bench.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. import argparse
  2. import json
  3. import os
  4. import re
  5. import signal
  6. import socket
  7. import subprocess
  8. import sys
  9. import threading
  10. import time
  11. import traceback
  12. from contextlib import closing
  13. from datetime import datetime
  14. import matplotlib
  15. import matplotlib.dates
  16. import matplotlib.pyplot as plt
  17. import requests
  18. from statistics import mean
  19. def main(args_in: list[str] | None = None) -> None:
  20. parser = argparse.ArgumentParser(description="Start server benchmark scenario")
  21. parser.add_argument("--name", type=str, help="Bench name", required=True)
  22. parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
  23. parser.add_argument("--branch", type=str, help="Branch name", default="detached")
  24. parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
  25. parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
  26. parser.add_argument("--port", type=int, help="Server listen host", default="8080")
  27. parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
  28. parser.add_argument("--n-prompts", type=int,
  29. help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
  30. parser.add_argument("--max-prompt-tokens", type=int,
  31. help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
  32. required=True)
  33. parser.add_argument("--max-tokens", type=int,
  34. help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
  35. required=True)
  36. parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
  37. parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
  38. parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
  39. parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
  40. parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
  41. parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
  42. parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
  43. parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
  44. parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
  45. args = parser.parse_args(args_in)
  46. start_time = time.time()
  47. # Start the server and performance scenario
  48. try:
  49. server_process = start_server(args)
  50. except Exception:
  51. print("bench: server start error :")
  52. traceback.print_exc(file=sys.stdout)
  53. sys.exit(1)
  54. # start the benchmark
  55. try:
  56. start_benchmark(args)
  57. iterations = 0
  58. with open("results.github.env", 'w') as github_env:
  59. # parse output
  60. with open('k6-results.json', 'r') as bench_results:
  61. # Load JSON data from file
  62. data = json.load(bench_results)
  63. for metric_name in data['metrics']:
  64. for metric_metric in data['metrics'][metric_name]:
  65. value = data['metrics'][metric_name][metric_metric]
  66. if isinstance(value, float) or isinstance(value, int):
  67. value = round(value, 2)
  68. data['metrics'][metric_name][metric_metric]=value
  69. github_env.write(
  70. f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
  71. iterations = data['root_group']['checks']['success completion']['passes']
  72. except Exception:
  73. print("bench: error :")
  74. traceback.print_exc(file=sys.stdout)
  75. # Stop the server
  76. if server_process:
  77. try:
  78. print(f"bench: shutting down server pid={server_process.pid} ...")
  79. if os.name == 'nt':
  80. interrupt = signal.CTRL_C_EVENT
  81. else:
  82. interrupt = signal.SIGINT
  83. server_process.send_signal(interrupt)
  84. server_process.wait(0.5)
  85. except subprocess.TimeoutExpired:
  86. print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
  87. server_process.kill() # SIGKILL
  88. server_process.wait()
  89. while is_server_listening(args.host, args.port):
  90. time.sleep(0.1)
  91. title = (f"llama.cpp {args.name} on {args.runner_label}\n "
  92. f"duration={args.duration} {iterations} iterations")
  93. xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
  94. f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
  95. f"branch={args.branch} commit={args.commit}")
  96. # Prometheus
  97. end_time = time.time()
  98. prometheus_metrics = {}
  99. if is_server_listening("0.0.0.0", 9090):
  100. metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
  101. 'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
  102. for metric in metrics:
  103. resp = requests.get(f"http://localhost:9090/api/v1/query_range",
  104. params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
  105. with open(f"{metric}.json", 'w') as metric_json:
  106. metric_json.write(resp.text)
  107. if resp.status_code != 200:
  108. print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
  109. else:
  110. metric_data = resp.json()
  111. values = metric_data['data']['result'][0]['values']
  112. timestamps, metric_values = zip(*values)
  113. metric_values = [float(value) for value in metric_values]
  114. prometheus_metrics[metric] = metric_values
  115. timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
  116. plt.figure(figsize=(16, 10), dpi=80)
  117. plt.plot(timestamps_dt, metric_values, label=metric)
  118. plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
  119. plt.yticks(fontsize=12, alpha=.7)
  120. ylabel = f"llamacpp:{metric}"
  121. plt.title(title,
  122. fontsize=14, wrap=True)
  123. plt.grid(axis='both', alpha=.3)
  124. plt.ylabel(ylabel, fontsize=22)
  125. plt.xlabel(xlabel, fontsize=14, wrap=True)
  126. plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
  127. plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
  128. plt.gcf().autofmt_xdate()
  129. # Remove borders
