| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006 |
- #include <algorithm>
- #include <assert.h>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <float.h>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <vector>
- #if defined(GGML_USE_HIPBLAS)
- #include <hip/hip_runtime.h>
- #include <hipblas/hipblas.h>
- #include <hip/hip_fp16.h>
- #ifdef __HIP_PLATFORM_AMD__
- // for rocblas_initialize()
- #include "rocblas/rocblas.h"
- #endif // __HIP_PLATFORM_AMD__
- #define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
- #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
- #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
- #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_OP_N HIPBLAS_OP_N
- #define CUBLAS_OP_T HIPBLAS_OP_T
- #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
- #define CUBLAS_TF32_TENSOR_OP_MATH 0
- #define CUDA_R_16F HIPBLAS_R_16F
- #define CUDA_R_32F HIPBLAS_R_32F
- #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
- #define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
- #define cublasCreate hipblasCreate
- #define cublasGemmEx hipblasGemmEx
- #define cublasGemmBatchedEx hipblasGemmBatchedEx
- #define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
- #define cublasHandle_t hipblasHandle_t
- #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
- #define cublasSetStream hipblasSetStream
- #define cublasSgemm hipblasSgemm
- #define cublasStatus_t hipblasStatus_t
- #define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
- #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
- #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
- #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
- #define cudaDeviceProp hipDeviceProp_t
- #define cudaDeviceSynchronize hipDeviceSynchronize
- #define cudaError_t hipError_t
- #define cudaEventCreateWithFlags hipEventCreateWithFlags
- #define cudaEventDisableTiming hipEventDisableTiming
- #define cudaEventRecord hipEventRecord
- #define cudaEvent_t hipEvent_t
- #define cudaEventDestroy hipEventDestroy
- #define cudaFree hipFree
- #define cudaFreeHost hipHostFree
- #define cudaGetDevice hipGetDevice
- #define cudaGetDeviceCount hipGetDeviceCount
- #define cudaGetDeviceProperties hipGetDeviceProperties
- #define cudaGetErrorString hipGetErrorString
- #define cudaGetLastError hipGetLastError
- #ifdef GGML_HIP_UMA
- #define cudaMalloc hipMallocManaged
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
- #else
- #define cudaMalloc hipMalloc
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
- #endif
- #define cudaMemcpy hipMemcpy
- #define cudaMemcpy2DAsync hipMemcpy2DAsync
- #define cudaMemcpyAsync hipMemcpyAsync
- #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
- #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
- #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
- #define cudaMemcpyKind hipMemcpyKind
- #define cudaMemset hipMemset
- #define cudaMemsetAsync hipMemsetAsync
- #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
- #define cudaSetDevice hipSetDevice
- #define cudaStreamCreateWithFlags hipStreamCreateWithFlags
- #define cudaStreamFireAndForget hipStreamFireAndForget
- #define cudaStreamNonBlocking hipStreamNonBlocking
- #define cudaStreamSynchronize hipStreamSynchronize
- #define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
- #define cudaStream_t hipStream_t
- #define cudaSuccess hipSuccess
- #define __trap abort
- #else
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #endif // defined(GGML_USE_HIPBLAS)
- #include "ggml-cuda.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #define CC_VOLTA 700
- #define CC_OFFSET_AMD 1000000
- #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
- #define GGML_CUDA_MAX_NODES 8192
- // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
- // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
- // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
- // - 7B quantum model: +100-200 MB
- // - 13B quantum model: +200-400 MB
- //
- //#define GGML_CUDA_FORCE_MMQ
- // TODO: improve this to be correct for more hardware
- // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
- // probably other such cases, and not sure what happens on AMD hardware
- #if !defined(GGML_CUDA_FORCE_MMQ)
- #define CUDA_USE_TENSOR_CORES
- #endif
- // max batch size to use MMQ kernels when tensor cores are available
- #define MMQ_MAX_BATCH_SIZE 32
- #if defined(GGML_USE_HIPBLAS)
- #define __CUDA_ARCH__ 1300
- #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
- defined(__gfx1150__) || defined(__gfx1151__)
- #define RDNA3
- #endif
- #if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
- defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
- #define RDNA2
- #endif
- #ifndef __has_builtin
- #define __has_builtin(x) 0
- #endif
- typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
- static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- #if __has_builtin(__builtin_elementwise_sub_sat)
- const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
- return reinterpret_cast<const int&>(c);
- #else
- int8x4_t c;
- int16_t tmp;
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- tmp = va[i] - vb[i];
- if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
- if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
- c[i] = tmp;
- }
- return reinterpret_cast<int&>(c);
- #endif // __has_builtin(__builtin_elementwise_sub_sat)
- }
- static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
- #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
- #elif defined(__gfx1100__)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
- #elif defined(__gfx1010__) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
- #else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
- #endif
- return c;
- }
- #endif // defined(GGML_USE_HIPBLAS)
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- int id; \
- cudaGetDevice(&id); \
- fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- fprintf(stderr, "current device: %d\n", id); \
- GGML_ASSERT(!"CUDA error"); \
- } \
- } while (0)
- #if CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- int id; \
- cudaGetDevice(&id); \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
- err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
- fprintf(stderr, "current device: %d\n", id); \
- GGML_ASSERT(!"cuBLAS error"); \
- } \
- } while (0)
- #else
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- int id; \
- cudaGetDevice(&id); \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- fprintf(stderr, "current device: %d\n", id); \
- GGML_ASSERT(!"cuBLAS error"); \
- } \
- } while (0)
- #endif // CUDART_VERSION >= 11
- #if CUDART_VERSION >= 11100
- #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
- #else
- #define GGML_CUDA_ASSUME(x)
- #endif // CUDART_VERSION >= 11100
- #ifdef GGML_CUDA_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif //GGML_CUDA_F16
- static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- template<typename T>
- using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
- typedef to_t_cuda_t<float> to_fp32_cuda_t;
- typedef to_t_cuda_t<half> to_fp16_cuda_t;
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_mul_mat_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, const cudaStream_t & stream);
- typedef void (*ggml_cuda_op_flatten_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- // QI = number of 32 bit integers before dequantization
- #define QK4_0 32
- #define QR4_0 2
- #define QI4_0 (QK4_0 / (4 * QR4_0))
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- #define QI4_1 (QK4_1 / (4 * QR4_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- #define QI5_0 (QK5_0 / (4 * QR5_0))
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- #define QI5_1 (QK5_1 / (4 * QR5_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- #define QI8_0 (QK8_0 / (4 * QR8_0))
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- #define QR8_1 1
- #define QI8_1 (QK8_1 / (4 * QR8_1))
- typedef struct {
- half2 ds; // ds.x = delta, ds.y = sum
- int8_t qs[QK8_0]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
- typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
- typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
- typedef void (*load_tiles_cuda_t)(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
- typedef float (*vec_dot_q_mul_mat_cuda_t)(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
- //================================= k-quants
- #ifdef GGML_QKK_64
- #define QK_K 64
- #define K_SCALE_SIZE 4
- #else
- #define QK_K 256
- #define K_SCALE_SIZE 12
- #endif
- #define QR2_K 4
- #define QI2_K (QK_K / (4*QR2_K))
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half2 dm; // super-block scale for quantized scales/mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- #define QR3_K 4
