0.f,
  4891. /*n_tokens =*/ n_tokens,
  4892. }) {
  4893. }
  4894. ggml_tensor * build_graph(ggml_context * ctx) override {
  4895. struct ggml_tensor * cur;
  4896. struct ggml_tensor * inpL;
  4897. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4898. // inp_pos - contains the positions
  4899. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4900. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4901. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4902. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4903. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4904. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4905. // norm
  4906. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4907. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4908. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4909. // self-attention
  4910. {
  4911. cur = attn_norm;
  4912. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4913. cur = ggml_mul_mat(ctx, wqkv, cur);
  4914. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4915. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4916. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4917. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4918. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4919. // using mode = 2 for neox mode
  4920. Qcur = ggml_rope_ext(
  4921. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4922. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4923. );
  4924. Kcur = ggml_rope_ext(
  4925. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4926. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4927. );
  4928. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4929. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4930. }
  4931. struct ggml_tensor * ffn_inp = cur;
  4932. // feed forward
  4933. {
  4934. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4935. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4936. cur = attn_norm;
  4937. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4938. cur = ggml_gelu(ctx, cur);
  4939. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4940. }
  4941. cur = ggml_add(ctx, cur, ffn_inp);
  4942. cur = ggml_add(ctx, cur, inpL);
  4943. // input for next layer
  4944. inpL = cur;
  4945. }
  4946. cur = inpL;
  4947. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4948. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4949. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4950. // lm_head
  4951. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4952. cur = ggml_mul_mat(ctx, output, cur);
  4953. return cur;
  4954. }
  4955. };
  4956. // ###########################################
  4957. // ## Section 3: GGML Op Test Instantiation ##
  4958. // ###########################################
  4959. static const ggml_type all_types[] = {
  4960. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4961. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4962. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4963. GGML_TYPE_Q8_0,
  4964. GGML_TYPE_MXFP4,
  4965. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4966. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4967. GGML_TYPE_Q6_K,
  4968. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4969. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4970. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4971. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4972. };
  4973. static const ggml_type base_types[] = {
  4974. GGML_TYPE_F32, GGML_TYPE_F16,
  4975. GGML_TYPE_Q8_0, // for I8MM tests
  4976. GGML_TYPE_Q4_0,
  4977. GGML_TYPE_Q4_1, // for I8MM tests
  4978. GGML_TYPE_Q4_K,
  4979. GGML_TYPE_MXFP4, // TODO: or "other"
  4980. GGML_TYPE_IQ2_XXS
  4981. };
  4982. static const ggml_type other_types[] = {
  4983. GGML_TYPE_Q4_1,
  4984. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4985. GGML_TYPE_Q8_0,
  4986. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4987. GGML_TYPE_Q5_K,
  4988. GGML_TYPE_Q6_K,
  4989. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4990. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4991. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4992. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4993. GGML_TYPE_BF16,
  4994. };
  4995. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4996. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4997. std::vector<std::unique_ptr<test_case>> test_cases;
  4998. std::default_random_engine rng(0);
  4999. // unary ops
  5000. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5001. for (int v : {0, 1}) {
  5002. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5003. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5004. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5005. }
  5006. }
  5007. }
  5008. // glu ops
  5009. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5010. for (int v : {0, 1}) {
  5011. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5012. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5013. // SWIGLU_OAI is handled separately
  5014. continue;
  5015. }
  5016. for (bool swapped : {false, true}) {
  5017. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5018. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5019. }
  5020. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5021. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5022. }
  5023. }
  5024. }
  5025. for (int v : {0, 1}) {
  5026. for (float alpha : {.5f, 1.702f}) {
  5027. for (float limit : {2.0f, 7.0f}) {
  5028. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5029. }
  5030. }
  5031. }
  5032. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5033. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5034. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5035. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5036. }
  5037. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5038. for (ggml_type type : all_types) {
  5039. for (int b : {1, 7}) {
  5040. for (bool v : {false, true}) {
  5041. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5042. }
  5043. }
  5044. }
  5045. for (int b : {1, 7}) {
  5046. for (bool v : {false, true}) {
  5047. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5048. }
  5049. }
  5050. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5051. for (ggml_type type : all_types) {
  5052. for (bool v : {false, true}) {
  5053. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5054. }
  5055. }
  5056. for (bool v : {false, true}) {
  5057. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5058. }
  5059. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5060. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5061. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5062. for (ggml_type type : all_types) {
  5063. for (int b : {1, 7}) {
  5064. for (bool v : {false, true}) {
  5065. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5066. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5067. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5068. if (ggml_blck_size(type) == 1) {
  5069. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5070. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5071. }
  5072. }
  5073. }
  5074. }
  5075. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5076. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5077. for (int k0 : {1, 3}) {
  5078. for (int k1 : {1, 3}) {
  5079. for (int s0 : {1, 2}) {
  5080. for (int s1 : {1, 2}) {
  5081. for (int p0 : {0, 1}) {
  5082. for (int p1 : {0, 1}) {
  5083. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5084. }
  5085. }
  5086. }
  5087. }
  5088. }
  5089. }
  5090. }
  5091. }
  5092. #if 0
  5093. // >4GB im2col destination. Too slow to run by default.
