convert-hf-to-gguf.py 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from enum import IntEnum
  10. from pathlib import Path
  11. from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
  12. import numpy as np
  13. import torch
  14. if TYPE_CHECKING:
  15. from torch import Tensor
  16. if 'NO_LOCAL_GGUF' not in os.environ:
  17. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  18. import gguf
  19. ###### MODEL DEFINITIONS ######
  20. class SentencePieceTokenTypes(IntEnum):
  21. NORMAL = 1
  22. UNKNOWN = 2
  23. CONTROL = 3
  24. USER_DEFINED = 4
  25. UNUSED = 5
  26. BYTE = 6
  27. class Model:
  28. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  29. self.dir_model = dir_model
  30. self.ftype = ftype
  31. self.fname_out = fname_out
  32. self.is_big_endian = is_big_endian
  33. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  34. self.is_safetensors = self._is_model_safetensors()
  35. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  36. self.part_names = self._get_part_names()
  37. self.hparams = Model.load_hparams(self.dir_model)
  38. self.model_arch = self._get_model_architecture()
  39. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
  40. def set_vocab(self):
  41. self._set_vocab_gpt2()
  42. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  43. for part_name in self.part_names:
  44. print(f"gguf: loading model part '{part_name}'")
  45. ctx: ContextManager[Any]
  46. if self.is_safetensors:
  47. from safetensors import safe_open
  48. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  49. else:
  50. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  51. with ctx as model_part:
  52. for name in model_part.keys():
  53. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  54. yield name, data
  55. def set_gguf_parameters(self):
  56. self.gguf_writer.add_name(self.dir_model.name)
  57. self.gguf_writer.add_block_count(self.hparams.get(
  58. "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
  59. ))
  60. if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
  61. self.gguf_writer.add_context_length(n_ctx)
  62. if (n_embd := self.hparams.get("hidden_size")) is not None:
  63. self.gguf_writer.add_embedding_length(n_embd)
  64. if (n_ff := self.hparams.get("intermediate_size")) is not None:
  65. self.gguf_writer.add_feed_forward_length(n_ff)
  66. if (n_head := self.hparams.get("num_attention_heads")) is not None:
  67. self.gguf_writer.add_head_count(n_head)
  68. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  69. self.gguf_writer.add_head_count_kv(n_head_kv)
  70. if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  71. self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
  72. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  73. self.gguf_writer.add_expert_count(n_experts)
  74. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  75. self.gguf_writer.add_expert_used_count(n_experts_used)
  76. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  77. def write_tensors(self):
  78. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  79. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  80. for name, data_torch in self.get_tensors():
  81. # we don't need these
  82. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  83. continue
  84. old_dtype = data_torch.dtype
  85. # convert any unsupported data types to float32
  86. if data_torch.dtype not in (torch.float16, torch.float32):
  87. data_torch = data_torch.to(torch.float32)
  88. data = data_torch.squeeze().numpy()
  89. # map tensor names
  90. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  91. if new_name is None:
  92. print(f"Can not map tensor {name!r}")
  93. sys.exit()
  94. n_dims = len(data.shape)
  95. data_dtype = data.dtype
  96. # if f32 desired, convert any float16 to float32
  97. if self.ftype == 0 and data_dtype == np.float16:
  98. data = data.astype(np.float32)
