ggml.c 664 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #if defined(_MSC_VER) || defined(__MINGW32__)
  154. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  155. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  156. #else
  157. inline static void * ggml_aligned_malloc(size_t size) {
  158. void * aligned_memory = NULL;
  159. #ifdef GGML_USE_METAL
  160. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  161. #else
  162. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  163. #endif
  164. if (result != 0) {
  165. // Handle allocation failure
  166. const char *error_desc = "unknown allocation error";
  167. switch (result) {
  168. case EINVAL:
  169. error_desc = "invalid alignment value";
  170. break;
  171. case ENOMEM:
  172. error_desc = "insufficient memory";
  173. break;
  174. }
  175. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  176. return NULL;
  177. }
  178. return aligned_memory;
  179. }
  180. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  181. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  182. #endif
  183. #define UNUSED GGML_UNUSED
  184. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  185. //
  186. // tensor access macros
  187. //
  188. #define GGML_TENSOR_UNARY_OP_LOCALS \
  189. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  190. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  191. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  193. #define GGML_TENSOR_BINARY_OP_LOCALS \
  194. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  196. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  200. #if defined(GGML_USE_ACCELERATE)
  201. #include <Accelerate/Accelerate.h>
  202. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  203. #include "ggml-opencl.h"
  204. #endif
  205. #elif defined(GGML_USE_OPENBLAS)
  206. #if defined(GGML_BLAS_USE_MKL)
  207. #include <mkl.h>
  208. #else
  209. #include <cblas.h>
  210. #endif
  211. #elif defined(GGML_USE_CUBLAS)
  212. #include "ggml-cuda.h"
  213. #elif defined(GGML_USE_CLBLAST)
  214. #include "ggml-opencl.h"
  215. #endif
  216. #undef MIN
  217. #undef MAX
  218. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  219. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  220. // floating point type used to accumulate sums
  221. typedef double ggml_float;
  222. // 16-bit float
  223. // on Arm, we use __fp16
  224. // on x86, we use uint16_t
  225. #ifdef __ARM_NEON
  226. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  227. //
  228. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  229. //
  230. #include <arm_neon.h>
  231. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  232. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  233. #define GGML_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_FP32_TO_FP16(x) (x)
  235. #else
  236. #ifdef __wasm_simd128__
  237. #include <wasm_simd128.h>
  238. #else
  239. #ifdef __POWER9_VECTOR__
  240. #include <altivec.h>
  241. #undef bool
  242. #define bool _Bool
  243. #else
  244. #if defined(_MSC_VER) || defined(__MINGW32__)
  245. #include <intrin.h>
  246. #else
  247. #if !defined(__riscv)
  248. #include <immintrin.h>
  249. #endif
  250. #endif
  251. #endif
  252. #endif
  253. #ifdef __F16C__
  254. #ifdef _MSC_VER
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  257. #else
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  260. #endif
  261. #elif defined(__POWER9_VECTOR__)
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  264. /* the inline asm below is about 12% faster than the lookup method */
  265. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  266. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  267. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  268. register float f;
  269. register double d;
  270. __asm__(
  271. "mtfprd %0,%2\n"
  272. "xscvhpdp %0,%0\n"
  273. "frsp %1,%0\n" :
  274. /* temp */ "=d"(d),
  275. /* out */ "=f"(f):
  276. /* in */ "r"(h));
  277. return f;
  278. }
  279. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  280. register double d;
  281. register ggml_fp16_t r;
  282. __asm__( /* xscvdphp can work on double or single precision */
  283. "xscvdphp %0,%2\n"
  284. "mffprd %1,%0\n" :
  285. /* temp */ "=d"(d),
  286. /* out */ "=r"(r):
  287. /* in */ "f"(f));
  288. return r;
  289. }
  290. #else
  291. // FP16 <-> FP32
  292. // ref: https://github.com/Maratyszcza/FP16
  293. static inline float fp32_from_bits(uint32_t w) {
  294. union {
  295. uint32_t as_bits;
  296. float as_value;
  297. } fp32;
  298. fp32.as_bits = w;
  299. return fp32.as_value;
  300. }
  301. static inline uint32_t fp32_to_bits(float f) {
  302. union {
  303. float as_value;
  304. uint32_t as_bits;
  305. } fp32;
  306. fp32.as_value = f;
  307. return fp32.as_bits;
  308. }
  309. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  310. const uint32_t w = (uint32_t) h << 16;
  311. const uint32_t sign = w & UINT32_C(0x80000000);
  312. const uint32_t two_w = w + w;
  313. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  314. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  315. const float exp_scale = 0x1.0p-112f;
  316. #else
  317. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  318. #endif
  319. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  320. const uint32_t magic_mask = UINT32_C(126) << 23;
  321. const float magic_bias = 0.5f;
  322. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  323. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  324. const uint32_t result = sign |
  325. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  326. return fp32_from_bits(result);
  327. }
  328. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  329. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  330. const float scale_to_inf = 0x1.0p+112f;
  331. const float scale_to_zero = 0x1.0p-110f;
  332. #else
  333. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  334. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  335. #endif
  336. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  337. const uint32_t w = fp32_to_bits(f);
  338. const uint32_t shl1_w = w + w;
  339. const uint32_t sign = w & UINT32_C(0x80000000);
  340. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  341. if (bias < UINT32_C(0x71000000)) {
  342. bias = UINT32_C(0x71000000);
  343. }
  344. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  345. const uint32_t bits = fp32_to_bits(base);
  346. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  347. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  348. const uint32_t nonsign = exp_bits + mantissa_bits;
  349. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  350. }
  351. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  352. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  353. #endif // __F16C__
  354. #endif // __ARM_NEON
  355. //
  356. // global data
  357. //
  358. // precomputed gelu table for f16 (128 KB)
  359. static ggml_fp16_t table_gelu_f16[1 << 16];
  360. // precomputed quick gelu table for f16 (128 KB)
  361. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  362. // precomputed silu table for f16 (128 KB)
  363. static ggml_fp16_t table_silu_f16[1 << 16];
  364. // precomputed exp table for f16 (128 KB)
  365. static ggml_fp16_t table_exp_f16[1 << 16];
  366. // precomputed f32 table for f16 (256 KB)
  367. static float table_f32_f16[1 << 16];
  368. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  369. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  370. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  371. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  372. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  373. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  374. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  375. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  376. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  377. // precomputed tables for expanding 8bits to 8 bytes:
  378. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  379. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  380. #endif
  381. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  382. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  383. // This is also true for POWER9.
  384. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  385. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  386. uint16_t s;
  387. memcpy(&s, &f, sizeof(uint16_t));
  388. return table_f32_f16[s];
  389. }
  390. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  391. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  392. #endif
  393. // note: do not use these inside ggml.c
  394. // these are meant to be used via the ggml.h API
  395. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  396. return (float) GGML_FP16_TO_FP32(x);
  397. }
  398. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  399. return GGML_FP32_TO_FP16(x);
  400. }
  401. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  402. for (int i = 0; i < n; i++) {
  403. y[i] = GGML_FP16_TO_FP32(x[i]);
  404. }
  405. }
  406. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  407. int i = 0;
  408. #if defined(__F16C__)
  409. for (; i + 7 < n; i += 8) {
  410. __m256 x_vec = _mm256_loadu_ps(x + i);
  411. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  412. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  413. }
  414. for(; i + 3 < n; i += 4) {
  415. __m128 x_vec = _mm_loadu_ps(x + i);
  416. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  418. }
  419. #endif
  420. for (; i < n; i++) {
  421. y[i] = GGML_FP32_TO_FP16(x[i]);
  422. }
  423. }
  424. //
  425. // timing
  426. //
  427. #if defined(_MSC_VER) || defined(__MINGW32__)
  428. static int64_t timer_freq, timer_start;
  429. void ggml_time_init(void) {
  430. LARGE_INTEGER t;
  431. QueryPerformanceFrequency(&t);
  432. timer_freq = t.QuadPart;
  433. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  434. // and the uptime is high enough.
  435. // We subtract the program start time to reduce the likelihood of that happening.
  436. QueryPerformanceCounter(&t);
  437. timer_start = t.QuadPart;
  438. }
  439. int64_t ggml_time_ms(void) {
  440. LARGE_INTEGER t;
  441. QueryPerformanceCounter(&t);
  442. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  443. }
  444. int64_t ggml_time_us(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  448. }
  449. #else
  450. void ggml_time_init(void) {}
  451. int64_t ggml_time_ms(void) {
  452. struct timespec ts;
  453. clock_gettime(CLOCK_MONOTONIC, &ts);
  454. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  455. }
  456. int64_t ggml_time_us(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  460. }
  461. #endif
  462. int64_t ggml_cycles(void) {
  463. return clock();
  464. }
  465. int64_t ggml_cycles_per_ms(void) {
  466. return CLOCKS_PER_SEC/1000;
  467. }
  468. #ifdef GGML_PERF
  469. #define ggml_perf_time_ms() ggml_time_ms()
  470. #define ggml_perf_time_us() ggml_time_us()
  471. #define ggml_perf_cycles() ggml_cycles()
  472. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  473. #else
  474. #define ggml_perf_time_ms() 0
  475. #define ggml_perf_time_us() 0
  476. #define ggml_perf_cycles() 0
  477. #define ggml_perf_cycles_per_ms() 0
  478. #endif
  479. //
  480. // cache line
  481. //
  482. #if defined(__cpp_lib_hardware_interference_size)
  483. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  484. #else
  485. #if defined(__POWER9_VECTOR__)
  486. #define CACHE_LINE_SIZE 128
  487. #else
  488. #define CACHE_LINE_SIZE 64
  489. #endif
  490. #endif
  491. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  492. //
  493. // quantization
  494. //
  495. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  496. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  497. // multiply int8_t, add results pairwise twice
  498. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  499. // Get absolute values of x vectors
  500. const __m128i ax = _mm_sign_epi8(x, x);
  501. // Sign the values of the y vectors
  502. const __m128i sy = _mm_sign_epi8(y, x);
  503. // Perform multiplication and create 16-bit values
  504. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  505. const __m128i ones = _mm_set1_epi16(1);
  506. return _mm_madd_epi16(ones, dot);
  507. }
  508. #if __AVX__ || __AVX2__ || __AVX512F__
  509. // horizontally add 8 floats
  510. static inline float hsum_float_8(const __m256 x) {
  511. __m128 res = _mm256_extractf128_ps(x, 1);
  512. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  513. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  514. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  515. return _mm_cvtss_f32(res);
  516. }
  517. // horizontally add 8 int32_t
  518. static inline int hsum_i32_8(const __m256i a) {
  519. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  520. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  521. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  522. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  523. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  524. }
  525. // horizontally add 4 int32_t
  526. static inline int hsum_i32_4(const __m128i a) {
  527. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  528. const __m128i sum64 = _mm_add_epi32(hi64, a);
  529. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  530. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  531. }
  532. #if defined(__AVX2__) || defined(__AVX512F__)
  533. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  534. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  535. uint32_t x32;
  536. memcpy(&x32, x, sizeof(uint32_t));
  537. const __m256i shuf_mask = _mm256_set_epi64x(
  538. 0x0303030303030303, 0x0202020202020202,
  539. 0x0101010101010101, 0x0000000000000000);
  540. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  541. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  542. bytes = _mm256_or_si256(bytes, bit_mask);
  543. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  544. }
  545. // Unpack 32 4-bit fields into 32 bytes
  546. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  547. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  548. {
  549. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  550. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  551. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  552. return _mm256_and_si256(lowMask, bytes);
  553. }
  554. // add int16_t pairwise and return as float vector
  555. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  556. const __m256i ones = _mm256_set1_epi16(1);
  557. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  558. return _mm256_cvtepi32_ps(summed_pairs);
  559. }
  560. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  561. #if __AVXVNNI__
  562. const __m256i zero = _mm256_setzero_si256();
  563. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. #else
  566. // Perform multiplication and create 16-bit values
  567. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  568. return sum_i16_pairs_float(dot);
  569. #endif
  570. }
  571. // multiply int8_t, add results pairwise twice and return as float vector
  572. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  573. #if __AVXVNNIINT8__
  574. const __m256i zero = _mm256_setzero_si256();
  575. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  576. return _mm256_cvtepi32_ps(summed_pairs);
  577. #else
  578. // Get absolute values of x vectors
  579. const __m256i ax = _mm256_sign_epi8(x, x);
  580. // Sign the values of the y vectors
  581. const __m256i sy = _mm256_sign_epi8(y, x);
  582. return mul_sum_us8_pairs_float(ax, sy);
  583. #endif
  584. }
  585. static inline __m128i packNibbles( __m256i bytes )
  586. {
  587. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  588. #if __AVX512F__
  589. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  590. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  591. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  592. #else
  593. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  594. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  595. __m256i low = _mm256_and_si256( lowByte, bytes );
  596. high = _mm256_srli_epi16( high, 4 );
  597. bytes = _mm256_or_si256( low, high );
  598. // Compress uint16_t lanes into bytes
  599. __m128i r0 = _mm256_castsi256_si128( bytes );
  600. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  601. return _mm_packus_epi16( r0, r1 );
  602. #endif
  603. }
  604. #elif defined(__AVX__)
  605. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  606. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  607. uint32_t x32;
  608. memcpy(&x32, x, sizeof(uint32_t));
  609. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  610. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  611. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  612. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  613. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  614. bytesl = _mm_or_si128(bytesl, bit_mask);
  615. bytesh = _mm_or_si128(bytesh, bit_mask);
  616. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  617. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  618. return MM256_SET_M128I(bytesh, bytesl);
  619. }
  620. // Unpack 32 4-bit fields into 32 bytes
  621. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  622. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  623. {
  624. // Load 16 bytes from memory
  625. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  626. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  627. const __m128i lowMask = _mm_set1_epi8(0xF);
  628. tmpl = _mm_and_si128(lowMask, tmpl);
  629. tmph = _mm_and_si128(lowMask, tmph);
  630. return MM256_SET_M128I(tmph, tmpl);
  631. }
  632. // add int16_t pairwise and return as float vector
  633. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  634. const __m128i ones = _mm_set1_epi16(1);
  635. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  636. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  637. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  638. return _mm256_cvtepi32_ps(summed_pairs);
  639. }
  640. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  641. const __m128i axl = _mm256_castsi256_si128(ax);
  642. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  643. const __m128i syl = _mm256_castsi256_si128(sy);
  644. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  645. // Perform multiplication and create 16-bit values
  646. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  647. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  648. return sum_i16_pairs_float(doth, dotl);
  649. }
  650. // multiply int8_t, add results pairwise twice and return as float vector
  651. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  652. const __m128i xl = _mm256_castsi256_si128(x);
  653. const __m128i xh = _mm256_extractf128_si256(x, 1);
  654. const __m128i yl = _mm256_castsi256_si128(y);
  655. const __m128i yh = _mm256_extractf128_si256(y, 1);
  656. // Get absolute values of x vectors
  657. const __m128i axl = _mm_sign_epi8(xl, xl);
  658. const __m128i axh = _mm_sign_epi8(xh, xh);
  659. // Sign the values of the y vectors
  660. const __m128i syl = _mm_sign_epi8(yl, xl);
  661. const __m128i syh = _mm_sign_epi8(yh, xh);
  662. // Perform multiplication and create 16-bit values
  663. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  664. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  665. return sum_i16_pairs_float(doth, dotl);
  666. }
  667. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  668. {
  669. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  670. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  671. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  672. __m128i low = _mm_and_si128( lowByte, bytes1 );
  673. high = _mm_srli_epi16( high, 4 );
  674. bytes1 = _mm_or_si128( low, high );
  675. high = _mm_andnot_si128( lowByte, bytes2 );
  676. low = _mm_and_si128( lowByte, bytes2 );
  677. high = _mm_srli_epi16( high, 4 );
  678. bytes2 = _mm_or_si128( low, high );
  679. return _mm_packus_epi16( bytes1, bytes2);
  680. }
  681. #endif
  682. #elif defined(__SSSE3__)
  683. // horizontally add 4x4 floats
  684. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  685. __m128 res_0 =_mm_hadd_ps(a, b);
  686. __m128 res_1 =_mm_hadd_ps(c, d);
  687. __m128 res =_mm_hadd_ps(res_0, res_1);
  688. res =_mm_hadd_ps(res, res);
  689. res =_mm_hadd_ps(res, res);
  690. return _mm_cvtss_f32(res);
  691. }
  692. #endif // __AVX__ || __AVX2__ || __AVX512F__
  693. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  694. #if defined(__ARM_NEON)
  695. #if !defined(__aarch64__)
  696. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  697. return
  698. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  699. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  700. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  701. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  702. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  703. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  704. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  705. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  706. }
  707. inline static int16_t vaddvq_s8(int8x16_t v) {
  708. return
  709. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  710. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  711. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  712. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  713. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  714. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  715. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  716. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  717. }
  718. inline static int32_t vaddvq_s16(int16x8_t v) {
  719. return
  720. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  721. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  722. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  723. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  724. }
  725. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  726. return
  727. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  728. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  729. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  730. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  731. }
  732. inline static int32_t vaddvq_s32(int32x4_t v) {
  733. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  734. }
  735. inline static float vaddvq_f32(float32x4_t v) {
  736. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  737. }
  738. inline static float vminvq_f32(float32x4_t v) {
  739. return
  740. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  741. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  742. }
  743. inline static float vmaxvq_f32(float32x4_t v) {
  744. return
  745. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  746. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  747. }
  748. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  749. int32x4_t res;
  750. res[0] = roundf(vgetq_lane_f32(v, 0));
  751. res[1] = roundf(vgetq_lane_f32(v, 1));
  752. res[2] = roundf(vgetq_lane_f32(v, 2));
  753. res[3] = roundf(vgetq_lane_f32(v, 3));
  754. return res;
  755. }
  756. #endif
  757. #endif
  758. #define QK4_0 32
  759. typedef struct {
  760. ggml_fp16_t d; // delta
  761. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  762. } block_q4_0;
  763. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  764. #define QK4_1 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. ggml_fp16_t m; // min
  768. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  769. } block_q4_1;
  770. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  771. #define QK5_0 32
  772. typedef struct {
  773. ggml_fp16_t d; // delta
  774. uint8_t qh[4]; // 5-th bit of quants
  775. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  776. } block_q5_0;
  777. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  778. #define QK5_1 32
  779. typedef struct {
  780. ggml_fp16_t d; // delta
  781. ggml_fp16_t m; // min
  782. uint8_t qh[4]; // 5-th bit of quants
  783. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  784. } block_q5_1;
  785. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  786. #define QK8_0 32
  787. typedef struct {
  788. ggml_fp16_t d; // delta
  789. int8_t qs[QK8_0]; // quants
  790. } block_q8_0;
  791. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  792. #define QK8_1 32
  793. typedef struct {
  794. float d; // delta
  795. float s; // d * sum(qs[i])
  796. int8_t qs[QK8_1]; // quants
  797. } block_q8_1;
  798. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  799. // reference implementation for deterministic creation of model files
  800. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  801. static const int qk = QK4_0;
  802. assert(k % qk == 0);
  803. const int nb = k / qk;
  804. for (int i = 0; i < nb; i++) {
  805. float amax = 0.0f; // absolute max
  806. float max = 0.0f;
  807. for (int j = 0; j < qk; j++) {
  808. const float v = x[i*qk + j];
  809. if (amax < fabsf(v)) {
  810. amax = fabsf(v);
  811. max = v;
  812. }
  813. }
  814. const float d = max / -8;
  815. const float id = d ? 1.0f/d : 0.0f;
  816. y[i].d = GGML_FP32_TO_FP16(d);
  817. for (int j = 0; j < qk/2; ++j) {
  818. const float x0 = x[i*qk + 0 + j]*id;
  819. const float x1 = x[i*qk + qk/2 + j]*id;
  820. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  821. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  822. y[i].qs[j] = xi0;
  823. y[i].qs[j] |= xi1 << 4;
  824. }
  825. }
  826. }
  827. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  828. quantize_row_q4_0_reference(x, y, k);
  829. }
  830. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  831. const int qk = QK4_1;
  832. assert(k % qk == 0);
  833. const int nb = k / qk;
  834. for (int i = 0; i < nb; i++) {
  835. float min = FLT_MAX;
  836. float max = -FLT_MAX;
  837. for (int j = 0; j < qk; j++) {
  838. const float v = x[i*qk + j];
  839. if (v < min) min = v;
  840. if (v > max) max = v;
  841. }
  842. const float d = (max - min) / ((1 << 4) - 1);
  843. const float id = d ? 1.0f/d : 0.0f;
  844. y[i].d = GGML_FP32_TO_FP16(d);
  845. y[i].m = GGML_FP32_TO_FP16(min);
  846. for (int j = 0; j < qk/2; ++j) {
  847. const float x0 = (x[i*qk + 0 + j] - min)*id;
  848. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  849. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  850. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  851. y[i].qs[j] = xi0;
  852. y[i].qs[j] |= xi1 << 4;
  853. }
  854. }
  855. }
  856. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  857. quantize_row_q4_1_reference(x, y, k);
  858. }
  859. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  860. static const int qk = QK5_0;
  861. assert(k % qk == 0);
  862. const int nb = k / qk;
  863. for (int i = 0; i < nb; i++) {
  864. float amax = 0.0f; // absolute max
  865. float max = 0.0f;
  866. for (int j = 0; j < qk; j++) {
  867. const float v = x[i*qk + j];
  868. if (amax < fabsf(v)) {
  869. amax = fabsf(v);
  870. max = v;
  871. }
  872. }
  873. const float d = max / -16;
  874. const float id = d ? 1.0f/d : 0.0f;
  875. y[i].d = GGML_FP32_TO_FP16(d);
  876. uint32_t qh = 0;
  877. for (int j = 0; j < qk/2; ++j) {
  878. const float x0 = x[i*qk + 0 + j]*id;
  879. const float x1 = x[i*qk + qk/2 + j]*id;
  880. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  881. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  882. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  883. // get the 5-th bit and store it in qh at the right position
  884. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  885. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  886. }
  887. memcpy(&y[i].qh, &qh, sizeof(qh));
  888. }
  889. }
  890. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  891. quantize_row_q5_0_reference(x, y, k);
  892. }
  893. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  894. const int qk = QK5_1;
  895. assert(k % qk == 0);
  896. const int nb = k / qk;
  897. for (int i = 0; i < nb; i++) {
  898. float min = FLT_MAX;
  899. float max = -FLT_MAX;
  900. for (int j = 0; j < qk; j++) {
  901. const float v = x[i*qk + j];
  902. if (v < min) min = v;
  903. if (v > max) max = v;
  904. }
  905. const float d = (max - min) / ((1 << 5) - 1);
  906. const float id = d ? 1.0f/d : 0.0f;
  907. y[i].d = GGML_FP32_TO_FP16(d);
  908. y[i].m = GGML_FP32_TO_FP16(min);
  909. uint32_t qh = 0;
  910. for (int j = 0; j < qk/2; ++j) {
  911. const float x0 = (x[i*qk + 0 + j] - min)*id;
  912. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  913. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  914. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  915. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  916. // get the 5-th bit and store it in qh at the right position
  917. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  918. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  919. }
  920. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  921. }
  922. }
  923. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  924. quantize_row_q5_1_reference(x, y, k);
  925. }
  926. // reference implementation for deterministic creation of model files
  927. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  928. assert(k % QK8_0 == 0);
  929. const int nb = k / QK8_0;
  930. for (int i = 0; i < nb; i++) {
  931. float amax = 0.0f; // absolute max
  932. for (int j = 0; j < QK8_0; j++) {
  933. const float v = x[i*QK8_0 + j];
  934. amax = MAX(amax, fabsf(v));
  935. }
  936. const float d = amax / ((1 << 7) - 1);
  937. const float id = d ? 1.0f/d : 0.0f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. for (int j = 0; j < QK8_0; ++j) {
  940. const float x0 = x[i*QK8_0 + j]*id;
  941. y[i].qs[j] = roundf(x0);
  942. }
  943. }
  944. }
  945. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  946. assert(QK8_0 == 32);
  947. assert(k % QK8_0 == 0);
  948. const int nb = k / QK8_0;
  949. block_q8_0 * restrict y = vy;
  950. #if defined(__ARM_NEON)
  951. for (int i = 0; i < nb; i++) {
  952. float32x4_t srcv [8];
  953. float32x4_t asrcv[8];
  954. float32x4_t amaxv[8];
  955. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  956. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  957. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  958. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  959. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  960. const float amax = vmaxvq_f32(amaxv[0]);
  961. const float d = amax / ((1 << 7) - 1);
  962. const float id = d ? 1.0f/d : 0.0f;
  963. y[i].d = GGML_FP32_TO_FP16(d);
  964. for (int j = 0; j < 8; j++) {
  965. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  966. const int32x4_t vi = vcvtnq_s32_f32(v);
  967. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  968. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  969. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  970. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  971. }
  972. }
  973. #elif defined(__wasm_simd128__)
  974. for (int i = 0; i < nb; i++) {
  975. v128_t srcv [8];
  976. v128_t asrcv[8];
  977. v128_t amaxv[8];
  978. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  979. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  980. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  981. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  982. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  983. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  984. wasm_f32x4_extract_lane(amaxv[0], 1)),
  985. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  986. wasm_f32x4_extract_lane(amaxv[0], 3)));
  987. const float d = amax / ((1 << 7) - 1);
  988. const float id = d ? 1.0f/d : 0.0f;
  989. y[i].d = GGML_FP32_TO_FP16(d);
  990. for (int j = 0; j < 8; j++) {
  991. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  992. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  993. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  994. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  995. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  996. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  997. }
  998. }
  999. #elif defined(__AVX2__) || defined(__AVX__)
  1000. for (int i = 0; i < nb; i++) {
  1001. // Load elements into 4 AVX vectors
  1002. __m256 v0 = _mm256_loadu_ps( x );
  1003. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1004. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1005. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1006. x += 32;
  1007. // Compute max(abs(e)) for the block
  1008. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1009. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1010. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1011. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1012. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1013. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1014. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1015. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1016. const float maxScalar = _mm_cvtss_f32( max4 );
  1017. // Quantize these floats
  1018. const float d = maxScalar / 127.f;
  1019. y[i].d = GGML_FP32_TO_FP16(d);
  1020. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1021. const __m256 mul = _mm256_set1_ps( id );
  1022. // Apply the multiplier
  1023. v0 = _mm256_mul_ps( v0, mul );
  1024. v1 = _mm256_mul_ps( v1, mul );
  1025. v2 = _mm256_mul_ps( v2, mul );
  1026. v3 = _mm256_mul_ps( v3, mul );
  1027. // Round to nearest integer
  1028. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1029. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1030. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1031. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1032. // Convert floats to integers
  1033. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1034. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1035. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1036. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1037. #if defined(__AVX2__)
  1038. // Convert int32 to int16
  1039. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1040. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1041. // Convert int16 to int8
  1042. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1043. // We got our precious signed bytes, but the order is now wrong
  1044. // These AVX2 pack instructions process 16-byte pieces independently
  1045. // The following instruction is fixing the order
  1046. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1047. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1048. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1049. #else
  1050. // Since we don't have in AVX some necessary functions,
  1051. // we split the registers in half and call AVX2 analogs from SSE
  1052. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1053. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1054. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1055. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1056. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1057. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1058. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1059. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1060. // Convert int32 to int16
  1061. ni0 = _mm_packs_epi32( ni0, ni1 );
  1062. ni2 = _mm_packs_epi32( ni2, ni3 );
  1063. ni4 = _mm_packs_epi32( ni4, ni5 );
  1064. ni6 = _mm_packs_epi32( ni6, ni7 );
  1065. // Convert int16 to int8
  1066. ni0 = _mm_packs_epi16( ni0, ni2 );
  1067. ni4 = _mm_packs_epi16( ni4, ni6 );
  1068. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1069. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1070. #endif
  1071. }
  1072. #else
  1073. // scalar
  1074. quantize_row_q8_0_reference(x, y, k);
  1075. #endif
  1076. }
  1077. // reference implementation for deterministic creation of model files
  1078. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1079. assert(QK8_1 == 32);
  1080. assert(k % QK8_1 == 0);
  1081. const int nb = k / QK8_1;
  1082. for (int i = 0; i < nb; i++) {
  1083. float amax = 0.0f; // absolute max
  1084. for (int j = 0; j < QK8_1; j++) {
  1085. const float v = x[i*QK8_1 + j];
  1086. amax = MAX(amax, fabsf(v));
  1087. }
  1088. const float d = amax / ((1 << 7) - 1);
  1089. const float id = d ? 1.0f/d : 0.0f;
  1090. y[i].d = d;
  1091. int sum = 0;
  1092. for (int j = 0; j < QK8_1/2; ++j) {
  1093. const float v0 = x[i*QK8_1 + j]*id;
  1094. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1095. y[i].qs[ j] = roundf(v0);
  1096. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1097. sum += y[i].qs[ j];
  1098. sum += y[i].qs[QK8_1/2 + j];
  1099. }
  1100. y[i].s = sum*d;
  1101. }
  1102. }
  1103. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1104. assert(k % QK8_1 == 0);
  1105. const int nb = k / QK8_1;
  1106. block_q8_1 * restrict y = vy;
  1107. #if defined(__ARM_NEON)
  1108. for (int i = 0; i < nb; i++) {
  1109. float32x4_t srcv [8];
  1110. float32x4_t asrcv[8];
  1111. float32x4_t amaxv[8];
  1112. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1113. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1114. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1115. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1116. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1117. const float amax = vmaxvq_f32(amaxv[0]);
  1118. const float d = amax / ((1 << 7) - 1);
  1119. const float id = d ? 1.0f/d : 0.0f;
  1120. y[i].d = d;
  1121. int32x4_t accv = vdupq_n_s32(0);
  1122. for (int j = 0; j < 8; j++) {
  1123. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1124. const int32x4_t vi = vcvtnq_s32_f32(v);
  1125. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1126. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1127. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1128. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1129. accv = vaddq_s32(accv, vi);
  1130. }
  1131. y[i].s = d * vaddvq_s32(accv);
  1132. }
  1133. #elif defined(__wasm_simd128__)
  1134. for (int i = 0; i < nb; i++) {
  1135. v128_t srcv [8];
  1136. v128_t asrcv[8];
  1137. v128_t amaxv[8];
  1138. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1139. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1140. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1141. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1142. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1143. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1144. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1145. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1146. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1147. const float d = amax / ((1 << 7) - 1);
  1148. const float id = d ? 1.0f/d : 0.0f;
  1149. y[i].d = d;
  1150. v128_t accv = wasm_i32x4_splat(0);
  1151. for (int j = 0; j < 8; j++) {
  1152. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1153. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1154. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1155. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1156. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1157. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1158. accv = wasm_i32x4_add(accv, vi);
  1159. }
  1160. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1161. wasm_i32x4_extract_lane(accv, 1) +
  1162. wasm_i32x4_extract_lane(accv, 2) +
  1163. wasm_i32x4_extract_lane(accv, 3));
  1164. }
  1165. #elif defined(__AVX2__) || defined(__AVX__)
  1166. for (int i = 0; i < nb; i++) {
  1167. // Load elements into 4 AVX vectors
  1168. __m256 v0 = _mm256_loadu_ps( x );
  1169. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1170. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1171. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1172. x += 32;
  1173. // Compute max(abs(e)) for the block
  1174. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1175. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1176. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1177. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1178. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1179. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1180. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1181. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1182. const float maxScalar = _mm_cvtss_f32( max4 );
  1183. // Quantize these floats
  1184. const float d = maxScalar / 127.f;
  1185. y[i].d = d;
  1186. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1187. const __m256 mul = _mm256_set1_ps( id );
  1188. // Apply the multiplier
  1189. v0 = _mm256_mul_ps( v0, mul );
  1190. v1 = _mm256_mul_ps( v1, mul );
  1191. v2 = _mm256_mul_ps( v2, mul );
  1192. v3 = _mm256_mul_ps( v3, mul );
  1193. // Round to nearest integer
  1194. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1195. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1196. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1197. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1198. // Convert floats to integers
  1199. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1200. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1201. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1202. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1203. #if defined(__AVX2__)
  1204. // Compute the sum of the quants and set y[i].s
  1205. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1206. // Convert int32 to int16
  1207. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1208. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1209. // Convert int16 to int8
  1210. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1211. // We got our precious signed bytes, but the order is now wrong
  1212. // These AVX2 pack instructions process 16-byte pieces independently
  1213. // The following instruction is fixing the order
  1214. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1215. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1216. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1217. #else
  1218. // Since we don't have in AVX some necessary functions,
  1219. // we split the registers in half and call AVX2 analogs from SSE
  1220. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1221. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1222. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1223. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1224. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1225. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1226. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1227. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1228. // Compute the sum of the quants and set y[i].s
  1229. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1230. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1231. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1232. // Convert int32 to int16
  1233. ni0 = _mm_packs_epi32( ni0, ni1 );
  1234. ni2 = _mm_packs_epi32( ni2, ni3 );
  1235. ni4 = _mm_packs_epi32( ni4, ni5 );
  1236. ni6 = _mm_packs_epi32( ni6, ni7 );
  1237. // Convert int16 to int8
  1238. ni0 = _mm_packs_epi16( ni0, ni2 );
  1239. ni4 = _mm_packs_epi16( ni4, ni6 );
  1240. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1241. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1242. #endif
  1243. }
  1244. #else
  1245. // scalar
  1246. quantize_row_q8_1_reference(x, y, k);
  1247. #endif
  1248. }
  1249. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1250. static const int qk = QK4_0;
  1251. assert(k % qk == 0);
  1252. const int nb = k / qk;
  1253. for (int i = 0; i < nb; i++) {
  1254. const float d = GGML_FP16_TO_FP32(x[i].d);
  1255. for (int j = 0; j < qk/2; ++j) {
  1256. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1257. const int x1 = (x[i].qs[j] >> 4) - 8;
  1258. y[i*qk + j + 0 ] = x0*d;
  1259. y[i*qk + j + qk/2] = x1*d;
  1260. }
  1261. }
  1262. }
  1263. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1264. static const int qk = QK4_1;
  1265. assert(k % qk == 0);
  1266. const int nb = k / qk;
  1267. for (int i = 0; i < nb; i++) {
  1268. const float d = GGML_FP16_TO_FP32(x[i].d);
  1269. const float m = GGML_FP16_TO_FP32(x[i].m);
  1270. for (int j = 0; j < qk/2; ++j) {
  1271. const int x0 = (x[i].qs[j] & 0x0F);
  1272. const int x1 = (x[i].qs[j] >> 4);
  1273. y[i*qk + j + 0 ] = x0*d + m;
  1274. y[i*qk + j + qk/2] = x1*d + m;
  1275. }
  1276. }
  1277. }
  1278. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1279. static const int qk = QK5_0;
  1280. assert(k % qk == 0);
  1281. const int nb = k / qk;
  1282. for (int i = 0; i < nb; i++) {
  1283. const float d = GGML_FP16_TO_FP32(x[i].d);
  1284. uint32_t qh;
  1285. memcpy(&qh, x[i].qh, sizeof(qh));
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1288. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1289. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1290. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1291. y[i*qk + j + 0 ] = x0*d;
  1292. y[i*qk + j + qk/2] = x1*d;
  1293. }
  1294. }
  1295. }
  1296. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1297. static const int qk = QK5_1;
  1298. assert(k % qk == 0);
  1299. const int nb = k / qk;
  1300. for (int i = 0; i < nb; i++) {
  1301. const float d = GGML_FP16_TO_FP32(x[i].d);
  1302. const float m = GGML_FP16_TO_FP32(x[i].m);
  1303. uint32_t qh;
  1304. memcpy(&qh, x[i].qh, sizeof(qh));
  1305. for (int j = 0; j < qk/2; ++j) {
  1306. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1307. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1308. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1309. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1310. y[i*qk + j + 0 ] = x0*d + m;
  1311. y[i*qk + j + qk/2] = x1*d + m;
  1312. }
  1313. }
  1314. }
  1315. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1316. static const int qk = QK8_0;
  1317. assert(k % qk == 0);
  1318. const int nb = k / qk;
  1319. const block_q8_0 * restrict x = vx;
  1320. for (int i = 0; i < nb; i++) {
  1321. const float d = GGML_FP16_TO_FP32(x[i].d);
  1322. for (int j = 0; j < qk; ++j) {
  1323. y[i*qk + j] = x[i].qs[j]*d;
  1324. }
  1325. }
  1326. }
  1327. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1328. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1329. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1330. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1331. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1335. [GGML_TYPE_I8] = {
  1336. .type_name = "i8",
  1337. .blck_size = 1,
  1338. .type_size = sizeof(int8_t),
  1339. .is_quantized = false,
  1340. },
  1341. [GGML_TYPE_I16] = {
  1342. .type_name = "i16",
  1343. .blck_size = 1,
  1344. .type_size = sizeof(int16_t),
  1345. .is_quantized = false,
  1346. },
  1347. [GGML_TYPE_I32] = {
  1348. .type_name = "i32",
  1349. .blck_size = 1,
  1350. .type_size = sizeof(int32_t),
  1351. .is_quantized = false,
  1352. },
  1353. [GGML_TYPE_F32] = {
  1354. .type_name = "f32",
  1355. .blck_size = 1,
  1356. .type_size = sizeof(float),
  1357. .is_quantized = false,
  1358. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1359. .vec_dot_type = GGML_TYPE_F32,
  1360. },
  1361. [GGML_TYPE_F16] = {
  1362. .type_name = "f16",
  1363. .blck_size = 1,
  1364. .type_size = sizeof(ggml_fp16_t),
  1365. .is_quantized = false,
  1366. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1367. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1368. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1369. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1370. .vec_dot_type = GGML_TYPE_F16,
  1371. },
  1372. [GGML_TYPE_Q4_0] = {
  1373. .type_name = "q4_0",
  1374. .blck_size = QK4_0,
  1375. .type_size = sizeof(block_q4_0),
  1376. .is_quantized = true,
  1377. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1378. .from_float = quantize_row_q4_0,
  1379. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1380. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1381. .vec_dot_type = GGML_TYPE_Q8_0,
  1382. },
  1383. [GGML_TYPE_Q4_1] = {
  1384. .type_name = "q4_1",
  1385. .blck_size = QK4_1,
  1386. .type_size = sizeof(block_q4_1),
  1387. .is_quantized = true,
  1388. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1389. .from_float = quantize_row_q4_1,
  1390. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1391. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1392. .vec_dot_type = GGML_TYPE_Q8_1,
  1393. },
  1394. [GGML_TYPE_Q5_0] = {
  1395. .type_name = "q5_0",
  1396. .blck_size = QK5_0,
  1397. .type_size = sizeof(block_q5_0),
  1398. .is_quantized = true,
  1399. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1400. .from_float = quantize_row_q5_0,
  1401. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1402. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1403. .vec_dot_type = GGML_TYPE_Q8_0,
  1404. },
  1405. [GGML_TYPE_Q5_1] = {
  1406. .type_name = "q5_1",
  1407. .blck_size = QK5_1,
  1408. .type_size = sizeof(block_q5_1),
  1409. .is_quantized = true,
  1410. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1411. .from_float = quantize_row_q5_1,
  1412. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1413. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1414. .vec_dot_type = GGML_TYPE_Q8_1,
  1415. },
  1416. [GGML_TYPE_Q8_0] = {
  1417. .type_name = "q8_0",
  1418. .blck_size = QK8_0,
  1419. .type_size = sizeof(block_q8_0),
  1420. .is_quantized = true,
  1421. .to_float = dequantize_row_q8_0,
  1422. .from_float = quantize_row_q8_0,
  1423. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1424. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1425. .vec_dot_type = GGML_TYPE_Q8_0,
  1426. },
  1427. [GGML_TYPE_Q8_1] = {
  1428. .type_name = "q8_1",
  1429. .blck_size = QK8_1,
  1430. .type_size = sizeof(block_q8_1),
  1431. .is_quantized = true,
  1432. .from_float = quantize_row_q8_1,
  1433. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1434. .vec_dot_type = GGML_TYPE_Q8_1,
  1435. },
  1436. #ifdef GGML_USE_K_QUANTS
  1437. [GGML_TYPE_Q2_K] = {
  1438. .type_name = "q2_K",
  1439. .blck_size = QK_K,
  1440. .type_size = sizeof(block_q2_K),
  1441. .is_quantized = true,
  1442. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1443. .from_float = quantize_row_q2_K,
  1444. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1445. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1446. .vec_dot_type = GGML_TYPE_Q8_K,
  1447. },
  1448. [GGML_TYPE_Q3_K] = {
  1449. .type_name = "q3_K",
  1450. .blck_size = QK_K,
  1451. .type_size = sizeof(block_q3_K),
  1452. .is_quantized = true,
  1453. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1454. .from_float = quantize_row_q3_K,
  1455. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1456. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1457. .vec_dot_type = GGML_TYPE_Q8_K,
  1458. },
  1459. [GGML_TYPE_Q4_K] = {
  1460. .type_name = "q4_K",
  1461. .blck_size = QK_K,
  1462. .type_size = sizeof(block_q4_K),
  1463. .is_quantized = true,
  1464. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1465. .from_float = quantize_row_q4_K,
  1466. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1467. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1468. .vec_dot_type = GGML_TYPE_Q8_K,
  1469. },
  1470. [GGML_TYPE_Q5_K] = {
  1471. .type_name = "q5_K",
  1472. .blck_size = QK_K,
  1473. .type_size = sizeof(block_q5_K),
  1474. .is_quantized = true,
  1475. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1476. .from_float = quantize_row_q5_K,
  1477. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1478. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1479. .vec_dot_type = GGML_TYPE_Q8_K,
  1480. },
  1481. [GGML_TYPE_Q6_K] = {
  1482. .type_name = "q6_K",
  1483. .blck_size = QK_K,
  1484. .type_size = sizeof(block_q6_K),
  1485. .is_quantized = true,
  1486. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1487. .from_float = quantize_row_q6_K,
  1488. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1489. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1490. .vec_dot_type = GGML_TYPE_Q8_K,
  1491. },
  1492. [GGML_TYPE_Q8_K] = {
  1493. .type_name = "q8_K",
  1494. .blck_size = QK_K,
  1495. .type_size = sizeof(block_q8_K),
  1496. .is_quantized = true,
  1497. .from_float = quantize_row_q8_K,
  1498. }
  1499. #endif
  1500. };
  1501. // For internal test use
  1502. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1503. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1504. return type_traits[type];
  1505. }
  1506. //
  1507. // simd mappings
  1508. //
  1509. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1510. // we then implement the fundamental computation operations below using only these macros
  1511. // adding support for new architectures requires to define the corresponding SIMD macros
  1512. //
  1513. // GGML_F32_STEP / GGML_F16_STEP
  1514. // number of elements to process in a single step
  1515. //
  1516. // GGML_F32_EPR / GGML_F16_EPR
  1517. // number of elements to fit in a single register
  1518. //
  1519. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1520. #define GGML_SIMD
  1521. // F32 NEON
  1522. #define GGML_F32_STEP 16
  1523. #define GGML_F32_EPR 4
  1524. #define GGML_F32x4 float32x4_t
  1525. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1526. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1527. #define GGML_F32x4_LOAD vld1q_f32
  1528. #define GGML_F32x4_STORE vst1q_f32
  1529. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1530. #define GGML_F32x4_ADD vaddq_f32
  1531. #define GGML_F32x4_MUL vmulq_f32
  1532. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1533. #define GGML_F32x4_REDUCE(res, x) \
  1534. { \
  1535. int offset = GGML_F32_ARR >> 1; \
  1536. for (int i = 0; i < offset; ++i) { \
  1537. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1538. } \
  1539. offset >>= 1; \
  1540. for (int i = 0; i < offset; ++i) { \
  1541. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1542. } \
  1543. offset >>= 1; \
  1544. for (int i = 0; i < offset; ++i) { \
  1545. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1546. } \
  1547. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1548. }
  1549. #define GGML_F32_VEC GGML_F32x4
  1550. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1551. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1552. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1553. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1554. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1555. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1556. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1557. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1558. // F16 NEON
  1559. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1560. #define GGML_F16_STEP 32
  1561. #define GGML_F16_EPR 8
  1562. #define GGML_F16x8 float16x8_t
  1563. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1564. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1565. #define GGML_F16x8_LOAD vld1q_f16
  1566. #define GGML_F16x8_STORE vst1q_f16
  1567. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1568. #define GGML_F16x8_ADD vaddq_f16
  1569. #define GGML_F16x8_MUL vmulq_f16
  1570. #define GGML_F16x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F16_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1583. } \
  1584. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1585. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1586. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1587. }
  1588. #define GGML_F16_VEC GGML_F16x8
  1589. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1590. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1591. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1592. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1593. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1594. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1595. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1596. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1597. #else
  1598. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1599. // and take advantage of the vcvt_ functions to convert to/from FP16
  1600. #define GGML_F16_STEP 16
  1601. #define GGML_F16_EPR 4
  1602. #define GGML_F32Cx4 float32x4_t
  1603. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1604. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1605. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1606. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1607. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1608. #define GGML_F32Cx4_ADD vaddq_f32
  1609. #define GGML_F32Cx4_MUL vmulq_f32
  1610. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1611. #define GGML_F16_VEC GGML_F32Cx4
  1612. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1613. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1614. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1615. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1616. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1617. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1618. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1619. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1620. #endif
  1621. #elif defined(__AVX__)
  1622. #define GGML_SIMD
  1623. // F32 AVX
  1624. #define GGML_F32_STEP 32
  1625. #define GGML_F32_EPR 8
  1626. #define GGML_F32x8 __m256
  1627. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1628. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1629. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1630. #define GGML_F32x8_STORE _mm256_storeu_ps
  1631. #if defined(__FMA__)
  1632. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1633. #else
  1634. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1635. #endif
  1636. #define GGML_F32x8_ADD _mm256_add_ps
  1637. #define GGML_F32x8_MUL _mm256_mul_ps
  1638. #define GGML_F32x8_REDUCE(res, x) \
  1639. { \
  1640. int offset = GGML_F32_ARR >> 1; \
  1641. for (int i = 0; i < offset; ++i) { \
  1642. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1643. } \
  1644. offset >>= 1; \
  1645. for (int i = 0; i < offset; ++i) { \
  1646. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1647. } \
  1648. offset >>= 1; \
  1649. for (int i = 0; i < offset; ++i) { \
  1650. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1651. } \
  1652. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1653. _mm256_extractf128_ps(x[0], 1)); \
  1654. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1655. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1656. }
  1657. // TODO: is this optimal ?
  1658. #define GGML_F32_VEC GGML_F32x8
  1659. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1660. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1661. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1662. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1663. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1664. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1665. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1666. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1667. // F16 AVX
  1668. #define GGML_F16_STEP 32
  1669. #define GGML_F16_EPR 8
  1670. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1671. #define GGML_F32Cx8 __m256
  1672. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1673. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1674. #if defined(__F16C__)
  1675. // the _mm256_cvt intrinsics require F16C
  1676. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1677. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1678. #else
  1679. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1680. float tmp[8];
  1681. for (int i = 0; i < 8; i++) {
  1682. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1683. }
  1684. return _mm256_loadu_ps(tmp);
  1685. }
  1686. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1687. float arr[8];
  1688. _mm256_storeu_ps(arr, y);
  1689. for (int i = 0; i < 8; i++)
  1690. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1691. }
  1692. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1693. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1694. #endif
  1695. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1696. #define GGML_F32Cx8_ADD _mm256_add_ps
  1697. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1698. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1699. #define GGML_F16_VEC GGML_F32Cx8
  1700. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1701. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1702. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1703. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1704. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1705. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1706. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1707. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1708. #elif defined(__POWER9_VECTOR__)
  1709. #define GGML_SIMD
  1710. // F32 POWER9
  1711. #define GGML_F32_STEP 32
  1712. #define GGML_F32_EPR 4
  1713. #define GGML_F32x4 vector float
  1714. #define GGML_F32x4_ZERO 0.0f
  1715. #define GGML_F32x4_SET1 vec_splats
  1716. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1717. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1718. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1719. #define GGML_F32x4_ADD vec_add
  1720. #define GGML_F32x4_MUL vec_mul
  1721. #define GGML_F32x4_REDUCE(res, x) \
  1722. { \
  1723. int offset = GGML_F32_ARR >> 1; \
  1724. for (int i = 0; i < offset; ++i) { \
  1725. x[i] = vec_add(x[i], x[offset+i]); \
  1726. } \
  1727. offset >>= 1; \
  1728. for (int i = 0; i < offset; ++i) { \
  1729. x[i] = vec_add(x[i], x[offset+i]); \
  1730. } \
  1731. offset >>= 1; \
  1732. for (int i = 0; i < offset; ++i) { \
  1733. x[i] = vec_add(x[i], x[offset+i]); \
  1734. } \
  1735. res = vec_extract(x[0], 0) + \
  1736. vec_extract(x[0], 1) + \
  1737. vec_extract(x[0], 2) + \
  1738. vec_extract(x[0], 3); \
  1739. }
  1740. #define GGML_F32_VEC GGML_F32x4
  1741. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1742. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1743. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1744. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1745. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1746. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1747. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1748. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1749. // F16 POWER9
  1750. #define GGML_F16_STEP GGML_F32_STEP
  1751. #define GGML_F16_EPR GGML_F32_EPR
  1752. #define GGML_F16_VEC GGML_F32x4
  1753. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1754. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1755. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1756. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1757. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1758. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1759. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1760. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1761. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1762. #define GGML_F16_VEC_STORE(p, r, i) \
  1763. if (i & 0x1) \
  1764. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1765. r[i - GGML_ENDIAN_BYTE(0)]), \
  1766. 0, p - GGML_F16_EPR)
  1767. #elif defined(__wasm_simd128__)
  1768. #define GGML_SIMD
  1769. // F32 WASM
  1770. #define GGML_F32_STEP 16
  1771. #define GGML_F32_EPR 4
  1772. #define GGML_F32x4 v128_t
  1773. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1774. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1775. #define GGML_F32x4_LOAD wasm_v128_load
  1776. #define GGML_F32x4_STORE wasm_v128_store
  1777. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1778. #define GGML_F32x4_ADD wasm_f32x4_add
  1779. #define GGML_F32x4_MUL wasm_f32x4_mul
  1780. #define GGML_F32x4_REDUCE(res, x) \
  1781. { \
  1782. int offset = GGML_F32_ARR >> 1; \
  1783. for (int i = 0; i < offset; ++i) { \
  1784. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1785. } \
  1786. offset >>= 1; \
  1787. for (int i = 0; i < offset; ++i) { \
  1788. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1789. } \
  1790. offset >>= 1; \
  1791. for (int i = 0; i < offset; ++i) { \
  1792. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1793. } \
  1794. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1795. wasm_f32x4_extract_lane(x[0], 1) + \
  1796. wasm_f32x4_extract_lane(x[0], 2) + \
  1797. wasm_f32x4_extract_lane(x[0], 3); \
  1798. }
  1799. #define GGML_F32_VEC GGML_F32x4
  1800. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1801. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1802. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1803. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1804. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1805. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1806. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1807. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1808. // F16 WASM
  1809. #define GGML_F16_STEP 16
  1810. #define GGML_F16_EPR 4
  1811. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1812. float tmp[4];
  1813. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1814. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1815. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1816. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1817. return wasm_v128_load(tmp);
  1818. }
  1819. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1820. float tmp[4];
  1821. wasm_v128_store(tmp, x);
  1822. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1823. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1824. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1825. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1826. }
  1827. #define GGML_F16x4 v128_t
  1828. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1829. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1830. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1831. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1832. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1833. #define GGML_F16x4_ADD wasm_f32x4_add
  1834. #define GGML_F16x4_MUL wasm_f32x4_mul
  1835. #define GGML_F16x4_REDUCE(res, x) \
  1836. { \
  1837. int offset = GGML_F16_ARR >> 1; \
  1838. for (int i = 0; i < offset; ++i) { \
  1839. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1840. } \
  1841. offset >>= 1; \
  1842. for (int i = 0; i < offset; ++i) { \
  1843. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1844. } \
  1845. offset >>= 1; \
  1846. for (int i = 0; i < offset; ++i) { \
  1847. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1848. } \
  1849. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1850. wasm_f32x4_extract_lane(x[0], 1) + \
  1851. wasm_f32x4_extract_lane(x[0], 2) + \
  1852. wasm_f32x4_extract_lane(x[0], 3); \
  1853. }
  1854. #define GGML_F16_VEC GGML_F16x4
  1855. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1856. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1857. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1858. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1859. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1860. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1861. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1862. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1863. #elif defined(__SSE3__)
  1864. #define GGML_SIMD
  1865. // F32 SSE
  1866. #define GGML_F32_STEP 32
  1867. #define GGML_F32_EPR 4
  1868. #define GGML_F32x4 __m128
  1869. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1870. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1871. #define GGML_F32x4_LOAD _mm_loadu_ps
  1872. #define GGML_F32x4_STORE _mm_storeu_ps
  1873. #if defined(__FMA__)
  1874. // TODO: Does this work?
  1875. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1876. #else
  1877. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1878. #endif
  1879. #define GGML_F32x4_ADD _mm_add_ps
  1880. #define GGML_F32x4_MUL _mm_mul_ps
  1881. #define GGML_F32x4_REDUCE(res, x) \
  1882. { \
  1883. int offset = GGML_F32_ARR >> 1; \
  1884. for (int i = 0; i < offset; ++i) { \
  1885. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1886. } \
  1887. offset >>= 1; \
  1888. for (int i = 0; i < offset; ++i) { \
  1889. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1890. } \
  1891. offset >>= 1; \
  1892. for (int i = 0; i < offset; ++i) { \
  1893. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1894. } \
  1895. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1896. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1897. }
  1898. // TODO: is this optimal ?