  5094. // Test cases taken from Wan2.1 T2V 1.3B.
  5095. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5096. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5097. #endif
  5098. // im2col 1D
  5099. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5100. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5101. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5102. for (int s0 : {1, 3}) {
  5103. for (int p0 : {0, 3}) {
  5104. for (int d0 : {1, 3}) {
  5105. test_cases.emplace_back(new test_im2col(
  5106. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5107. s0, 0, p0, 0, d0, 0, false));
  5108. }
  5109. }
  5110. }
  5111. // im2col 2D
  5112. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5113. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5114. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5115. for (int s0 : {1, 3}) {
  5116. for (int s1 : {1, 3}) {
  5117. for (int p0 : {0, 3}) {
  5118. for (int p1 : {0, 3}) {
  5119. for (int d0 : {1, 3}) {
  5120. for (int d1 : {1, 3}) {
  5121. test_cases.emplace_back(new test_im2col(
  5122. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5123. s0, s1, p0, p1, d0, d1, true));
  5124. }
  5125. }
  5126. }
  5127. }
  5128. }
  5129. }
  5130. // extra tests for im2col 2D
  5131. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5132. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5133. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5134. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5135. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5136. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5137. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5138. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5139. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5140. // im2col 3D
  5141. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5142. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5143. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5144. for (int s0 : {1, 3}) {
  5145. for (int s1 : {1, 3}) {
  5146. for (int s2 : {1, 3}) {
  5147. for (int p0 : {0, 3}) {
  5148. for (int p1 : {0, 3}) {
  5149. for (int p2 : {0, 3}) {
  5150. for (int d0 : {1, 3}) {
  5151. for (int d1 : {1, 3}) {
  5152. for (int d2 : {1, 3}) {
  5153. for (int IC : {1, 3}) {
  5154. for (bool v : {false, true}) {
  5155. test_cases.emplace_back(new test_im2col_3d(
  5156. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5157. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5158. }
  5159. }
  5160. }
  5161. }
  5162. }
  5163. }
  5164. }
  5165. }
  5166. }
  5167. }
  5168. }
  5169. // Conv_2D test cases
  5170. #ifdef DETAILED_TESTS
  5171. // Probably we do not have enough time to execute these in the pipeline.
  5172. uint32_t iwh_idx = 0;
  5173. uint32_t kwh_idx = 1;
  5174. uint32_t Cout_idx = 2;
  5175. uint32_t Cin_idx = 3;
  5176. uint32_t B_idx = 4;
  5177. std::vector<std::array<int, 5>> cases = {
  5178. //{IWH, KWH, Cout, Cin, B}
  5179. // K=CRS=NPQ=4096 conv_2d matmul performance
  5180. {19, 4, 4096, 256, 16},
  5181. // K=128, CRS=128, NPQ=4096
  5182. { 19, 4, 128, 8, 16},
  5183. // K=130, CRS=128, NPQ=4096
  5184. { 19, 4, 130, 8, 16},
  5185. // Edge case: K x CRS is small
  5186. { 19, 2, 4, 4, 16},
  5187. // A ConvNet's first layer
  5188. { 224, 3, 8, 3, 1 },
  5189. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5190. { 224, 2, 8, 1, 1 },
  5191. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5192. { 224, 2, 8, 1, 8 },
  5193. // A middle layer of a ConvNet
  5194. { 58, 3, 64, 32, 1 },
  5195. // A middle layer of a ConvNet, several images in the batch
  5196. { 58, 3, 64, 32, 8 },
  5197. // A deep layer of a ConvNet, several images in the batch
  5198. { 16, 3, 256, 128, 8 }
  5199. };
  5200. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5201. for (auto act_case : cases) {
  5202. test_cases.emplace_back(new test_conv_2d(
  5203. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5204. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5205. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5206. }
  5207. }
  5208. #endif
  5209. // CONV_2D:
  5210. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5211. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5212. };
  5213. //uint32_t s0 = 3;
  5214. uint32_t s1 = 5;
  5215. uint32_t p0 = 5;
  5216. //uint32_t p1 = 2;
  5217. uint32_t d0 = 2;
  5218. uint32_t d1 = 4;
  5219. for (uint32_t s0 : { 1, 3 }) {
  5220. for (uint32_t p1 : { 2, 5 }) {
  5221. for (uint32_t Cin : { 1, 25 }) {
  5222. for (uint32_t Cout : { 1, 12 }) {
  5223. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5224. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5225. for (uint32_t H : { 1, 133 }) {
  5226. for (uint32_t W : { 1, 141 }) {
  5227. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5228. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5229. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5230. test_cases.emplace_back(new test_conv_2d(
  5231. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5232. }
  5233. }
  5234. }
  5235. }
  5236. }
  5237. }
  5238. }
  5239. }
  5240. }
  5241. }
  5242. // sycl backend will limit task global_range < MAX_INT
  5243. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5244. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5245. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5246. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5247. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5248. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5249. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5250. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5251. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5252. // CONV_3D
  5253. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5254. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5255. };
  5256. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5257. for (int N : {1, 2}) {
  5258. for (int IC : {1, 3}) {
  5259. for (int OC : {1, 4}) {
  5260. for (int s0 : {1, 2}) {
  5261. for (int p1 : {0, 1}) {
  5262. for (int d2 : {1, 2}) {
  5263. int64_t IW = 20, IH = 22, ID = 18;
  5264. int64_t KW = 3, KH = 3, KD = 3;
  5265. int s1 = s0, s2 = s0;
  5266. int p0 = p1, p2 = p1;
  5267. int d0 = d2, d1 = d2;
  5268. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5269. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5270. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5271. continue;
  5272. }
  5273. test_cases.emplace_back(new test_conv_3d(
  5274. N, IC, ID, IH, IW,
  5275. OC, KD, KH, KW,
  5276. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5277. kernel_type));
  5278. // Asymmetric kernel and params
  5279. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5280. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5281. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5282. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5283. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5284. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5285. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5286. continue;
  5287. }
  5288. test_cases.emplace_back(new test_conv_3d(
  5289. N, IC, ID, IH, IW,
  5290. OC, asym_KD, asym_KH, asym_KW,
  5291. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5292. kernel_type));
  5293. }
  5294. }
  5295. }
  5296. }
  5297. }
  5298. }
  5299. // Case with kernel size 1
  5300. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5301. }
  5302. for(uint32_t Cout : {1, 9}){
  5303. for(uint32_t Cin : {1, 7}){
  5304. for(uint32_t K : {1, 3, 1337}){
  5305. for(uint32_t L : {1, 2, 13}){
  5306. for(uint32_t s0: {1, 2, 3}){
  5307. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5308. }
  5309. }
  5310. }
  5311. }
  5312. }
  5313. test_cases.emplace_back(new test_conv_transpose_1d());
  5314. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5315. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5316. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5317. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5318. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5319. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5320. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5321. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5322. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5323. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5324. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5325. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5326. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5327. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5328. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5329. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5330. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5331. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5332. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5333. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5334. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5335. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5336. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5337. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5338. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5339. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5340. }