  99. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  100. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  101. data = data.astype(np.float32)
  102. # if f16 desired, convert any float32 2-dim weight tensors to float16
  103. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  104. data = data.astype(np.float16)
  105. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  106. self.gguf_writer.add_tensor(new_name, data)
  107. def write(self):
  108. self.write_tensors()
  109. self.gguf_writer.write_header_to_file()
  110. self.gguf_writer.write_kv_data_to_file()
  111. self.gguf_writer.write_tensors_to_file()
  112. self.gguf_writer.close()
  113. def write_vocab(self):
  114. self.gguf_writer.write_header_to_file()
  115. self.gguf_writer.write_kv_data_to_file()
  116. self.gguf_writer.close()
  117. @staticmethod
  118. def count_model_parts(dir_model: Path, prefix: str) -> int:
  119. num_parts = 0
  120. for filename in os.listdir(dir_model):
  121. if filename.endswith(prefix):
  122. num_parts += 1
  123. return num_parts
  124. @staticmethod
  125. def load_hparams(dir_model):
  126. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  127. return json.load(f)
  128. @staticmethod
  129. def from_model_architecture(model_architecture):
  130. if model_architecture == "GPTNeoXForCausalLM":
  131. return GPTNeoXModel
  132. if model_architecture == "BloomForCausalLM":
  133. return BloomModel
  134. if model_architecture == "MPTForCausalLM":
  135. return MPTModel
  136. if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
  137. return BaichuanModel
  138. if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
  139. return FalconModel
  140. if model_architecture == "GPTBigCodeForCausalLM":
  141. return StarCoderModel
  142. if model_architecture == "GPTRefactForCausalLM":
  143. return RefactModel
  144. if model_architecture == "PersimmonForCausalLM":
  145. return PersimmonModel
  146. if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
  147. return StableLMModel
  148. if model_architecture == "QWenLMHeadModel":
  149. return QwenModel
  150. if model_architecture == "MixtralForCausalLM":
  151. return MixtralModel
  152. if model_architecture == "PhiForCausalLM":
  153. return Phi2Model
  154. return Model
  155. def _is_model_safetensors(self) -> bool:
  156. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  157. def _get_part_names(self):
  158. if self.is_safetensors:
  159. if self.num_parts == 1: # there's only one .safetensors file
  160. return ("model.safetensors",)
  161. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  162. if self.num_parts == 1: # there's only one .bin file
  163. return ("pytorch_model.bin",)
  164. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  165. def _get_model_architecture(self) -> gguf.MODEL_ARCH:
  166. arch = self.hparams["architectures"][0]
  167. if arch == "GPTNeoXForCausalLM":
  168. return gguf.MODEL_ARCH.GPTNEOX
  169. if arch == "BloomForCausalLM":
  170. return gguf.MODEL_ARCH.BLOOM
  171. if arch == "MPTForCausalLM":
  172. return gguf.MODEL_ARCH.MPT
  173. if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
  174. return gguf.MODEL_ARCH.BAICHUAN
  175. if arch in ("FalconForCausalLM", "RWForCausalLM"):
  176. return gguf.MODEL_ARCH.FALCON
  177. if arch == "GPTBigCodeForCausalLM":
  178. return gguf.MODEL_ARCH.STARCODER
  179. if arch == "GPTRefactForCausalLM":
  180. return gguf.MODEL_ARCH.REFACT
  181. if arch == "PersimmonForCausalLM":
  182. return gguf.MODEL_ARCH.PERSIMMON
  183. if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
  184. return gguf.MODEL_ARCH.STABLELM
  185. if arch == "QWenLMHeadModel":
  186. return gguf.MODEL_ARCH.QWEN
  187. if arch == "MixtralForCausalLM":
  188. return gguf.MODEL_ARCH.LLAMA
  189. if arch == "PhiForCausalLM":
  190. return gguf.MODEL_ARCH.PHI2
  191. raise NotImplementedError(f'Architecture "{arch}" not supported!')