  1899. #define GGML_F32_VEC GGML_F32x4
  1900. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1901. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1902. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1903. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1904. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1905. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1906. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1907. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1908. // F16 SSE
  1909. #define GGML_F16_STEP 32
  1910. #define GGML_F16_EPR 4
  1911. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1912. float tmp[4];
  1913. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1914. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1915. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1916. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1917. return _mm_loadu_ps(tmp);
  1918. }
  1919. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1920. float arr[4];
  1921. _mm_storeu_ps(arr, y);
  1922. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1923. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1924. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1925. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1926. }
  1927. #define GGML_F32Cx4 __m128
  1928. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1929. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1930. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1931. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1932. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1933. #define GGML_F32Cx4_ADD _mm_add_ps
  1934. #define GGML_F32Cx4_MUL _mm_mul_ps
  1935. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1936. #define GGML_F16_VEC GGML_F32Cx4
  1937. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1938. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1939. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1940. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1941. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1942. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1943. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1944. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1945. #endif
  1946. // GGML_F32_ARR / GGML_F16_ARR
  1947. // number of registers to use per step
  1948. #ifdef GGML_SIMD
  1949. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1950. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1951. #endif
  1952. //
  1953. // fundamental operations
  1954. //
  1955. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1956. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1957. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1958. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1959. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1960. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1961. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1962. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1963. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1964. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1965. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1966. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1967. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1968. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1969. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1970. #ifdef GGML_SIMD
  1971. float sumf = 0.0f;
  1972. const int np = (n & ~(GGML_F32_STEP - 1));
  1973. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1974. GGML_F32_VEC ax[GGML_F32_ARR];
  1975. GGML_F32_VEC ay[GGML_F32_ARR];
  1976. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1977. for (int j = 0; j < GGML_F32_ARR; j++) {
  1978. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1979. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1980. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1981. }
  1982. }
  1983. // reduce sum0..sum3 to sum0
  1984. GGML_F32_VEC_REDUCE(sumf, sum);
  1985. // leftovers
  1986. for (int i = np; i < n; ++i) {
  1987. sumf += x[i]*y[i];
  1988. }
  1989. #else
  1990. // scalar
  1991. ggml_float sumf = 0.0;
  1992. for (int i = 0; i < n; ++i) {
  1993. sumf += (ggml_float)(x[i]*y[i]);
  1994. }
  1995. #endif
  1996. *s = sumf;
  1997. }
  1998. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1999. ggml_float sumf = 0.0;
  2000. #if defined(GGML_SIMD)
  2001. const int np = (n & ~(GGML_F16_STEP - 1));
  2002. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2003. GGML_F16_VEC ax[GGML_F16_ARR];
  2004. GGML_F16_VEC ay[GGML_F16_ARR];
  2005. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2006. for (int j = 0; j < GGML_F16_ARR; j++) {
  2007. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2008. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2009. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2010. }
  2011. }
  2012. // reduce sum0..sum3 to sum0
  2013. GGML_F16_VEC_REDUCE(sumf, sum);
  2014. // leftovers
  2015. for (int i = np; i < n; ++i) {
  2016. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2017. }
  2018. #else
  2019. for (int i = 0; i < n; ++i) {
  2020. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2021. }
  2022. #endif
  2023. *s = sumf;
  2024. }
  2025. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2026. const int qk = QK8_0;
  2027. const int nb = n / qk;
  2028. assert(n % qk == 0);
  2029. const block_q4_0 * restrict x = vx;
  2030. const block_q8_0 * restrict y = vy;
  2031. #if defined(__ARM_NEON)
  2032. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2033. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2034. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2035. for (int i = 0; i < nb; i += 2) {
  2036. const block_q4_0 * restrict x0 = &x[i + 0];
  2037. const block_q4_0 * restrict x1 = &x[i + 1];
  2038. const block_q8_0 * restrict y0 = &y[i + 0];
  2039. const block_q8_0 * restrict y1 = &y[i + 1];
  2040. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2041. const int8x16_t s8b = vdupq_n_s8(0x8);
  2042. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2043. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2044. // 4-bit -> 8-bit
  2045. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2046. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2047. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2048. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2049. // sub 8
  2050. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2051. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2052. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2053. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2054. // load y
  2055. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2056. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2057. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2058. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2059. #if defined(__ARM_FEATURE_DOTPROD)
  2060. // dot product into int32x4_t
  2061. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2062. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2063. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2064. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2065. #else
  2066. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2067. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2068. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2069. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2070. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2071. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2072. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2073. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2074. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2075. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2076. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2077. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2078. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2079. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2080. #endif
  2081. }
  2082. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2083. #elif defined(__AVX2__)
  2084. // Initialize accumulator with zeros
  2085. __m256 acc = _mm256_setzero_ps();
  2086. // Main loop
  2087. for (int i = 0; i < nb; ++i) {
  2088. /* Compute combined scale for the block */
  2089. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2090. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2091. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2092. const __m256i off = _mm256_set1_epi8( 8 );
  2093. bx = _mm256_sub_epi8( bx, off );
  2094. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2095. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2096. /* Multiply q with scale and accumulate */
  2097. acc = _mm256_fmadd_ps( d, q, acc );
  2098. }
  2099. *s = hsum_float_8(acc);
  2100. #elif defined(__AVX__)
  2101. // Initialize accumulator with zeros
  2102. __m256 acc = _mm256_setzero_ps();
  2103. // Main loop
  2104. for (int i = 0; i < nb; ++i) {
  2105. // Compute combined scale for the block
  2106. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2107. const __m128i lowMask = _mm_set1_epi8(0xF);
  2108. const __m128i off = _mm_set1_epi8(8);
  2109. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2110. __m128i bx = _mm_and_si128(lowMask, tmp);
  2111. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2112. bx = _mm_sub_epi8(bx, off);
  2113. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2114. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2115. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2116. bx = _mm_sub_epi8(bx, off);
  2117. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2118. // Convert int32_t to float
  2119. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2120. // Apply the scale, and accumulate
  2121. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2122. }
  2123. *s = hsum_float_8(acc);
  2124. #elif defined(__SSSE3__)
  2125. // set constants
  2126. const __m128i lowMask = _mm_set1_epi8(0xF);
  2127. const __m128i off = _mm_set1_epi8(8);
  2128. // Initialize accumulator with zeros
  2129. __m128 acc_0 = _mm_setzero_ps();
  2130. __m128 acc_1 = _mm_setzero_ps();
  2131. __m128 acc_2 = _mm_setzero_ps();
  2132. __m128 acc_3 = _mm_setzero_ps();
  2133. // First round without accumulation
  2134. {
  2135. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2136. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2137. // Compute combined scale for the block 0 and 1
  2138. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2139. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2140. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2141. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2142. bx_0 = _mm_sub_epi8(bx_0, off);
  2143. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2144. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2145. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2146. bx_1 = _mm_sub_epi8(bx_1, off);
  2147. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2148. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2149. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2150. // Compute combined scale for the block 2 and 3
  2151. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2152. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2153. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2154. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2155. bx_2 = _mm_sub_epi8(bx_2, off);
  2156. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2157. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2158. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2159. bx_3 = _mm_sub_epi8(bx_3, off);
  2160. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2161. // Convert int32_t to float
  2162. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2163. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2164. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2165. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2166. // Apply the scale
  2167. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2168. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2169. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2170. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2171. }
  2172. // Main loop
  2173. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2174. for (int i = 2; i < nb; i+=2) {
  2175. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2176. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2177. // Compute combined scale for the block 0 and 1
  2178. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2179. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2180. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2181. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2182. bx_0 = _mm_sub_epi8(bx_0, off);
  2183. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2184. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2185. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2186. bx_1 = _mm_sub_epi8(bx_1, off);
  2187. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2188. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2189. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2190. // Compute combined scale for the block 2 and 3
  2191. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2192. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2193. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2194. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2195. bx_2 = _mm_sub_epi8(bx_2, off);
  2196. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2197. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2198. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2199. bx_3 = _mm_sub_epi8(bx_3, off);
  2200. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2201. // Convert int32_t to float
  2202. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2203. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2204. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2205. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2206. // Apply the scale
  2207. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2208. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2209. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2210. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2211. // Acummulate
  2212. acc_0 = _mm_add_ps(p0_d, acc_0);
  2213. acc_1 = _mm_add_ps(p1_d, acc_1);
  2214. acc_2 = _mm_add_ps(p2_d, acc_2);
  2215. acc_3 = _mm_add_ps(p3_d, acc_3);
  2216. }
  2217. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2218. #else
  2219. // scalar
  2220. float sumf = 0.0;
  2221. for (int i = 0; i < nb; i++) {
  2222. int sumi = 0;
  2223. for (int j = 0; j < qk/2; ++j) {
  2224. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2225. const int v1 = (x[i].qs[j] >> 4) - 8;
  2226. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2227. }
  2228. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2229. }
  2230. *s = sumf;
  2231. #endif
  2232. }
  2233. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2234. const int qk = QK8_1;
  2235. const int nb = n / qk;
  2236. assert(n % qk == 0);
  2237. const block_q4_1 * restrict x = vx;
  2238. const block_q8_1 * restrict y = vy;
  2239. // TODO: add WASM SIMD
  2240. #if defined(__ARM_NEON)
  2241. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2242. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2243. float summs = 0;
  2244. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2245. for (int i = 0; i < nb; i += 2) {
  2246. const block_q4_1 * restrict x0 = &x[i + 0];
  2247. const block_q4_1 * restrict x1 = &x[i + 1];
  2248. const block_q8_1 * restrict y0 = &y[i + 0];
  2249. const block_q8_1 * restrict y1 = &y[i + 1];
  2250. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2251. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2252. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2253. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2254. // 4-bit -> 8-bit
  2255. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2256. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2257. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2258. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2259. // load y
  2260. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2261. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2262. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2263. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2264. #if defined(__ARM_FEATURE_DOTPROD)
  2265. // dot product into int32x4_t
  2266. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2267. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2268. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2269. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2270. #else
  2271. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2272. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2273. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2274. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2275. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2276. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2277. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2278. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2279. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2280. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2281. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2282. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2283. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2284. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2285. #endif
  2286. }
  2287. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2288. #elif defined(__AVX2__) || defined(__AVX__)
  2289. // Initialize accumulator with zeros
  2290. __m256 acc = _mm256_setzero_ps();
  2291. float summs = 0;
  2292. // Main loop
  2293. for (int i = 0; i < nb; ++i) {
  2294. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2295. const float d1 = y[i].d;
  2296. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2297. const __m256 d0v = _mm256_set1_ps( d0 );
  2298. const __m256 d1v = _mm256_set1_ps( d1 );
  2299. // Compute combined scales
  2300. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2301. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2302. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2303. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2304. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2305. // Accumulate d0*d1*x*y
  2306. #if defined(__AVX2__)
  2307. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2308. #else
  2309. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2310. #endif
  2311. }
  2312. *s = hsum_float_8(acc) + summs;
  2313. #else
  2314. // scalar
  2315. float sumf = 0.0;
  2316. for (int i = 0; i < nb; i++) {
  2317. int sumi = 0;
  2318. for (int j = 0; j < qk/2; ++j) {
  2319. const int v0 = (x[i].qs[j] & 0x0F);
  2320. const int v1 = (x[i].qs[j] >> 4);
  2321. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2322. }
  2323. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2324. }
  2325. *s = sumf;
  2326. #endif
  2327. }
  2328. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2329. const int qk = QK8_0;
  2330. const int nb = n / qk;
  2331. assert(n % qk == 0);
  2332. assert(qk == QK5_0);
  2333. const block_q5_0 * restrict x = vx;
  2334. const block_q8_0 * restrict y = vy;
  2335. #if defined(__ARM_NEON)
  2336. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2337. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2338. uint32_t qh0;
  2339. uint32_t qh1;
  2340. uint64_t tmp0[4];
  2341. uint64_t tmp1[4];
  2342. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2343. for (int i = 0; i < nb; i += 2) {
  2344. const block_q5_0 * restrict x0 = &x[i];
  2345. const block_q5_0 * restrict x1 = &x[i + 1];
  2346. const block_q8_0 * restrict y0 = &y[i];
  2347. const block_q8_0 * restrict y1 = &y[i + 1];
  2348. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2349. // extract the 5th bit via lookup table ((!b) << 4)
  2350. memcpy(&qh0, x0->qh, sizeof(qh0));
  2351. memcpy(&qh1, x1->qh, sizeof(qh1));
  2352. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2353. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2354. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2355. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2356. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2357. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2358. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2359. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2360. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2361. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2362. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2363. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2364. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2365. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2366. // 4-bit -> 8-bit
  2367. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2368. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2369. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2370. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2371. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2372. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2373. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2374. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2375. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2376. // load y
  2377. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2378. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2379. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2380. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2381. #if defined(__ARM_FEATURE_DOTPROD)
  2382. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2383. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2384. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2385. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2386. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2387. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2388. #else
  2389. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2390. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2391. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2392. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2393. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2394. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2395. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2396. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2397. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2398. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2399. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2400. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2401. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2402. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2403. #endif
  2404. }
  2405. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2406. #elif defined(__wasm_simd128__)
  2407. v128_t sumv = wasm_f32x4_splat(0.0f);
  2408. uint32_t qh;
  2409. uint64_t tmp[4];
  2410. // TODO: check if unrolling this is better
  2411. for (int i = 0; i < nb; ++i) {
  2412. const block_q5_0 * restrict x0 = &x[i];
  2413. const block_q8_0 * restrict y0 = &y[i];
  2414. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2415. // extract the 5th bit
  2416. memcpy(&qh, x0->qh, sizeof(qh));
  2417. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2418. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2419. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2420. tmp[3] = table_b2b_1[(qh >> 24) ];
  2421. const v128_t qhl = wasm_v128_load(tmp + 0);
  2422. const v128_t qhh = wasm_v128_load(tmp + 2);
  2423. const v128_t v0 = wasm_v128_load(x0->qs);
  2424. // 4-bit -> 8-bit
  2425. const v128_t v0l = wasm_v128_and (v0, m4b);
  2426. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2427. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2428. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2429. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2430. // load y
  2431. const v128_t v1l = wasm_v128_load(y0->qs);
  2432. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2433. // int8x16 -> int16x8
  2434. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2435. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2436. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2437. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2438. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2439. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2440. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2441. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2442. // dot product
  2443. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2444. wasm_i32x4_add(
  2445. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2446. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2447. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2448. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2449. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2450. }
  2451. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2452. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2453. #elif defined(__AVX2__)
  2454. // Initialize accumulator with zeros
  2455. __m256 acc = _mm256_setzero_ps();
  2456. // Main loop
  2457. for (int i = 0; i < nb; i++) {
  2458. /* Compute combined scale for the block */
  2459. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2460. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2461. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2462. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2463. bx = _mm256_or_si256(bx, bxhi);
  2464. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2465. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2466. /* Multiply q with scale and accumulate */
  2467. acc = _mm256_fmadd_ps(d, q, acc);
  2468. }
  2469. *s = hsum_float_8(acc);
  2470. #elif defined(__AVX__)
  2471. // Initialize accumulator with zeros
  2472. __m256 acc = _mm256_setzero_ps();
  2473. __m128i mask = _mm_set1_epi8((char)0xF0);
  2474. // Main loop
  2475. for (int i = 0; i < nb; i++) {
  2476. /* Compute combined scale for the block */
  2477. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2478. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2479. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2480. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2481. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2482. bxhil = _mm_andnot_si128(bxhil, mask);
  2483. bxhih = _mm_andnot_si128(bxhih, mask);
  2484. __m128i bxl = _mm256_castsi256_si128(bx);
  2485. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2486. bxl = _mm_or_si128(bxl, bxhil);
  2487. bxh = _mm_or_si128(bxh, bxhih);
  2488. bx = MM256_SET_M128I(bxh, bxl);
  2489. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2490. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2491. /* Multiply q with scale and accumulate */
  2492. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2493. }
  2494. *s = hsum_float_8(acc);
  2495. #else
  2496. // scalar
  2497. float sumf = 0.0;
  2498. for (int i = 0; i < nb; i++) {
  2499. uint32_t qh;
  2500. memcpy(&qh, x[i].qh, sizeof(qh));
  2501. int sumi = 0;
  2502. for (int j = 0; j < qk/2; ++j) {
  2503. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2504. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2505. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2506. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2507. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2508. }
  2509. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2510. }
  2511. *s = sumf;
  2512. #endif
  2513. }
  2514. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2515. const int qk = QK8_1;
  2516. const int nb = n / qk;
  2517. assert(n % qk == 0);
  2518. assert(qk == QK5_1);
  2519. const block_q5_1 * restrict x = vx;
  2520. const block_q8_1 * restrict y = vy;
  2521. #if defined(__ARM_NEON)
  2522. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2523. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2524. float summs0 = 0.0f;
  2525. float summs1 = 0.0f;
  2526. uint32_t qh0;
  2527. uint32_t qh1;
  2528. uint64_t tmp0[4];
  2529. uint64_t tmp1[4];
  2530. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2531. for (int i = 0; i < nb; i += 2) {
  2532. const block_q5_1 * restrict x0 = &x[i];
  2533. const block_q5_1 * restrict x1 = &x[i + 1];
  2534. const block_q8_1 * restrict y0 = &y[i];
  2535. const block_q8_1 * restrict y1 = &y[i + 1];
  2536. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2537. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2538. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2539. // extract the 5th bit via lookup table ((b) << 4)
  2540. memcpy(&qh0, x0->qh, sizeof(qh0));
  2541. memcpy(&qh1, x1->qh, sizeof(qh1));
  2542. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2543. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2544. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2545. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2546. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2547. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2548. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2549. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2550. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2551. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2552. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2553. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2554. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2555. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2556. // 4-bit -> 8-bit
  2557. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2558. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2559. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2560. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2561. // add high bit
  2562. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2563. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2564. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2565. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2566. // load y
  2567. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2568. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2569. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2570. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2571. #if defined(__ARM_FEATURE_DOTPROD)
  2572. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2573. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2574. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2575. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2576. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2577. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2578. #else
  2579. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2580. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2581. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2582. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2583. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2584. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2585. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2586. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2587. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2588. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2589. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2590. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2591. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2592. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2593. #endif
  2594. }
  2595. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2596. #elif defined(__wasm_simd128__)
  2597. v128_t sumv = wasm_f32x4_splat(0.0f);
  2598. float summs = 0.0f;
  2599. uint32_t qh;
  2600. uint64_t tmp[4];
  2601. // TODO: check if unrolling this is better
  2602. for (int i = 0; i < nb; ++i) {
  2603. const block_q5_1 * restrict x0 = &x[i];
  2604. const block_q8_1 * restrict y0 = &y[i];
  2605. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2606. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2607. // extract the 5th bit
  2608. memcpy(&qh, x0->qh, sizeof(qh));
  2609. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2610. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2611. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2612. tmp[3] = table_b2b_0[(qh >> 24) ];
  2613. const v128_t qhl = wasm_v128_load(tmp + 0);
  2614. const v128_t qhh = wasm_v128_load(tmp + 2);
  2615. const v128_t v0 = wasm_v128_load(x0->qs);
  2616. // 4-bit -> 8-bit
  2617. const v128_t v0l = wasm_v128_and (v0, m4b);
  2618. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2619. // add high bit
  2620. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2621. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2622. // load y
  2623. const v128_t v1l = wasm_v128_load(y0->qs);
  2624. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2625. // int8x16 -> int16x8
  2626. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2627. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2628. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2629. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2630. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2631. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2632. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2633. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2634. // dot product
  2635. sumv = wasm_f32x4_add(sumv,
  2636. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2637. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2638. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2639. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2640. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2641. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2642. }
  2643. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2644. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2645. #elif defined(__AVX2__)
  2646. // Initialize accumulator with zeros
  2647. __m256 acc = _mm256_setzero_ps();
  2648. float summs = 0.0f;
  2649. // Main loop
  2650. for (int i = 0; i < nb; i++) {
  2651. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2652. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2653. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2654. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2655. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2656. bx = _mm256_or_si256(bx, bxhi);
  2657. const __m256 dy = _mm256_set1_ps(y[i].d);
  2658. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2659. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2660. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2661. }
  2662. *s = hsum_float_8(acc) + summs;
  2663. #elif defined(__AVX__)
  2664. // Initialize accumulator with zeros
  2665. __m256 acc = _mm256_setzero_ps();
  2666. __m128i mask = _mm_set1_epi8(0x10);
  2667. float summs = 0.0f;
  2668. // Main loop
  2669. for (int i = 0; i < nb; i++) {
  2670. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2671. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2672. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2673. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2674. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2675. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2676. bxhil = _mm_and_si128(bxhil, mask);
  2677. bxhih = _mm_and_si128(bxhih, mask);
  2678. __m128i bxl = _mm256_castsi256_si128(bx);
  2679. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2680. bxl = _mm_or_si128(bxl, bxhil);
  2681. bxh = _mm_or_si128(bxh, bxhih);
  2682. bx = MM256_SET_M128I(bxh, bxl);
  2683. const __m256 dy = _mm256_set1_ps(y[i].d);
  2684. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2685. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2686. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2687. }
  2688. *s = hsum_float_8(acc) + summs;
  2689. #else
  2690. // scalar
  2691. float sumf = 0.0;
  2692. for (int i = 0; i < nb; i++) {
  2693. uint32_t qh;
  2694. memcpy(&qh, x[i].qh, sizeof(qh));
  2695. int sumi = 0;
  2696. for (int j = 0; j < qk/2; ++j) {
  2697. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2698. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2699. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2700. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2701. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2702. }
  2703. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2704. }
  2705. *s = sumf;
  2706. #endif
  2707. }
  2708. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2709. const int qk = QK8_0;
  2710. const int nb = n / qk;
  2711. assert(n % qk == 0);
  2712. const block_q8_0 * restrict x = vx;
  2713. const block_q8_0 * restrict y = vy;
  2714. #if defined(__ARM_NEON)
  2715. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2716. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2717. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2718. for (int i = 0; i < nb; i += 2) {
  2719. const block_q8_0 * restrict x0 = &x[i + 0];
  2720. const block_q8_0 * restrict x1 = &x[i + 1];
  2721. const block_q8_0 * restrict y0 = &y[i + 0];
  2722. const block_q8_0 * restrict y1 = &y[i + 1];
  2723. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2724. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2725. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2726. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2727. // load y
  2728. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2729. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2730. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2731. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2732. #if defined(__ARM_FEATURE_DOTPROD)
  2733. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2734. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2735. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2736. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2737. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2738. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2739. #else
  2740. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2741. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2742. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2743. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2744. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2745. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2746. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2747. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2748. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2749. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2750. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2751. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2752. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2753. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2754. #endif
  2755. }
  2756. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2757. #elif defined(__AVX2__) || defined(__AVX__)
  2758. // Initialize accumulator with zeros
  2759. __m256 acc = _mm256_setzero_ps();
  2760. // Main loop
  2761. for (int i = 0; i < nb; ++i) {
  2762. // Compute combined scale for the block
  2763. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2764. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2765. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2766. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2767. // Multiply q with scale and accumulate
  2768. #if defined(__AVX2__)
  2769. acc = _mm256_fmadd_ps( d, q, acc );
  2770. #else
  2771. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2772. #endif
  2773. }
  2774. *s = hsum_float_8(acc);
  2775. #else
  2776. // scalar
  2777. float sumf = 0.0;
  2778. for (int i = 0; i < nb; i++) {
  2779. int sumi = 0;
  2780. for (int j = 0; j < qk; j++) {
  2781. sumi += x[i].qs[j]*y[i].qs[j];
  2782. }
  2783. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2784. }
  2785. *s = sumf;
  2786. #endif
  2787. }
  2788. // compute GGML_VEC_DOT_UNROLL dot products at once
  2789. // xs - x row stride in bytes
  2790. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2791. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2792. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2793. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2794. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2795. }
  2796. #if defined(GGML_SIMD)
  2797. const int np = (n & ~(GGML_F16_STEP - 1));
  2798. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2799. GGML_F16_VEC ax[GGML_F16_ARR];
  2800. GGML_F16_VEC ay[GGML_F16_ARR];
  2801. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2802. for (int j = 0; j < GGML_F16_ARR; j++) {
  2803. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2804. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2805. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2806. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2807. }
  2808. }
  2809. }
  2810. // reduce sum0..sum3 to sum0
  2811. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2812. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2813. }
  2814. // leftovers
  2815. for (int i = np; i < n; ++i) {
  2816. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2817. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2818. }
  2819. }
  2820. #else
  2821. for (int i = 0; i < n; ++i) {
  2822. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2823. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2824. }
  2825. }
  2826. #endif
  2827. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2828. s[i] = sumf[i];
  2829. }
  2830. }
  2831. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2832. #if defined(GGML_SIMD)
  2833. const int np = (n & ~(GGML_F32_STEP - 1));
  2834. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2835. GGML_F32_VEC ax[GGML_F32_ARR];
  2836. GGML_F32_VEC ay[GGML_F32_ARR];
  2837. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2838. for (int j = 0; j < GGML_F32_ARR; j++) {
  2839. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2840. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2841. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2842. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2843. }
  2844. }
  2845. // leftovers
  2846. for (int i = np; i < n; ++i) {
  2847. y[i] += x[i]*v;
  2848. }
  2849. #else
  2850. // scalar
  2851. for (int i = 0; i < n; ++i) {
  2852. y[i] += x[i]*v;
  2853. }
  2854. #endif
  2855. }
  2856. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2857. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2858. #if defined(GGML_USE_ACCELERATE)
  2859. vDSP_vsmul(y, 1, &v, y, 1, n);
  2860. #elif defined(GGML_SIMD)
  2861. const int np = (n & ~(GGML_F32_STEP - 1));
  2862. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2863. GGML_F32_VEC ay[GGML_F32_ARR];
  2864. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2865. for (int j = 0; j < GGML_F32_ARR; j++) {
  2866. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2867. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2868. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2869. }
  2870. }
  2871. // leftovers
  2872. for (int i = np; i < n; ++i) {
  2873. y[i] *= v;
  2874. }
  2875. #else
  2876. // scalar
  2877. for (int i = 0; i < n; ++i) {
  2878. y[i] *= v;
  2879. }
  2880. #endif
  2881. }
  2882. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2883. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2884. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2885. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2886. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2887. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2888. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2889. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2890. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2891. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2892. static const float GELU_COEF_A = 0.044715f;
  2893. static const float GELU_QUICK_COEF = -1.702f;
  2894. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2895. inline static float ggml_gelu_f32(float x) {
  2896. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2897. }
  2898. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2899. const uint16_t * i16 = (const uint16_t *) x;
  2900. for (int i = 0; i < n; ++i) {
  2901. y[i] = table_gelu_f16[i16[i]];
  2902. }
  2903. }
  2904. #ifdef GGML_GELU_FP16
  2905. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2906. uint16_t t;
  2907. for (int i = 0; i < n; ++i) {
  2908. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2909. memcpy(&t, &fp16, sizeof(uint16_t));
  2910. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2911. }
  2912. }
  2913. #else
  2914. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2915. for (int i = 0; i < n; ++i) {
  2916. y[i] = ggml_gelu_f32(x[i]);
  2917. }
  2918. }
  2919. #endif
  2920. inline static float ggml_gelu_quick_f32(float x) {
  2921. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2922. }
  2923. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2924. // const uint16_t * i16 = (const uint16_t *) x;
  2925. // for (int i = 0; i < n; ++i) {
  2926. // y[i] = table_gelu_quick_f16[i16[i]];
  2927. // }
  2928. //}
  2929. #ifdef GGML_GELU_QUICK_FP16
  2930. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2931. uint16_t t;
  2932. for (int i = 0; i < n; ++i) {
  2933. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2934. memcpy(&t, &fp16, sizeof(uint16_t));
  2935. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2936. }
  2937. }
  2938. #else
  2939. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2940. for (int i = 0; i < n; ++i) {
  2941. y[i] = ggml_gelu_quick_f32(x[i]);
  2942. }
  2943. }
  2944. #endif
  2945. // Sigmoid Linear Unit (SiLU) function
  2946. inline static float ggml_silu_f32(float x) {
  2947. return x/(1.0f + expf(-x));
  2948. }
  2949. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2950. // const uint16_t * i16 = (const uint16_t *) x;
  2951. // for (int i = 0; i < n; ++i) {
  2952. // y[i] = table_silu_f16[i16[i]];
  2953. // }
  2954. //}
  2955. #ifdef GGML_SILU_FP16
  2956. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2957. uint16_t t;
  2958. for (int i = 0; i < n; ++i) {
  2959. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2960. memcpy(&t, &fp16, sizeof(uint16_t));
  2961. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2962. }
  2963. }
  2964. #else
  2965. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2966. for (int i = 0; i < n; ++i) {
  2967. y[i] = ggml_silu_f32(x[i]);
  2968. }
  2969. }
  2970. #endif
  2971. inline static float ggml_silu_backward_f32(float x, float dy) {
  2972. const float s = 1.0f/(1.0f + expf(-x));
  2973. return dy*s*(1.0f + x*(1.0f - s));
  2974. }
  2975. #ifdef GGML_SILU_FP16
  2976. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2977. for (int i = 0; i < n; ++i) {
  2978. // we did not use x[i] to compute forward silu but its f16 equivalent
  2979. // take derivative at f16 of x[i]:
  2980. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2981. float usedx = GGML_FP16_TO_FP32(fp16);
  2982. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2983. }
  2984. }
  2985. #else
  2986. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2987. for (int i = 0; i < n; ++i) {
  2988. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2989. }
  2990. }
  2991. #endif
  2992. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2993. #ifndef GGML_USE_ACCELERATE
  2994. ggml_float sum = 0.0;
  2995. for (int i = 0; i < n; ++i) {
  2996. sum += (ggml_float)x[i];
  2997. }
  2998. *s = sum;
  2999. #else
  3000. vDSP_sve(x, 1, s, n);
  3001. #endif
  3002. }
  3003. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3004. ggml_float sum = 0.0;
  3005. for (int i = 0; i < n; ++i) {
  3006. sum += (ggml_float)x[i];
  3007. }
  3008. *s = sum;
  3009. }
  3010. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3011. float sum = 0.0f;
  3012. for (int i = 0; i < n; ++i) {
  3013. sum += GGML_FP16_TO_FP32(x[i]);
  3014. }
  3015. *s = sum;
  3016. }
  3017. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3018. #ifndef GGML_USE_ACCELERATE
  3019. float max = -INFINITY;
  3020. for (int i = 0; i < n; ++i) {
  3021. max = MAX(max, x[i]);
  3022. }
  3023. *s = max;
  3024. #else
  3025. vDSP_maxv(x, 1, s, n);
  3026. #endif
  3027. }
  3028. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3029. ggml_vec_norm_f32(n, s, x);
  3030. *s = 1.f/(*s);
  3031. }
  3032. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3033. float max = -INFINITY;
  3034. int idx = 0;
  3035. for (int i = 0; i < n; ++i) {
  3036. max = MAX(max, x[i]);
  3037. if (max == x[i]) { idx = i; }
  3038. }
  3039. *s = idx;
  3040. }
  3041. //
  3042. // data types
  3043. //
  3044. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3045. "NONE",
  3046. "DUP",
  3047. "ADD",
  3048. "ADD1",
  3049. "ACC",
  3050. "SUB",
  3051. "MUL",
  3052. "DIV",
  3053. "SQR",
  3054. "SQRT",
  3055. "LOG",
  3056. "SUM",
  3057. "SUM_ROWS",
  3058. "MEAN",
  3059. "ARGMAX",
  3060. "REPEAT",
  3061. "REPEAT_BACK",
  3062. "CONCAT",
  3063. "SILU_BACK",
  3064. "NORM",
  3065. "RMS_NORM",
  3066. "RMS_NORM_BACK",
  3067. "GROUP_NORM",
  3068. "MUL_MAT",
  3069. "OUT_PROD",
  3070. "SCALE",
  3071. "SET",
  3072. "CPY",
  3073. "CONT",
  3074. "RESHAPE",
  3075. "VIEW",
  3076. "PERMUTE",
  3077. "TRANSPOSE",
  3078. "GET_ROWS",
  3079. "GET_ROWS_BACK",
  3080. "DIAG",
  3081. "DIAG_MASK_INF",
  3082. "DIAG_MASK_ZERO",
  3083. "SOFT_MAX",
  3084. "SOFT_MAX_BACK",
  3085. "ROPE",
  3086. "ROPE_BACK",
  3087. "ALIBI",
  3088. "CLAMP",
  3089. "CONV_1D",
  3090. "CONV_2D",
  3091. "CONV_TRANSPOSE_2D",
  3092. "POOL_1D",
  3093. "POOL_2D",
  3094. "UPSCALE",
  3095. "FLASH_ATTN",
  3096. "FLASH_FF",
  3097. "FLASH_ATTN_BACK",
  3098. "WIN_PART",
  3099. "WIN_UNPART",
  3100. "GET_REL_POS",
  3101. "ADD_REL_POS",
  3102. "UNARY",
  3103. "MAP_UNARY",
  3104. "MAP_BINARY",
  3105. "MAP_CUSTOM1_F32",
  3106. "MAP_CUSTOM2_F32",
  3107. "MAP_CUSTOM3_F32",
  3108. "MAP_CUSTOM1",
  3109. "MAP_CUSTOM2",
  3110. "MAP_CUSTOM3",
  3111. "CROSS_ENTROPY_LOSS",
  3112. "CROSS_ENTROPY_LOSS_BACK",
  3113. };
  3114. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3115. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3116. "none",
  3117. "x",
  3118. "x+y",
  3119. "x+y",
  3120. "view(x,nb,offset)+=y->x",
  3121. "x-y",
  3122. "x*y",
  3123. "x/y",
  3124. "x^2",
  3125. "√x",
  3126. "log(x)",
  3127. "Σx",
  3128. "Σx_k",
  3129. "Σx/n",
  3130. "argmax(x)",
  3131. "repeat(x)",
  3132. "repeat_back(x)",
  3133. "concat(x, y)",
  3134. "silu_back(x)",
  3135. "norm(x)",
  3136. "rms_norm(x)",
  3137. "rms_norm_back(x)",
  3138. "group_norm(x)",
  3139. "X*Y",
  3140. "X*Y",
  3141. "x*v",
  3142. "y-\\>view(x)",
  3143. "x-\\>y",
  3144. "cont(x)",
  3145. "reshape(x)",
  3146. "view(x)",
  3147. "permute(x)",
  3148. "transpose(x)",
  3149. "get_rows(x)",
  3150. "get_rows_back(x)",
  3151. "diag(x)",
  3152. "diag_mask_inf(x)",
  3153. "diag_mask_zero(x)",
  3154. "soft_max(x)",
  3155. "soft_max_back(x)",
  3156. "rope(x)",
  3157. "rope_back(x)",
  3158. "alibi(x)",
  3159. "clamp(x)",
  3160. "conv_1d(x)",
  3161. "conv_2d(x)",
  3162. "conv_transpose_2d(x)",
  3163. "pool_1d(x)",
  3164. "pool_2d(x)",
  3165. "upscale(x)",
  3166. "flash_attn(x)",
  3167. "flash_ff(x)",
  3168. "flash_attn_back(x)",
  3169. "win_part(x)",
  3170. "win_unpart(x)",
  3171. "get_rel_pos(x)",
  3172. "add_rel_pos(x)",
  3173. "unary(x)",
  3174. "f(x)",
  3175. "f(x,y)",
  3176. "custom_f32(x)",
  3177. "custom_f32(x,y)",
  3178. "custom_f32(x,y,z)",
  3179. "custom(x)",
  3180. "custom(x,y)",
  3181. "custom(x,y,z)",
  3182. "cross_entropy_loss(x,y)",
  3183. "cross_entropy_loss_back(x,y)",
  3184. };
  3185. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3186. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3187. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3188. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3189. // WARN:
  3190. // Mis-confguration can lead to problem that's hard to reason about:
  3191. // * At best it crash or talks nosense.
  3192. // * At worst it talks slightly difference but hard to perceive.
  3193. //
  3194. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3195. // Take care about compile options (e.g., GGML_USE_xxx).
  3196. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3197. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3198. static void ggml_setup_op_has_task_pass(void) {
  3199. { // INIT
  3200. bool * p = GGML_OP_HAS_INIT;
  3201. p[GGML_OP_ACC ] = true;
  3202. p[GGML_OP_MUL_MAT ] = true;
  3203. p[GGML_OP_OUT_PROD ] = true;
  3204. p[GGML_OP_SET ] = true;
  3205. p[GGML_OP_GET_ROWS_BACK ] = true;
  3206. p[GGML_OP_DIAG_MASK_INF ] = true;
  3207. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3208. p[GGML_OP_CONV_1D ] = true;
  3209. p[GGML_OP_CONV_2D ] = true;
  3210. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3211. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3212. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3213. p[GGML_OP_ADD_REL_POS ] = true;
  3214. }
  3215. { // FINALIZE
  3216. bool * p = GGML_OP_HAS_FINALIZE;
  3217. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3218. }
  3219. }
  3220. //
  3221. // ggml context
  3222. //
  3223. struct ggml_context {
  3224. size_t mem_size;
  3225. void * mem_buffer;
  3226. bool mem_buffer_owned;
  3227. bool no_alloc;
  3228. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3229. int n_objects;
  3230. struct ggml_object * objects_begin;
  3231. struct ggml_object * objects_end;
  3232. struct ggml_scratch scratch;
  3233. struct ggml_scratch scratch_save;
  3234. };
  3235. struct ggml_context_container {
  3236. bool used;
  3237. struct ggml_context context;
  3238. };
  3239. //
  3240. // NUMA support
  3241. //
  3242. #define GGML_NUMA_MAX_NODES 8
  3243. #define GGML_NUMA_MAX_CPUS 512
  3244. struct ggml_numa_node {
  3245. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3246. uint32_t n_cpus;
  3247. };
  3248. struct ggml_numa_nodes {
  3249. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3250. uint32_t n_nodes;
  3251. uint32_t total_cpus; // hardware threads on system
  3252. };
  3253. //
  3254. // ggml state
  3255. //
  3256. struct ggml_state {
  3257. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3258. struct ggml_numa_nodes numa;
  3259. };
  3260. // global state
  3261. static struct ggml_state g_state;
  3262. static atomic_int g_state_barrier = 0;
  3263. // barrier via spin lock
  3264. inline static void ggml_critical_section_start(void) {
  3265. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3266. while (processing > 0) {
  3267. // wait for other threads to finish
  3268. atomic_fetch_sub(&g_state_barrier, 1);
  3269. sched_yield(); // TODO: reconsider this
  3270. processing = atomic_fetch_add(&g_state_barrier, 1);
  3271. }
  3272. }
  3273. // TODO: make this somehow automatically executed
  3274. // some sort of "sentry" mechanism
  3275. inline static void ggml_critical_section_end(void) {
  3276. atomic_fetch_sub(&g_state_barrier, 1);
  3277. }
  3278. void ggml_numa_init(void) {
  3279. if (g_state.numa.n_nodes > 0) {
  3280. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3281. return;
  3282. }
  3283. #ifdef __linux__
  3284. struct stat st;
  3285. char path[256];
  3286. int rv;
  3287. // enumerate nodes
  3288. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3289. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3290. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3291. if (stat(path, &st) != 0) { break; }
  3292. ++g_state.numa.n_nodes;
  3293. }
  3294. // enumerate CPUs
  3295. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3296. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3297. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3298. if (stat(path, &st) != 0) { break; }
  3299. ++g_state.numa.total_cpus;
  3300. }
  3301. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3302. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3303. g_state.numa.n_nodes = 0;
  3304. return;
  3305. }
  3306. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3307. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3308. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3309. node->n_cpus = 0;
  3310. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3311. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3312. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3313. if (stat(path, &st) == 0) {
  3314. node->cpus[node->n_cpus++] = c;
  3315. GGML_PRINT_DEBUG(" %u", c);
  3316. }
  3317. }
  3318. GGML_PRINT_DEBUG("\n");
  3319. }
  3320. if (ggml_is_numa()) {
  3321. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3322. if (fptr != NULL) {
  3323. char buf[42];
  3324. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3325. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3326. }
  3327. fclose(fptr);
  3328. }
  3329. }
  3330. #else
  3331. // TODO
  3332. #endif
  3333. }
  3334. bool ggml_is_numa(void) {
  3335. return g_state.numa.n_nodes > 1;
  3336. }
  3337. ////////////////////////////////////////////////////////////////////////////////
  3338. void ggml_print_object(const struct ggml_object * obj) {
  3339. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3340. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3341. }
  3342. void ggml_print_objects(const struct ggml_context * ctx) {
  3343. struct ggml_object * obj = ctx->objects_begin;
  3344. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3345. while (obj != NULL) {
  3346. ggml_print_object(obj);
  3347. obj = obj->next;
  3348. }
  3349. GGML_PRINT("%s: --- end ---\n", __func__);
  3350. }
  3351. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3354. }
  3355. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3358. }
  3359. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. // this should handle cases where the tensor is not contiguous in memory
  3362. // probaby just:
  3363. //
  3364. // return tensor->ne[3]*tensor->nb[3]
  3365. //
  3366. // is enough, but just in case, adding the second part
  3367. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type));
  3368. }
  3369. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3370. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3371. }
  3372. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3373. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3374. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3375. }
  3376. int ggml_blck_size(enum ggml_type type) {
  3377. return type_traits[type].blck_size;
  3378. }
  3379. size_t ggml_type_size(enum ggml_type type) {
  3380. return type_traits[type].type_size;
  3381. }
  3382. float ggml_type_sizef(enum ggml_type type) {
  3383. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3384. }
  3385. const char * ggml_type_name(enum ggml_type type) {
  3386. return type_traits[type].type_name;
  3387. }
  3388. bool ggml_is_quantized(enum ggml_type type) {
  3389. return type_traits[type].is_quantized;
  3390. }
  3391. const char * ggml_op_name(enum ggml_op op) {
  3392. return GGML_OP_NAME[op];
  3393. }
  3394. const char * ggml_op_symbol(enum ggml_op op) {
  3395. return GGML_OP_SYMBOL[op];
  3396. }
  3397. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3398. return ggml_type_size(tensor->type);
  3399. }
  3400. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3401. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3402. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3403. }
  3404. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3406. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3407. }
  3408. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3409. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3410. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3411. }
  3412. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3413. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3414. return (t0->ne[0] == t1->ne[0]) &&
  3415. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3416. (t1->ne[3]%t0->ne[3] == 0);
  3417. }
  3418. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3420. return
  3421. (t0->ne[1] == t1->ne[1]) &&
  3422. (t0->ne[2] == t1->ne[2]) &&
  3423. (t0->ne[3] == t1->ne[3]);
  3424. }
  3425. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3426. enum ggml_type wtype = GGML_TYPE_COUNT;
  3427. switch (ftype) {
  3428. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3429. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3430. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3431. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3432. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3433. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3434. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3435. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3436. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3437. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3438. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3439. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3440. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3441. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3442. }
  3443. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3444. return wtype;
  3445. }
  3446. size_t ggml_tensor_overhead(void) {
  3447. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3448. }
  3449. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3450. return tensor->nb[0] > tensor->nb[1];
  3451. }
  3452. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3453. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3454. return
  3455. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3456. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3457. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3458. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3459. }
  3460. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3461. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3462. return
  3463. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3464. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3465. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3466. }
  3467. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3468. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3469. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3470. }
  3471. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3472. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3473. return
  3474. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3475. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3476. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3477. }
  3478. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return
  3481. (t0->ne[0] == t1->ne[0] ) &&
  3482. (t0->ne[1] == t1->ne[1] ) &&
  3483. (t0->ne[2] == t1->ne[2] ) &&
  3484. (t0->ne[3] == t1->ne[3] );
  3485. }
  3486. // check if t1 can be represented as a repeatition of t0
  3487. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3488. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3489. return
  3490. (t1->ne[0]%t0->ne[0] == 0) &&
  3491. (t1->ne[1]%t0->ne[1] == 0) &&
  3492. (t1->ne[2]%t0->ne[2] == 0) &&
  3493. (t1->ne[3]%t0->ne[3] == 0);
  3494. }
  3495. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3498. }
  3499. static inline int ggml_up32(int n) {
  3500. return (n + 31) & ~31;
  3501. }
  3502. //static inline int ggml_up64(int n) {
  3503. // return (n + 63) & ~63;
  3504. //}
  3505. static inline int ggml_up(int n, int m) {
  3506. // assert m is a power of 2
  3507. GGML_ASSERT((m & (m - 1)) == 0);
  3508. return (n + m - 1) & ~(m - 1);
  3509. }
  3510. // assert that pointer is aligned to GGML_MEM_ALIGN
  3511. #define ggml_assert_aligned(ptr) \
  3512. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3513. ////////////////////////////////////////////////////////////////////////////////
  3514. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3515. // make this function thread safe
  3516. ggml_critical_section_start();
  3517. static bool is_first_call = true;
  3518. if (is_first_call) {
  3519. // initialize time system (required on Windows)
  3520. ggml_time_init();
  3521. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3522. {
  3523. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3524. ggml_fp16_t ii;
  3525. for (int i = 0; i < (1 << 16); ++i) {
  3526. uint16_t ui = i;
  3527. memcpy(&ii, &ui, sizeof(ii));
  3528. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3529. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3530. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3531. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3532. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3533. }
  3534. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3535. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3536. }
  3537. // initialize g_state
  3538. {
  3539. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3540. g_state = (struct ggml_state) {
  3541. /*.contexts =*/ { { 0 } },
  3542. /*.numa =*/ {
  3543. .n_nodes = 0,
  3544. .total_cpus = 0,
  3545. },
  3546. };
  3547. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3548. g_state.contexts[i].used = false;
  3549. }
  3550. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3551. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3552. }
  3553. #if defined(GGML_USE_CUBLAS)
  3554. ggml_init_cublas();
  3555. #elif defined(GGML_USE_CLBLAST)
  3556. ggml_cl_init();
  3557. #endif
  3558. ggml_setup_op_has_task_pass();
  3559. is_first_call = false;
  3560. }
  3561. // find non-used context in g_state
  3562. struct ggml_context * ctx = NULL;
  3563. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3564. if (!g_state.contexts[i].used) {
  3565. g_state.contexts[i].used = true;
  3566. ctx = &g_state.contexts[i].context;
  3567. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3568. break;
  3569. }
  3570. }
  3571. if (ctx == NULL) {
  3572. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3573. ggml_critical_section_end();
  3574. return NULL;
  3575. }
  3576. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3577. *ctx = (struct ggml_context) {
  3578. /*.mem_size =*/ mem_size,
  3579. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3580. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3581. /*.no_alloc =*/ params.no_alloc,
  3582. /*.no_alloc_save =*/ params.no_alloc,
  3583. /*.n_objects =*/ 0,
  3584. /*.objects_begin =*/ NULL,
  3585. /*.objects_end =*/ NULL,
  3586. /*.scratch =*/ { 0, 0, NULL, },
  3587. /*.scratch_save =*/ { 0, 0, NULL, },
  3588. };
  3589. GGML_ASSERT(ctx->mem_buffer != NULL);
  3590. ggml_assert_aligned(ctx->mem_buffer);
  3591. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3592. ggml_critical_section_end();
  3593. return ctx;
  3594. }
  3595. void ggml_free(struct ggml_context * ctx) {
  3596. // make this function thread safe
  3597. ggml_critical_section_start();
  3598. bool found = false;
  3599. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3600. if (&g_state.contexts[i].context == ctx) {
  3601. g_state.contexts[i].used = false;
  3602. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3603. __func__, i, ggml_used_mem(ctx));
  3604. if (ctx->mem_buffer_owned) {
  3605. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3606. }
  3607. found = true;
  3608. break;
  3609. }
  3610. }
  3611. if (!found) {
  3612. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3613. }
  3614. ggml_critical_section_end();
  3615. }
  3616. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3617. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3618. }
  3619. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3620. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3621. ctx->scratch = scratch;
  3622. return result;
  3623. }
  3624. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3625. return ctx->no_alloc;
  3626. }
  3627. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3628. ctx->no_alloc = no_alloc;
  3629. }
  3630. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3631. return ctx->mem_buffer;
  3632. }
  3633. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3634. return ctx->mem_size;
  3635. }
  3636. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3637. size_t max_size = 0;
  3638. struct ggml_object * obj = ctx->objects_begin;
  3639. while (obj != NULL) {
  3640. if (obj->type == GGML_OBJECT_TENSOR) {
  3641. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3642. const size_t size = ggml_nbytes(tensor);
  3643. if (max_size < size) {
  3644. max_size = size;
  3645. }
  3646. }
  3647. obj = obj->next;
  3648. }
  3649. return max_size;
  3650. }
  3651. // IMPORTANT:
  3652. // when creating "opt" tensors, always save and load the scratch buffer
  3653. // this is an error prone process, but it is necessary to support inplace
  3654. // operators when using scratch buffers
  3655. // TODO: implement a better way
  3656. static void ggml_scratch_save(struct ggml_context * ctx) {
  3657. // this is needed to allow opt tensors to store their data
  3658. // TODO: again, need to find a better way
  3659. ctx->no_alloc_save = ctx->no_alloc;
  3660. ctx->no_alloc = false;
  3661. ctx->scratch_save = ctx->scratch;
  3662. ctx->scratch.data = NULL;
  3663. }
  3664. static void ggml_scratch_load(struct ggml_context * ctx) {
  3665. ctx->no_alloc = ctx->no_alloc_save;
  3666. ctx->scratch = ctx->scratch_save;
  3667. }
  3668. ////////////////////////////////////////////////////////////////////////////////
  3669. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3670. // always insert objects at the end of the context's memory pool
  3671. struct ggml_object * obj_cur = ctx->objects_end;
  3672. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3673. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3674. const size_t cur_end = cur_offs + cur_size;
  3675. // align to GGML_MEM_ALIGN
  3676. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3677. char * const mem_buffer = ctx->mem_buffer;
  3678. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3679. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3680. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3681. __func__, cur_end + size_needed, ctx->mem_size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. *obj_new = (struct ggml_object) {
  3686. .offs = cur_end + GGML_OBJECT_SIZE,
  3687. .size = size_needed,
  3688. .next = NULL,
  3689. .type = type,
  3690. };
  3691. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3692. if (obj_cur != NULL) {
  3693. obj_cur->next = obj_new;
  3694. } else {
  3695. // this is the first object in this context
  3696. ctx->objects_begin = obj_new;
  3697. }
  3698. ctx->objects_end = obj_new;
  3699. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3700. return obj_new;
  3701. }
  3702. static struct ggml_tensor * ggml_new_tensor_impl(
  3703. struct ggml_context * ctx,
  3704. enum ggml_type type,
  3705. int n_dims,
  3706. const int64_t * ne,
  3707. void * data) {
  3708. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3709. size_t data_size = 0;
  3710. if (data == NULL && !ctx->no_alloc) {
  3711. data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3712. for (int i = 1; i < n_dims; i++) {
  3713. data_size *= ne[i];
  3714. }
  3715. }
  3716. if (ctx->scratch.data != NULL && data == NULL) {
  3717. // allocate tensor data in the scratch buffer
  3718. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3719. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3720. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3721. assert(false);
  3722. return NULL;
  3723. }
  3724. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3725. ctx->scratch.offs += data_size;
  3726. data_size = 0;
  3727. }
  3728. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3729. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3730. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3731. *result = (struct ggml_tensor) {
  3732. /*.type =*/ type,
  3733. /*.backend =*/ GGML_BACKEND_CPU,
  3734. /*.n_dims =*/ n_dims,
  3735. /*.ne =*/ { 1, 1, 1, 1 },
  3736. /*.nb =*/ { 0, 0, 0, 0 },
  3737. /*.op =*/ GGML_OP_NONE,
  3738. /*.op_params =*/ { 0 },
  3739. /*.is_param =*/ false,
  3740. /*.grad =*/ NULL,
  3741. /*.src =*/ { NULL },
  3742. /*.perf_runs =*/ 0,
  3743. /*.perf_cycles =*/ 0,
  3744. /*.perf_time_us =*/ 0,
  3745. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3746. /*.name =*/ { 0 },
  3747. /*.extra =*/ NULL,
  3748. /*.padding =*/ { 0 },
  3749. };
  3750. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3751. //ggml_assert_aligned(result->data);
  3752. for (int i = 0; i < n_dims; i++) {
  3753. result->ne[i] = ne[i];
  3754. }
  3755. result->nb[0] = ggml_type_size(type);
  3756. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3757. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3758. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3759. }
  3760. ctx->n_objects++;
  3761. return result;
  3762. }
  3763. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3764. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3765. assert(params_size <= GGML_MAX_OP_PARAMS);
  3766. memcpy(tensor->op_params, params, params_size);
  3767. }
  3768. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3769. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3770. return ((const int32_t *)(tensor->op_params))[i];
  3771. }
  3772. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3773. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3774. ((int32_t *)(tensor->op_params))[i] = value;
  3775. }
  3776. struct ggml_tensor * ggml_new_tensor(
  3777. struct ggml_context * ctx,
  3778. enum ggml_type type,
  3779. int n_dims,
  3780. const int64_t * ne) {
  3781. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3782. }
  3783. struct ggml_tensor * ggml_new_tensor_1d(
  3784. struct ggml_context * ctx,
  3785. enum ggml_type type,
  3786. int64_t ne0) {
  3787. return ggml_new_tensor(ctx, type, 1, &ne0);
  3788. }
  3789. struct ggml_tensor * ggml_new_tensor_2d(
  3790. struct ggml_context * ctx,
  3791. enum ggml_type type,
  3792. int64_t ne0,
  3793. int64_t ne1) {
  3794. const int64_t ne[2] = { ne0, ne1 };
  3795. return ggml_new_tensor(ctx, type, 2, ne);
  3796. }
  3797. struct ggml_tensor * ggml_new_tensor_3d(
  3798. struct ggml_context * ctx,
  3799. enum ggml_type type,
  3800. int64_t ne0,
  3801. int64_t ne1,
  3802. int64_t ne2) {
  3803. const int64_t ne[3] = { ne0, ne1, ne2 };
  3804. return ggml_new_tensor(ctx, type, 3, ne);
  3805. }
  3806. struct ggml_tensor * ggml_new_tensor_4d(
  3807. struct ggml_context * ctx,
  3808. enum ggml_type type,
  3809. int64_t ne0,
  3810. int64_t ne1,
  3811. int64_t ne2,
  3812. int64_t ne3) {
  3813. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3814. return ggml_new_tensor(ctx, type, 4, ne);
  3815. }
  3816. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3817. ggml_scratch_save(ctx);
  3818. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3819. ggml_scratch_load(ctx);
  3820. ggml_set_i32(result, value);
  3821. return result;
  3822. }
  3823. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3824. ggml_scratch_save(ctx);
  3825. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3826. ggml_scratch_load(ctx);
  3827. ggml_set_f32(result, value);
  3828. return result;
  3829. }
  3830. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3831. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3832. }
  3833. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3834. memset(tensor->data, 0, ggml_nbytes(tensor));
  3835. return tensor;
  3836. }
  3837. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3838. const int n = ggml_nrows(tensor);
  3839. const int nc = tensor->ne[0];
  3840. const size_t n1 = tensor->nb[1];
  3841. char * const data = tensor->data;
  3842. switch (tensor->type) {
  3843. case GGML_TYPE_I8:
  3844. {
  3845. assert(tensor->nb[0] == sizeof(int8_t));
  3846. for (int i = 0; i < n; i++) {
  3847. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3848. }
  3849. } break;
  3850. case GGML_TYPE_I16:
  3851. {
  3852. assert(tensor->nb[0] == sizeof(int16_t));
  3853. for (int i = 0; i < n; i++) {
  3854. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3855. }
  3856. } break;
  3857. case GGML_TYPE_I32:
  3858. {
  3859. assert(tensor->nb[0] == sizeof(int32_t));
  3860. for (int i = 0; i < n; i++) {
  3861. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3862. }
  3863. } break;
  3864. case GGML_TYPE_F16:
  3865. {
  3866. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3867. for (int i = 0; i < n; i++) {
  3868. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3869. }
  3870. } break;
  3871. case GGML_TYPE_F32:
  3872. {
  3873. assert(tensor->nb[0] == sizeof(float));
  3874. for (int i = 0; i < n; i++) {
  3875. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3876. }
  3877. } break;
  3878. default:
  3879. {
  3880. GGML_ASSERT(false);
  3881. } break;
  3882. }
  3883. return tensor;
  3884. }
  3885. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3886. const int n = ggml_nrows(tensor);
  3887. const int nc = tensor->ne[0];
  3888. const size_t n1 = tensor->nb[1];
  3889. char * const data = tensor->data;
  3890. switch (tensor->type) {
  3891. case GGML_TYPE_I8:
  3892. {
  3893. assert(tensor->nb[0] == sizeof(int8_t));
  3894. for (int i = 0; i < n; i++) {
  3895. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3896. }
  3897. } break;
  3898. case GGML_TYPE_I16:
  3899. {
  3900. assert(tensor->nb[0] == sizeof(int16_t));
  3901. for (int i = 0; i < n; i++) {
  3902. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3903. }
  3904. } break;
  3905. case GGML_TYPE_I32:
  3906. {
  3907. assert(tensor->nb[0] == sizeof(int32_t));
  3908. for (int i = 0; i < n; i++) {
  3909. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3910. }
  3911. } break;
  3912. case GGML_TYPE_F16:
  3913. {
  3914. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3915. for (int i = 0; i < n; i++) {
  3916. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3917. }
  3918. } break;
  3919. case GGML_TYPE_F32:
  3920. {
  3921. assert(tensor->nb[0] == sizeof(float));
  3922. for (int i = 0; i < n; i++) {
  3923. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3924. }
  3925. } break;
  3926. default:
  3927. {
  3928. GGML_ASSERT(false);
  3929. } break;
  3930. }
  3931. return tensor;
  3932. }
  3933. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3934. switch (tensor->type) {
  3935. case GGML_TYPE_I8:
  3936. {
  3937. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3938. return ((int8_t *)(tensor->data))[i];
  3939. } break;
  3940. case GGML_TYPE_I16:
  3941. {
  3942. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3943. return ((int16_t *)(tensor->data))[i];
  3944. } break;
  3945. case GGML_TYPE_I32:
  3946. {
  3947. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3948. return ((int32_t *)(tensor->data))[i];
  3949. } break;
  3950. case GGML_TYPE_F16:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3953. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3954. } break;
  3955. case GGML_TYPE_F32:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3958. return ((float *)(tensor->data))[i];
  3959. } break;
  3960. default:
  3961. {
  3962. GGML_ASSERT(false);
  3963. } break;
  3964. }
  3965. return 0.0f;
  3966. }
  3967. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3968. switch (tensor->type) {
  3969. case GGML_TYPE_I8:
  3970. {
  3971. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3972. ((int8_t *)(tensor->data))[i] = value;
  3973. } break;
  3974. case GGML_TYPE_I16:
  3975. {
  3976. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3977. ((int16_t *)(tensor->data))[i] = value;
  3978. } break;
  3979. case GGML_TYPE_I32:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3982. ((int32_t *)(tensor->data))[i] = value;
  3983. } break;
  3984. case GGML_TYPE_F16:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3987. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3988. } break;
  3989. case GGML_TYPE_F32:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3992. ((float *)(tensor->data))[i] = value;
  3993. } break;
  3994. default:
  3995. {
  3996. GGML_ASSERT(false);
  3997. } break;
  3998. }
  3999. }
  4000. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4001. switch (tensor->type) {
  4002. case GGML_TYPE_I8:
  4003. {
  4004. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4005. return ((int8_t *)(tensor->data))[i];
  4006. } break;
  4007. case GGML_TYPE_I16:
  4008. {
  4009. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4010. return ((int16_t *)(tensor->data))[i];
  4011. } break;
  4012. case GGML_TYPE_I32:
  4013. {
  4014. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4015. return ((int32_t *)(tensor->data))[i];
  4016. } break;
  4017. case GGML_TYPE_F16:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4020. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4021. } break;
  4022. case GGML_TYPE_F32:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4025. return ((float *)(tensor->data))[i];
  4026. } break;
  4027. default:
  4028. {
  4029. GGML_ASSERT(false);
  4030. } break;
  4031. }
  4032. return 0.0f;
  4033. }
  4034. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4035. switch (tensor->type) {
  4036. case GGML_TYPE_I8:
  4037. {
  4038. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4039. ((int8_t *)(tensor->data))[i] = value;
  4040. } break;
  4041. case GGML_TYPE_I16:
  4042. {
  4043. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4044. ((int16_t *)(tensor->data))[i] = value;
  4045. } break;
  4046. case GGML_TYPE_I32:
  4047. {
  4048. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4049. ((int32_t *)(tensor->data))[i] = value;
  4050. } break;
  4051. case GGML_TYPE_F16:
  4052. {
  4053. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4054. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4055. } break;
  4056. case GGML_TYPE_F32:
  4057. {
  4058. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4059. ((float *)(tensor->data))[i] = value;
  4060. } break;
  4061. default:
  4062. {
  4063. GGML_ASSERT(false);
  4064. } break;
  4065. }
  4066. }
  4067. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4068. return tensor->data;
  4069. }
  4070. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4071. assert(tensor->type == GGML_TYPE_F32);
  4072. return (float *)(tensor->data);
  4073. }
  4074. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4075. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4076. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4077. }
  4078. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4079. return tensor->name;
  4080. }
  4081. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4082. strncpy(tensor->name, name, sizeof(tensor->name));
  4083. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4084. return tensor;
  4085. }
  4086. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4087. va_list args;
  4088. va_start(args, fmt);
  4089. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4090. va_end(args);
  4091. return tensor;
  4092. }
  4093. struct ggml_tensor * ggml_view_tensor(
  4094. struct ggml_context * ctx,
  4095. const struct ggml_tensor * src) {
  4096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4097. ggml_format_name(result, "%s (view)", src->name);
  4098. result->nb[0] = src->nb[0];
  4099. result->nb[1] = src->nb[1];
  4100. result->nb[2] = src->nb[2];
  4101. result->nb[3] = src->nb[3];
  4102. return result;
  4103. }
  4104. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4105. struct ggml_object * obj = ctx->objects_begin;
  4106. char * const mem_buffer = ctx->mem_buffer;
  4107. while (obj != NULL) {
  4108. if (obj->type == GGML_OBJECT_TENSOR) {
  4109. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4110. if (strcmp(cur->name, name) == 0) {
  4111. return cur;
  4112. }
  4113. }
  4114. obj = obj->next;
  4115. }
  4116. return NULL;
  4117. }
  4118. ////////////////////////////////////////////////////////////////////////////////
  4119. // ggml_dup
  4120. static struct ggml_tensor * ggml_dup_impl(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a,
  4123. bool inplace) {
  4124. bool is_node = false;
  4125. if (!inplace && (a->grad)) {
  4126. is_node = true;
  4127. }
  4128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4129. result->op = GGML_OP_DUP;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src[0] = a;
  4132. return result;
  4133. }
  4134. struct ggml_tensor * ggml_dup(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. return ggml_dup_impl(ctx, a, false);
  4138. }
  4139. struct ggml_tensor * ggml_dup_inplace(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a) {
  4142. return ggml_dup_impl(ctx, a, true);
  4143. }
  4144. // ggml_add
  4145. static struct ggml_tensor * ggml_add_impl(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b,
  4149. bool inplace) {
  4150. // TODO: support less-strict constraint
  4151. // GGML_ASSERT(ggml_can_repeat(b, a));
  4152. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4153. bool is_node = false;
  4154. if (!inplace && (a->grad || b->grad)) {
  4155. // TODO: support backward pass for broadcasting
  4156. GGML_ASSERT(ggml_are_same_shape(a, b));
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4160. result->op = GGML_OP_ADD;
  4161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4162. result->src[0] = a;
  4163. result->src[1] = b;
  4164. return result;
  4165. }
  4166. struct ggml_tensor * ggml_add(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. struct ggml_tensor * b) {
  4170. return ggml_add_impl(ctx, a, b, false);
  4171. }
  4172. struct ggml_tensor * ggml_add_inplace(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b) {
  4176. return ggml_add_impl(ctx, a, b, true);
  4177. }
  4178. // ggml_add1
  4179. static struct ggml_tensor * ggml_add1_impl(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b,
  4183. bool inplace) {
  4184. GGML_ASSERT(ggml_is_scalar(b));
  4185. GGML_ASSERT(ggml_is_padded_1d(a));
  4186. bool is_node = false;
  4187. if (a->grad || b->grad) {
  4188. is_node = true;
  4189. }
  4190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4191. result->op = GGML_OP_ADD1;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src[0] = a;
  4194. result->src[1] = b;
  4195. return result;
  4196. }
  4197. struct ggml_tensor * ggml_add1(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. struct ggml_tensor * b) {
  4201. return ggml_add1_impl(ctx, a, b, false);
  4202. }
  4203. struct ggml_tensor * ggml_add1_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. struct ggml_tensor * b) {
  4207. return ggml_add1_impl(ctx, a, b, true);
  4208. }
  4209. // ggml_acc
  4210. static struct ggml_tensor * ggml_acc_impl(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. struct ggml_tensor * b,
  4214. size_t nb1,
  4215. size_t nb2,
  4216. size_t nb3,
  4217. size_t offset,
  4218. bool inplace) {
  4219. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4220. GGML_ASSERT(ggml_is_contiguous(a));
  4221. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4222. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4223. bool is_node = false;
  4224. if (!inplace && (a->grad || b->grad)) {
  4225. is_node = true;
  4226. }
  4227. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4228. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4229. ggml_set_op_params(result, params, sizeof(params));
  4230. result->op = GGML_OP_ACC;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src[0] = a;
  4233. result->src[1] = b;
  4234. return result;
  4235. }
  4236. struct ggml_tensor * ggml_acc(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. struct ggml_tensor * b,
  4240. size_t nb1,
  4241. size_t nb2,
  4242. size_t nb3,
  4243. size_t offset) {
  4244. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4245. }
  4246. struct ggml_tensor * ggml_acc_inplace(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b,
  4250. size_t nb1,
  4251. size_t nb2,
  4252. size_t nb3,
  4253. size_t offset) {
  4254. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4255. }
  4256. // ggml_sub
  4257. static struct ggml_tensor * ggml_sub_impl(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. struct ggml_tensor * b,
  4261. bool inplace) {
  4262. GGML_ASSERT(ggml_are_same_shape(a, b));
  4263. bool is_node = false;
  4264. if (!inplace && (a->grad || b->grad)) {
  4265. is_node = true;
  4266. }
  4267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4268. result->op = GGML_OP_SUB;
  4269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4270. result->src[0] = a;
  4271. result->src[1] = b;
  4272. return result;
  4273. }
  4274. struct ggml_tensor * ggml_sub(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b) {
  4278. return ggml_sub_impl(ctx, a, b, false);
  4279. }
  4280. struct ggml_tensor * ggml_sub_inplace(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. return ggml_sub_impl(ctx, a, b, true);
  4285. }
  4286. // ggml_mul
  4287. static struct ggml_tensor * ggml_mul_impl(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b,
  4291. bool inplace) {
  4292. // TODO: support less-strict constraint
  4293. // GGML_ASSERT(ggml_can_repeat(b, a));
  4294. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad || b->grad)) {
  4297. // TODO: support backward pass for broadcasting
  4298. GGML_ASSERT(ggml_are_same_shape(a, b));
  4299. is_node = true;
  4300. }
  4301. if (inplace) {
  4302. GGML_ASSERT(is_node == false);
  4303. }
  4304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_MUL;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. result->src[1] = b;
  4309. return result;
  4310. }
  4311. struct ggml_tensor * ggml_mul(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b) {
  4315. return ggml_mul_impl(ctx, a, b, false);
  4316. }
  4317. struct ggml_tensor * ggml_mul_inplace(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. struct ggml_tensor * b) {
  4321. return ggml_mul_impl(ctx, a, b, true);
  4322. }
  4323. // ggml_div
  4324. static struct ggml_tensor * ggml_div_impl(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b,
  4328. bool inplace) {
  4329. GGML_ASSERT(ggml_are_same_shape(a, b));
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad || b->grad)) {
  4332. is_node = true;
  4333. }
  4334. if (inplace) {
  4335. GGML_ASSERT(is_node == false);
  4336. }
  4337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. result->op = GGML_OP_DIV;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = b;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_div(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. struct ggml_tensor * b) {
  4348. return ggml_div_impl(ctx, a, b, false);
  4349. }
  4350. struct ggml_tensor * ggml_div_inplace(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. struct ggml_tensor * b) {
  4354. return ggml_div_impl(ctx, a, b, true);
  4355. }
  4356. // ggml_sqr
  4357. static struct ggml_tensor * ggml_sqr_impl(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. bool inplace) {
  4361. bool is_node = false;
  4362. if (!inplace && (a->grad)) {
  4363. is_node = true;
  4364. }
  4365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4366. result->op = GGML_OP_SQR;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src[0] = a;
  4369. return result;
  4370. }
  4371. struct ggml_tensor * ggml_sqr(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a) {
  4374. return ggml_sqr_impl(ctx, a, false);
  4375. }
  4376. struct ggml_tensor * ggml_sqr_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_sqr_impl(ctx, a, true);
  4380. }
  4381. // ggml_sqrt
  4382. static struct ggml_tensor * ggml_sqrt_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. bool inplace) {
  4386. bool is_node = false;
  4387. if (!inplace && (a->grad)) {
  4388. is_node = true;
  4389. }
  4390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4391. result->op = GGML_OP_SQRT;
  4392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4393. result->src[0] = a;
  4394. return result;
  4395. }
  4396. struct ggml_tensor * ggml_sqrt(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a) {
  4399. return ggml_sqrt_impl(ctx, a, false);
  4400. }
  4401. struct ggml_tensor * ggml_sqrt_inplace(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_sqrt_impl(ctx, a, true);
  4405. }
  4406. // ggml_log
  4407. static struct ggml_tensor * ggml_log_impl(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. bool inplace) {
  4411. bool is_node = false;
  4412. if (!inplace && (a->grad)) {
  4413. is_node = true;
  4414. }
  4415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4416. result->op = GGML_OP_LOG;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src[0] = a;
  4419. return result;
  4420. }
  4421. struct ggml_tensor * ggml_log(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a) {
  4424. return ggml_log_impl(ctx, a, false);
  4425. }
  4426. struct ggml_tensor * ggml_log_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a) {
  4429. return ggml_log_impl(ctx, a, true);
  4430. }
  4431. // ggml_sum
  4432. struct ggml_tensor * ggml_sum(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a) {
  4435. bool is_node = false;
  4436. if (a->grad) {
  4437. is_node = true;
  4438. }
  4439. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4440. result->op = GGML_OP_SUM;
  4441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4442. result->src[0] = a;
  4443. return result;
  4444. }
  4445. // ggml_sum_rows
  4446. struct ggml_tensor * ggml_sum_rows(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a) {
