1
0

perplexity.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "build-info.h"
  4. #include <cmath>
  5. #include <ctime>
  6. #include <sstream>
  7. #include <cstring>
  8. #include <thread>
  9. #include <mutex>
  10. #if defined(_MSC_VER)
  11. #pragma warning(disable: 4244 4267) // possible loss of data
  12. #endif
  13. std::vector<float> softmax(const std::vector<float>& logits) {
  14. std::vector<float> probs(logits.size());
  15. float max_logit = logits[0];
  16. for (float v : logits) max_logit = std::max(max_logit, v);
  17. double sum_exp = 0.0;
  18. for (size_t i = 0; i < logits.size(); i++) {
  19. // Subtract the maximum logit value from the current logit value for numerical stability
  20. const float logit = logits[i] - max_logit;
  21. const float exp_logit = expf(logit);
  22. sum_exp += exp_logit;
  23. probs[i] = exp_logit;
  24. }
  25. for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
  26. return probs;
  27. }
  28. float log_softmax(int n_vocab, const float * logits, int tok) {
  29. float max_logit = logits[0];
  30. for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
  31. double sum_exp = 0.0;
  32. for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
  33. return logits[tok] - max_logit - log(sum_exp);
  34. }
  35. void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread>& workers,
  36. double& nll, double& nll2) {
  37. std::mutex mutex;
  38. int counter = 0;
  39. auto compute = [&mutex, &counter, &nll, &nll2, n_vocab, logits, tokens, n_token] () {
  40. double local_nll = 0, local_nll2 = 0;
  41. while (true) {
  42. std::unique_lock<std::mutex> lock(mutex);
  43. int i = counter++;
  44. if (i >= n_token) {
  45. nll += local_nll; nll2 += local_nll2;
  46. break;
  47. }
  48. lock.unlock();
  49. double v = -log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  50. local_nll += v;
  51. local_nll2 += v*v;
  52. }
  53. };
  54. for (auto& w : workers) w = std::thread(compute);
  55. compute();
  56. for (auto& w : workers) w.join();
  57. }
  58. void perplexity_v2(llama_context * ctx, const gpt_params & params) {
  59. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  60. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  61. // Output: `perplexity: 13.5106 [114/114]`
  62. // BOS tokens will be added for each chunk before eval
  63. if (params.ppl_stride <= 0) {
  64. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  65. return;
  66. }
  67. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  68. const bool add_bos = is_spm;
  69. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  70. auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  71. const int calc_chunk = params.n_ctx;
  72. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  73. if (int(tokens.size()) <= calc_chunk) {
  74. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  75. tokens.size(), params.n_ctx, params.ppl_stride);
  76. return;
  77. }
  78. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  79. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  80. const int n_vocab = llama_n_vocab(ctx);
  81. const int n_batch = params.n_batch;
  82. int count = 0;
  83. double nll = 0.0;
  84. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  85. for (int i = 0; i < n_chunk; ++i) {
  86. const int start = i * params.ppl_stride;
  87. const int end = start + calc_chunk;
  88. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  89. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  90. std::vector<float> logits;
  91. const auto t_start = std::chrono::high_resolution_clock::now();
  92. for (int j = 0; j < num_batches; ++j) {
  93. const int batch_start = start + j * n_batch;
  94. const int batch_size = std::min(end - batch_start, n_batch);
  95. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  96. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  97. //fprintf(stderr, "%s : failed to eval\n", __func__);
  98. return;
  99. }
  100. // save original token and restore it after eval
  101. const auto token_org = tokens[batch_start];
  102. // add BOS token for the first batch of each chunk
  103. if (add_bos && j == 0) {
  104. tokens[batch_start] = llama_token_bos(ctx);
  105. }
  106. const auto batch_logits = llama_get_logits(ctx);
  107. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  108. if (j == 0) {
  109. tokens[batch_start] = token_org;
  110. }
  111. }
  112. const auto t_end = std::chrono::high_resolution_clock::now();
  113. if (i == 0) {
  114. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  115. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  116. int total_seconds = (int)(t_total * n_chunk);
  117. if (total_seconds >= 60*60) {
  118. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  119. total_seconds = total_seconds % (60*60);
  120. }
  121. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  122. }
  123. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  124. for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
  125. // Calculate probability of next token, given the previous ones.