  192. def _set_vocab_gpt2(self):
  193. dir_model = self.dir_model
  194. hparams = self.hparams
  195. tokens: list[bytearray] = []
  196. toktypes: list[int] = []
  197. from transformers import AutoTokenizer # type: ignore[attr-defined]
  198. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  199. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  200. assert max(tokenizer.vocab.values()) < vocab_size
  201. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  202. added_vocab = tokenizer.get_added_vocab()
  203. for i in range(vocab_size):
  204. if i not in reverse_vocab:
  205. pad_token = f"[PAD{i}]".encode('utf-8')
  206. tokens.append(bytearray(pad_token))
  207. toktypes.append(gguf.TokenType.USER_DEFINED)
  208. elif reverse_vocab[i] in added_vocab:
  209. tokens.append(reverse_vocab[i])
  210. if tokenizer.added_tokens_decoder[i].special:
  211. toktypes.append(gguf.TokenType.CONTROL)
  212. else:
  213. toktypes.append(gguf.TokenType.USER_DEFINED)
  214. else:
  215. tokens.append(reverse_vocab[i])
  216. toktypes.append(gguf.TokenType.NORMAL)
  217. self.gguf_writer.add_tokenizer_model("gpt2")
  218. self.gguf_writer.add_token_list(tokens)
  219. self.gguf_writer.add_token_types(toktypes)
  220. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  221. special_vocab.add_to_gguf(self.gguf_writer)
  222. def _set_vocab_sentencepiece(self):
  223. from sentencepiece import SentencePieceProcessor
  224. tokenizer_path = self.dir_model / 'tokenizer.model'
  225. tokens: list[bytes] = []
  226. scores: list[float] = []
  227. toktypes: list[int] = []
  228. if not tokenizer_path.is_file():
  229. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  230. sys.exit(1)
  231. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  232. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  233. for token_id in range(vocab_size):
  234. piece = tokenizer.id_to_piece(token_id)
  235. text = piece.encode("utf-8")
  236. score = tokenizer.get_score(token_id)
  237. toktype = SentencePieceTokenTypes.NORMAL
  238. if tokenizer.is_unknown(token_id):
  239. toktype = SentencePieceTokenTypes.UNKNOWN
  240. elif tokenizer.is_control(token_id):
  241. toktype = SentencePieceTokenTypes.CONTROL
  242. elif tokenizer.is_unused(token_id):
  243. toktype = SentencePieceTokenTypes.UNUSED
  244. elif tokenizer.is_byte(token_id):
  245. toktype = SentencePieceTokenTypes.BYTE
  246. tokens.append(text)
  247. scores.append(score)
  248. toktypes.append(toktype)
  249. added_tokens_file = self.dir_model / 'added_tokens.json'
  250. if added_tokens_file.is_file():
  251. with open(added_tokens_file, "r", encoding="utf-8") as f:
  252. added_tokens_json = json.load(f)
  253. for key in added_tokens_json:
  254. tokens.append(key.encode("utf-8"))
  255. scores.append(-1000.0)
  256. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  257. self.gguf_writer.add_tokenizer_model("llama")
  258. self.gguf_writer.add_token_list(tokens)
  259. self.gguf_writer.add_token_scores(scores)
  260. self.gguf_writer.add_token_types(toktypes)
  261. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  262. special_vocab.add_to_gguf(self.gguf_writer)
  263. class GPTNeoXModel(Model):
  264. def set_gguf_parameters(self):
  265. block_count = self.hparams["num_hidden_layers"]
  266. self.gguf_writer.add_name(self.dir_model.name)
  267. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  268. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  269. self.gguf_writer.add_block_count(block_count)
  270. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  271. self.gguf_writer.add_rope_dimension_count(
  272. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  273. )
  274. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  275. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  276. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  277. class BloomModel(Model):
  278. def set_gguf_parameters(self):
  279. self.gguf_writer.add_name("Bloom")
  280. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  281. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  282. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  283. self.gguf_writer.add_embedding_length(n_embed)
  284. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  285. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  286. self.gguf_writer.add_head_count(n_head)
  287. self.gguf_writer.add_head_count_kv(n_head)
  288. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  289. self.gguf_writer.add_file_type(self.ftype)
  290. def write_tensors(self):
  291. block_count = self.hparams["n_layer"]
  292. tensors = dict(self.get_tensors())
  293. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  294. has_lm_head = True
  295. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  296. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  297. for name, data_torch in tensors.items():
  298. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  299. has_lm_head = False
  300. name = re.sub(r'transformer\.', '', name)
  301. old_dtype = data_torch.dtype
  302. # convert any unsupported data types to float32
  303. if data_torch.dtype not in (torch.float16, torch.float32):
  304. data_torch = data_torch.to(torch.float32)