- #define QI3_K (QK_K / (4*QR3_K))
- typedef struct {
- uint8_t hmask[QK_K/8]; // quants - high bit
- uint8_t qs[QK_K/4]; // quants - low 2 bits
- #ifdef GGML_QKK_64
- uint8_t scales[2]; // scales, quantized with 8 bits
- #else
- uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
- #endif
- half d; // super-block scale
- } block_q3_K;
- //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
- #define QR4_K 2
- #define QI4_K (QK_K / (4*QR4_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half dm[2]; // super-block scales/mins
- uint8_t scales[2]; // 4-bit block scales/mins
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- #endif
- #define QR5_K 2
- #define QI5_K (QK_K / (4*QR5_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d; // super-block scale
- int8_t scales[QK_K/16]; // block scales
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- #endif
- #define QR6_K 2
- #define QI6_K (QK_K / (4*QR6_K))
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define WARP_SIZE 32
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define CUDA_GELU_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_TANH_BLOCK_SIZE 256
- #define CUDA_RELU_BLOCK_SIZE 256
- #define CUDA_SQR_BLOCK_SIZE 256
- #define CUDA_CPY_BLOCK_SIZE 32
- #define CUDA_SCALE_BLOCK_SIZE 256
- #define CUDA_CLAMP_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_SOFT_MAX_BLOCK_SIZE 1024
- #define CUDA_ALIBI_BLOCK_SIZE 32
- #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
- #define CUDA_QUANTIZE_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- #define CUDA_GET_ROWS_BLOCK_SIZE 256
- #define CUDA_UPSCALE_BLOCK_SIZE 256
- #define CUDA_CONCAT_BLOCK_SIZE 256
- #define CUDA_PAD_BLOCK_SIZE 256
- #define CUDA_ACC_BLOCK_SIZE 256
- #define CUDA_IM2COL_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_MMV_Y
- #define GGML_CUDA_MMV_Y 1
- #endif
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 2
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
- #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define MUL_MAT_SRC1_COL_STRIDE 128
- #define MAX_STREAMS 8
- static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
- };
- // this is faster on Windows
- // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
- inline cudaError_t ggml_cuda_set_device(const int device) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(¤t_device));
- if (device == current_device) {
- return cudaSuccess;
- }
- return cudaSetDevice(device);
- }
- static int g_device_count = -1;
- static int g_main_device = 0;
- static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
- static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 0; // disabled by default
- static size_t g_scratch_offset = 0;
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- [[noreturn]]
- static __device__ void bad_arch() {
- printf("ERROR: ggml-cuda was compiled without support for the current GPU architecture.\n");
- __trap();
- (void) bad_arch; // suppress unused function warning
- }
- static __device__ __forceinline__ float warp_reduce_sum(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
- }
- return x;
- }
- static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
- a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
- }
- return a;
- }
- static __device__ __forceinline__ float warp_reduce_max(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
- }
- return x;
- }
- static __device__ __forceinline__ float op_repeat(const float a, const float b) {
- return b;
- }
- static __device__ __forceinline__ float op_add(const float a, const float b) {
- return a + b;
- }
- static __device__ __forceinline__ float op_mul(const float a, const float b) {
- return a * b;
- }
- static __device__ __forceinline__ float op_div(const float a, const float b) {
- return a / b;
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
- const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
- const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
- const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
- const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- const int i3 = i/(ne2*ne1*ne0);
- const int i2 = (i/(ne1*ne0)) % ne2;
- const int i1 = (i/ne0) % ne1;
- const int i0 = i % ne0;
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, int offset) {
- const int i = blockDim.x * blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- int src1_idx = i - offset;
- int oz = src1_idx / nb2;
- int oy = (src1_idx - (oz * nb2)) / nb1;
- int ox = src1_idx % nb1;
- if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
- dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
- } else {
- dst[i] = x[i];
- }
- }
- static __global__ void gelu_f32(const float * x, float * dst, const int k) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void gelu_quick_f32(const float *x, float *dst, int k) {
- const float GELU_QUICK_COEF = -1.702f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
- }
- static __global__ void tanh_f32(const float *x, float *dst, int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = tanhf(x[i]);
- }
- static __global__ void relu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = fmaxf(x[i], 0);
- }
- static __global__ void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
- }
- static __global__ void sqr_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * x[i];
- }
- template <int block_size>
- static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- float2 mean_var = make_float2(0.f, 0.f);
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x += xi;
- mean_var.y += xi * xi;
- }
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var);
- if (block_size > WARP_SIZE) {
- __shared__ float2 s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
- }
- __syncthreads();
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var);
- }
- const float mean = mean_var.x / ncols;
- const float var = mean_var.y / ncols - mean * mean;
- const float inv_std = rsqrtf(var + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
- }
- }
- static __global__ void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (blockIdx.z < ne02) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- (blockIdx.z - ne02) * ne0 * gridDim.y;
- dst[offset_dst] = y[offset_src];
- }
- }
- static __global__ void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor) {
- int ne0 = ne00 * scale_factor;
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int i00 = nidx / scale_factor;
- int i01 = blockIdx.y / scale_factor;
- int offset_src =
- i00 +
- i01 * ne00 +
- blockIdx.z * nb02;
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- }
- static __global__ void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- template <int block_size>
- static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
- int start = blockIdx.x * group_size;
- int end = start + group_size;
- start += threadIdx.x;
- if (end >= ne_elements) {
- end = ne_elements;
- }
- float tmp = 0.0f; // partial sum for thread in warp
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- float mean = tmp / group_size;
- tmp = 0.0f;
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- float variance = tmp / group_size;
- float scale = rsqrtf(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
- }
- template <int block_size>
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- const float mean = tmp / ncols;
- const float scale = rsqrtf(mean + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {8.0f, 8.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 8.0f) * d;
- v.y = (v.y - 8.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {16.0f, 16.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 16.0f) * d;
- v.y = (v.y - 16.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x = x[ib].qs[iqs + 0];
- v.y = x[ib].qs[iqs + 1];
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- #else
- v.x *= d;
- v.y *= d;
- #endif // GGML_CUDA_F16
- }
- //================================== k-quants
- template<typename dst_t>
- static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- #else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- dst_t * y = yy + i*QK_K + 16*is + il;
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q3_K * x = (const block_q3_K *) vx;
- #if QK_K == 256
- const int r = threadIdx.x/4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16*is0 + 4*(threadIdx.x%4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- #else
- const int tid = threadIdx.x;
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
- dst_t * y = yy + i*QK_K + 16*is + il;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
- #endif
- }
- #if QK_K == 256
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- #endif