  126. const std::vector<float> tok_logits(
  127. logits.begin() + (j + 0) * n_vocab,
  128. logits.begin() + (j + 1) * n_vocab);
  129. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  130. nll += -std::log(prob);
  131. ++count;
  132. }
  133. // perplexity is e^(average negative log-likelihood)
  134. if (params.ppl_output_type == 0) {
  135. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  136. } else {
  137. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  138. }
  139. fflush(stdout);
  140. }
  141. printf("\n");
  142. }
  143. void perplexity(llama_context * ctx, const gpt_params & params) {
  144. if (params.ppl_stride > 0) {
  145. perplexity_v2(ctx, params);
  146. return;
  147. }
  148. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  149. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  150. // Output: `perplexity: 13.5106 [114/114]`
  151. // BOS tokens will be added for each chunk before eval
  152. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  153. const bool add_bos = is_spm;
  154. auto tim1 = std::chrono::high_resolution_clock::now();
  155. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  156. auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  157. auto tim2 = std::chrono::high_resolution_clock::now();
  158. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  159. const int n_chunk_max = tokens.size() / params.n_ctx;
  160. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  161. const int n_vocab = llama_n_vocab(ctx);
  162. const int n_batch = params.n_batch;
  163. int count = 0;
  164. double nll = 0.0;
  165. double nll2 = 0.0;
  166. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  167. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  168. for (int i = 0; i < n_chunk; ++i) {
  169. const int start = i * params.n_ctx;
  170. const int end = start + params.n_ctx;
  171. const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
  172. std::vector<float> logits;
  173. const auto t_start = std::chrono::high_resolution_clock::now();
  174. for (int j = 0; j < num_batches; ++j) {
  175. const int batch_start = start + j * n_batch;
  176. const int batch_size = std::min(end - batch_start, n_batch);
  177. // save original token and restore it after eval
  178. const auto token_org = tokens[batch_start];
  179. // add BOS token for the first batch of each chunk
  180. if (add_bos && j == 0) {
  181. tokens[batch_start] = llama_token_bos(ctx);
  182. }
  183. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  184. fprintf(stderr, "%s : failed to eval\n", __func__);
  185. return;
  186. }
  187. // restore the original token in case it was set to BOS
  188. tokens[batch_start] = token_org;
  189. const auto batch_logits = llama_get_logits(ctx);
  190. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  191. }
  192. const auto t_end = std::chrono::high_resolution_clock::now();
  193. if (i == 0) {
  194. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  195. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  196. int total_seconds = (int)(t_total * n_chunk);
  197. if (total_seconds >= 60*60) {
  198. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  199. total_seconds = total_seconds % (60*60);
  200. }
  201. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  202. }
  203. // We get the logits for all the tokens in the context window (params.n_ctx)
  204. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  205. // calculate the perplexity over the last half of the window (so the model always has
  206. // some context to predict the token).
  207. //
  208. // We rely on the fact that attention in the forward pass only looks at previous
  209. // tokens here, so the logits returned for each token are an accurate representation
  210. // of what the model would have predicted at that point.
  211. //
  212. // Example, we have a context window of 512, we will compute perplexity for each of the
  213. // last 256 tokens. Then, we split the input up into context window size chunks to
  214. // process the entire prompt.