  305. data = data_torch.squeeze().numpy()
  306. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  307. # Map bloom-style qkv_linear to gpt-style qkv_linear
  308. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  309. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  310. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  311. data = np.concatenate(
  312. (
  313. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  314. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  315. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  316. ),
  317. axis=0,
  318. )
  319. print("re-format attention.linear_qkv.weight")
  320. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  321. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  322. data = np.concatenate(
  323. (
  324. qkv_bias[:, 0, :].reshape((n_embed,)),
  325. qkv_bias[:, 1, :].reshape((n_embed,)),
  326. qkv_bias[:, 2, :].reshape((n_embed,)),
  327. ),
  328. axis=0,
  329. )
  330. print("re-format attention.linear_qkv.bias")
  331. # map tensor names
  332. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  333. if new_name is None:
  334. print(f"Can not map tensor {name!r}")
  335. sys.exit()
  336. n_dims = len(data.shape)
  337. data_dtype = data.dtype
  338. # if f32 desired, convert any float16 to float32
  339. if self.ftype == 0 and data_dtype == np.float16:
  340. data = data.astype(np.float32)
  341. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  342. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  343. data = data.astype(np.float32)
  344. # if f16 desired, convert any float32 2-dim weight tensors to float16
  345. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  346. data = data.astype(np.float16)
  347. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  348. self.gguf_writer.add_tensor(new_name, data)
  349. if not has_lm_head and name == "word_embeddings.weight":
  350. self.gguf_writer.add_tensor("output.weight", data)
  351. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  352. class MPTModel(Model):
  353. def set_gguf_parameters(self):
  354. block_count = self.hparams["n_layers"]
  355. self.gguf_writer.add_name(self.dir_model.name)
  356. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  357. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  358. self.gguf_writer.add_block_count(block_count)
  359. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  360. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  361. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  362. self.gguf_writer.add_head_count_kv(kv_n_heads)
  363. self.gguf_writer.add_layer_norm_eps(1e-5)
  364. if self.hparams["attn_config"]["clip_qkv"] is not None:
  365. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  366. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  367. def write_tensors(self):
  368. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  369. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  370. for name, data_torch in self.get_tensors():
  371. # we don't need these
  372. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  373. continue
  374. old_dtype = data_torch.dtype
  375. # convert any unsupported data types to float32
  376. if data_torch.dtype not in (torch.float16, torch.float32):
  377. data_torch = data_torch.to(torch.float32)
  378. data = data_torch.squeeze().numpy()
  379. # map tensor names
  380. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  381. if new_name is None:
  382. print(f"Can not map tensor {name!r}")
  383. sys.exit()
  384. n_dims = len(data.shape)
  385. data_dtype = data.dtype
  386. # if f32 desired, convert any float16 to float32
  387. if self.ftype == 0 and data_dtype == np.float16:
  388. data = data.astype(np.float32)
  389. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  390. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  391. data = data.astype(np.float32)
  392. # if f16 desired, convert any float32 2-dim weight tensors to float16
  393. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  394. data = data.astype(np.float16)
  395. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  396. self.gguf_writer.add_tensor(new_name, data)
  397. # note: MPT output is tied to (same as) wte in original model;
  398. # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
  399. if new_name == "token_embd.weight":
  400. self.gguf_writer.add_tensor("output.weight", data)
  401. class BaichuanModel(Model):
  402. def set_vocab(self):
  403. self._set_vocab_sentencepiece()
  404. def set_gguf_parameters(self):
  405. block_count = self.hparams["num_hidden_layers"]
  406. head_count = self.hparams["num_attention_heads"]
  407. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  408. hf_repo = self.hparams.get("_name_or_path", "")
  409. ctx_length = 0
  410. if "max_sequence_length" in self.hparams:
  411. ctx_length = self.hparams["max_sequence_length"]
  412. elif "max_position_embeddings" in self.hparams:
  413. ctx_length = self.hparams["max_position_embeddings"]
  414. elif "model_max_length" in self.hparams:
  415. ctx_length = self.hparams["model_max_length"]
  416. else:
  417. print("gguf: can not find ctx length parameter.")