- template<typename dst_t>
- static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- #else
- const int tid = threadIdx.x;
- const uint8_t * q = x[i].qs;
- dst_t * y = yy + i*QK_K;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- #else
- const int tid = threadIdx.x;
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- dst_t * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- dst_t * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- #else
- // assume 32 threads
- const int tid = threadIdx.x;
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
- dst_t * y = yy + i*QK_K + 16*ip + il;
- const float d = x[i].d;
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- #endif
- }
- static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const float2 dall = __half22float2(x[i].dm);
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x * sum1 - dall.y * sum2;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
- const float dall = (float)x[i].d;
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- #if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
- #else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
- #endif
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- #if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
- s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
- const int row = blockIdx.x;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/2; // 0...15
- const int ix = threadIdx.x%2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
- const int step = tid * K_QUANTS_PER_ITERATION;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
- const float d = x[i+0].d;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const half * x = (const half *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
- }
- static __device__ void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const float * x = (const float *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
- }
- static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
- const int ix = blockDim.x*blockIdx.x + threadIdx.x;
- if (ix >= kx_padded) {
- return;
- }
- const int iy = blockDim.y*blockIdx.y + threadIdx.y;
- const int i_padded = iy*kx_padded + ix;
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = fabsf(xi);
- float sum = xi;
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
- sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
- }
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- reinterpret_cast<half&>(y[ib].ds.x) = d;
- reinterpret_cast<half&>(y[ib].ds.y) = sum;
- }
- template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static __global__ void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
- dst_row[iybs + iqs + 0] = v.x;
- dst_row[iybs + iqs + y_offset] = v.y;
- }
- template<typename src0_t, typename dst_t>
- static __global__ void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
- dst_row[i00] = src0_row[i00];
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x;
- y[iybs + iqs + y_offset] = v.y;
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
- const int * v, const int * u, const float & d4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm4, ds8));
- const float d4d8 = tmp.x;
- const float m4s8 = tmp.y;
- #else
- const float2 dm4f = __half22float2(dm4);
- const float2 ds8f = __half22float2(ds8);
- const float d4d8 = dm4f.x * ds8f.x;
- const float m4s8 = dm4f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
- const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
- const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm5, ds8));
- const float d5d8 = tmp.x;
- const float m5s8 = tmp.y;
- #else
- const float2 dm5f = __half22float2(dm5);
- const float2 ds8f = __half22float2(ds8);
- const float d5d8 = dm5f.x * ds8f.x;
- const float m5s8 = dm5f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm8, ds8));
- const float d8d8 = tmp.x;
- const float m8s8 = tmp.y;
- #else
- const float2 dm8f = __half22float2(dm8);
- const float2 ds8f = __half22float2(ds8);
- const float d8d8 = dm8f.x * ds8f.x;
- const float m8s8 = dm8f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const float2 dm2f = __half22float2(dm2);
- return dm2f.x*sumf_d - dm2f.y*sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const float2 dm2f = __half22float2(dm2);
- return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const int & scale_offset, const float & d3, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi = __vsubss4(vil, vih);
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d3, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const float2 dm5f = __half22float2(dm5);
- return dm5f.x*sumf_d - dm5f.y*sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
- const float & d6, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
- sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
- }
- sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
- }
- return d6 * sumf_d;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
- *x_ql = tile_x_qs;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
- *x_ql = tile_x_ql;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- int u[2*VDR_Q5_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
- int u[2*VDR_Q5_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
- const block_q2_K * bx0 = (const block_q2_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- #pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
- __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_qh = tile_x_qh;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
- const block_q3_K * bx0 = (const block_q3_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- const int ksc = k % (QI3_K/4);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
- v[l] = __vsubss4(vll, vlh);
- }
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2half(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float dall = bq4_K->dm[0];
- const float dmin = bq4_K->dm[1];
- const float d8_1 = __low2float(bq8_1[0].ds);
- const float d8_2 = __low2float(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
- const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
- const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
- return dall * sumf_d - dmin * sumf_m;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
- const block_q4_K * bx0 = (const block_q4_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- #else
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int8_t * s = bq5_K->scales;
- const float d = bq5_K->d;
- const float d8_1 = __low2half(bq8_1[0].ds);
- const float d8_2 = __low2half(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
- return d * sumf_d;
- #else
- bad_arch();
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
- const block_q5_K * bx0 = (const block_q5_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + 2*i].ds);
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
- const block_q6_K * bx0 = (const block_q6_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
- }
- template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
- allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
- static __device__ __forceinline__ void mul_mat_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
- const int & ncols_dst = ncols_y;
- const int row_dst_0 = blockIdx.x*mmq_y;
- const int & row_x_0 = row_dst_0;
- const int col_dst_0 = blockIdx.y*mmq_x;
- const int & col_y_0 = col_dst_0;
- int * tile_x_ql = nullptr;
- half2 * tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
- __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
- __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
- load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
- #pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir*WARP_SIZE + threadIdx.x;
- const int kbxd = kqs / QI8_1;
- #pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
- const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
- }
- #pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
- const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
- const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
- half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = __low2half(*dsi_src);
- }
- }
- __syncthreads();
- // #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i/WARP_SIZE][j/nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
- threadIdx.x + i, threadIdx.y + j, k);
- }
- }
- }
- __syncthreads();
- }
- }
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + threadIdx.y;
- if (col_dst >= ncols_dst) {
- return;
- }
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + threadIdx.x + i;
- if (row_dst >= nrows_dst) {
- continue;
- }
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
- }
- #define MMQ_X_Q4_0_RDNA2 64
- #define MMQ_Y_Q4_0_RDNA2 128