  4449. bool is_node = false;
  4450. if (a->grad) {
  4451. is_node = true;
  4452. }
  4453. int64_t ne[4] = {1,1,1,1};
  4454. for (int i=1; i<a->n_dims; ++i) {
  4455. ne[i] = a->ne[i];
  4456. }
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4458. result->op = GGML_OP_SUM_ROWS;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src[0] = a;
  4461. return result;
  4462. }
  4463. // ggml_mean
  4464. struct ggml_tensor * ggml_mean(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a) {
  4467. bool is_node = false;
  4468. if (a->grad) {
  4469. GGML_ASSERT(false); // TODO: implement
  4470. is_node = true;
  4471. }
  4472. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4473. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4474. result->op = GGML_OP_MEAN;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src[0] = a;
  4477. return result;
  4478. }
  4479. // ggml_argmax
  4480. struct ggml_tensor * ggml_argmax(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. GGML_ASSERT(ggml_is_matrix(a));
  4484. bool is_node = false;
  4485. if (a->grad) {
  4486. GGML_ASSERT(false);
  4487. is_node = true;
  4488. }
  4489. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4491. result->op = GGML_OP_ARGMAX;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src[0] = a;
  4494. return result;
  4495. }
  4496. // ggml_repeat
  4497. struct ggml_tensor * ggml_repeat(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b) {
  4501. GGML_ASSERT(ggml_can_repeat(a, b));
  4502. bool is_node = false;
  4503. if (a->grad) {
  4504. is_node = true;
  4505. }
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4507. result->op = GGML_OP_REPEAT;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. result->src[1] = b;
  4511. return result;
  4512. }
  4513. // ggml_repeat_back
  4514. struct ggml_tensor * ggml_repeat_back(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b) {
  4518. GGML_ASSERT(ggml_can_repeat(b, a));
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. is_node = true;
  4522. }
  4523. if (ggml_are_same_shape(a, b) && !is_node) {
  4524. return a;
  4525. }
  4526. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4527. result->op = GGML_OP_REPEAT_BACK;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. result->src[1] = b;
  4531. return result;
  4532. }
  4533. // ggml_concat
  4534. struct ggml_tensor* ggml_concat(
  4535. struct ggml_context* ctx,
  4536. struct ggml_tensor* a,
  4537. struct ggml_tensor* b) {
  4538. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4539. bool is_node = false;
  4540. if (a->grad || b->grad) {
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4544. result->op = GGML_OP_CONCAT;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src[0] = a;
  4547. result->src[1] = b;
  4548. return result;
  4549. }
  4550. // ggml_abs
  4551. struct ggml_tensor * ggml_abs(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a) {
  4554. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4555. }
  4556. struct ggml_tensor * ggml_abs_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a) {
  4559. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4560. }
  4561. // ggml_sgn
  4562. struct ggml_tensor * ggml_sgn(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a) {
  4565. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4566. }
  4567. struct ggml_tensor * ggml_sgn_inplace(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a) {
  4570. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4571. }
  4572. // ggml_neg
  4573. struct ggml_tensor * ggml_neg(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a) {
  4576. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4577. }
  4578. struct ggml_tensor * ggml_neg_inplace(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a) {
  4581. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4582. }
  4583. // ggml_step
  4584. struct ggml_tensor * ggml_step(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4588. }
  4589. struct ggml_tensor * ggml_step_inplace(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a) {
  4592. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4593. }
  4594. // ggml_tanh
  4595. struct ggml_tensor * ggml_tanh(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4599. }
  4600. struct ggml_tensor * ggml_tanh_inplace(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4604. }
  4605. // ggml_elu
  4606. struct ggml_tensor * ggml_elu(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a) {
  4609. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4610. }
  4611. struct ggml_tensor * ggml_elu_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4615. }
  4616. // ggml_relu
  4617. struct ggml_tensor * ggml_relu(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a) {
  4620. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4621. }
  4622. struct ggml_tensor * ggml_relu_inplace(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4626. }
  4627. // ggml_gelu
  4628. struct ggml_tensor * ggml_gelu(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a) {
  4631. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4632. }
  4633. struct ggml_tensor * ggml_gelu_inplace(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a) {
  4636. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4637. }
  4638. // ggml_gelu_quick
  4639. struct ggml_tensor * ggml_gelu_quick(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a) {
  4642. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4643. }
  4644. struct ggml_tensor * ggml_gelu_quick_inplace(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a) {
  4647. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4648. }
  4649. // ggml_silu
  4650. struct ggml_tensor * ggml_silu(
  4651. struct ggml_context * ctx,
  4652. struct ggml_tensor * a) {
  4653. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4654. }
  4655. struct ggml_tensor * ggml_silu_inplace(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4659. }
  4660. // ggml_silu_back
  4661. struct ggml_tensor * ggml_silu_back(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. struct ggml_tensor * b) {
  4665. bool is_node = false;
  4666. if (a->grad || b->grad) {
  4667. // TODO: implement backward
  4668. is_node = true;
  4669. }
  4670. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4671. result->op = GGML_OP_SILU_BACK;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. result->src[1] = b;
  4675. return result;
  4676. }
  4677. // ggml_norm
  4678. static struct ggml_tensor * ggml_norm_impl(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. float eps,
  4682. bool inplace) {
  4683. bool is_node = false;
  4684. if (!inplace && (a->grad)) {
  4685. GGML_ASSERT(false); // TODO: implement backward
  4686. is_node = true;
  4687. }
  4688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. ggml_set_op_params(result, &eps, sizeof(eps));
  4690. result->op = GGML_OP_NORM;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src[0] = a;
  4693. return result;
  4694. }
  4695. struct ggml_tensor * ggml_norm(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. float eps) {
  4699. return ggml_norm_impl(ctx, a, eps, false);
  4700. }
  4701. struct ggml_tensor * ggml_norm_inplace(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. float eps) {
  4705. return ggml_norm_impl(ctx, a, eps, true);
  4706. }
  4707. // ggml_rms_norm
  4708. static struct ggml_tensor * ggml_rms_norm_impl(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. float eps,
  4712. bool inplace) {
  4713. bool is_node = false;
  4714. if (!inplace && (a->grad)) {
  4715. is_node = true;
  4716. }
  4717. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4718. ggml_set_op_params(result, &eps, sizeof(eps));
  4719. result->op = GGML_OP_RMS_NORM;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. return result;
  4723. }
  4724. struct ggml_tensor * ggml_rms_norm(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. float eps) {
  4728. return ggml_rms_norm_impl(ctx, a, eps, false);
  4729. }
  4730. struct ggml_tensor * ggml_rms_norm_inplace(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. float eps) {
  4734. return ggml_rms_norm_impl(ctx, a, eps, true);
  4735. }
  4736. // ggml_rms_norm_back
  4737. struct ggml_tensor * ggml_rms_norm_back(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. struct ggml_tensor * b) {
  4741. bool is_node = false;
  4742. if (a->grad) {
  4743. // TODO: implement backward
  4744. is_node = true;
  4745. }
  4746. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4747. result->op = GGML_OP_RMS_NORM_BACK;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src[0] = a;
  4750. result->src[1] = b;
  4751. return result;
  4752. }
  4753. // ggml_group_norm
  4754. static struct ggml_tensor * ggml_group_norm_impl(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. int n_groups,
  4758. bool inplace) {
  4759. bool is_node = false;
  4760. if (!inplace && (a->grad)) {
  4761. GGML_ASSERT(false); // TODO: implement backward
  4762. is_node = true;
  4763. }
  4764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4765. result->op = GGML_OP_GROUP_NORM;
  4766. result->op_params[0] = n_groups;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src[0] = a;
  4769. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_group_norm(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. int n_groups) {
  4776. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4777. }
  4778. struct ggml_tensor * ggml_group_norm_inplace(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. int n_groups) {
  4782. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4783. }
  4784. // ggml_mul_mat
  4785. struct ggml_tensor * ggml_mul_mat(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. struct ggml_tensor * b) {
  4789. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4790. GGML_ASSERT(!ggml_is_transposed(a));
  4791. bool is_node = false;
  4792. if (a->grad || b->grad) {
  4793. is_node = true;
  4794. }
  4795. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4796. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4797. result->op = GGML_OP_MUL_MAT;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src[0] = a;
  4800. result->src[1] = b;
  4801. return result;
  4802. }
  4803. // ggml_out_prod
  4804. struct ggml_tensor * ggml_out_prod(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. struct ggml_tensor * b) {
  4808. GGML_ASSERT(ggml_can_out_prod(a, b));
  4809. GGML_ASSERT(!ggml_is_transposed(a));
  4810. bool is_node = false;
  4811. if (a->grad || b->grad) {
  4812. is_node = true;
  4813. }
  4814. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4815. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4816. result->op = GGML_OP_OUT_PROD;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. result->src[1] = b;
  4820. return result;
  4821. }
  4822. // ggml_scale
  4823. static struct ggml_tensor * ggml_scale_impl(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. struct ggml_tensor * b,
  4827. bool inplace) {
  4828. GGML_ASSERT(ggml_is_scalar(b));
  4829. GGML_ASSERT(ggml_is_padded_1d(a));
  4830. bool is_node = false;
  4831. if (a->grad || b->grad) {
  4832. is_node = true;
  4833. }
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. result->op = GGML_OP_SCALE;
  4836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4837. result->src[0] = a;
  4838. result->src[1] = b;
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_scale(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. struct ggml_tensor * b) {
  4845. return ggml_scale_impl(ctx, a, b, false);
  4846. }
  4847. struct ggml_tensor * ggml_scale_inplace(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. struct ggml_tensor * b) {
  4851. return ggml_scale_impl(ctx, a, b, true);
  4852. }
  4853. // ggml_set
  4854. static struct ggml_tensor * ggml_set_impl(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. struct ggml_tensor * b,
  4858. size_t nb1,
  4859. size_t nb2,
  4860. size_t nb3,
  4861. size_t offset,
  4862. bool inplace) {
  4863. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4864. bool is_node = false;
  4865. if (a->grad || b->grad) {
  4866. is_node = true;
  4867. }
  4868. // make a view of the destination
  4869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4870. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4871. ggml_set_op_params(result, params, sizeof(params));
  4872. result->op = GGML_OP_SET;
  4873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4874. result->src[0] = a;
  4875. result->src[1] = b;
  4876. return result;
  4877. }
  4878. struct ggml_tensor * ggml_set(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. struct ggml_tensor * b,
  4882. size_t nb1,
  4883. size_t nb2,
  4884. size_t nb3,
  4885. size_t offset) {
  4886. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4887. }
  4888. struct ggml_tensor * ggml_set_inplace(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. struct ggml_tensor * b,
  4892. size_t nb1,
  4893. size_t nb2,
  4894. size_t nb3,
  4895. size_t offset) {
  4896. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4897. }
  4898. struct ggml_tensor * ggml_set_1d(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. struct ggml_tensor * b,
  4902. size_t offset) {
  4903. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4904. }
  4905. struct ggml_tensor * ggml_set_1d_inplace(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. struct ggml_tensor * b,
  4909. size_t offset) {
  4910. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4911. }
  4912. struct ggml_tensor * ggml_set_2d(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. struct ggml_tensor * b,
  4916. size_t nb1,
  4917. size_t offset) {
  4918. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4919. }
  4920. struct ggml_tensor * ggml_set_2d_inplace(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. struct ggml_tensor * b,
  4924. size_t nb1,
  4925. size_t offset) {
  4926. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4927. }
  4928. // ggml_cpy
  4929. static struct ggml_tensor * ggml_cpy_impl(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. struct ggml_tensor * b,
  4933. bool inplace) {
  4934. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4935. bool is_node = false;
  4936. if (!inplace && (a->grad || b->grad)) {
  4937. is_node = true;
  4938. }
  4939. // make a view of the destination
  4940. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4941. if (strlen(b->name) > 0) {
  4942. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4943. } else {
  4944. ggml_format_name(result, "%s (copy)", a->name);
  4945. }
  4946. result->op = GGML_OP_CPY;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = a;
  4949. result->src[1] = b;
  4950. return result;
  4951. }
  4952. struct ggml_tensor * ggml_cpy(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. struct ggml_tensor * b) {
  4956. return ggml_cpy_impl(ctx, a, b, false);
  4957. }
  4958. struct ggml_tensor * ggml_cpy_inplace(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b) {
  4962. return ggml_cpy_impl(ctx, a, b, true);
  4963. }
  4964. // ggml_cont
  4965. static struct ggml_tensor * ggml_cont_impl(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a,
  4968. bool inplace) {
  4969. bool is_node = false;
  4970. if (!inplace && a->grad) {
  4971. is_node = true;
  4972. }
  4973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4974. ggml_format_name(result, "%s (cont)", a->name);
  4975. result->op = GGML_OP_CONT;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. return result;
  4979. }
  4980. struct ggml_tensor * ggml_cont(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a) {
  4983. return ggml_cont_impl(ctx, a, false);
  4984. }
  4985. struct ggml_tensor * ggml_cont_inplace(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a) {
  4988. return ggml_cont_impl(ctx, a, true);
  4989. }
  4990. // ggml_reshape
  4991. struct ggml_tensor * ggml_reshape(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b) {
  4995. GGML_ASSERT(ggml_is_contiguous(a));
  4996. GGML_ASSERT(ggml_is_contiguous(b));
  4997. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4998. bool is_node = false;
  4999. if (a->grad) {
  5000. is_node = true;
  5001. }
  5002. if (b->grad) {
  5003. // gradient propagation is not supported
  5004. //GGML_ASSERT(false);
  5005. }
  5006. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5007. ggml_format_name(result, "%s (reshaped)", a->name);
  5008. result->op = GGML_OP_RESHAPE;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src[0] = a;
  5011. return result;
  5012. }
  5013. struct ggml_tensor * ggml_reshape_1d(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. int64_t ne0) {
  5017. GGML_ASSERT(ggml_is_contiguous(a));
  5018. GGML_ASSERT(ggml_nelements(a) == ne0);
  5019. bool is_node = false;
  5020. if (a->grad) {
  5021. is_node = true;
  5022. }
  5023. const int64_t ne[1] = { ne0 };
  5024. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5025. ggml_format_name(result, "%s (reshaped)", a->name);
  5026. result->op = GGML_OP_RESHAPE;
  5027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5028. result->src[0] = a;
  5029. return result;
  5030. }
  5031. struct ggml_tensor * ggml_reshape_2d(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * a,
  5034. int64_t ne0,
  5035. int64_t ne1) {
  5036. GGML_ASSERT(ggml_is_contiguous(a));
  5037. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5038. bool is_node = false;
  5039. if (a->grad) {
  5040. is_node = true;
  5041. }
  5042. const int64_t ne[2] = { ne0, ne1 };
  5043. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5044. ggml_format_name(result, "%s (reshaped)", a->name);
  5045. result->op = GGML_OP_RESHAPE;
  5046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5047. result->src[0] = a;
  5048. return result;
  5049. }
  5050. struct ggml_tensor * ggml_reshape_3d(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. int64_t ne0,
  5054. int64_t ne1,
  5055. int64_t ne2) {
  5056. GGML_ASSERT(ggml_is_contiguous(a));
  5057. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5058. bool is_node = false;
  5059. if (a->grad) {
  5060. is_node = true;
  5061. }
  5062. const int64_t ne[3] = { ne0, ne1, ne2 };
  5063. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5064. ggml_format_name(result, "%s (reshaped)", a->name);
  5065. result->op = GGML_OP_RESHAPE;
  5066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5067. result->src[0] = a;
  5068. return result;
  5069. }
  5070. struct ggml_tensor * ggml_reshape_4d(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. int64_t ne0,
  5074. int64_t ne1,
  5075. int64_t ne2,
  5076. int64_t ne3) {
  5077. GGML_ASSERT(ggml_is_contiguous(a));
  5078. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5084. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5085. ggml_format_name(result, "%s (reshaped)", a->name);
  5086. result->op = GGML_OP_RESHAPE;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src[0] = a;
  5089. return result;
  5090. }
  5091. // ggml_view_1d
  5092. static struct ggml_tensor * ggml_view_tensor_offset(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. int n_dims,
  5096. const int64_t * ne,
  5097. size_t offset) {
  5098. // don't calculate an offset from an unallocated tensor
  5099. void * data = NULL;
  5100. if (a->data != NULL) {
  5101. data = (char *) a->data + offset;
  5102. }
  5103. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5104. ggml_format_name(result, "%s (view)", a->name);
  5105. ggml_set_op_params(result, &offset, sizeof(offset));
  5106. return result;
  5107. }
  5108. struct ggml_tensor * ggml_view_1d(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. int64_t ne0,
  5112. size_t offset) {
  5113. bool is_node = false;
  5114. if (a->grad) {
  5115. is_node = true;
  5116. }
  5117. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5118. result->op = GGML_OP_VIEW;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. return result;
  5122. }
  5123. // ggml_view_2d
  5124. struct ggml_tensor * ggml_view_2d(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. int64_t ne0,
  5128. int64_t ne1,
  5129. size_t nb1,
  5130. size_t offset) {
  5131. bool is_node = false;
  5132. if (a->grad) {
  5133. is_node = true;
  5134. }
  5135. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5136. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5137. result->nb[1] = nb1;
  5138. result->nb[2] = result->nb[1]*ne1;
  5139. result->nb[3] = result->nb[2];
  5140. result->op = GGML_OP_VIEW;
  5141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5142. result->src[0] = a;
  5143. return result;
  5144. }
  5145. // ggml_view_3d
  5146. struct ggml_tensor * ggml_view_3d(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. int64_t ne0,
  5150. int64_t ne1,
  5151. int64_t ne2,
  5152. size_t nb1,
  5153. size_t nb2,
  5154. size_t offset) {
  5155. bool is_node = false;
  5156. if (a->grad) {
  5157. is_node = true;
  5158. }
  5159. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5160. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5161. result->nb[1] = nb1;
  5162. result->nb[2] = nb2;
  5163. result->nb[3] = result->nb[2]*ne2;
  5164. result->op = GGML_OP_VIEW;
  5165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5166. result->src[0] = a;
  5167. return result;
  5168. }
  5169. // ggml_view_4d
  5170. struct ggml_tensor * ggml_view_4d(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * a,
  5173. int64_t ne0,
  5174. int64_t ne1,
  5175. int64_t ne2,
  5176. int64_t ne3,
  5177. size_t nb1,
  5178. size_t nb2,
  5179. size_t nb3,
  5180. size_t offset) {
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. is_node = true;
  5184. }
  5185. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5186. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5187. result->nb[1] = nb1;
  5188. result->nb[2] = nb2;
  5189. result->nb[3] = nb3;
  5190. result->op = GGML_OP_VIEW;
  5191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5192. result->src[0] = a;
  5193. return result;
  5194. }
  5195. // ggml_permute
  5196. struct ggml_tensor * ggml_permute(
  5197. struct ggml_context * ctx,
  5198. struct ggml_tensor * a,
  5199. int axis0,
  5200. int axis1,
  5201. int axis2,
  5202. int axis3) {
  5203. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5204. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5205. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5206. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5207. GGML_ASSERT(axis0 != axis1);
  5208. GGML_ASSERT(axis0 != axis2);
  5209. GGML_ASSERT(axis0 != axis3);
  5210. GGML_ASSERT(axis1 != axis2);
  5211. GGML_ASSERT(axis1 != axis3);
  5212. GGML_ASSERT(axis2 != axis3);
  5213. bool is_node = false;
  5214. if (a->grad) {
  5215. is_node = true;
  5216. }
  5217. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5218. ggml_format_name(result, "%s (permuted)", a->name);
  5219. int ne[GGML_MAX_DIMS];
  5220. int nb[GGML_MAX_DIMS];
  5221. ne[axis0] = a->ne[0];
  5222. ne[axis1] = a->ne[1];
  5223. ne[axis2] = a->ne[2];
  5224. ne[axis3] = a->ne[3];
  5225. nb[axis0] = a->nb[0];
  5226. nb[axis1] = a->nb[1];
  5227. nb[axis2] = a->nb[2];
  5228. nb[axis3] = a->nb[3];
  5229. result->ne[0] = ne[0];
  5230. result->ne[1] = ne[1];
  5231. result->ne[2] = ne[2];
  5232. result->ne[3] = ne[3];
  5233. result->nb[0] = nb[0];
  5234. result->nb[1] = nb[1];
  5235. result->nb[2] = nb[2];
  5236. result->nb[3] = nb[3];
  5237. result->op = GGML_OP_PERMUTE;
  5238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5239. result->src[0] = a;
  5240. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5241. ggml_set_op_params(result, params, sizeof(params));
  5242. return result;
  5243. }
  5244. // ggml_transpose
  5245. struct ggml_tensor * ggml_transpose(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a) {
  5248. bool is_node = false;
  5249. if (a->grad) {
  5250. is_node = true;
  5251. }
  5252. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5253. ggml_format_name(result, "%s (transposed)", a->name);
  5254. result->ne[0] = a->ne[1];
  5255. result->ne[1] = a->ne[0];
  5256. result->nb[0] = a->nb[1];
  5257. result->nb[1] = a->nb[0];
  5258. result->op = GGML_OP_TRANSPOSE;
  5259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5260. result->src[0] = a;
  5261. return result;
  5262. }
  5263. // ggml_get_rows
  5264. struct ggml_tensor * ggml_get_rows(
  5265. struct ggml_context * ctx,
  5266. struct ggml_tensor * a,
  5267. struct ggml_tensor * b) {
  5268. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5269. bool is_node = false;
  5270. if (a->grad || b->grad) {
  5271. is_node = true;
  5272. }
  5273. // TODO: implement non F32 return
  5274. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5275. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5276. result->op = GGML_OP_GET_ROWS;
  5277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5278. result->src[0] = a;
  5279. result->src[1] = b;
  5280. return result;
  5281. }
  5282. // ggml_get_rows_back
  5283. struct ggml_tensor * ggml_get_rows_back(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. struct ggml_tensor * b,
  5287. struct ggml_tensor * c) {
  5288. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5289. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5290. bool is_node = false;
  5291. if (a->grad || b->grad) {
  5292. is_node = true;
  5293. }
  5294. // TODO: implement non F32 return
  5295. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5296. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5297. result->op = GGML_OP_GET_ROWS_BACK;
  5298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5299. result->src[0] = a;
  5300. result->src[1] = b;
  5301. result->src[2] = c;
  5302. return result;
  5303. }
  5304. // ggml_diag
  5305. struct ggml_tensor * ggml_diag(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a) {
  5308. GGML_ASSERT(a->ne[1] == 1);
  5309. bool is_node = false;
  5310. if (a->grad) {
  5311. is_node = true;
  5312. }
  5313. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5314. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5315. result->op = GGML_OP_DIAG;
  5316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5317. result->src[0] = a;
  5318. return result;
  5319. }
  5320. // ggml_diag_mask_inf
  5321. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. int n_past,
  5325. bool inplace) {
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. is_node = true;
  5329. }
  5330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5331. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5332. ggml_set_op_params(result, params, sizeof(params));
  5333. result->op = GGML_OP_DIAG_MASK_INF;
  5334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5335. result->src[0] = a;
  5336. return result;
  5337. }
  5338. struct ggml_tensor * ggml_diag_mask_inf(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. int n_past) {
  5342. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5343. }
  5344. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. int n_past) {
  5348. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5349. }
  5350. // ggml_diag_mask_zero
  5351. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. int n_past,
  5355. bool inplace) {
  5356. bool is_node = false;
  5357. if (a->grad) {
  5358. is_node = true;
  5359. }
  5360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5361. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5362. ggml_set_op_params(result, params, sizeof(params));
  5363. result->op = GGML_OP_DIAG_MASK_ZERO;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src[0] = a;
  5366. return result;
  5367. }
  5368. struct ggml_tensor * ggml_diag_mask_zero(
  5369. struct ggml_context * ctx,
  5370. struct ggml_tensor * a,
  5371. int n_past) {
  5372. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5373. }
  5374. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. int n_past) {
  5378. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5379. }
  5380. // ggml_soft_max
  5381. static struct ggml_tensor * ggml_soft_max_impl(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * a,
  5384. bool inplace) {
  5385. bool is_node = false;
  5386. if (a->grad) {
  5387. is_node = true;
  5388. }
  5389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5390. result->op = GGML_OP_SOFT_MAX;
  5391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5392. result->src[0] = a;
  5393. return result;
  5394. }
  5395. struct ggml_tensor * ggml_soft_max(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a) {
  5398. return ggml_soft_max_impl(ctx, a, false);
  5399. }
  5400. struct ggml_tensor * ggml_soft_max_inplace(
  5401. struct ggml_context * ctx,
  5402. struct ggml_tensor * a) {
  5403. return ggml_soft_max_impl(ctx, a, true);
  5404. }
  5405. // ggml_soft_max_back
  5406. static struct ggml_tensor * ggml_soft_max_back_impl(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. struct ggml_tensor * b,
  5410. bool inplace) {
  5411. bool is_node = false;
  5412. if (a->grad || b->grad) {
  5413. is_node = true; // TODO : implement backward pass
  5414. }
  5415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5416. result->op = GGML_OP_SOFT_MAX_BACK;
  5417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5418. result->src[0] = a;
  5419. result->src[1] = b;
  5420. return result;
  5421. }
  5422. struct ggml_tensor * ggml_soft_max_back(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. struct ggml_tensor * b) {
  5426. return ggml_soft_max_back_impl(ctx, a, b, false);
  5427. }
  5428. struct ggml_tensor * ggml_soft_max_back_inplace(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. struct ggml_tensor * b) {
  5432. return ggml_soft_max_back_impl(ctx, a, b, true);
  5433. }
  5434. // ggml_rope
  5435. static struct ggml_tensor * ggml_rope_impl(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. int n_past,
  5439. int n_dims,
  5440. int mode,
  5441. int n_ctx,
  5442. float freq_base,
  5443. float freq_scale,
  5444. float xpos_base,
  5445. bool xpos_down,
  5446. bool inplace) {
  5447. GGML_ASSERT(n_past >= 0);
  5448. bool is_node = false;
  5449. if (a->grad) {
  5450. is_node = true;
  5451. }
  5452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5453. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5454. memcpy(params + 4, &freq_base, sizeof(float));
  5455. memcpy(params + 5, &freq_scale, sizeof(float));
  5456. memcpy(params + 6, &xpos_base, sizeof(float));
  5457. memcpy(params + 7, &xpos_down, sizeof(bool));
  5458. ggml_set_op_params(result, params, sizeof(params));
  5459. result->op = GGML_OP_ROPE;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. return result;
  5463. }
  5464. struct ggml_tensor * ggml_rope(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past,
  5468. int n_dims,
  5469. int mode,
  5470. int n_ctx) {
  5471. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5472. }
  5473. struct ggml_tensor * ggml_rope_inplace(
  5474. struct ggml_context * ctx,
  5475. struct ggml_tensor * a,
  5476. int n_past,
  5477. int n_dims,
  5478. int mode,
  5479. int n_ctx) {
  5480. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5481. }
  5482. struct ggml_tensor * ggml_rope_custom(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * a,
  5485. int n_past,
  5486. int n_dims,
  5487. int mode,
  5488. int n_ctx,
  5489. float freq_base,
  5490. float freq_scale) {
  5491. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5492. }
  5493. struct ggml_tensor * ggml_rope_custom_inplace(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past,
  5497. int n_dims,
  5498. int mode,
  5499. int n_ctx,
  5500. float freq_base,
  5501. float freq_scale) {
  5502. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5503. }
  5504. struct ggml_tensor * ggml_rope_xpos_inplace(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. int n_past,
  5508. int n_dims,
  5509. float base,
  5510. bool down) {
  5511. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5512. }
  5513. // ggml_rope_back
  5514. struct ggml_tensor * ggml_rope_back(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. int n_past,
  5518. int n_dims,
  5519. int mode,
  5520. int n_ctx,
  5521. float freq_base,
  5522. float freq_scale,
  5523. float xpos_base,
  5524. bool xpos_down) {
  5525. GGML_ASSERT(n_past >= 0);
  5526. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5527. bool is_node = false;
  5528. if (a->grad) {
  5529. is_node = false; // TODO: implement backward
  5530. }
  5531. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5532. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5533. memcpy(params + 4, &freq_base, sizeof(float));
  5534. memcpy(params + 5, &freq_scale, sizeof(float));
  5535. memcpy(params + 6, &xpos_base, sizeof(float));
  5536. memcpy(params + 7, &xpos_down, sizeof(bool));
  5537. ggml_set_op_params(result, params, sizeof(params));
  5538. result->op = GGML_OP_ROPE_BACK;
  5539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5540. result->src[0] = a;
  5541. return result;
  5542. }
  5543. // ggml_alibi
  5544. struct ggml_tensor * ggml_alibi(
  5545. struct ggml_context * ctx,
  5546. struct ggml_tensor * a,
  5547. int n_past,
  5548. int n_head,
  5549. float bias_max) {
  5550. GGML_ASSERT(n_past >= 0);
  5551. bool is_node = false;
  5552. if (a->grad) {
  5553. GGML_ASSERT(false); // TODO: implement backward
  5554. is_node = true;
  5555. }
  5556. // TODO: when implement backward, fix this:
  5557. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5558. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5559. int32_t op_params[3] = { n_past, n_head };
  5560. memcpy(op_params + 2, &bias_max, sizeof(float));
  5561. ggml_set_op_params(result, op_params, sizeof(op_params));
  5562. result->op = GGML_OP_ALIBI;
  5563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5564. result->src[0] = a;
  5565. return result;
  5566. }
  5567. // ggml_clamp
  5568. struct ggml_tensor * ggml_clamp(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. float min,
  5572. float max) {
  5573. bool is_node = false;
  5574. if (a->grad) {
  5575. GGML_ASSERT(false); // TODO: implement backward
  5576. is_node = true;
  5577. }
  5578. // TODO: when implement backward, fix this:
  5579. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5580. float params[] = { min, max };
  5581. ggml_set_op_params(result, params, sizeof(params));
  5582. result->op = GGML_OP_CLAMP;
  5583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5584. result->src[0] = a;
  5585. return result;
  5586. }
  5587. // ggml_conv_1d
  5588. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5589. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5590. }
  5591. GGML_API struct ggml_tensor * ggml_conv_1d(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. struct ggml_tensor * b,
  5595. int s0,
  5596. int p0,
  5597. int d0) {
  5598. GGML_ASSERT(ggml_is_matrix(b));
  5599. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5600. bool is_node = false;
  5601. if (a->grad || b->grad) {
  5602. GGML_ASSERT(false); // TODO: implement backward
  5603. is_node = true;
  5604. }
  5605. const int64_t ne[4] = {
  5606. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5607. a->ne[2], 1, 1,
  5608. };
  5609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5610. int32_t params[] = { s0, p0, d0 };
  5611. ggml_set_op_params(result, params, sizeof(params));
  5612. result->op = GGML_OP_CONV_1D;
  5613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5614. result->src[0] = a;
  5615. result->src[1] = b;
  5616. return result;
  5617. }
  5618. // ggml_conv_1d_ph
  5619. struct ggml_tensor* ggml_conv_1d_ph(
  5620. struct ggml_context * ctx,
  5621. struct ggml_tensor * a,
  5622. struct ggml_tensor * b,
  5623. int s,
  5624. int d) {
  5625. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5626. }
  5627. // ggml_conv_2d
  5628. struct ggml_tensor * ggml_conv_2d(
  5629. struct ggml_context * ctx,
  5630. struct ggml_tensor * a,
  5631. struct ggml_tensor * b,
  5632. int s0,
  5633. int s1,
  5634. int p0,
  5635. int p1,
  5636. int d0,
  5637. int d1) {
  5638. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5639. bool is_node = false;
  5640. if (a->grad || b->grad) {
  5641. GGML_ASSERT(false); // TODO: implement backward
  5642. is_node = true;
  5643. }
  5644. const int64_t ne[4] = {
  5645. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5646. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5647. a->ne[3], b->ne[3],
  5648. };
  5649. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5650. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5651. ggml_set_op_params(result, params, sizeof(params));
  5652. result->op = GGML_OP_CONV_2D;
  5653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5654. result->src[0] = a;
  5655. result->src[1] = b;
  5656. return result;
  5657. }
  5658. // ggml_conv_2d_sk_p0
  5659. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. struct ggml_tensor * b) {
  5663. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5664. }
  5665. // ggml_conv_2d_s1_ph
  5666. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5667. struct ggml_context * ctx,
  5668. struct ggml_tensor * a,
  5669. struct ggml_tensor * b) {
  5670. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5671. }
  5672. // ggml_conv_transpose_2d_p0
  5673. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5674. return (ins - 1) * s - 2 * p + ks;
  5675. }
  5676. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5677. struct ggml_context * ctx,
  5678. struct ggml_tensor * a,
  5679. struct ggml_tensor * b,
  5680. int stride) {
  5681. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5682. bool is_node = false;
  5683. if (a->grad || b->grad) {
  5684. GGML_ASSERT(false); // TODO: implement backward
  5685. is_node = true;
  5686. }
  5687. const int64_t ne[4] = {
  5688. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5689. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5690. a->ne[2], b->ne[3],
  5691. };
  5692. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5693. ggml_set_op_params_i32(result, 0, stride);
  5694. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5696. result->src[0] = a;
  5697. result->src[1] = b;
  5698. return result;
  5699. }
  5700. // ggml_pool_*
  5701. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5702. return (ins + 2 * p - ks) / s + 1;
  5703. }
  5704. // ggml_pool_1d
  5705. struct ggml_tensor * ggml_pool_1d(
  5706. struct ggml_context * ctx,
  5707. struct ggml_tensor * a,
  5708. enum ggml_op_pool op,
  5709. int k0,
  5710. int s0,
  5711. int p0) {
  5712. bool is_node = false;
  5713. if (a->grad) {
  5714. GGML_ASSERT(false); // TODO: implement backward
  5715. is_node = true;
  5716. }
  5717. const int64_t ne[3] = {
  5718. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5719. a->ne[1],
  5720. };
  5721. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5722. int32_t params[] = { op, k0, s0, p0 };
  5723. ggml_set_op_params(result, params, sizeof(params));
  5724. result->op = GGML_OP_POOL_1D;
  5725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5726. result->src[0] = a;
  5727. return result;
  5728. }
  5729. // ggml_pool_2d
  5730. struct ggml_tensor * ggml_pool_2d(
  5731. struct ggml_context * ctx,
  5732. struct ggml_tensor * a,
  5733. enum ggml_op_pool op,
  5734. int k0,
  5735. int k1,
  5736. int s0,
  5737. int s1,
  5738. int p0,
  5739. int p1) {
  5740. bool is_node = false;
  5741. if (a->grad) {
  5742. GGML_ASSERT(false); // TODO: implement backward
  5743. is_node = true;
  5744. }
  5745. const int64_t ne[3] = {
  5746. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5747. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5748. a->ne[2],
  5749. };
  5750. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5751. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5752. ggml_set_op_params(result, params, sizeof(params));
  5753. result->op = GGML_OP_POOL_2D;
  5754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5755. result->src[0] = a;
  5756. return result;
  5757. }
  5758. // ggml_upscale
  5759. static struct ggml_tensor * ggml_upscale_impl(
  5760. struct ggml_context * ctx,
  5761. struct ggml_tensor * a,
  5762. int scale_factor) {
  5763. bool is_node = false;
  5764. if (a->grad) {
  5765. GGML_ASSERT(false); // TODO: implement backward
  5766. is_node = true;
  5767. }
  5768. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5769. a->ne[0] * scale_factor,
  5770. a->ne[1] * scale_factor,
  5771. a->ne[2], a->ne[3]);
  5772. result->op = GGML_OP_UPSCALE;
  5773. result->op_params[0] = scale_factor;
  5774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5775. result->src[0] = a;
  5776. result->src[1] = NULL;
  5777. return result;
  5778. }
  5779. struct ggml_tensor * ggml_upscale(
  5780. struct ggml_context * ctx,
  5781. struct ggml_tensor * a,
  5782. int scale_factor) {
  5783. return ggml_upscale_impl(ctx, a, scale_factor);
  5784. }
  5785. // ggml_flash_attn
  5786. struct ggml_tensor * ggml_flash_attn(
  5787. struct ggml_context * ctx,
  5788. struct ggml_tensor * q,
  5789. struct ggml_tensor * k,
  5790. struct ggml_tensor * v,
  5791. bool masked) {
  5792. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5793. // TODO: check if vT can be multiplied by (k*qT)
  5794. bool is_node = false;
  5795. if (q->grad || k->grad || v->grad) {
  5796. is_node = true;
  5797. }
  5798. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5799. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5800. int32_t t = masked ? 1 : 0;
  5801. ggml_set_op_params(result, &t, sizeof(t));
  5802. result->op = GGML_OP_FLASH_ATTN;
  5803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5804. result->src[0] = q;
  5805. result->src[1] = k;
  5806. result->src[2] = v;
  5807. return result;
  5808. }
  5809. // ggml_flash_ff
  5810. struct ggml_tensor * ggml_flash_ff(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. struct ggml_tensor * b0,
  5814. struct ggml_tensor * b1,
  5815. struct ggml_tensor * c0,
  5816. struct ggml_tensor * c1) {
  5817. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5818. // TODO: more checks
  5819. bool is_node = false;
  5820. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5821. is_node = true;
  5822. }
  5823. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5824. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5825. result->op = GGML_OP_FLASH_FF;
  5826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5827. result->src[0] = a;
  5828. result->src[1] = b0;
  5829. result->src[2] = b1;
  5830. result->src[3] = c0;
  5831. result->src[4] = c1;
  5832. return result;
  5833. }
  5834. // ggml_flash_attn_back
  5835. struct ggml_tensor * ggml_flash_attn_back(
  5836. struct ggml_context * ctx,
  5837. struct ggml_tensor * q,
  5838. struct ggml_tensor * k,
  5839. struct ggml_tensor * v,
  5840. struct ggml_tensor * d,
  5841. bool masked) {
  5842. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5843. // TODO: check if vT can be multiplied by (k*qT)
  5844. // d shape [D,N,ne2,ne3]
  5845. // q shape [D,N,ne2,ne3]
  5846. // k shape [D,M,ne2,ne3]
  5847. // v shape [M,D,ne2,ne3]
  5848. const int64_t D = q->ne[0];
  5849. const int64_t N = q->ne[1];
  5850. const int64_t M = k->ne[1];
  5851. const int64_t ne2 = q->ne[2];
  5852. const int64_t ne3 = q->ne[3];
  5853. GGML_ASSERT(k->ne[0] == D);
  5854. GGML_ASSERT(v->ne[0] == M);
  5855. GGML_ASSERT(v->ne[1] == D);
  5856. GGML_ASSERT(d->ne[0] == D);
  5857. GGML_ASSERT(d->ne[1] == N);
  5858. GGML_ASSERT(k->ne[2] == ne2);
  5859. GGML_ASSERT(k->ne[3] == ne3);
  5860. GGML_ASSERT(v->ne[2] == ne2);
  5861. GGML_ASSERT(v->ne[3] == ne3);
  5862. GGML_ASSERT(d->ne[2] == ne2);
  5863. GGML_ASSERT(d->ne[3] == ne3);
  5864. bool is_node = false;
  5865. if (q->grad || k->grad || v->grad) {
  5866. // when using this operation (in backwards pass) these grads are set.
  5867. // we don't want to create (big) grad of our result, so is_node is false.
  5868. is_node = false;
  5869. }
  5870. // store gradients of q, k and v as continuous tensors concatenated in result.
  5871. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5872. // gradq->data = result->data
  5873. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5874. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5875. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5876. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5877. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5878. int32_t masked_i = masked ? 1 : 0;
  5879. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5880. result->op = GGML_OP_FLASH_ATTN_BACK;
  5881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5882. result->src[0] = q;
  5883. result->src[1] = k;
  5884. result->src[2] = v;
  5885. result->src[3] = d;
  5886. return result;
  5887. }
  5888. // ggml_win_part
  5889. struct ggml_tensor * ggml_win_part(
  5890. struct ggml_context * ctx,
  5891. struct ggml_tensor * a,
  5892. int w) {
  5893. GGML_ASSERT(a->ne[3] == 1);
  5894. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5895. bool is_node = false;
  5896. if (a->grad) {
  5897. GGML_ASSERT(false); // TODO: implement backward
  5898. is_node = true;
  5899. }
  5900. // padding
  5901. const int px = (w - a->ne[1]%w)%w;
  5902. const int py = (w - a->ne[2]%w)%w;
  5903. const int npx = (px + a->ne[1])/w;
  5904. const int npy = (py + a->ne[2])/w;
  5905. const int np = npx*npy;
  5906. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5907. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5908. int32_t params[] = { npx, npy, w };
  5909. ggml_set_op_params(result, params, sizeof(params));
  5910. result->op = GGML_OP_WIN_PART;
  5911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5912. result->src[0] = a;
  5913. return result;
  5914. }
  5915. // ggml_win_unpart
  5916. struct ggml_tensor * ggml_win_unpart(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * a,
  5919. int w0,
  5920. int h0,
  5921. int w) {
  5922. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5923. bool is_node = false;
  5924. if (a->grad) {
  5925. GGML_ASSERT(false); // TODO: implement backward
  5926. is_node = true;
  5927. }
  5928. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5929. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5930. int32_t params[] = { w };
  5931. ggml_set_op_params(result, params, sizeof(params));
  5932. result->op = GGML_OP_WIN_UNPART;
  5933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5934. result->src[0] = a;
  5935. return result;
  5936. }
  5937. // ggml_get_rel_pos
  5938. struct ggml_tensor * ggml_get_rel_pos(
  5939. struct ggml_context * ctx,
  5940. struct ggml_tensor * a,
  5941. int qh,
  5942. int kh) {
  5943. GGML_ASSERT(qh == kh);
  5944. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5945. bool is_node = false;
  5946. if (a->grad) {
  5947. GGML_ASSERT(false); // TODO: implement backward
  5948. is_node = true;
  5949. }
  5950. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5951. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5952. result->op = GGML_OP_GET_REL_POS;
  5953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5954. result->src[0] = a;
  5955. result->src[1] = NULL;
  5956. return result;
  5957. }
  5958. // ggml_add_rel_pos
  5959. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5960. struct ggml_context * ctx,
  5961. struct ggml_tensor * a,
  5962. struct ggml_tensor * pw,
  5963. struct ggml_tensor * ph,
  5964. bool inplace) {
  5965. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5966. GGML_ASSERT(ggml_is_contiguous(a));
  5967. GGML_ASSERT(ggml_is_contiguous(pw));
  5968. GGML_ASSERT(ggml_is_contiguous(ph));
  5969. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5970. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5971. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5972. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5973. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5974. bool is_node = false;
  5975. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5976. is_node = true;
  5977. }
  5978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5979. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5980. result->op = GGML_OP_ADD_REL_POS;
  5981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5982. result->src[0] = a;
  5983. result->src[1] = pw;
  5984. result->src[2] = ph;
  5985. return result;
  5986. }
  5987. struct ggml_tensor * ggml_add_rel_pos(
  5988. struct ggml_context * ctx,
  5989. struct ggml_tensor * a,
  5990. struct ggml_tensor * pw,
  5991. struct ggml_tensor * ph) {
  5992. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5993. }
  5994. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5995. struct ggml_context * ctx,
  5996. struct ggml_tensor * a,
  5997. struct ggml_tensor * pw,
  5998. struct ggml_tensor * ph) {
  5999. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6000. }
  6001. // gmml_unary
  6002. static struct ggml_tensor * ggml_unary_impl(
  6003. struct ggml_context * ctx,
  6004. struct ggml_tensor * a,
  6005. enum ggml_unary_op op,
  6006. bool inplace) {
  6007. bool is_node = false;
  6008. if (!inplace && (a->grad)) {
  6009. is_node = true;
  6010. }
  6011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6012. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6013. result->op = GGML_OP_UNARY;
  6014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6015. result->src[0] = a;
  6016. return result;
  6017. }
  6018. struct ggml_tensor * ggml_unary(
  6019. struct ggml_context * ctx,
  6020. struct ggml_tensor * a,
  6021. enum ggml_unary_op op) {
  6022. return ggml_unary_impl(ctx, a, op, false);
  6023. }
  6024. struct ggml_tensor * ggml_unary_inplace(
  6025. struct ggml_context * ctx,
  6026. struct ggml_tensor * a,
  6027. enum ggml_unary_op op) {
  6028. return ggml_unary_impl(ctx, a, op, true);
  6029. }
  6030. // ggml_map_unary
  6031. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6032. struct ggml_context * ctx,
  6033. struct ggml_tensor * a,
  6034. const ggml_unary_op_f32_t fun,
  6035. bool inplace) {
  6036. bool is_node = false;
  6037. if (!inplace && a->grad) {
  6038. is_node = true;
  6039. }
  6040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6041. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6042. result->op = GGML_OP_MAP_UNARY;
  6043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6044. result->src[0] = a;
  6045. return result;
  6046. }
  6047. struct ggml_tensor * ggml_map_unary_f32(
  6048. struct ggml_context * ctx,
  6049. struct ggml_tensor * a,
  6050. const ggml_unary_op_f32_t fun) {
  6051. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6052. }
  6053. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6054. struct ggml_context * ctx,
  6055. struct ggml_tensor * a,
  6056. const ggml_unary_op_f32_t fun) {
  6057. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6058. }
  6059. // ggml_map_binary
  6060. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6061. struct ggml_context * ctx,
  6062. struct ggml_tensor * a,
  6063. struct ggml_tensor * b,
  6064. const ggml_binary_op_f32_t fun,
  6065. bool inplace) {
  6066. GGML_ASSERT(ggml_are_same_shape(a, b));
  6067. bool is_node = false;
  6068. if (!inplace && (a->grad || b->grad)) {
  6069. is_node = true;
  6070. }
  6071. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6072. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6073. result->op = GGML_OP_MAP_BINARY;
  6074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6075. result->src[0] = a;
  6076. result->src[1] = b;
  6077. return result;
  6078. }
  6079. struct ggml_tensor * ggml_map_binary_f32(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. struct ggml_tensor * b,
  6083. const ggml_binary_op_f32_t fun) {
  6084. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6085. }
  6086. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6087. struct ggml_context * ctx,
  6088. struct ggml_tensor * a,
  6089. struct ggml_tensor * b,
  6090. const ggml_binary_op_f32_t fun) {
  6091. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6092. }
  6093. // ggml_map_custom1_f32
  6094. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. const ggml_custom1_op_f32_t fun,
  6098. bool inplace) {
  6099. bool is_node = false;
  6100. if (!inplace && a->grad) {
  6101. is_node = true;
  6102. }
  6103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6104. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6105. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6107. result->src[0] = a;
  6108. return result;
  6109. }
  6110. struct ggml_tensor * ggml_map_custom1_f32(
  6111. struct ggml_context * ctx,
  6112. struct ggml_tensor * a,
  6113. const ggml_custom1_op_f32_t fun) {
  6114. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6115. }
  6116. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. const ggml_custom1_op_f32_t fun) {
  6120. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6121. }
  6122. // ggml_map_custom2_f32
  6123. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6124. struct ggml_context * ctx,
  6125. struct ggml_tensor * a,
  6126. struct ggml_tensor * b,
  6127. const ggml_custom2_op_f32_t fun,
  6128. bool inplace) {
  6129. bool is_node = false;
  6130. if (!inplace && (a->grad || b->grad)) {
  6131. is_node = true;
  6132. }
  6133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6134. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6135. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6137. result->src[0] = a;
  6138. result->src[1] = b;
  6139. return result;
  6140. }
  6141. struct ggml_tensor * ggml_map_custom2_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. struct ggml_tensor * b,
  6145. const ggml_custom2_op_f32_t fun) {
  6146. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6147. }
  6148. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6149. struct ggml_context * ctx,
  6150. struct ggml_tensor * a,
  6151. struct ggml_tensor * b,
  6152. const ggml_custom2_op_f32_t fun) {
  6153. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6154. }
  6155. // ggml_map_custom3_f32
  6156. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. struct ggml_tensor * b,
  6160. struct ggml_tensor * c,
  6161. const ggml_custom3_op_f32_t fun,
  6162. bool inplace) {
  6163. bool is_node = false;
  6164. if (!inplace && (a->grad || b->grad || c->grad)) {
  6165. is_node = true;
  6166. }
  6167. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6168. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6169. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6171. result->src[0] = a;
  6172. result->src[1] = b;
  6173. result->src[2] = c;
  6174. return result;
  6175. }
  6176. struct ggml_tensor * ggml_map_custom3_f32(
  6177. struct ggml_context * ctx,
  6178. struct ggml_tensor * a,
  6179. struct ggml_tensor * b,
  6180. struct ggml_tensor * c,
  6181. const ggml_custom3_op_f32_t fun) {
  6182. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6183. }
  6184. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6185. struct ggml_context * ctx,
  6186. struct ggml_tensor * a,
  6187. struct ggml_tensor * b,
  6188. struct ggml_tensor * c,
  6189. const ggml_custom3_op_f32_t fun) {
  6190. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6191. }
  6192. // ggml_map_custom1
  6193. struct ggml_map_custom1_op_params {
  6194. ggml_custom1_op_t fun;
  6195. int n_tasks;
  6196. void * userdata;
  6197. };
  6198. static struct ggml_tensor * ggml_map_custom1_impl(
  6199. struct ggml_context * ctx,
  6200. struct ggml_tensor * a,
  6201. const ggml_custom1_op_t fun,
  6202. int n_tasks,
  6203. void * userdata,
  6204. bool inplace) {
  6205. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6206. bool is_node = false;
  6207. if (!inplace && a->grad) {
  6208. is_node = true;
  6209. }
  6210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6211. struct ggml_map_custom1_op_params params = {
  6212. /*.fun =*/ fun,
  6213. /*.n_tasks =*/ n_tasks,
  6214. /*.userdata =*/ userdata
  6215. };
  6216. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6217. result->op = GGML_OP_MAP_CUSTOM1;
  6218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6219. result->src[0] = a;
  6220. return result;
  6221. }
  6222. struct ggml_tensor * ggml_map_custom1(
  6223. struct ggml_context * ctx,
  6224. struct ggml_tensor * a,
  6225. const ggml_custom1_op_t fun,
  6226. int n_tasks,
  6227. void * userdata) {
  6228. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6229. }
  6230. struct ggml_tensor * ggml_map_custom1_inplace(
  6231. struct ggml_context * ctx,
  6232. struct ggml_tensor * a,
  6233. const ggml_custom1_op_t fun,
  6234. int n_tasks,
  6235. void * userdata) {
  6236. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6237. }
  6238. // ggml_map_custom2
  6239. struct ggml_map_custom2_op_params {
  6240. ggml_custom2_op_t fun;
  6241. int n_tasks;
  6242. void * userdata;
  6243. };
  6244. static struct ggml_tensor * ggml_map_custom2_impl(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. struct ggml_tensor * b,
  6248. const ggml_custom2_op_t fun,
  6249. int n_tasks,
  6250. void * userdata,
  6251. bool inplace) {
  6252. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6253. bool is_node = false;
  6254. if (!inplace && (a->grad || b->grad)) {
  6255. is_node = true;
  6256. }
  6257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6258. struct ggml_map_custom2_op_params params = {
  6259. /*.fun =*/ fun,
  6260. /*.n_tasks =*/ n_tasks,
  6261. /*.userdata =*/ userdata
  6262. };
  6263. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6264. result->op = GGML_OP_MAP_CUSTOM2;
  6265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6266. result->src[0] = a;
  6267. result->src[1] = b;
  6268. return result;
  6269. }
  6270. struct ggml_tensor * ggml_map_custom2(
  6271. struct ggml_context * ctx,
  6272. struct ggml_tensor * a,
  6273. struct ggml_tensor * b,
  6274. const ggml_custom2_op_t fun,
  6275. int n_tasks,
  6276. void * userdata) {
  6277. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6278. }
  6279. struct ggml_tensor * ggml_map_custom2_inplace(
  6280. struct ggml_context * ctx,
  6281. struct ggml_tensor * a,
  6282. struct ggml_tensor * b,
  6283. const ggml_custom2_op_t fun,
  6284. int n_tasks,
  6285. void * userdata) {
  6286. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6287. }
  6288. // ggml_map_custom3
  6289. struct ggml_map_custom3_op_params {
  6290. ggml_custom3_op_t fun;
  6291. int n_tasks;
  6292. void * userdata;
  6293. };
  6294. static struct ggml_tensor * ggml_map_custom3_impl(
  6295. struct ggml_context * ctx,
  6296. struct ggml_tensor * a,
  6297. struct ggml_tensor * b,
  6298. struct ggml_tensor * c,
  6299. const ggml_custom3_op_t fun,
  6300. int n_tasks,
  6301. void * userdata,
  6302. bool inplace) {
  6303. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6304. bool is_node = false;
  6305. if (!inplace && (a->grad || b->grad || c->grad)) {
  6306. is_node = true;
  6307. }
  6308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6309. struct ggml_map_custom3_op_params params = {
  6310. /*.fun =*/ fun,
  6311. /*.n_tasks =*/ n_tasks,
  6312. /*.userdata =*/ userdata
  6313. };
  6314. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6315. result->op = GGML_OP_MAP_CUSTOM3;
  6316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6317. result->src[0] = a;
  6318. result->src[1] = b;
  6319. result->src[2] = c;
  6320. return result;
  6321. }
  6322. struct ggml_tensor * ggml_map_custom3(
  6323. struct ggml_context * ctx,
  6324. struct ggml_tensor * a,
  6325. struct ggml_tensor * b,
  6326. struct ggml_tensor * c,
  6327. const ggml_custom3_op_t fun,
  6328. int n_tasks,
  6329. void * userdata) {
  6330. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6331. }
  6332. struct ggml_tensor * ggml_map_custom3_inplace(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. struct ggml_tensor * b,
  6336. struct ggml_tensor * c,
  6337. const ggml_custom3_op_t fun,
  6338. int n_tasks,
  6339. void * userdata) {
  6340. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6341. }
  6342. // ggml_cross_entropy_loss
  6343. struct ggml_tensor * ggml_cross_entropy_loss(
  6344. struct ggml_context * ctx,
  6345. struct ggml_tensor * a,
  6346. struct ggml_tensor * b) {
  6347. GGML_ASSERT(ggml_are_same_shape(a, b));
  6348. bool is_node = false;
  6349. if (a->grad || b->grad) {
  6350. is_node = true;
  6351. }
  6352. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6353. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6355. result->src[0] = a;
  6356. result->src[1] = b;
  6357. return result;
  6358. }
  6359. // ggml_cross_entropy_loss_back
  6360. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6361. struct ggml_context * ctx,
  6362. struct ggml_tensor * a,
  6363. struct ggml_tensor * b,
  6364. struct ggml_tensor * c) {
  6365. GGML_ASSERT(ggml_are_same_shape(a, b));
  6366. GGML_ASSERT(ggml_is_scalar(c));
  6367. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6368. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6369. result->grad = NULL;
  6370. result->src[0] = a;
  6371. result->src[1] = b;
  6372. result->src[2] = c;
  6373. return result;
  6374. }
  6375. ////////////////////////////////////////////////////////////////////////////////
  6376. void ggml_set_param(
  6377. struct ggml_context * ctx,
  6378. struct ggml_tensor * tensor) {
  6379. tensor->is_param = true;
  6380. GGML_ASSERT(tensor->grad == NULL);
  6381. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6382. }
  6383. // ggml_compute_forward_dup
  6384. static void ggml_compute_forward_dup_same_cont(
  6385. const struct ggml_compute_params * params,
  6386. const struct ggml_tensor * src0,
  6387. struct ggml_tensor * dst) {
  6388. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6389. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6390. GGML_ASSERT(src0->type == dst->type);
  6391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6392. return;
  6393. }
  6394. const size_t nb00 = src0->nb[0];
  6395. const size_t nb0 = dst->nb[0];
  6396. const int ith = params->ith; // thread index
  6397. const int nth = params->nth; // number of threads
  6398. // parallelize by elements
  6399. const int ne = ggml_nelements(dst);
  6400. const int dr = (ne + nth - 1) / nth;
  6401. const int ie0 = dr * ith;
  6402. const int ie1 = MIN(ie0 + dr, ne);
  6403. if (ie0 < ie1) {
  6404. memcpy(
  6405. ((char *) dst->data + ie0*nb0),
  6406. ((char *) src0->data + ie0*nb00),
  6407. (ie1 - ie0) * ggml_type_size(src0->type));
  6408. }
  6409. }
  6410. static void ggml_compute_forward_dup_f16(
  6411. const struct ggml_compute_params * params,
  6412. const struct ggml_tensor * src0,
  6413. struct ggml_tensor * dst) {
  6414. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6416. return;
  6417. }
  6418. GGML_TENSOR_UNARY_OP_LOCALS;
  6419. const int ith = params->ith; // thread index
  6420. const int nth = params->nth; // number of threads
  6421. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6422. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6423. return;
  6424. }
  6425. // parallelize by rows
  6426. const int nr = ne01;
  6427. // number of rows per thread
  6428. const int dr = (nr + nth - 1) / nth;
  6429. // row range for this thread
  6430. const int ir0 = dr * ith;
  6431. const int ir1 = MIN(ir0 + dr, nr);
  6432. if (src0->type == dst->type &&
  6433. ne00 == ne0 &&
  6434. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6435. // copy by rows
  6436. const size_t rs = ne00*nb00;
  6437. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6438. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6439. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6440. memcpy(
  6441. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6442. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6443. rs);
  6444. }
  6445. }
  6446. }
  6447. return;
  6448. }
  6449. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6450. if (ggml_is_contiguous(dst)) {
  6451. if (nb00 == sizeof(ggml_fp16_t)) {
  6452. if (dst->type == GGML_TYPE_F16) {
  6453. size_t id = 0;
  6454. const size_t rs = ne00 * nb00;
  6455. char * dst_ptr = (char *) dst->data;
  6456. for (int i03 = 0; i03 < ne03; i03++) {
  6457. for (int i02 = 0; i02 < ne02; i02++) {
  6458. id += rs * ir0;
  6459. for (int i01 = ir0; i01 < ir1; i01++) {
  6460. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6461. memcpy(dst_ptr + id, src0_ptr, rs);
  6462. id += rs;
  6463. }
  6464. id += rs * (ne01 - ir1);
  6465. }
  6466. }
  6467. } else if (dst->type == GGML_TYPE_F32) {
  6468. size_t id = 0;
  6469. float * dst_ptr = (float *) dst->data;
  6470. for (int i03 = 0; i03 < ne03; i03++) {
  6471. for (int i02 = 0; i02 < ne02; i02++) {
  6472. id += ne00 * ir0;
  6473. for (int i01 = ir0; i01 < ir1; i01++) {
  6474. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6475. for (int i00 = 0; i00 < ne00; i00++) {
  6476. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6477. id++;
  6478. }
  6479. }
  6480. id += ne00 * (ne01 - ir1);
  6481. }
  6482. }
  6483. } else if (type_traits[dst->type].from_float) {
  6484. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6485. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6486. size_t id = 0;
  6487. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6488. char * dst_ptr = (char *) dst->data;
  6489. for (int i03 = 0; i03 < ne03; i03++) {
  6490. for (int i02 = 0; i02 < ne02; i02++) {
  6491. id += rs * ir0;
  6492. for (int i01 = ir0; i01 < ir1; i01++) {
  6493. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6494. for (int i00 = 0; i00 < ne00; i00++) {
  6495. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6496. }
  6497. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6498. id += rs;
  6499. }
  6500. id += rs * (ne01 - ir1);
  6501. }
  6502. }
  6503. } else {
  6504. GGML_ASSERT(false); // TODO: implement
  6505. }
  6506. } else {
  6507. //printf("%s: this is not optimal - fix me\n", __func__);
  6508. if (dst->type == GGML_TYPE_F32) {
  6509. size_t id = 0;
  6510. float * dst_ptr = (float *) dst->data;
  6511. for (int i03 = 0; i03 < ne03; i03++) {
  6512. for (int i02 = 0; i02 < ne02; i02++) {
  6513. id += ne00 * ir0;
  6514. for (int i01 = ir0; i01 < ir1; i01++) {
  6515. for (int i00 = 0; i00 < ne00; i00++) {
  6516. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6517. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6518. id++;
  6519. }
  6520. }
  6521. id += ne00 * (ne01 - ir1);
  6522. }
  6523. }
  6524. } else if (dst->type == GGML_TYPE_F16) {
  6525. size_t id = 0;
  6526. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6527. for (int i03 = 0; i03 < ne03; i03++) {
  6528. for (int i02 = 0; i02 < ne02; i02++) {
  6529. id += ne00 * ir0;
  6530. for (int i01 = ir0; i01 < ir1; i01++) {
  6531. for (int i00 = 0; i00 < ne00; i00++) {
  6532. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6533. dst_ptr[id] = *src0_ptr;
  6534. id++;
  6535. }
  6536. }
  6537. id += ne00 * (ne01 - ir1);
  6538. }
  6539. }
  6540. } else {
  6541. GGML_ASSERT(false); // TODO: implement
  6542. }
  6543. }
  6544. return;
  6545. }
  6546. // dst counters
  6547. int64_t i10 = 0;
  6548. int64_t i11 = 0;
  6549. int64_t i12 = 0;
  6550. int64_t i13 = 0;
  6551. if (dst->type == GGML_TYPE_F16) {
  6552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6554. i10 += ne00 * ir0;
  6555. while (i10 >= ne0) {
  6556. i10 -= ne0;
  6557. if (++i11 == ne1) {
  6558. i11 = 0;
  6559. if (++i12 == ne2) {
  6560. i12 = 0;
  6561. if (++i13 == ne3) {
  6562. i13 = 0;
  6563. }
  6564. }
  6565. }
  6566. }
  6567. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6568. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6569. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6570. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6571. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6572. if (++i10 == ne00) {
  6573. i10 = 0;
  6574. if (++i11 == ne01) {
  6575. i11 = 0;
  6576. if (++i12 == ne02) {
  6577. i12 = 0;
  6578. if (++i13 == ne03) {
  6579. i13 = 0;
  6580. }
  6581. }
  6582. }
  6583. }
  6584. }
  6585. }
  6586. i10 += ne00 * (ne01 - ir1);
  6587. while (i10 >= ne0) {
  6588. i10 -= ne0;
  6589. if (++i11 == ne1) {
  6590. i11 = 0;
  6591. if (++i12 == ne2) {
  6592. i12 = 0;
  6593. if (++i13 == ne3) {
  6594. i13 = 0;
  6595. }
  6596. }
  6597. }
  6598. }
  6599. }
  6600. }
  6601. } else if (dst->type == GGML_TYPE_F32) {
  6602. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6604. i10 += ne00 * ir0;
  6605. while (i10 >= ne0) {
  6606. i10 -= ne0;
  6607. if (++i11 == ne1) {
  6608. i11 = 0;
  6609. if (++i12 == ne2) {
  6610. i12 = 0;
  6611. if (++i13 == ne3) {
  6612. i13 = 0;
  6613. }
  6614. }
  6615. }
  6616. }
  6617. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6618. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6619. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6620. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6621. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6622. if (++i10 == ne0) {
  6623. i10 = 0;
  6624. if (++i11 == ne1) {
  6625. i11 = 0;
  6626. if (++i12 == ne2) {
  6627. i12 = 0;
  6628. if (++i13 == ne3) {
  6629. i13 = 0;
  6630. }
  6631. }
  6632. }
  6633. }
  6634. }
  6635. }
  6636. i10 += ne00 * (ne01 - ir1);
  6637. while (i10 >= ne0) {
  6638. i10 -= ne0;
  6639. if (++i11 == ne1) {
  6640. i11 = 0;
  6641. if (++i12 == ne2) {
  6642. i12 = 0;
  6643. if (++i13 == ne3) {
  6644. i13 = 0;
  6645. }
  6646. }
  6647. }
  6648. }
  6649. }
  6650. }
  6651. } else {
  6652. GGML_ASSERT(false); // TODO: implement
  6653. }
  6654. }
  6655. static void ggml_compute_forward_dup_f32(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6661. return;
  6662. }
  6663. GGML_TENSOR_UNARY_OP_LOCALS;
  6664. const int ith = params->ith; // thread index
  6665. const int nth = params->nth; // number of threads
  6666. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6667. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6668. return;
  6669. }
  6670. // parallelize by rows
  6671. const int nr = ne01;
  6672. // number of rows per thread
  6673. const int dr = (nr + nth - 1) / nth;
  6674. // row range for this thread
  6675. const int ir0 = dr * ith;
  6676. const int ir1 = MIN(ir0 + dr, nr);
  6677. if (src0->type == dst->type &&
  6678. ne00 == ne0 &&
  6679. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6680. // copy by rows
  6681. const size_t rs = ne00*nb00;
  6682. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6683. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6684. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6685. memcpy(
  6686. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6687. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6688. rs);
  6689. }
  6690. }
  6691. }
  6692. return;
  6693. }
  6694. if (ggml_is_contiguous(dst)) {
  6695. // TODO: simplify
  6696. if (nb00 == sizeof(float)) {
  6697. if (dst->type == GGML_TYPE_F32) {
  6698. size_t id = 0;
  6699. const size_t rs = ne00 * nb00;
  6700. char * dst_ptr = (char *) dst->data;
  6701. for (int i03 = 0; i03 < ne03; i03++) {
  6702. for (int i02 = 0; i02 < ne02; i02++) {
  6703. id += rs * ir0;
  6704. for (int i01 = ir0; i01 < ir1; i01++) {
  6705. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6706. memcpy(dst_ptr + id, src0_ptr, rs);
  6707. id += rs;
  6708. }
  6709. id += rs * (ne01 - ir1);
  6710. }
  6711. }
  6712. } else if (type_traits[dst->type].from_float) {
  6713. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6714. size_t id = 0;
  6715. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6716. char * dst_ptr = (char *) dst->data;
  6717. for (int i03 = 0; i03 < ne03; i03++) {
  6718. for (int i02 = 0; i02 < ne02; i02++) {
  6719. id += rs * ir0;
  6720. for (int i01 = ir0; i01 < ir1; i01++) {
  6721. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6722. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6723. id += rs;
  6724. }
  6725. id += rs * (ne01 - ir1);
  6726. }
  6727. }
  6728. } else {
  6729. GGML_ASSERT(false); // TODO: implement
  6730. }
  6731. } else {
  6732. //printf("%s: this is not optimal - fix me\n", __func__);
  6733. if (dst->type == GGML_TYPE_F32) {
  6734. size_t id = 0;
  6735. float * dst_ptr = (float *) dst->data;
  6736. for (int i03 = 0; i03 < ne03; i03++) {
  6737. for (int i02 = 0; i02 < ne02; i02++) {
  6738. id += ne00 * ir0;
  6739. for (int i01 = ir0; i01 < ir1; i01++) {
  6740. for (int i00 = 0; i00 < ne00; i00++) {
  6741. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6742. dst_ptr[id] = *src0_ptr;
  6743. id++;
  6744. }
  6745. }
  6746. id += ne00 * (ne01 - ir1);
  6747. }
  6748. }
  6749. } else if (dst->type == GGML_TYPE_F16) {
  6750. size_t id = 0;
  6751. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6752. for (int i03 = 0; i03 < ne03; i03++) {
  6753. for (int i02 = 0; i02 < ne02; i02++) {
  6754. id += ne00 * ir0;
  6755. for (int i01 = ir0; i01 < ir1; i01++) {
  6756. for (int i00 = 0; i00 < ne00; i00++) {
  6757. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6758. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6759. id++;
  6760. }
  6761. }
  6762. id += ne00 * (ne01 - ir1);
  6763. }
  6764. }
  6765. } else {
  6766. GGML_ASSERT(false); // TODO: implement
  6767. }
  6768. }
  6769. return;
  6770. }
  6771. // dst counters
  6772. int64_t i10 = 0;
  6773. int64_t i11 = 0;
  6774. int64_t i12 = 0;
  6775. int64_t i13 = 0;
  6776. if (dst->type == GGML_TYPE_F32) {
  6777. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6779. i10 += ne00 * ir0;
  6780. while (i10 >= ne0) {
  6781. i10 -= ne0;
  6782. if (++i11 == ne1) {
  6783. i11 = 0;
  6784. if (++i12 == ne2) {
  6785. i12 = 0;
  6786. if (++i13 == ne3) {
  6787. i13 = 0;
  6788. }
  6789. }
  6790. }
  6791. }
  6792. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6793. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6794. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6795. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6796. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6797. if (++i10 == ne0) {
  6798. i10 = 0;
  6799. if (++i11 == ne1) {
  6800. i11 = 0;
  6801. if (++i12 == ne2) {
  6802. i12 = 0;
  6803. if (++i13 == ne3) {
  6804. i13 = 0;
  6805. }
  6806. }
  6807. }
  6808. }
  6809. }
  6810. }
  6811. i10 += ne00 * (ne01 - ir1);
  6812. while (i10 >= ne0) {
  6813. i10 -= ne0;
  6814. if (++i11 == ne1) {
  6815. i11 = 0;
  6816. if (++i12 == ne2) {
  6817. i12 = 0;
  6818. if (++i13 == ne3) {
  6819. i13 = 0;
  6820. }
  6821. }
  6822. }
  6823. }
  6824. }
  6825. }
  6826. } else if (dst->type == GGML_TYPE_F16) {
  6827. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6828. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6829. i10 += ne00 * ir0;
  6830. while (i10 >= ne0) {
  6831. i10 -= ne0;
  6832. if (++i11 == ne1) {
  6833. i11 = 0;
  6834. if (++i12 == ne2) {
  6835. i12 = 0;
  6836. if (++i13 == ne3) {
  6837. i13 = 0;
  6838. }
  6839. }
  6840. }
  6841. }
  6842. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6843. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6844. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6845. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6846. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6847. if (++i10 == ne0) {
  6848. i10 = 0;
  6849. if (++i11 == ne1) {
  6850. i11 = 0;
  6851. if (++i12 == ne2) {
  6852. i12 = 0;
  6853. if (++i13 == ne3) {
  6854. i13 = 0;
  6855. }
  6856. }
  6857. }
  6858. }
  6859. }
  6860. }
  6861. i10 += ne00 * (ne01 - ir1);
  6862. while (i10 >= ne0) {
  6863. i10 -= ne0;
  6864. if (++i11 == ne1) {
  6865. i11 = 0;
  6866. if (++i12 == ne2) {
  6867. i12 = 0;
  6868. if (++i13 == ne3) {
  6869. i13 = 0;
  6870. }
  6871. }
  6872. }
  6873. }
  6874. }
  6875. }
  6876. } else {
  6877. GGML_ASSERT(false); // TODO: implement
  6878. }
  6879. }
  6880. static void ggml_compute_forward_dup(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. struct ggml_tensor * dst) {
  6884. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6885. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6886. return;
  6887. }
  6888. switch (src0->type) {
  6889. case GGML_TYPE_F16:
  6890. {
  6891. ggml_compute_forward_dup_f16(params, src0, dst);
  6892. } break;
  6893. case GGML_TYPE_F32:
  6894. {
  6895. ggml_compute_forward_dup_f32(params, src0, dst);
  6896. } break;
  6897. default:
  6898. {
  6899. GGML_ASSERT(false);
  6900. } break;
  6901. }
  6902. }
  6903. // ggml_compute_forward_add
  6904. static void ggml_compute_forward_add_f32(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. const struct ggml_tensor * src1,
  6908. struct ggml_tensor * dst) {
  6909. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6911. return;
  6912. }
  6913. const int ith = params->ith;
  6914. const int nth = params->nth;
  6915. const int nr = ggml_nrows(src0);
  6916. GGML_TENSOR_BINARY_OP_LOCALS;
  6917. GGML_ASSERT( nb0 == sizeof(float));
  6918. GGML_ASSERT(nb00 == sizeof(float));
  6919. // rows per thread
  6920. const int dr = (nr + nth - 1)/nth;
  6921. // row range for this thread
  6922. const int ir0 = dr*ith;
  6923. const int ir1 = MIN(ir0 + dr, nr);
  6924. if (nb10 == sizeof(float)) {
  6925. for (int ir = ir0; ir < ir1; ++ir) {
  6926. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6927. const int64_t i03 = ir/(ne02*ne01);
  6928. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6929. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6930. const int64_t i13 = i03 % ne13;
  6931. const int64_t i12 = i02 % ne12;
  6932. const int64_t i11 = i01 % ne11;
  6933. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6934. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6935. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6936. #ifdef GGML_USE_ACCELERATE
  6937. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6938. #else
  6939. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6940. #endif
  6941. // }
  6942. // }
  6943. }
  6944. } else {
  6945. // src1 is not contiguous
  6946. for (int ir = ir0; ir < ir1; ++ir) {
  6947. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6948. const int64_t i03 = ir/(ne02*ne01);
  6949. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6950. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6951. const int64_t i13 = i03 % ne13;
  6952. const int64_t i12 = i02 % ne12;
  6953. const int64_t i11 = i01 % ne11;
  6954. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6955. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6956. for (int i0 = 0; i0 < ne0; i0++) {
  6957. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6958. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6959. }
  6960. }
  6961. }
  6962. }
  6963. static void ggml_compute_forward_add_f16_f32(
  6964. const struct ggml_compute_params * params,
  6965. const struct ggml_tensor * src0,
  6966. const struct ggml_tensor * src1,
  6967. struct ggml_tensor * dst) {
  6968. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6970. return;
  6971. }
  6972. const int ith = params->ith;
  6973. const int nth = params->nth;
  6974. const int nr = ggml_nrows(src0);
  6975. GGML_TENSOR_BINARY_OP_LOCALS;
  6976. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6977. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6978. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6979. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6980. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6981. // rows per thread
  6982. const int dr = (nr + nth - 1)/nth;
  6983. // row range for this thread
  6984. const int ir0 = dr*ith;
  6985. const int ir1 = MIN(ir0 + dr, nr);
  6986. if (nb10 == sizeof(float)) {
  6987. for (int ir = ir0; ir < ir1; ++ir) {
  6988. // src0, src1 and dst are same shape => same indices
  6989. const int i3 = ir/(ne2*ne1);
  6990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6994. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6995. for (int i = 0; i < ne0; i++) {
  6996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6997. }
  6998. }
  6999. }
  7000. else {
  7001. // src1 is not contiguous
  7002. GGML_ASSERT(false);
  7003. }
  7004. }
  7005. static void ggml_compute_forward_add_f16_f16(
  7006. const struct ggml_compute_params * params,
  7007. const struct ggml_tensor * src0,
  7008. const struct ggml_tensor * src1,
  7009. struct ggml_tensor * dst) {
  7010. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7012. return;
  7013. }
  7014. const int ith = params->ith;
  7015. const int nth = params->nth;
  7016. const int nr = ggml_nrows(src0);
  7017. GGML_TENSOR_BINARY_OP_LOCALS;
  7018. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7019. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7020. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7021. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7022. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7023. // rows per thread
  7024. const int dr = (nr + nth - 1)/nth;
  7025. // row range for this thread
  7026. const int ir0 = dr*ith;
  7027. const int ir1 = MIN(ir0 + dr, nr);
  7028. if (nb10 == sizeof(ggml_fp16_t)) {
  7029. for (int ir = ir0; ir < ir1; ++ir) {
  7030. // src0, src1 and dst are same shape => same indices
  7031. const int i3 = ir/(ne2*ne1);
  7032. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7033. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7034. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7035. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7036. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7037. for (int i = 0; i < ne0; i++) {
  7038. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7039. }
  7040. }
  7041. }
  7042. else {
  7043. // src1 is not contiguous
  7044. GGML_ASSERT(false);
  7045. }
  7046. }
  7047. static void ggml_compute_forward_add_q_f32(
  7048. const struct ggml_compute_params * params,
  7049. const struct ggml_tensor * src0,
  7050. const struct ggml_tensor * src1,
  7051. struct ggml_tensor * dst) {
  7052. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7054. return;
  7055. }
  7056. const int nr = ggml_nrows(src0);
  7057. GGML_TENSOR_BINARY_OP_LOCALS;
  7058. const int ith = params->ith;
  7059. const int nth = params->nth;
  7060. const enum ggml_type type = src0->type;
  7061. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7062. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7063. // we don't support permuted src0 or src1
  7064. GGML_ASSERT(nb00 == ggml_type_size(type));
  7065. GGML_ASSERT(nb10 == sizeof(float));
  7066. // dst cannot be transposed or permuted
  7067. GGML_ASSERT(nb0 <= nb1);
  7068. GGML_ASSERT(nb1 <= nb2);
  7069. GGML_ASSERT(nb2 <= nb3);
  7070. GGML_ASSERT(ggml_is_quantized(src0->type));
  7071. GGML_ASSERT(dst->type == src0->type);
  7072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7073. // rows per thread
  7074. const int dr = (nr + nth - 1)/nth;
  7075. // row range for this thread
  7076. const int ir0 = dr*ith;
  7077. const int ir1 = MIN(ir0 + dr, nr);
  7078. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7079. for (int ir = ir0; ir < ir1; ++ir) {
  7080. // src0 indices
  7081. const int i03 = ir/(ne02*ne01);
  7082. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7083. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7084. // src1 and dst are same shape as src0 => same indices
  7085. const int i13 = i03;
  7086. const int i12 = i02;
  7087. const int i11 = i01;
  7088. const int i3 = i03;
  7089. const int i2 = i02;
  7090. const int i1 = i01;
  7091. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7092. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7093. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7094. assert(ne00 % 32 == 0);
  7095. // unquantize row from src0 to temp buffer
  7096. dequantize_row_q(src0_row, wdata, ne00);
  7097. // add src1
  7098. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7099. // quantize row to dst
  7100. quantize_row_q(wdata, dst_row, ne00);
  7101. }
  7102. }
  7103. static void ggml_compute_forward_add(
  7104. const struct ggml_compute_params * params,
  7105. const struct ggml_tensor * src0,
  7106. const struct ggml_tensor * src1,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F32:
  7110. {
  7111. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7112. } break;
  7113. case GGML_TYPE_F16:
  7114. {
  7115. if (src1->type == GGML_TYPE_F16) {
  7116. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7117. }
  7118. else if (src1->type == GGML_TYPE_F32) {
  7119. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7120. }
  7121. else {
  7122. GGML_ASSERT(false);
  7123. }
  7124. } break;
  7125. case GGML_TYPE_Q4_0:
  7126. case GGML_TYPE_Q4_1:
  7127. case GGML_TYPE_Q5_0:
  7128. case GGML_TYPE_Q5_1:
  7129. case GGML_TYPE_Q8_0:
  7130. case GGML_TYPE_Q2_K:
  7131. case GGML_TYPE_Q3_K:
  7132. case GGML_TYPE_Q4_K:
  7133. case GGML_TYPE_Q5_K:
  7134. case GGML_TYPE_Q6_K:
  7135. {
  7136. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7137. } break;
  7138. default:
  7139. {
  7140. GGML_ASSERT(false);
  7141. } break;
  7142. }
  7143. }
  7144. // ggml_compute_forward_add1
  7145. static void ggml_compute_forward_add1_f32(
  7146. const struct ggml_compute_params * params,
  7147. const struct ggml_tensor * src0,
  7148. const struct ggml_tensor * src1,
  7149. struct ggml_tensor * dst) {
  7150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7151. GGML_ASSERT(ggml_is_scalar(src1));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. const int ith = params->ith;
  7156. const int nth = params->nth;
  7157. const int nr = ggml_nrows(src0);
  7158. GGML_TENSOR_UNARY_OP_LOCALS;
  7159. GGML_ASSERT( nb0 == sizeof(float));
  7160. GGML_ASSERT(nb00 == sizeof(float));
  7161. // rows per thread
  7162. const int dr = (nr + nth - 1)/nth;
  7163. // row range for this thread
  7164. const int ir0 = dr*ith;
  7165. const int ir1 = MIN(ir0 + dr, nr);
  7166. for (int ir = ir0; ir < ir1; ++ir) {
  7167. // src0 and dst are same shape => same indices
  7168. const int i3 = ir/(ne2*ne1);
  7169. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7170. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7171. #ifdef GGML_USE_ACCELERATE
  7172. UNUSED(ggml_vec_add1_f32);
  7173. vDSP_vadd(
  7174. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7175. (float *) ((char *) src1->data), 0,
  7176. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7177. ne0);
  7178. #else
  7179. ggml_vec_add1_f32(ne0,
  7180. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7181. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7182. *(float *) src1->data);
  7183. #endif
  7184. }
  7185. }
  7186. static void ggml_compute_forward_add1_f16_f32(
  7187. const struct ggml_compute_params * params,
  7188. const struct ggml_tensor * src0,
  7189. const struct ggml_tensor * src1,
  7190. struct ggml_tensor * dst) {
  7191. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7192. GGML_ASSERT(ggml_is_scalar(src1));
  7193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7194. return;
  7195. }
  7196. // scalar to add
  7197. const float v = *(float *) src1->data;
  7198. const int ith = params->ith;
  7199. const int nth = params->nth;
  7200. const int nr = ggml_nrows(src0);
  7201. GGML_TENSOR_UNARY_OP_LOCALS;
  7202. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7203. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7204. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7205. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7206. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7207. // rows per thread
  7208. const int dr = (nr + nth - 1)/nth;
  7209. // row range for this thread
  7210. const int ir0 = dr*ith;
  7211. const int ir1 = MIN(ir0 + dr, nr);
  7212. for (int ir = ir0; ir < ir1; ++ir) {
  7213. // src0 and dst are same shape => same indices
  7214. const int i3 = ir/(ne2*ne1);
  7215. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7216. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7217. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7218. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7219. for (int i = 0; i < ne0; i++) {
  7220. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7221. }
  7222. }
  7223. }
  7224. static void ggml_compute_forward_add1_f16_f16(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. const struct ggml_tensor * src1,
  7228. struct ggml_tensor * dst) {
  7229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7230. GGML_ASSERT(ggml_is_scalar(src1));
  7231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7232. return;
  7233. }
  7234. // scalar to add
  7235. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7236. const int ith = params->ith;
  7237. const int nth = params->nth;
  7238. const int nr = ggml_nrows(src0);
  7239. GGML_TENSOR_UNARY_OP_LOCALS;
  7240. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7241. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7242. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7243. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7244. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7245. // rows per thread
  7246. const int dr = (nr + nth - 1)/nth;
  7247. // row range for this thread
  7248. const int ir0 = dr*ith;
  7249. const int ir1 = MIN(ir0 + dr, nr);
  7250. for (int ir = ir0; ir < ir1; ++ir) {
  7251. // src0 and dst are same shape => same indices
  7252. const int i3 = ir/(ne2*ne1);
  7253. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7254. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7255. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7256. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7257. for (int i = 0; i < ne0; i++) {
  7258. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7259. }
  7260. }
  7261. }
  7262. static void ggml_compute_forward_add1_q_f32(
  7263. const struct ggml_compute_params * params,
  7264. const struct ggml_tensor * src0,
  7265. const struct ggml_tensor * src1,
  7266. struct ggml_tensor * dst) {
  7267. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7268. GGML_ASSERT(ggml_is_scalar(src1));
  7269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7270. return;
  7271. }
  7272. // scalar to add
  7273. const float v = *(float *) src1->data;
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nr = ggml_nrows(src0);
  7277. GGML_TENSOR_UNARY_OP_LOCALS;
  7278. const enum ggml_type type = src0->type;
  7279. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7280. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7281. // we don't support permuted src0
  7282. GGML_ASSERT(nb00 == ggml_type_size(type));
  7283. // dst cannot be transposed or permuted
  7284. GGML_ASSERT(nb0 <= nb1);
  7285. GGML_ASSERT(nb1 <= nb2);
  7286. GGML_ASSERT(nb2 <= nb3);
  7287. GGML_ASSERT(ggml_is_quantized(src0->type));
  7288. GGML_ASSERT(dst->type == src0->type);
  7289. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7290. // rows per thread
  7291. const int dr = (nr + nth - 1)/nth;
  7292. // row range for this thread
  7293. const int ir0 = dr*ith;
  7294. const int ir1 = MIN(ir0 + dr, nr);
  7295. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7296. for (int ir = ir0; ir < ir1; ++ir) {
  7297. // src0 and dst are same shape => same indices
  7298. const int i3 = ir/(ne2*ne1);
  7299. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7300. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7301. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7302. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7303. assert(ne0 % 32 == 0);
  7304. // unquantize row from src0 to temp buffer
  7305. dequantize_row_q(src0_row, wdata, ne0);
  7306. // add src1
  7307. ggml_vec_acc1_f32(ne0, wdata, v);
  7308. // quantize row to dst
  7309. quantize_row_q(wdata, dst_row, ne0);
  7310. }
  7311. }
  7312. static void ggml_compute_forward_add1(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. const struct ggml_tensor * src1,
  7316. struct ggml_tensor * dst) {
  7317. switch (src0->type) {
  7318. case GGML_TYPE_F32:
  7319. {
  7320. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7321. } break;
  7322. case GGML_TYPE_F16:
  7323. {
  7324. if (src1->type == GGML_TYPE_F16) {
  7325. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7326. }
  7327. else if (src1->type == GGML_TYPE_F32) {
  7328. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7329. }
  7330. else {
  7331. GGML_ASSERT(false);
  7332. }
  7333. } break;
  7334. case GGML_TYPE_Q4_0:
  7335. case GGML_TYPE_Q4_1:
  7336. case GGML_TYPE_Q5_0:
  7337. case GGML_TYPE_Q5_1:
  7338. case GGML_TYPE_Q8_0:
  7339. case GGML_TYPE_Q8_1:
  7340. case GGML_TYPE_Q2_K:
  7341. case GGML_TYPE_Q3_K:
  7342. case GGML_TYPE_Q4_K:
  7343. case GGML_TYPE_Q5_K:
  7344. case GGML_TYPE_Q6_K:
  7345. {
  7346. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7347. } break;
  7348. default:
  7349. {
  7350. GGML_ASSERT(false);
  7351. } break;
  7352. }
  7353. }
  7354. // ggml_compute_forward_acc
  7355. static void ggml_compute_forward_acc_f32(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. const struct ggml_tensor * src1,
  7359. struct ggml_tensor * dst) {
  7360. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7361. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7362. // view src0 and dst with these strides and data offset inbytes during acc
  7363. // nb0 is implicitely element_size because src0 and dst are contiguous
  7364. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7365. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7366. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7367. size_t offset = ((int32_t *) dst->op_params)[3];
  7368. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7369. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7370. // memcpy needs to be synchronized across threads to avoid race conditions.