  418. sys.exit()
  419. self.gguf_writer.add_name(self.dir_model.name)
  420. self.gguf_writer.add_source_hf_repo(hf_repo)
  421. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  422. self.gguf_writer.add_context_length(ctx_length)
  423. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  424. self.gguf_writer.add_block_count(block_count)
  425. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  426. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  427. self.gguf_writer.add_head_count(head_count)
  428. self.gguf_writer.add_head_count_kv(head_count_kv)
  429. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  430. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  431. if self.hparams["rope_scaling"].get("type") == "linear":
  432. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  433. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  434. def write_tensors(self):
  435. # Collect tensors from generator object
  436. model_kv = dict(self.get_tensors())
  437. block_count = self.hparams["num_hidden_layers"]
  438. head_count = self.hparams["num_attention_heads"]
  439. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  440. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  441. for i in range(block_count):
  442. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  443. print(f"Unpacking and permuting layer {i}")
  444. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  445. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  446. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  447. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  448. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  449. self._reverse_hf_part(w, 2)
  450. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  451. for name, data_torch in model_kv.items():
  452. # we don't need these
  453. if name.endswith(".rotary_emb.inv_freq"):
  454. continue
  455. old_dtype = data_torch.dtype
  456. # convert any unsupported data types to float32
  457. if data_torch.dtype not in (torch.float16, torch.float32):
  458. data_torch = data_torch.to(torch.float32)
  459. data = data_torch.squeeze().numpy()
  460. # map tensor names
  461. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  462. if new_name is None:
  463. print(f"Can not map tensor {name!r}")
  464. sys.exit()
  465. n_dims = len(data.shape)
  466. data_dtype = data.dtype
  467. # if f32 desired, convert any float16 to float32
  468. if self.ftype == 0 and data_dtype == np.float16:
  469. data = data.astype(np.float32)
  470. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  471. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  472. data = data.astype(np.float32)
  473. # if f16 desired, convert any float32 2-dim weight tensors to float16
  474. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  475. data = data.astype(np.float16)
  476. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  477. self.gguf_writer.add_tensor(new_name, data)
  478. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  479. if n_kv_head is not None and n_head != n_kv_head:
  480. n_head //= n_kv_head
  481. return (
  482. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  483. .swapaxes(1, 2)
  484. .reshape(weights.shape)
  485. )
  486. def _reverse_hf_permute_part(
  487. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  488. ) -> Tensor:
  489. r = weights.shape[0] // 3
  490. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  491. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  492. r = weights.shape[0] // 3
  493. return weights[r * n_part:r * n_part + r, ...]
  494. class FalconModel(Model):
  495. def set_gguf_parameters(self):
  496. block_count = self.hparams.get("num_hidden_layers")
  497. if block_count is None:
  498. block_count = self.hparams["n_layer"] # old name
  499. n_head = self.hparams.get("num_attention_heads")
  500. if n_head is None:
  501. n_head = self.hparams["n_head"] # old name
  502. n_head_kv = self.hparams.get("num_kv_heads")
  503. if n_head_kv is None:
  504. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  505. self.gguf_writer.add_name("Falcon")
  506. self.gguf_writer.add_context_length(2048) # not in config.json
  507. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  508. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  509. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  510. self.gguf_writer.add_block_count(block_count)
  511. self.gguf_writer.add_head_count(n_head)
  512. self.gguf_writer.add_head_count_kv(n_head_kv)
  513. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  514. self.gguf_writer.add_file_type(self.ftype)
  515. def write_tensors(self):
  516. block_count = self.hparams.get("num_hidden_layers")
  517. if block_count is None:
  518. block_count = self.hparams["n_layer"] # old name
  519. n_head = self.hparams.get("num_attention_heads")
  520. if n_head is None:
  521. n_head = self.hparams["n_head"] # old name
  522. n_head_kv = self.hparams.get("num_kv_heads")
  523. if n_head_kv is None:
  524. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  525. head_dim = self.hparams["hidden_size"] // n_head
  526. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  527. for name, data_torch in self.get_tensors():
  528. old_dtype = data_torch.dtype
  529. # convert any unsupported data types to float32
  530. if data_torch.dtype not in (torch.float16, torch.float32):
  531. data_torch = data_torch.to(torch.float32)
  532. # QKV tensor transform
  533. # The original query_key_value tensor contains n_head_kv "kv groups",
  534. # each consisting of n_head/n_head_kv query weights followed by one key
  535. # and one value weight (shared by all query heads in the kv group).