  215. const int first = std::min(512, params.n_ctx/2);
  216. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2);
  217. count += params.n_ctx - first - 1;
  218. // perplexity is e^(average negative log-likelihood)
  219. if (params.ppl_output_type == 0) {
  220. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  221. } else {
  222. double av = nll/count;
  223. double av2 = nll2/count - av*av;
  224. if (av2 > 0) av2 = sqrt(av2/(count-1));
  225. printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
  226. }
  227. fflush(stdout);
  228. }
  229. printf("\n");
  230. nll2 /= count;
  231. nll /= count;
  232. nll2 -= nll * nll;
  233. if (nll2 > 0) {
  234. nll2 = sqrt(nll2/(count-1));
  235. double ppl = exp(nll);
  236. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  237. } else {
  238. printf("Unexpected negative standard deviation of log(prob)\n");
  239. }
  240. }
  241. std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
  242. int n_vocab, int n_thread) {
  243. std::vector<float> result;
  244. result.reserve(tokens.size() * n_vocab);
  245. size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
  246. for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
  247. size_t n_tokens = tokens.size() - i_chunk * n_batch;
  248. n_tokens = std::min(n_tokens, size_t(n_batch));
  249. if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
  250. fprintf(stderr, "%s : failed to eval\n", __func__);
  251. return {};
  252. }
  253. const auto logits = llama_get_logits(ctx);
  254. result.insert(result.end(), logits, logits + n_tokens * n_vocab);
  255. n_past += n_tokens;
  256. }
  257. return result;
  258. }
  259. void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  260. // Calculates hellaswag score (acc_norm) from prompt
  261. //
  262. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  263. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  264. //
  265. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  266. //
  267. // Datafile layout:
  268. // ['??'] denotes json fields
  269. // 6 lines per task:
  270. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  271. // ['label'] - The index the best common sense ending aka gold ending
  272. // ['endings'][0] - Endings added to the first part of the query
  273. // ['endings'][1]
  274. // ['endings'][2]
  275. // ['endings'][3]
  276. std::vector<std::string> prompt_lines;
  277. std::istringstream strstream(params.prompt);
  278. std::string line;
  279. while (std::getline(strstream,line,'\n')) {
  280. prompt_lines.push_back(line);
  281. }
  282. if( prompt_lines.size() % 6 != 0) {
  283. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  284. return;
  285. }
  286. size_t hs_task_count = prompt_lines.size()/6;
  287. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  288. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  289. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  290. // This is needed as usual for LLaMA models
  291. const bool add_bos = is_spm;
  292. // Number of tasks to use when computing the score
  293. if ( params.hellaswag_tasks < hs_task_count ) {
  294. hs_task_count = params.hellaswag_tasks;
  295. }
  296. // The tasks should be randomized so the score stabilizes quickly.
  297. bool randomize_tasks = true;
  298. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  299. std::mt19937 rng(1);
  300. // Dataholder for hellaswag tasks
  301. struct hs_data_t {
  302. std::string context;
  303. size_t gold_ending_idx;
  304. std::string ending[4];
  305. size_t ending_logprob_count[4];
  306. double ending_logprob[4];
  307. };
  308. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  309. // Select and read data from prompt lines
  310. hs_data_t *hs_data = new hs_data_t[hs_task_count];
  311. for (size_t i=0; i < hs_task_count; i++) {
  312. size_t idx = i;
  313. // Select a random example of those left in the prompt
  314. if (randomize_tasks) {
  315. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  316. idx = dist(rng);
  317. }
  318. hs_data[i].context = prompt_lines[idx*6];
  319. hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  320. for (size_t j=0; j < 4; j++) {
  321. hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
  322. }
  323. // Delete the selected random example from the prompt
  324. if (randomize_tasks) {
  325. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  326. }
  327. }
  328. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  329. printf("\ntask\tacc_norm\n");
  330. double acc = 0.0f;
  331. const int n_vocab = llama_n_vocab(ctx);
  332. std::vector<std::vector<int>> ending_tokens(4);
  333. std::vector<float> tok_logits(n_vocab);
  334. for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
  335. // Tokenize the context to count tokens
  336. std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
  337. size_t context_size = context_embd.size();
  338. for (int i = 0; i < 4; ++i) {
  339. ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
  340. for (int k = 0; k < int(context_size); ++k) {
  341. if (ending_tokens[i][k] != context_embd[k]) {
  342. fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
  343. break;
  344. }
  345. }
  346. }
  347. // Do the 1st ending
  348. // In this case we include the context when evaluating
  349. //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
  350. auto query_embd = ending_tokens[0];
  351. auto query_size = query_embd.size();