  7371. // => do it in INIT phase
  7372. memcpy(
  7373. ((char *) dst->data),
  7374. ((char *) src0->data),
  7375. ggml_nbytes(dst));
  7376. }
  7377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7378. return;
  7379. }
  7380. const int ith = params->ith;
  7381. const int nth = params->nth;
  7382. const int nr = ggml_nrows(src1);
  7383. const int nc = src1->ne[0];
  7384. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7385. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7386. // src0 and dst as viewed during acc
  7387. const size_t nb0 = ggml_element_size(src0);
  7388. const size_t nb00 = nb0;
  7389. const size_t nb01 = nb1;
  7390. const size_t nb02 = nb2;
  7391. const size_t nb03 = nb3;
  7392. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7393. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7394. GGML_ASSERT(nb10 == sizeof(float));
  7395. // rows per thread
  7396. const int dr = (nr + nth - 1)/nth;
  7397. // row range for this thread
  7398. const int ir0 = dr*ith;
  7399. const int ir1 = MIN(ir0 + dr, nr);
  7400. for (int ir = ir0; ir < ir1; ++ir) {
  7401. // src0 and dst are viewed with shape of src1 and offset
  7402. // => same indices
  7403. const int i3 = ir/(ne12*ne11);
  7404. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7405. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7406. #ifdef GGML_USE_ACCELERATE
  7407. vDSP_vadd(
  7408. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7409. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7410. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7411. #else
  7412. ggml_vec_add_f32(nc,
  7413. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7414. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7415. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7416. #endif
  7417. }
  7418. }
  7419. static void ggml_compute_forward_acc(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. const struct ggml_tensor * src1,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7428. } break;
  7429. case GGML_TYPE_F16:
  7430. case GGML_TYPE_Q4_0:
  7431. case GGML_TYPE_Q4_1:
  7432. case GGML_TYPE_Q5_0:
  7433. case GGML_TYPE_Q5_1:
  7434. case GGML_TYPE_Q8_0:
  7435. case GGML_TYPE_Q8_1:
  7436. case GGML_TYPE_Q2_K:
  7437. case GGML_TYPE_Q3_K:
  7438. case GGML_TYPE_Q4_K:
  7439. case GGML_TYPE_Q5_K:
  7440. case GGML_TYPE_Q6_K:
  7441. default:
  7442. {
  7443. GGML_ASSERT(false);
  7444. } break;
  7445. }
  7446. }
  7447. // ggml_compute_forward_sub
  7448. static void ggml_compute_forward_sub_f32(
  7449. const struct ggml_compute_params * params,
  7450. const struct ggml_tensor * src0,
  7451. const struct ggml_tensor * src1,
  7452. struct ggml_tensor * dst) {
  7453. assert(params->ith == 0);
  7454. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7456. return;
  7457. }
  7458. const int nr = ggml_nrows(src0);
  7459. GGML_TENSOR_BINARY_OP_LOCALS;
  7460. GGML_ASSERT( nb0 == sizeof(float));
  7461. GGML_ASSERT(nb00 == sizeof(float));
  7462. if (nb10 == sizeof(float)) {
  7463. for (int ir = 0; ir < nr; ++ir) {
  7464. // src0, src1 and dst are same shape => same indices
  7465. const int i3 = ir/(ne2*ne1);
  7466. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7467. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7468. #ifdef GGML_USE_ACCELERATE
  7469. vDSP_vsub(
  7470. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7471. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7472. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7473. ne0);
  7474. #else
  7475. ggml_vec_sub_f32(ne0,
  7476. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7477. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7478. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7479. #endif
  7480. // }
  7481. // }
  7482. }
  7483. } else {
  7484. // src1 is not contiguous
  7485. for (int ir = 0; ir < nr; ++ir) {
  7486. // src0, src1 and dst are same shape => same indices
  7487. const int i3 = ir/(ne2*ne1);
  7488. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7489. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7490. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7491. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7492. for (int i0 = 0; i0 < ne0; i0++) {
  7493. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7494. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7495. }
  7496. }
  7497. }
  7498. }
  7499. static void ggml_compute_forward_sub(
  7500. const struct ggml_compute_params * params,
  7501. const struct ggml_tensor * src0,
  7502. const struct ggml_tensor * src1,
  7503. struct ggml_tensor * dst) {
  7504. switch (src0->type) {
  7505. case GGML_TYPE_F32:
  7506. {
  7507. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7508. } break;
  7509. default:
  7510. {
  7511. GGML_ASSERT(false);
  7512. } break;
  7513. }
  7514. }
  7515. // ggml_compute_forward_mul
  7516. static void ggml_compute_forward_mul_f32(
  7517. const struct ggml_compute_params * params,
  7518. const struct ggml_tensor * src0,
  7519. const struct ggml_tensor * src1,
  7520. struct ggml_tensor * dst) {
  7521. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7523. return;
  7524. }
  7525. const int ith = params->ith;
  7526. const int nth = params->nth;
  7527. #ifdef GGML_USE_CLBLAST
  7528. if (src1->backend == GGML_BACKEND_GPU) {
  7529. if (ith == 0) {
  7530. ggml_cl_mul(src0, src1, dst);
  7531. }
  7532. return;
  7533. }
  7534. #endif
  7535. const int64_t nr = ggml_nrows(src0);
  7536. GGML_TENSOR_BINARY_OP_LOCALS;
  7537. GGML_ASSERT( nb0 == sizeof(float));
  7538. GGML_ASSERT(nb00 == sizeof(float));
  7539. GGML_ASSERT(ne00 == ne10);
  7540. if (nb10 == sizeof(float)) {
  7541. for (int64_t ir = ith; ir < nr; ir += nth) {
  7542. // src0 and dst are same shape => same indices
  7543. const int64_t i03 = ir/(ne02*ne01);
  7544. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7545. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7546. const int64_t i13 = i03 % ne13;
  7547. const int64_t i12 = i02 % ne12;
  7548. const int64_t i11 = i01 % ne11;
  7549. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7550. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7551. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7552. #ifdef GGML_USE_ACCELERATE
  7553. UNUSED(ggml_vec_mul_f32);
  7554. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7555. #else
  7556. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7557. #endif
  7558. // }
  7559. // }
  7560. }
  7561. } else {
  7562. // src1 is not contiguous
  7563. for (int64_t ir = ith; ir < nr; ir += nth) {
  7564. // src0 and dst are same shape => same indices
  7565. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7566. const int64_t i03 = ir/(ne02*ne01);
  7567. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7568. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7569. const int64_t i13 = i03 % ne13;
  7570. const int64_t i12 = i02 % ne12;
  7571. const int64_t i11 = i01 % ne11;
  7572. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7573. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7574. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7575. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7576. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7577. }
  7578. }
  7579. }
  7580. }
  7581. static void ggml_compute_forward_mul(
  7582. const struct ggml_compute_params * params,
  7583. const struct ggml_tensor * src0,
  7584. const struct ggml_tensor * src1,
  7585. struct ggml_tensor * dst) {
  7586. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7587. switch (src0->type) {
  7588. case GGML_TYPE_F32:
  7589. {
  7590. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7591. } break;
  7592. default:
  7593. {
  7594. GGML_ASSERT(false);
  7595. } break;
  7596. }
  7597. }
  7598. // ggml_compute_forward_div
  7599. static void ggml_compute_forward_div_f32(
  7600. const struct ggml_compute_params * params,
  7601. const struct ggml_tensor * src0,
  7602. const struct ggml_tensor * src1,
  7603. struct ggml_tensor * dst) {
  7604. assert(params->ith == 0);
  7605. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7607. return;
  7608. }
  7609. const int nr = ggml_nrows(src0);
  7610. GGML_TENSOR_BINARY_OP_LOCALS;
  7611. GGML_ASSERT( nb0 == sizeof(float));
  7612. GGML_ASSERT(nb00 == sizeof(float));
  7613. if (nb10 == sizeof(float)) {
  7614. for (int ir = 0; ir < nr; ++ir) {
  7615. // src0, src1 and dst are same shape => same indices
  7616. const int i3 = ir/(ne2*ne1);
  7617. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7618. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7619. #ifdef GGML_USE_ACCELERATE
  7620. vDSP_vdiv(
  7621. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7622. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7623. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7624. ne0);
  7625. #else
  7626. ggml_vec_div_f32(ne0,
  7627. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7628. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7629. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7630. #endif
  7631. // }
  7632. // }
  7633. }
  7634. } else {
  7635. // src1 is not contiguous
  7636. for (int ir = 0; ir < nr; ++ir) {
  7637. // src0, src1 and dst are same shape => same indices
  7638. const int i3 = ir/(ne2*ne1);
  7639. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7640. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7641. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7642. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7643. for (int i0 = 0; i0 < ne0; i0++) {
  7644. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7645. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7646. }
  7647. }
  7648. }
  7649. }
  7650. static void ggml_compute_forward_div(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. const struct ggml_tensor * src1,
  7654. struct ggml_tensor * dst) {
  7655. switch (src0->type) {
  7656. case GGML_TYPE_F32:
  7657. {
  7658. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7659. } break;
  7660. default:
  7661. {
  7662. GGML_ASSERT(false);
  7663. } break;
  7664. }
  7665. }
  7666. // ggml_compute_forward_sqr
  7667. static void ggml_compute_forward_sqr_f32(
  7668. const struct ggml_compute_params * params,
  7669. const struct ggml_tensor * src0,
  7670. struct ggml_tensor * dst) {
  7671. assert(params->ith == 0);
  7672. assert(ggml_are_same_shape(src0, dst));
  7673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7674. return;
  7675. }
  7676. const int n = ggml_nrows(src0);
  7677. const int nc = src0->ne[0];
  7678. assert( dst->nb[0] == sizeof(float));
  7679. assert(src0->nb[0] == sizeof(float));
  7680. for (int i = 0; i < n; i++) {
  7681. ggml_vec_sqr_f32(nc,
  7682. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7683. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7684. }
  7685. }
  7686. static void ggml_compute_forward_sqr(
  7687. const struct ggml_compute_params * params,
  7688. const struct ggml_tensor * src0,
  7689. struct ggml_tensor * dst) {
  7690. switch (src0->type) {
  7691. case GGML_TYPE_F32:
  7692. {
  7693. ggml_compute_forward_sqr_f32(params, src0, dst);
  7694. } break;
  7695. default:
  7696. {
  7697. GGML_ASSERT(false);
  7698. } break;
  7699. }
  7700. }
  7701. // ggml_compute_forward_sqrt
  7702. static void ggml_compute_forward_sqrt_f32(
  7703. const struct ggml_compute_params * params,
  7704. const struct ggml_tensor * src0,
  7705. struct ggml_tensor * dst) {
  7706. assert(params->ith == 0);
  7707. assert(ggml_are_same_shape(src0, dst));
  7708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7709. return;
  7710. }
  7711. const int n = ggml_nrows(src0);
  7712. const int nc = src0->ne[0];
  7713. assert( dst->nb[0] == sizeof(float));
  7714. assert(src0->nb[0] == sizeof(float));
  7715. for (int i = 0; i < n; i++) {
  7716. ggml_vec_sqrt_f32(nc,
  7717. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7718. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7719. }
  7720. }
  7721. static void ggml_compute_forward_sqrt(
  7722. const struct ggml_compute_params * params,
  7723. const struct ggml_tensor * src0,
  7724. struct ggml_tensor * dst) {
  7725. switch (src0->type) {
  7726. case GGML_TYPE_F32:
  7727. {
  7728. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7729. } break;
  7730. default:
  7731. {
  7732. GGML_ASSERT(false);
  7733. } break;
  7734. }
  7735. }
  7736. // ggml_compute_forward_log
  7737. static void ggml_compute_forward_log_f32(
  7738. const struct ggml_compute_params * params,
  7739. const struct ggml_tensor * src0,
  7740. struct ggml_tensor * dst) {
  7741. GGML_ASSERT(params->ith == 0);
  7742. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7744. return;
  7745. }
  7746. const int n = ggml_nrows(src0);
  7747. const int nc = src0->ne[0];
  7748. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7749. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7750. for (int i = 0; i < n; i++) {
  7751. ggml_vec_log_f32(nc,
  7752. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7753. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7754. }
  7755. }
  7756. static void ggml_compute_forward_log(
  7757. const struct ggml_compute_params * params,
  7758. const struct ggml_tensor * src0,
  7759. struct ggml_tensor * dst) {
  7760. switch (src0->type) {
  7761. case GGML_TYPE_F32:
  7762. {
  7763. ggml_compute_forward_log_f32(params, src0, dst);
  7764. } break;
  7765. default:
  7766. {
  7767. GGML_ASSERT(false);
  7768. } break;
  7769. }
  7770. }
  7771. // ggml_compute_forward_sum
  7772. static void ggml_compute_forward_sum_f32(
  7773. const struct ggml_compute_params * params,
  7774. const struct ggml_tensor * src0,
  7775. struct ggml_tensor * dst) {
  7776. assert(params->ith == 0);
  7777. assert(ggml_is_scalar(dst));
  7778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7779. return;
  7780. }
  7781. assert(ggml_is_scalar(dst));
  7782. assert(src0->nb[0] == sizeof(float));
  7783. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7784. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7785. ggml_float sum = 0;
  7786. ggml_float row_sum = 0;
  7787. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7788. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7789. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7790. ggml_vec_sum_f32_ggf(ne00,
  7791. &row_sum,
  7792. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7793. sum += row_sum;
  7794. }
  7795. }
  7796. }
  7797. ((float *) dst->data)[0] = sum;
  7798. }
  7799. static void ggml_compute_forward_sum_f16(
  7800. const struct ggml_compute_params * params,
  7801. const struct ggml_tensor * src0,
  7802. struct ggml_tensor * dst) {
  7803. assert(params->ith == 0);
  7804. assert(ggml_is_scalar(dst));
  7805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7806. return;
  7807. }
  7808. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7809. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7810. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7811. float sum = 0;
  7812. float row_sum = 0;
  7813. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7814. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7815. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7816. ggml_vec_sum_f16_ggf(ne00,
  7817. &row_sum,
  7818. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7819. sum += row_sum;
  7820. }
  7821. }
  7822. }
  7823. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7824. }
  7825. static void ggml_compute_forward_sum(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. struct ggml_tensor * dst) {
  7829. switch (src0->type) {
  7830. case GGML_TYPE_F32:
  7831. {
  7832. ggml_compute_forward_sum_f32(params, src0, dst);
  7833. } break;
  7834. case GGML_TYPE_F16:
  7835. {
  7836. ggml_compute_forward_sum_f16(params, src0, dst);
  7837. } break;
  7838. default:
  7839. {
  7840. GGML_ASSERT(false);
  7841. } break;
  7842. }
  7843. }
  7844. // ggml_compute_forward_sum_rows
  7845. static void ggml_compute_forward_sum_rows_f32(
  7846. const struct ggml_compute_params * params,
  7847. const struct ggml_tensor * src0,
  7848. struct ggml_tensor * dst) {
  7849. GGML_ASSERT(params->ith == 0);
  7850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7851. return;
  7852. }
  7853. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7854. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7855. GGML_TENSOR_UNARY_OP_LOCALS;
  7856. GGML_ASSERT(ne0 == 1);
  7857. GGML_ASSERT(ne1 == ne01);
  7858. GGML_ASSERT(ne2 == ne02);
  7859. GGML_ASSERT(ne3 == ne03);
  7860. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7861. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7862. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7863. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7864. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7865. float row_sum = 0;
  7866. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7867. dst_row[0] = row_sum;
  7868. }
  7869. }
  7870. }
  7871. }
  7872. static void ggml_compute_forward_sum_rows(
  7873. const struct ggml_compute_params * params,
  7874. const struct ggml_tensor * src0,
  7875. struct ggml_tensor * dst) {
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7880. } break;
  7881. default:
  7882. {
  7883. GGML_ASSERT(false);
  7884. } break;
  7885. }
  7886. }
  7887. // ggml_compute_forward_mean
  7888. static void ggml_compute_forward_mean_f32(
  7889. const struct ggml_compute_params * params,
  7890. const struct ggml_tensor * src0,
  7891. struct ggml_tensor * dst) {
  7892. assert(params->ith == 0);
  7893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7894. return;
  7895. }
  7896. assert(src0->nb[0] == sizeof(float));
  7897. GGML_TENSOR_UNARY_OP_LOCALS;
  7898. assert(ne0 == 1);
  7899. assert(ne1 == ne01);
  7900. assert(ne2 == ne02);
  7901. assert(ne3 == ne03);
  7902. UNUSED(ne0);
  7903. UNUSED(ne1);
  7904. UNUSED(ne2);
  7905. UNUSED(ne3);
  7906. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7907. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7908. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7909. ggml_vec_sum_f32(ne00,
  7910. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7911. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7912. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7913. }
  7914. }
  7915. }
  7916. }
  7917. static void ggml_compute_forward_mean(
  7918. const struct ggml_compute_params * params,
  7919. const struct ggml_tensor * src0,
  7920. struct ggml_tensor * dst) {
  7921. switch (src0->type) {
  7922. case GGML_TYPE_F32:
  7923. {
  7924. ggml_compute_forward_mean_f32(params, src0, dst);
  7925. } break;
  7926. default:
  7927. {
  7928. GGML_ASSERT(false);
  7929. } break;
  7930. }
  7931. }
  7932. // ggml_compute_forward_argmax
  7933. static void ggml_compute_forward_argmax_f32(
  7934. const struct ggml_compute_params * params,
  7935. const struct ggml_tensor * src0,
  7936. struct ggml_tensor * dst) {
  7937. assert(params->ith == 0);
  7938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7939. return;
  7940. }
  7941. assert(src0->nb[0] == sizeof(float));
  7942. assert(dst->nb[0] == sizeof(float));
  7943. const int64_t ne00 = src0->ne[0];
  7944. const int64_t ne01 = src0->ne[1];
  7945. const size_t nb01 = src0->nb[1];
  7946. const size_t nb0 = dst->nb[0];
  7947. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7948. float * src = (float *) ((char *) src0->data + i1*nb01);
  7949. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7950. int v = 0;
  7951. ggml_vec_argmax_f32(ne00, &v, src);
  7952. dst_[0] = v;
  7953. }
  7954. }
  7955. static void ggml_compute_forward_argmax(
  7956. const struct ggml_compute_params * params,
  7957. const struct ggml_tensor * src0,
  7958. struct ggml_tensor * dst) {
  7959. switch (src0->type) {
  7960. case GGML_TYPE_F32:
  7961. {
  7962. ggml_compute_forward_argmax_f32(params, src0, dst);
  7963. } break;
  7964. default:
  7965. {
  7966. GGML_ASSERT(false);
  7967. } break;
  7968. }
  7969. }
  7970. // ggml_compute_forward_repeat
  7971. static void ggml_compute_forward_repeat_f32(
  7972. const struct ggml_compute_params * params,
  7973. const struct ggml_tensor * src0,
  7974. struct ggml_tensor * dst) {
  7975. GGML_ASSERT(params->ith == 0);
  7976. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7978. return;
  7979. }
  7980. GGML_TENSOR_UNARY_OP_LOCALS;
  7981. // guaranteed to be an integer due to the check in ggml_can_repeat
  7982. const int nr0 = (int)(ne0/ne00);
  7983. const int nr1 = (int)(ne1/ne01);
  7984. const int nr2 = (int)(ne2/ne02);
  7985. const int nr3 = (int)(ne3/ne03);
  7986. // TODO: support for transposed / permuted tensors
  7987. GGML_ASSERT(nb0 == sizeof(float));
  7988. GGML_ASSERT(nb00 == sizeof(float));
  7989. // TODO: maybe this is not optimal?
  7990. for (int i3 = 0; i3 < nr3; i3++) {
  7991. for (int k3 = 0; k3 < ne03; k3++) {
  7992. for (int i2 = 0; i2 < nr2; i2++) {
  7993. for (int k2 = 0; k2 < ne02; k2++) {
  7994. for (int i1 = 0; i1 < nr1; i1++) {
  7995. for (int k1 = 0; k1 < ne01; k1++) {
  7996. for (int i0 = 0; i0 < nr0; i0++) {
  7997. ggml_vec_cpy_f32(ne00,
  7998. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7999. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8000. }
  8001. }
  8002. }
  8003. }
  8004. }
  8005. }
  8006. }
  8007. }
  8008. static void ggml_compute_forward_repeat(
  8009. const struct ggml_compute_params * params,
  8010. const struct ggml_tensor * src0,
  8011. struct ggml_tensor * dst) {
  8012. switch (src0->type) {
  8013. case GGML_TYPE_F32:
  8014. {
  8015. ggml_compute_forward_repeat_f32(params, src0, dst);
  8016. } break;
  8017. default:
  8018. {
  8019. GGML_ASSERT(false);
  8020. } break;
  8021. }
  8022. }
  8023. // ggml_compute_forward_repeat_back
  8024. static void ggml_compute_forward_repeat_back_f32(
  8025. const struct ggml_compute_params * params,
  8026. const struct ggml_tensor * src0,
  8027. struct ggml_tensor * dst) {
  8028. GGML_ASSERT(params->ith == 0);
  8029. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8031. return;
  8032. }
  8033. GGML_TENSOR_UNARY_OP_LOCALS;
  8034. // guaranteed to be an integer due to the check in ggml_can_repeat
  8035. const int nr0 = (int)(ne00/ne0);
  8036. const int nr1 = (int)(ne01/ne1);
  8037. const int nr2 = (int)(ne02/ne2);
  8038. const int nr3 = (int)(ne03/ne3);
  8039. // TODO: support for transposed / permuted tensors
  8040. GGML_ASSERT(nb0 == sizeof(float));
  8041. GGML_ASSERT(nb00 == sizeof(float));
  8042. if (ggml_is_contiguous(dst)) {
  8043. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8044. } else {
  8045. for (int k3 = 0; k3 < ne3; k3++) {
  8046. for (int k2 = 0; k2 < ne2; k2++) {
  8047. for (int k1 = 0; k1 < ne1; k1++) {
  8048. ggml_vec_set_f32(ne0,
  8049. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8050. 0);
  8051. }
  8052. }
  8053. }
  8054. }
  8055. // TODO: maybe this is not optimal?
  8056. for (int i3 = 0; i3 < nr3; i3++) {
  8057. for (int k3 = 0; k3 < ne3; k3++) {
  8058. for (int i2 = 0; i2 < nr2; i2++) {
  8059. for (int k2 = 0; k2 < ne2; k2++) {
  8060. for (int i1 = 0; i1 < nr1; i1++) {
  8061. for (int k1 = 0; k1 < ne1; k1++) {
  8062. for (int i0 = 0; i0 < nr0; i0++) {
  8063. ggml_vec_acc_f32(ne0,
  8064. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8065. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8066. }
  8067. }
  8068. }
  8069. }
  8070. }
  8071. }
  8072. }
  8073. }
  8074. static void ggml_compute_forward_repeat_back(
  8075. const struct ggml_compute_params * params,
  8076. const struct ggml_tensor * src0,
  8077. struct ggml_tensor * dst) {
  8078. switch (src0->type) {
  8079. case GGML_TYPE_F32:
  8080. {
  8081. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8082. } break;
  8083. default:
  8084. {
  8085. GGML_ASSERT(false);
  8086. } break;
  8087. }
  8088. }
  8089. // ggml_compute_forward_concat
  8090. static void ggml_compute_forward_concat_f32(
  8091. const struct ggml_compute_params * params,
  8092. const struct ggml_tensor * src0,
  8093. const struct ggml_tensor * src1,
  8094. struct ggml_tensor * dst) {
  8095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8096. return;
  8097. }
  8098. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8099. const int ith = params->ith;
  8100. GGML_TENSOR_BINARY_OP_LOCALS;
  8101. // TODO: support for transposed / permuted tensors
  8102. GGML_ASSERT(nb0 == sizeof(float));
  8103. GGML_ASSERT(nb00 == sizeof(float));
  8104. GGML_ASSERT(nb10 == sizeof(float));
  8105. for (int i3 = 0; i3 < ne3; i3++) {
  8106. for (int i2 = ith; i2 < ne2; i2++) {
  8107. if (i2 < ne02) { // src0
  8108. for (int i1 = 0; i1 < ne1; i1++) {
  8109. for (int i0 = 0; i0 < ne0; i0++) {
  8110. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8111. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8112. *y = *x;
  8113. }
  8114. }
  8115. } // src1
  8116. else {
  8117. for (int i1 = 0; i1 < ne1; i1++) {
  8118. for (int i0 = 0; i0 < ne0; i0++) {
  8119. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8120. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8121. *y = *x;
  8122. }
  8123. }
  8124. }
  8125. }
  8126. }
  8127. }
  8128. static void ggml_compute_forward_concat(
  8129. const struct ggml_compute_params* params,
  8130. const struct ggml_tensor* src0,
  8131. const struct ggml_tensor* src1,
  8132. struct ggml_tensor* dst) {
  8133. switch (src0->type) {
  8134. case GGML_TYPE_F32:
  8135. {
  8136. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8137. } break;
  8138. default:
  8139. {
  8140. GGML_ASSERT(false);
  8141. } break;
  8142. }
  8143. }
  8144. // ggml_compute_forward_abs
  8145. static void ggml_compute_forward_abs_f32(
  8146. const struct ggml_compute_params * params,
  8147. const struct ggml_tensor * src0,
  8148. struct ggml_tensor * dst) {
  8149. assert(params->ith == 0);
  8150. assert(ggml_are_same_shape(src0, dst));
  8151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8152. return;
  8153. }
  8154. const int n = ggml_nrows(src0);
  8155. const int nc = src0->ne[0];
  8156. assert(dst->nb[0] == sizeof(float));
  8157. assert(src0->nb[0] == sizeof(float));
  8158. for (int i = 0; i < n; i++) {
  8159. ggml_vec_abs_f32(nc,
  8160. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8161. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8162. }
  8163. }
  8164. static void ggml_compute_forward_abs(
  8165. const struct ggml_compute_params * params,
  8166. const struct ggml_tensor * src0,
  8167. struct ggml_tensor * dst) {
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_abs_f32(params, src0, dst);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_sgn
  8180. static void ggml_compute_forward_sgn_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. struct ggml_tensor * dst) {
  8184. assert(params->ith == 0);
  8185. assert(ggml_are_same_shape(src0, dst));
  8186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8187. return;
  8188. }
  8189. const int n = ggml_nrows(src0);
  8190. const int nc = src0->ne[0];
  8191. assert(dst->nb[0] == sizeof(float));
  8192. assert(src0->nb[0] == sizeof(float));
  8193. for (int i = 0; i < n; i++) {
  8194. ggml_vec_sgn_f32(nc,
  8195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8196. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8197. }
  8198. }
  8199. static void ggml_compute_forward_sgn(
  8200. const struct ggml_compute_params * params,
  8201. const struct ggml_tensor * src0,
  8202. struct ggml_tensor * dst) {
  8203. switch (src0->type) {
  8204. case GGML_TYPE_F32:
  8205. {
  8206. ggml_compute_forward_sgn_f32(params, src0, dst);
  8207. } break;
  8208. default:
  8209. {
  8210. GGML_ASSERT(false);
  8211. } break;
  8212. }
  8213. }
  8214. // ggml_compute_forward_neg
  8215. static void ggml_compute_forward_neg_f32(
  8216. const struct ggml_compute_params * params,
  8217. const struct ggml_tensor * src0,
  8218. struct ggml_tensor * dst) {
  8219. assert(params->ith == 0);
  8220. assert(ggml_are_same_shape(src0, dst));
  8221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8222. return;
  8223. }
  8224. const int n = ggml_nrows(src0);
  8225. const int nc = src0->ne[0];
  8226. assert(dst->nb[0] == sizeof(float));
  8227. assert(src0->nb[0] == sizeof(float));
  8228. for (int i = 0; i < n; i++) {
  8229. ggml_vec_neg_f32(nc,
  8230. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8231. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8232. }
  8233. }
  8234. static void ggml_compute_forward_neg(
  8235. const struct ggml_compute_params * params,
  8236. const struct ggml_tensor * src0,
  8237. struct ggml_tensor * dst) {
  8238. switch (src0->type) {
  8239. case GGML_TYPE_F32:
  8240. {
  8241. ggml_compute_forward_neg_f32(params, src0, dst);
  8242. } break;
  8243. default:
  8244. {
  8245. GGML_ASSERT(false);
  8246. } break;
  8247. }
  8248. }
  8249. // ggml_compute_forward_step
  8250. static void ggml_compute_forward_step_f32(
  8251. const struct ggml_compute_params * params,
  8252. const struct ggml_tensor * src0,
  8253. struct ggml_tensor * dst) {
  8254. assert(params->ith == 0);
  8255. assert(ggml_are_same_shape(src0, dst));
  8256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8257. return;
  8258. }
  8259. const int n = ggml_nrows(src0);
  8260. const int nc = src0->ne[0];
  8261. assert(dst->nb[0] == sizeof(float));
  8262. assert(src0->nb[0] == sizeof(float));
  8263. for (int i = 0; i < n; i++) {
  8264. ggml_vec_step_f32(nc,
  8265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8266. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8267. }
  8268. }
  8269. static void ggml_compute_forward_step(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. struct ggml_tensor * dst) {
  8273. switch (src0->type) {
  8274. case GGML_TYPE_F32:
  8275. {
  8276. ggml_compute_forward_step_f32(params, src0, dst);
  8277. } break;
  8278. default:
  8279. {
  8280. GGML_ASSERT(false);
  8281. } break;
  8282. }
  8283. }
  8284. // ggml_compute_forward_tanh
  8285. static void ggml_compute_forward_tanh_f32(
  8286. const struct ggml_compute_params * params,
  8287. const struct ggml_tensor * src0,
  8288. struct ggml_tensor * dst) {
  8289. assert(params->ith == 0);
  8290. assert(ggml_are_same_shape(src0, dst));
  8291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8292. return;
  8293. }
  8294. const int n = ggml_nrows(src0);
  8295. const int nc = src0->ne[0];
  8296. assert(dst->nb[0] == sizeof(float));
  8297. assert(src0->nb[0] == sizeof(float));
  8298. for (int i = 0; i < n; i++) {
  8299. ggml_vec_tanh_f32(nc,
  8300. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8301. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8302. }
  8303. }
  8304. static void ggml_compute_forward_tanh(
  8305. const struct ggml_compute_params * params,
  8306. const struct ggml_tensor * src0,
  8307. struct ggml_tensor * dst) {
  8308. switch (src0->type) {
  8309. case GGML_TYPE_F32:
  8310. {
  8311. ggml_compute_forward_tanh_f32(params, src0, dst);
  8312. } break;
  8313. default:
  8314. {
  8315. GGML_ASSERT(false);
  8316. } break;
  8317. }
  8318. }
  8319. // ggml_compute_forward_elu
  8320. static void ggml_compute_forward_elu_f32(
  8321. const struct ggml_compute_params * params,
  8322. const struct ggml_tensor * src0,
  8323. struct ggml_tensor * dst) {
  8324. assert(params->ith == 0);
  8325. assert(ggml_are_same_shape(src0, dst));
  8326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8327. return;
  8328. }
  8329. const int n = ggml_nrows(src0);
  8330. const int nc = src0->ne[0];
  8331. assert(dst->nb[0] == sizeof(float));
  8332. assert(src0->nb[0] == sizeof(float));
  8333. for (int i = 0; i < n; i++) {
  8334. ggml_vec_elu_f32(nc,
  8335. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8336. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8337. }
  8338. }
  8339. static void ggml_compute_forward_elu(
  8340. const struct ggml_compute_params * params,
  8341. const struct ggml_tensor * src0,
  8342. struct ggml_tensor * dst) {
  8343. switch (src0->type) {
  8344. case GGML_TYPE_F32:
  8345. {
  8346. ggml_compute_forward_elu_f32(params, src0, dst);
  8347. } break;
  8348. default:
  8349. {
  8350. GGML_ASSERT(false);
  8351. } break;
  8352. }
  8353. }
  8354. // ggml_compute_forward_relu
  8355. static void ggml_compute_forward_relu_f32(
  8356. const struct ggml_compute_params * params,
  8357. const struct ggml_tensor * src0,
  8358. struct ggml_tensor * dst) {
  8359. assert(params->ith == 0);
  8360. assert(ggml_are_same_shape(src0, dst));
  8361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8362. return;
  8363. }
  8364. const int n = ggml_nrows(src0);
  8365. const int nc = src0->ne[0];
  8366. assert(dst->nb[0] == sizeof(float));
  8367. assert(src0->nb[0] == sizeof(float));
  8368. for (int i = 0; i < n; i++) {
  8369. ggml_vec_relu_f32(nc,
  8370. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8371. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8372. }
  8373. }
  8374. static void ggml_compute_forward_relu(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. struct ggml_tensor * dst) {
  8378. switch (src0->type) {
  8379. case GGML_TYPE_F32:
  8380. {
  8381. ggml_compute_forward_relu_f32(params, src0, dst);
  8382. } break;
  8383. default:
  8384. {
  8385. GGML_ASSERT(false);
  8386. } break;
  8387. }
  8388. }
  8389. // ggml_compute_forward_gelu
  8390. static void ggml_compute_forward_gelu_f32(
  8391. const struct ggml_compute_params * params,
  8392. const struct ggml_tensor * src0,
  8393. struct ggml_tensor * dst) {
  8394. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8395. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8396. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8397. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8398. return;
  8399. }
  8400. const int ith = params->ith;
  8401. const int nth = params->nth;
  8402. const int nc = src0->ne[0];
  8403. const int nr = ggml_nrows(src0);
  8404. // rows per thread
  8405. const int dr = (nr + nth - 1)/nth;
  8406. // row range for this thread
  8407. const int ir0 = dr*ith;
  8408. const int ir1 = MIN(ir0 + dr, nr);
  8409. for (int i1 = ir0; i1 < ir1; i1++) {
  8410. ggml_vec_gelu_f32(nc,
  8411. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8412. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8413. #ifndef NDEBUG
  8414. for (int k = 0; k < nc; k++) {
  8415. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8416. UNUSED(x);
  8417. assert(!isnan(x));
  8418. assert(!isinf(x));
  8419. }
  8420. #endif
  8421. }
  8422. }
  8423. static void ggml_compute_forward_gelu(
  8424. const struct ggml_compute_params * params,
  8425. const struct ggml_tensor * src0,
  8426. struct ggml_tensor * dst) {
  8427. switch (src0->type) {
  8428. case GGML_TYPE_F32:
  8429. {
  8430. ggml_compute_forward_gelu_f32(params, src0, dst);
  8431. } break;
  8432. default:
  8433. {
  8434. GGML_ASSERT(false);
  8435. } break;
  8436. }
  8437. }
  8438. // ggml_compute_forward_gelu_quick
  8439. static void ggml_compute_forward_gelu_quick_f32(
  8440. const struct ggml_compute_params * params,
  8441. const struct ggml_tensor * src0,
  8442. struct ggml_tensor * dst) {
  8443. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8444. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8445. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8447. return;
  8448. }
  8449. const int ith = params->ith;
  8450. const int nth = params->nth;
  8451. const int nc = src0->ne[0];
  8452. const int nr = ggml_nrows(src0);
  8453. // rows per thread
  8454. const int dr = (nr + nth - 1)/nth;
  8455. // row range for this thread
  8456. const int ir0 = dr*ith;
  8457. const int ir1 = MIN(ir0 + dr, nr);
  8458. for (int i1 = ir0; i1 < ir1; i1++) {
  8459. ggml_vec_gelu_quick_f32(nc,
  8460. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8461. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8462. #ifndef NDEBUG
  8463. for (int k = 0; k < nc; k++) {
  8464. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8465. UNUSED(x);
  8466. assert(!isnan(x));
  8467. assert(!isinf(x));
  8468. }
  8469. #endif
  8470. }
  8471. }
  8472. static void ggml_compute_forward_gelu_quick(
  8473. const struct ggml_compute_params * params,
  8474. const struct ggml_tensor * src0,
  8475. struct ggml_tensor * dst) {
  8476. switch (src0->type) {
  8477. case GGML_TYPE_F32:
  8478. {
  8479. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8480. } break;
  8481. default:
  8482. {
  8483. GGML_ASSERT(false);
  8484. } break;
  8485. }
  8486. }
  8487. // ggml_compute_forward_silu
  8488. static void ggml_compute_forward_silu_f32(
  8489. const struct ggml_compute_params * params,
  8490. const struct ggml_tensor * src0,
  8491. struct ggml_tensor * dst) {
  8492. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8493. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8494. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8496. return;
  8497. }
  8498. const int ith = params->ith;
  8499. const int nth = params->nth;
  8500. const int nc = src0->ne[0];
  8501. const int nr = ggml_nrows(src0);
  8502. // rows per thread
  8503. const int dr = (nr + nth - 1)/nth;
  8504. // row range for this thread
  8505. const int ir0 = dr*ith;
  8506. const int ir1 = MIN(ir0 + dr, nr);
  8507. for (int i1 = ir0; i1 < ir1; i1++) {
  8508. ggml_vec_silu_f32(nc,
  8509. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8510. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8511. #ifndef NDEBUG
  8512. for (int k = 0; k < nc; k++) {
  8513. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8514. UNUSED(x);
  8515. assert(!isnan(x));
  8516. assert(!isinf(x));
  8517. }
  8518. #endif
  8519. }
  8520. }
  8521. static void ggml_compute_forward_silu(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. struct ggml_tensor * dst) {
  8525. switch (src0->type) {
  8526. case GGML_TYPE_F32:
  8527. {
  8528. ggml_compute_forward_silu_f32(params, src0, dst);
  8529. } break;
  8530. default:
  8531. {
  8532. GGML_ASSERT(false);
  8533. } break;
  8534. }
  8535. }
  8536. // ggml_compute_forward_silu_back
  8537. static void ggml_compute_forward_silu_back_f32(
  8538. const struct ggml_compute_params * params,
  8539. const struct ggml_tensor * src0,
  8540. const struct ggml_tensor * grad,
  8541. struct ggml_tensor * dst) {
  8542. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8543. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8544. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8545. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8546. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8548. return;
  8549. }
  8550. const int ith = params->ith;
  8551. const int nth = params->nth;
  8552. const int nc = src0->ne[0];
  8553. const int nr = ggml_nrows(src0);
  8554. // rows per thread
  8555. const int dr = (nr + nth - 1)/nth;
  8556. // row range for this thread
  8557. const int ir0 = dr*ith;
  8558. const int ir1 = MIN(ir0 + dr, nr);
  8559. for (int i1 = ir0; i1 < ir1; i1++) {
  8560. ggml_vec_silu_backward_f32(nc,
  8561. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8562. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8563. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8564. #ifndef NDEBUG
  8565. for (int k = 0; k < nc; k++) {
  8566. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8567. UNUSED(x);
  8568. assert(!isnan(x));
  8569. assert(!isinf(x));
  8570. }
  8571. #endif
  8572. }
  8573. }
  8574. static void ggml_compute_forward_silu_back(
  8575. const struct ggml_compute_params * params,
  8576. const struct ggml_tensor * src0,
  8577. const struct ggml_tensor * grad,
  8578. struct ggml_tensor * dst) {
  8579. switch (src0->type) {
  8580. case GGML_TYPE_F32:
  8581. {
  8582. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8583. } break;
  8584. default:
  8585. {
  8586. GGML_ASSERT(false);
  8587. } break;
  8588. }
  8589. }
  8590. // ggml_compute_forward_norm
  8591. static void ggml_compute_forward_norm_f32(
  8592. const struct ggml_compute_params * params,
  8593. const struct ggml_tensor * src0,
  8594. struct ggml_tensor * dst) {
  8595. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8597. return;
  8598. }
  8599. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8600. const int ith = params->ith;
  8601. const int nth = params->nth;
  8602. GGML_TENSOR_UNARY_OP_LOCALS;
  8603. float eps;
  8604. memcpy(&eps, dst->op_params, sizeof(float));
  8605. // TODO: optimize
  8606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8608. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8609. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8610. ggml_float sum = 0.0;
  8611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8612. sum += (ggml_float)x[i00];
  8613. }
  8614. float mean = sum/ne00;
  8615. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8616. ggml_float sum2 = 0.0;
  8617. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8618. float v = x[i00] - mean;
  8619. y[i00] = v;
  8620. sum2 += (ggml_float)(v*v);
  8621. }
  8622. float variance = sum2/ne00;
  8623. const float scale = 1.0f/sqrtf(variance + eps);
  8624. ggml_vec_scale_f32(ne00, y, scale);
  8625. }
  8626. }
  8627. }
  8628. }
  8629. static void ggml_compute_forward_norm(
  8630. const struct ggml_compute_params * params,
  8631. const struct ggml_tensor * src0,
  8632. struct ggml_tensor * dst) {
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_norm_f32(params, src0, dst);
  8637. } break;
  8638. default:
  8639. {
  8640. GGML_ASSERT(false);
  8641. } break;
  8642. }
  8643. }
  8644. // ggml_compute_forward_group_rms_norm
  8645. static void ggml_compute_forward_rms_norm_f32(
  8646. const struct ggml_compute_params * params,
  8647. const struct ggml_tensor * src0,
  8648. struct ggml_tensor * dst) {
  8649. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8651. return;
  8652. }
  8653. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8654. const int ith = params->ith;
  8655. const int nth = params->nth;
  8656. GGML_TENSOR_UNARY_OP_LOCALS;
  8657. float eps;
  8658. memcpy(&eps, dst->op_params, sizeof(float));
  8659. // TODO: optimize
  8660. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8661. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8662. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8663. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8664. ggml_float sum = 0.0;
  8665. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8666. sum += (ggml_float)(x[i00] * x[i00]);
  8667. }
  8668. const float mean = sum/ne00;
  8669. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8670. memcpy(y, x, ne00 * sizeof(float));
  8671. // for (int i00 = 0; i00 < ne00; i00++) {
  8672. // y[i00] = x[i00];
  8673. // }
  8674. const float scale = 1.0f/sqrtf(mean + eps);
  8675. ggml_vec_scale_f32(ne00, y, scale);
  8676. }
  8677. }
  8678. }
  8679. }
  8680. static void ggml_compute_forward_rms_norm(
  8681. const struct ggml_compute_params * params,
  8682. const struct ggml_tensor * src0,
  8683. struct ggml_tensor * dst) {
  8684. switch (src0->type) {
  8685. case GGML_TYPE_F32:
  8686. {
  8687. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8688. } break;
  8689. default:
  8690. {
  8691. GGML_ASSERT(false);
  8692. } break;
  8693. }
  8694. }
  8695. static void ggml_compute_forward_rms_norm_back_f32(
  8696. const struct ggml_compute_params * params,
  8697. const struct ggml_tensor * src0,
  8698. const struct ggml_tensor * src1,
  8699. struct ggml_tensor * dst) {
  8700. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8702. return;
  8703. }
  8704. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8705. const int ith = params->ith;
  8706. const int nth = params->nth;
  8707. GGML_TENSOR_BINARY_OP_LOCALS;
  8708. const float eps = 1e-6f; // TODO: make this a parameter
  8709. // TODO: optimize
  8710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8712. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8713. // src1 is same shape as src0 => same indices
  8714. const int64_t i11 = i01;
  8715. const int64_t i12 = i02;
  8716. const int64_t i13 = i03;
  8717. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8718. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8719. ggml_float sum_xx = 0.0;
  8720. ggml_float sum_xdz = 0.0;
  8721. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8722. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8723. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8724. }
  8725. //const float mean = (float)(sum_xx)/ne00;
  8726. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8727. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8728. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8729. // we could cache rms from forward pass to improve performance.