  5341. for (bool view : {false, true}) {
  5342. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5343. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5344. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5345. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5346. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5347. }
  5348. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5349. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5350. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5351. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5352. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5353. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5354. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5355. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5356. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5357. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5358. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5359. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5360. }
  5361. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5362. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5363. }
  5364. // same-type copy
  5365. for (ggml_type type : all_types) {
  5366. const auto nk = ggml_blck_size(type);
  5367. for (int k = 1; k < 4; ++k) {
  5368. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5369. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5370. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5371. }
  5372. }
  5373. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5374. for (ggml_type type_dst : all_types) {
  5375. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5376. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5377. }
  5378. }
  5379. for (ggml_type type_src : all_types) {
  5380. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5381. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5382. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5383. }
  5384. }
  5385. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5386. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5387. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5388. }
  5389. }
  5390. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5391. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5392. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5393. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5394. test_cases.emplace_back(new test_cont());
  5395. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5396. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5397. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5398. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5399. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5400. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5401. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5402. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5403. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5404. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5405. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5406. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5407. }
  5408. };
  5409. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5410. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5411. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5412. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5413. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5414. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5415. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5416. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5417. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5418. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5419. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5420. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5421. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5422. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5423. // test case for k_bin_bcast_unravel in CUDA backend
  5424. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5425. // stable diffusion
  5426. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5427. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5428. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5429. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5430. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5431. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5432. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5433. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5434. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5435. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5436. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5437. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5438. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5439. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5440. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5441. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5442. }
  5443. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5444. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5445. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5446. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5447. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5448. // fusion
  5449. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5450. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5451. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5452. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5453. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5454. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5455. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5456. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5457. test_cases.emplace_back(new test_add1());
  5458. test_cases.emplace_back(new test_scale());
  5459. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5460. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5461. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5462. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5463. test_cases.emplace_back(new test_silu_back());
  5464. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5465. for (bool v : {false, true}) {
  5466. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5467. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5468. }
  5469. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5470. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5471. }
  5472. // in-place tests
  5473. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5474. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5475. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5476. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5477. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5478. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5479. }
  5480. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5481. for (bool multi_add : {false, true}) {
  5482. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5483. }
  5484. }
  5485. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5486. for (int64_t d_conv : {3, 4}) {
  5487. for (int64_t d_inner: {1024, 1536, 2048}) {
  5488. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5489. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5490. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5491. }
  5492. }
  5493. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5494. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5495. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5496. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5497. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5498. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5499. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5500. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5501. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5502. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5503. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5504. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5505. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5506. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5507. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5508. #if 0
  5509. // > 4GB A matrix. Too slow to be enabled by default.