- #define NWARPS_Q4_0_RDNA2 8
- #define MMQ_X_Q4_0_RDNA1 64
- #define MMQ_Y_Q4_0_RDNA1 64
- #define NWARPS_Q4_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_0_AMPERE 4
- #define MMQ_Y_Q4_0_AMPERE 32
- #define NWARPS_Q4_0_AMPERE 4
- #else
- #define MMQ_X_Q4_0_AMPERE 64
- #define MMQ_Y_Q4_0_AMPERE 128
- #define NWARPS_Q4_0_AMPERE 4
- #endif
- #define MMQ_X_Q4_0_PASCAL 64
- #define MMQ_Y_Q4_0_PASCAL 64
- #define NWARPS_Q4_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_0_RDNA2;
- const int mmq_y = MMQ_Y_Q4_0_RDNA2;
- const int nwarps = NWARPS_Q4_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_0_RDNA1;
- const int mmq_y = MMQ_Y_Q4_0_RDNA1;
- const int nwarps = NWARPS_Q4_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_0_PASCAL;
- const int mmq_y = MMQ_Y_Q4_0_PASCAL;
- const int nwarps = NWARPS_Q4_0_PASCAL;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_0_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q4_1_RDNA2 64
- #define MMQ_Y_Q4_1_RDNA2 128
- #define NWARPS_Q4_1_RDNA2 8
- #define MMQ_X_Q4_1_RDNA1 64
- #define MMQ_Y_Q4_1_RDNA1 64
- #define NWARPS_Q4_1_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_1_AMPERE 4
- #define MMQ_Y_Q4_1_AMPERE 32
- #define NWARPS_Q4_1_AMPERE 4
- #else
- #define MMQ_X_Q4_1_AMPERE 64
- #define MMQ_Y_Q4_1_AMPERE 128
- #define NWARPS_Q4_1_AMPERE 4
- #endif
- #define MMQ_X_Q4_1_PASCAL 64
- #define MMQ_Y_Q4_1_PASCAL 64
- #define NWARPS_Q4_1_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_1_RDNA2;
- const int mmq_y = MMQ_Y_Q4_1_RDNA2;
- const int nwarps = NWARPS_Q4_1_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_1_RDNA1;
- const int mmq_y = MMQ_Y_Q4_1_RDNA1;
- const int nwarps = NWARPS_Q4_1_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_1_PASCAL;
- const int mmq_y = MMQ_Y_Q4_1_PASCAL;
- const int nwarps = NWARPS_Q4_1_PASCAL;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_1_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_0_RDNA2 64
- #define MMQ_Y_Q5_0_RDNA2 128
- #define NWARPS_Q5_0_RDNA2 8
- #define MMQ_X_Q5_0_RDNA1 64
- #define MMQ_Y_Q5_0_RDNA1 64
- #define NWARPS_Q5_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_0_AMPERE 4
- #define MMQ_Y_Q5_0_AMPERE 32
- #define NWARPS_Q5_0_AMPERE 4
- #else
- #define MMQ_X_Q5_0_AMPERE 128
- #define MMQ_Y_Q5_0_AMPERE 64
- #define NWARPS_Q5_0_AMPERE 4
- #endif
- #define MMQ_X_Q5_0_PASCAL 64
- #define MMQ_Y_Q5_0_PASCAL 64
- #define NWARPS_Q5_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_0_RDNA2;
- const int mmq_y = MMQ_Y_Q5_0_RDNA2;
- const int nwarps = NWARPS_Q5_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_0_RDNA1;
- const int mmq_y = MMQ_Y_Q5_0_RDNA1;
- const int nwarps = NWARPS_Q5_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_0_PASCAL;
- const int mmq_y = MMQ_Y_Q5_0_PASCAL;
- const int nwarps = NWARPS_Q5_0_PASCAL;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_0_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_1_RDNA2 64
- #define MMQ_Y_Q5_1_RDNA2 128
- #define NWARPS_Q5_1_RDNA2 8
- #define MMQ_X_Q5_1_RDNA1 64
- #define MMQ_Y_Q5_1_RDNA1 64
- #define NWARPS_Q5_1_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_1_AMPERE 4
- #define MMQ_Y_Q5_1_AMPERE 32
- #define NWARPS_Q5_1_AMPERE 4
- #else
- #define MMQ_X_Q5_1_AMPERE 128
- #define MMQ_Y_Q5_1_AMPERE 64
- #define NWARPS_Q5_1_AMPERE 4
- #endif
- #define MMQ_X_Q5_1_PASCAL 64
- #define MMQ_Y_Q5_1_PASCAL 64
- #define NWARPS_Q5_1_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_1_RDNA2;
- const int mmq_y = MMQ_Y_Q5_1_RDNA2;
- const int nwarps = NWARPS_Q5_1_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_1_RDNA1;
- const int mmq_y = MMQ_Y_Q5_1_RDNA1;
- const int nwarps = NWARPS_Q5_1_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_1_PASCAL;
- const int mmq_y = MMQ_Y_Q5_1_PASCAL;
- const int nwarps = NWARPS_Q5_1_PASCAL;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_1_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q8_0_RDNA2 64
- #define MMQ_Y_Q8_0_RDNA2 128
- #define NWARPS_Q8_0_RDNA2 8
- #define MMQ_X_Q8_0_RDNA1 64
- #define MMQ_Y_Q8_0_RDNA1 64
- #define NWARPS_Q8_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q8_0_AMPERE 4
- #define MMQ_Y_Q8_0_AMPERE 32
- #define NWARPS_Q8_0_AMPERE 4
- #else
- #define MMQ_X_Q8_0_AMPERE 128
- #define MMQ_Y_Q8_0_AMPERE 64
- #define NWARPS_Q8_0_AMPERE 4
- #endif
- #define MMQ_X_Q8_0_PASCAL 64
- #define MMQ_Y_Q8_0_PASCAL 64
- #define NWARPS_Q8_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q8_0_RDNA2;
- const int mmq_y = MMQ_Y_Q8_0_RDNA2;
- const int nwarps = NWARPS_Q8_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q8_0_RDNA1;
- const int mmq_y = MMQ_Y_Q8_0_RDNA1;
- const int nwarps = NWARPS_Q8_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q8_0_PASCAL;
- const int mmq_y = MMQ_Y_Q8_0_PASCAL;
- const int nwarps = NWARPS_Q8_0_PASCAL;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q8_0_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q2_K_RDNA2 64
- #define MMQ_Y_Q2_K_RDNA2 128
- #define NWARPS_Q2_K_RDNA2 8
- #define MMQ_X_Q2_K_RDNA1 128
- #define MMQ_Y_Q2_K_RDNA1 32
- #define NWARPS_Q2_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q2_K_AMPERE 4
- #define MMQ_Y_Q2_K_AMPERE 32
- #define NWARPS_Q2_K_AMPERE 4
- #else
- #define MMQ_X_Q2_K_AMPERE 64
- #define MMQ_Y_Q2_K_AMPERE 128
- #define NWARPS_Q2_K_AMPERE 4
- #endif
- #define MMQ_X_Q2_K_PASCAL 64
- #define MMQ_Y_Q2_K_PASCAL 64
- #define NWARPS_Q2_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q2_K_RDNA2;
- const int mmq_y = MMQ_Y_Q2_K_RDNA2;
- const int nwarps = NWARPS_Q2_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q2_K_RDNA1;
- const int mmq_y = MMQ_Y_Q2_K_RDNA1;
- const int nwarps = NWARPS_Q2_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q2_K_PASCAL;
- const int mmq_y = MMQ_Y_Q2_K_PASCAL;
- const int nwarps = NWARPS_Q2_K_PASCAL;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q2_K_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q3_K_RDNA2 128
- #define MMQ_Y_Q3_K_RDNA2 64
- #define NWARPS_Q3_K_RDNA2 8
- #define MMQ_X_Q3_K_RDNA1 32
- #define MMQ_Y_Q3_K_RDNA1 128
- #define NWARPS_Q3_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q3_K_AMPERE 4
- #define MMQ_Y_Q3_K_AMPERE 32
- #define NWARPS_Q3_K_AMPERE 4
- #else
- #define MMQ_X_Q3_K_AMPERE 128
- #define MMQ_Y_Q3_K_AMPERE 128
- #define NWARPS_Q3_K_AMPERE 4
- #endif
- #define MMQ_X_Q3_K_PASCAL 64
- #define MMQ_Y_Q3_K_PASCAL 64
- #define NWARPS_Q3_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q3_K_RDNA2;
- const int mmq_y = MMQ_Y_Q3_K_RDNA2;
- const int nwarps = NWARPS_Q3_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q3_K_RDNA1;
- const int mmq_y = MMQ_Y_Q3_K_RDNA1;
- const int nwarps = NWARPS_Q3_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q3_K_PASCAL;
- const int mmq_y = MMQ_Y_Q3_K_PASCAL;
- const int nwarps = NWARPS_Q3_K_PASCAL;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q3_K_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q4_K_RDNA2 64
- #define MMQ_Y_Q4_K_RDNA2 128
- #define NWARPS_Q4_K_RDNA2 8
- #define MMQ_X_Q4_K_RDNA1 32
- #define MMQ_Y_Q4_K_RDNA1 64
- #define NWARPS_Q4_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_K_AMPERE 4
- #define MMQ_Y_Q4_K_AMPERE 32
- #define NWARPS_Q4_K_AMPERE 4
- #else
- #define MMQ_X_Q4_K_AMPERE 64
- #define MMQ_Y_Q4_K_AMPERE 128
- #define NWARPS_Q4_K_AMPERE 4
- #endif
- #define MMQ_X_Q4_K_PASCAL 64
- #define MMQ_Y_Q4_K_PASCAL 64
- #define NWARPS_Q4_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_K_RDNA2;
- const int mmq_y = MMQ_Y_Q4_K_RDNA2;
- const int nwarps = NWARPS_Q4_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_K_RDNA1;
- const int mmq_y = MMQ_Y_Q4_K_RDNA1;
- const int nwarps = NWARPS_Q4_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_K_PASCAL;
- const int mmq_y = MMQ_Y_Q4_K_PASCAL;
- const int nwarps = NWARPS_Q4_K_PASCAL;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_K_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_K_RDNA2 64
- #define MMQ_Y_Q5_K_RDNA2 128
- #define NWARPS_Q5_K_RDNA2 8
- #define MMQ_X_Q5_K_RDNA1 32
- #define MMQ_Y_Q5_K_RDNA1 64
- #define NWARPS_Q5_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_K_AMPERE 4
- #define MMQ_Y_Q5_K_AMPERE 32
- #define NWARPS_Q5_K_AMPERE 4
- #else
- #define MMQ_X_Q5_K_AMPERE 64
- #define MMQ_Y_Q5_K_AMPERE 128
- #define NWARPS_Q5_K_AMPERE 4
- #endif
- #define MMQ_X_Q5_K_PASCAL 64
- #define MMQ_Y_Q5_K_PASCAL 64
- #define NWARPS_Q5_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_K_RDNA2;
- const int mmq_y = MMQ_Y_Q5_K_RDNA2;
- const int nwarps = NWARPS_Q5_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_K_RDNA1;
- const int mmq_y = MMQ_Y_Q5_K_RDNA1;
- const int nwarps = NWARPS_Q5_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_K_PASCAL;
- const int mmq_y = MMQ_Y_Q5_K_PASCAL;