  8730. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8731. //const float rms = sqrtf(mean_eps);
  8732. const float rrms = 1.0f / sqrtf(mean_eps);
  8733. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8734. {
  8735. // z = rms_norm(x)
  8736. //
  8737. // rms_norm(src0) =
  8738. // scale(
  8739. // src0,
  8740. // div(
  8741. // 1,
  8742. // sqrt(
  8743. // add(
  8744. // scale(
  8745. // sum(
  8746. // sqr(
  8747. // src0)),
  8748. // (1.0/N)),
  8749. // eps))));
  8750. // postorder:
  8751. // ## op args grad
  8752. // 00 param src0 grad[#00]
  8753. // 01 const 1
  8754. // 02 sqr (#00) grad[#02]
  8755. // 03 sum (#02) grad[#03]
  8756. // 04 const 1/N
  8757. // 05 scale (#03, #04) grad[#05]
  8758. // 06 const eps
  8759. // 07 add (#05, #06) grad[#07]
  8760. // 08 sqrt (#07) grad[#08]
  8761. // 09 div (#01,#08) grad[#09]
  8762. // 10 scale (#00,#09) grad[#10]
  8763. //
  8764. // backward pass, given grad[#10]
  8765. // #10: scale
  8766. // grad[#00] += scale(grad[#10],#09)
  8767. // grad[#09] += sum(mul(grad[#10],#00))
  8768. // #09: div
  8769. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8770. // #08: sqrt
  8771. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8772. // #07: add
  8773. // grad[#05] += grad[#07]
  8774. // #05: scale
  8775. // grad[#03] += scale(grad[#05],#04)
  8776. // #03: sum
  8777. // grad[#02] += repeat(grad[#03], #02)
  8778. // #02:
  8779. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8780. //
  8781. // substitute and simplify:
  8782. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8783. // grad[#02] = repeat(grad[#03], #02)
  8784. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8785. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8786. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8787. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8788. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8789. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8790. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8791. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8792. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8793. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8794. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8795. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8796. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8797. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8798. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8799. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8800. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8801. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8802. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8803. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8804. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8805. // a = b*c + d*e
  8806. // a = b*c*f/f + d*e*f/f
  8807. // a = (b*c*f + d*e*f)*(1/f)
  8808. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8809. // a = (b + d*e/c)*c
  8810. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8811. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8812. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8813. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8814. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8815. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8816. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8817. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8818. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8819. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8820. }
  8821. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8822. // post-order:
  8823. // dx := x
  8824. // dx := scale(dx,-mean_xdz/mean_eps)
  8825. // dx := add(dx, dz)
  8826. // dx := scale(dx, rrms)
  8827. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8828. ggml_vec_cpy_f32 (ne00, dx, x);
  8829. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8830. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8831. ggml_vec_acc_f32 (ne00, dx, dz);
  8832. ggml_vec_scale_f32(ne00, dx, rrms);
  8833. }
  8834. }
  8835. }
  8836. }
  8837. static void ggml_compute_forward_rms_norm_back(
  8838. const struct ggml_compute_params * params,
  8839. const struct ggml_tensor * src0,
  8840. const struct ggml_tensor * src1,
  8841. struct ggml_tensor * dst) {
  8842. switch (src0->type) {
  8843. case GGML_TYPE_F32:
  8844. {
  8845. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8846. } break;
  8847. default:
  8848. {
  8849. GGML_ASSERT(false);
  8850. } break;
  8851. }
  8852. }
  8853. // ggml_compute_forward_group_norm
  8854. static void ggml_compute_forward_group_norm_f32(
  8855. const struct ggml_compute_params * params,
  8856. const struct ggml_tensor * src0,
  8857. struct ggml_tensor * dst) {
  8858. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8860. return;
  8861. }
  8862. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8863. const int ith = params->ith;
  8864. const int nth = params->nth;
  8865. GGML_TENSOR_UNARY_OP_LOCALS;
  8866. const float eps = 1e-6f; // TODO: make this a parameter
  8867. // TODO: optimize
  8868. int n_channels = src0->ne[2];
  8869. int n_groups = dst->op_params[0];
  8870. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8871. for (int i = ith; i < n_groups; i+=nth) {
  8872. int start = i * n_channels_per_group;
  8873. int end = start + n_channels_per_group;
  8874. if (end > n_channels) {
  8875. end = n_channels;
  8876. }
  8877. int step = end - start;
  8878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8879. ggml_float sum = 0.0;
  8880. for (int64_t i02 = start; i02 < end; i02++) {
  8881. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8882. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8883. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8884. sum += (ggml_float)x[i00];
  8885. }
  8886. }
  8887. }
  8888. float mean = sum / (ne00 * ne01 * step);
  8889. ggml_float sum2 = 0.0;
  8890. for (int64_t i02 = start; i02 < end; i02++) {
  8891. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8892. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8893. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8894. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8895. float v = x[i00] - mean;
  8896. y[i00] = v;
  8897. sum2 += (ggml_float)(v * v);
  8898. }
  8899. }
  8900. }
  8901. float variance = sum2 / (ne00 * ne01 * step);
  8902. const float scale = 1.0f / sqrtf(variance + eps);
  8903. for (int64_t i02 = start; i02 < end; i02++) {
  8904. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8905. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8906. ggml_vec_scale_f32(ne00, y, scale);
  8907. }
  8908. }
  8909. }
  8910. }
  8911. }
  8912. static void ggml_compute_forward_group_norm(
  8913. const struct ggml_compute_params * params,
  8914. const struct ggml_tensor * src0,
  8915. struct ggml_tensor * dst) {
  8916. switch (src0->type) {
  8917. case GGML_TYPE_F32:
  8918. {
  8919. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8920. } break;
  8921. default:
  8922. {
  8923. GGML_ASSERT(false);
  8924. } break;
  8925. }
  8926. }
  8927. // ggml_compute_forward_mul_mat
  8928. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8929. // helper function to determine if it is better to use BLAS or not
  8930. // for large matrices, BLAS is faster
  8931. static bool ggml_compute_forward_mul_mat_use_blas(
  8932. const struct ggml_tensor * src0,
  8933. const struct ggml_tensor * src1,
  8934. struct ggml_tensor * dst) {
  8935. //const int64_t ne00 = src0->ne[0];
  8936. //const int64_t ne01 = src0->ne[1];
  8937. const int64_t ne10 = src1->ne[0];
  8938. const int64_t ne0 = dst->ne[0];
  8939. const int64_t ne1 = dst->ne[1];
  8940. // TODO: find the optimal values for these
  8941. if (ggml_is_contiguous(src0) &&
  8942. ggml_is_contiguous(src1) &&
  8943. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8944. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8945. return true;
  8946. }
  8947. return false;
  8948. }
  8949. #endif
  8950. static void ggml_compute_forward_mul_mat(
  8951. const struct ggml_compute_params * params,
  8952. const struct ggml_tensor * src0,
  8953. const struct ggml_tensor * src1,
  8954. struct ggml_tensor * dst) {
  8955. int64_t t0 = ggml_perf_time_us();
  8956. UNUSED(t0);
  8957. GGML_TENSOR_BINARY_OP_LOCALS;
  8958. const int ith = params->ith;
  8959. const int nth = params->nth;
  8960. const enum ggml_type type = src0->type;
  8961. const bool src1_cont = ggml_is_contiguous(src1);
  8962. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8963. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8964. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8965. GGML_ASSERT(ne0 == ne01);
  8966. GGML_ASSERT(ne1 == ne11);
  8967. GGML_ASSERT(ne2 == ne12);
  8968. GGML_ASSERT(ne3 == ne13);
  8969. // we don't support permuted src0 or src1
  8970. GGML_ASSERT(nb00 == ggml_type_size(type));
  8971. GGML_ASSERT(nb10 == sizeof(float));
  8972. // dst cannot be transposed or permuted
  8973. GGML_ASSERT(nb0 == sizeof(float));
  8974. GGML_ASSERT(nb0 <= nb1);
  8975. GGML_ASSERT(nb1 <= nb2);
  8976. GGML_ASSERT(nb2 <= nb3);
  8977. // broadcast factors
  8978. const int64_t r2 = ne12/ne02;
  8979. const int64_t r3 = ne13/ne03;
  8980. // nb01 >= nb00 - src0 is not transposed
  8981. // compute by src0 rows
  8982. #if defined(GGML_USE_CLBLAST)
  8983. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8984. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8985. // ref: https://github.com/ggerganov/ggml/pull/224
  8986. GGML_ASSERT(ne02 == ne12);
  8987. GGML_ASSERT(ne03 == ne13);
  8988. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8989. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8990. }
  8991. return;
  8992. }
  8993. #endif
  8994. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8995. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8996. if (params->ith != 0) {
  8997. return;
  8998. }
  8999. if (params->type == GGML_TASK_INIT) {
  9000. return;
  9001. }
  9002. if (params->type == GGML_TASK_FINALIZE) {
  9003. return;
  9004. }
  9005. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9006. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9007. // broadcast src0 into src1 across 2nd,3rd dimension
  9008. const int64_t i03 = i13/r3;
  9009. const int64_t i02 = i12/r2;
  9010. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9011. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9012. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9013. if (type != GGML_TYPE_F32) {
  9014. float * const wdata = params->wdata;
  9015. ggml_to_float_t const to_float = type_traits[type].to_float;
  9016. size_t id = 0;
  9017. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9018. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9019. id += ne00;
  9020. }
  9021. assert(id*sizeof(float) <= params->wsize);
  9022. x = wdata;
  9023. }
  9024. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9025. ne11, ne01, ne10,
  9026. 1.0f, y, ne10,
  9027. x, ne00,
  9028. 0.0f, d, ne01);
  9029. }
  9030. }
  9031. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9032. return;
  9033. }
  9034. #endif
  9035. if (params->type == GGML_TASK_INIT) {
  9036. if (src1->type != vec_dot_type) {
  9037. char * wdata = params->wdata;
  9038. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9039. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9040. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9041. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9042. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9043. wdata += row_size;
  9044. }
  9045. }
  9046. }
  9047. }
  9048. return;
  9049. }
  9050. if (params->type == GGML_TASK_FINALIZE) {
  9051. return;
  9052. }
  9053. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9054. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9055. const int64_t nr0 = ne01; // src0 rows
  9056. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9057. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9058. // distribute the thread work across the inner or outer loop based on which one is larger
  9059. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9060. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9061. const int64_t ith0 = ith % nth0;
  9062. const int64_t ith1 = ith / nth0;
  9063. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9064. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9065. const int64_t ir010 = dr0*ith0;
  9066. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9067. const int64_t ir110 = dr1*ith1;
  9068. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9069. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9070. // threads with no work simply yield (not sure if it helps)
  9071. if (ir010 >= ir011 || ir110 >= ir111) {
  9072. sched_yield();
  9073. return;
  9074. }
  9075. assert(ne12 % ne02 == 0);
  9076. assert(ne13 % ne03 == 0);
  9077. // block-tiling attempt
  9078. const int64_t blck_0 = 16;
  9079. const int64_t blck_1 = 16;
  9080. // attempt to reduce false-sharing (does not seem to make a difference)
  9081. float tmp[16];
  9082. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9083. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9084. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9085. const int64_t i13 = (ir1/(ne12*ne11));
  9086. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9087. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9088. // broadcast src0 into src1
  9089. const int64_t i03 = i13/r3;
  9090. const int64_t i02 = i12/r2;
  9091. const int64_t i1 = i11;
  9092. const int64_t i2 = i12;
  9093. const int64_t i3 = i13;
  9094. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9095. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9096. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9097. // the original src1 data pointer, so we should index using the indices directly
  9098. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9099. const char * src1_col = (const char *) wdata +
  9100. (src1_cont || src1->type != vec_dot_type
  9101. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9102. : (i11*nb11 + i12*nb12 + i13*nb13));
  9103. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9104. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9105. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9106. //}
  9107. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9108. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9109. }
  9110. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9111. }
  9112. }
  9113. }
  9114. }
  9115. // ggml_compute_forward_out_prod
  9116. static void ggml_compute_forward_out_prod_f32(
  9117. const struct ggml_compute_params * params,
  9118. const struct ggml_tensor * src0,
  9119. const struct ggml_tensor * src1,
  9120. struct ggml_tensor * dst) {
  9121. int64_t t0 = ggml_perf_time_us();
  9122. UNUSED(t0);
  9123. GGML_TENSOR_BINARY_OP_LOCALS;
  9124. const int ith = params->ith;
  9125. const int nth = params->nth;
  9126. GGML_ASSERT(ne02 == ne12);
  9127. GGML_ASSERT(ne03 == ne13);
  9128. GGML_ASSERT(ne2 == ne12);
  9129. GGML_ASSERT(ne3 == ne13);
  9130. // we don't support permuted src0 or src1
  9131. GGML_ASSERT(nb00 == sizeof(float));
  9132. // dst cannot be transposed or permuted
  9133. GGML_ASSERT(nb0 == sizeof(float));
  9134. // GGML_ASSERT(nb0 <= nb1);
  9135. // GGML_ASSERT(nb1 <= nb2);
  9136. // GGML_ASSERT(nb2 <= nb3);
  9137. GGML_ASSERT(ne0 == ne00);
  9138. GGML_ASSERT(ne1 == ne10);
  9139. GGML_ASSERT(ne2 == ne02);
  9140. GGML_ASSERT(ne3 == ne03);
  9141. // nb01 >= nb00 - src0 is not transposed
  9142. // compute by src0 rows
  9143. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9144. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9145. if (params->type == GGML_TASK_INIT) {
  9146. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9147. return;
  9148. }
  9149. if (params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. // parallelize by last three dimensions
  9153. // total rows in dst
  9154. const int64_t nr = ne1*ne2*ne3;
  9155. // rows per thread
  9156. const int64_t dr = (nr + nth - 1)/nth;
  9157. // row range for this thread
  9158. const int64_t ir0 = dr*ith;
  9159. const int64_t ir1 = MIN(ir0 + dr, nr);
  9160. // dst[:,:,:,:] = 0
  9161. // for i2,i3:
  9162. // for i1:
  9163. // for i01:
  9164. // for i0:
  9165. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9166. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9167. // dst indices
  9168. const int64_t i3 = ir/(ne2*ne1);
  9169. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9170. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9171. const int64_t i02 = i2;
  9172. const int64_t i03 = i3;
  9173. //const int64_t i10 = i1;
  9174. const int64_t i12 = i2;
  9175. const int64_t i13 = i3;
  9176. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9177. const int64_t i11 = i01;
  9178. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9179. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9180. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9181. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9182. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9183. // d[i0] += s0[i0] * s1[i1];
  9184. // }
  9185. }
  9186. }
  9187. //int64_t t1 = ggml_perf_time_us();
  9188. //static int64_t acc = 0;
  9189. //acc += t1 - t0;
  9190. //if (t1 - t0 > 10) {
  9191. // printf("\n");
  9192. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9193. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9194. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9195. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9196. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9197. //}
  9198. }
  9199. static void ggml_compute_forward_out_prod(
  9200. const struct ggml_compute_params * params,
  9201. const struct ggml_tensor * src0,
  9202. const struct ggml_tensor * src1,
  9203. struct ggml_tensor * dst) {
  9204. switch (src0->type) {
  9205. case GGML_TYPE_Q4_0:
  9206. case GGML_TYPE_Q4_1:
  9207. case GGML_TYPE_Q5_0:
  9208. case GGML_TYPE_Q5_1:
  9209. case GGML_TYPE_Q8_0:
  9210. case GGML_TYPE_Q8_1:
  9211. {
  9212. GGML_ASSERT(false); // todo
  9213. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9214. } break;
  9215. case GGML_TYPE_F16:
  9216. {
  9217. GGML_ASSERT(false); // todo
  9218. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9219. } break;
  9220. case GGML_TYPE_F32:
  9221. {
  9222. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9223. } break;
  9224. default:
  9225. {
  9226. GGML_ASSERT(false);
  9227. } break;
  9228. }
  9229. }
  9230. // ggml_compute_forward_scale
  9231. static void ggml_compute_forward_scale_f32(
  9232. const struct ggml_compute_params * params,
  9233. const struct ggml_tensor * src0,
  9234. const struct ggml_tensor * src1,
  9235. struct ggml_tensor * dst) {
  9236. GGML_ASSERT(ggml_is_contiguous(src0));
  9237. GGML_ASSERT(ggml_is_contiguous(dst));
  9238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9239. GGML_ASSERT(ggml_is_scalar(src1));
  9240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9241. return;
  9242. }
  9243. // scale factor
  9244. const float v = *(float *) src1->data;
  9245. const int ith = params->ith;
  9246. const int nth = params->nth;
  9247. const int nc = src0->ne[0];
  9248. const int nr = ggml_nrows(src0);
  9249. // rows per thread
  9250. const int dr = (nr + nth - 1)/nth;
  9251. // row range for this thread
  9252. const int ir0 = dr*ith;
  9253. const int ir1 = MIN(ir0 + dr, nr);
  9254. const size_t nb01 = src0->nb[1];
  9255. const size_t nb1 = dst->nb[1];
  9256. for (int i1 = ir0; i1 < ir1; i1++) {
  9257. if (dst->data != src0->data) {
  9258. // src0 is same shape as dst => same indices
  9259. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9260. }
  9261. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9262. }
  9263. }
  9264. static void ggml_compute_forward_scale(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0,
  9267. const struct ggml_tensor * src1,
  9268. struct ggml_tensor * dst) {
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ASSERT(false);
  9277. } break;
  9278. }
  9279. }
  9280. // ggml_compute_forward_set
  9281. static void ggml_compute_forward_set_f32(
  9282. const struct ggml_compute_params * params,
  9283. const struct ggml_tensor * src0,
  9284. const struct ggml_tensor * src1,
  9285. struct ggml_tensor * dst) {
  9286. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9287. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9288. // view src0 and dst with these strides and data offset inbytes during set
  9289. // nb0 is implicitely element_size because src0 and dst are contiguous
  9290. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9291. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9292. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9293. size_t offset = ((int32_t *) dst->op_params)[3];
  9294. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9295. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9296. // memcpy needs to be synchronized across threads to avoid race conditions.
  9297. // => do it in INIT phase
  9298. memcpy(
  9299. ((char *) dst->data),
  9300. ((char *) src0->data),
  9301. ggml_nbytes(dst));
  9302. }
  9303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9304. return;
  9305. }
  9306. const int ith = params->ith;
  9307. const int nth = params->nth;
  9308. const int nr = ggml_nrows(src1);
  9309. const int nc = src1->ne[0];
  9310. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9311. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9312. // src0 and dst as viewed during set
  9313. const size_t nb0 = ggml_element_size(src0);
  9314. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9315. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9316. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9317. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9318. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9319. GGML_ASSERT(nb10 == sizeof(float));
  9320. // rows per thread
  9321. const int dr = (nr + nth - 1)/nth;
  9322. // row range for this thread
  9323. const int ir0 = dr*ith;
  9324. const int ir1 = MIN(ir0 + dr, nr);
  9325. for (int ir = ir0; ir < ir1; ++ir) {
  9326. // src0 and dst are viewed with shape of src1 and offset
  9327. // => same indices
  9328. const int i3 = ir/(ne12*ne11);
  9329. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9330. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9331. ggml_vec_cpy_f32(nc,
  9332. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9333. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9334. }
  9335. }
  9336. static void ggml_compute_forward_set(
  9337. const struct ggml_compute_params * params,
  9338. const struct ggml_tensor * src0,
  9339. const struct ggml_tensor * src1,
  9340. struct ggml_tensor * dst) {
  9341. switch (src0->type) {
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9345. } break;
  9346. case GGML_TYPE_F16:
  9347. case GGML_TYPE_Q4_0:
  9348. case GGML_TYPE_Q4_1:
  9349. case GGML_TYPE_Q5_0:
  9350. case GGML_TYPE_Q5_1:
  9351. case GGML_TYPE_Q8_0:
  9352. case GGML_TYPE_Q8_1:
  9353. case GGML_TYPE_Q2_K:
  9354. case GGML_TYPE_Q3_K:
  9355. case GGML_TYPE_Q4_K:
  9356. case GGML_TYPE_Q5_K:
  9357. case GGML_TYPE_Q6_K:
  9358. default:
  9359. {
  9360. GGML_ASSERT(false);
  9361. } break;
  9362. }
  9363. }
  9364. // ggml_compute_forward_cpy
  9365. static void ggml_compute_forward_cpy(
  9366. const struct ggml_compute_params * params,
  9367. const struct ggml_tensor * src0,
  9368. struct ggml_tensor * dst) {
  9369. ggml_compute_forward_dup(params, src0, dst);
  9370. }
  9371. // ggml_compute_forward_cont
  9372. static void ggml_compute_forward_cont(
  9373. const struct ggml_compute_params * params,
  9374. const struct ggml_tensor * src0,
  9375. struct ggml_tensor * dst) {
  9376. ggml_compute_forward_dup(params, src0, dst);
  9377. }
  9378. // ggml_compute_forward_reshape
  9379. static void ggml_compute_forward_reshape(
  9380. const struct ggml_compute_params * params,
  9381. const struct ggml_tensor * src0,
  9382. struct ggml_tensor * dst) {
  9383. // NOP
  9384. UNUSED(params);
  9385. UNUSED(src0);
  9386. UNUSED(dst);
  9387. }
  9388. // ggml_compute_forward_view
  9389. static void ggml_compute_forward_view(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * src0) {
  9392. // NOP
  9393. UNUSED(params);
  9394. UNUSED(src0);
  9395. }
  9396. // ggml_compute_forward_permute
  9397. static void ggml_compute_forward_permute(
  9398. const struct ggml_compute_params * params,
  9399. const struct ggml_tensor * src0) {
  9400. // NOP
  9401. UNUSED(params);
  9402. UNUSED(src0);
  9403. }
  9404. // ggml_compute_forward_transpose
  9405. static void ggml_compute_forward_transpose(
  9406. const struct ggml_compute_params * params,
  9407. const struct ggml_tensor * src0) {
  9408. // NOP
  9409. UNUSED(params);
  9410. UNUSED(src0);
  9411. }
  9412. // ggml_compute_forward_get_rows
  9413. static void ggml_compute_forward_get_rows_q(
  9414. const struct ggml_compute_params * params,
  9415. const struct ggml_tensor * src0,
  9416. const struct ggml_tensor * src1,
  9417. struct ggml_tensor * dst) {
  9418. assert(params->ith == 0);
  9419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9420. return;
  9421. }
  9422. const int nc = src0->ne[0];
  9423. const int nr = ggml_nelements(src1);
  9424. const enum ggml_type type = src0->type;
  9425. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9426. assert( dst->ne[0] == nc);
  9427. assert( dst->ne[1] == nr);
  9428. assert(src0->nb[0] == ggml_type_size(type));
  9429. for (int i = 0; i < nr; ++i) {
  9430. const int r = ((int32_t *) src1->data)[i];
  9431. dequantize_row_q(
  9432. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9433. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9434. }
  9435. }
  9436. static void ggml_compute_forward_get_rows_f16(
  9437. const struct ggml_compute_params * params,
  9438. const struct ggml_tensor * src0,
  9439. const struct ggml_tensor * src1,
  9440. struct ggml_tensor * dst) {
  9441. assert(params->ith == 0);
  9442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9443. return;
  9444. }
  9445. const int nc = src0->ne[0];
  9446. const int nr = ggml_nelements(src1);
  9447. assert( dst->ne[0] == nc);
  9448. assert( dst->ne[1] == nr);
  9449. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9450. for (int i = 0; i < nr; ++i) {
  9451. const int r = ((int32_t *) src1->data)[i];
  9452. for (int j = 0; j < nc; ++j) {
  9453. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9454. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9455. }
  9456. }
  9457. }
  9458. static void ggml_compute_forward_get_rows_f32(
  9459. const struct ggml_compute_params * params,
  9460. const struct ggml_tensor * src0,
  9461. const struct ggml_tensor * src1,
  9462. struct ggml_tensor * dst) {
  9463. assert(params->ith == 0);
  9464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9465. return;
  9466. }
  9467. const int nc = src0->ne[0];
  9468. const int nr = ggml_nelements(src1);
  9469. assert( dst->ne[0] == nc);
  9470. assert( dst->ne[1] == nr);
  9471. assert(src0->nb[0] == sizeof(float));
  9472. for (int i = 0; i < nr; ++i) {
  9473. const int r = ((int32_t *) src1->data)[i];
  9474. ggml_vec_cpy_f32(nc,
  9475. (float *) ((char *) dst->data + i*dst->nb[1]),
  9476. (float *) ((char *) src0->data + r*src0->nb[1]));
  9477. }
  9478. }
  9479. static void ggml_compute_forward_get_rows(
  9480. const struct ggml_compute_params * params,
  9481. const struct ggml_tensor * src0,
  9482. const struct ggml_tensor * src1,
  9483. struct ggml_tensor * dst) {
  9484. switch (src0->type) {
  9485. case GGML_TYPE_Q4_0:
  9486. case GGML_TYPE_Q4_1:
  9487. case GGML_TYPE_Q5_0:
  9488. case GGML_TYPE_Q5_1:
  9489. case GGML_TYPE_Q8_0:
  9490. case GGML_TYPE_Q8_1:
  9491. case GGML_TYPE_Q2_K:
  9492. case GGML_TYPE_Q3_K:
  9493. case GGML_TYPE_Q4_K:
  9494. case GGML_TYPE_Q5_K:
  9495. case GGML_TYPE_Q6_K:
  9496. {
  9497. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9498. } break;
  9499. case GGML_TYPE_F16:
  9500. {
  9501. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9502. } break;
  9503. case GGML_TYPE_F32:
  9504. {
  9505. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9506. } break;
  9507. default:
  9508. {
  9509. GGML_ASSERT(false);
  9510. } break;
  9511. }
  9512. //static bool first = true;
  9513. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9514. //if (first) {
  9515. // first = false;
  9516. //} else {
  9517. // for (int k = 0; k < dst->ne[1]; ++k) {
  9518. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9519. // for (int i = 0; i < 16; ++i) {
  9520. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9521. // }
  9522. // printf("\n");
  9523. // }
  9524. // printf("\n");
  9525. // }
  9526. // printf("\n");
  9527. // exit(0);
  9528. //}
  9529. }
  9530. // ggml_compute_forward_get_rows_back
  9531. static void ggml_compute_forward_get_rows_back_f32_f16(
  9532. const struct ggml_compute_params * params,
  9533. const struct ggml_tensor * src0,
  9534. const struct ggml_tensor * src1,
  9535. const struct ggml_tensor * opt0,
  9536. struct ggml_tensor * dst) {
  9537. GGML_ASSERT(params->ith == 0);
  9538. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9539. GGML_ASSERT(ggml_is_contiguous(opt0));
  9540. GGML_ASSERT(ggml_is_contiguous(dst));
  9541. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9543. return;
  9544. }
  9545. const int nc = src0->ne[0];
  9546. const int nr = ggml_nelements(src1);
  9547. GGML_ASSERT( dst->ne[0] == nc);
  9548. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9549. for (int i = 0; i < nr; ++i) {
  9550. const int r = ((int32_t *) src1->data)[i];
  9551. for (int j = 0; j < nc; ++j) {
  9552. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9553. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9554. }
  9555. }
  9556. }
  9557. static void ggml_compute_forward_get_rows_back_f32(
  9558. const struct ggml_compute_params * params,
  9559. const struct ggml_tensor * src0,
  9560. const struct ggml_tensor * src1,
  9561. const struct ggml_tensor * opt0,
  9562. struct ggml_tensor * dst) {
  9563. GGML_ASSERT(params->ith == 0);
  9564. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9565. GGML_ASSERT(ggml_is_contiguous(opt0));
  9566. GGML_ASSERT(ggml_is_contiguous(dst));
  9567. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9568. if (params->type == GGML_TASK_INIT) {
  9569. memset(dst->data, 0, ggml_nbytes(dst));
  9570. }
  9571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9572. return;
  9573. }
  9574. const int nc = src0->ne[0];
  9575. const int nr = ggml_nelements(src1);
  9576. GGML_ASSERT( dst->ne[0] == nc);
  9577. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9578. for (int i = 0; i < nr; ++i) {
  9579. const int r = ((int32_t *) src1->data)[i];
  9580. ggml_vec_add_f32(nc,
  9581. (float *) ((char *) dst->data + r*dst->nb[1]),
  9582. (float *) ((char *) dst->data + r*dst->nb[1]),
  9583. (float *) ((char *) src0->data + i*src0->nb[1]));
  9584. }
  9585. }
  9586. static void ggml_compute_forward_get_rows_back(
  9587. const struct ggml_compute_params * params,
  9588. const struct ggml_tensor * src0,
  9589. const struct ggml_tensor * src1,
  9590. const struct ggml_tensor * opt0,
  9591. struct ggml_tensor * dst) {
  9592. switch (src0->type) {
  9593. case GGML_TYPE_F16:
  9594. {
  9595. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9596. } break;
  9597. case GGML_TYPE_F32:
  9598. {
  9599. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9600. } break;
  9601. default:
  9602. {
  9603. GGML_ASSERT(false);
  9604. } break;
  9605. }
  9606. //static bool first = true;
  9607. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9608. //if (first) {
  9609. // first = false;
  9610. //} else {
  9611. // for (int k = 0; k < dst->ne[1]; ++k) {
  9612. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9613. // for (int i = 0; i < 16; ++i) {
  9614. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9615. // }
  9616. // printf("\n");
  9617. // }
  9618. // printf("\n");
  9619. // }
  9620. // printf("\n");
  9621. // exit(0);
  9622. //}
  9623. }
  9624. // ggml_compute_forward_diag
  9625. static void ggml_compute_forward_diag_f32(
  9626. const struct ggml_compute_params * params,
  9627. const struct ggml_tensor * src0,
  9628. struct ggml_tensor * dst) {
  9629. GGML_ASSERT(params->ith == 0);
  9630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9631. return;
  9632. }
  9633. // TODO: handle transposed/permuted matrices
  9634. GGML_TENSOR_UNARY_OP_LOCALS;
  9635. GGML_ASSERT(ne00 == ne0);
  9636. GGML_ASSERT(ne00 == ne1);
  9637. GGML_ASSERT(ne01 == 1);
  9638. GGML_ASSERT(ne02 == ne2);
  9639. GGML_ASSERT(ne03 == ne3);
  9640. GGML_ASSERT(nb00 == sizeof(float));
  9641. GGML_ASSERT(nb0 == sizeof(float));
  9642. for (int i3 = 0; i3 < ne3; i3++) {
  9643. for (int i2 = 0; i2 < ne2; i2++) {
  9644. for (int i1 = 0; i1 < ne1; i1++) {
  9645. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9646. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9647. for (int i0 = 0; i0 < i1; i0++) {
  9648. d[i0] = 0;
  9649. }
  9650. d[i1] = s[i1];
  9651. for (int i0 = i1+1; i0 < ne0; i0++) {
  9652. d[i0] = 0;
  9653. }
  9654. }
  9655. }
  9656. }
  9657. }
  9658. static void ggml_compute_forward_diag(
  9659. const struct ggml_compute_params * params,
  9660. const struct ggml_tensor * src0,
  9661. struct ggml_tensor * dst) {
  9662. switch (src0->type) {
  9663. case GGML_TYPE_F32:
  9664. {
  9665. ggml_compute_forward_diag_f32(params, src0, dst);
  9666. } break;
  9667. default:
  9668. {
  9669. GGML_ASSERT(false);
  9670. } break;
  9671. }
  9672. }
  9673. // ggml_compute_forward_diag_mask_inf
  9674. static void ggml_compute_forward_diag_mask_f32(
  9675. const struct ggml_compute_params * params,
  9676. const struct ggml_tensor * src0,
  9677. struct ggml_tensor * dst,
  9678. const float value) {
  9679. const int ith = params->ith;
  9680. const int nth = params->nth;
  9681. const int n_past = ((int32_t *) dst->op_params)[0];
  9682. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9683. GGML_ASSERT(n_past >= 0);
  9684. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9685. // memcpy needs to be synchronized across threads to avoid race conditions.
  9686. // => do it in INIT phase
  9687. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9688. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9689. memcpy(
  9690. ((char *) dst->data),
  9691. ((char *) src0->data),
  9692. ggml_nbytes(dst));
  9693. }
  9694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9695. return;
  9696. }
  9697. // TODO: handle transposed/permuted matrices
  9698. const int n = ggml_nrows(src0);
  9699. const int nc = src0->ne[0];
  9700. const int nr = src0->ne[1];
  9701. const int nz = n/nr;
  9702. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9704. for (int k = 0; k < nz; k++) {
  9705. for (int j = ith; j < nr; j += nth) {
  9706. for (int i = n_past; i < nc; i++) {
  9707. if (i > n_past + j) {
  9708. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9709. }
  9710. }
  9711. }
  9712. }
  9713. }
  9714. static void ggml_compute_forward_diag_mask_inf(
  9715. const struct ggml_compute_params * params,
  9716. const struct ggml_tensor * src0,
  9717. struct ggml_tensor * dst) {
  9718. switch (src0->type) {
  9719. case GGML_TYPE_F32:
  9720. {
  9721. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9722. } break;
  9723. default:
  9724. {
  9725. GGML_ASSERT(false);
  9726. } break;
  9727. }
  9728. }
  9729. static void ggml_compute_forward_diag_mask_zero(
  9730. const struct ggml_compute_params * params,
  9731. const struct ggml_tensor * src0,
  9732. struct ggml_tensor * dst) {
  9733. switch (src0->type) {
  9734. case GGML_TYPE_F32:
  9735. {
  9736. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9737. } break;
  9738. default:
  9739. {
  9740. GGML_ASSERT(false);
  9741. } break;
  9742. }
  9743. }
  9744. // ggml_compute_forward_soft_max
  9745. static void ggml_compute_forward_soft_max_f32(
  9746. const struct ggml_compute_params * params,
  9747. const struct ggml_tensor * src0,
  9748. struct ggml_tensor * dst) {
  9749. GGML_ASSERT(ggml_is_contiguous(src0));
  9750. GGML_ASSERT(ggml_is_contiguous(dst));
  9751. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9753. return;
  9754. }
  9755. // TODO: handle transposed/permuted matrices
  9756. const int ith = params->ith;
  9757. const int nth = params->nth;
  9758. const int nc = src0->ne[0];
  9759. const int nr = ggml_nrows(src0);
  9760. // rows per thread
  9761. const int dr = (nr + nth - 1)/nth;
  9762. // row range for this thread
  9763. const int ir0 = dr*ith;
  9764. const int ir1 = MIN(ir0 + dr, nr);
  9765. for (int i1 = ir0; i1 < ir1; i1++) {
  9766. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9767. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9768. #ifndef NDEBUG
  9769. for (int i = 0; i < nc; ++i) {
  9770. //printf("p[%d] = %f\n", i, p[i]);
  9771. assert(!isnan(sp[i]));
  9772. }
  9773. #endif
  9774. float max = -INFINITY;
  9775. ggml_vec_max_f32(nc, &max, sp);
  9776. ggml_float sum = 0.0;
  9777. uint16_t scvt;
  9778. for (int i = 0; i < nc; i++) {
  9779. if (sp[i] == -INFINITY) {
  9780. dp[i] = 0.0f;
  9781. } else {
  9782. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9783. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9784. memcpy(&scvt, &s, sizeof(scvt));
  9785. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9786. sum += (ggml_float)val;
  9787. dp[i] = val;
  9788. }
  9789. }
  9790. assert(sum > 0.0);
  9791. sum = 1.0/sum;
  9792. ggml_vec_scale_f32(nc, dp, sum);
  9793. #ifndef NDEBUG
  9794. for (int i = 0; i < nc; ++i) {
  9795. assert(!isnan(dp[i]));
  9796. assert(!isinf(dp[i]));
  9797. }
  9798. #endif
  9799. }
  9800. }
  9801. static void ggml_compute_forward_soft_max(
  9802. const struct ggml_compute_params * params,
  9803. const struct ggml_tensor * src0,
  9804. struct ggml_tensor * dst) {
  9805. switch (src0->type) {
  9806. case GGML_TYPE_F32:
  9807. {
  9808. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9809. } break;
  9810. default:
  9811. {
  9812. GGML_ASSERT(false);
  9813. } break;
  9814. }
  9815. }
  9816. // ggml_compute_forward_soft_max_back
  9817. static void ggml_compute_forward_soft_max_back_f32(
  9818. const struct ggml_compute_params * params,
  9819. const struct ggml_tensor * src0,
  9820. const struct ggml_tensor * src1,
  9821. struct ggml_tensor * dst) {
  9822. GGML_ASSERT(ggml_is_contiguous(src0));
  9823. GGML_ASSERT(ggml_is_contiguous(src1));
  9824. GGML_ASSERT(ggml_is_contiguous(dst));
  9825. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9826. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9828. return;
  9829. }
  9830. // TODO: handle transposed/permuted matrices
  9831. const int ith = params->ith;
  9832. const int nth = params->nth;
  9833. const int nc = src0->ne[0];
  9834. const int nr = ggml_nrows(src0);
  9835. // rows per thread
  9836. const int dr = (nr + nth - 1)/nth;
  9837. // row range for this thread
  9838. const int ir0 = dr*ith;
  9839. const int ir1 = MIN(ir0 + dr, nr);
  9840. for (int i1 = ir0; i1 < ir1; i1++) {
  9841. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9842. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9843. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9844. #ifndef NDEBUG
  9845. for (int i = 0; i < nc; ++i) {
  9846. //printf("p[%d] = %f\n", i, p[i]);
  9847. assert(!isnan(dy[i]));
  9848. assert(!isnan(y[i]));
  9849. }
  9850. #endif
  9851. // Jii = yi - yi*yi
  9852. // Jij = -yi*yj
  9853. // J = diag(y)-y.T*y
  9854. // dx = J * dy
  9855. // dxk = sum_i(Jki * dyi)
  9856. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9857. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9858. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9859. // dxk = -yk * dot(y, dy) + yk*dyk
  9860. // dxk = yk * (- dot(y, dy) + dyk)
  9861. // dxk = yk * (dyk - dot(y, dy))
  9862. //
  9863. // post-order:
  9864. // dot_y_dy := dot(y, dy)
  9865. // dx := dy
  9866. // dx := dx - dot_y_dy
  9867. // dx := dx * y
  9868. // linear runtime, no additional memory
  9869. float dot_y_dy = 0;
  9870. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9871. ggml_vec_cpy_f32 (nc, dx, dy);
  9872. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9873. ggml_vec_mul_f32 (nc, dx, dx, y);
  9874. #ifndef NDEBUG
  9875. for (int i = 0; i < nc; ++i) {
  9876. assert(!isnan(dx[i]));
  9877. assert(!isinf(dx[i]));
  9878. }
  9879. #endif
  9880. }
  9881. }
  9882. static void ggml_compute_forward_soft_max_back(
  9883. const struct ggml_compute_params * params,
  9884. const struct ggml_tensor * src0,
  9885. const struct ggml_tensor * src1,
  9886. struct ggml_tensor * dst) {
  9887. switch (src0->type) {
  9888. case GGML_TYPE_F32:
  9889. {
  9890. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9891. } break;
  9892. default:
  9893. {
  9894. GGML_ASSERT(false);
  9895. } break;
  9896. }
  9897. }
  9898. // ggml_compute_forward_alibi
  9899. static void ggml_compute_forward_alibi_f32(
  9900. const struct ggml_compute_params * params,
  9901. const struct ggml_tensor * src0,
  9902. struct ggml_tensor * dst) {
  9903. assert(params->ith == 0);
  9904. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9905. return;
  9906. }
  9907. const int n_past = ((int32_t *) dst->op_params)[0];
  9908. const int n_head = ((int32_t *) dst->op_params)[1];
  9909. float max_bias;
  9910. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9911. assert(n_past >= 0);
  9912. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9913. const int ne1 = src0->ne[1]; // seq_len_without_past
  9914. const int ne2 = src0->ne[2]; // n_head -> this is k
  9915. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9916. const int n = ggml_nrows(src0);
  9917. const int ne2_ne3 = n/ne1; // ne2*ne3
  9918. const int nb0 = src0->nb[0];
  9919. const int nb1 = src0->nb[1];
  9920. const int nb2 = src0->nb[2];
  9921. //const int nb3 = src0->nb[3];
  9922. GGML_ASSERT(nb0 == sizeof(float));
  9923. GGML_ASSERT(ne1 + n_past == ne0);
  9924. GGML_ASSERT(n_head == ne2);
  9925. // add alibi to src0 (KQ_scaled)
  9926. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9927. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9928. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9929. for (int i = 0; i < ne0; i++) {
  9930. for (int j = 0; j < ne1; j++) {
  9931. for (int k = 0; k < ne2_ne3; k++) {
  9932. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9933. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9934. // TODO: k*nb2 or k*nb3
  9935. float m_k;
  9936. if (k < n_heads_log2_floor) {
  9937. m_k = powf(m0, k + 1);
  9938. } else {
  9939. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9940. }
  9941. pdst[0] = i * m_k + src[0];
  9942. }
  9943. }
  9944. }
  9945. }
  9946. static void ggml_compute_forward_alibi_f16(
  9947. const struct ggml_compute_params * params,
  9948. const struct ggml_tensor * src0,
  9949. struct ggml_tensor * dst) {
  9950. assert(params->ith == 0);
  9951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9952. return;
  9953. }
  9954. const int n_past = ((int32_t *) dst->op_params)[0];
  9955. const int n_head = ((int32_t *) dst->op_params)[1];
  9956. float max_bias;
  9957. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9958. assert(n_past >= 0);
  9959. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9960. const int ne1 = src0->ne[1]; // seq_len_without_past
  9961. const int ne2 = src0->ne[2]; // n_head -> this is k
  9962. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9963. const int n = ggml_nrows(src0);
  9964. const int ne2_ne3 = n/ne1; // ne2*ne3
  9965. const int nb0 = src0->nb[0];
  9966. const int nb1 = src0->nb[1];
  9967. const int nb2 = src0->nb[2];
  9968. //const int nb3 = src0->nb[3];
  9969. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9970. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9971. GGML_ASSERT(n_head == ne2);
  9972. // add alibi to src0 (KQ_scaled)
  9973. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9974. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9975. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9976. for (int i = 0; i < ne0; i++) {
  9977. for (int j = 0; j < ne1; j++) {
  9978. for (int k = 0; k < ne2_ne3; k++) {
  9979. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9980. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9981. // TODO: k*nb2 or k*nb3
  9982. float m_k;
  9983. if (k < n_heads_log2_floor) {
  9984. m_k = powf(m0, k + 1);
  9985. } else {
  9986. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9987. }
  9988. // we return F32
  9989. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9990. }
  9991. }
  9992. }
  9993. }
  9994. static void ggml_compute_forward_alibi(
  9995. const struct ggml_compute_params * params,
  9996. const struct ggml_tensor * src0,
  9997. struct ggml_tensor * dst) {
  9998. switch (src0->type) {
  9999. case GGML_TYPE_F16:
  10000. {
  10001. ggml_compute_forward_alibi_f16(params, src0, dst);
  10002. } break;
  10003. case GGML_TYPE_F32:
  10004. {
  10005. ggml_compute_forward_alibi_f32(params, src0, dst);
  10006. } break;
  10007. case GGML_TYPE_Q4_0:
  10008. case GGML_TYPE_Q4_1:
  10009. case GGML_TYPE_Q5_0:
  10010. case GGML_TYPE_Q5_1:
  10011. case GGML_TYPE_Q8_0:
  10012. case GGML_TYPE_Q8_1:
  10013. case GGML_TYPE_Q2_K:
  10014. case GGML_TYPE_Q3_K:
  10015. case GGML_TYPE_Q4_K:
  10016. case GGML_TYPE_Q5_K:
  10017. case GGML_TYPE_Q6_K:
  10018. case GGML_TYPE_Q8_K:
  10019. case GGML_TYPE_I8:
  10020. case GGML_TYPE_I16:
  10021. case GGML_TYPE_I32:
  10022. case GGML_TYPE_COUNT:
  10023. {
  10024. GGML_ASSERT(false);
  10025. } break;
  10026. }
  10027. }
  10028. // ggml_compute_forward_clamp
  10029. static void ggml_compute_forward_clamp_f32(
  10030. const struct ggml_compute_params * params,
  10031. const struct ggml_tensor * src0,
  10032. struct ggml_tensor * dst) {
  10033. assert(params->ith == 0);
  10034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10035. return;
  10036. }
  10037. float min;
  10038. float max;
  10039. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10040. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10041. const int ith = params->ith;
  10042. const int nth = params->nth;
  10043. const int n = ggml_nrows(src0);
  10044. const int nc = src0->ne[0];
  10045. const size_t nb00 = src0->nb[0];
  10046. const size_t nb01 = src0->nb[1];
  10047. const size_t nb0 = dst->nb[0];
  10048. const size_t nb1 = dst->nb[1];
  10049. GGML_ASSERT( nb0 == sizeof(float));
  10050. GGML_ASSERT(nb00 == sizeof(float));
  10051. for (int j = ith; j < n; j += nth) {
  10052. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10053. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10054. for (int i = 0; i < nc; i++) {
  10055. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10056. }
  10057. }
  10058. }
  10059. static void ggml_compute_forward_clamp(
  10060. const struct ggml_compute_params * params,
  10061. const struct ggml_tensor * src0,
  10062. struct ggml_tensor * dst) {
  10063. switch (src0->type) {
  10064. case GGML_TYPE_F32:
  10065. {
  10066. ggml_compute_forward_clamp_f32(params, src0, dst);
  10067. } break;
  10068. case GGML_TYPE_F16:
  10069. case GGML_TYPE_Q4_0:
  10070. case GGML_TYPE_Q4_1:
  10071. case GGML_TYPE_Q5_0:
  10072. case GGML_TYPE_Q5_1:
  10073. case GGML_TYPE_Q8_0:
  10074. case GGML_TYPE_Q8_1:
  10075. case GGML_TYPE_Q2_K:
  10076. case GGML_TYPE_Q3_K:
  10077. case GGML_TYPE_Q4_K:
  10078. case GGML_TYPE_Q5_K:
  10079. case GGML_TYPE_Q6_K:
  10080. case GGML_TYPE_Q8_K:
  10081. case GGML_TYPE_I8:
  10082. case GGML_TYPE_I16:
  10083. case GGML_TYPE_I32:
  10084. case GGML_TYPE_COUNT:
  10085. {
  10086. GGML_ASSERT(false);
  10087. } break;
  10088. }
  10089. }
  10090. // ggml_compute_forward_rope
  10091. static void ggml_compute_forward_rope_f32(
  10092. const struct ggml_compute_params * params,
  10093. const struct ggml_tensor * src0,
  10094. struct ggml_tensor * dst) {
  10095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10096. return;
  10097. }
  10098. float freq_base;
  10099. float freq_scale;
  10100. // these two only relevant for xPos RoPE:
  10101. float xpos_base;
  10102. bool xpos_down;
  10103. const int n_past = ((int32_t *) dst->op_params)[0];
  10104. const int n_dims = ((int32_t *) dst->op_params)[1];
  10105. const int mode = ((int32_t *) dst->op_params)[2];
  10106. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10107. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10108. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10109. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10110. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10111. assert(n_past >= 0);
  10112. GGML_TENSOR_UNARY_OP_LOCALS;
  10113. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10114. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10115. GGML_ASSERT(nb00 == sizeof(float));
  10116. const int ith = params->ith;
  10117. const int nth = params->nth;
  10118. const int nr = ggml_nrows(dst);
  10119. GGML_ASSERT(n_dims <= ne0);
  10120. GGML_ASSERT(n_dims % 2 == 0);
  10121. // rows per thread
  10122. const int dr = (nr + nth - 1)/nth;
  10123. // row range for this thread
  10124. const int ir0 = dr*ith;
  10125. const int ir1 = MIN(ir0 + dr, nr);
  10126. // row index used to determine which thread to use
  10127. int ir = 0;
  10128. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10129. const bool is_neox = mode & 2;
  10130. const bool is_glm = mode & 4;
  10131. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10132. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10133. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10134. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10135. if (ir++ < ir0) continue;
  10136. if (ir > ir1) break;
  10137. float theta = freq_scale * (float)p;
  10138. if (is_glm) {
  10139. theta = MIN(p, n_ctx - 2);
  10140. float block_theta = MAX(p - (n_ctx - 2), 0);
  10141. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10142. const float cos_theta = cosf(theta);
  10143. const float sin_theta = sinf(theta);
  10144. const float cos_block_theta = cosf(block_theta);
  10145. const float sin_block_theta = sinf(block_theta);
  10146. theta *= theta_scale;
  10147. block_theta *= theta_scale;
  10148. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10149. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10150. const float x0 = src[0];
  10151. const float x1 = src[n_dims/2];
  10152. const float x2 = src[n_dims];
  10153. const float x3 = src[n_dims/2*3];
  10154. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10155. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10156. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10157. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10158. }
  10159. } else if (!is_neox) {
  10160. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10161. const float cos_theta = cosf(theta);
  10162. const float sin_theta = sinf(theta);
  10163. // zeta scaling for xPos only:
  10164. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10165. if (xpos_down) zeta = 1.0f / zeta;
  10166. theta *= theta_scale;
  10167. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10168. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10169. const float x0 = src[0];
  10170. const float x1 = src[1];
  10171. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10172. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10173. }
  10174. } else {
  10175. // TODO: this might be wrong for ne0 != n_dims - need double check
  10176. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10177. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10178. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10179. const float cos_theta = cosf(theta);
  10180. const float sin_theta = sinf(theta);
  10181. theta *= theta_scale;
  10182. const int64_t i0 = ib*n_dims + ic/2;
  10183. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10184. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10185. const float x0 = src[0];
  10186. const float x1 = src[n_dims/2];
  10187. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10188. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10189. }
  10190. }
  10191. }
  10192. }
  10193. }
  10194. }
  10195. }
  10196. static void ggml_compute_forward_rope_f16(
  10197. const struct ggml_compute_params * params,
  10198. const struct ggml_tensor * src0,
  10199. struct ggml_tensor * dst) {
  10200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10201. return;
  10202. }
  10203. float freq_base;
  10204. float freq_scale;
  10205. const int n_past = ((int32_t *) dst->op_params)[0];
  10206. const int n_dims = ((int32_t *) dst->op_params)[1];
  10207. const int mode = ((int32_t *) dst->op_params)[2];
  10208. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10209. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10210. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10211. assert(n_past >= 0);
  10212. GGML_TENSOR_UNARY_OP_LOCALS;
  10213. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10214. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10215. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10216. const int ith = params->ith;
  10217. const int nth = params->nth;
  10218. const int nr = ggml_nrows(dst);
  10219. GGML_ASSERT(n_dims <= ne0);
  10220. GGML_ASSERT(n_dims % 2 == 0);
  10221. // rows per thread
  10222. const int dr = (nr + nth - 1)/nth;
  10223. // row range for this thread
  10224. const int ir0 = dr*ith;
  10225. const int ir1 = MIN(ir0 + dr, nr);
  10226. // row index used to determine which thread to use
  10227. int ir = 0;
  10228. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10229. const bool is_neox = mode & 2;
  10230. const bool is_glm = mode & 4;
  10231. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10232. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10233. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10234. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10235. if (ir++ < ir0) continue;
  10236. if (ir > ir1) break;
  10237. float theta = freq_scale * (float)p;
  10238. if (is_glm) {
  10239. theta = MIN(p, n_ctx - 2);
  10240. float block_theta = MAX(p - (n_ctx - 2), 0);
  10241. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10242. const float cos_theta = cosf(theta);
  10243. const float sin_theta = sinf(theta);
  10244. const float cos_block_theta = cosf(block_theta);
  10245. const float sin_block_theta = sinf(block_theta);
  10246. theta *= theta_scale;
  10247. block_theta *= theta_scale;
  10248. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10249. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10250. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10251. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10252. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10253. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10254. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10255. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10256. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10257. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10258. }
  10259. } if (!is_neox) {
  10260. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10261. const float cos_theta = cosf(theta);
  10262. const float sin_theta = sinf(theta);
  10263. theta *= theta_scale;
  10264. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10265. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10266. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10267. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10268. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10269. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10270. }
  10271. } else {
  10272. // TODO: this might be wrong for ne0 != n_dims - need double check
  10273. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10274. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10275. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10276. const float cos_theta = cosf(theta);
  10277. const float sin_theta = sinf(theta);
  10278. theta *= theta_scale;
  10279. const int64_t i0 = ib*n_dims + ic/2;
  10280. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10281. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10282. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10283. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10284. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10285. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10286. }
  10287. }
  10288. }
  10289. }
  10290. }
  10291. }
  10292. }
  10293. static void ggml_compute_forward_rope(
  10294. const struct ggml_compute_params * params,
  10295. const struct ggml_tensor * src0,
  10296. struct ggml_tensor * dst) {
  10297. switch (src0->type) {
  10298. case GGML_TYPE_F16:
  10299. {
  10300. ggml_compute_forward_rope_f16(params, src0, dst);
  10301. } break;
  10302. case GGML_TYPE_F32:
  10303. {
  10304. ggml_compute_forward_rope_f32(params, src0, dst);
  10305. } break;
  10306. default:
  10307. {
  10308. GGML_ASSERT(false);
  10309. } break;
  10310. }
  10311. }
  10312. // ggml_compute_forward_rope_back
  10313. static void ggml_compute_forward_rope_back_f32(
  10314. const struct ggml_compute_params * params,
  10315. const struct ggml_tensor * src0,
  10316. struct ggml_tensor * dst) {
  10317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10318. return;
  10319. }
  10320. // y = rope(x, src1)
  10321. // dx = rope_back(dy, src1)
  10322. // src0 is dy, src1 contains options
  10323. float freq_base;
  10324. float freq_scale;
  10325. // these two only relevant for xPos RoPE:
  10326. float xpos_base;
  10327. bool xpos_down;
  10328. const int n_past = ((int32_t *) dst->op_params)[0];
  10329. const int n_dims = ((int32_t *) dst->op_params)[1];
  10330. const int mode = ((int32_t *) dst->op_params)[2];
  10331. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10332. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10333. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10334. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10335. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10336. assert(n_past >= 0);
  10337. GGML_TENSOR_UNARY_OP_LOCALS;
  10338. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10339. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10340. assert(nb0 == sizeof(float));
  10341. const int ith = params->ith;
  10342. const int nth = params->nth;
  10343. const int nr = ggml_nrows(dst);
  10344. // rows per thread
  10345. const int dr = (nr + nth - 1)/nth;
  10346. // row range for this thread
  10347. const int ir0 = dr*ith;
  10348. const int ir1 = MIN(ir0 + dr, nr);
  10349. // row index used to determine which thread to use
  10350. int ir = 0;
  10351. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10352. const bool is_neox = mode & 2;
  10353. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10354. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10355. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10356. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10357. if (ir++ < ir0) continue;
  10358. if (ir > ir1) break;
  10359. float theta = freq_scale * (float)p;
  10360. if (!is_neox) {
  10361. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10362. const float cos_theta = cosf(theta);
  10363. const float sin_theta = sinf(theta);
  10364. // zeta scaling for xPos only:
  10365. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10366. if (xpos_down) zeta = 1.0f / zeta;
  10367. theta *= theta_scale;
  10368. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10369. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10370. const float dy0 = dy[0];
  10371. const float dy1 = dy[1];
  10372. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10373. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10374. }
  10375. } else {
  10376. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10377. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10378. const float cos_theta = cosf(theta);
  10379. const float sin_theta = sinf(theta);
  10380. theta *= theta_scale;
  10381. const int64_t i0 = ib*n_dims + ic/2;
  10382. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10383. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10384. const float dy0 = dy[0];
  10385. const float dy1 = dy[n_dims/2];
  10386. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10387. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10388. }
  10389. }
  10390. }
  10391. }
  10392. }
  10393. }
  10394. }
  10395. static void ggml_compute_forward_rope_back_f16(
  10396. const struct ggml_compute_params * params,
  10397. const struct ggml_tensor * src0,
  10398. struct ggml_tensor * dst) {
  10399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10400. return;
  10401. }
  10402. // y = rope(x, src1)
  10403. // dx = rope_back(dy, src1)
  10404. // src0 is dy, src1 contains options
  10405. const int n_past = ((int32_t *) dst->op_params)[0];
  10406. const int n_dims = ((int32_t *) dst->op_params)[1];
  10407. const int mode = ((int32_t *) dst->op_params)[2];
  10408. assert(n_past >= 0);
  10409. GGML_TENSOR_UNARY_OP_LOCALS;
  10410. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10411. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10412. assert(nb0 == sizeof(ggml_fp16_t));
  10413. const int ith = params->ith;
  10414. const int nth = params->nth;
  10415. const int nr = ggml_nrows(dst);
  10416. // rows per thread
  10417. const int dr = (nr + nth - 1)/nth;
  10418. // row range for this thread
  10419. const int ir0 = dr*ith;
  10420. const int ir1 = MIN(ir0 + dr, nr);
  10421. // row index used to determine which thread to use
  10422. int ir = 0;
  10423. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10424. const bool is_neox = mode & 2;
  10425. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10426. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10427. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10428. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10429. if (ir++ < ir0) continue;
  10430. if (ir > ir1) break;
  10431. float theta = (float)p;
  10432. if (!is_neox) {
  10433. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10434. const float cos_theta = cosf(theta);
  10435. const float sin_theta = sinf(theta);
  10436. theta *= theta_scale;
  10437. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10438. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10439. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10440. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10441. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10442. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10443. }
  10444. } else {
  10445. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10446. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10447. const float cos_theta = cosf(theta);
  10448. const float sin_theta = sinf(theta);
  10449. theta *= theta_scale;
  10450. const int64_t i0 = ib*n_dims + ic/2;
  10451. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10452. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10453. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10454. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10455. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10456. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10457. }
  10458. }
  10459. }
  10460. }
  10461. }
  10462. }
  10463. }
  10464. static void ggml_compute_forward_rope_back(
  10465. const struct ggml_compute_params * params,
  10466. const struct ggml_tensor * src0,
  10467. struct ggml_tensor * dst) {
  10468. switch (src0->type) {
  10469. case GGML_TYPE_F16:
  10470. {
  10471. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10472. } break;
  10473. case GGML_TYPE_F32:
  10474. {
  10475. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10476. } break;
  10477. default:
  10478. {
  10479. GGML_ASSERT(false);
  10480. } break;
  10481. }
  10482. }
  10483. // ggml_compute_forward_conv_1d
  10484. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10485. const struct ggml_compute_params * params,
  10486. const struct ggml_tensor * src0,
  10487. const struct ggml_tensor * src1,
  10488. struct ggml_tensor * dst) {
  10489. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10490. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10491. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10492. int64_t t0 = ggml_perf_time_us();
  10493. UNUSED(t0);
  10494. GGML_TENSOR_BINARY_OP_LOCALS;
  10495. const int ith = params->ith;
  10496. const int nth = params->nth;
  10497. const int nk = ne00;
  10498. const int nh = nk/2;
  10499. const int ew0 = ggml_up32(ne01);
  10500. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10501. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10502. GGML_ASSERT(nb10 == sizeof(float));
  10503. if (params->type == GGML_TASK_INIT) {
  10504. // TODO: fix this memset (wsize is overestimated)
  10505. memset(params->wdata, 0, params->wsize);
  10506. // prepare kernel data (src0)
  10507. {
  10508. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10509. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10510. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10511. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10512. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10513. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10514. dst_data[i00*ew0 + i01] = src[i00];
  10515. }
  10516. }
  10517. }
  10518. }
  10519. // prepare source data (src1)
  10520. {
  10521. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10522. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10523. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10524. ggml_fp16_t * dst_data = wdata;
  10525. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10526. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10527. }
  10528. }
  10529. }
  10530. return;
  10531. }
  10532. if (params->type == GGML_TASK_FINALIZE) {
  10533. return;
  10534. }
  10535. // total rows in dst
  10536. const int nr = ne02;
  10537. // rows per thread
  10538. const int dr = (nr + nth - 1)/nth;
  10539. // row range for this thread
  10540. const int ir0 = dr*ith;
  10541. const int ir1 = MIN(ir0 + dr, nr);
  10542. for (int i1 = ir0; i1 < ir1; i1++) {
  10543. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10544. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10545. dst_data[i0] = 0;
  10546. for (int k = -nh; k <= nh; k++) {
  10547. float v = 0.0f;
  10548. ggml_vec_dot_f16(ew0, &v,
  10549. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10550. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10551. dst_data[i0] += v;
  10552. }
  10553. }
  10554. }
  10555. }
  10556. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10557. const struct ggml_compute_params * params,
  10558. const struct ggml_tensor * src0,
  10559. const struct ggml_tensor * src1,
  10560. struct ggml_tensor * dst) {
  10561. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10562. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10563. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10564. int64_t t0 = ggml_perf_time_us();
  10565. UNUSED(t0);
  10566. GGML_TENSOR_BINARY_OP_LOCALS;
  10567. const int ith = params->ith;
  10568. const int nth = params->nth;
  10569. const int nk = ne00;
  10570. const int nh = nk/2;
  10571. const int ew0 = ggml_up32(ne01);
  10572. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10573. GGML_ASSERT(nb00 == sizeof(float));