  5510. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5511. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5512. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5513. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5514. #endif
  5515. for (ggml_type type_a : all_types) {
  5516. for (int i = 1; i < 10; ++i) {
  5517. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5518. }
  5519. }
  5520. #if 0
  5521. {
  5522. // Test paths in OpenCL
  5523. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5524. std::vector<int> ks = {896, 1536, 4096};
  5525. for (auto n : ns) {
  5526. for (auto k : ks) {
  5527. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5528. }
  5529. }
  5530. }
  5531. #endif
  5532. #if 1
  5533. for (ggml_type type_a : base_types) {
  5534. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5535. std::vector<int> ks = { 256 };
  5536. if (ggml_blck_size(type_a) == 1) {
  5537. ks.push_back(4);
  5538. }
  5539. for (auto k : ks) {
  5540. // test cases without permutation
  5541. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5542. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5543. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5544. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5545. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5546. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5547. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5548. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5549. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5550. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5551. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5552. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5553. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5554. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5555. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5556. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5557. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5558. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5559. // test cases with permutation
  5560. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5561. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5562. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5563. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5564. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5565. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5566. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5567. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5568. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5569. }
  5570. // test cases with large ne00/ne10 to cover stream-k fixup
  5571. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5572. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5573. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5574. // test cases with large batch size
  5575. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5576. }
  5577. }
  5578. for (ggml_type type_a : other_types) {
  5579. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5580. if (ggml_blck_size(type_a) != 256) {
  5581. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5582. }
  5583. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5584. }
  5585. }
  5586. #else
  5587. // m = a rows
  5588. // n = b rows
  5589. // k = cols
  5590. std::uniform_int_distribution<> dist_m(1, 128);
  5591. std::uniform_int_distribution<> dist_n(16, 128);
  5592. std::uniform_int_distribution<> dist_k(1, 16);
  5593. for (int i = 0; i < 1000; i++) {
  5594. for (ggml_type type_a : all_types) {
  5595. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5596. int m = dist_m(rng);
  5597. int n = dist_n(rng);
  5598. int k = dist_k(rng) * ggml_blck_size(type_a);
  5599. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5600. }
  5601. }
  5602. }
  5603. #endif
  5604. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5605. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5606. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5607. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5608. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5609. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5610. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5611. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5612. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
  5613. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5614. #if 0
  5615. // test the mat-mat path for Metal
  5616. for (int k = 1; k < 512; ++k) {
  5617. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5618. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5619. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5620. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5621. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5622. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5623. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5624. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5625. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5626. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5627. }
  5628. #endif
  5629. for (auto bs2 : {1,3}) {
  5630. for (auto bs : {1,2,4,8}) {
  5631. for (auto nr : {1,4}) {
  5632. for (uint32_t m = 0; m < 2; ++m) {
  5633. for (uint32_t k = 0; k < 2; ++k) {
  5634. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5635. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5636. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  5637. }
  5638. }
  5639. }
  5640. }
  5641. }
  5642. }
  5643. // sycl backend will limit task global_range < MAX_INT
  5644. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5645. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5646. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5647. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5648. // test large experts*tokens
  5649. for (bool b : {false, true}) {
  5650. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5651. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5652. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5653. }
  5654. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5655. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5656. for (ggml_type type_a : base_types) {
  5657. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5658. for (int n_mats : {4, 8}) {
  5659. for (int n_used : {1, 2, 4}) {
  5660. for (bool b : {false, true}) {
  5661. for (int n : {1, 4, 5, 17, 32, 129}) {
  5662. int m = 512;
  5663. int k = 256;
  5664. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5665. }
  5666. }
  5667. }
  5668. }
  5669. }
  5670. }
  5671. for (ggml_type type_a : other_types) {
  5672. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5673. for (int n_mats : {4}) {
  5674. for (int n_used : {2}) {
  5675. for (bool b : {false}) {
  5676. for (int n : {1, 32}) {
  5677. int m = 512;
  5678. int k = 256;
  5679. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5680. }
  5681. }
  5682. }
  5683. }
  5684. }
  5685. }
  5686. for (ggml_type type_a : base_types) {
  5687. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5688. for (int n : {1, 16}) {