- const int nwarps = NWARPS_Q5_K_PASCAL;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_K_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q6_K_RDNA2 64
- #define MMQ_Y_Q6_K_RDNA2 128
- #define NWARPS_Q6_K_RDNA2 8
- #define MMQ_X_Q6_K_RDNA1 32
- #define MMQ_Y_Q6_K_RDNA1 64
- #define NWARPS_Q6_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q6_K_AMPERE 4
- #define MMQ_Y_Q6_K_AMPERE 32
- #define NWARPS_Q6_K_AMPERE 4
- #else
- #define MMQ_X_Q6_K_AMPERE 64
- #define MMQ_Y_Q6_K_AMPERE 64
- #define NWARPS_Q6_K_AMPERE 4
- #endif
- #define MMQ_X_Q6_K_PASCAL 64
- #define MMQ_Y_Q6_K_PASCAL 64
- #define NWARPS_Q6_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q6_K_RDNA2;
- const int mmq_y = MMQ_Y_Q6_K_RDNA2;
- const int nwarps = NWARPS_Q6_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q6_K_RDNA1;
- const int mmq_y = MMQ_Y_Q6_K_RDNA1;
- const int nwarps = NWARPS_Q6_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q6_K_PASCAL;
- const int mmq_y = MMQ_Y_Q6_K_PASCAL;
- const int nwarps = NWARPS_Q6_K_PASCAL;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q6_K_q8_1_mul_mat;
- bad_arch();
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
- static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
- const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_CUDA_F16
- half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_CUDA_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_CUDA_F16
- tmp += __hmul2(v, {
- y[iybs + iqs + j/qr + 0],
- y[iybs + iqs + j/qr + y_offset]
- });
- #else
- tmp += v.x * y[iybs + iqs + j/qr + 0];
- tmp += v.y * y[iybs + iqs + j/qr + y_offset];
- #endif // GGML_CUDA_F16
- }
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- #ifdef GGML_CUDA_F16
- dst[row] = tmp.x + tmp.y;
- #else
- dst[row] = tmp;
- #endif // GGML_CUDA_F16
- }
- }
- static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi = __half2float(x[ix]);
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = __float2half(*xi);
- }
- static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const half * xi = (const half *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = *xi;
- }
- template <cpy_kernel_t cpy_1>
- static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i02 = i / (ne00*ne01);
- const int i01 = (i - i02*ne01*ne00) / ne00;
- const int i00 = i - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
- const int i12 = i / (ne10*ne11);
- const int i11 = (i - i12*ne10*ne11) / ne10;
- const int i10 = i - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = fmaxf(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
- dsti->qs[j] = roundf(x0);
- }
- }
- static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
- float amax = 0.0f;
- float vmax = 0.0f;
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- vmax = v;
- }
- }
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
- const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->dm.x = d;
- dsti->dm.y = vmin;
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- template <cpy_kernel_t cpy_blck, int qk>
- static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
- const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
- if (i >= ne) {
- return;
- }
- const int i02 = i / (ne00*ne01);
- const int i01 = (i - i02*ne01*ne00) / ne00;
- const int i00 = (i - i02*ne01*ne00 - i01*ne00);
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
- const int i12 = i / (ne10*ne11);
- const int i11 = (i - i12*ne10*ne11) / ne10;
- const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
- cpy_blck(cx + x_offset, cdst + dst_offset);
- }
- static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / max(0.001f, high - low);
- return 1.0f - min(1.0f, max(0.0f, y));
- }
- struct rope_corr_dims {
- float v[4];
- };
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static __device__ void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
- }
- // rope == RoPE == rotary positional embedding
- template<typename T, bool has_pos>
- static __global__ void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
- ) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*powf(freq_base, -float(col)/ncols);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- template<typename T, bool has_pos>
- static __global__ void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
- ) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int ib = col / n_dims;
- const int ic = col % n_dims;
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
- return;
- }
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
- float cur_rot = inv_ndims * ic - ib;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- static __global__ void rope_glm_f32(
- const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- int n_ctx
- ) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int half_n_dims = ncols/4;
- if (col >= half_n_dims) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
- // FIXME: this is likely wrong
- const int p = pos != nullptr ? pos[i2] : 0;
- const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
- const float sin_block_theta = sinf(block_theta);
- const float cos_block_theta = cosf(block_theta);
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
- const int n_heads_log2_floor, const float m0, const float m1) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const int k = row/k_rows;
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- dst[i] = col * m_k + x[i];
- }
- static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.y;
- const int col = threadIdx.x;
- float sum = 0.0f;
- for (int i = col; i < ncols; i += blockDim.x) {
- sum += x[row * ncols + i];
- }
- sum = warp_reduce_sum(sum);
- if (col == 0) {
- dst[row] = sum;
- }
- }
- template<typename T>
- static inline __device__ void swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- template<ggml_sort_order order>
- static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
- // bitonic sort
- int col = threadIdx.x;
- int row = blockIdx.y;
- if (col >= ncols) return;
- const float * x_row = x + row * ncols;
- int * dst_row = dst + row * ncols;
- // initialize indices
- if (col < ncols) {
- dst_row[col] = col;
- }
- __syncthreads();
- for (int k = 2; k <= ncols; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- __syncthreads();
- }
- }
- }
- static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.y*blockIdx.y + threadIdx.y;
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
- }
- static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
- const int tid = threadIdx.x;
- const int rowx = blockIdx.x;
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
- const int block_size = blockDim.x;
- const int warp_id = threadIdx.x / WARP_SIZE;
- const int lane_id = threadIdx.x % WARP_SIZE;
- __shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE/WARP_SIZE];
- float max_val = -INFINITY;
- for (int col = tid; col < ncols; col += block_size) {
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
- max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
- }
- // find the max value in the block
- max_val = warp_reduce_max(max_val);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- __syncthreads();
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val);
- }
- float tmp = 0.f;
- for (int col = tid; col < ncols; col += block_size) {
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
- const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
- tmp += val;
- dst[ix] = val;
- }
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- __syncthreads();
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- const float inv_tmp = 1.f / tmp;
- for (int col = tid; col < ncols; col += block_size) {
- const int i = rowx*ncols + col;
- dst[i] *= inv_tmp;
- }
- }
- static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
- }
- static __global__ void im2col_f32_f16(
- const float * x, half * dst,
- int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
- int s0, int s1, int p0, int p1, int d0, int d1) {
- const int i = threadIdx.x + blockIdx.x * blockDim.x;
- if (i >= pelements) {
- return;
- }
- const int ksize = OW * (KH > 1 ? KW : 1);
- const int kx = i / ksize;
- const int kd = kx * ksize;
- const int ky = (i - kd) / OW;
- const int ix = i % OW;
- const int iiw = ix * s0 + kx * d0 - p0;
- const int iih = blockIdx.y * s1 + ky * d1 - p1;
- const int offset_dst =
- (blockIdx.y * OW + ix) * CHW +
- (blockIdx.z * (KW * KH) + ky * KW + kx);
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] = __float2half(0.0f);
- } else {
- const int offset_src = blockIdx.z * offset_delta;
- dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
- }
- }
- template<int qk, int qr, dequantize_kernel_t dq>
- static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- GGML_ASSERT(ne00 % 2 == 0);