  130. plt.gca().spines["top"].set_alpha(0.0)
  131. plt.gca().spines["bottom"].set_alpha(0.3)
  132. plt.gca().spines["right"].set_alpha(0.0)
  133. plt.gca().spines["left"].set_alpha(0.3)
  134. # Save the plot as a jpg image
  135. plt.savefig(f'{metric}.jpg', dpi=60)
  136. plt.close()
  137. # Mermaid format in case images upload failed
  138. with (open(f"{metric}.mermaid", 'w') as mermaid_f):
  139. mermaid = (
  140. f"""---
  141. config:
  142. xyChart:
  143. titleFontSize: 12
  144. width: 900
  145. height: 600
  146. themeVariables:
  147. xyChart:
  148. titleColor: "#000000"
  149. ---
  150. xychart-beta
  151. title "{title}"
  152. y-axis "llamacpp:{metric}"
  153. x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
  154. line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
  155. """)
  156. mermaid_f.write(mermaid)
  157. # 140 chars max for commit status description
  158. bench_results = {
  159. "i": iterations,
  160. "req": {
  161. "p95": round(data['metrics']["http_req_duration"]["p(95)"], 2),
  162. "avg": round(data['metrics']["http_req_duration"]["avg"], 2),
  163. },
  164. "pp": {
  165. "p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
  166. "avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
  167. "0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
  168. },
  169. "tg": {
  170. "p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
  171. "avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
  172. "0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
  173. },
  174. }
  175. with open("results.github.env", 'a') as github_env:
  176. github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
  177. github_env.write(f"BENCH_ITERATIONS={iterations}\n")
  178. title = title.replace('\n', ' ')
  179. xlabel = xlabel.replace('\n', ' ')
  180. github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
  181. github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
  182. def start_benchmark(args):
  183. k6_path = './k6'
  184. if 'BENCH_K6_BIN_PATH' in os.environ:
  185. k6_path = os.environ['BENCH_K6_BIN_PATH']
  186. k6_args = [
  187. 'run', args.scenario,
  188. '--no-color',
  189. ]
  190. k6_args.extend(['--duration', args.duration])
  191. k6_args.extend(['--iterations', args.n_prompts])
  192. k6_args.extend(['--vus', args.parallel])
  193. k6_args.extend(['--summary-export', 'k6-results.json'])
  194. args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
  195. args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
  196. print(f"bench: starting k6 with: {args}")
  197. k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
  198. if k6_completed.returncode != 0:
  199. raise Exception("bench: unable to run k6")
  200. def start_server(args):
  201. server_process = start_server_background(args)
  202. attempts = 0
  203. max_attempts = 20
  204. if 'GITHUB_ACTIONS' in os.environ:
  205. max_attempts *= 2
  206. while not is_server_listening(args.host, args.port):
  207. attempts += 1
  208. if attempts > max_attempts:
  209. assert False, "server not started"
  210. print(f"bench: waiting for server to start ...")
  211. time.sleep(0.5)
  212. print("bench: server started.")
  213. return server_process
  214. def start_server_background(args):
  215. # Start the server
  216. server_path = '../../../build/bin/server'
  217. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  218. server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  219. server_args = [
  220. '--host', args.host,
  221. '--port', args.port,
  222. ]
  223. model_file = args.model_path_prefix + os.path.sep + args.hf_file
  224. model_dir = os.path.dirname(model_file)
  225. if not os.path.exists(model_dir):
  226. os.makedirs(model_dir)
  227. server_args.extend(['--model', model_file])
  228. server_args.extend(['--hf-repo', args.hf_repo])
  229. server_args.extend(['--hf-file', args.hf_file])
  230. server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
  231. server_args.extend(['--ctx-size', args.ctx_size])
  232. server_args.extend(['--parallel', args.parallel])
  233. server_args.extend(['--batch-size', args.batch_size])
  234. server_args.extend(['--ubatch-size', args.ubatch_size])
  235. server_args.extend(['--n-predict', args.max_tokens * 2])
  236. server_args.extend(['--defrag-thold', "0.1"])
  237. server_args.append('--cont-batching')
  238. server_args.append('--metrics')
  239. server_args.extend(['--log-format', "text"])
  240. args = [str(arg) for arg in [server_path, *server_args]]
  241. print(f"bench: starting server with: {' '.join(args)}")
  242. pkwargs = {
  243. 'stdout': subprocess.PIPE,
  244. 'stderr': subprocess.PIPE
  245. }
  246. server_process = subprocess.Popen(
  247. args,
  248. **pkwargs)
  249. def server_log(in_stream, out_stream):
  250. for line in iter(in_stream.readline, b''):
  251. print(line.decode('utf-8'), end='', file=out_stream)
  252. thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
  253. thread_stdout.start()
  254. thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
  255. thread_stderr.start()
  256. return server_process
  257. def is_server_listening(server_fqdn, server_port):
  258. with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
  259. result = sock.connect_ex((server_fqdn, server_port))
  260. _is_server_listening = result == 0
  261. if _is_server_listening:
  262. print(f"server is listening on {server_fqdn}:{server_port}...")
  263. return _is_server_listening
  264. def escape_metric_name(metric_name):
  265. return re.sub('[^A-Z0-9]', '_', metric_name.upper())
  266. if __name__ == '__main__':
  267. main()