  5689. for (int k : {1, 16}) {
  5690. for (int bs2 : {1, 3}) {
  5691. for (int bs3 : {1, 3}) {
  5692. for (int nr2 : {1, 2}) {
  5693. for (int nr3 : {1, 2}) {
  5694. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5695. }
  5696. }
  5697. }
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. // add_id
  5704. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5705. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5706. for (int n_mats : {4, 8}) {
  5707. for (int n_used : {1, 2, 4}) {
  5708. for (int n_embd : {32, 129}) {
  5709. for (int n_token : {1, 32, 129}) {
  5710. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5711. }
  5712. }
  5713. }
  5714. }
  5715. }
  5716. }
  5717. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5718. test_cases.emplace_back(new test_sqr (type));
  5719. test_cases.emplace_back(new test_sqrt (type));
  5720. test_cases.emplace_back(new test_log (type));
  5721. test_cases.emplace_back(new test_sin (type));
  5722. test_cases.emplace_back(new test_cos (type));
  5723. test_cases.emplace_back(new test_clamp (type));
  5724. test_cases.emplace_back(new test_leaky_relu(type));
  5725. test_cases.emplace_back(new test_floor (type));
  5726. test_cases.emplace_back(new test_ceil (type));
  5727. test_cases.emplace_back(new test_round (type));
  5728. test_cases.emplace_back(new test_trunc (type));
  5729. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5730. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5731. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5732. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5733. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5734. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5735. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5736. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  5737. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  5738. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  5739. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  5740. }
  5741. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5742. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5743. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5744. #if 0
  5745. std::uniform_int_distribution<> dist_ne1(1, 50);
  5746. int exponent = 1;
  5747. while (exponent < (1 << 17)) {
  5748. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5749. for (int n = 0; n < 10; ++n) {
  5750. int64_t ne0 = dist_ne0(rng);
  5751. int64_t ne1 = dist_ne1(rng);
  5752. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5753. }
  5754. exponent <<= 1;
  5755. }
  5756. #endif
  5757. for (bool mask : {false, true}) {
  5758. for (bool sinks : {false, true}) {
  5759. for (float max_bias : {0.0f, 8.0f}) {
  5760. if (!mask && max_bias > 0.0f) continue;
  5761. for (float scale : {1.0f, 0.1f}) {
  5762. for (int64_t ne0 : {16, 1024}) {
  5763. for (int64_t ne1 : {16, 1024}) {
  5764. if (mask) {
  5765. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5766. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5767. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5768. if (ne0 <= 32 && ne1 <= 32) {
  5769. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5770. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5771. }
  5772. }
  5773. } else {
  5774. /* The precision of mask here doesn't matter as boolean mask is false */
  5775. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5776. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5777. }
  5778. }
  5779. }
  5780. }
  5781. }
  5782. // inplace tests
  5783. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  5784. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  5785. }
  5786. }
  5787. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5788. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5789. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5790. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5791. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5792. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5793. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5794. for (float max_bias : {0.0f, 8.0f}) {
  5795. for (float scale : {1.0f, 0.1f}) {
  5796. for (int64_t ne0 : {16, 1024}) {
  5797. for (int64_t ne1 : {16, 1024}) {
  5798. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5799. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5800. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5801. }
  5802. }
  5803. }
  5804. }
  5805. for (bool fw : {true, false}) { // fw == forward
  5806. bool all = true;
  5807. for (float fs : { 1.0f, 1.4245f }) {
  5808. for (float ef : { 0.0f, 0.7465f }) {
  5809. for (float af : { 1.0f, 1.4245f }) {
  5810. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5811. for (bool ff : {false, true}) { // freq_factors
  5812. for (float v : { 0, 1 }) {
  5813. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5814. if (all) {
  5815. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5816. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5817. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5818. }
  5819. if (all) {
  5820. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5821. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5822. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5823. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5824. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5825. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5826. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5827. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5828. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5829. }
  5830. if (all) {
  5831. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5832. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5833. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5834. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5835. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5836. }
  5837. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5838. }
  5839. }
  5840. all = false;
  5841. }
  5842. }
  5843. }
  5844. }
  5845. }
  5846. // single inplace test per type/mode/ff
  5847. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5848. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_VISION}) {
  5849. for (bool ff : {false, true}) {
  5850. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  5851. }
  5852. }
  5853. }
  5854. for (int v : { 0, 1, 2, 3 }) {
  5855. for (int dim : { 0, 1, 2, 3, }) {
  5856. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5857. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5858. }
  5859. }
  5860. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5861. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5862. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5863. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5864. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5865. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // bailingmoe2 (group selection)
  5866. }