- k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- (void) dst;
- }
- template<typename src0_t>
- static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- (void) dst;
- }
- template<float (*bin_op)(const float, const float)>
- struct bin_bcast_cuda {
- template<typename src0_t, typename src1_t, typename dst_t>
- void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
- const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
- cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
- int nr[4] = { nr0, nr1, nr2, nr3 };
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
- auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
- const int block_size = 128;
- int64_t hne0 = std::max(ne0/2LL, 1LL);
- dim3 block_dims;
- block_dims.x = std::min<unsigned int>(hne0, block_size);
- block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
- block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
- dim3 block_nums(
- (hne0 + block_dims.x - 1) / block_dims.x,
- (ne1 + block_dims.y - 1) / block_dims.y,
- (ne2*ne3 + block_dims.z - 1) / block_dims.z
- );
- if (block_nums.z > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
- } else {
- k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
- }
- }
- }
- };
- static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, const int offset, cudaStream_t stream) {
- int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
- acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
- }
- static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
- tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
- }
- static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
- sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
- }
- static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- }
- }
- static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2);
- concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
- }
- static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) {
- int ne0 = (ne00 * scale_factor);
- int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
- dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02);
- upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
- }
- static void pad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02,
- const int ne0, const int ne1, const int ne2, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2);
- pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
- }
- static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
- const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- const dim3 num_blocks(block_num_x, ky, 1);
- const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
- quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- template<typename dst_t>
- static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;
- case GGML_TYPE_Q4_1:
- return dequantize_block_cuda<QK4_1, QR4_1, dequantize_q4_1>;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F32:
- return dequantize_block_cuda<1, 1, convert_f32>;
- default:
- return nullptr;
- }
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;
- case GGML_TYPE_Q4_1:
- return dequantize_block_cuda<QK4_1, QR4_1, dequantize_q4_1>;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F16:
- return dequantize_block_cuda<1, 1, convert_f16>;
- default:
- return nullptr;
- }
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 1, 1);
- dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void ggml_mul_mat_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- #if QK_K == 256
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- #endif
- }
- static void ggml_mul_mat_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
- }
- static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_q8_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- GGML_ASSERT(ne % QK8_0 == 0);
- const int num_blocks = ne / QK8_0;
- cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_q4_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- GGML_ASSERT(ne % QK4_0 == 0);
- const int num_blocks = ne / QK4_0;
- cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_q4_1_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- GGML_ASSERT(ne % QK4_1 == 0);
- const int num_blocks = ne / QK4_1;
- cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f16_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
- }
- static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
- clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
- }
- template<typename T>
- static void rope_cuda(
- const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
- if (pos == nullptr) {
- rope<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
- } else {
- rope<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
- }
- }
- template<typename T>
- static void rope_neox_cuda(
- const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
- if (pos == nullptr) {
- rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
- } else {
- rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
- }
- }
- static void rope_glm_f32_cuda(
- const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, int n_ctx, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 4 == 0);
- const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
- }
- static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
- const int k_rows, const int n_heads_log2_floor, const float m0,
- const float m1, cudaStream_t stream) {
- const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
- }
- static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(1, nrows, 1);
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
- // bitonic sort requires ncols to be power of 2
- GGML_ASSERT((ncols & (ncols - 1)) == 0);
- const dim3 block_dims(ncols, 1, 1);
- const dim3 block_nums(1, nrows, 1);
- if (order == GGML_SORT_ASC) {
- k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else if (order == GGML_SORT_DESC) {
- k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else {
- GGML_ASSERT(false);
- }
- }
- static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(nrows_x, block_num_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
- }
- static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
- int nth = WARP_SIZE;
- while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
- const dim3 block_dims(nth, 1, 1);
- const dim3 block_nums(nrows_x, 1, 1);
- soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
- }
- static void im2col_f32_f16_cuda(const float* x, half* dst,
- int IW, int IH, int OW, int OH, int KW, int KH, int IC,
- int offset_delta,
- int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
- const int parallel_elements = OW * KW * KH;
- const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
- dim3 block_nums(num_blocks, OH, IC);
- im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- #ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0, tot_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- tot_size += b.size;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- #ifdef DEBUG_CUDA_MALLOC
- fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
- *actual_size = look_ahead_size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- static bool g_cublas_loaded = false;
- bool ggml_cublas_loaded(void) {
- return g_cublas_loaded;
- }
- void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- #ifdef __HIP_PLATFORM_AMD__
- // Workaround for a rocBLAS bug when using multiple graphics cards:
- // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
- rocblas_initialize();
- CUDA_CHECK(cudaDeviceSynchronize());
- #endif
- if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
- initialized = true;
- g_cublas_loaded = false;
- return;
- }
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- #if defined(GGML_CUDA_FORCE_MMQ)
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
- #endif
- #if defined(CUDA_USE_TENSOR_CORES)
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
- #else
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
- #endif
- fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
- g_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- g_compute_capabilities[id] = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
- #else
- g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(ggml_cuda_set_device(id));
- // create cuda streams
- for (int is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- g_cublas_loaded = true;
- }
- }
- void ggml_cuda_set_tensor_split(const float * tensor_split) {
- if (tensor_split == nullptr) {
- return;
- }
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // The allocation error can be bypassed. A null ptr will assigned out of this function.
- // This can fixed the OOM error in WSL.