  10574. GGML_ASSERT(nb10 == sizeof(float));
  10575. if (params->type == GGML_TASK_INIT) {
  10576. // TODO: fix this memset (wsize is overestimated)
  10577. memset(params->wdata, 0, params->wsize);
  10578. // prepare kernel data (src0)
  10579. {
  10580. float * const wdata = (float *) params->wdata + 0;
  10581. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10582. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10583. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10584. float * dst_data = wdata + i02*ew0*ne00;
  10585. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10586. dst_data[i00*ew0 + i01] = src[i00];
  10587. }
  10588. }
  10589. }
  10590. }
  10591. // prepare source data (src1)
  10592. {
  10593. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10594. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10595. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10596. float * dst_data = wdata;
  10597. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10598. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10599. }
  10600. }
  10601. }
  10602. return;
  10603. }
  10604. if (params->type == GGML_TASK_FINALIZE) {
  10605. return;
  10606. }
  10607. // total rows in dst
  10608. const int nr = ne02;
  10609. // rows per thread
  10610. const int dr = (nr + nth - 1)/nth;
  10611. // row range for this thread
  10612. const int ir0 = dr*ith;
  10613. const int ir1 = MIN(ir0 + dr, nr);
  10614. for (int i1 = ir0; i1 < ir1; i1++) {
  10615. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10616. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10617. dst_data[i0] = 0;
  10618. for (int k = -nh; k <= nh; k++) {
  10619. float v = 0.0f;
  10620. ggml_vec_dot_f32(ew0, &v,
  10621. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10622. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10623. dst_data[i0] += v;
  10624. }
  10625. }
  10626. }
  10627. }
  10628. static void ggml_compute_forward_conv_1d_s1_ph(
  10629. const struct ggml_compute_params * params,
  10630. const struct ggml_tensor * src0,
  10631. const struct ggml_tensor * src1,
  10632. struct ggml_tensor * dst) {
  10633. switch (src0->type) {
  10634. case GGML_TYPE_F16:
  10635. {
  10636. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10637. } break;
  10638. case GGML_TYPE_F32:
  10639. {
  10640. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10641. } break;
  10642. default:
  10643. {
  10644. GGML_ASSERT(false);
  10645. } break;
  10646. }
  10647. }
  10648. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10649. const struct ggml_compute_params * params,
  10650. const struct ggml_tensor * src0,
  10651. const struct ggml_tensor * src1,
  10652. struct ggml_tensor * dst) {
  10653. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10654. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10655. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10656. int64_t t0 = ggml_perf_time_us();
  10657. UNUSED(t0);
  10658. GGML_TENSOR_BINARY_OP_LOCALS;
  10659. const int ith = params->ith;
  10660. const int nth = params->nth;
  10661. const int nk = ne00;
  10662. const int nh = nk/2;
  10663. const int ew0 = ggml_up32(ne01);
  10664. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10665. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10666. GGML_ASSERT(nb10 == sizeof(float));
  10667. if (params->type == GGML_TASK_INIT) {
  10668. // TODO: fix this memset (wsize is overestimated)
  10669. memset(params->wdata, 0, params->wsize);
  10670. // prepare kernel data (src0)
  10671. {
  10672. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10673. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10674. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10675. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10676. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10677. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10678. dst_data[i00*ew0 + i01] = src[i00];
  10679. }
  10680. }
  10681. }
  10682. }
  10683. // prepare source data (src1)
  10684. {
  10685. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10686. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10687. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10688. ggml_fp16_t * dst_data = wdata;
  10689. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10690. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10691. }
  10692. }
  10693. }
  10694. return;
  10695. }
  10696. if (params->type == GGML_TASK_FINALIZE) {
  10697. return;
  10698. }
  10699. // total rows in dst
  10700. const int nr = ne02;
  10701. // rows per thread
  10702. const int dr = (nr + nth - 1)/nth;
  10703. // row range for this thread
  10704. const int ir0 = dr*ith;
  10705. const int ir1 = MIN(ir0 + dr, nr);
  10706. for (int i1 = ir0; i1 < ir1; i1++) {
  10707. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10708. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10709. dst_data[i0/2] = 0;
  10710. for (int k = -nh; k <= nh; k++) {
  10711. float v = 0.0f;
  10712. ggml_vec_dot_f16(ew0, &v,
  10713. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10714. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10715. dst_data[i0/2] += v;
  10716. }
  10717. }
  10718. }
  10719. }
  10720. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10721. const struct ggml_compute_params * params,
  10722. const struct ggml_tensor * src0,
  10723. const struct ggml_tensor * src1,
  10724. struct ggml_tensor * dst) {
  10725. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10726. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10727. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10728. int64_t t0 = ggml_perf_time_us();
  10729. UNUSED(t0);
  10730. GGML_TENSOR_BINARY_OP_LOCALS;
  10731. const int ith = params->ith;
  10732. const int nth = params->nth;
  10733. const int nk = ne00;
  10734. const int nh = nk/2;
  10735. const int ew0 = ggml_up32(ne01);
  10736. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10737. GGML_ASSERT(nb00 == sizeof(float));
  10738. GGML_ASSERT(nb10 == sizeof(float));
  10739. if (params->type == GGML_TASK_INIT) {
  10740. // TODO: fix this memset (wsize is overestimated)
  10741. memset(params->wdata, 0, params->wsize);
  10742. // prepare kernel data (src0)
  10743. {
  10744. float * const wdata = (float *) params->wdata + 0;
  10745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10747. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10748. float * dst_data = wdata + i02*ew0*ne00;
  10749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10750. dst_data[i00*ew0 + i01] = src[i00];
  10751. }
  10752. }
  10753. }
  10754. }
  10755. // prepare source data (src1)
  10756. {
  10757. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10758. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10759. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10760. float * dst_data = wdata;
  10761. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10762. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10763. }
  10764. }
  10765. }
  10766. return;
  10767. }
  10768. if (params->type == GGML_TASK_FINALIZE) {
  10769. return;
  10770. }
  10771. // total rows in dst
  10772. const int nr = ne02;
  10773. // rows per thread
  10774. const int dr = (nr + nth - 1)/nth;
  10775. // row range for this thread
  10776. const int ir0 = dr*ith;
  10777. const int ir1 = MIN(ir0 + dr, nr);
  10778. for (int i1 = ir0; i1 < ir1; i1++) {
  10779. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10780. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10781. dst_data[i0/2] = 0;
  10782. for (int k = -nh; k <= nh; k++) {
  10783. float v = 0.0f;
  10784. ggml_vec_dot_f32(ew0, &v,
  10785. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10786. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10787. dst_data[i0/2] += v;
  10788. }
  10789. }
  10790. }
  10791. }
  10792. static void ggml_compute_forward_conv_1d_s2_ph(
  10793. const struct ggml_compute_params * params,
  10794. const struct ggml_tensor * src0,
  10795. const struct ggml_tensor * src1,
  10796. struct ggml_tensor * dst) {
  10797. switch (src0->type) {
  10798. case GGML_TYPE_F16:
  10799. {
  10800. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10801. } break;
  10802. case GGML_TYPE_F32:
  10803. {
  10804. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10805. } break;
  10806. default:
  10807. {
  10808. GGML_ASSERT(false);
  10809. } break;
  10810. }
  10811. }
  10812. // ggml_compute_forward_conv_1d
  10813. static void ggml_compute_forward_conv_1d(
  10814. const struct ggml_compute_params * params,
  10815. const struct ggml_tensor * src0,
  10816. const struct ggml_tensor * src1,
  10817. struct ggml_tensor * dst) {
  10818. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10819. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10820. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10821. GGML_ASSERT(d0 == 1); // dilation not supported
  10822. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10823. if (s0 == 1) {
  10824. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10825. } else if (s0 == 2) {
  10826. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10827. } else {
  10828. GGML_ASSERT(false); // only stride 1 and 2 supported
  10829. };
  10830. }
  10831. // ggml_compute_forward_conv_2d
  10832. static void ggml_compute_forward_conv_2d_f16_f32(
  10833. const struct ggml_compute_params * params,
  10834. const struct ggml_tensor * src0,
  10835. const struct ggml_tensor * src1,
  10836. struct ggml_tensor * dst) {
  10837. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10839. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10840. int64_t t0 = ggml_perf_time_us();
  10841. UNUSED(t0);
  10842. GGML_TENSOR_BINARY_OP_LOCALS;
  10843. const int ith = params->ith;
  10844. const int nth = params->nth;
  10845. const int nk0 = ne00;
  10846. const int nk1 = ne01;
  10847. // size of the convolution row - the kernel size unrolled across all channels
  10848. const int ew0 = nk0*nk1*ne02;
  10849. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10850. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10851. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10852. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10853. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10854. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10855. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10856. GGML_ASSERT(nb10 == sizeof(float));
  10857. if (params->type == GGML_TASK_INIT) {
  10858. memset(params->wdata, 0, params->wsize);
  10859. // prepare source data (src1)
  10860. {
  10861. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10862. for (int i12 = 0; i12 < ne12; i12++) {
  10863. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10864. ggml_fp16_t * dst_data = wdata;
  10865. for (int i1 = 0; i1 < ne1; i1++) {
  10866. for (int i0 = 0; i0 < ne0; i0++) {
  10867. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10868. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10869. const int idx0 = i0*s0 + ik0*d0 - p0;
  10870. const int idx1 = i1*s1 + ik1*d1 - p1;
  10871. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10872. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10873. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10874. }
  10875. }
  10876. }
  10877. }
  10878. }
  10879. }
  10880. }
  10881. return;
  10882. }
  10883. if (params->type == GGML_TASK_FINALIZE) {
  10884. return;
  10885. }
  10886. // total patches in dst
  10887. const int np = ne2;
  10888. // patches per thread
  10889. const int dp = (np + nth - 1)/nth;
  10890. // patch range for this thread
  10891. const int ip0 = dp*ith;
  10892. const int ip1 = MIN(ip0 + dp, np);
  10893. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10894. for (int i3 = 0; i3 < ne3; i3++) {
  10895. for (int i2 = ip0; i2 < ip1; i2++) {
  10896. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10897. for (int i1 = 0; i1 < ne1; ++i1) {
  10898. for (int i0 = 0; i0 < ne0; ++i0) {
  10899. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10900. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10901. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10902. }
  10903. }
  10904. }
  10905. }
  10906. }
  10907. static void ggml_compute_forward_conv_2d(
  10908. const struct ggml_compute_params * params,
  10909. const struct ggml_tensor * src0,
  10910. const struct ggml_tensor * src1,
  10911. struct ggml_tensor * dst) {
  10912. switch (src0->type) {
  10913. case GGML_TYPE_F16:
  10914. {
  10915. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10916. } break;
  10917. case GGML_TYPE_F32:
  10918. {
  10919. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10920. GGML_ASSERT(false);
  10921. } break;
  10922. default:
  10923. {
  10924. GGML_ASSERT(false);
  10925. } break;
  10926. }
  10927. }
  10928. // ggml_compute_forward_conv_transpose_2d
  10929. static void ggml_compute_forward_conv_transpose_2d(
  10930. const struct ggml_compute_params * params,
  10931. const struct ggml_tensor * src0,
  10932. const struct ggml_tensor * src1,
  10933. struct ggml_tensor * dst) {
  10934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10936. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10937. int64_t t0 = ggml_perf_time_us();
  10938. UNUSED(t0);
  10939. GGML_TENSOR_BINARY_OP_LOCALS;
  10940. const int ith = params->ith;
  10941. const int nth = params->nth;
  10942. const int nk = ne00*ne01*ne02*ne03;
  10943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10944. GGML_ASSERT(nb10 == sizeof(float));
  10945. if (params->type == GGML_TASK_INIT) {
  10946. memset(params->wdata, 0, params->wsize);
  10947. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10948. {
  10949. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10950. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10951. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10953. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10954. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10955. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10956. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10957. }
  10958. }
  10959. }
  10960. }
  10961. }
  10962. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10963. {
  10964. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10965. for (int i12 = 0; i12 < ne12; i12++) {
  10966. for (int i11 = 0; i11 < ne11; i11++) {
  10967. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10968. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10969. for (int i10 = 0; i10 < ne10; i10++) {
  10970. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10971. }
  10972. }
  10973. }
  10974. }
  10975. return;
  10976. }
  10977. if (params->type == GGML_TASK_FINALIZE) {
  10978. return;
  10979. }
  10980. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10981. // total patches in dst
  10982. const int np = ne2;
  10983. // patches per thread
  10984. const int dp = (np + nth - 1)/nth;
  10985. // patch range for this thread
  10986. const int ip0 = dp*ith;
  10987. const int ip1 = MIN(ip0 + dp, np);
  10988. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10989. ggml_fp16_t * const wdata_src = wdata + nk;
  10990. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10991. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10992. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10993. for (int i11 = 0; i11 < ne11; i11++) {
  10994. for (int i10 = 0; i10 < ne10; i10++) {
  10995. const int i1n = i11*ne10*ne12 + i10*ne12;
  10996. for (int i01 = 0; i01 < ne01; i01++) {
  10997. for (int i00 = 0; i00 < ne00; i00++) {
  10998. float v = 0;
  10999. ggml_vec_dot_f16(ne03, &v,
  11000. wdata_src + i1n,
  11001. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11002. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11003. }
  11004. }
  11005. }
  11006. }
  11007. }
  11008. }
  11009. // ggml_compute_forward_pool_1d_sk_p0
  11010. static void ggml_compute_forward_pool_1d_sk_p0(
  11011. const struct ggml_compute_params * params,
  11012. const enum ggml_op_pool op,
  11013. const struct ggml_tensor * src,
  11014. const int k,
  11015. struct ggml_tensor * dst) {
  11016. assert(src->type == GGML_TYPE_F32);
  11017. assert(params->ith == 0);
  11018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11019. return;
  11020. }
  11021. const char * cdata = (const char *)src->data;
  11022. const char * const data_end = cdata + ggml_nbytes(src);
  11023. float * drow = (float *)dst->data;
  11024. const int64_t rs = dst->ne[0];
  11025. while (cdata < data_end) {
  11026. const float * const srow = (const float *)cdata;
  11027. int j = 0;
  11028. for (int64_t i = 0; i < rs; ++i) {
  11029. switch (op) {
  11030. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11031. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11032. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11033. }
  11034. for (int ki = 0; ki < k; ++ki) {
  11035. switch (op) {
  11036. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11037. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11038. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11039. }
  11040. ++j;
  11041. }
  11042. switch (op) {
  11043. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11044. case GGML_OP_POOL_MAX: break;
  11045. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11046. }
  11047. }
  11048. cdata += src->nb[1];
  11049. drow += rs;
  11050. }
  11051. }
  11052. // ggml_compute_forward_pool_1d
  11053. static void ggml_compute_forward_pool_1d(
  11054. const struct ggml_compute_params * params,
  11055. const struct ggml_tensor * src0,
  11056. struct ggml_tensor * dst) {
  11057. const int32_t * opts = (const int32_t *)dst->op_params;
  11058. enum ggml_op_pool op = opts[0];
  11059. const int k0 = opts[1];
  11060. const int s0 = opts[2];
  11061. const int p0 = opts[3];
  11062. GGML_ASSERT(p0 == 0); // padding not supported
  11063. GGML_ASSERT(k0 == s0); // only s = k supported
  11064. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11065. }
  11066. // ggml_compute_forward_pool_2d_sk_p0
  11067. static void ggml_compute_forward_pool_2d_sk_p0(
  11068. const struct ggml_compute_params * params,
  11069. const enum ggml_op_pool op,
  11070. const struct ggml_tensor * src,
  11071. const int k0,
  11072. const int k1,
  11073. struct ggml_tensor * dst) {
  11074. assert(src->type == GGML_TYPE_F32);
  11075. assert(params->ith == 0);
  11076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11077. return;
  11078. }
  11079. const char * cdata = (const char*)src->data;
  11080. const char * const data_end = cdata + ggml_nbytes(src);
  11081. const int64_t px = dst->ne[0];
  11082. const int64_t py = dst->ne[1];
  11083. const int64_t pa = px * py;
  11084. float * dplane = (float *)dst->data;
  11085. const int ka = k0 * k1;
  11086. while (cdata < data_end) {
  11087. for (int oy = 0; oy < py; ++oy) {
  11088. float * const drow = dplane + oy * px;
  11089. for (int ox = 0; ox < px; ++ox) {
  11090. float * const out = drow + ox;
  11091. switch (op) {
  11092. case GGML_OP_POOL_AVG: *out = 0; break;
  11093. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11094. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11095. }
  11096. const int ix = ox * k0;
  11097. const int iy = oy * k1;
  11098. for (int ky = 0; ky < k1; ++ky) {
  11099. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11100. for (int kx = 0; kx < k0; ++kx) {
  11101. int j = ix + kx;
  11102. switch (op) {
  11103. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11104. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11105. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11106. }
  11107. }
  11108. }
  11109. switch (op) {
  11110. case GGML_OP_POOL_AVG: *out /= ka; break;
  11111. case GGML_OP_POOL_MAX: break;
  11112. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11113. }
  11114. }
  11115. }
  11116. cdata += src->nb[2];
  11117. dplane += pa;
  11118. }
  11119. }
  11120. // ggml_compute_forward_pool_2d
  11121. static void ggml_compute_forward_pool_2d(
  11122. const struct ggml_compute_params * params,
  11123. const struct ggml_tensor * src0,
  11124. struct ggml_tensor * dst) {
  11125. const int32_t * opts = (const int32_t *)dst->op_params;
  11126. enum ggml_op_pool op = opts[0];
  11127. const int k0 = opts[1];
  11128. const int k1 = opts[2];
  11129. const int s0 = opts[3];
  11130. const int s1 = opts[4];
  11131. const int p0 = opts[5];
  11132. const int p1 = opts[6];
  11133. GGML_ASSERT(p0 == 0);
  11134. GGML_ASSERT(p1 == 0); // padding not supported
  11135. GGML_ASSERT(k0 == s0);
  11136. GGML_ASSERT(k1 == s1); // only s = k supported
  11137. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11138. }
  11139. // ggml_compute_forward_upscale
  11140. static void ggml_compute_forward_upscale_f32(
  11141. const struct ggml_compute_params * params,
  11142. const struct ggml_tensor * src0,
  11143. struct ggml_tensor * dst) {
  11144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11145. return;
  11146. }
  11147. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11148. const int ith = params->ith;
  11149. GGML_TENSOR_UNARY_OP_LOCALS;
  11150. const int scale_factor = dst->op_params[0];
  11151. // TODO: optimize
  11152. for (int i03 = 0; i03 < ne03; i03++) {
  11153. for (int i02 = ith; i02 < ne02; i02++) {
  11154. for (int m = 0; m < dst->ne[1]; m++) {
  11155. int i01 = m / scale_factor;
  11156. for (int n = 0; n < dst->ne[0]; n++) {
  11157. int i00 = n / scale_factor;
  11158. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11159. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11160. *y = *x;
  11161. }
  11162. }
  11163. }
  11164. }
  11165. }
  11166. static void ggml_compute_forward_upscale(
  11167. const struct ggml_compute_params * params,
  11168. const struct ggml_tensor * src0,
  11169. struct ggml_tensor * dst) {
  11170. switch (src0->type) {
  11171. case GGML_TYPE_F32:
  11172. {
  11173. ggml_compute_forward_upscale_f32(params, src0, dst);
  11174. } break;
  11175. default:
  11176. {
  11177. GGML_ASSERT(false);
  11178. } break;
  11179. }
  11180. }
  11181. // ggml_compute_forward_flash_attn
  11182. static void ggml_compute_forward_flash_attn_f32(
  11183. const struct ggml_compute_params * params,
  11184. const struct ggml_tensor * q,
  11185. const struct ggml_tensor * k,
  11186. const struct ggml_tensor * v,
  11187. const bool masked,
  11188. struct ggml_tensor * dst) {
  11189. int64_t t0 = ggml_perf_time_us();
  11190. UNUSED(t0);
  11191. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11192. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11193. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11194. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11195. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11196. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11199. const int ith = params->ith;
  11200. const int nth = params->nth;
  11201. const int64_t D = neq0;
  11202. const int64_t N = neq1;
  11203. const int64_t P = nek1 - N;
  11204. const int64_t M = P + N;
  11205. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11206. GGML_ASSERT(ne0 == D);
  11207. GGML_ASSERT(ne1 == N);
  11208. GGML_ASSERT(P >= 0);
  11209. GGML_ASSERT(nbq0 == sizeof(float));
  11210. GGML_ASSERT(nbk0 == sizeof(float));
  11211. GGML_ASSERT(nbv0 == sizeof(float));
  11212. GGML_ASSERT(neq0 == D);
  11213. GGML_ASSERT(nek0 == D);
  11214. GGML_ASSERT(nev1 == D);
  11215. GGML_ASSERT(neq1 == N);
  11216. GGML_ASSERT(nek1 == N + P);
  11217. GGML_ASSERT(nev1 == D);
  11218. // dst cannot be transposed or permuted
  11219. GGML_ASSERT(nb0 == sizeof(float));
  11220. GGML_ASSERT(nb0 <= nb1);
  11221. GGML_ASSERT(nb1 <= nb2);
  11222. GGML_ASSERT(nb2 <= nb3);
  11223. if (params->type == GGML_TASK_INIT) {
  11224. return;
  11225. }
  11226. if (params->type == GGML_TASK_FINALIZE) {
  11227. return;
  11228. }
  11229. // parallelize by q rows using ggml_vec_dot_f32
  11230. // total rows in q
  11231. const int nr = neq1*neq2*neq3;
  11232. // rows per thread
  11233. const int dr = (nr + nth - 1)/nth;
  11234. // row range for this thread
  11235. const int ir0 = dr*ith;
  11236. const int ir1 = MIN(ir0 + dr, nr);
  11237. const float scale = 1.0f/sqrtf(D);
  11238. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11239. for (int ir = ir0; ir < ir1; ++ir) {
  11240. // q indices
  11241. const int iq3 = ir/(neq2*neq1);
  11242. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11243. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11244. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11245. for (int i = M; i < Mup; ++i) {
  11246. S[i] = -INFINITY;
  11247. }
  11248. for (int64_t ic = 0; ic < nek1; ++ic) {
  11249. // k indices
  11250. const int ik3 = iq3;
  11251. const int ik2 = iq2;
  11252. const int ik1 = ic;
  11253. // S indices
  11254. const int i1 = ik1;
  11255. ggml_vec_dot_f32(neq0,
  11256. S + i1,
  11257. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11258. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11259. }
  11260. // scale
  11261. ggml_vec_scale_f32(nek1, S, scale);
  11262. if (masked) {
  11263. for (int64_t i = P; i < M; i++) {
  11264. if (i > P + iq1) {
  11265. S[i] = -INFINITY;
  11266. }
  11267. }
  11268. }
  11269. // softmax
  11270. {
  11271. float max = -INFINITY;
  11272. ggml_vec_max_f32(M, &max, S);
  11273. ggml_float sum = 0.0;
  11274. {
  11275. #ifdef GGML_SOFT_MAX_ACCELERATE
  11276. max = -max;
  11277. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11278. vvexpf(S, S, &Mup);
  11279. ggml_vec_sum_f32(Mup, &sum, S);
  11280. #else
  11281. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11282. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11283. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11284. float * SS = S + i;
  11285. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11286. if (SS[j] == -INFINITY) {
  11287. SS[j] = 0.0f;
  11288. } else {
  11289. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11290. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11291. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11292. sump[j] += (ggml_float)val;
  11293. SS[j] = val;
  11294. }
  11295. }
  11296. }
  11297. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11298. sum += sump[i];
  11299. }
  11300. #endif
  11301. }
  11302. assert(sum > 0.0);
  11303. sum = 1.0/sum;
  11304. ggml_vec_scale_f32(M, S, sum);
  11305. #ifndef NDEBUG
  11306. for (int i = 0; i < M; ++i) {
  11307. assert(!isnan(S[i]));
  11308. assert(!isinf(S[i]));
  11309. }
  11310. #endif
  11311. }
  11312. for (int64_t ic = 0; ic < nev1; ++ic) {
  11313. // dst indices
  11314. const int i1 = iq1;
  11315. const int i2 = iq2;
  11316. const int i3 = iq3;
  11317. ggml_vec_dot_f32(nek1,
  11318. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11319. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11320. S);
  11321. }
  11322. }
  11323. }
  11324. static void ggml_compute_forward_flash_attn_f16(
  11325. const struct ggml_compute_params * params,
  11326. const struct ggml_tensor * q,
  11327. const struct ggml_tensor * k,
  11328. const struct ggml_tensor * v,
  11329. const bool masked,
  11330. struct ggml_tensor * dst) {
  11331. int64_t t0 = ggml_perf_time_us();
  11332. UNUSED(t0);
  11333. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11334. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11335. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11336. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11337. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11338. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11339. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11340. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11341. const int ith = params->ith;
  11342. const int nth = params->nth;
  11343. const int64_t D = neq0;
  11344. const int64_t N = neq1;
  11345. const int64_t P = nek1 - N;
  11346. const int64_t M = P + N;
  11347. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11348. GGML_ASSERT(ne0 == D);
  11349. GGML_ASSERT(ne1 == N);
  11350. GGML_ASSERT(P >= 0);
  11351. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11352. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11353. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11354. GGML_ASSERT(neq0 == D);
  11355. GGML_ASSERT(nek0 == D);
  11356. GGML_ASSERT(nev1 == D);
  11357. GGML_ASSERT(neq1 == N);
  11358. GGML_ASSERT(nek1 == N + P);
  11359. GGML_ASSERT(nev1 == D);
  11360. // dst cannot be transposed or permuted
  11361. GGML_ASSERT(nb0 == sizeof(float));
  11362. GGML_ASSERT(nb0 <= nb1);
  11363. GGML_ASSERT(nb1 <= nb2);
  11364. GGML_ASSERT(nb2 <= nb3);
  11365. if (params->type == GGML_TASK_INIT) {
  11366. return;
  11367. }
  11368. if (params->type == GGML_TASK_FINALIZE) {
  11369. return;
  11370. }
  11371. // parallelize by q rows using ggml_vec_dot_f32
  11372. // total rows in q
  11373. const int nr = neq1*neq2*neq3;
  11374. // rows per thread
  11375. const int dr = (nr + nth - 1)/nth;
  11376. // row range for this thread
  11377. const int ir0 = dr*ith;
  11378. const int ir1 = MIN(ir0 + dr, nr);
  11379. const float scale = 1.0f/sqrtf(D);
  11380. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11381. for (int ir = ir0; ir < ir1; ++ir) {
  11382. // q indices
  11383. const int iq3 = ir/(neq2*neq1);
  11384. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11385. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11386. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11387. for (int i = M; i < Mup; ++i) {
  11388. S[i] = -INFINITY;
  11389. }
  11390. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11391. for (int64_t ic = 0; ic < nek1; ++ic) {
  11392. // k indices
  11393. const int ik3 = iq3;
  11394. const int ik2 = iq2;
  11395. const int ik1 = ic;
  11396. // S indices
  11397. const int i1 = ik1;
  11398. ggml_vec_dot_f16(neq0,
  11399. S + i1,
  11400. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11401. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11402. }
  11403. } else {
  11404. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11405. // k indices
  11406. const int ik3 = iq3;
  11407. const int ik2 = iq2;
  11408. const int ik1 = ic;
  11409. // S indices
  11410. const int i1 = ik1;
  11411. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11412. S + i1,
  11413. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11414. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11415. }
  11416. }
  11417. // scale
  11418. ggml_vec_scale_f32(nek1, S, scale);
  11419. if (masked) {
  11420. for (int64_t i = P; i < M; i++) {
  11421. if (i > P + iq1) {
  11422. S[i] = -INFINITY;
  11423. }
  11424. }
  11425. }
  11426. // softmax
  11427. {
  11428. float max = -INFINITY;
  11429. ggml_vec_max_f32(M, &max, S);
  11430. ggml_float sum = 0.0;
  11431. {
  11432. #ifdef GGML_SOFT_MAX_ACCELERATE
  11433. max = -max;
  11434. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11435. vvexpf(S, S, &Mup);
  11436. ggml_vec_sum_f32(Mup, &sum, S);
  11437. #else
  11438. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11439. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11440. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11441. float * SS = S + i;
  11442. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11443. if (SS[j] == -INFINITY) {
  11444. SS[j] = 0.0f;
  11445. } else {
  11446. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11447. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11448. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11449. sump[j] += (ggml_float)val;
  11450. SS[j] = val;
  11451. }
  11452. }
  11453. }
  11454. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11455. sum += sump[i];
  11456. }
  11457. #endif
  11458. }
  11459. assert(sum > 0.0);
  11460. sum = 1.0/sum;
  11461. ggml_vec_scale_f32(M, S, sum);
  11462. #ifndef NDEBUG
  11463. for (int i = 0; i < M; ++i) {
  11464. assert(!isnan(S[i]));
  11465. assert(!isinf(S[i]));
  11466. }
  11467. #endif
  11468. }
  11469. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11470. for (int64_t i = 0; i < M; i++) {
  11471. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11472. }
  11473. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11474. for (int64_t ic = 0; ic < nev1; ++ic) {
  11475. // dst indices
  11476. const int i1 = iq1;
  11477. const int i2 = iq2;
  11478. const int i3 = iq3;
  11479. ggml_vec_dot_f16(nek1,
  11480. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11481. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11482. S16);
  11483. }
  11484. } else {
  11485. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11486. // dst indices
  11487. const int i1 = iq1;
  11488. const int i2 = iq2;
  11489. const int i3 = iq3;
  11490. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11491. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11492. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11493. S16);
  11494. }
  11495. }
  11496. }
  11497. }
  11498. static void ggml_compute_forward_flash_attn(
  11499. const struct ggml_compute_params * params,
  11500. const struct ggml_tensor * q,
  11501. const struct ggml_tensor * k,
  11502. const struct ggml_tensor * v,
  11503. const bool masked,
  11504. struct ggml_tensor * dst) {
  11505. switch (q->type) {
  11506. case GGML_TYPE_F16:
  11507. {
  11508. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11509. } break;
  11510. case GGML_TYPE_F32:
  11511. {
  11512. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11513. } break;
  11514. default:
  11515. {
  11516. GGML_ASSERT(false);
  11517. } break;
  11518. }
  11519. }
  11520. // ggml_compute_forward_flash_ff
  11521. static void ggml_compute_forward_flash_ff_f16(
  11522. const struct ggml_compute_params * params,
  11523. const struct ggml_tensor * a, // F16
  11524. const struct ggml_tensor * b0, // F16 fc_w
  11525. const struct ggml_tensor * b1, // F32 fc_b
  11526. const struct ggml_tensor * c0, // F16 proj_w
  11527. const struct ggml_tensor * c1, // F32 proj_b
  11528. struct ggml_tensor * dst) {
  11529. int64_t t0 = ggml_perf_time_us();
  11530. UNUSED(t0);
  11531. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11532. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11533. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11534. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11535. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11536. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11537. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11538. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11539. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11540. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11541. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11542. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11543. const int ith = params->ith;
  11544. const int nth = params->nth;
  11545. const int64_t D = nea0;
  11546. //const int64_t N = nea1;
  11547. const int64_t M = neb01;
  11548. GGML_ASSERT(ne0 == nea0);
  11549. GGML_ASSERT(ne1 == nea1);
  11550. GGML_ASSERT(ne2 == nea2);
  11551. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11552. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11553. GGML_ASSERT(nbb10 == sizeof(float));
  11554. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11555. GGML_ASSERT(nbc10 == sizeof(float));
  11556. GGML_ASSERT(neb00 == D);
  11557. GGML_ASSERT(neb01 == M);
  11558. GGML_ASSERT(neb10 == M);
  11559. GGML_ASSERT(neb11 == 1);
  11560. GGML_ASSERT(nec00 == M);
  11561. GGML_ASSERT(nec01 == D);
  11562. GGML_ASSERT(nec10 == D);
  11563. GGML_ASSERT(nec11 == 1);
  11564. // dst cannot be transposed or permuted
  11565. GGML_ASSERT(nb0 == sizeof(float));
  11566. GGML_ASSERT(nb0 <= nb1);
  11567. GGML_ASSERT(nb1 <= nb2);
  11568. GGML_ASSERT(nb2 <= nb3);
  11569. if (params->type == GGML_TASK_INIT) {
  11570. return;
  11571. }
  11572. if (params->type == GGML_TASK_FINALIZE) {
  11573. return;
  11574. }
  11575. // parallelize by a rows using ggml_vec_dot_f32
  11576. // total rows in a
  11577. const int nr = nea1*nea2*nea3;
  11578. // rows per thread
  11579. const int dr = (nr + nth - 1)/nth;
  11580. // row range for this thread
  11581. const int ir0 = dr*ith;
  11582. const int ir1 = MIN(ir0 + dr, nr);
  11583. for (int ir = ir0; ir < ir1; ++ir) {
  11584. // a indices
  11585. const int ia3 = ir/(nea2*nea1);
  11586. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11587. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11588. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11589. for (int64_t ic = 0; ic < neb01; ++ic) {
  11590. // b0 indices
  11591. const int ib03 = ia3;
  11592. const int ib02 = ia2;
  11593. const int ib01 = ic;
  11594. // S indices
  11595. const int i1 = ib01;
  11596. ggml_vec_dot_f16(nea0,
  11597. S + i1,
  11598. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11599. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11600. }
  11601. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11602. //ggml_vec_gelu_f32(neb01, S, S);
  11603. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11604. for (int64_t i = 0; i < M; i++) {
  11605. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11606. }
  11607. ggml_vec_gelu_f16(neb01, S16, S16);
  11608. {
  11609. // dst indices
  11610. const int i1 = ia1;
  11611. const int i2 = ia2;
  11612. const int i3 = ia3;
  11613. for (int64_t ic = 0; ic < nec01; ++ic) {
  11614. ggml_vec_dot_f16(neb01,
  11615. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11616. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11617. S16);
  11618. }
  11619. ggml_vec_add_f32(nec01,
  11620. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11621. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11622. (float *) c1->data);
  11623. }
  11624. }
  11625. }
  11626. static void ggml_compute_forward_flash_ff(
  11627. const struct ggml_compute_params * params,
  11628. const struct ggml_tensor * a,
  11629. const struct ggml_tensor * b0,
  11630. const struct ggml_tensor * b1,
  11631. const struct ggml_tensor * c0,
  11632. const struct ggml_tensor * c1,
  11633. struct ggml_tensor * dst) {
  11634. switch (b0->type) {
  11635. case GGML_TYPE_F16:
  11636. {
  11637. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11638. } break;
  11639. case GGML_TYPE_F32:
  11640. {
  11641. GGML_ASSERT(false); // TODO
  11642. } break;
  11643. default:
  11644. {
  11645. GGML_ASSERT(false);
  11646. } break;
  11647. }
  11648. }
  11649. // ggml_compute_forward_flash_attn_back
  11650. static void ggml_compute_forward_flash_attn_back_f32(
  11651. const struct ggml_compute_params * params,
  11652. const struct ggml_tensor * q,
  11653. const struct ggml_tensor * k,
  11654. const struct ggml_tensor * v,
  11655. const struct ggml_tensor * d,
  11656. const bool masked,
  11657. struct ggml_tensor * dst) {
  11658. int64_t t0 = ggml_perf_time_us();
  11659. UNUSED(t0);
  11660. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11661. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11662. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11663. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11664. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11665. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11666. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11667. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11668. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11669. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11670. const int ith = params->ith;
  11671. const int nth = params->nth;
  11672. const int64_t D = neq0;
  11673. const int64_t N = neq1;
  11674. const int64_t P = nek1 - N;
  11675. const int64_t M = P + N;
  11676. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11677. const int mxDM = MAX(D, Mup);
  11678. // GGML_ASSERT(ne0 == D);
  11679. // GGML_ASSERT(ne1 == N);
  11680. GGML_ASSERT(P >= 0);
  11681. GGML_ASSERT(nbq0 == sizeof(float));
  11682. GGML_ASSERT(nbk0 == sizeof(float));
  11683. GGML_ASSERT(nbv0 == sizeof(float));
  11684. GGML_ASSERT(neq0 == D);
  11685. GGML_ASSERT(nek0 == D);
  11686. GGML_ASSERT(nev1 == D);
  11687. GGML_ASSERT(ned0 == D);
  11688. GGML_ASSERT(neq1 == N);
  11689. GGML_ASSERT(nek1 == N + P);
  11690. GGML_ASSERT(nev1 == D);
  11691. GGML_ASSERT(ned1 == N);
  11692. // dst cannot be transposed or permuted
  11693. GGML_ASSERT(nb0 == sizeof(float));
  11694. GGML_ASSERT(nb0 <= nb1);
  11695. GGML_ASSERT(nb1 <= nb2);
  11696. GGML_ASSERT(nb2 <= nb3);
  11697. if (params->type == GGML_TASK_INIT) {
  11698. if (ith == 0) {
  11699. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11700. }
  11701. return;
  11702. }
  11703. if (params->type == GGML_TASK_FINALIZE) {
  11704. return;
  11705. }
  11706. // parallelize by q rows using ggml_vec_dot_f32
  11707. // total rows in q
  11708. const int nr = neq2*neq3;
  11709. // rows per thread
  11710. const int dr = (nr + nth - 1)/nth;
  11711. // row range for this thread
  11712. const int ir0 = dr*ith;
  11713. const int ir1 = MIN(ir0 + dr, nr);
  11714. const float scale = 1.0f/sqrtf(D);
  11715. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11716. for (int ir = ir0; ir < ir1; ++ir) {
  11717. // q indices
  11718. const int iq3 = ir/(neq2);
  11719. const int iq2 = ir - iq3*neq2;
  11720. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11721. // not sure about CACHE_LINE_SIZE_F32..
  11722. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11723. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11724. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11725. for (int i = M; i < Mup; ++i) {
  11726. S[i] = -INFINITY;
  11727. }
  11728. for (int64_t ic = 0; ic < nek1; ++ic) {
  11729. // k indices
  11730. const int ik3 = iq3;
  11731. const int ik2 = iq2;
  11732. const int ik1 = ic;
  11733. // S indices
  11734. const int i1 = ik1;
  11735. ggml_vec_dot_f32(neq0,
  11736. S + i1,
  11737. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11738. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11739. }
  11740. // scale
  11741. ggml_vec_scale_f32(nek1, S, scale);
  11742. if (masked) {
  11743. for (int64_t i = P; i < M; i++) {
  11744. if (i > P + iq1) {
  11745. S[i] = -INFINITY;
  11746. }
  11747. }
  11748. }
  11749. // softmax
  11750. {
  11751. float max = -INFINITY;
  11752. ggml_vec_max_f32(M, &max, S);
  11753. ggml_float sum = 0.0;
  11754. {
  11755. #ifdef GGML_SOFT_MAX_ACCELERATE
  11756. max = -max;
  11757. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11758. vvexpf(SM, SM, &Mup);
  11759. ggml_vec_sum_f32(Mup, &sum, SM);
  11760. #else
  11761. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11762. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11763. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11764. float * SR = S + i;
  11765. float * SW = SM + i;
  11766. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11767. if (SR[j] == -INFINITY) {
  11768. SW[j] = 0.0f;
  11769. } else {
  11770. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11771. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11772. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11773. sump[j] += (ggml_float)val;
  11774. SW[j] = val;
  11775. }
  11776. }
  11777. }
  11778. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11779. sum += sump[i];
  11780. }
  11781. #endif
  11782. }
  11783. assert(sum > 0.0);
  11784. sum = 1.0/sum;
  11785. ggml_vec_scale_f32(M, SM, sum);
  11786. }
  11787. // step-by-step explanation
  11788. {
  11789. // forward-process shape grads from backward process
  11790. // parallel_for iq2,iq3:
  11791. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11792. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11793. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11794. // for iq1:
  11795. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11796. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11797. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11798. // S0 = -Inf [D,1,1,1]
  11799. // ~S1[i] = dot(kcur[:D,i], qcur)
  11800. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11801. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11802. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11803. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11804. // ~S5[i] = dot(vcur[:,i], S4)
  11805. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11806. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11807. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11808. // dst backward-/ grad[dst] = d
  11809. //
  11810. // output gradients with their dependencies:
  11811. //
  11812. // grad[kcur] = grad[S1].T @ qcur
  11813. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11814. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11815. // grad[S4] = grad[S5] @ vcur
  11816. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11817. // grad[qcur] = grad[S1] @ kcur
  11818. // grad[vcur] = grad[S5].T @ S4
  11819. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11820. //
  11821. // in post-order:
  11822. //
  11823. // S1 = qcur @ kcur.T
  11824. // S2 = S1 * scale
  11825. // S3 = diag_mask_inf(S2, P)
  11826. // S4 = softmax(S3)
  11827. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11828. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11829. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11830. // grad[qcur] = grad[S1] @ kcur
  11831. // grad[kcur] = grad[S1].T @ qcur
  11832. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11833. //
  11834. // using less variables (SM=S4):
  11835. //
  11836. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11837. // SM = softmax(S)
  11838. // S = d[:D,iq1,iq2,iq3] @ vcur
  11839. // dot_SM_gradSM = dot(SM, S)
  11840. // S = SM * (S - dot(SM, S))
  11841. // S = diag_mask_zero(S, P) * scale
  11842. //
  11843. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11844. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11845. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11846. }
  11847. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11848. // S = d[:D,iq1,iq2,iq3] @ vcur
  11849. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11850. ggml_vec_set_f32(M, S, 0);
  11851. for (int64_t ic = 0; ic < D; ++ic) {
  11852. // dst indices
  11853. const int i1 = iq1;
  11854. const int i2 = iq2;
  11855. const int i3 = iq3;
  11856. ggml_vec_mad_f32(M,
  11857. S,
  11858. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11859. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11860. }
  11861. // S = SM * (S - dot(SM, S))
  11862. float dot_SM_gradSM = 0;
  11863. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11864. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11865. ggml_vec_mul_f32 (M, S, S, SM);
  11866. // S = diag_mask_zero(S, P) * scale
  11867. if (masked) {
  11868. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11869. // S[i] = 0;
  11870. // }
  11871. for (int64_t i = P; i < M; i++) {
  11872. if (i > P + iq1) {
  11873. S[i] = 0;
  11874. }
  11875. }
  11876. }
  11877. ggml_vec_scale_f32(M, S, scale);
  11878. void * grad_q = (char *) dst->data;
  11879. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11880. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11881. const size_t nbgq1 = nb0*neq0;
  11882. const size_t nbgq2 = nb0*neq0*neq1;
  11883. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11884. const size_t nbgk1 = nb0*nek0;
  11885. const size_t nbgk2 = nb0*nek0*nek1;
  11886. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11887. const size_t nbgv1 = nb0*nev0;
  11888. const size_t nbgv2 = nb0*nev0*nev1;
  11889. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11890. // S shape [M,1]
  11891. // SM shape [M,1]
  11892. // kcur shape [D,M]
  11893. // qcur shape [D,1]
  11894. // vcur shape [M,D]
  11895. //
  11896. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11897. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11898. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11899. //
  11900. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11901. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11902. for (int64_t ic = 0; ic < M; ++ic) {
  11903. // dst indices
  11904. const int i1 = iq1;
  11905. const int i2 = iq2;
  11906. const int i3 = iq3;
  11907. ggml_vec_mad_f32(D,
  11908. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11909. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11910. S[ic]);
  11911. }
  11912. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11913. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11914. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11915. for (int64_t ic = 0; ic < M; ++ic) {
  11916. // dst indices
  11917. const int i1 = iq1;
  11918. const int i2 = iq2;
  11919. const int i3 = iq3;
  11920. // ggml_vec_set_f32(D,
  11921. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11922. // 0);
  11923. ggml_vec_mad_f32(D,
  11924. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11925. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11926. S[ic]);
  11927. }
  11928. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11929. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11930. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11931. for (int64_t ic = 0; ic < D; ++ic) {
  11932. // dst indices
  11933. const int i1 = iq1;
  11934. const int i2 = iq2;
  11935. const int i3 = iq3;
  11936. // ggml_vec_set_f32(M,
  11937. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11938. // 0);
  11939. ggml_vec_mad_f32(M,
  11940. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11941. SM,
  11942. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11943. }
  11944. }
  11945. }
  11946. }
  11947. static void ggml_compute_forward_flash_attn_back(
  11948. const struct ggml_compute_params * params,
  11949. const struct ggml_tensor * q,
  11950. const struct ggml_tensor * k,
  11951. const struct ggml_tensor * v,
  11952. const struct ggml_tensor * d,
  11953. const bool masked,
  11954. struct ggml_tensor * dst) {
  11955. switch (q->type) {
  11956. case GGML_TYPE_F32:
  11957. {
  11958. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11959. } break;
  11960. default:
  11961. {
  11962. GGML_ASSERT(false);
  11963. } break;
  11964. }
  11965. }
  11966. // ggml_compute_forward_win_part
  11967. static void ggml_compute_forward_win_part_f32(
  11968. const struct ggml_compute_params * params,
  11969. const struct ggml_tensor * src0,
  11970. struct ggml_tensor * dst) {
  11971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11972. return;
  11973. }
  11974. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11975. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11976. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11977. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11978. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11979. assert(ne00 == ne0);
  11980. assert(ne3 == nep0*nep1);
  11981. // TODO: optimize / multi-thread
  11982. for (int py = 0; py < nep1; ++py) {
  11983. for (int px = 0; px < nep0; ++px) {
  11984. const int64_t i3 = py*nep0 + px;
  11985. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11986. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11987. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11988. const int64_t i02 = py*w + i2;
  11989. const int64_t i01 = px*w + i1;
  11990. const int64_t i00 = i0;
  11991. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11992. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11993. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11994. ((float *) dst->data)[i] = 0.0f;
  11995. } else {
  11996. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11997. }
  11998. }
  11999. }
  12000. }
  12001. }
  12002. }
  12003. }
  12004. static void ggml_compute_forward_win_part(
  12005. const struct ggml_compute_params * params,
  12006. const struct ggml_tensor * src0,
  12007. struct ggml_tensor * dst) {
  12008. switch (src0->type) {
  12009. case GGML_TYPE_F32:
  12010. {
  12011. ggml_compute_forward_win_part_f32(params, src0, dst);
  12012. } break;
  12013. default:
  12014. {
  12015. GGML_ASSERT(false);
  12016. } break;
  12017. }
  12018. }
  12019. // ggml_compute_forward_win_unpart
  12020. static void ggml_compute_forward_win_unpart_f32(
  12021. const struct ggml_compute_params * params,
  12022. const struct ggml_tensor * src0,
  12023. struct ggml_tensor * dst) {
  12024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12025. return;
  12026. }
  12027. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12028. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12029. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12030. // padding
  12031. const int px = (w - ne1%w)%w;
  12032. //const int py = (w - ne2%w)%w;
  12033. const int npx = (px + ne1)/w;
  12034. //const int npy = (py + ne2)/w;
  12035. assert(ne0 == ne00);
  12036. // TODO: optimize / multi-thread
  12037. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12038. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12039. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12040. const int ip2 = i2/w;
  12041. const int ip1 = i1/w;
  12042. const int64_t i02 = i2%w;
  12043. const int64_t i01 = i1%w;
  12044. const int64_t i00 = i0;
  12045. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12046. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12047. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12048. }
  12049. }
  12050. }
  12051. }
  12052. static void ggml_compute_forward_win_unpart(
  12053. const struct ggml_compute_params * params,
  12054. const struct ggml_tensor * src0,
  12055. struct ggml_tensor * dst) {
  12056. switch (src0->type) {
  12057. case GGML_TYPE_F32:
  12058. {
  12059. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12060. } break;
  12061. default:
  12062. {
  12063. GGML_ASSERT(false);
  12064. } break;
  12065. }
  12066. }
  12067. //gmml_compute_forward_unary
  12068. static void ggml_compute_forward_unary(
  12069. const struct ggml_compute_params * params,
  12070. const struct ggml_tensor * src0,
  12071. struct ggml_tensor * dst) {
  12072. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12073. switch (op) {
  12074. case GGML_UNARY_OP_ABS:
  12075. {
  12076. ggml_compute_forward_abs(params, src0, dst);
  12077. } break;
  12078. case GGML_UNARY_OP_SGN:
  12079. {
  12080. ggml_compute_forward_sgn(params, src0, dst);
  12081. } break;
  12082. case GGML_UNARY_OP_NEG:
  12083. {
  12084. ggml_compute_forward_neg(params, src0, dst);
  12085. } break;
  12086. case GGML_UNARY_OP_STEP:
  12087. {
  12088. ggml_compute_forward_step(params, src0, dst);
  12089. } break;
  12090. case GGML_UNARY_OP_TANH:
  12091. {
  12092. ggml_compute_forward_tanh(params, src0, dst);
  12093. } break;
  12094. case GGML_UNARY_OP_ELU:
  12095. {
  12096. ggml_compute_forward_elu(params, src0, dst);
  12097. } break;
  12098. case GGML_UNARY_OP_RELU:
  12099. {
  12100. ggml_compute_forward_relu(params, src0, dst);
  12101. } break;
  12102. case GGML_UNARY_OP_GELU:
  12103. {
  12104. ggml_compute_forward_gelu(params, src0, dst);
  12105. } break;
  12106. case GGML_UNARY_OP_GELU_QUICK:
  12107. {
  12108. ggml_compute_forward_gelu_quick(params, src0, dst);
  12109. } break;
  12110. case GGML_UNARY_OP_SILU:
  12111. {
  12112. ggml_compute_forward_silu(params, src0, dst);
  12113. } break;
  12114. default:
  12115. {
  12116. GGML_ASSERT(false);
  12117. } break;
  12118. }
  12119. }
  12120. // ggml_compute_forward_get_rel_pos
  12121. static void ggml_compute_forward_get_rel_pos_f16(
  12122. const struct ggml_compute_params * params,
  12123. const struct ggml_tensor * src0,
  12124. struct ggml_tensor * dst) {
  12125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12126. return;
  12127. }
  12128. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12129. GGML_TENSOR_UNARY_OP_LOCALS;
  12130. const int64_t w = ne1;
  12131. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12132. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12133. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12134. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12135. const int64_t pos = (w - i1 - 1) + i2;
  12136. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12137. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12138. }
  12139. }
  12140. }
  12141. }
  12142. static void ggml_compute_forward_get_rel_pos(
  12143. const struct ggml_compute_params * params,
  12144. const struct ggml_tensor * src0,
  12145. struct ggml_tensor * dst) {
  12146. switch (src0->type) {
  12147. case GGML_TYPE_F16:
  12148. {
  12149. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12150. } break;
  12151. default:
  12152. {
  12153. GGML_ASSERT(false);
  12154. } break;
  12155. }
  12156. }
  12157. // ggml_compute_forward_add_rel_pos
  12158. static void ggml_compute_forward_add_rel_pos_f32(
  12159. const struct ggml_compute_params * params,
  12160. const struct ggml_tensor * src0,
  12161. const struct ggml_tensor * src1,
  12162. const struct ggml_tensor * src2,
  12163. struct ggml_tensor * dst) {
  12164. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12165. if (!inplace && params->type == GGML_TASK_INIT) {
  12166. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12167. return;
  12168. }
  12169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12170. return;
  12171. }
  12172. int64_t t0 = ggml_perf_time_us();
  12173. UNUSED(t0);
  12174. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12175. float * src1_data = (float *) src1->data;
  12176. float * src2_data = (float *) src2->data;
  12177. float * dst_data = (float *) dst->data;
  12178. const int64_t ne10 = src1->ne[0];
  12179. const int64_t ne11 = src1->ne[1];
  12180. const int64_t ne12 = src1->ne[2];
  12181. const int64_t ne13 = src1->ne[3];
  12182. const int ith = params->ith;
  12183. const int nth = params->nth;
  12184. // total patches in dst
  12185. const int np = ne13;
  12186. // patches per thread
  12187. const int dp = (np + nth - 1)/nth;
  12188. // patch range for this thread
  12189. const int ip0 = dp*ith;
  12190. const int ip1 = MIN(ip0 + dp, np);
  12191. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12192. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12193. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12194. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12195. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12196. const int64_t jp0 = jp1 + i10;
  12197. const float src1_e = src1_data[jp0];
  12198. const float src2_e = src2_data[jp0];
  12199. const int64_t jdh = jp0 * ne10;
  12200. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12201. for (int64_t j = 0; j < ne10; ++j) {
  12202. dst_data[jdh + j ] += src2_e;
  12203. dst_data[jdw + j*ne10] += src1_e;
  12204. }
  12205. }
  12206. }
  12207. }
  12208. }
  12209. }
  12210. static void ggml_compute_forward_add_rel_pos(
  12211. const struct ggml_compute_params * params,
  12212. const struct ggml_tensor * src0,
  12213. const struct ggml_tensor * src1,
  12214. const struct ggml_tensor * src2,
  12215. struct ggml_tensor * dst) {
  12216. switch (src0->type) {
  12217. case GGML_TYPE_F32:
  12218. {
  12219. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12220. } break;
  12221. default:
  12222. {
  12223. GGML_ASSERT(false);
  12224. } break;
  12225. }
  12226. }
  12227. // ggml_compute_forward_map_unary
  12228. static void ggml_compute_forward_map_unary_f32(
  12229. const struct ggml_compute_params * params,
  12230. const struct ggml_tensor * src0,
  12231. struct ggml_tensor * dst,
  12232. const ggml_unary_op_f32_t fun) {
  12233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12235. return;
  12236. }
  12237. const int n = ggml_nrows(src0);
  12238. const int nc = src0->ne[0];
  12239. assert( dst->nb[0] == sizeof(float));
  12240. assert(src0->nb[0] == sizeof(float));
  12241. for (int i = 0; i < n; i++) {
  12242. fun(nc,
  12243. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12244. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12245. }
  12246. }
  12247. static void ggml_compute_forward_map_unary(
  12248. const struct ggml_compute_params * params,
  12249. const struct ggml_tensor * src0,
  12250. struct ggml_tensor * dst,
  12251. const ggml_unary_op_f32_t fun) {
  12252. switch (src0->type) {
  12253. case GGML_TYPE_F32:
  12254. {
  12255. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12256. } break;
  12257. default:
  12258. {
  12259. GGML_ASSERT(false);
  12260. } break;
  12261. }
  12262. }
  12263. // ggml_compute_forward_map_binary
  12264. static void ggml_compute_forward_map_binary_f32(
  12265. const struct ggml_compute_params * params,
  12266. const struct ggml_tensor * src0,
  12267. const struct ggml_tensor * src1,
  12268. struct ggml_tensor * dst,
  12269. const ggml_binary_op_f32_t fun) {
  12270. assert(params->ith == 0);
  12271. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12273. return;
  12274. }
  12275. const int n = ggml_nrows(src0);
  12276. const int nc = src0->ne[0];
  12277. assert( dst->nb[0] == sizeof(float));
  12278. assert(src0->nb[0] == sizeof(float));
  12279. assert(src1->nb[0] == sizeof(float));
  12280. for (int i = 0; i < n; i++) {
  12281. fun(nc,
  12282. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12283. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12284. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12285. }
  12286. }
  12287. static void ggml_compute_forward_map_binary(
  12288. const struct ggml_compute_params * params,
  12289. const struct ggml_tensor * src0,
  12290. const struct ggml_tensor * src1,
  12291. struct ggml_tensor * dst,
  12292. const ggml_binary_op_f32_t fun) {
  12293. switch (src0->type) {
  12294. case GGML_TYPE_F32:
  12295. {
  12296. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12297. } break;
  12298. default:
  12299. {
  12300. GGML_ASSERT(false);
  12301. } break;
  12302. }
  12303. }
  12304. // ggml_compute_forward_map_custom1
  12305. static void ggml_compute_forward_map_custom1_f32(
  12306. const struct ggml_compute_params * params,
  12307. const struct ggml_tensor * a,
  12308. struct ggml_tensor * dst,
  12309. const ggml_custom1_op_f32_t fun) {
  12310. assert(params->ith == 0);
  12311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12312. return;
  12313. }
  12314. fun(dst, a);
  12315. }
  12316. // ggml_compute_forward_map_custom2
  12317. static void ggml_compute_forward_map_custom2_f32(
  12318. const struct ggml_compute_params * params,
  12319. const struct ggml_tensor * a,
  12320. const struct ggml_tensor * b,
  12321. struct ggml_tensor * dst,
  12322. const ggml_custom2_op_f32_t fun) {
  12323. assert(params->ith == 0);
  12324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12325. return;
  12326. }
  12327. fun(dst, a, b);
  12328. }
  12329. // ggml_compute_forward_map_custom3
  12330. static void ggml_compute_forward_map_custom3_f32(
  12331. const struct ggml_compute_params * params,
  12332. const struct ggml_tensor * a,
  12333. const struct ggml_tensor * b,
  12334. const struct ggml_tensor * c,
  12335. struct ggml_tensor * dst,
  12336. const ggml_custom3_op_f32_t fun) {
  12337. assert(params->ith == 0);
  12338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12339. return;
  12340. }
  12341. fun(dst, a, b, c);
  12342. }
  12343. // ggml_compute_forward_map_custom1
  12344. static void ggml_compute_forward_map_custom1(
  12345. const struct ggml_compute_params * params,
  12346. const struct ggml_tensor * a,
  12347. struct ggml_tensor * dst) {
  12348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12349. return;
  12350. }
  12351. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12352. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12353. }
  12354. // ggml_compute_forward_map_custom2
  12355. static void ggml_compute_forward_map_custom2(
  12356. const struct ggml_compute_params * params,
  12357. const struct ggml_tensor * a,
  12358. const struct ggml_tensor * b,
  12359. struct ggml_tensor * dst) {
  12360. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12361. return;
  12362. }
  12363. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12364. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12365. }
  12366. // ggml_compute_forward_map_custom3
  12367. static void ggml_compute_forward_map_custom3(
  12368. const struct ggml_compute_params * params,
  12369. const struct ggml_tensor * a,
  12370. const struct ggml_tensor * b,
  12371. const struct ggml_tensor * c,
  12372. struct ggml_tensor * dst) {
  12373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12374. return;
  12375. }
  12376. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12377. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12378. }
  12379. // ggml_compute_forward_cross_entropy_loss
  12380. static void ggml_compute_forward_cross_entropy_loss_f32(
  12381. const struct ggml_compute_params * params,
  12382. const struct ggml_tensor * src0,
  12383. const struct ggml_tensor * src1,
  12384. struct ggml_tensor * dst) {
  12385. GGML_ASSERT(ggml_is_contiguous(src0));
  12386. GGML_ASSERT(ggml_is_contiguous(src1));
  12387. GGML_ASSERT(ggml_is_scalar(dst));
  12388. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12389. const int ith = params->ith;
  12390. const int nth = params->nth;
  12391. float * sums = (float *) params->wdata;
  12392. // TODO: handle transposed/permuted matrices
  12393. const int nc = src0->ne[0];
  12394. const int nr = ggml_nrows(src0);
  12395. if (params->type == GGML_TASK_INIT) {
  12396. if (ith == 0) {
  12397. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12398. }
  12399. return;
  12400. }
  12401. if (params->type == GGML_TASK_FINALIZE) {
  12402. if (ith == 0) {
  12403. float * dp = (float *) dst->data;
  12404. ggml_vec_sum_f32(nth, dp, sums);
  12405. dp[0] *= -1.0f;
  12406. }
  12407. return;
  12408. }
  12409. const double eps = 1e-9;
  12410. // rows per thread
  12411. const int dr = (nr + nth - 1)/nth;
  12412. // row range for this thread
  12413. const int ir0 = dr*ith;
  12414. const int ir1 = MIN(ir0 + dr, nr);
  12415. for (int i1 = ir0; i1 < ir1; i1++) {
  12416. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12417. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12418. float * st = (float *) params->wdata + nth + ith*nc;
  12419. #ifndef NDEBUG
  12420. for (int i = 0; i < nc; ++i) {
  12421. //printf("p[%d] = %f\n", i, p[i]);
  12422. assert(!isnan(s0[i]));
  12423. assert(!isnan(s1[i]));
  12424. }
  12425. #endif
  12426. // soft_max
  12427. ggml_float sum = 0.0;
  12428. {
  12429. float max = -INFINITY;
  12430. ggml_vec_max_f32(nc, &max, s0);
  12431. uint16_t scvt;
  12432. for (int i = 0; i < nc; i++) {
  12433. if (s0[i] == -INFINITY) {
  12434. st[i] = 0.0f;
  12435. } else {
  12436. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12437. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12438. memcpy(&scvt, &s, sizeof(scvt));
  12439. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12440. sum += (ggml_float)val;
  12441. st[i] = val;
  12442. }
  12443. }
  12444. assert(sum > 0.0);
  12445. // sum = 1.0/sum;
  12446. }
  12447. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12448. sum = (1.0 - eps) / sum;
  12449. ggml_vec_scale_f32(nc, st, sum);
  12450. ggml_vec_add1_f32(nc, st, st, eps);
  12451. ggml_vec_log_f32(nc, st, st);
  12452. ggml_vec_mul_f32(nc, st, st, s1);
  12453. ggml_vec_sum_f32(nc, sums + ith, st);
  12454. #ifndef NDEBUG
  12455. for (int i = 0; i < nc; ++i) {
  12456. assert(!isnan(st[i]));
  12457. assert(!isinf(st[i]));
  12458. }
  12459. #endif
  12460. }
  12461. }
  12462. static void ggml_compute_forward_cross_entropy_loss(
  12463. const struct ggml_compute_params * params,
  12464. const struct ggml_tensor * src0,
  12465. const struct ggml_tensor * src1,
  12466. struct ggml_tensor * dst) {