  5867. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5868. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5869. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5870. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5871. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5872. }
  5873. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5874. test_cases.emplace_back(new test_sum());
  5875. test_cases.emplace_back(new test_sum_rows());
  5876. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  5877. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  5878. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  5879. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5880. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5881. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5882. test_cases.emplace_back(new test_mean());
  5883. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5884. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5885. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5886. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5887. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5888. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5889. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  5890. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5891. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5892. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5893. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  5894. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5895. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  5896. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5897. test_cases.emplace_back(new test_acc());
  5898. test_cases.emplace_back(new test_pad());
  5899. test_cases.emplace_back(new test_pad_ext());
  5900. test_cases.emplace_back(new test_pad_reflect_1d());
  5901. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  5902. test_cases.emplace_back(new test_roll());
  5903. test_cases.emplace_back(new test_arange());
  5904. test_cases.emplace_back(new test_timestep_embedding());
  5905. test_cases.emplace_back(new test_leaky_relu());
  5906. for (bool v : {false, true}) {
  5907. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  5908. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  5909. }
  5910. for (int hsk : { 40, 64, 80, 96, 128, 192, 256, 576 }) {
  5911. for (int hsv : { 40, 64, 80, 96, 128, 192, 256, 512 }) {
  5912. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  5913. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  5914. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  5915. for (bool mask : { true, false } ) {
  5916. for (bool sinks : { true, false } ) {
  5917. for (float max_bias : { 0.0f, 8.0f }) {
  5918. if (!mask && max_bias > 0.0f) continue;
  5919. for (float logit_softcap : {0.0f, 10.0f}) {
  5920. if (hsk != 128 && logit_softcap != 0.0f) continue;
  5921. for (int nh : { 4, }) {
  5922. for (int nr3 : { 1, 3, }) {
  5923. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  5924. for (int nr2 : { 1, 4, 16 }) {
  5925. if (nr2 == 16 && hsk != 128) continue;
  5926. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  5927. for (int kv : { 113, 512, 1024, }) {
  5928. if (nr2 != 1 && kv != 512) continue;
  5929. for (int nb : { 1, 3, 32, 35, }) {
  5930. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  5931. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  5932. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  5933. test_cases.emplace_back(new test_flash_attn_ext(
  5934. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  5935. // run fewer test cases permuted
  5936. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  5937. test_cases.emplace_back(new test_flash_attn_ext(
  5938. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  5939. }
  5940. }
  5941. }
  5942. }
  5943. }
  5944. }
  5945. }
  5946. }
  5947. }
  5948. }
  5949. }
  5950. }
  5951. }
  5952. }
  5953. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  5954. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  5955. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  5956. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  5957. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  5958. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  5959. for (ggml_type type : base_types) {
  5960. for (bool with_gate : {false, true}) {
  5961. for (bool use_id : {false, true}) {
  5962. for (bool b : {false, true}) {
  5963. if (!use_id && b) {
  5964. continue;
  5965. }
  5966. for (bool with_bias : {false, true}) {
  5967. if (!with_gate && !with_bias) {
  5968. continue;
  5969. }
  5970. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  5971. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  5972. continue;
  5973. }
  5974. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  5975. continue;
  5976. }
  5977. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  5978. use_id, 16, 8, b, with_bias, with_gate));
  5979. }
  5980. }
  5981. }
  5982. }
  5983. }
  5984. }
  5985. for (bool with_norm : {false, true}) {
  5986. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  5987. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  5988. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  5989. }
  5990. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  5991. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  5992. #if 0
  5993. // these tests are disabled to save execution time, sbut they can be handy for debugging
  5994. test_cases.emplace_back(new test_llama(2, true));
  5995. test_cases.emplace_back(new test_llama(1));
  5996. test_cases.emplace_back(new test_llama(2));
  5997. test_cases.emplace_back(new test_falcon(1));
  5998. test_cases.emplace_back(new test_falcon(2));
  5999. #endif
  6000. return test_cases;
  6001. }
  6002. // Test cases for performance evaluation: should be representative of real-world use cases
  6003. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6004. std::vector<std::unique_ptr<test_case>> test_cases;
  6005. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6006. uint32_t iwh_idx = 0;
  6007. uint32_t kwh_idx = 1;
  6008. uint32_t Cout_idx = 2;
  6009. uint32_t Cin_idx = 3;
  6010. uint32_t B_idx = 4;
  6011. std::vector<std::array<int, 5>> cases = {
  6012. //{IWH, KWH, Cout, Cin, B}
  6013. // K=CRS=NPQ=4096 conv2d matmul performance
  6014. {19, 4, 4096, 256, 16},
  6015. // K=128, CRS=128, NPQ=4096
  6016. { 19, 4, 128, 8, 16},
  6017. // K=130, CRS=128, NPQ=4096
  6018. { 19, 4, 130, 8, 16},
  6019. // Edge case: K x CRS is small
  6020. { 19, 2, 4, 4, 16},
  6021. // A ConvNet's first layer
  6022. { 224, 3, 8, 3, 1 },
  6023. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6024. { 224, 2, 8, 1, 1 },
  6025. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6026. { 224, 2, 8, 1, 8 },
  6027. // A middle layer of a ConvNet
  6028. { 58, 3, 64, 32, 1 },
  6029. // A middle layer of a ConvNet, several images in the batch
  6030. { 58, 3, 64, 32, 8 },
  6031. // A deep layer of a ConvNet, several images in the batch
  6032. { 16, 3, 512, 128, 8 },
  6033. };
  6034. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6035. for (auto act_case : cases) {