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
- GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
- kind = cudaMemcpyDeviceToDevice;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_op_get_rows(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- const int32_t * src1_i32 = (const int32_t *) src1_d;
- switch (src0->type) {
- case GGML_TYPE_F16:
- get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_0:
- get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_1:
- get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_0:
- get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_1:
- get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q8_0:
- get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- default:
- // TODO: k-quants
- fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
- GGML_ASSERT(false);
- break;
- }
- }
- template<class op>
- inline void ggml_cuda_op_bin_bcast(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
- ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- }
- static void ggml_cuda_op_repeat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
- (void) src1;
- (void) src1_d;
- }
- inline void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_cuda_op_acc(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
- acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
- (void) dst;
- }
- inline void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_cuda_op_div(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_cuda_op_gelu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_gelu_quick(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_tanh(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_leaky_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_sqr(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_group_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_cuda(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_concat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
- }
- (void) src1;
- (void) dst;
- }
- inline void ggml_cuda_op_upscale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- const int scale_factor = dst->op_params[0];
- upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_pad(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_cuda(src0_dd, dst_dd,
- src0->ne[0], src0->ne[1], src0->ne[2],
- dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_mul_mat_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, const cudaStream_t & stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- }
- static int64_t get_row_rounding(ggml_type type) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int64_t id = 0; id < g_device_count; ++id) {
- if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
- if (min_compute_capability > g_compute_capabilities[id]) {
- min_compute_capability = g_compute_capabilities[id];
- }
- if (max_compute_capability < g_compute_capabilities[id]) {
- max_compute_capability = g_compute_capabilities[id];
- }
- }
- }
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 32;
- case GGML_TYPE_Q3_K:
- return min_compute_capability < CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- default:
- GGML_ASSERT(false);
- }
- #else
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- inline void ggml_cuda_op_mul_mat_vec_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, const cudaStream_t & stream) {
- GGML_ASSERT(ggml_nrows(src1) == 1);
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_cuda_op_dequantize_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, const cudaStream_t & stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_CUDA_F16
- size_t ash;
- dfloat * src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
- ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00,
- ne00, 1, sizeof(float), 0, 0,
- ne00, 1, sizeof(half), 0, 0, stream);
- }
- #else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_CUDA_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- #ifdef GGML_CUDA_F16
- if (src1_convert_f16) {
- ggml_cuda_pool_free(src1_dfloat, ash);
- }
- #endif // GGML_CUDA_F16
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, const cudaStream_t & stream) {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
- const int compute_capability = g_compute_capabilities[id];
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
- // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
- to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
- }
- const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
- half * src1_as_f16 = nullptr;
- size_t src1_as = 0;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
- }
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
- src1_ptr, CUDA_R_16F, ne10,
- &beta_f16, dst_f16, CUDA_R_16F, ldc,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
- ggml_cuda_pool_free(dst_f16, dst_as);
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_as_f16, src0_as);
- }
- if (src1_as != 0) {
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- }
- }
- else {
- float * src0_ddq_as_f32 = nullptr;
- size_t src0_as = 0;
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
- to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
- const float alpha = 1.0f;
- const float beta = 0.0f;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf_i, ne10,
- &beta, dst_dd_i, ldc));
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
- }
- }
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_padded_row_size;
- }
- inline void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
- // compute
- if (is_glm) {
- GGML_ASSERT(false);
- rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
- } else if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
- }
- } else {
- if (src0->type == GGML_TYPE_F32) {
- rope_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
- }
- }
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_alibi(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- //GGML_ASSERT(ne01 + n_past == ne00);
- GGML_ASSERT(n_head == ne02);
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
- (void) src1;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_im2col(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const int64_t IC = src1->ne[is_2D ? 2 : 1];
- const int64_t IH = is_2D ? src1->ne[1] : 1;
- const int64_t IW = src1->ne[0];
- const int64_t KH = is_2D ? src0->ne[1] : 1;
- const int64_t KW = src0->ne[0];
- const int64_t OH = is_2D ? dst->ne[2] : 1;
- const int64_t OW = dst->ne[1];
- const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- (void) src0;
- (void) src0_dd;
- }
- inline void ggml_cuda_op_sum_rows(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_argsort(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_diag_mask_inf(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int nrows0 = ggml_nrows(src0);
- const int n_past = ((int32_t *) dst->op_params)[0];
- diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_soft_max(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
- float scale = 1.0f;
- memcpy(&scale, dst->op_params, sizeof(float));
- soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
- (void) dst;
- }
- inline void ggml_cuda_op_scale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float scale;
- // HACK: support for ggml backend interface
- if (src1->backend == GGML_BACKEND_CPU) {
- scale = ((float *) src1->data)[0];
- } else {
- // TODO: pass pointer to kernel instead of copying to host
- CUDA_CHECK(cudaMemcpy(&scale, src1->data, sizeof(float), cudaMemcpyDeviceToHost));
- }
- scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_cuda_op_clamp(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
- const bool src1_stays_on_host = use_src1 && dst->op == GGML_OP_SCALE;
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
- // as = actual size
- size_t src0_asf = 0;
- size_t src1_asf = 0;
- size_t dst_asf = 0;
- ggml_cuda_set_device(g_main_device);
- const cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- if (src0_on_device) {
- src0_ddf = (float *) src0_extra->data_device[g_main_device];
- } else {
- src0_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_asf);
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
- }
- if (use_src1 && !src1_stays_on_host) {
- if (src1_on_device) {
- src1_ddf = (float *) src1_extra->data_device[g_main_device];
- } else {
- src1_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf);
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
- }
- }
- if (dst_on_device) {
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
- } else {
- dst_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(dst), &dst_asf);
- }
- // do the computation
- op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host if necessary
- if (!dst_on_device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
- }
- if (src0_asf > 0) {
- ggml_cuda_pool_free(src0_ddf, src0_asf);
- }
- if (src1_asf > 0) {
- ggml_cuda_pool_free(src1_ddf, src1_asf);
- }
- if (dst_asf > 0) {
- ggml_cuda_pool_free(dst_ddf, dst_asf);
- }
- if (dst->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- static void ggml_cuda_set_peer_access(const int n_tokens) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(ggml_cuda_set_device(id));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(ggml_cuda_set_device(id));
- for (int id_other = 0; id_other < g_device_count; ++id_other) {
- if (id == id_other) {
- continue;
- }
- if (id != g_main_device && id_other != g_main_device) {
- continue;
- }
- int can_access_peer;
- CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
- if (can_access_peer) {
- if (enable_peer_access) {
- CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0));
- } else {
- CUDA_CHECK(cudaDeviceDisablePeerAccess(id_other));
- }
- }
- }
- }
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- }
- static void ggml_cuda_op_mul_mat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nrows0 = ggml_nrows(src0);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- // dd = data device
- char * src0_dd[GGML_CUDA_MAX_DEVICES] = {nullptr};
- float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
- char * src1_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // q8_1
- float * dst_dd[GGML_CUDA_MAX_DEVICES] = {nullptr};
- // as = actual size
- size_t src0_as[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asq[GGML_CUDA_MAX_DEVICES] = {0};
- size_t dst_as[GGML_CUDA_MAX_DEVICES] = {0};
- int64_t row_low[GGML_CUDA_MAX_DEVICES];
- int64_t row_high[GGML_CUDA_MAX_DEVICES];
- int used_devices = 0;
- for (int64_t id = 0; id < g_device_count; ++id) {
- // by default, use all rows
- row_low[id] = 0;
- row_high[id] = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type);
- if (id != 0) {
- row_low[id] = ne01*g_tensor_split[id];
- row_low[id] -= row_low[id] % rounding;
- }
- if (id != g_device_count - 1) {
- row_high[id] = ne01*g_tensor_split[id + 1];
- row_high[id] -= row_high[id] % rounding;
- }
- }
- }
- for (int64_t id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- ggml_cuda_set_device(id);
- const cudaStream_t stream = g_cudaStreams[id][0];
- if (src0_on_device && src0_is_contiguous) {
- src0_dd[id] = (char *) src0_extra->data_device[id];
- } else {
- // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
- src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
- }