  12467. switch (src0->type) {
  12468. case GGML_TYPE_F32:
  12469. {
  12470. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12471. } break;
  12472. default:
  12473. {
  12474. GGML_ASSERT(false);
  12475. } break;
  12476. }
  12477. }
  12478. // ggml_compute_forward_cross_entropy_loss_back
  12479. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12480. const struct ggml_compute_params * params,
  12481. const struct ggml_tensor * src0,
  12482. const struct ggml_tensor * src1,
  12483. const struct ggml_tensor * opt0,
  12484. struct ggml_tensor * dst) {
  12485. GGML_ASSERT(ggml_is_contiguous(dst));
  12486. GGML_ASSERT(ggml_is_contiguous(src0));
  12487. GGML_ASSERT(ggml_is_contiguous(src1));
  12488. GGML_ASSERT(ggml_is_contiguous(opt0));
  12489. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12490. const int64_t ith = params->ith;
  12491. const int64_t nth = params->nth;
  12492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12493. return;
  12494. }
  12495. const float eps = 1e-9f;
  12496. // TODO: handle transposed/permuted matrices
  12497. const int64_t nc = src0->ne[0];
  12498. const int64_t nr = ggml_nrows(src0);
  12499. // rows per thread
  12500. const int64_t dr = (nr + nth - 1)/nth;
  12501. // row range for this thread
  12502. const int64_t ir0 = dr*ith;
  12503. const int64_t ir1 = MIN(ir0 + dr, nr);
  12504. float * d = (float *) opt0->data;
  12505. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12506. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12507. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12508. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12509. float * sm = (float *) params->wdata + ith*nc;
  12510. #ifndef NDEBUG
  12511. for (int i = 0; i < nc; ++i) {
  12512. //printf("p[%d] = %f\n", i, p[i]);
  12513. assert(!isnan(s0[i]));
  12514. assert(!isnan(s1[i]));
  12515. }
  12516. #endif
  12517. // step by step explanation:
  12518. {
  12519. //float * sums = (float *) params->wdata;
  12520. // forward pass with annotated gradients from backward pass
  12521. // (built by going in reverse operation order, adding to gradients of current operation args)
  12522. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12523. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12524. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12525. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12526. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12527. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12528. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12529. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12530. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12531. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12532. // postorder:
  12533. // grad[st1] := softmax(s0)
  12534. // grad[st1] := grad[st1]*(1.0 - eps)
  12535. // grad[st1] := grad[st1] + eps
  12536. // grad[st1] := s1 / grad[st1]
  12537. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12538. // src0 gradients by going through softmax_back
  12539. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12540. // from softmax_back:
  12541. // dxk = yk * (dyk - dot(y, dy))
  12542. // dot_y_dy := dot(y, dy)
  12543. // dx := dy
  12544. // dx := dx - dot_y_dy
  12545. // dx := dx * y
  12546. // postorder:
  12547. // dot_st1_dst1 := dot(st1, grad[st1])
  12548. // grad[s0] := grad[st1]
  12549. // grad[s0] := grad[s0] - dot_st1_dst1
  12550. // grad[s0] := grad[s0] * st1
  12551. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12552. // sm := softmax(s0)
  12553. // grad[s0] := sm*(1.0 - eps)
  12554. // grad[s0] := grad[s0] + eps
  12555. // grad[s0] := s1 / grad[s0]
  12556. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12557. // dot_st1_dst1 := dot(sm, grad[s0])
  12558. // grad[s0] := grad[s0] - dot_st1_dst1
  12559. // grad[s0] := grad[s0] * sm
  12560. }
  12561. // soft_max
  12562. ggml_float sum = 0.0;
  12563. {
  12564. float max = -INFINITY;
  12565. ggml_vec_max_f32(nc, &max, s0);
  12566. uint16_t scvt;
  12567. for (int i = 0; i < nc; i++) {
  12568. if (s0[i] == -INFINITY) {
  12569. sm[i] = 0.0f;
  12570. } else {
  12571. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12572. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12573. memcpy(&scvt, &s, sizeof(scvt));
  12574. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12575. sum += (ggml_float)val;
  12576. sm[i] = val;
  12577. }
  12578. }
  12579. assert(sum > 0.0);
  12580. sum = 1.0/sum;
  12581. }
  12582. float dot_st1_dst1 = 0;
  12583. ggml_vec_scale_f32(nc, sm, sum);
  12584. ggml_vec_cpy_f32 (nc, ds0, sm);
  12585. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12586. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12587. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12588. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12589. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12590. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12591. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12592. #ifndef NDEBUG
  12593. for (int i = 0; i < nc; ++i) {
  12594. assert(!isnan(sm[i]));
  12595. assert(!isinf(sm[i]));
  12596. assert(!isnan(ds0[i]));
  12597. assert(!isinf(ds0[i]));
  12598. }
  12599. #endif
  12600. }
  12601. }
  12602. static void ggml_compute_forward_cross_entropy_loss_back(
  12603. const struct ggml_compute_params * params,
  12604. const struct ggml_tensor * src0,
  12605. const struct ggml_tensor * src1,
  12606. const struct ggml_tensor * opt0,
  12607. struct ggml_tensor * dst) {
  12608. switch (src0->type) {
  12609. case GGML_TYPE_F32:
  12610. {
  12611. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12612. } break;
  12613. default:
  12614. {
  12615. GGML_ASSERT(false);
  12616. } break;
  12617. }
  12618. }
  12619. /////////////////////////////////
  12620. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12621. GGML_ASSERT(params);
  12622. #ifdef GGML_USE_CUBLAS
  12623. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12624. if (skip_cpu) {
  12625. return;
  12626. }
  12627. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12628. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12629. #endif // GGML_USE_CUBLAS
  12630. switch (tensor->op) {
  12631. case GGML_OP_DUP:
  12632. {
  12633. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12634. } break;
  12635. case GGML_OP_ADD:
  12636. {
  12637. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12638. } break;
  12639. case GGML_OP_ADD1:
  12640. {
  12641. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12642. } break;
  12643. case GGML_OP_ACC:
  12644. {
  12645. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12646. } break;
  12647. case GGML_OP_SUB:
  12648. {
  12649. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12650. } break;
  12651. case GGML_OP_MUL:
  12652. {
  12653. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12654. } break;
  12655. case GGML_OP_DIV:
  12656. {
  12657. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12658. } break;
  12659. case GGML_OP_SQR:
  12660. {
  12661. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12662. } break;
  12663. case GGML_OP_SQRT:
  12664. {
  12665. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12666. } break;
  12667. case GGML_OP_LOG:
  12668. {
  12669. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12670. } break;
  12671. case GGML_OP_SUM:
  12672. {
  12673. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12674. } break;
  12675. case GGML_OP_SUM_ROWS:
  12676. {
  12677. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12678. } break;
  12679. case GGML_OP_MEAN:
  12680. {
  12681. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12682. } break;
  12683. case GGML_OP_ARGMAX:
  12684. {
  12685. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12686. } break;
  12687. case GGML_OP_REPEAT:
  12688. {
  12689. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12690. } break;
  12691. case GGML_OP_REPEAT_BACK:
  12692. {
  12693. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12694. } break;
  12695. case GGML_OP_CONCAT:
  12696. {
  12697. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12698. } break;
  12699. case GGML_OP_SILU_BACK:
  12700. {
  12701. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12702. } break;
  12703. case GGML_OP_NORM:
  12704. {
  12705. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12706. } break;
  12707. case GGML_OP_RMS_NORM:
  12708. {
  12709. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12710. } break;
  12711. case GGML_OP_RMS_NORM_BACK:
  12712. {
  12713. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12714. } break;
  12715. case GGML_OP_GROUP_NORM:
  12716. {
  12717. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12718. } break;
  12719. case GGML_OP_MUL_MAT:
  12720. {
  12721. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12722. } break;
  12723. case GGML_OP_OUT_PROD:
  12724. {
  12725. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12726. } break;
  12727. case GGML_OP_SCALE:
  12728. {
  12729. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12730. } break;
  12731. case GGML_OP_SET:
  12732. {
  12733. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12734. } break;
  12735. case GGML_OP_CPY:
  12736. {
  12737. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12738. } break;
  12739. case GGML_OP_CONT:
  12740. {
  12741. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12742. } break;
  12743. case GGML_OP_RESHAPE:
  12744. {
  12745. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12746. } break;
  12747. case GGML_OP_VIEW:
  12748. {
  12749. ggml_compute_forward_view(params, tensor->src[0]);
  12750. } break;
  12751. case GGML_OP_PERMUTE:
  12752. {
  12753. ggml_compute_forward_permute(params, tensor->src[0]);
  12754. } break;
  12755. case GGML_OP_TRANSPOSE:
  12756. {
  12757. ggml_compute_forward_transpose(params, tensor->src[0]);
  12758. } break;
  12759. case GGML_OP_GET_ROWS:
  12760. {
  12761. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12762. } break;
  12763. case GGML_OP_GET_ROWS_BACK:
  12764. {
  12765. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12766. } break;
  12767. case GGML_OP_DIAG:
  12768. {
  12769. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12770. } break;
  12771. case GGML_OP_DIAG_MASK_INF:
  12772. {
  12773. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12774. } break;
  12775. case GGML_OP_DIAG_MASK_ZERO:
  12776. {
  12777. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12778. } break;
  12779. case GGML_OP_SOFT_MAX:
  12780. {
  12781. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12782. } break;
  12783. case GGML_OP_SOFT_MAX_BACK:
  12784. {
  12785. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12786. } break;
  12787. case GGML_OP_ROPE:
  12788. {
  12789. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12790. } break;
  12791. case GGML_OP_ROPE_BACK:
  12792. {
  12793. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12794. } break;
  12795. case GGML_OP_ALIBI:
  12796. {
  12797. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12798. } break;
  12799. case GGML_OP_CLAMP:
  12800. {
  12801. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12802. } break;
  12803. case GGML_OP_CONV_1D:
  12804. {
  12805. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12806. } break;
  12807. case GGML_OP_CONV_2D:
  12808. {
  12809. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12810. } break;
  12811. case GGML_OP_CONV_TRANSPOSE_2D:
  12812. {
  12813. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12814. } break;
  12815. case GGML_OP_POOL_1D:
  12816. {
  12817. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12818. } break;
  12819. case GGML_OP_POOL_2D:
  12820. {
  12821. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12822. } break;
  12823. case GGML_OP_UPSCALE:
  12824. {
  12825. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12826. } break;
  12827. case GGML_OP_FLASH_ATTN:
  12828. {
  12829. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12830. GGML_ASSERT(t == 0 || t == 1);
  12831. const bool masked = t != 0;
  12832. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12833. } break;
  12834. case GGML_OP_FLASH_FF:
  12835. {
  12836. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12837. } break;
  12838. case GGML_OP_FLASH_ATTN_BACK:
  12839. {
  12840. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12841. GGML_ASSERT(t == 0 || t == 1);
  12842. bool masked = t != 0;
  12843. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12844. } break;
  12845. case GGML_OP_WIN_PART:
  12846. {
  12847. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12848. } break;
  12849. case GGML_OP_WIN_UNPART:
  12850. {
  12851. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12852. } break;
  12853. case GGML_OP_UNARY:
  12854. {
  12855. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12856. } break;
  12857. case GGML_OP_GET_REL_POS:
  12858. {
  12859. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12860. } break;
  12861. case GGML_OP_ADD_REL_POS:
  12862. {
  12863. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12864. } break;
  12865. case GGML_OP_MAP_UNARY:
  12866. {
  12867. ggml_unary_op_f32_t fun;
  12868. memcpy(&fun, tensor->op_params, sizeof(fun));
  12869. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12870. }
  12871. break;
  12872. case GGML_OP_MAP_BINARY:
  12873. {
  12874. ggml_binary_op_f32_t fun;
  12875. memcpy(&fun, tensor->op_params, sizeof(fun));
  12876. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12877. }
  12878. break;
  12879. case GGML_OP_MAP_CUSTOM1_F32:
  12880. {
  12881. ggml_custom1_op_f32_t fun;
  12882. memcpy(&fun, tensor->op_params, sizeof(fun));
  12883. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12884. }
  12885. break;
  12886. case GGML_OP_MAP_CUSTOM2_F32:
  12887. {
  12888. ggml_custom2_op_f32_t fun;
  12889. memcpy(&fun, tensor->op_params, sizeof(fun));
  12890. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12891. }
  12892. break;
  12893. case GGML_OP_MAP_CUSTOM3_F32:
  12894. {
  12895. ggml_custom3_op_f32_t fun;
  12896. memcpy(&fun, tensor->op_params, sizeof(fun));
  12897. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12898. }
  12899. break;
  12900. case GGML_OP_MAP_CUSTOM1:
  12901. {
  12902. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12903. }
  12904. break;
  12905. case GGML_OP_MAP_CUSTOM2:
  12906. {
  12907. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12908. }
  12909. break;
  12910. case GGML_OP_MAP_CUSTOM3:
  12911. {
  12912. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12913. }
  12914. break;
  12915. case GGML_OP_CROSS_ENTROPY_LOSS:
  12916. {
  12917. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12918. }
  12919. break;
  12920. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12921. {
  12922. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12923. }
  12924. break;
  12925. case GGML_OP_NONE:
  12926. {
  12927. // nop
  12928. } break;
  12929. case GGML_OP_COUNT:
  12930. {
  12931. GGML_ASSERT(false);
  12932. } break;
  12933. }
  12934. }
  12935. ////////////////////////////////////////////////////////////////////////////////
  12936. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12937. struct ggml_tensor * src0 = tensor->src[0];
  12938. struct ggml_tensor * src1 = tensor->src[1];
  12939. switch (tensor->op) {
  12940. case GGML_OP_DUP:
  12941. {
  12942. if (src0->grad) {
  12943. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12944. }
  12945. } break;
  12946. case GGML_OP_ADD:
  12947. {
  12948. if (src0->grad) {
  12949. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12950. }
  12951. if (src1->grad) {
  12952. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12953. }
  12954. } break;
  12955. case GGML_OP_ADD1:
  12956. {
  12957. if (src0->grad) {
  12958. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12959. }
  12960. if (src1->grad) {
  12961. src1->grad = ggml_add_impl(ctx,
  12962. src1->grad,
  12963. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12964. inplace);
  12965. }
  12966. } break;
  12967. case GGML_OP_ACC:
  12968. {
  12969. if (src0->grad) {
  12970. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12971. }
  12972. if (src1->grad) {
  12973. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12974. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12975. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12976. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12977. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12978. tensor->grad,
  12979. src1->grad->ne[0],
  12980. src1->grad->ne[1],
  12981. src1->grad->ne[2],
  12982. src1->grad->ne[3],
  12983. nb1, nb2, nb3, offset);
  12984. src1->grad =
  12985. ggml_add_impl(ctx,
  12986. src1->grad,
  12987. ggml_reshape(ctx,
  12988. ggml_cont(ctx, tensor_grad_view),
  12989. src1->grad),
  12990. inplace);
  12991. }
  12992. } break;
  12993. case GGML_OP_SUB:
  12994. {
  12995. if (src0->grad) {
  12996. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12997. }
  12998. if (src1->grad) {
  12999. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13000. }
  13001. } break;
  13002. case GGML_OP_MUL:
  13003. {
  13004. if (src0->grad) {
  13005. src0->grad =
  13006. ggml_add_impl(ctx,
  13007. src0->grad,
  13008. ggml_mul(ctx, src1, tensor->grad),
  13009. inplace);
  13010. }
  13011. if (src1->grad) {
  13012. src1->grad =
  13013. ggml_add_impl(ctx,
  13014. src1->grad,
  13015. ggml_mul(ctx, src0, tensor->grad),
  13016. inplace);
  13017. }
  13018. } break;
  13019. case GGML_OP_DIV:
  13020. {
  13021. if (src0->grad) {
  13022. src0->grad =
  13023. ggml_add_impl(ctx,
  13024. src0->grad,
  13025. ggml_div(ctx, tensor->grad, src1),
  13026. inplace);
  13027. }
  13028. if (src1->grad) {
  13029. src1->grad =
  13030. ggml_sub_impl(ctx,
  13031. src1->grad,
  13032. ggml_mul(ctx,
  13033. tensor->grad,
  13034. ggml_div(ctx, tensor, src1)),
  13035. inplace);
  13036. }
  13037. } break;
  13038. case GGML_OP_SQR:
  13039. {
  13040. if (src0->grad) {
  13041. src0->grad =
  13042. ggml_add_impl(ctx,
  13043. src0->grad,
  13044. ggml_scale(ctx,
  13045. ggml_mul(ctx, src0, tensor->grad),
  13046. ggml_new_f32(ctx, 2.0f)),
  13047. inplace);
  13048. }
  13049. } break;
  13050. case GGML_OP_SQRT:
  13051. {
  13052. if (src0->grad) {
  13053. src0->grad =
  13054. ggml_add_impl(ctx,
  13055. src0->grad,
  13056. ggml_scale(ctx,
  13057. ggml_div(ctx,
  13058. tensor->grad,
  13059. tensor),
  13060. ggml_new_f32(ctx, 0.5f)),
  13061. inplace);
  13062. }
  13063. } break;
  13064. case GGML_OP_LOG:
  13065. {
  13066. if (src0->grad) {
  13067. src0->grad =
  13068. ggml_add_impl(ctx,
  13069. src0->grad,
  13070. ggml_div(ctx,
  13071. tensor->grad,
  13072. src0),
  13073. inplace);
  13074. }
  13075. } break;
  13076. case GGML_OP_SUM:
  13077. {
  13078. if (src0->grad) {
  13079. src0->grad =
  13080. ggml_add1_impl(ctx,
  13081. src0->grad,
  13082. tensor->grad,
  13083. inplace);
  13084. }
  13085. } break;
  13086. case GGML_OP_SUM_ROWS:
  13087. {
  13088. if (src0->grad) {
  13089. src0->grad =
  13090. ggml_add_impl(ctx,
  13091. src0->grad,
  13092. ggml_repeat(ctx,
  13093. tensor->grad,
  13094. src0->grad),
  13095. inplace);
  13096. }
  13097. } break;
  13098. case GGML_OP_MEAN:
  13099. case GGML_OP_ARGMAX:
  13100. {
  13101. GGML_ASSERT(false); // TODO: implement
  13102. } break;
  13103. case GGML_OP_REPEAT:
  13104. {
  13105. // necessary for llama
  13106. if (src0->grad) {
  13107. src0->grad = ggml_add_impl(ctx,
  13108. src0->grad,
  13109. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13110. inplace);
  13111. }
  13112. } break;
  13113. case GGML_OP_REPEAT_BACK:
  13114. {
  13115. if (src0->grad) {
  13116. // TODO: test this
  13117. src0->grad = ggml_add_impl(ctx,
  13118. src0->grad,
  13119. ggml_repeat(ctx, tensor->grad, src0->grad),
  13120. inplace);
  13121. }
  13122. } break;
  13123. case GGML_OP_CONCAT:
  13124. {
  13125. GGML_ASSERT(false); // TODO: implement
  13126. } break;
  13127. case GGML_OP_SILU_BACK:
  13128. {
  13129. GGML_ASSERT(false); // TODO: not implemented
  13130. } break;
  13131. case GGML_OP_NORM:
  13132. {
  13133. GGML_ASSERT(false); // TODO: not implemented
  13134. } break;
  13135. case GGML_OP_RMS_NORM:
  13136. {
  13137. // necessary for llama
  13138. if (src0->grad) {
  13139. src0->grad = ggml_add_impl(ctx,
  13140. src0->grad,
  13141. ggml_rms_norm_back(ctx, src0, tensor->grad),
  13142. inplace);
  13143. }
  13144. } break;
  13145. case GGML_OP_RMS_NORM_BACK:
  13146. {
  13147. GGML_ASSERT(false); // TODO: not implemented
  13148. } break;
  13149. case GGML_OP_GROUP_NORM:
  13150. {
  13151. GGML_ASSERT(false); // TODO: not implemented
  13152. } break;
  13153. case GGML_OP_MUL_MAT:
  13154. {
  13155. // https://cs231n.github.io/optimization-2/#staged
  13156. // # forward pass
  13157. // s0 = np.random.randn(5, 10)
  13158. // s1 = np.random.randn(10, 3)
  13159. // t = s0.dot(s1)
  13160. // # now suppose we had the gradient on t from above in the circuit
  13161. // dt = np.random.randn(*t.shape) # same shape as t
  13162. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13163. // ds1 = t.T.dot(dt)
  13164. // tensor.shape [m,p]
  13165. // src0.shape [n,m]
  13166. // src1.shape [n,p]
  13167. // necessary for llama
  13168. if (src0->grad) {
  13169. src0->grad =
  13170. ggml_add_impl(ctx,
  13171. src0->grad,
  13172. ggml_out_prod(ctx, // [n,m]
  13173. src1, // [n,p]
  13174. tensor->grad), // [m,p]
  13175. inplace);
  13176. }
  13177. if (src1->grad) {
  13178. src1->grad =
  13179. ggml_add_impl(ctx,
  13180. src1->grad,
  13181. // ggml_mul_mat(ctx, // [n,p]
  13182. // ggml_cont(ctx, // [m,n]
  13183. // ggml_transpose(ctx, src0)), // [m,n]
  13184. // tensor->grad), // [m,p]
  13185. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13186. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13187. // // and then use ggml_out_prod
  13188. ggml_out_prod(ctx, // [n,p]
  13189. src0, // [n,m]
  13190. ggml_transpose(ctx, // [p,m]
  13191. tensor->grad)), // [m,p]
  13192. inplace);
  13193. }
  13194. } break;
  13195. case GGML_OP_OUT_PROD:
  13196. {
  13197. GGML_ASSERT(false); // TODO: not implemented
  13198. } break;
  13199. case GGML_OP_SCALE:
  13200. {
  13201. // necessary for llama
  13202. if (src0->grad) {
  13203. src0->grad =
  13204. ggml_add_impl(ctx,
  13205. src0->grad,
  13206. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13207. inplace);
  13208. }
  13209. if (src1->grad) {
  13210. src1->grad =
  13211. ggml_add_impl(ctx,
  13212. src1->grad,
  13213. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13214. inplace);
  13215. }
  13216. } break;
  13217. case GGML_OP_SET:
  13218. {
  13219. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13220. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13221. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13222. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13223. struct ggml_tensor * tensor_grad_view = NULL;
  13224. if (src0->grad || src1->grad) {
  13225. GGML_ASSERT(src0->type == tensor->type);
  13226. GGML_ASSERT(tensor->grad->type == tensor->type);
  13227. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13228. tensor_grad_view = ggml_view_4d(ctx,
  13229. tensor->grad,
  13230. src1->grad->ne[0],
  13231. src1->grad->ne[1],
  13232. src1->grad->ne[2],
  13233. src1->grad->ne[3],
  13234. nb1, nb2, nb3, offset);
  13235. }
  13236. if (src0->grad) {
  13237. src0->grad = ggml_add_impl(ctx,
  13238. src0->grad,
  13239. ggml_acc_impl(ctx,
  13240. tensor->grad,
  13241. ggml_neg(ctx, tensor_grad_view),
  13242. nb1, nb2, nb3, offset, false),
  13243. inplace);
  13244. }
  13245. if (src1->grad) {
  13246. src1->grad =
  13247. ggml_add_impl(ctx,
  13248. src1->grad,
  13249. ggml_reshape(ctx,
  13250. ggml_cont(ctx, tensor_grad_view),
  13251. src1->grad),
  13252. inplace);
  13253. }
  13254. } break;
  13255. case GGML_OP_CPY:
  13256. {
  13257. // necessary for llama
  13258. // cpy overwrites value of src1 by src0 and returns view(src1)
  13259. // the overwriting is mathematically equivalent to:
  13260. // tensor = src0 * 1 + src1 * 0
  13261. if (src0->grad) {
  13262. // dsrc0 = dtensor * 1
  13263. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13264. }
  13265. if (src1->grad) {
  13266. // dsrc1 = dtensor * 0 -> noop
  13267. }
  13268. } break;
  13269. case GGML_OP_CONT:
  13270. {
  13271. // same as cpy
  13272. if (src0->grad) {
  13273. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13274. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13275. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13276. }
  13277. } break;
  13278. case GGML_OP_RESHAPE:
  13279. {
  13280. // necessary for llama
  13281. if (src0->grad) {
  13282. src0->grad =
  13283. ggml_add_impl(ctx, src0->grad,
  13284. ggml_reshape(ctx, tensor->grad, src0->grad),
  13285. inplace);
  13286. }
  13287. } break;
  13288. case GGML_OP_VIEW:
  13289. {
  13290. // necessary for llama
  13291. if (src0->grad) {
  13292. size_t offset;
  13293. memcpy(&offset, tensor->op_params, sizeof(offset));
  13294. size_t nb1 = tensor->nb[1];
  13295. size_t nb2 = tensor->nb[2];
  13296. size_t nb3 = tensor->nb[3];
  13297. if (src0->type != src0->grad->type) {
  13298. // gradient is typically F32, but src0 could be other type
  13299. size_t ng = ggml_element_size(src0->grad);
  13300. size_t n0 = ggml_element_size(src0);
  13301. GGML_ASSERT(offset % n0 == 0);
  13302. GGML_ASSERT(nb1 % n0 == 0);
  13303. GGML_ASSERT(nb2 % n0 == 0);
  13304. GGML_ASSERT(nb3 % n0 == 0);
  13305. offset = (offset / n0) * ng;
  13306. nb1 = (nb1 / n0) * ng;
  13307. nb2 = (nb2 / n0) * ng;
  13308. nb3 = (nb3 / n0) * ng;
  13309. }
  13310. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13311. }
  13312. } break;
  13313. case GGML_OP_PERMUTE:
  13314. {
  13315. // necessary for llama
  13316. if (src0->grad) {
  13317. int32_t * axes = (int32_t *) tensor->op_params;
  13318. int axis0 = axes[0] & 0x3;
  13319. int axis1 = axes[1] & 0x3;
  13320. int axis2 = axes[2] & 0x3;
  13321. int axis3 = axes[3] & 0x3;
  13322. int axes_backward[4] = {0,0,0,0};
  13323. axes_backward[axis0] = 0;
  13324. axes_backward[axis1] = 1;
  13325. axes_backward[axis2] = 2;
  13326. axes_backward[axis3] = 3;
  13327. src0->grad =
  13328. ggml_add_impl(ctx, src0->grad,
  13329. ggml_permute(ctx,
  13330. tensor->grad,
  13331. axes_backward[0],
  13332. axes_backward[1],
  13333. axes_backward[2],
  13334. axes_backward[3]),
  13335. inplace);
  13336. }
  13337. } break;
  13338. case GGML_OP_TRANSPOSE:
  13339. {
  13340. // necessary for llama
  13341. if (src0->grad) {
  13342. src0->grad =
  13343. ggml_add_impl(ctx, src0->grad,
  13344. ggml_transpose(ctx, tensor->grad),
  13345. inplace);
  13346. }
  13347. } break;
  13348. case GGML_OP_GET_ROWS:
  13349. {
  13350. // necessary for llama (only for tokenizer)
  13351. if (src0->grad) {
  13352. src0->grad =
  13353. ggml_add_impl(ctx, src0->grad,
  13354. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13355. inplace);
  13356. }
  13357. if (src1->grad) {
  13358. // noop
  13359. }
  13360. } break;
  13361. case GGML_OP_GET_ROWS_BACK:
  13362. {
  13363. GGML_ASSERT(false); // TODO: not implemented
  13364. } break;
  13365. case GGML_OP_DIAG:
  13366. {
  13367. GGML_ASSERT(false); // TODO: not implemented
  13368. } break;
  13369. case GGML_OP_DIAG_MASK_INF:
  13370. {
  13371. // necessary for llama
  13372. if (src0->grad) {
  13373. const int n_past = ((int32_t *) tensor->op_params)[0];
  13374. src0->grad =
  13375. ggml_add_impl(ctx, src0->grad,
  13376. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13377. inplace);
  13378. }
  13379. } break;
  13380. case GGML_OP_DIAG_MASK_ZERO:
  13381. {
  13382. // necessary for llama
  13383. if (src0->grad) {
  13384. const int n_past = ((int32_t *) tensor->op_params)[0];
  13385. src0->grad =
  13386. ggml_add_impl(ctx, src0->grad,
  13387. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13388. inplace);
  13389. }
  13390. } break;
  13391. case GGML_OP_SOFT_MAX:
  13392. {
  13393. // necessary for llama
  13394. if (src0->grad) {
  13395. src0->grad =
  13396. ggml_add_impl(ctx, src0->grad,
  13397. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13398. inplace);
  13399. }
  13400. } break;
  13401. case GGML_OP_SOFT_MAX_BACK:
  13402. {
  13403. GGML_ASSERT(false); // TODO: not implemented
  13404. } break;
  13405. case GGML_OP_ROPE:
  13406. {
  13407. // necessary for llama
  13408. if (src0->grad) {
  13409. const int n_past = ((int32_t *) tensor->op_params)[0];
  13410. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13411. const int mode = ((int32_t *) tensor->op_params)[2];
  13412. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13413. float freq_base;
  13414. float freq_scale;
  13415. float xpos_base;
  13416. bool xpos_down;
  13417. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13418. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13419. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13420. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13421. src0->grad = ggml_add_impl(ctx,
  13422. src0->grad,
  13423. ggml_rope_back(ctx,
  13424. tensor->grad,
  13425. n_past,
  13426. n_dims,
  13427. mode,
  13428. n_ctx,
  13429. freq_base,
  13430. freq_scale,
  13431. xpos_base,
  13432. xpos_down),
  13433. inplace);
  13434. }
  13435. } break;
  13436. case GGML_OP_ROPE_BACK:
  13437. {
  13438. if (src0->grad) {
  13439. const int n_past = ((int32_t *) tensor->op_params)[0];
  13440. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13441. const int mode = ((int32_t *) tensor->op_params)[2];
  13442. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13443. float freq_base;
  13444. float freq_scale;
  13445. float xpos_base;
  13446. bool xpos_down;
  13447. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13448. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13449. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13450. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13451. src0->grad = ggml_add_impl(ctx,
  13452. src0->grad,
  13453. ggml_rope_impl(ctx,
  13454. tensor->grad,
  13455. n_past,
  13456. n_dims,
  13457. mode,
  13458. n_ctx,
  13459. freq_base,
  13460. freq_scale,
  13461. xpos_base,
  13462. xpos_down,
  13463. false),
  13464. inplace);
  13465. }
  13466. } break;
  13467. case GGML_OP_ALIBI:
  13468. {
  13469. GGML_ASSERT(false); // TODO: not implemented
  13470. } break;
  13471. case GGML_OP_CLAMP:
  13472. {
  13473. GGML_ASSERT(false); // TODO: not implemented
  13474. } break;
  13475. case GGML_OP_CONV_1D:
  13476. {
  13477. GGML_ASSERT(false); // TODO: not implemented
  13478. } break;
  13479. case GGML_OP_CONV_2D:
  13480. {
  13481. GGML_ASSERT(false); // TODO: not implemented
  13482. } break;
  13483. case GGML_OP_CONV_TRANSPOSE_2D:
  13484. {
  13485. GGML_ASSERT(false); // TODO: not implemented
  13486. } break;
  13487. case GGML_OP_POOL_1D:
  13488. {
  13489. GGML_ASSERT(false); // TODO: not implemented
  13490. } break;
  13491. case GGML_OP_POOL_2D:
  13492. {
  13493. GGML_ASSERT(false); // TODO: not implemented
  13494. } break;
  13495. case GGML_OP_UPSCALE:
  13496. {
  13497. GGML_ASSERT(false); // TODO: not implemented
  13498. } break;
  13499. case GGML_OP_FLASH_ATTN:
  13500. {
  13501. struct ggml_tensor * flash_grad = NULL;
  13502. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13503. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13504. GGML_ASSERT(t == 0 || t == 1);
  13505. bool masked = t != 0;
  13506. flash_grad =
  13507. ggml_flash_attn_back(ctx,
  13508. src0,
  13509. src1,
  13510. tensor->src[2],
  13511. tensor->grad,
  13512. masked);
  13513. }
  13514. if (src0->grad) {
  13515. struct ggml_tensor * grad_q = NULL;
  13516. const size_t nb0 = flash_grad->nb[0];
  13517. const size_t offset = 0;
  13518. switch(src0->n_dims) {
  13519. case 2:
  13520. {
  13521. grad_q = ggml_view_2d(ctx,
  13522. flash_grad,
  13523. src0->ne[0],
  13524. src0->ne[1],
  13525. nb0*src0->ne[0],
  13526. offset);
  13527. } break;
  13528. case 3:
  13529. {
  13530. grad_q = ggml_view_3d(ctx,
  13531. flash_grad,
  13532. src0->ne[0],
  13533. src0->ne[1],
  13534. src0->ne[2],
  13535. nb0*src0->ne[0],
  13536. nb0*src0->ne[0]*src0->ne[1],
  13537. offset);
  13538. } break;
  13539. case 4:
  13540. {
  13541. grad_q = ggml_view_4d(ctx,
  13542. flash_grad,
  13543. src0->ne[0],
  13544. src0->ne[1],
  13545. src0->ne[2],
  13546. src0->ne[3],
  13547. nb0*src0->ne[0],
  13548. nb0*src0->ne[0]*src0->ne[1],
  13549. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13550. offset);
  13551. } break;
  13552. }
  13553. src0->grad = ggml_add_impl(ctx,
  13554. src0->grad,
  13555. grad_q,
  13556. inplace);
  13557. }
  13558. if (src1->grad) {
  13559. struct ggml_tensor * grad_k = NULL;
  13560. const size_t nb0 = flash_grad->nb[0];
  13561. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13562. switch(src1->n_dims) {
  13563. case 2:
  13564. {
  13565. grad_k = ggml_view_2d(ctx,
  13566. flash_grad,
  13567. src1->ne[0],
  13568. src1->ne[1],
  13569. nb0*src1->ne[0],
  13570. offset);
  13571. } break;
  13572. case 3:
  13573. {
  13574. grad_k = ggml_view_3d(ctx,
  13575. flash_grad,
  13576. src1->ne[0],
  13577. src1->ne[1],
  13578. src1->ne[2],
  13579. nb0*src1->ne[0],
  13580. nb0*src1->ne[0]*src1->ne[1],
  13581. offset);
  13582. } break;
  13583. case 4:
  13584. {
  13585. grad_k = ggml_view_4d(ctx,
  13586. flash_grad,
  13587. src1->ne[0],
  13588. src1->ne[1],
  13589. src1->ne[2],
  13590. src1->ne[3],
  13591. nb0*src1->ne[0],
  13592. nb0*src1->ne[0]*src1->ne[1],
  13593. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13594. offset);
  13595. } break;
  13596. }
  13597. src1->grad = ggml_add_impl(ctx,
  13598. src1->grad,
  13599. grad_k,
  13600. inplace);
  13601. }
  13602. struct ggml_tensor * opt0 = tensor->src[2];
  13603. if (opt0->grad) {
  13604. struct ggml_tensor * grad_v = NULL;
  13605. const size_t nb0 = flash_grad->nb[0];
  13606. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13607. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13608. switch(opt0->n_dims) {
  13609. case 2:
  13610. {
  13611. grad_v = ggml_view_2d(ctx,
  13612. flash_grad,
  13613. opt0->ne[0],
  13614. opt0->ne[1],
  13615. nb0*opt0->ne[0],
  13616. offset);
  13617. } break;
  13618. case 3:
  13619. {
  13620. grad_v = ggml_view_3d(ctx,
  13621. flash_grad,
  13622. opt0->ne[0],
  13623. opt0->ne[1],
  13624. opt0->ne[2],
  13625. nb0*opt0->ne[0],
  13626. nb0*opt0->ne[0]*opt0->ne[1],
  13627. offset);
  13628. } break;
  13629. case 4:
  13630. {
  13631. grad_v = ggml_view_4d(ctx,
  13632. flash_grad,
  13633. opt0->ne[0],
  13634. opt0->ne[1],
  13635. opt0->ne[2],
  13636. opt0->ne[3],
  13637. nb0*opt0->ne[0],
  13638. nb0*opt0->ne[0]*opt0->ne[1],
  13639. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13640. offset);
  13641. } break;
  13642. }
  13643. opt0->grad = ggml_add_impl(ctx,
  13644. opt0->grad,
  13645. grad_v,
  13646. inplace);
  13647. }
  13648. } break;
  13649. case GGML_OP_FLASH_FF:
  13650. {
  13651. GGML_ASSERT(false); // not supported
  13652. } break;
  13653. case GGML_OP_FLASH_ATTN_BACK:
  13654. {
  13655. GGML_ASSERT(false); // not supported
  13656. } break;
  13657. case GGML_OP_WIN_PART:
  13658. case GGML_OP_WIN_UNPART:
  13659. case GGML_OP_UNARY:
  13660. {
  13661. switch (ggml_get_unary_op(tensor)) {
  13662. case GGML_UNARY_OP_ABS:
  13663. {
  13664. if (src0->grad) {
  13665. src0->grad =
  13666. ggml_add_impl(ctx,
  13667. src0->grad,
  13668. ggml_mul(ctx,
  13669. ggml_sgn(ctx, src0),
  13670. tensor->grad),
  13671. inplace);
  13672. }
  13673. } break;
  13674. case GGML_UNARY_OP_SGN:
  13675. {
  13676. if (src0->grad) {
  13677. // noop
  13678. }
  13679. } break;
  13680. case GGML_UNARY_OP_NEG:
  13681. {
  13682. if (src0->grad) {
  13683. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13684. }
  13685. } break;
  13686. case GGML_UNARY_OP_STEP:
  13687. {
  13688. if (src0->grad) {
  13689. // noop
  13690. }
  13691. } break;
  13692. case GGML_UNARY_OP_TANH:
  13693. {
  13694. GGML_ASSERT(false); // TODO: not implemented
  13695. } break;
  13696. case GGML_UNARY_OP_ELU:
  13697. {
  13698. GGML_ASSERT(false); // TODO: not implemented
  13699. } break;
  13700. case GGML_UNARY_OP_RELU:
  13701. {
  13702. if (src0->grad) {
  13703. src0->grad = ggml_add_impl(ctx,
  13704. src0->grad,
  13705. ggml_mul(ctx,
  13706. ggml_step(ctx, src0),
  13707. tensor->grad),
  13708. inplace);
  13709. }
  13710. } break;
  13711. case GGML_UNARY_OP_GELU:
  13712. {
  13713. GGML_ASSERT(false); // TODO: not implemented
  13714. } break;
  13715. case GGML_UNARY_OP_GELU_QUICK:
  13716. {
  13717. GGML_ASSERT(false); // TODO: not implemented
  13718. } break;
  13719. case GGML_UNARY_OP_SILU:
  13720. {
  13721. // necessary for llama
  13722. if (src0->grad) {
  13723. src0->grad = ggml_add_impl(ctx,
  13724. src0->grad,
  13725. ggml_silu_back(ctx, src0, tensor->grad),
  13726. inplace);
  13727. }
  13728. } break;
  13729. default:
  13730. GGML_ASSERT(false);
  13731. }
  13732. } break;
  13733. case GGML_OP_GET_REL_POS:
  13734. case GGML_OP_ADD_REL_POS:
  13735. case GGML_OP_MAP_UNARY:
  13736. case GGML_OP_MAP_BINARY:
  13737. case GGML_OP_MAP_CUSTOM1_F32:
  13738. case GGML_OP_MAP_CUSTOM2_F32:
  13739. case GGML_OP_MAP_CUSTOM3_F32:
  13740. case GGML_OP_MAP_CUSTOM1:
  13741. case GGML_OP_MAP_CUSTOM2:
  13742. case GGML_OP_MAP_CUSTOM3:
  13743. {
  13744. GGML_ASSERT(false); // not supported
  13745. } break;
  13746. case GGML_OP_CROSS_ENTROPY_LOSS:
  13747. {
  13748. if (src0->grad) {
  13749. src0->grad = ggml_add_impl(ctx,
  13750. src0->grad,
  13751. ggml_cross_entropy_loss_back(ctx,
  13752. src0,
  13753. src1,
  13754. tensor->grad),
  13755. inplace);
  13756. }
  13757. } break;
  13758. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13759. {
  13760. GGML_ASSERT(false); // not supported
  13761. } break;
  13762. case GGML_OP_NONE:
  13763. {
  13764. // nop
  13765. } break;
  13766. case GGML_OP_COUNT:
  13767. {
  13768. GGML_ASSERT(false);
  13769. } break;
  13770. }
  13771. }
  13772. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13773. static size_t hash(void * p) {
  13774. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13775. }
  13776. static bool hash_insert(void * hash_table[], void * p) {
  13777. size_t h = hash(p);
  13778. // linear probing
  13779. size_t i = h;
  13780. while (hash_table[i] != NULL && hash_table[i] != p) {
  13781. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13782. if (i == h) {
  13783. // hash table is full
  13784. GGML_ASSERT(false);
  13785. }
  13786. }
  13787. if (hash_table[i] == p) {
  13788. return true;
  13789. }
  13790. // insert
  13791. hash_table[i] = p;
  13792. return false;
  13793. }
  13794. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13795. if (node->grad == NULL) {
  13796. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13797. // it can also happen during forward pass, if the user performs computations with constants
  13798. if (node->op != GGML_OP_NONE) {
  13799. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13800. }
  13801. }
  13802. // check if already visited
  13803. if (hash_insert(cgraph->visited_hash_table, node)) {
  13804. return;
  13805. }
  13806. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13807. if (node->src[i]) {
  13808. ggml_visit_parents(cgraph, node->src[i]);
  13809. }
  13810. }
  13811. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13812. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13813. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13814. if (strlen(node->name) == 0) {
  13815. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13816. }
  13817. cgraph->leafs[cgraph->n_leafs] = node;
  13818. cgraph->n_leafs++;
  13819. } else {
  13820. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13821. if (strlen(node->name) == 0) {
  13822. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13823. }
  13824. cgraph->nodes[cgraph->n_nodes] = node;
  13825. cgraph->grads[cgraph->n_nodes] = node->grad;
  13826. cgraph->n_nodes++;
  13827. }
  13828. }
  13829. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13830. if (!expand) {
  13831. cgraph->n_nodes = 0;
  13832. cgraph->n_leafs = 0;
  13833. }
  13834. const int n0 = cgraph->n_nodes;
  13835. UNUSED(n0);
  13836. ggml_visit_parents(cgraph, tensor);
  13837. const int n_new = cgraph->n_nodes - n0;
  13838. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13839. if (n_new > 0) {
  13840. // the last added node should always be starting point
  13841. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13842. }
  13843. }
  13844. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13845. ggml_build_forward_impl(cgraph, tensor, true);
  13846. }
  13847. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13848. struct ggml_cgraph result = {
  13849. /*.n_nodes =*/ 0,
  13850. /*.n_leafs =*/ 0,
  13851. /*.nodes =*/ { NULL },
  13852. /*.grads =*/ { NULL },
  13853. /*.leafs =*/ { NULL },
  13854. /*.hash_table =*/ { NULL },
  13855. /*.perf_runs =*/ 0,
  13856. /*.perf_cycles =*/ 0,
  13857. /*.perf_time_us =*/ 0,
  13858. };
  13859. ggml_build_forward_impl(&result, tensor, false);
  13860. return result;
  13861. }
  13862. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13863. struct ggml_cgraph result = *gf;
  13864. GGML_ASSERT(gf->n_nodes > 0);
  13865. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13866. if (keep) {
  13867. for (int i = 0; i < gf->n_nodes; i++) {
  13868. struct ggml_tensor * node = gf->nodes[i];
  13869. if (node->grad) {
  13870. node->grad = ggml_dup_tensor(ctx, node);
  13871. gf->grads[i] = node->grad;
  13872. }
  13873. }
  13874. }
  13875. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13876. struct ggml_tensor * node = gf->nodes[i];
  13877. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13878. if (node->grad) {
  13879. ggml_compute_backward(ctx, node, keep);
  13880. }
  13881. }
  13882. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13883. struct ggml_tensor * node = gf->nodes[i];
  13884. if (node->is_param) {
  13885. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13886. ggml_build_forward_expand(&result, node->grad);
  13887. }
  13888. }
  13889. return result;
  13890. }
  13891. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13892. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13893. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13894. *cgraph = (struct ggml_cgraph) {
  13895. /*.n_nodes =*/ 0,
  13896. /*.n_leafs =*/ 0,
  13897. /*.nodes =*/ { NULL },
  13898. /*.grads =*/ { NULL },
  13899. /*.leafs =*/ { NULL },
  13900. /*.hash_table =*/ { NULL },
  13901. /*.perf_runs =*/ 0,
  13902. /*.perf_cycles =*/ 0,
  13903. /*.perf_time_us =*/ 0,
  13904. };
  13905. return cgraph;
  13906. }
  13907. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13908. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13909. ggml_build_forward_impl(cgraph, tensor, false);
  13910. return cgraph;
  13911. }
  13912. size_t ggml_graph_overhead(void) {
  13913. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13914. }
  13915. //
  13916. // thread data
  13917. //
  13918. // synchronization is done via busy loops
  13919. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13920. //
  13921. #ifdef __APPLE__
  13922. //#include <os/lock.h>
  13923. //
  13924. //typedef os_unfair_lock ggml_lock_t;
  13925. //
  13926. //#define ggml_lock_init(x) UNUSED(x)
  13927. //#define ggml_lock_destroy(x) UNUSED(x)
  13928. //#define ggml_lock_lock os_unfair_lock_lock
  13929. //#define ggml_lock_unlock os_unfair_lock_unlock
  13930. //
  13931. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13932. typedef int ggml_lock_t;
  13933. #define ggml_lock_init(x) UNUSED(x)
  13934. #define ggml_lock_destroy(x) UNUSED(x)
  13935. #define ggml_lock_lock(x) UNUSED(x)
  13936. #define ggml_lock_unlock(x) UNUSED(x)
  13937. #define GGML_LOCK_INITIALIZER 0
  13938. typedef pthread_t ggml_thread_t;
  13939. #define ggml_thread_create pthread_create
  13940. #define ggml_thread_join pthread_join
  13941. #else
  13942. //typedef pthread_spinlock_t ggml_lock_t;
  13943. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13944. //#define ggml_lock_destroy pthread_spin_destroy
  13945. //#define ggml_lock_lock pthread_spin_lock
  13946. //#define ggml_lock_unlock pthread_spin_unlock
  13947. typedef int ggml_lock_t;
  13948. #define ggml_lock_init(x) UNUSED(x)
  13949. #define ggml_lock_destroy(x) UNUSED(x)
  13950. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13951. #define ggml_lock_lock(x) _mm_pause()
  13952. #else
  13953. #define ggml_lock_lock(x) UNUSED(x)
  13954. #endif
  13955. #define ggml_lock_unlock(x) UNUSED(x)
  13956. #define GGML_LOCK_INITIALIZER 0
  13957. typedef pthread_t ggml_thread_t;
  13958. #define ggml_thread_create pthread_create
  13959. #define ggml_thread_join pthread_join
  13960. #endif
  13961. // Android's libc implementation "bionic" does not support setting affinity
  13962. #if defined(__linux__) && !defined(__BIONIC__)
  13963. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13964. if (!ggml_is_numa()) {
  13965. return;
  13966. }
  13967. // run thread on node_num thread_n / (threads per node)
  13968. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13969. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13970. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13971. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13972. CPU_ZERO_S(setsize, cpus);
  13973. for (size_t i = 0; i < node->n_cpus; ++i) {
  13974. CPU_SET_S(node->cpus[i], setsize, cpus);
  13975. }
  13976. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13977. if (rv) {
  13978. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13979. strerror(rv));
  13980. }
  13981. CPU_FREE(cpus);
  13982. }
  13983. static void clear_numa_thread_affinity(void) {
  13984. if (!ggml_is_numa()) {
  13985. return;
  13986. }
  13987. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13988. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13989. CPU_ZERO_S(setsize, cpus);
  13990. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13991. CPU_SET_S(i, setsize, cpus);
  13992. }
  13993. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13994. if (rv) {
  13995. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13996. strerror(rv));
  13997. }
  13998. CPU_FREE(cpus);
  13999. }
  14000. #else
  14001. // TODO: Windows etc.
  14002. // (the linux implementation may also work on BSD, someone should test)
  14003. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14004. static void clear_numa_thread_affinity(void) {}
  14005. #endif
  14006. struct ggml_compute_state_shared {
  14007. const struct ggml_cgraph * cgraph;
  14008. const struct ggml_cplan * cplan;
  14009. int64_t perf_node_start_cycles;
  14010. int64_t perf_node_start_time_us;
  14011. const int n_threads;
  14012. // synchronization primitives
  14013. atomic_int n_active; // num active threads
  14014. atomic_int node_n; // active graph node
  14015. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14016. void * abort_callback_data;
  14017. };
  14018. struct ggml_compute_state {
  14019. ggml_thread_t thrd;
  14020. int ith;
  14021. struct ggml_compute_state_shared * shared;
  14022. };
  14023. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14024. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14025. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14026. node->perf_runs++;
  14027. node->perf_cycles += cycles_cur;
  14028. node->perf_time_us += time_us_cur;
  14029. }
  14030. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14031. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14032. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14033. const struct ggml_cplan * cplan = state->shared->cplan;
  14034. const int * n_tasks_arr = cplan->n_tasks;
  14035. const int n_threads = state->shared->n_threads;
  14036. set_numa_thread_affinity(state->ith, n_threads);
  14037. int node_n = -1;
  14038. while (true) {
  14039. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14040. state->shared->node_n += 1;
  14041. return (thread_ret_t) GGML_EXIT_ABORTED;
  14042. }
  14043. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14044. // all other threads are finished and spinning
  14045. // do finalize and init here so we don't have synchronize again
  14046. struct ggml_compute_params params = {
  14047. /*.type =*/ GGML_TASK_FINALIZE,
  14048. /*.ith =*/ 0,
  14049. /*.nth =*/ 0,
  14050. /*.wsize =*/ cplan->work_size,
  14051. /*.wdata =*/ cplan->work_data,
  14052. };
  14053. if (node_n != -1) {
  14054. /* FINALIZE */
  14055. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14056. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14057. params.nth = n_tasks_arr[node_n];
  14058. ggml_compute_forward(&params, node);
  14059. }
  14060. ggml_graph_compute_perf_stats_node(node, state->shared);
  14061. }
  14062. // distribute new work or execute it direct if 1T
  14063. while (++node_n < cgraph->n_nodes) {
  14064. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14065. struct ggml_tensor * node = cgraph->nodes[node_n];
  14066. const int n_tasks = n_tasks_arr[node_n];
  14067. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14068. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14069. params.nth = n_tasks;
  14070. /* INIT */
  14071. if (GGML_OP_HAS_INIT[node->op]) {
  14072. params.type = GGML_TASK_INIT;
  14073. ggml_compute_forward(&params, node);
  14074. }
  14075. if (n_tasks == 1) {
  14076. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14077. // they do something more efficient than spinning (?)
  14078. params.type = GGML_TASK_COMPUTE;
  14079. ggml_compute_forward(&params, node);
  14080. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14081. params.type = GGML_TASK_FINALIZE;
  14082. ggml_compute_forward(&params, node);
  14083. }
  14084. ggml_graph_compute_perf_stats_node(node, state->shared);
  14085. } else {
  14086. break;
  14087. }
  14088. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14089. break;
  14090. }
  14091. }
  14092. atomic_store(&state->shared->n_active, n_threads);
  14093. atomic_store(&state->shared->node_n, node_n);
  14094. } else {
  14095. // wait for other threads to finish
  14096. const int last = node_n;
  14097. do {
  14098. //sched_yield();
  14099. node_n = atomic_load(&state->shared->node_n);
  14100. } while (node_n == last);
  14101. }
  14102. // check if we should stop
  14103. if (node_n >= cgraph->n_nodes) break;
  14104. /* COMPUTE */
  14105. struct ggml_tensor * node = cgraph->nodes[node_n];
  14106. const int n_tasks = n_tasks_arr[node_n];
  14107. struct ggml_compute_params params = {
  14108. /*.type =*/ GGML_TASK_COMPUTE,
  14109. /*.ith =*/ state->ith,
  14110. /*.nth =*/ n_tasks,
  14111. /*.wsize =*/ cplan->work_size,
  14112. /*.wdata =*/ cplan->work_data,
  14113. };
  14114. if (state->ith < n_tasks) {
  14115. ggml_compute_forward(&params, node);
  14116. }
  14117. }
  14118. return GGML_EXIT_SUCCESS;
  14119. }
  14120. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14121. if (n_threads <= 0) {
  14122. n_threads = GGML_DEFAULT_N_THREADS;
  14123. }
  14124. size_t work_size = 0;
  14125. struct ggml_cplan cplan;
  14126. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14127. // thread scheduling for the different operations + work buffer size estimation
  14128. for (int i = 0; i < cgraph->n_nodes; i++) {
  14129. int n_tasks = 1;
  14130. struct ggml_tensor * node = cgraph->nodes[i];
  14131. switch (node->op) {
  14132. case GGML_OP_CPY:
  14133. case GGML_OP_DUP:
  14134. {
  14135. n_tasks = n_threads;
  14136. size_t cur = 0;
  14137. if (ggml_is_quantized(node->type)) {
  14138. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14139. }
  14140. work_size = MAX(work_size, cur);
  14141. } break;
  14142. case GGML_OP_ADD:
  14143. case GGML_OP_ADD1:
  14144. {
  14145. n_tasks = n_threads;
  14146. size_t cur = 0;
  14147. if (ggml_is_quantized(node->src[0]->type)) {
  14148. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14149. }
  14150. work_size = MAX(work_size, cur);
  14151. } break;
  14152. case GGML_OP_ACC:
  14153. {
  14154. n_tasks = n_threads;
  14155. size_t cur = 0;
  14156. if (ggml_is_quantized(node->src[0]->type)) {
  14157. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14158. }
  14159. work_size = MAX(work_size, cur);
  14160. } break;
  14161. case GGML_OP_SUB:
  14162. case GGML_OP_DIV:
  14163. case GGML_OP_SQR:
  14164. case GGML_OP_SQRT:
  14165. case GGML_OP_LOG:
  14166. case GGML_OP_SUM:
  14167. case GGML_OP_SUM_ROWS:
  14168. case GGML_OP_MEAN:
  14169. case GGML_OP_ARGMAX:
  14170. case GGML_OP_REPEAT:
  14171. case GGML_OP_REPEAT_BACK:
  14172. {
  14173. n_tasks = 1;
  14174. } break;
  14175. case GGML_OP_UNARY:
  14176. {
  14177. switch (ggml_get_unary_op(node)) {
  14178. case GGML_UNARY_OP_ABS:
  14179. case GGML_UNARY_OP_SGN:
  14180. case GGML_UNARY_OP_NEG:
  14181. case GGML_UNARY_OP_STEP:
  14182. case GGML_UNARY_OP_TANH:
  14183. case GGML_UNARY_OP_ELU:
  14184. case GGML_UNARY_OP_RELU:
  14185. {
  14186. n_tasks = 1;
  14187. } break;
  14188. case GGML_UNARY_OP_GELU:
  14189. case GGML_UNARY_OP_GELU_QUICK:
  14190. case GGML_UNARY_OP_SILU:
  14191. {
  14192. n_tasks = n_threads;
  14193. } break;
  14194. }
  14195. } break;
  14196. case GGML_OP_SILU_BACK:
  14197. case GGML_OP_MUL:
  14198. case GGML_OP_NORM:
  14199. case GGML_OP_RMS_NORM:
  14200. case GGML_OP_RMS_NORM_BACK:
  14201. case GGML_OP_GROUP_NORM:
  14202. {
  14203. n_tasks = n_threads;
  14204. } break;
  14205. case GGML_OP_CONCAT:
  14206. case GGML_OP_MUL_MAT:
  14207. case GGML_OP_OUT_PROD:
  14208. {
  14209. n_tasks = n_threads;
  14210. // TODO: use different scheduling for different matrix sizes
  14211. //const int nr0 = ggml_nrows(node->src[0]);
  14212. //const int nr1 = ggml_nrows(node->src[1]);
  14213. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14214. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14215. size_t cur = 0;
  14216. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14217. #if defined(GGML_USE_CUBLAS)
  14218. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14219. n_tasks = 1; // TODO: this actually is doing nothing
  14220. // the threads are still spinning
  14221. } else
  14222. #elif defined(GGML_USE_CLBLAST)
  14223. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14224. n_tasks = 1; // TODO: this actually is doing nothing
  14225. // the threads are still spinning
  14226. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14227. } else
  14228. #endif
  14229. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14230. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14231. n_tasks = 1; // TODO: this actually is doing nothing
  14232. // the threads are still spinning
  14233. if (node->src[0]->type != GGML_TYPE_F32) {
  14234. // here we need memory just for single 2D matrix from src0
  14235. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14236. }
  14237. } else
  14238. #endif
  14239. if (node->src[1]->type != vec_dot_type) {
  14240. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14241. } else {
  14242. cur = 0;
  14243. }
  14244. work_size = MAX(work_size, cur);
  14245. } break;
  14246. case GGML_OP_SCALE:
  14247. {
  14248. n_tasks = 1;
  14249. } break;
  14250. case GGML_OP_SET:
  14251. case GGML_OP_CONT:
  14252. case GGML_OP_RESHAPE:
  14253. case GGML_OP_VIEW:
  14254. case GGML_OP_PERMUTE:
  14255. case GGML_OP_TRANSPOSE:
  14256. case GGML_OP_GET_ROWS:
  14257. case GGML_OP_GET_ROWS_BACK:
  14258. case GGML_OP_DIAG:
  14259. {
  14260. n_tasks = 1;
  14261. } break;
  14262. case GGML_OP_DIAG_MASK_ZERO:
  14263. case GGML_OP_DIAG_MASK_INF:
  14264. case GGML_OP_SOFT_MAX:
  14265. case GGML_OP_SOFT_MAX_BACK:
  14266. case GGML_OP_ROPE:
  14267. case GGML_OP_ROPE_BACK:
  14268. case GGML_OP_ADD_REL_POS:
  14269. {
  14270. n_tasks = n_threads;
  14271. } break;
  14272. case GGML_OP_ALIBI:
  14273. {
  14274. n_tasks = 1; //TODO
  14275. } break;
  14276. case GGML_OP_CLAMP:
  14277. {
  14278. n_tasks = 1; //TODO
  14279. } break;
  14280. case GGML_OP_CONV_1D:
  14281. {
  14282. n_tasks = n_threads;
  14283. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14284. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14285. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14286. size_t cur = 0;
  14287. const int nk = node->src[0]->ne[0];
  14288. if (node->src[0]->type == GGML_TYPE_F16 &&
  14289. node->src[1]->type == GGML_TYPE_F32) {
  14290. cur = sizeof(ggml_fp16_t)*(
  14291. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14292. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14293. );
  14294. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14295. node->src[1]->type == GGML_TYPE_F32) {
  14296. cur = sizeof(float)*(
  14297. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14298. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14299. );
  14300. } else {
  14301. GGML_ASSERT(false);
  14302. }
  14303. work_size = MAX(work_size, cur);
  14304. } break;
  14305. case GGML_OP_CONV_2D:
  14306. {
  14307. n_tasks = n_threads;
  14308. const int64_t ne00 = node->src[0]->ne[0]; // W
  14309. const int64_t ne01 = node->src[0]->ne[1]; // H
  14310. const int64_t ne02 = node->src[0]->ne[2]; // C
  14311. const int64_t ne03 = node->src[0]->ne[3]; // N
  14312. const int64_t ne10 = node->src[1]->ne[0]; // W
  14313. const int64_t ne11 = node->src[1]->ne[1]; // H
  14314. const int64_t ne12 = node->src[1]->ne[2]; // C
  14315. const int64_t ne0 = node->ne[0];
  14316. const int64_t ne1 = node->ne[1];
  14317. const int64_t ne2 = node->ne[2];
  14318. const int64_t nk = ne00*ne01;
  14319. const int64_t ew0 = nk * ne02;
  14320. UNUSED(ne03);
  14321. UNUSED(ne2);
  14322. size_t cur = 0;
  14323. if (node->src[0]->type == GGML_TYPE_F16 &&
  14324. node->src[1]->type == GGML_TYPE_F32) {
  14325. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14326. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14327. node->src[1]->type == GGML_TYPE_F32) {
  14328. cur = sizeof(float)* (ne10*ne11*ne12);
  14329. } else {
  14330. GGML_ASSERT(false);
  14331. }
  14332. work_size = MAX(work_size, cur);
  14333. } break;
  14334. case GGML_OP_CONV_TRANSPOSE_2D:
  14335. {
  14336. n_tasks = n_threads;
  14337. const int64_t ne00 = node->src[0]->ne[0]; // W
  14338. const int64_t ne01 = node->src[0]->ne[1]; // H
  14339. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14340. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14341. const int64_t ne10 = node->src[1]->ne[0]; // W
  14342. const int64_t ne11 = node->src[1]->ne[1]; // H
  14343. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14344. size_t cur = 0;
  14345. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14346. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14347. work_size = MAX(work_size, cur);
  14348. } break;
  14349. case GGML_OP_POOL_1D:
  14350. case GGML_OP_POOL_2D:
  14351. {
  14352. n_tasks = 1;
  14353. } break;
  14354. case GGML_OP_UPSCALE:
  14355. {
  14356. n_tasks = n_threads;
  14357. } break;
  14358. case GGML_OP_FLASH_ATTN:
  14359. {
  14360. n_tasks = n_threads;
  14361. size_t cur = 0;
  14362. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14363. if (node->src[1]->type == GGML_TYPE_F32) {
  14364. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14365. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14366. }
  14367. if (node->src[1]->type == GGML_TYPE_F16) {
  14368. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14369. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14370. }
  14371. work_size = MAX(work_size, cur);
  14372. } break;
  14373. case GGML_OP_FLASH_FF:
  14374. {
  14375. n_tasks = n_threads;
  14376. size_t cur = 0;
  14377. if (node->src[1]->type == GGML_TYPE_F32) {
  14378. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14379. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14380. }
  14381. if (node->src[1]->type == GGML_TYPE_F16) {
  14382. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14383. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14384. }
  14385. work_size = MAX(work_size, cur);
  14386. } break;
  14387. case GGML_OP_FLASH_ATTN_BACK:
  14388. {
  14389. n_tasks = n_threads;
  14390. size_t cur = 0;
  14391. const int64_t D = node->src[0]->ne[0];
  14392. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14393. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14394. if (node->src[1]->type == GGML_TYPE_F32) {
  14395. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14396. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14397. }
  14398. if (node->src[1]->type == GGML_TYPE_F16) {
  14399. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14400. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14401. }
  14402. work_size = MAX(work_size, cur);
  14403. } break;
  14404. case GGML_OP_WIN_PART:
  14405. case GGML_OP_WIN_UNPART:
  14406. case GGML_OP_GET_REL_POS:
  14407. case GGML_OP_MAP_UNARY:
  14408. case GGML_OP_MAP_BINARY:
  14409. case GGML_OP_MAP_CUSTOM1_F32:
  14410. case GGML_OP_MAP_CUSTOM2_F32:
  14411. case GGML_OP_MAP_CUSTOM3_F32:
  14412. {
  14413. n_tasks = 1;
  14414. } break;
  14415. case GGML_OP_MAP_CUSTOM1:
  14416. {
  14417. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14418. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14419. n_tasks = n_threads;
  14420. } else {
  14421. n_tasks = MIN(p->n_tasks, n_threads);
  14422. }
  14423. } break;
  14424. case GGML_OP_MAP_CUSTOM2:
  14425. {
  14426. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14427. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14428. n_tasks = n_threads;
  14429. } else {
  14430. n_tasks = MIN(p->n_tasks, n_threads);
  14431. }
  14432. } break;
  14433. case GGML_OP_MAP_CUSTOM3:
  14434. {
  14435. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14436. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14437. n_tasks = n_threads;
  14438. } else {
  14439. n_tasks = MIN(p->n_tasks, n_threads);
  14440. }
  14441. } break;
  14442. case GGML_OP_CROSS_ENTROPY_LOSS:
  14443. {
  14444. n_tasks = n_threads;
  14445. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14446. work_size = MAX(work_size, cur);
  14447. } break;
  14448. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14449. {
  14450. n_tasks = n_threads;
  14451. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  14452. work_size = MAX(work_size, cur);
  14453. } break;
  14454. case GGML_OP_NONE:
  14455. {
  14456. n_tasks = 1;
  14457. } break;
  14458. case GGML_OP_COUNT:
  14459. {
  14460. GGML_ASSERT(false);
  14461. } break;
  14462. }
  14463. cplan.n_tasks[i] = n_tasks;
  14464. }
  14465. if (work_size > 0) {
  14466. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14467. }
  14468. cplan.n_threads = n_threads;
  14469. cplan.work_size = work_size;
  14470. cplan.work_data = NULL;
  14471. return cplan;
  14472. }
  14473. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14474. {
  14475. GGML_ASSERT(cplan);
  14476. GGML_ASSERT(cplan->n_threads > 0);
  14477. if (cplan->work_size > 0) {
  14478. GGML_ASSERT(cplan->work_data);
  14479. }
  14480. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14481. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14482. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14483. }
  14484. }
  14485. }
  14486. const int n_threads = cplan->n_threads;
  14487. struct ggml_compute_state_shared state_shared = {
  14488. /*.cgraph =*/ cgraph,
  14489. /*.cgraph_plan =*/ cplan,
  14490. /*.perf_node_start_cycles =*/ 0,
  14491. /*.perf_node_start_time_us =*/ 0,
  14492. /*.n_threads =*/ n_threads,
  14493. /*.n_active =*/ n_threads,
  14494. /*.node_n =*/ -1,
  14495. /*.abort_callback =*/ NULL,
  14496. /*.abort_callback_data =*/ NULL,
  14497. };
  14498. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14499. // create thread pool
  14500. if (n_threads > 1) {
  14501. for (int j = 1; j < n_threads; ++j) {
  14502. workers[j] = (struct ggml_compute_state) {
  14503. .thrd = 0,
  14504. .ith = j,
  14505. .shared = &state_shared,
  14506. };
  14507. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14508. GGML_ASSERT(rc == 0);
  14509. UNUSED(rc);
  14510. }
  14511. }
  14512. workers[0].ith = 0;
  14513. workers[0].shared = &state_shared;
  14514. const int64_t perf_start_cycles = ggml_perf_cycles();
  14515. const int64_t perf_start_time_us = ggml_perf_time_us();
  14516. // this is a work thread too
  14517. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14518. // don't leave affinity set on the main thread
  14519. clear_numa_thread_affinity();
  14520. // join or kill thread pool
  14521. if (n_threads > 1) {
  14522. for (int j = 1; j < n_threads; j++) {
  14523. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14524. GGML_ASSERT(rc == 0);
  14525. }
  14526. }
  14527. // performance stats (graph)
  14528. {
  14529. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14530. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14531. cgraph->perf_runs++;
  14532. cgraph->perf_cycles += perf_cycles_cur;
  14533. cgraph->perf_time_us += perf_time_us_cur;
  14534. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14535. __func__, cgraph->perf_runs,
  14536. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14537. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14538. (double) perf_time_us_cur / 1000.0,
  14539. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14540. }
  14541. return compute_status;
  14542. }
  14543. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14544. for (int i = 0; i < cgraph->n_nodes; i++) {
  14545. struct ggml_tensor * grad = cgraph->grads[i];
  14546. if (grad) {
  14547. ggml_set_zero(grad);
  14548. }
  14549. }
  14550. }
  14551. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14552. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14553. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14554. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14555. ggml_graph_compute(cgraph, &cplan);
  14556. }
  14557. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14558. for (int i = 0; i < cgraph->n_leafs; i++) {
  14559. struct ggml_tensor * leaf = cgraph->leafs[i];
  14560. if (strcmp(leaf->name, name) == 0) {
  14561. return leaf;
  14562. }
  14563. }
  14564. for (int i = 0; i < cgraph->n_nodes; i++) {
  14565. struct ggml_tensor * node = cgraph->nodes[i];
  14566. if (strcmp(node->name, name) == 0) {
  14567. return node;
  14568. }
  14569. }
  14570. return NULL;
  14571. }
  14572. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14573. const int64_t * ne = tensor->ne;
  14574. const size_t * nb = tensor->nb;
  14575. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14576. ggml_type_name(tensor->type),
  14577. ggml_op_name (tensor->op),
  14578. tensor->n_dims,
  14579. ne[0], ne[1], ne[2], ne[3],
  14580. nb[0], nb[1], nb[2], nb[3],
  14581. tensor->data,
  14582. tensor->name);
  14583. }
  14584. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14585. const int64_t * ne = tensor->ne;
  14586. const size_t * nb = tensor->nb;
  14587. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14588. arg,
  14589. ggml_type_name(tensor->type),
  14590. ggml_op_name (tensor->op),
  14591. tensor->n_dims,
  14592. ne[0], ne[1], ne[2], ne[3],
  14593. nb[0], nb[1], nb[2], nb[3],
  14594. tensor->data,
  14595. tensor->name);
  14596. }
  14597. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14598. uint64_t size_eval = 0;
  14599. // compute size of intermediate results
  14600. // TODO: does not take into account scratch buffers !!!!