  536. # This layout makes it a big pain to work with in GGML.
  537. # So we rearrange them here,, so that we have n_head query weights
  538. # followed by n_head_kv key weights followed by n_head_kv value weights,
  539. # in contiguous fashion.
  540. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  541. if "query_key_value" in name:
  542. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  543. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  544. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  545. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  546. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  547. data = data_torch.squeeze().numpy()
  548. # map tensor names
  549. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  550. if new_name is None:
  551. print(f"Can not map tensor {name!r}")
  552. sys.exit()
  553. n_dims = len(data.shape)
  554. data_dtype = data.dtype
  555. # if f32 desired, convert any float16 to float32
  556. if self.ftype == 0 and data_dtype == np.float16:
  557. data = data.astype(np.float32)
  558. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  559. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  560. data = data.astype(np.float32)
  561. # if f16 desired, convert any float32 2-dim weight tensors to float16
  562. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  563. data = data.astype(np.float16)
  564. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  565. self.gguf_writer.add_tensor(new_name, data)
  566. class StarCoderModel(Model):
  567. def set_gguf_parameters(self):
  568. block_count = self.hparams["n_layer"]
  569. self.gguf_writer.add_name("StarCoder")
  570. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  571. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  572. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  573. self.gguf_writer.add_block_count(block_count)
  574. self.gguf_writer.add_head_count(self.hparams["n_head"])
  575. self.gguf_writer.add_head_count_kv(1)
  576. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  577. self.gguf_writer.add_file_type(self.ftype)
  578. class RefactModel(Model):
  579. def set_gguf_parameters(self):
  580. hidden_dim = self.hparams["n_embd"]
  581. inner_dim = 4 * hidden_dim
  582. hidden_dim = int(2 * inner_dim / 3)
  583. multiple_of = 256
  584. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  585. block_count = self.hparams["n_layer"]
  586. self.gguf_writer.add_name("Refact")
  587. # refact uses Alibi. So this is from config.json which might be used by training.
  588. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  589. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  590. self.gguf_writer.add_feed_forward_length(ff_dim)
  591. self.gguf_writer.add_block_count(block_count)
  592. self.gguf_writer.add_head_count(self.hparams["n_head"])
  593. self.gguf_writer.add_head_count_kv(1)
  594. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  595. self.gguf_writer.add_file_type(self.ftype)
  596. def write_tensors(self):
  597. hidden_dim = self.hparams["n_embd"]
  598. inner_dim = 4 * hidden_dim
  599. hidden_dim = int(2 * inner_dim / 3)
  600. multiple_of = 256
  601. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  602. n_head = self.hparams["n_head"]
  603. n_head_kv = 1
  604. head_dim = self.hparams["n_embd"] // n_head
  605. block_count = self.hparams["n_layer"]
  606. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  607. tensors = dict(self.get_tensors())
  608. for i in range(block_count):
  609. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  610. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  611. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  612. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  613. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  614. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  615. del tensors[f"transformer.h.{i}.attn.q.weight"]
  616. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  617. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  618. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  619. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  620. for name, data_torch in tensors.items():
  621. old_dtype = data_torch.dtype
  622. # convert any unsupported data types to float32
  623. if data_torch.dtype not in (torch.float16, torch.float32):
  624. data_torch = data_torch.to(torch.float32)
  625. data = data_torch.squeeze().numpy()
  626. # map tensor names
  627. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  628. if new_name is None:
  629. print(f"Can not map tensor {name!r}")
  630. sys.exit()
  631. n_dims = len(data.shape)
  632. data_dtype = data.dtype
  633. # if f32 desired, convert any float16 to float32
  634. if self.ftype == 0 and data_dtype == np.float16:
  635. data = data.astype(np.float32)
  636. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  637. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  638. data = data.astype(np.float32)