  6036. // Direct CONV_2D
  6037. test_cases.emplace_back(new test_conv_2d(
  6038. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6039. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6040. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6041. }
  6042. }
  6043. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6044. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6045. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6046. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6047. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6048. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6049. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6050. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6051. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6052. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6053. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6054. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6055. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6056. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6057. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6058. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6059. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6060. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6061. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6062. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6063. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6064. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6065. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6066. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6067. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  6068. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6069. for (ggml_type type_a : all_types) {
  6070. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6071. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6072. }
  6073. }
  6074. }
  6075. // qwen3-30b-a3b
  6076. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6077. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6078. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6079. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6080. }
  6081. }
  6082. }
  6083. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6084. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6085. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6086. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6087. }
  6088. }
  6089. }
  6090. // gpt-oss-20b
  6091. for (int bs : {1, 4, 8, 512}) {
  6092. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6093. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6094. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6095. }
  6096. }
  6097. }
  6098. for (int K : {3, 5}) {
  6099. for (int IC : {256, 2560}) {
  6100. for (int IW_IH : {32, 64, 256}) {
  6101. if (IC == 2560 && IW_IH == 256) {
  6102. // too big
  6103. continue;
  6104. }
  6105. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6106. }
  6107. }
  6108. }
  6109. for (int kv : { 4096, 8192, 16384, }) {
  6110. for (int hs : { 64, 128, }) {
  6111. for (int nr : { 1, 4, }) {
  6112. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6113. }
  6114. }
  6115. }
  6116. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6117. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6118. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6119. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6120. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6121. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6122. for (int n_token : {1, 512}) {
  6123. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6124. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6125. }
  6126. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6127. { 8192, 1, 1, 1 },
  6128. { 8192, 8192, 1, 1 },
  6129. { 128, 8192, 1, 1 },
  6130. };
  6131. for (auto it: reduce_rows_cases){
  6132. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6133. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6134. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6135. }
  6136. return test_cases;
  6137. }
  6138. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6139. printer * output_printer) {
  6140. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6141. if (params_filter == nullptr) {
  6142. return;
  6143. }
  6144. std::regex params_filter_regex(params_filter);
  6145. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6146. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6147. it = test_cases.erase(it);
  6148. continue;
  6149. }
  6150. it++;
  6151. }
  6152. };
  6153. if (mode == MODE_TEST) {
  6154. auto test_cases = make_test_cases_eval();
  6155. filter_test_cases(test_cases, params_filter);
  6156. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6157. if (backend_cpu == NULL) {
  6158. test_operation_info info("", "", "CPU");
  6159. info.set_error("backend", "Failed to initialize CPU backend");
  6160. output_printer->print_operation(info);
  6161. return false;
  6162. }
  6163. size_t n_ok = 0;
  6164. size_t tests_run = 0;
  6165. std::vector<std::string> failed_tests;
  6166. for (auto & test : test_cases) {
  6167. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6168. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6169. continue;
  6170. }
  6171. tests_run++;
  6172. if (status == test_status_t::OK) {
  6173. n_ok++;
  6174. } else if (status == test_status_t::FAIL) {
  6175. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6176. }
  6177. }
  6178. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6179. output_printer->print_failed_tests(failed_tests);
  6180. ggml_backend_free(backend_cpu);
  6181. return n_ok == tests_run;
  6182. }
  6183. if (mode == MODE_GRAD) {
  6184. auto test_cases = make_test_cases_eval();
  6185. filter_test_cases(test_cases, params_filter);
  6186. size_t n_ok = 0;
  6187. for (auto & test : test_cases) {
  6188. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6189. n_ok++;
  6190. }
  6191. }
  6192. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6193. return n_ok == test_cases.size();
  6194. }
  6195. if (mode == MODE_PERF) {
  6196. auto test_cases = make_test_cases_perf();
  6197. filter_test_cases(test_cases, params_filter);
  6198. for (auto & test : test_cases) {
  6199. test->eval_perf(backend, op_names_filter, output_printer);
  6200. }
  6201. return true;
  6202. }
  6203. if (mode == MODE_SUPPORT) {
  6204. auto test_cases = make_test_cases_eval();
  6205. filter_test_cases(test_cases, params_filter);
  6206. for (auto & test : test_cases) {
  6207. test->eval_support(backend, op_names_filter, output_printer);
  6208. }
  6209. return true;
  6210. }
  6211. GGML_ABORT("fatal error");
  6212. }
  6213. static void list_all_ops() {
  6214. printf("GGML operations:\n");
  6215. std::set<std::string> all_ops;
  6216. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6217. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6218. }
  6219. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6220. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6221. }