  352. // Stop if query wont fit the ctx window
  353. if (query_size > (size_t)params.n_ctx) {
  354. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  355. return;
  356. }
  357. // Speedup small evaluations by evaluating atleast 32 tokens
  358. if (query_size < 32) {
  359. query_embd.resize(32);
  360. }
  361. auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
  362. if (logits.empty()) {
  363. fprintf(stderr, "%s : failed to eval\n", __func__);
  364. return;
  365. }
  366. std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
  367. const auto first_probs = softmax(tok_logits);
  368. hs_data[task_idx].ending_logprob_count[0] = 1;
  369. hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
  370. // Calculate the logprobs over the ending
  371. for (size_t j = context_size; j < query_size - 1; j++) {
  372. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  373. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  374. hs_data[task_idx].ending_logprob[0] += std::log(prob);
  375. hs_data[task_idx].ending_logprob_count[0]++;
  376. }
  377. // Calculate the mean token logprob for acc_norm
  378. hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
  379. // Do the remaining endings
  380. // For these, we use the bare ending with n_past = context_size
  381. //
  382. for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
  383. // Tokenize the query
  384. query_embd.resize(ending_tokens[ending_idx].size() - context_size);
  385. std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
  386. query_size = query_embd.size();
  387. // Stop if query wont fit the ctx window
  388. if (context_size + query_size > (size_t)params.n_ctx) {
  389. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  390. return;
  391. }
  392. // Speedup small evaluations by evaluating atleast 32 tokens
  393. // No, resizing to 32 is actually slightly slower (at least on CUDA)
  394. //if (query_size < 32) {
  395. // query_embd.resize(32);
  396. //}
  397. // Evaluate the query
  398. logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
  399. if (logits.empty()) {
  400. fprintf(stderr, "%s : failed to eval\n", __func__);
  401. return;
  402. }
  403. hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
  404. hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
  405. // Calculate the logprobs over the ending
  406. for (size_t j = 0; j < query_size - 1; j++) {
  407. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  408. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  409. hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
  410. hs_data[task_idx].ending_logprob_count[ending_idx]++;
  411. }
  412. // Calculate the mean token logprob for acc_norm
  413. hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
  414. // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
  415. // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
  416. }
  417. // Find the ending with maximum logprob
  418. size_t ending_logprob_max_idx = 0;
  419. double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
  420. for (size_t j = 1; j < 4; j++) {
  421. if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
  422. ending_logprob_max_idx = j;
  423. ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
  424. }
  425. }
  426. // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
  427. // If the gold ending got the maximum logprobe add one accuracy point
  428. if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
  429. acc += 1.0;
  430. }
  431. // Print the accumulated accuracy mean x 100
  432. printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
  433. fflush(stdout);
  434. }
  435. delete [] hs_data;
  436. printf("\n");
  437. }
  438. int main(int argc, char ** argv) {
  439. gpt_params params;
  440. params.n_batch = 512;
  441. if (gpt_params_parse(argc, argv, params) == false) {
  442. return 1;
  443. }
  444. params.perplexity = true;
  445. params.n_batch = std::min(params.n_batch, params.n_ctx);
  446. if (params.ppl_stride > 0) {
  447. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  448. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  449. params.n_ctx += params.ppl_stride/2;
  450. }
  451. if (params.n_ctx > 2048) {
  452. fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
  453. "expect poor results\n", __func__, params.n_ctx);
  454. }
  455. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  456. if (params.seed == LLAMA_DEFAULT_SEED) {
  457. params.seed = time(NULL);
  458. }
  459. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  460. std::mt19937 rng(params.seed);
  461. if (params.random_prompt) {
  462. params.prompt = gpt_random_prompt(rng);
  463. }
  464. llama_backend_init(params.numa);
  465. llama_model * model;
  466. llama_context * ctx;
  467. // load the model and apply lora adapter, if any
  468. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  469. if (model == NULL) {
  470. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  471. return 1;
  472. }
  473. // print system information
  474. {
  475. fprintf(stderr, "\n");
  476. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  477. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  478. }
  479. if (params.hellaswag) {
  480. hellaswag_score(ctx, params);
  481. } else {
  482. perplexity(ctx, params);
  483. }
  484. llama_print_timings(ctx);
  485. llama_free(ctx);
  486. llama_free_model(model);
  487. llama_backend_free();
  488. return 0;
  489. }