  639. # if f16 desired, convert any float32 2-dim weight tensors to float16
  640. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  641. data = data.astype(np.float16)
  642. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  643. self.gguf_writer.add_tensor(new_name, data)
  644. class PersimmonModel(Model):
  645. def set_gguf_parameters(self):
  646. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  647. head_count = self.hparams["num_attention_heads"]
  648. head_count_kv = head_count
  649. hidden_size = self.hparams["hidden_size"]
  650. self.gguf_writer.add_name('persimmon-8b-chat')
  651. self.gguf_writer.add_embedding_length(hidden_size)
  652. self.gguf_writer.add_block_count(block_count)
  653. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  654. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  655. self.gguf_writer.add_head_count(head_count)
  656. self.gguf_writer.add_head_count_kv(head_count_kv)
  657. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  658. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  659. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  660. def set_vocab(self):
  661. self._set_vocab_sentencepiece()
  662. # self.gguf_writer.add_bos_token_id(71013)
  663. # self.gguf_writer.add_eos_token_id(71013)
  664. def write_tensors(self):
  665. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  666. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  667. for name, data_torch in self.get_tensors():
  668. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  669. continue
  670. old_dtype = data_torch.dtype
  671. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  672. data = data_torch.to(torch.float32).squeeze().numpy()
  673. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  674. if new_name is None:
  675. print(f"Can not map tensor {name!r}")
  676. sys.exit()
  677. n_dims = len(data.shape)
  678. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  679. self.gguf_writer.add_tensor(new_name, data)
  680. class StableLMModel(Model):
  681. def set_gguf_parameters(self):
  682. hparams = self.hparams
  683. block_count = hparams["num_hidden_layers"]
  684. self.gguf_writer.add_name(dir_model.name)
  685. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  686. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  687. self.gguf_writer.add_block_count(block_count)
  688. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  689. self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  690. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  691. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  692. self.gguf_writer.add_layer_norm_eps(1e-5)
  693. class MixtralModel(Model):
  694. def set_vocab(self):
  695. self._set_vocab_sentencepiece()
  696. class QwenModel(Model):
  697. @staticmethod
  698. def token_bytes_to_string(b):
  699. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  700. byte_encoder = bytes_to_unicode()
  701. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  702. @staticmethod
  703. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
  704. parts = [bytes([b]) for b in token]
  705. while True:
  706. min_idx = None
  707. min_rank = None
  708. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  709. rank = mergeable_ranks.get(pair[0] + pair[1])
  710. if rank is not None and (min_rank is None or rank < min_rank):
  711. min_idx = i
  712. min_rank = rank
  713. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  714. break
  715. assert min_idx is not None
  716. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  717. return parts
  718. def set_vocab(self):
  719. dir_model = self.dir_model
  720. hparams = self.hparams
  721. tokens: list[bytearray] = []
  722. toktypes: list[int] = []
  723. from transformers import AutoTokenizer # type: ignore[attr-defined]
  724. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  725. vocab_size = hparams["vocab_size"]
  726. assert max(tokenizer.get_vocab().values()) < vocab_size
  727. merges = []
  728. vocab = {}
  729. mergeable_ranks = tokenizer.mergeable_ranks
  730. for token, rank in mergeable_ranks.items():
  731. vocab[self.token_bytes_to_string(token)] = rank
  732. if len(token) == 1:
  733. continue
  734. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  735. assert len(merged) == 2
  736. merges.append(' '.join(map(self.token_bytes_to_string, merged)))
  737. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
  738. added_vocab = tokenizer.special_tokens
  739. for i in range(vocab_size):
  740. if i not in reverse_vocab:
  741. pad_token = f"[PAD{i}]".encode("utf-8")
  742. tokens.append(bytearray(pad_token))
  743. toktypes.append(gguf.TokenType.USER_DEFINED)
  744. elif reverse_vocab[i] in added_vocab:
  745. tokens.append(reverse_vocab[i])
  746. toktypes.append(gguf.TokenType.CONTROL)
  747. else:
  748. tokens.append(reverse_vocab[i])
  749. toktypes.append(gguf.TokenType.NORMAL)
  750. self.gguf_writer.add_tokenizer_model("gpt2")
  751. self.gguf_writer.add_token_list(tokens)