  6222. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6223. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6224. }
  6225. for (const auto & op : all_ops) {
  6226. printf(" %s\n", op.c_str());
  6227. }
  6228. printf("\nTotal: %zu operations\n", all_ops.size());
  6229. }
  6230. static void show_test_coverage() {
  6231. std::set<std::string> all_ops;
  6232. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6233. auto op = (enum ggml_op)i;
  6234. if (op == GGML_OP_VIEW ||
  6235. op == GGML_OP_RESHAPE ||
  6236. op == GGML_OP_PERMUTE ||
  6237. op == GGML_OP_TRANSPOSE ||
  6238. op == GGML_OP_CONT ||
  6239. op == GGML_OP_GLU ||
  6240. op == GGML_OP_UNARY) {
  6241. continue;
  6242. }
  6243. all_ops.insert(ggml_op_name(op));
  6244. }
  6245. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6246. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6247. }
  6248. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6249. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6250. }
  6251. auto test_cases = make_test_cases_eval();
  6252. std::set<std::string> tested_ops;
  6253. ggml_init_params params = {
  6254. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6255. /* .mem_base = */ NULL,
  6256. /* .no_alloc = */ true,
  6257. };
  6258. for (auto & test_case : test_cases) {
  6259. ggml_context * ctx = ggml_init(params);
  6260. if (ctx) {
  6261. test_case->mode = MODE_TEST;
  6262. ggml_tensor * out = test_case->build_graph(ctx);
  6263. if (out && out->op != GGML_OP_NONE) {
  6264. if (out->op == GGML_OP_UNARY) {
  6265. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6266. } else if (out->op == GGML_OP_GLU) {
  6267. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6268. } else {
  6269. tested_ops.insert(ggml_op_name(out->op));
  6270. }
  6271. }
  6272. ggml_free(ctx);
  6273. }
  6274. }
  6275. std::set<std::string> covered_ops;
  6276. std::set<std::string> uncovered_ops;
  6277. for (const auto & op : all_ops) {
  6278. if (tested_ops.count(op) > 0) {
  6279. covered_ops.insert(op);
  6280. } else {
  6281. uncovered_ops.insert(op);
  6282. }
  6283. }
  6284. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6285. for (const auto & op : covered_ops) {
  6286. printf(" ✓ %s\n", op.c_str());
  6287. }
  6288. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6289. for (const auto & op : uncovered_ops) {
  6290. printf(" ✗ %s\n", op.c_str());
  6291. }
  6292. printf("\nCoverage Summary:\n");
  6293. printf(" Total operations: %zu\n", all_ops.size());
  6294. printf(" Tested operations: %zu\n", covered_ops.size());
  6295. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6296. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6297. }
  6298. static void usage(char ** argv) {
  6299. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6300. printf(" valid modes:\n");
  6301. printf(" - test (default, compare with CPU backend for correctness)\n");
  6302. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6303. printf(" - perf (performance evaluation)\n");
  6304. printf(" - support (probe backend operation support)\n");
  6305. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6306. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6307. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6308. printf(" --list-ops lists all available GGML operations\n");
  6309. printf(" --show-coverage shows test coverage\n");
  6310. }
  6311. int main(int argc, char ** argv) {
  6312. test_mode mode = MODE_TEST;
  6313. output_formats output_format = CONSOLE;
  6314. const char * op_names_filter = nullptr;
  6315. const char * backend_filter = nullptr;
  6316. const char * params_filter = nullptr;
  6317. for (int i = 1; i < argc; i++) {
  6318. if (strcmp(argv[i], "test") == 0) {
  6319. mode = MODE_TEST;
  6320. } else if (strcmp(argv[i], "perf") == 0) {
  6321. mode = MODE_PERF;
  6322. } else if (strcmp(argv[i], "grad") == 0) {
  6323. mode = MODE_GRAD;
  6324. } else if (strcmp(argv[i], "support") == 0) {
  6325. mode = MODE_SUPPORT;
  6326. } else if (strcmp(argv[i], "-o") == 0) {
  6327. if (i + 1 < argc) {
  6328. op_names_filter = argv[++i];
  6329. } else {
  6330. usage(argv);
  6331. return 1;
  6332. }
  6333. } else if (strcmp(argv[i], "-b") == 0) {
  6334. if (i + 1 < argc) {
  6335. backend_filter = argv[++i];
  6336. } else {
  6337. usage(argv);
  6338. return 1;
  6339. }
  6340. } else if (strcmp(argv[i], "-p") == 0) {
  6341. if (i + 1 < argc) {
  6342. params_filter = argv[++i];
  6343. } else {
  6344. usage(argv);
  6345. return 1;
  6346. }
  6347. } else if (strcmp(argv[i], "--output") == 0) {
  6348. if (i + 1 < argc) {
  6349. if (!output_format_from_str(argv[++i], output_format)) {
  6350. usage(argv);
  6351. return 1;
  6352. }
  6353. } else {
  6354. usage(argv);
  6355. return 1;
  6356. }
  6357. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6358. list_all_ops();
  6359. return 0;
  6360. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6361. show_test_coverage();
  6362. return 0;
  6363. } else {
  6364. usage(argv);
  6365. return 1;
  6366. }
  6367. }
  6368. // load and enumerate backends
  6369. ggml_backend_load_all();
  6370. // Create printer for output format
  6371. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6372. if (output_printer) {
  6373. output_printer->print_header();
  6374. }
  6375. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6376. size_t n_ok = 0;
  6377. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6378. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6379. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6380. output_printer->print_backend_init(
  6381. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6382. n_ok++;
  6383. continue;
  6384. }
  6385. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6386. output_printer->print_backend_init(backend_init_info(
  6387. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6388. n_ok++;
  6389. continue;
  6390. }
  6391. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6392. GGML_ASSERT(backend != NULL);
  6393. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6394. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6395. if (ggml_backend_set_n_threads_fn) {
  6396. // TODO: better value for n_threads
  6397. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6398. }
  6399. size_t free, total; // NOLINT
  6400. ggml_backend_dev_memory(dev, &free, &total);
  6401. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6402. false, "", ggml_backend_dev_description(dev),
  6403. total / 1024 / 1024, free / 1024 / 1024, true));
  6404. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6405. if (ok) {
  6406. n_ok++;
  6407. }
  6408. output_printer->print_backend_status(
  6409. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6410. ggml_backend_free(backend);
  6411. }
  6412. ggml_quantize_free();
  6413. if (output_printer) {
  6414. output_printer->print_footer();
  6415. }
  6416. output_printer->print_overall_summary(
  6417. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6418. if (n_ok != ggml_backend_dev_count()) {
  6419. return 1;
  6420. }
  6421. return 0;
  6422. }