  14601. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14602. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14603. }
  14604. // print
  14605. {
  14606. FILE * fout = stdout;
  14607. fprintf(fout, "\n");
  14608. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14609. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14610. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14611. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14612. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14613. // header
  14614. fprintf(fout, "\n");
  14615. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14616. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14617. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14618. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14619. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14620. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14621. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14622. }
  14623. // header
  14624. fprintf(fout, "\n");
  14625. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14626. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14627. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14628. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14629. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14630. if (cgraph->nodes[i]->src[j]) {
  14631. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14632. }
  14633. }
  14634. fprintf(fout, "\n");
  14635. }
  14636. fprintf(fout, "\n");
  14637. }
  14638. // write binary data
  14639. {
  14640. FILE * fout = fopen(fname, "wb");
  14641. if (!fout) {
  14642. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14643. return;
  14644. }
  14645. // header
  14646. {
  14647. const uint32_t magic = GGML_FILE_MAGIC;
  14648. const uint32_t version = GGML_FILE_VERSION;
  14649. const uint32_t n_leafs = cgraph->n_leafs;
  14650. const uint32_t nodes = cgraph->n_nodes;
  14651. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14652. fwrite(&version, sizeof(uint32_t), 1, fout);
  14653. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14654. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14655. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14656. }
  14657. // leafs
  14658. {
  14659. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14660. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14661. const uint32_t type = tensor->type;
  14662. const uint32_t op = tensor->op;
  14663. const uint32_t n_dims = tensor->n_dims;
  14664. fwrite(&type, sizeof(uint32_t), 1, fout);
  14665. fwrite(&op, sizeof(uint32_t), 1, fout);
  14666. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14667. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14668. const uint64_t ne = tensor->ne[j];
  14669. const uint64_t nb = tensor->nb[j];
  14670. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14671. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14672. }
  14673. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14674. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14675. // dump the data
  14676. // TODO: pad this to 32 byte boundary
  14677. {
  14678. const size_t size = ggml_nbytes(tensor);
  14679. fwrite(tensor->data, sizeof(char), size, fout);
  14680. }
  14681. }
  14682. }
  14683. // nodes
  14684. {
  14685. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14686. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14687. const uint32_t type = tensor->type;
  14688. const uint32_t op = tensor->op;
  14689. const uint32_t n_dims = tensor->n_dims;
  14690. fwrite(&type, sizeof(uint32_t), 1, fout);
  14691. fwrite(&op, sizeof(uint32_t), 1, fout);
  14692. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14693. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14694. const uint64_t ne = tensor->ne[j];
  14695. const uint64_t nb = tensor->nb[j];
  14696. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14697. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14698. }
  14699. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14700. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14701. // output the op arguments
  14702. {
  14703. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14704. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14705. args[j] = tensor->src[j];
  14706. }
  14707. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14708. if (args[j]) {
  14709. int32_t idx = -1;
  14710. // check if leaf
  14711. {
  14712. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14713. if (args[j] == cgraph->leafs[k]) {
  14714. idx = k;
  14715. break;
  14716. }
  14717. }
  14718. }
  14719. // check if node
  14720. if (idx == -1) {
  14721. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14722. if (args[j] == cgraph->nodes[k]) {
  14723. idx = GGML_MAX_NODES + k;
  14724. break;
  14725. }
  14726. }
  14727. }
  14728. if (idx == -1) {
  14729. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14730. return;
  14731. }
  14732. fwrite(&idx, sizeof(int32_t), 1, fout);
  14733. } else {
  14734. const int32_t nul = -1;
  14735. fwrite(&nul, sizeof(int32_t), 1, fout);
  14736. }
  14737. }
  14738. }
  14739. }
  14740. }
  14741. fclose(fout);
  14742. }
  14743. }
  14744. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14745. assert(*ctx_data == NULL);
  14746. assert(*ctx_eval == NULL);
  14747. struct ggml_cgraph result = { 0 };
  14748. struct ggml_tensor * data = NULL;
  14749. // read file into data
  14750. {
  14751. FILE * fin = fopen(fname, "rb");
  14752. if (!fin) {
  14753. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14754. return result;
  14755. }
  14756. size_t fsize = 0;
  14757. fseek(fin, 0, SEEK_END);
  14758. fsize = ftell(fin);
  14759. fseek(fin, 0, SEEK_SET);
  14760. // create the data context
  14761. {
  14762. const size_t overhead = 1*ggml_tensor_overhead();
  14763. struct ggml_init_params params = {
  14764. .mem_size = fsize + overhead,
  14765. .mem_buffer = NULL,
  14766. .no_alloc = false,
  14767. };
  14768. *ctx_data = ggml_init(params);
  14769. if (!*ctx_data) {
  14770. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14771. fclose(fin);
  14772. return result;
  14773. }
  14774. }
  14775. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14776. {
  14777. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14778. if (ret != fsize) {
  14779. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14780. fclose(fin);
  14781. return result;
  14782. }
  14783. }
  14784. fclose(fin);
  14785. }
  14786. // populate result
  14787. {
  14788. char * ptr = (char *) data->data;
  14789. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14790. if (magic != GGML_FILE_MAGIC) {
  14791. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14792. return result;
  14793. }
  14794. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14795. if (version != GGML_FILE_VERSION) {
  14796. fprintf(stderr, "%s: invalid version number\n", __func__);
  14797. return result;
  14798. }
  14799. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14800. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14801. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14802. result.n_leafs = n_leafs;
  14803. result.n_nodes = n_nodes;
  14804. // create the data context
  14805. {
  14806. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14807. struct ggml_init_params params = {
  14808. .mem_size = size_eval + overhead,
  14809. .mem_buffer = NULL,
  14810. .no_alloc = true,
  14811. };
  14812. *ctx_eval = ggml_init(params);
  14813. if (!*ctx_eval) {
  14814. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14815. return result;
  14816. }
  14817. }
  14818. // leafs
  14819. {
  14820. uint32_t type;
  14821. uint32_t op;
  14822. uint32_t n_dims;
  14823. for (uint32_t i = 0; i < n_leafs; ++i) {
  14824. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14825. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14826. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14827. int64_t ne[GGML_MAX_DIMS];
  14828. size_t nb[GGML_MAX_DIMS];
  14829. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14830. uint64_t ne_cur;
  14831. uint64_t nb_cur;
  14832. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14833. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14834. ne[j] = ne_cur;
  14835. nb[j] = nb_cur;
  14836. }
  14837. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14838. tensor->op = (enum ggml_op) op;
  14839. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14840. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14841. tensor->data = (void *) ptr;
  14842. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14843. tensor->nb[j] = nb[j];
  14844. }
  14845. result.leafs[i] = tensor;
  14846. ptr += ggml_nbytes(tensor);
  14847. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14848. }
  14849. }
  14850. ggml_set_no_alloc(*ctx_eval, false);
  14851. // nodes
  14852. {
  14853. uint32_t type;
  14854. uint32_t op;
  14855. uint32_t n_dims;
  14856. for (uint32_t i = 0; i < n_nodes; ++i) {
  14857. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14858. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14859. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14860. enum ggml_op eop = (enum ggml_op) op;
  14861. int64_t ne[GGML_MAX_DIMS];
  14862. size_t nb[GGML_MAX_DIMS];
  14863. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14864. uint64_t ne_cur;
  14865. uint64_t nb_cur;
  14866. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14867. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14868. ne[j] = ne_cur;
  14869. nb[j] = nb_cur;
  14870. }
  14871. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14872. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14873. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14874. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14875. // parse args
  14876. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14877. const int32_t arg_idx = ptr_arg_idx[j];
  14878. if (arg_idx == -1) {
  14879. continue;
  14880. }
  14881. if (arg_idx < GGML_MAX_NODES) {
  14882. args[j] = result.leafs[arg_idx];
  14883. } else {
  14884. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14885. }
  14886. }
  14887. // create the tensor
  14888. // "view" operations are handled differently
  14889. // TODO: handle inplace ops - currently a copy is always made
  14890. struct ggml_tensor * tensor = NULL;
  14891. switch (eop) {
  14892. // TODO: implement other view ops
  14893. case GGML_OP_RESHAPE:
  14894. {
  14895. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14896. } break;
  14897. case GGML_OP_VIEW:
  14898. {
  14899. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14900. size_t offs;
  14901. memcpy(&offs, ptr_op_params, sizeof(offs));
  14902. tensor->data = ((char *) tensor->data) + offs;
  14903. } break;
  14904. case GGML_OP_TRANSPOSE:
  14905. {
  14906. tensor = ggml_transpose(*ctx_eval, args[0]);
  14907. } break;
  14908. case GGML_OP_PERMUTE:
  14909. {
  14910. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14911. } break;
  14912. default:
  14913. {
  14914. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14915. tensor->op = eop;
  14916. } break;
  14917. }
  14918. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14919. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14920. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14921. tensor->nb[j] = nb[j];
  14922. }
  14923. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14924. tensor->src[j] = args[j];
  14925. }
  14926. result.nodes[i] = tensor;
  14927. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14928. }
  14929. }
  14930. }
  14931. return result;
  14932. }
  14933. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14934. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14935. GGML_PRINT("=== GRAPH ===\n");
  14936. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14937. for (int i = 0; i < cgraph->n_nodes; i++) {
  14938. struct ggml_tensor * node = cgraph->nodes[i];
  14939. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14940. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14941. i,
  14942. node->ne[0], node->ne[1], node->ne[2],
  14943. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14944. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14945. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14946. (double) node->perf_time_us / 1000.0,
  14947. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14948. }
  14949. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14950. for (int i = 0; i < cgraph->n_leafs; i++) {
  14951. struct ggml_tensor * node = cgraph->leafs[i];
  14952. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14953. i,
  14954. node->ne[0], node->ne[1],
  14955. ggml_op_name(node->op));
  14956. }
  14957. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14958. if (perf_total_per_op_us[i] == 0) {
  14959. continue;
  14960. }
  14961. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14962. }
  14963. GGML_PRINT("========================================\n");
  14964. }
  14965. // check if node is part of the graph
  14966. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14967. if (cgraph == NULL) {
  14968. return true;
  14969. }
  14970. for (int i = 0; i < cgraph->n_nodes; i++) {
  14971. if (cgraph->nodes[i] == node) {
  14972. return true;
  14973. }
  14974. }
  14975. return false;
  14976. }
  14977. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14978. for (int i = 0; i < cgraph->n_nodes; i++) {
  14979. struct ggml_tensor * parent = cgraph->nodes[i];
  14980. if (parent->grad == node) {
  14981. return parent;
  14982. }
  14983. }
  14984. return NULL;
  14985. }
  14986. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14987. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14988. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14989. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14990. gparent0 ? (void *) gparent0 : (void *) parent,
  14991. gparent0 ? "g" : "x",
  14992. gparent ? (void *) gparent : (void *) node,
  14993. gparent ? "g" : "x",
  14994. gparent ? "empty" : "vee",
  14995. gparent ? "dashed" : "solid",
  14996. label);
  14997. }
  14998. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14999. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15000. (void *) parent, "x",
  15001. (void *) node, "x",
  15002. label);
  15003. }
  15004. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15005. char color[16];
  15006. FILE * fp = fopen(filename, "w");
  15007. GGML_ASSERT(fp);
  15008. fprintf(fp, "digraph G {\n");
  15009. fprintf(fp, " newrank = true;\n");
  15010. fprintf(fp, " rankdir = LR;\n");
  15011. for (int i = 0; i < gb->n_nodes; i++) {
  15012. struct ggml_tensor * node = gb->nodes[i];
  15013. if (ggml_graph_get_parent(gb, node) != NULL) {
  15014. continue;
  15015. }
  15016. if (node->is_param) {
  15017. snprintf(color, sizeof(color), "yellow");
  15018. } else if (node->grad) {
  15019. if (ggml_graph_find(gf, node)) {
  15020. snprintf(color, sizeof(color), "green");
  15021. } else {
  15022. snprintf(color, sizeof(color), "lightblue");
  15023. }
  15024. } else {
  15025. snprintf(color, sizeof(color), "white");
  15026. }
  15027. fprintf(fp, " \"%p\" [ "
  15028. "style = filled; fillcolor = %s; shape = record; "
  15029. "label=\"",
  15030. (void *) node, color);
  15031. if (strlen(node->name) > 0) {
  15032. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15033. } else {
  15034. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15035. }
  15036. if (node->n_dims == 2) {
  15037. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15038. } else {
  15039. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15040. }
  15041. if (node->grad) {
  15042. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15043. } else {
  15044. fprintf(fp, "\"; ]\n");
  15045. }
  15046. }
  15047. for (int i = 0; i < gb->n_leafs; i++) {
  15048. struct ggml_tensor * node = gb->leafs[i];
  15049. snprintf(color, sizeof(color), "pink");
  15050. fprintf(fp, " \"%p\" [ "
  15051. "style = filled; fillcolor = %s; shape = record; "
  15052. "label=\"<x>",
  15053. (void *) node, color);
  15054. if (strlen(node->name) > 0) {
  15055. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15056. } else {
  15057. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15058. }
  15059. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15060. if (ggml_nelements(node) < 5) {
  15061. fprintf(fp, " | (");
  15062. for (int j = 0; j < ggml_nelements(node); j++) {
  15063. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15064. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15065. }
  15066. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15067. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15068. }
  15069. else {
  15070. fprintf(fp, "#");
  15071. }
  15072. if (j < ggml_nelements(node) - 1) {
  15073. fprintf(fp, ", ");
  15074. }
  15075. }
  15076. fprintf(fp, ")");
  15077. }
  15078. fprintf(fp, "\"; ]\n");
  15079. }
  15080. for (int i = 0; i < gb->n_nodes; i++) {
  15081. struct ggml_tensor * node = gb->nodes[i];
  15082. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15083. if (node->src[j]) {
  15084. char label[16];
  15085. snprintf(label, sizeof(label), "src %d", j);
  15086. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15087. }
  15088. }
  15089. }
  15090. for (int i = 0; i < gb->n_leafs; i++) {
  15091. struct ggml_tensor * node = gb->leafs[i];
  15092. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15093. if (node->src[j]) {
  15094. char label[16];
  15095. snprintf(label, sizeof(label), "src %d", j);
  15096. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15097. }
  15098. }
  15099. }
  15100. fprintf(fp, "}\n");
  15101. fclose(fp);
  15102. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15103. }
  15104. ////////////////////////////////////////////////////////////////////////////////
  15105. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15106. int i = 0;
  15107. for (int p = 0; p < np; ++p) {
  15108. const int64_t ne = ggml_nelements(ps[p]) ;
  15109. // TODO: add function to set tensor from array
  15110. for (int64_t j = 0; j < ne; ++j) {
  15111. ggml_set_f32_1d(ps[p], j, x[i++]);
  15112. }
  15113. }
  15114. }
  15115. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15116. int i = 0;
  15117. for (int p = 0; p < np; ++p) {
  15118. const int64_t ne = ggml_nelements(ps[p]) ;
  15119. // TODO: add function to get all elements at once
  15120. for (int64_t j = 0; j < ne; ++j) {
  15121. x[i++] = ggml_get_f32_1d(ps[p], j);
  15122. }
  15123. }
  15124. }
  15125. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15126. int i = 0;
  15127. for (int p = 0; p < np; ++p) {
  15128. const int64_t ne = ggml_nelements(ps[p]) ;
  15129. // TODO: add function to get all elements at once
  15130. for (int64_t j = 0; j < ne; ++j) {
  15131. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15132. }
  15133. }
  15134. }
  15135. //
  15136. // ADAM
  15137. //
  15138. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15139. //
  15140. static enum ggml_opt_result ggml_opt_adam(
  15141. struct ggml_context * ctx,
  15142. struct ggml_opt_context * opt,
  15143. struct ggml_opt_params params,
  15144. struct ggml_tensor * f,
  15145. struct ggml_cgraph * gf,
  15146. struct ggml_cgraph * gb) {
  15147. GGML_ASSERT(ggml_is_scalar(f));
  15148. // these will store the parameters we want to optimize
  15149. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15150. int np = 0;
  15151. int nx = 0;
  15152. for (int i = 0; i < gf->n_nodes; ++i) {
  15153. if (gf->nodes[i]->is_param) {
  15154. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15155. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15156. ps[np++] = gf->nodes[i];
  15157. nx += ggml_nelements(gf->nodes[i]);
  15158. }
  15159. }
  15160. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15161. int iter = opt->iter;
  15162. ggml_opt_init(opt->ctx, opt, params, nx);
  15163. opt->iter = iter;
  15164. }
  15165. // constants
  15166. const float sched = params.adam.sched;
  15167. const float decay = params.adam.decay * sched;
  15168. const float alpha = params.adam.alpha * sched;
  15169. const float beta1 = params.adam.beta1;
  15170. const float beta2 = params.adam.beta2;
  15171. const float eps = params.adam.eps;
  15172. float * x = opt->adam.x->data; // view of the parameters
  15173. float * g1 = opt->adam.g1->data; // gradient
  15174. float * g2 = opt->adam.g2->data; // gradient squared
  15175. float * m = opt->adam.m->data; // first moment
  15176. float * v = opt->adam.v->data; // second moment
  15177. float * mh = opt->adam.mh->data; // first moment hat
  15178. float * vh = opt->adam.vh->data; // second moment hat
  15179. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15180. // update view
  15181. ggml_opt_get_params(np, ps, x);
  15182. // compute the function value
  15183. ggml_graph_reset (gf);
  15184. ggml_set_f32 (f->grad, 1.0f);
  15185. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15186. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15187. opt->adam.fx_best = opt->adam.fx_prev;
  15188. if (pf) {
  15189. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15190. }
  15191. // initialize
  15192. if (opt->just_initialized) {
  15193. opt->adam.n_no_improvement = 0;
  15194. opt->just_initialized = false;
  15195. }
  15196. float * fx_best = &opt->adam.fx_best;
  15197. float * fx_prev = &opt->adam.fx_prev;
  15198. int * n_no_improvement = &opt->adam.n_no_improvement;
  15199. int iter0 = opt->iter;
  15200. // run the optimizer
  15201. for (int t = 0; t < params.adam.n_iter; ++t) {
  15202. opt->iter = iter0 + t + 1;
  15203. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15204. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15205. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15206. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15207. for (int i = 0; i < np; ++i) {
  15208. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15209. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15210. }
  15211. const int64_t t_start_wall = ggml_time_us();
  15212. const int64_t t_start_cpu = ggml_cycles();
  15213. UNUSED(t_start_wall);
  15214. UNUSED(t_start_cpu);
  15215. {
  15216. // update the gradient
  15217. ggml_opt_get_grad(np, ps, g1);
  15218. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  15219. ggml_vec_scale_f32(nx, m, beta1);
  15220. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  15221. // g2 = g1^2
  15222. ggml_vec_sqr_f32 (nx, g2, g1);
  15223. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  15224. ggml_vec_scale_f32(nx, v, beta2);
  15225. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  15226. // m^hat = m_t / (1 - beta1^t)
  15227. // v^hat = v_t / (1 - beta2^t)
  15228. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  15229. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  15230. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  15231. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  15232. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  15233. ggml_vec_cpy_f32 (nx, mh, m);
  15234. ggml_vec_cpy_f32 (nx, vh, v);
  15235. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  15236. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  15237. ggml_vec_sqrt_f32 (nx, vh, vh);
  15238. ggml_vec_acc1_f32 (nx, vh, eps);
  15239. ggml_vec_div_f32 (nx, mh, mh, vh);
  15240. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  15241. ggml_vec_sub_f32 (nx, x, x, mh);
  15242. // update the parameters
  15243. ggml_opt_set_params(np, ps, x);
  15244. }
  15245. ggml_graph_reset (gf);
  15246. ggml_set_f32 (f->grad, 1.0f);
  15247. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15248. const float fx = ggml_get_f32_1d(f, 0);
  15249. // check convergence
  15250. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15251. GGML_PRINT_DEBUG("converged\n");
  15252. return GGML_OPT_OK;
  15253. }
  15254. // delta-based convergence test
  15255. if (pf != NULL) {
  15256. // need at least params.past iterations to start checking for convergence
  15257. if (params.past <= iter0 + t) {
  15258. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15259. if (fabsf(rate) < params.delta) {
  15260. return GGML_OPT_OK;
  15261. }
  15262. }
  15263. pf[(iter0 + t)%params.past] = fx;
  15264. }
  15265. // check for improvement
  15266. if (params.max_no_improvement > 0) {
  15267. if (fx_best[0] > fx) {
  15268. fx_best[0] = fx;
  15269. n_no_improvement[0] = 0;
  15270. } else {
  15271. ++n_no_improvement[0];
  15272. if (n_no_improvement[0] >= params.max_no_improvement) {
  15273. return GGML_OPT_OK;
  15274. }
  15275. }
  15276. }
  15277. fx_prev[0] = fx;
  15278. {
  15279. const int64_t t_end_cpu = ggml_cycles();
  15280. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15281. UNUSED(t_end_cpu);
  15282. const int64_t t_end_wall = ggml_time_us();
  15283. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15284. UNUSED(t_end_wall);
  15285. }
  15286. }
  15287. return GGML_OPT_DID_NOT_CONVERGE;
  15288. }
  15289. //
  15290. // L-BFGS
  15291. //
  15292. // the L-BFGS implementation below is based on the following implementation:
  15293. //
  15294. // https://github.com/chokkan/liblbfgs
  15295. //
  15296. struct ggml_lbfgs_iteration_data {
  15297. float alpha;
  15298. float ys;
  15299. float * s;
  15300. float * y;
  15301. };
  15302. static enum ggml_opt_result linesearch_backtracking(
  15303. struct ggml_context * ctx,
  15304. const struct ggml_opt_params * params,
  15305. int nx,
  15306. float * x,
  15307. float * fx,
  15308. float * g,
  15309. float * d,
  15310. float * step,
  15311. const float * xp,
  15312. struct ggml_tensor * f,
  15313. struct ggml_cgraph * gf,
  15314. struct ggml_cgraph * gb,
  15315. const int np,
  15316. struct ggml_tensor * ps[]) {
  15317. int count = 0;
  15318. float width = 0.0f;
  15319. float dg = 0.0f;
  15320. float finit = 0.0f;
  15321. float dginit = 0.0f;
  15322. float dgtest = 0.0f;
  15323. const float dec = 0.5f;
  15324. const float inc = 2.1f;
  15325. if (*step <= 0.f) {
  15326. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15327. }
  15328. // compute the initial gradient in the search direction
  15329. ggml_vec_dot_f32(nx, &dginit, g, d);
  15330. // make sure that d points to a descent direction
  15331. if (0 < dginit) {
  15332. return GGML_LINESEARCH_FAIL;
  15333. }
  15334. // initialize local variables
  15335. finit = *fx;
  15336. dgtest = params->lbfgs.ftol*dginit;
  15337. while (true) {
  15338. ggml_vec_cpy_f32(nx, x, xp);
  15339. ggml_vec_mad_f32(nx, x, d, *step);
  15340. // evaluate the function and gradient values
  15341. {
  15342. ggml_opt_set_params(np, ps, x);
  15343. ggml_graph_reset (gf);
  15344. ggml_set_f32 (f->grad, 1.0f);
  15345. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  15346. ggml_opt_get_grad(np, ps, g);
  15347. *fx = ggml_get_f32_1d(f, 0);
  15348. }
  15349. ++count;
  15350. if (*fx > finit + (*step)*dgtest) {
  15351. width = dec;
  15352. } else {
  15353. // Armijo condition is satisfied
  15354. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15355. return count;
  15356. }
  15357. ggml_vec_dot_f32(nx, &dg, g, d);
  15358. // check the Wolfe condition
  15359. if (dg < params->lbfgs.wolfe * dginit) {
  15360. width = inc;
  15361. } else {
  15362. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15363. // regular Wolfe conditions
  15364. return count;
  15365. }
  15366. if(dg > -params->lbfgs.wolfe*dginit) {
  15367. width = dec;
  15368. } else {
  15369. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15370. return count;
  15371. }
  15372. return count;
  15373. }
  15374. }
  15375. if (*step < params->lbfgs.min_step) {
  15376. return GGML_LINESEARCH_MINIMUM_STEP;
  15377. }
  15378. if (*step > params->lbfgs.max_step) {
  15379. return GGML_LINESEARCH_MAXIMUM_STEP;
  15380. }
  15381. if (params->lbfgs.max_linesearch <= count) {
  15382. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15383. }
  15384. (*step) *= width;
  15385. }
  15386. return GGML_LINESEARCH_FAIL;
  15387. }
  15388. static enum ggml_opt_result ggml_opt_lbfgs(
  15389. struct ggml_context * ctx,
  15390. struct ggml_opt_context * opt,
  15391. struct ggml_opt_params params,
  15392. struct ggml_tensor * f,
  15393. struct ggml_cgraph * gf,
  15394. struct ggml_cgraph * gb) {
  15395. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15396. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15397. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15398. return GGML_OPT_INVALID_WOLFE;
  15399. }
  15400. }
  15401. const int m = params.lbfgs.m;
  15402. // these will store the parameters we want to optimize
  15403. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15404. int np = 0;
  15405. int nx = 0;
  15406. for (int i = 0; i < gf->n_nodes; ++i) {
  15407. if (gf->nodes[i]->is_param) {
  15408. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15409. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15410. ps[np++] = gf->nodes[i];
  15411. nx += ggml_nelements(gf->nodes[i]);
  15412. }
  15413. }
  15414. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15415. int iter = opt->iter;
  15416. ggml_opt_init(ctx, opt, params, nx);
  15417. opt->iter = iter;
  15418. }
  15419. float * x = opt->lbfgs.x->data; // current parameters
  15420. float * xp = opt->lbfgs.xp->data; // previous parameters
  15421. float * g = opt->lbfgs.g->data; // current gradient
  15422. float * gp = opt->lbfgs.gp->data; // previous gradient
  15423. float * d = opt->lbfgs.d->data; // search direction
  15424. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15425. float fx = 0.0f; // cost function value
  15426. float xnorm = 0.0f; // ||x||
  15427. float gnorm = 0.0f; // ||g||
  15428. // initialize x from the graph nodes
  15429. ggml_opt_get_params(np, ps, x);
  15430. // the L-BFGS memory
  15431. float * lm_alpha = opt->lbfgs.lmal->data;
  15432. float * lm_ys = opt->lbfgs.lmys->data;
  15433. float * lm_s = opt->lbfgs.lms->data;
  15434. float * lm_y = opt->lbfgs.lmy->data;
  15435. // evaluate the function value and its gradient
  15436. {
  15437. ggml_opt_set_params(np, ps, x);
  15438. ggml_graph_reset (gf);
  15439. ggml_set_f32 (f->grad, 1.0f);
  15440. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15441. ggml_opt_get_grad(np, ps, g);
  15442. fx = ggml_get_f32_1d(f, 0);
  15443. }
  15444. // search direction = -gradient
  15445. ggml_vec_neg_f32(nx, d, g);
  15446. // ||x||, ||g||
  15447. ggml_vec_norm_f32(nx, &xnorm, x);
  15448. ggml_vec_norm_f32(nx, &gnorm, g);
  15449. if (xnorm < 1.0f) {
  15450. xnorm = 1.0f;
  15451. }
  15452. // already optimized
  15453. if (gnorm/xnorm <= params.lbfgs.eps) {
  15454. return GGML_OPT_OK;
  15455. }
  15456. if (opt->just_initialized) {
  15457. if (pf) {
  15458. pf[0] = fx;
  15459. }
  15460. opt->lbfgs.fx_best = fx;
  15461. // initial step
  15462. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15463. opt->lbfgs.j = 0;
  15464. opt->lbfgs.k = 1;
  15465. opt->lbfgs.end = 0;
  15466. opt->lbfgs.n_no_improvement = 0;
  15467. opt->just_initialized = false;
  15468. }
  15469. float * fx_best = &opt->lbfgs.fx_best;
  15470. float * step = &opt->lbfgs.step;
  15471. int * j = &opt->lbfgs.j;
  15472. int * k = &opt->lbfgs.k;
  15473. int * end = &opt->lbfgs.end;
  15474. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15475. int ls = 0;
  15476. int bound = 0;
  15477. float ys = 0.0f;
  15478. float yy = 0.0f;
  15479. float beta = 0.0f;
  15480. int it = 0;
  15481. while (true) {
  15482. // store the current position and gradient vectors
  15483. ggml_vec_cpy_f32(nx, xp, x);
  15484. ggml_vec_cpy_f32(nx, gp, g);
  15485. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15486. if (ls < 0) {
  15487. // linesearch failed - go back to the previous point and return
  15488. ggml_vec_cpy_f32(nx, x, xp);
  15489. ggml_vec_cpy_f32(nx, g, gp);
  15490. return ls;
  15491. }
  15492. ggml_vec_norm_f32(nx, &xnorm, x);
  15493. ggml_vec_norm_f32(nx, &gnorm, g);
  15494. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15495. if (xnorm < 1.0f) {
  15496. xnorm = 1.0f;
  15497. }
  15498. if (gnorm/xnorm <= params.lbfgs.eps) {
  15499. // converged
  15500. return GGML_OPT_OK;
  15501. }
  15502. // delta-based convergence test
  15503. if (pf != NULL) {
  15504. // need at least params.past iterations to start checking for convergence
  15505. if (params.past <= k[0]) {
  15506. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15507. if (fabsf(rate) < params.delta) {
  15508. return GGML_OPT_OK;
  15509. }
  15510. }
  15511. pf[k[0]%params.past] = fx;
  15512. }
  15513. // check for improvement
  15514. if (params.max_no_improvement > 0) {
  15515. if (fx < fx_best[0]) {
  15516. fx_best[0] = fx;
  15517. n_no_improvement[0] = 0;
  15518. } else {
  15519. n_no_improvement[0]++;
  15520. if (n_no_improvement[0] >= params.max_no_improvement) {
  15521. return GGML_OPT_OK;
  15522. }
  15523. }
  15524. }
  15525. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15526. // reached the maximum number of iterations
  15527. return GGML_OPT_DID_NOT_CONVERGE;
  15528. }
  15529. // update vectors s and y:
  15530. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15531. // y_{k+1} = g_{k+1} - g_{k}.
  15532. //
  15533. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15534. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15535. // compute scalars ys and yy:
  15536. // ys = y^t \cdot s -> 1 / \rho.
  15537. // yy = y^t \cdot y.
  15538. //
  15539. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15540. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15541. lm_ys[end[0]] = ys;
  15542. // find new search direction
  15543. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15544. bound = (m <= k[0]) ? m : k[0];
  15545. k[0]++;
  15546. it++;
  15547. end[0] = (end[0] + 1)%m;
  15548. // initialize search direction with -g
  15549. ggml_vec_neg_f32(nx, d, g);
  15550. j[0] = end[0];
  15551. for (int i = 0; i < bound; ++i) {
  15552. j[0] = (j[0] + m - 1) % m;
  15553. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15554. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15555. lm_alpha[j[0]] /= lm_ys[j[0]];
  15556. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15557. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15558. }
  15559. ggml_vec_scale_f32(nx, d, ys/yy);
  15560. for (int i = 0; i < bound; ++i) {
  15561. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15562. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15563. beta /= lm_ys[j[0]];
  15564. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15565. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15566. j[0] = (j[0] + 1)%m;
  15567. }
  15568. step[0] = 1.0;
  15569. }
  15570. return GGML_OPT_DID_NOT_CONVERGE;
  15571. }
  15572. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15573. struct ggml_opt_params result;
  15574. switch (type) {
  15575. case GGML_OPT_ADAM:
  15576. {
  15577. result = (struct ggml_opt_params) {
  15578. .type = GGML_OPT_ADAM,
  15579. .n_threads = 1,
  15580. .past = 0,
  15581. .delta = 1e-5f,
  15582. .max_no_improvement = 100,
  15583. .print_forward_graph = true,
  15584. .print_backward_graph = true,
  15585. .adam = {
  15586. .n_iter = 10000,
  15587. .sched = 1.000f,
  15588. .decay = 0.001f,
  15589. .alpha = 0.001f,
  15590. .beta1 = 0.9f,
  15591. .beta2 = 0.999f,
  15592. .eps = 1e-8f,
  15593. .eps_f = 1e-5f,
  15594. .eps_g = 1e-3f,
  15595. },
  15596. };
  15597. } break;
  15598. case GGML_OPT_LBFGS:
  15599. {
  15600. result = (struct ggml_opt_params) {
  15601. .type = GGML_OPT_LBFGS,
  15602. .n_threads = 1,
  15603. .past = 0,
  15604. .delta = 1e-5f,
  15605. .max_no_improvement = 0,
  15606. .print_forward_graph = true,
  15607. .print_backward_graph = true,
  15608. .lbfgs = {
  15609. .m = 6,
  15610. .n_iter = 100,
  15611. .max_linesearch = 20,
  15612. .eps = 1e-5f,
  15613. .ftol = 1e-4f,
  15614. .wolfe = 0.9f,
  15615. .min_step = 1e-20f,
  15616. .max_step = 1e+20f,
  15617. .linesearch = GGML_LINESEARCH_DEFAULT,
  15618. },
  15619. };
  15620. } break;
  15621. }
  15622. return result;
  15623. }
  15624. GGML_API void ggml_opt_init(
  15625. struct ggml_context * ctx,
  15626. struct ggml_opt_context * opt,
  15627. struct ggml_opt_params params,
  15628. int64_t nx) {
  15629. opt->ctx = ctx;
  15630. opt->params = params;
  15631. opt->iter = 0;
  15632. opt->nx = nx;
  15633. opt->just_initialized = true;
  15634. switch (opt->params.type) {
  15635. case GGML_OPT_ADAM:
  15636. {
  15637. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15638. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15639. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15640. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15641. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15642. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15643. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15644. opt->adam.pf = params.past > 0
  15645. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15646. : NULL;
  15647. ggml_set_zero(opt->adam.x);
  15648. ggml_set_zero(opt->adam.g1);
  15649. ggml_set_zero(opt->adam.g2);
  15650. ggml_set_zero(opt->adam.m);
  15651. ggml_set_zero(opt->adam.v);
  15652. ggml_set_zero(opt->adam.mh);
  15653. ggml_set_zero(opt->adam.vh);
  15654. if (opt->adam.pf) {
  15655. ggml_set_zero(opt->adam.pf);
  15656. }
  15657. } break;
  15658. case GGML_OPT_LBFGS:
  15659. {
  15660. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15661. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15662. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15663. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15664. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15665. opt->lbfgs.pf = params.past > 0
  15666. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15667. : NULL;
  15668. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15669. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15670. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15671. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15672. ggml_set_zero(opt->lbfgs.x);
  15673. ggml_set_zero(opt->lbfgs.xp);
  15674. ggml_set_zero(opt->lbfgs.g);
  15675. ggml_set_zero(opt->lbfgs.gp);
  15676. ggml_set_zero(opt->lbfgs.d);
  15677. if (opt->lbfgs.pf) {
  15678. ggml_set_zero(opt->lbfgs.pf);
  15679. }
  15680. ggml_set_zero(opt->lbfgs.lmal);
  15681. ggml_set_zero(opt->lbfgs.lmys);
  15682. ggml_set_zero(opt->lbfgs.lms);
  15683. ggml_set_zero(opt->lbfgs.lmy);
  15684. } break;
  15685. }
  15686. }
  15687. enum ggml_opt_result ggml_opt(
  15688. struct ggml_context * ctx,
  15689. struct ggml_opt_params params,
  15690. struct ggml_tensor * f) {
  15691. bool free_ctx = false;
  15692. if (ctx == NULL) {
  15693. struct ggml_init_params params_ctx = {
  15694. .mem_size = 16*1024*1024,
  15695. .mem_buffer = NULL,
  15696. .no_alloc = false,
  15697. };
  15698. ctx = ggml_init(params_ctx);
  15699. if (ctx == NULL) {
  15700. return GGML_OPT_NO_CONTEXT;
  15701. }
  15702. free_ctx = true;
  15703. }
  15704. enum ggml_opt_result result = GGML_OPT_OK;
  15705. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15706. ggml_opt_init(ctx, opt, params, 0);
  15707. result = ggml_opt_resume(ctx, opt, f);
  15708. if (free_ctx) {
  15709. ggml_free(ctx);
  15710. }
  15711. return result;
  15712. }
  15713. enum ggml_opt_result ggml_opt_resume(
  15714. struct ggml_context * ctx,
  15715. struct ggml_opt_context * opt,
  15716. struct ggml_tensor * f) {
  15717. // build forward + backward compute graphs
  15718. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15719. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15720. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15721. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15722. *gf = ggml_build_forward (f);
  15723. *gb = ggml_build_backward(ctx, gf, true);
  15724. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15725. }
  15726. enum ggml_opt_result ggml_opt_resume_g(
  15727. struct ggml_context * ctx,
  15728. struct ggml_opt_context * opt,
  15729. struct ggml_tensor * f,
  15730. struct ggml_cgraph * gf,
  15731. struct ggml_cgraph * gb) {
  15732. // build forward + backward compute graphs
  15733. enum ggml_opt_result result = GGML_OPT_OK;
  15734. switch (opt->params.type) {
  15735. case GGML_OPT_ADAM:
  15736. {
  15737. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15738. } break;
  15739. case GGML_OPT_LBFGS:
  15740. {
  15741. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15742. } break;
  15743. }
  15744. if (opt->params.print_forward_graph) {
  15745. ggml_graph_print (gf);
  15746. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15747. }
  15748. if (opt->params.print_backward_graph) {
  15749. ggml_graph_print (gb);
  15750. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15751. }
  15752. return result;
  15753. }
  15754. ////////////////////////////////////////////////////////////////////////////////
  15755. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15756. assert(k % QK4_0 == 0);
  15757. const int nb = k / QK4_0;
  15758. for (int b = 0; b < n; b += k) {
  15759. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15760. quantize_row_q4_0_reference(src + b, y, k);
  15761. for (int i = 0; i < nb; i++) {
  15762. for (int j = 0; j < QK4_0; j += 2) {
  15763. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15764. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15765. hist[vi0]++;
  15766. hist[vi1]++;
  15767. }
  15768. }
  15769. }
  15770. return (n/QK4_0*sizeof(block_q4_0));
  15771. }
  15772. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15773. assert(k % QK4_1 == 0);
  15774. const int nb = k / QK4_1;
  15775. for (int b = 0; b < n; b += k) {
  15776. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15777. quantize_row_q4_1_reference(src + b, y, k);
  15778. for (int i = 0; i < nb; i++) {
  15779. for (int j = 0; j < QK4_1; j += 2) {
  15780. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15781. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15782. hist[vi0]++;
  15783. hist[vi1]++;
  15784. }
  15785. }
  15786. }
  15787. return (n/QK4_1*sizeof(block_q4_1));
  15788. }
  15789. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15790. assert(k % QK5_0 == 0);
  15791. const int nb = k / QK5_0;
  15792. for (int b = 0; b < n; b += k) {
  15793. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15794. quantize_row_q5_0_reference(src + b, y, k);
  15795. for (int i = 0; i < nb; i++) {
  15796. uint32_t qh;
  15797. memcpy(&qh, &y[i].qh, sizeof(qh));
  15798. for (int j = 0; j < QK5_0; j += 2) {
  15799. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15800. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15801. // cast to 16 bins
  15802. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15803. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15804. hist[vi0]++;
  15805. hist[vi1]++;
  15806. }
  15807. }
  15808. }
  15809. return (n/QK5_0*sizeof(block_q5_0));
  15810. }
  15811. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15812. assert(k % QK5_1 == 0);
  15813. const int nb = k / QK5_1;
  15814. for (int b = 0; b < n; b += k) {
  15815. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15816. quantize_row_q5_1_reference(src + b, y, k);
  15817. for (int i = 0; i < nb; i++) {
  15818. uint32_t qh;
  15819. memcpy(&qh, &y[i].qh, sizeof(qh));
  15820. for (int j = 0; j < QK5_1; j += 2) {
  15821. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15822. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15823. // cast to 16 bins
  15824. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15825. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15826. hist[vi0]++;
  15827. hist[vi1]++;
  15828. }
  15829. }
  15830. }
  15831. return (n/QK5_1*sizeof(block_q5_1));
  15832. }
  15833. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15834. assert(k % QK8_0 == 0);
  15835. const int nb = k / QK8_0;
  15836. for (int b = 0; b < n; b += k) {
  15837. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15838. quantize_row_q8_0_reference(src + b, y, k);
  15839. for (int i = 0; i < nb; i++) {
  15840. for (int j = 0; j < QK8_0; ++j) {
  15841. const int8_t vi = y[i].qs[j];
  15842. hist[vi/16 + 8]++;
  15843. }
  15844. }
  15845. }
  15846. return (n/QK8_0*sizeof(block_q8_0));
  15847. }
  15848. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15849. size_t result = 0;
  15850. switch (type) {
  15851. case GGML_TYPE_Q4_0:
  15852. {
  15853. GGML_ASSERT(start % QK4_0 == 0);
  15854. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15855. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15856. } break;
  15857. case GGML_TYPE_Q4_1:
  15858. {
  15859. GGML_ASSERT(start % QK4_1 == 0);
  15860. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15861. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15862. } break;
  15863. case GGML_TYPE_Q5_0:
  15864. {
  15865. GGML_ASSERT(start % QK5_0 == 0);
  15866. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15867. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15868. } break;
  15869. case GGML_TYPE_Q5_1:
  15870. {
  15871. GGML_ASSERT(start % QK5_1 == 0);
  15872. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15873. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15874. } break;
  15875. case GGML_TYPE_Q8_0:
  15876. {
  15877. GGML_ASSERT(start % QK8_0 == 0);
  15878. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15879. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15880. } break;
  15881. #ifdef GGML_USE_K_QUANTS
  15882. case GGML_TYPE_Q2_K:
  15883. {
  15884. GGML_ASSERT(start % QK_K == 0);
  15885. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15886. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15887. } break;
  15888. case GGML_TYPE_Q3_K:
  15889. {
  15890. GGML_ASSERT(start % QK_K == 0);
  15891. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15892. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15893. } break;
  15894. case GGML_TYPE_Q4_K:
  15895. {
  15896. GGML_ASSERT(start % QK_K == 0);
  15897. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15898. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15899. } break;
  15900. case GGML_TYPE_Q5_K:
  15901. {
  15902. GGML_ASSERT(start % QK_K == 0);
  15903. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15904. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15905. } break;
  15906. case GGML_TYPE_Q6_K:
  15907. {
  15908. GGML_ASSERT(start % QK_K == 0);
  15909. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15910. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15911. } break;
  15912. #endif
  15913. case GGML_TYPE_F16:
  15914. {
  15915. int elemsize = sizeof(ggml_fp16_t);
  15916. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15917. result = n * elemsize;
  15918. } break;
  15919. case GGML_TYPE_F32:
  15920. {
  15921. int elemsize = sizeof(float);
  15922. result = n * elemsize;
  15923. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15924. } break;
  15925. default:
  15926. assert(false);
  15927. }
  15928. return result;
  15929. }
  15930. ////////////////////////////////////////////////////////////////////////////////
  15931. struct gguf_str {
  15932. uint64_t n; // GGUFv2
  15933. char * data;
  15934. };
  15935. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15936. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15937. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15938. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15939. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15940. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15941. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15942. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15943. [GGUF_TYPE_BOOL] = sizeof(bool),
  15944. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15945. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15946. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15947. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15948. [GGUF_TYPE_ARRAY] = 0, // undefined
  15949. };
  15950. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15951. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15952. [GGUF_TYPE_UINT8] = "u8",
  15953. [GGUF_TYPE_INT8] = "i8",
  15954. [GGUF_TYPE_UINT16] = "u16",
  15955. [GGUF_TYPE_INT16] = "i16",
  15956. [GGUF_TYPE_UINT32] = "u32",
  15957. [GGUF_TYPE_INT32] = "i32",
  15958. [GGUF_TYPE_FLOAT32] = "f32",
  15959. [GGUF_TYPE_BOOL] = "bool",
  15960. [GGUF_TYPE_STRING] = "str",
  15961. [GGUF_TYPE_ARRAY] = "arr",
  15962. [GGUF_TYPE_UINT64] = "u64",
  15963. [GGUF_TYPE_INT64] = "i64",
  15964. [GGUF_TYPE_FLOAT64] = "f64",
  15965. };
  15966. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15967. union gguf_value {
  15968. uint8_t uint8;
  15969. int8_t int8;
  15970. uint16_t uint16;
  15971. int16_t int16;
  15972. uint32_t uint32;
  15973. int32_t int32;
  15974. float float32;
  15975. uint64_t uint64;
  15976. int64_t int64;
  15977. double float64;
  15978. bool bool_;
  15979. struct gguf_str str;
  15980. struct {
  15981. enum gguf_type type;
  15982. uint64_t n; // GGUFv2
  15983. void * data;
  15984. } arr;
  15985. };
  15986. struct gguf_kv {
  15987. struct gguf_str key;
  15988. enum gguf_type type;
  15989. union gguf_value value;
  15990. };
  15991. struct gguf_header {
  15992. uint32_t magic;
  15993. uint32_t version;
  15994. uint64_t n_tensors; // GGUFv2
  15995. uint64_t n_kv; // GGUFv2
  15996. };
  15997. struct gguf_tensor_info {
  15998. struct gguf_str name;
  15999. uint32_t n_dims;
  16000. uint64_t ne[GGML_MAX_DIMS];
  16001. enum ggml_type type;
  16002. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16003. // for writing API
  16004. const void * data;
  16005. size_t size;
  16006. };
  16007. struct gguf_context {
  16008. struct gguf_header header;
  16009. struct gguf_kv * kv;
  16010. struct gguf_tensor_info * infos;
  16011. size_t alignment;
  16012. size_t offset; // offset of `data` from beginning of file
  16013. size_t size; // size of `data` in bytes
  16014. //uint8_t * padding;
  16015. void * data;
  16016. };
  16017. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16018. const size_t n = fread(dst, 1, size, file);
  16019. *offset += n;
  16020. return n == size;
  16021. }
  16022. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16023. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16024. p->n = 0;
  16025. p->data = NULL;
  16026. bool ok = true;
  16027. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16028. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16029. return ok;
  16030. }
  16031. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16032. p->n = 0;
  16033. p->data = NULL;
  16034. bool ok = true;
  16035. uint32_t n = 0;
  16036. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16037. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16038. return ok;
  16039. }
  16040. struct gguf_context * gguf_init_empty(void) {
  16041. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16042. ctx->header.magic = GGUF_MAGIC;
  16043. ctx->header.version = GGUF_VERSION;
  16044. ctx->header.n_tensors = 0;
  16045. ctx->header.n_kv = 0;
  16046. ctx->kv = NULL;
  16047. ctx->infos = NULL;
  16048. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16049. ctx->offset = 0;
  16050. ctx->size = 0;
  16051. ctx->data = NULL;
  16052. return ctx;
  16053. }
  16054. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16055. FILE * file = fopen(fname, "rb");
  16056. if (!file) {
  16057. return NULL;
  16058. }
  16059. // offset from start of file
  16060. size_t offset = 0;
  16061. uint32_t magic = 0;
  16062. // check the magic before making allocations
  16063. {
  16064. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16065. if (magic != GGUF_MAGIC) {
  16066. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16067. fclose(file);
  16068. return NULL;
  16069. }
  16070. }
  16071. bool ok = true;
  16072. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16073. // read the header
  16074. {
  16075. ctx->header.magic = magic;
  16076. ctx->kv = NULL;
  16077. ctx->infos = NULL;
  16078. ctx->data = NULL;
  16079. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16080. if (ctx->header.version == 1) {
  16081. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16082. uint32_t n_tensors = 0;
  16083. uint32_t n_kv = 0;
  16084. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16085. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16086. ctx->header.n_tensors = n_tensors;
  16087. ctx->header.n_kv = n_kv;
  16088. } else {
  16089. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16090. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16091. }
  16092. if (!ok) {
  16093. fprintf(stderr, "%s: failed to read header\n", __func__);
  16094. fclose(file);
  16095. gguf_free(ctx);
  16096. return NULL;
  16097. }
  16098. }
  16099. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16100. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16101. if (ctx->header.version == 1) {
  16102. gguf_fread_str = gguf_fread_str_v1;
  16103. }
  16104. // read the kv pairs
  16105. {
  16106. ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16107. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16108. struct gguf_kv * kv = &ctx->kv[i];
  16109. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16110. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16111. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16112. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16113. switch (kv->type) {
  16114. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16115. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16116. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16117. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16118. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16119. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16120. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16121. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16122. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16123. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16124. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16125. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16126. case GGUF_TYPE_ARRAY:
  16127. {
  16128. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16129. if (ctx->header.version == 1) {
  16130. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16131. uint32_t n = 0;
  16132. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16133. kv->value.arr.n = n;
  16134. } else {
  16135. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16136. }
  16137. switch (kv->value.arr.type) {
  16138. case GGUF_TYPE_UINT8:
  16139. case GGUF_TYPE_INT8:
  16140. case GGUF_TYPE_UINT16:
  16141. case GGUF_TYPE_INT16:
  16142. case GGUF_TYPE_UINT32:
  16143. case GGUF_TYPE_INT32:
  16144. case GGUF_TYPE_FLOAT32:
  16145. case GGUF_TYPE_UINT64:
  16146. case GGUF_TYPE_INT64:
  16147. case GGUF_TYPE_FLOAT64:
  16148. case GGUF_TYPE_BOOL:
  16149. {
  16150. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16151. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16152. } break;
  16153. case GGUF_TYPE_STRING:
  16154. {
  16155. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16156. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16157. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16158. }
  16159. } break;
  16160. case GGUF_TYPE_ARRAY:
  16161. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16162. };
  16163. } break;
  16164. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16165. };
  16166. if (!ok) {
  16167. break;
  16168. }
  16169. }
  16170. if (!ok) {
  16171. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16172. fclose(file);
  16173. gguf_free(ctx);
  16174. return NULL;
  16175. }
  16176. }
  16177. // read the tensor infos
  16178. {
  16179. ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16180. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16181. struct gguf_tensor_info * info = &ctx->infos[i];
  16182. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16183. info->ne[j] = 1;
  16184. }
  16185. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16186. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16187. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16188. if (ctx->header.version == 1) {
  16189. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16190. uint32_t t = 0;
  16191. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16192. info->ne[j] = t;
  16193. } else {
  16194. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16195. }
  16196. }
  16197. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16198. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16199. if (!ok) {
  16200. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16201. fclose(file);
  16202. gguf_free(ctx);
  16203. return NULL;
  16204. }
  16205. }
  16206. }
  16207. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16208. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16209. if (alignment_idx != -1) {
  16210. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16211. }
  16212. // we require the data section to be aligned, so take into account any padding
  16213. {
  16214. const size_t offset_pad = offset % ctx->alignment;
  16215. if (offset_pad != 0) {
  16216. offset += ctx->alignment - offset_pad;
  16217. fseek(file, offset, SEEK_SET);
  16218. }
  16219. }
  16220. // store the current file offset - this is where the data section starts
  16221. ctx->offset = offset;
  16222. // compute the total size of the data section, taking into account the alignment
  16223. {
  16224. ctx->size = 0;
  16225. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16226. struct gguf_tensor_info * info = &ctx->infos[i];
  16227. const int64_t ne =
  16228. (int64_t) info->ne[0] *
  16229. (int64_t) info->ne[1] *
  16230. (int64_t) info->ne[2] *
  16231. (int64_t) info->ne[3];
  16232. if (ne % ggml_blck_size(info->type) != 0) {
  16233. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16234. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16235. fclose(file);
  16236. gguf_free(ctx);
  16237. return NULL;
  16238. }
  16239. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16240. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16241. }
  16242. }
  16243. // load the tensor data only if requested
  16244. if (params.ctx != NULL) {
  16245. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16246. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16247. // the ggml_tensor structs to the appropriate locations in the binary blob
  16248. // compute the exact size needed for the new ggml_context
  16249. const size_t mem_size =
  16250. params.no_alloc ?
  16251. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16252. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16253. struct ggml_init_params pdata = {
  16254. .mem_size = mem_size,
  16255. .mem_buffer = NULL,
  16256. .no_alloc = params.no_alloc,
  16257. };
  16258. *params.ctx = ggml_init(pdata);
  16259. struct ggml_context * ctx_data = *params.ctx;
  16260. struct ggml_tensor * data = NULL;
  16261. if (params.no_alloc == false) {
  16262. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16263. ok = ok && data != NULL;
  16264. // read the binary blob with the tensor data
  16265. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16266. if (!ok) {
  16267. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16268. fclose(file);
  16269. ggml_free(ctx_data);
  16270. gguf_free(ctx);
  16271. return NULL;
  16272. }
  16273. ctx->data = data->data;
  16274. }
  16275. ggml_set_no_alloc(ctx_data, true);
  16276. // create the tensors
  16277. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16278. const int64_t ne[GGML_MAX_DIMS] = {
  16279. ctx->infos[i].ne[0],
  16280. ctx->infos[i].ne[1],
  16281. ctx->infos[i].ne[2],
  16282. ctx->infos[i].ne[3],
  16283. };
  16284. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16285. ok = ok && cur != NULL;
  16286. ggml_set_name(cur, ctx->infos[i].name.data);
  16287. if (!ok) {
  16288. break;
  16289. }
  16290. // point the data member to the appropriate location in the binary blob using the tensor infos
  16291. if (params.no_alloc == false) {
  16292. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16293. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16294. }
  16295. }
  16296. if (!ok) {
  16297. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16298. fclose(file);
  16299. ggml_free(ctx_data);
  16300. gguf_free(ctx);
  16301. return NULL;
  16302. }
  16303. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16304. }
  16305. fclose(file);
  16306. return ctx;
  16307. }
  16308. void gguf_free(struct gguf_context * ctx) {
  16309. if (ctx == NULL) {
  16310. return;
  16311. }
  16312. if (ctx->kv) {
  16313. // free string memory - not great..
  16314. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16315. struct gguf_kv * kv = &ctx->kv[i];
  16316. if (kv->key.data) {
  16317. free(kv->key.data);
  16318. }
  16319. if (kv->type == GGUF_TYPE_STRING) {
  16320. if (kv->value.str.data) {
  16321. free(kv->value.str.data);
  16322. }
  16323. }
  16324. if (kv->type == GGUF_TYPE_ARRAY) {
  16325. if (kv->value.arr.data) {
  16326. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16327. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16328. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16329. if (str->data) {
  16330. free(str->data);
  16331. }
  16332. }
  16333. }
  16334. free(kv->value.arr.data);
  16335. }
  16336. }
  16337. }
  16338. GGML_ALIGNED_FREE(ctx->kv);
  16339. }
  16340. if (ctx->infos) {
  16341. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16342. struct gguf_tensor_info * info = &ctx->infos[i];
  16343. if (info->name.data) {
  16344. free(info->name.data);
  16345. }
  16346. }
  16347. GGML_ALIGNED_FREE(ctx->infos);
  16348. }
  16349. GGML_ALIGNED_FREE(ctx);
  16350. }
  16351. const char * gguf_type_name(enum gguf_type type) {
  16352. return GGUF_TYPE_NAME[type];
  16353. }
  16354. int gguf_get_version(struct gguf_context * ctx) {
  16355. return ctx->header.version;
  16356. }
  16357. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16358. return ctx->alignment;
  16359. }
  16360. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16361. return ctx->offset;
  16362. }
  16363. void * gguf_get_data(struct gguf_context * ctx) {
  16364. return ctx->data;
  16365. }
  16366. int gguf_get_n_kv(struct gguf_context * ctx) {
  16367. return ctx->header.n_kv;
  16368. }
  16369. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16370. // return -1 if key not found
  16371. int keyfound = -1;
  16372. const int n_kv = gguf_get_n_kv(ctx);
  16373. for (int i = 0; i < n_kv; ++i) {
  16374. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16375. keyfound = i;
  16376. break;
  16377. }
  16378. }
  16379. return keyfound;
  16380. }
  16381. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16382. return ctx->kv[i].key.data;
  16383. }
  16384. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16385. return ctx->kv[i].type;
  16386. }
  16387. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16388. return ctx->kv[i].value.arr.type;
  16389. }
  16390. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16391. return ctx->kv[i].value.arr.data;
  16392. }
  16393. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16394. struct gguf_kv * kv = &ctx->kv[key_id];
  16395. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16396. return str->data;
  16397. }
  16398. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16399. return ctx->kv[i].value.arr.n;
  16400. }
  16401. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16402. return ctx->kv[i].value.uint8;
  16403. }
  16404. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16405. return ctx->kv[i].value.int8;
  16406. }
  16407. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16408. return ctx->kv[i].value.uint16;
  16409. }
  16410. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16411. return ctx->kv[i].value.int16;
  16412. }
  16413. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16414. return ctx->kv[i].value.uint32;
  16415. }
  16416. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16417. return ctx->kv[i].value.int32;
  16418. }
  16419. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16420. return ctx->kv[i].value.float32;
  16421. }
  16422. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16423. return ctx->kv[i].value.uint64;
  16424. }
  16425. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16426. return ctx->kv[i].value.int64;
  16427. }
  16428. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16429. return ctx->kv[i].value.float64;
  16430. }
  16431. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16432. return ctx->kv[i].value.bool_;
  16433. }
  16434. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16435. return ctx->kv[i].value.str.data;
  16436. }
  16437. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16438. return ctx->header.n_tensors;
  16439. }
  16440. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16441. // return -1 if tensor not found
  16442. int tensorfound = -1;
  16443. const int n_tensors = gguf_get_n_tensors(ctx);
  16444. for (int i = 0; i < n_tensors; ++i) {
  16445. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16446. tensorfound = i;
  16447. break;
  16448. }
  16449. }
  16450. return tensorfound;
  16451. }
  16452. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16453. return ctx->infos[i].offset;
  16454. }
  16455. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16456. return ctx->infos[i].name.data;
  16457. }
  16458. // returns the index
  16459. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16460. const int idx = gguf_find_key(ctx, key);
  16461. if (idx >= 0) {
  16462. return idx;
  16463. }
  16464. const int n_kv = gguf_get_n_kv(ctx);
  16465. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16466. ctx->kv[n_kv].key.n = strlen(key);
  16467. ctx->kv[n_kv].key.data = strdup(key);
  16468. ctx->header.n_kv++;
  16469. return n_kv;
  16470. }
  16471. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16472. const int idx = gguf_get_or_add_key(ctx, key);
  16473. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16474. ctx->kv[idx].value.uint8 = val;
  16475. }
  16476. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16477. const int idx = gguf_get_or_add_key(ctx, key);
  16478. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16479. ctx->kv[idx].value.int8 = val;
  16480. }
  16481. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16482. const int idx = gguf_get_or_add_key(ctx, key);
  16483. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16484. ctx->kv[idx].value.uint16 = val;
  16485. }
  16486. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16487. const int idx = gguf_get_or_add_key(ctx, key);
  16488. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16489. ctx->kv[idx].value.int16 = val;
  16490. }
  16491. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16492. const int idx = gguf_get_or_add_key(ctx, key);
  16493. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16494. ctx->kv[idx].value.uint32 = val;
  16495. }
  16496. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16497. const int idx = gguf_get_or_add_key(ctx, key);
  16498. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16499. ctx->kv[idx].value.int32 = val;
  16500. }
  16501. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16502. const int idx = gguf_get_or_add_key(ctx, key);
  16503. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16504. ctx->kv[idx].value.float32 = val;
  16505. }
  16506. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16507. const int idx = gguf_get_or_add_key(ctx, key);
  16508. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16509. ctx->kv[idx].value.uint64 = val;
  16510. }
  16511. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16512. const int idx = gguf_get_or_add_key(ctx, key);
  16513. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16514. ctx->kv[idx].value.int64 = val;
  16515. }
  16516. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16517. const int idx = gguf_get_or_add_key(ctx, key);
  16518. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16519. ctx->kv[idx].value.float64 = val;
  16520. }
  16521. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16522. const int idx = gguf_get_or_add_key(ctx, key);
  16523. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16524. ctx->kv[idx].value.bool_ = val;
  16525. }
  16526. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16527. const int idx = gguf_get_or_add_key(ctx, key);
  16528. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16529. ctx->kv[idx].value.str.n = strlen(val);
  16530. ctx->kv[idx].value.str.data = strdup(val);
  16531. }
  16532. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16533. const int idx = gguf_get_or_add_key(ctx, key);
  16534. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16535. ctx->kv[idx].value.arr.type = type;
  16536. ctx->kv[idx].value.arr.n = n;
  16537. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16538. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16539. }
  16540. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16541. const int idx = gguf_get_or_add_key(ctx, key);
  16542. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16543. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16544. ctx->kv[idx].value.arr.n = n;
  16545. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16546. for (int i = 0; i < n; i++) {
  16547. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16548. str->n = strlen(data[i]);
  16549. str->data = strdup(data[i]);
  16550. }
  16551. }
  16552. // set or add KV pairs from another context
  16553. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16554. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16555. switch (src->kv[i].type) {
  16556. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16557. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16558. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16559. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16560. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16561. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16562. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16563. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16564. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16565. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16566. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16567. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16568. case GGUF_TYPE_ARRAY:
  16569. {
  16570. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16571. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16572. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16573. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16574. }
  16575. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16576. free(data);
  16577. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16578. GGML_ASSERT(false && "nested arrays not supported");
  16579. } else {
  16580. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16581. }
  16582. } break;
  16583. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16584. }
  16585. }
  16586. }
  16587. void gguf_add_tensor(
  16588. struct gguf_context * ctx,
  16589. const struct ggml_tensor * tensor) {
  16590. const int idx = ctx->header.n_tensors;
  16591. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16592. ctx->infos[idx].name.n = strlen(tensor->name);
  16593. ctx->infos[idx].name.data = strdup(tensor->name);
  16594. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16595. ctx->infos[idx].ne[i] = 1;
  16596. }
  16597. ctx->infos[idx].n_dims = tensor->n_dims;
  16598. for (int i = 0; i < tensor->n_dims; i++) {
  16599. ctx->infos[idx].ne[i] = tensor->ne[i];
  16600. }
  16601. ctx->infos[idx].type = tensor->type;
  16602. ctx->infos[idx].offset = 0;
  16603. ctx->infos[idx].data = tensor->data;
  16604. ctx->infos[idx].size = ggml_nbytes(tensor);
  16605. if (ctx->header.n_tensors > 0) {
  16606. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16607. }
  16608. ctx->header.n_tensors++;
  16609. }
  16610. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16611. const int idx = gguf_find_tensor(ctx, name);
  16612. if (idx < 0) {
  16613. GGML_ASSERT(false && "tensor not found");
  16614. }
  16615. ctx->infos[idx].type = type;
  16616. }
  16617. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16618. const int idx = gguf_find_tensor(ctx, name);
  16619. if (idx < 0) {
  16620. GGML_ASSERT(false && "tensor not found");
  16621. }
  16622. ctx->infos[idx].data = data;
  16623. ctx->infos[idx].size = size;
  16624. // update offsets
  16625. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16626. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16627. }
  16628. }
  16629. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16630. // fwrite(&val->n, sizeof(val->n), 1, file);
  16631. // fwrite(val->data, sizeof(char), val->n, file);
  16632. //}
  16633. //
  16634. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16635. // fwrite(val, sizeof(char), size, file);
  16636. //}
  16637. struct gguf_buf {
  16638. void * data;
  16639. size_t size;
  16640. size_t offset;
  16641. };
  16642. static struct gguf_buf gguf_buf_init(size_t size) {
  16643. struct gguf_buf buf = {
  16644. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16645. /*buf.size =*/ size,
  16646. /*buf.offset =*/ 0,
  16647. };
  16648. return buf;
  16649. }
  16650. static void gguf_buf_free(struct gguf_buf buf) {
  16651. if (buf.data) {
  16652. free(buf.data);
  16653. }
  16654. }
  16655. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16656. if (buf->offset + size > buf->size) {
  16657. buf->size = 1.5*(buf->offset + size);
  16658. if (buf->data) {
  16659. buf->data = realloc(buf->data, buf->size);
  16660. }
  16661. }
  16662. }
  16663. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16664. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16665. if (buf->data) {
  16666. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16667. }
  16668. buf->offset += sizeof(val->n);
  16669. if (buf->data) {
  16670. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16671. }
  16672. buf->offset += val->n;
  16673. }
  16674. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16675. gguf_buf_grow(buf, el_size);
  16676. if (buf->data) {
  16677. memcpy((char *) buf->data + buf->offset, val, el_size);
  16678. }
  16679. buf->offset += el_size;
  16680. }
  16681. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16682. // write header
  16683. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16684. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16685. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16686. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16687. // write key-value pairs
  16688. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16689. struct gguf_kv * kv = &ctx->kv[i];
  16690. gguf_bwrite_str(buf, &kv->key);
  16691. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16692. switch (kv->type) {
  16693. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16694. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16695. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16696. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16697. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16698. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16699. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16700. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16701. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16702. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16703. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16704. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16705. case GGUF_TYPE_ARRAY:
  16706. {
  16707. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16708. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16709. switch (kv->value.arr.type) {
  16710. case GGUF_TYPE_UINT8:
  16711. case GGUF_TYPE_INT8:
  16712. case GGUF_TYPE_UINT16:
  16713. case GGUF_TYPE_INT16:
  16714. case GGUF_TYPE_UINT32:
  16715. case GGUF_TYPE_INT32:
  16716. case GGUF_TYPE_FLOAT32:
  16717. case GGUF_TYPE_UINT64:
  16718. case GGUF_TYPE_INT64:
  16719. case GGUF_TYPE_FLOAT64:
  16720. case GGUF_TYPE_BOOL:
  16721. {
  16722. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16723. } break;
  16724. case GGUF_TYPE_STRING:
  16725. {
  16726. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16727. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16728. }
  16729. } break;
  16730. case GGUF_TYPE_ARRAY:
  16731. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16732. };
  16733. } break;
  16734. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16735. };
  16736. }
  16737. // write tensor infos
  16738. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16739. struct gguf_tensor_info * info = &ctx->infos[i];
  16740. gguf_bwrite_str(buf, &info->name);
  16741. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16742. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16743. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16744. }
  16745. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16746. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16747. }
  16748. // we require the data section to be aligned, so take into account any padding
  16749. {
  16750. const size_t offset = buf->offset;
  16751. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16752. if (offset_pad != offset) {
  16753. uint8_t pad = 0;
  16754. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16755. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16756. }
  16757. }
  16758. }
  16759. if (only_meta) {
  16760. return;
  16761. }
  16762. size_t offset = 0;
  16763. // write tensor data
  16764. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16765. struct gguf_tensor_info * info = &ctx->infos[i];
  16766. const size_t size = info->size;
  16767. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16768. gguf_bwrite_el(buf, info->data, size);
  16769. if (size_pad != size) {
  16770. uint8_t pad = 0;
  16771. for (size_t j = 0; j < size_pad - size; ++j) {
  16772. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16773. }
  16774. }
  16775. GGML_ASSERT(offset == info->offset);
  16776. offset += size_pad;
  16777. }
  16778. }
  16779. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16780. FILE * file = fopen(fname, "wb");
  16781. if (!file) {
  16782. GGML_ASSERT(false && "failed to open file for writing");
  16783. }
  16784. struct gguf_buf buf = gguf_buf_init(16*1024);
  16785. gguf_write_to_buf(ctx, &buf, only_meta);
  16786. fwrite(buf.data, 1, buf.offset, file);
  16787. gguf_buf_free(buf);
  16788. fclose(file);
  16789. }
  16790. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16791. // no allocs - only compute size
  16792. struct gguf_buf buf = gguf_buf_init(0);
  16793. gguf_write_to_buf(ctx, &buf, true);
  16794. return buf.offset;
  16795. }
  16796. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16797. struct gguf_buf buf = gguf_buf_init(16*1024);
  16798. gguf_write_to_buf(ctx, &buf, true);
  16799. memcpy(data, buf.data, buf.offset);
  16800. gguf_buf_free(buf);
  16801. }
  16802. ////////////////////////////////////////////////////////////////////////////////
  16803. int ggml_cpu_has_avx(void) {
  16804. #if defined(__AVX__)
  16805. return 1;
  16806. #else
  16807. return 0;
  16808. #endif
  16809. }
  16810. int ggml_cpu_has_avx2(void) {
  16811. #if defined(__AVX2__)
  16812. return 1;
  16813. #else
  16814. return 0;
  16815. #endif
  16816. }
  16817. int ggml_cpu_has_avx512(void) {
  16818. #if defined(__AVX512F__)
  16819. return 1;
  16820. #else
  16821. return 0;
  16822. #endif
  16823. }
  16824. int ggml_cpu_has_avx512_vbmi(void) {
  16825. #if defined(__AVX512VBMI__)
  16826. return 1;
  16827. #else
  16828. return 0;
  16829. #endif
  16830. }
  16831. int ggml_cpu_has_avx512_vnni(void) {
  16832. #if defined(__AVX512VNNI__)
  16833. return 1;
  16834. #else
  16835. return 0;
  16836. #endif
  16837. }
  16838. int ggml_cpu_has_fma(void) {
  16839. #if defined(__FMA__)
  16840. return 1;
  16841. #else
  16842. return 0;
  16843. #endif
  16844. }
  16845. int ggml_cpu_has_neon(void) {
  16846. #if defined(__ARM_NEON)
  16847. return 1;
  16848. #else
  16849. return 0;
  16850. #endif
  16851. }
  16852. int ggml_cpu_has_arm_fma(void) {
  16853. #if defined(__ARM_FEATURE_FMA)
  16854. return 1;
  16855. #else
  16856. return 0;
  16857. #endif
  16858. }
  16859. int ggml_cpu_has_f16c(void) {
  16860. #if defined(__F16C__)
  16861. return 1;
  16862. #else
  16863. return 0;
  16864. #endif
  16865. }
  16866. int ggml_cpu_has_fp16_va(void) {
  16867. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16868. return 1;
  16869. #else
  16870. return 0;
  16871. #endif
  16872. }
  16873. int ggml_cpu_has_wasm_simd(void) {
  16874. #if defined(__wasm_simd128__)
  16875. return 1;
  16876. #else
  16877. return 0;
  16878. #endif
  16879. }
  16880. int ggml_cpu_has_blas(void) {
  16881. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16882. return 1;
  16883. #else
  16884. return 0;
  16885. #endif
  16886. }
  16887. int ggml_cpu_has_cublas(void) {
  16888. #if defined(GGML_USE_CUBLAS)
  16889. return 1;
  16890. #else
  16891. return 0;
  16892. #endif
  16893. }
  16894. int ggml_cpu_has_clblast(void) {
  16895. #if defined(GGML_USE_CLBLAST)
  16896. return 1;
  16897. #else
  16898. return 0;
  16899. #endif
  16900. }
  16901. int ggml_cpu_has_gpublas(void) {
  16902. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16903. }
  16904. int ggml_cpu_has_sse3(void) {
  16905. #if defined(__SSE3__)
  16906. return 1;
  16907. #else
  16908. return 0;
  16909. #endif
  16910. }
  16911. int ggml_cpu_has_ssse3(void) {
  16912. #if defined(__SSSE3__)
  16913. return 1;
  16914. #else
  16915. return 0;
  16916. #endif
  16917. }
  16918. int ggml_cpu_has_vsx(void) {
  16919. #if defined(__POWER9_VECTOR__)
  16920. return 1;
  16921. #else
  16922. return 0;
  16923. #endif
  16924. }
  16925. ////////////////////////////////////////////////////////////////////////////////