  752. self.gguf_writer.add_token_types(toktypes)
  753. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  754. special_vocab.merges = merges
  755. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  756. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  757. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  758. special_vocab.add_to_gguf(self.gguf_writer)
  759. def set_gguf_parameters(self):
  760. self.gguf_writer.add_name("Qwen")
  761. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  762. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  763. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  764. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  765. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  766. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  767. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  768. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  769. def write_tensors(self):
  770. block_count = self.hparams["num_hidden_layers"]
  771. model_kv = dict(self.get_tensors())
  772. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  773. for name, data_torch in model_kv.items():
  774. # we don't need these
  775. if name.endswith(".rotary_emb.inv_freq"):
  776. continue
  777. old_dtype = data_torch.dtype
  778. # convert any unsupported data types to float32
  779. if data_torch.dtype not in (torch.float16, torch.float32):
  780. data_torch = data_torch.to(torch.float32)
  781. data = data_torch.squeeze().numpy()
  782. # map tensor names
  783. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  784. if new_name is None:
  785. print(f"Can not map tensor {name!r}")
  786. sys.exit()
  787. n_dims = len(data.shape)
  788. data_dtype = data.dtype
  789. # if f32 desired, convert any float16 to float32
  790. if self.ftype == 0 and data_dtype == np.float16:
  791. data = data.astype(np.float32)
  792. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  793. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  794. data = data.astype(np.float32)
  795. # if f16 desired, convert any float32 2-dim weight tensors to float16
  796. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  797. data = data.astype(np.float16)
  798. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  799. self.gguf_writer.add_tensor(new_name, data)
  800. class Phi2Model(Model):
  801. def set_gguf_parameters(self):
  802. block_count = self.hparams["n_layer"]
  803. self.gguf_writer.add_name("Phi2")
  804. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  805. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  806. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  807. self.gguf_writer.add_block_count(block_count)
  808. self.gguf_writer.add_head_count(self.hparams["n_head"])
  809. self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
  810. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  811. self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
  812. self.gguf_writer.add_file_type(self.ftype)
  813. self.gguf_writer.add_add_bos_token(False)
  814. ###### CONVERSION LOGIC ######
  815. def parse_args() -> argparse.Namespace:
  816. parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
  817. parser.add_argument(
  818. "--vocab-only", action="store_true",
  819. help="extract only the vocab",
  820. )
  821. parser.add_argument(
  822. "--outfile", type=Path,
  823. help="path to write to; default: based on input",
  824. )
  825. parser.add_argument(
  826. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  827. help="output format - use f32 for float32, f16 for float16",
  828. )
  829. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  830. parser.add_argument(
  831. "model", type=Path,
  832. help="directory containing model file",
  833. )
  834. return parser.parse_args()
  835. args = parse_args()
  836. dir_model = args.model
  837. if not dir_model.is_dir():
  838. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  839. sys.exit(1)
  840. ftype_map = {
  841. "f32": gguf.GGMLQuantizationType.F32,
  842. "f16": gguf.GGMLQuantizationType.F16,
  843. }
  844. if args.outfile is not None:
  845. fname_out = args.outfile
  846. else:
  847. # output in the same directory as the model by default
  848. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  849. print(f"Loading model: {dir_model.name}")
  850. hparams = Model.load_hparams(dir_model)
  851. with torch.inference_mode():
  852. model_class = Model.from_model_architecture(hparams["architectures"][0])
  853. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  854. print("Set model parameters")
  855. model_instance.set_gguf_parameters()
  856. print("Set model tokenizer")
  857. model_instance.set_vocab()
  858. if args.vocab_only:
  859. print(f"Exporting model vocab to '{fname_out}'")
  860. model_instance.write_vocab()
  861. else:
  862. print(f"Exporting model to '{fname_out}'")
  863. model_instance.write()
  864. print(f"Model successfully exported to '{fname_out}'")