- if (src1_on_device && src1_is_contiguous) {
- src1_ddf[id] = (float *) src1_extra->data_device[id];
- } else {
- src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
- }
- if (convert_src1_to_q8_1) {
- src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- }
- if (dst_on_device) {
- dst_dd[id] = (float *) dst_extra->data_device[id];
- } else {
- const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
- dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int64_t id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
- continue;
- }
- const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- const int64_t row_diff = row_high[id] - row_low[id];
- ggml_cuda_set_device(id);
- const cudaStream_t stream = g_cudaStreams[id][is];
- // wait for main GPU data if necessary
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset;
- float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
- dst_dd_i += row_low[id]; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
- if (id != g_main_device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = src1_ddq[g_main_device] + src1_ddq_i_offset;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddq_i, src1_ddq_i_source, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs,
- cudaMemcpyDeviceToDevice, stream));
- } else {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_ncols*ne10*sizeof(float),
- cudaMemcpyDeviceToDevice, stream));
- }
- }
- } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
- if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
- quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream));
- }
- // do the computation
- op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + row_low[id];
- CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_dd_i, row_diff*sizeof(float),
- row_diff*sizeof(float), src1_ncols, kind, stream));
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
- }
- }
- }
- }
- for (int64_t id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
- continue;
- }
- CUDA_CHECK(ggml_cuda_set_device(id));
- // free buffers again when done
- if (src0_as[id] > 0) {
- ggml_cuda_pool_free(src0_dd[id], src0_as[id]);
- }
- if (src1_asf[id] > 0) {
- ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
- }
- if (src1_asq[id] > 0) {
- ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]);
- }
- if (dst_as[id] > 0) {
- ggml_cuda_pool_free(dst_dd[id], dst_as[id]);
- }
- }
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- for (int64_t id = 0; id < g_device_count; ++id) {
- if (row_low[id] == row_high[id]) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
- }
- }
- }
- if (dst->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat);
- }
- static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows);
- }
- static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
- }
- static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
- }
- static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
- }
- static void ggml_cuda_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_div);
- }
- static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
- }
- static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
- }
- static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
- }
- static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
- }
- static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
- }
- static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
- }
- static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
- }
- static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
- }
- static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
- }
- static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
- }
- static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
- }
- static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
- }
- static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (!g_cublas_loaded) return false;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int64_t row_stride_x = nb01 / sizeof(half);
- const int64_t channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- static __global__ void k_compute_batched_ptrs(
- const half * src0_as_f16, const half * src1_as_f16, char * dst,
- const void ** ptrs_src, void ** ptrs_dst,
- int64_t ne12, int64_t ne13,
- int64_t ne23,
- size_t nb02, size_t nb03,
- size_t nb12, size_t nb13,
- size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3) {
- int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
- const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
- const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- half * src0_as_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
- size_t dst_as = 0;
- half * dst_f16 = nullptr;
- char * dst_t = nullptr;
- cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
- cudaDataType_t cu_data_type = CUDA_R_16F;
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const void * alpha = &alpha_f16;
- const void * beta = &beta_f16;
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
- dst_t = (char *) dst_f16;
- nbd2 /= sizeof(float) / sizeof(half);
- nbd3 /= sizeof(float) / sizeof(half);
- } else {
- dst_t = (char *) dst_ddf;
- cu_compute_type = CUBLAS_COMPUTE_32F;
- cu_data_type = CUDA_R_32F;
- alpha = &alpha_f32;
- beta = &beta_f32;
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- #if 0
- // use cublasGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- }
- }
- #else
- if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- // use cublasGemmStridedBatchedEx
- CUBLAS_CHECK(
- cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
- (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
- beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC
- ne12*ne13,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- } else {
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
- ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
- src0_as_f16, src1_as_f16, dst_t,
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- nb02, nb03,
- nb12, nb13,
- nbd2, nbd3,
- r2, r3);
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
- (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
- beta, ( void **) (ptrs_dst + 0*ne23), cu_data_type, ne01,
- ne23,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- if (ptrs_src_s != 0) {
- ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
- }
- if (ptrs_dst_s != 0) {
- ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
- }
- }
- #endif
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
- ggml_cuda_pool_free(dst_f16, dst_as);
- }
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- }
- static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool all_on_device =
- (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
- (src1->backend == GGML_BACKEND_GPU) &&
- ( dst->backend == GGML_BACKEND_GPU);
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- int64_t min_compute_capability = INT_MAX;
- for (int64_t id = 0; id < g_device_count; ++id) {
- if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
- min_compute_capability = g_compute_capabilities[id];
- }
- }
- #ifdef CUDA_USE_TENSOR_CORES
- const bool use_tensor_cores = true;
- #else
- const bool use_tensor_cores = false;
- #endif
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
- // KQ + KQV multi-batch
- ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
- } else if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
- #ifdef GGML_CUDA_FORCE_DMMV
- const bool use_mul_mat_vec_q = false;
- #else
- const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
- #endif // GGML_CUDA_FORCE_DMMV
- if (use_mul_mat_vec_q) {
- // NOTE: this kernel does not support ggml_nrows(src1) > 1
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
- } else {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
- }
- } else {
- bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
- // when tensor cores are available, use them for large batch size
- // ref: https://github.com/ggerganov/llama.cpp/pull/3776
- if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne[1] > MMQ_MAX_BATCH_SIZE) {
- use_mul_mat_q = false;
- }
- if (use_mul_mat_q) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
- } else {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
- }
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- #if 0
- template<typename ... Srcs>
- static __global__ void k_compute_batched_ptrs_id(
- const void ** ptrs_src, void ** ptrs_dst,
- int ne12, int ne13,
- int ne23,
- int nb02, int nb03,
- int nb12, int nb13,
- int nb2, int nb3,
- int r2, int r3,
- ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
- const half * src1_f16, half * dst_f16,
- const int32_t * ids, const int id,
- Srcs... src0s) {
- int i = ids[id];
- half * src0_f16;
- const void * srcs_ar[] = { (const half *) src0s... };
- if (src0_type == GGML_TYPE_F16) {
- src0_f16 = (half *) srcs_ar[i];
- } else {
- src0_f16 = src0_as_f16;
- if (threadIdx.x == 0 && threadIdx.y == 0) {
- const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
- to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
- }
- }
- int i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
- }
- static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
- const struct ggml_tensor * ids = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src00 = dst->src[2];
- const int id = dst->op_params[0];
- GGML_ASSERT(!ggml_is_transposed(src00));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
- const int64_t ne01 = src00->ne[1];
- const int64_t ne02 = src00->ne[2];
- const int64_t ne03 = src00->ne[3];
- //const int64_t nb01 = src00->nb[1];
- const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
- const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- //const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
- const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- //void * src0_ddq = src0_extra->data_device[g_main_device];
- //half * src0_as_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
- ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
- int64_t src0_ne = ggml_nelements(src00);
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src00->type != GGML_TYPE_F16) {
- src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
- }
- static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
- nb12, nb13,
- dst->nb[2], dst->nb[3],
- r2, r3,
- src00->type, src0_as_f16, src0_ne,
- src1_as_f16, dst_f16,
- (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
- dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
- dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
- dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
- dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
- );
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
- (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
- &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
- ne23,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_as_f16, src0_as);
- }
- if (ptrs_src_s != 0) {
- ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
- }
- if (ptrs_dst_s != 0) {
- ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
- }
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- ggml_cuda_pool_free(dst_f16, dst_as);
- }
- #endif
- static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- #if 0
- ggml_cuda_mul_mat_id_cublas(dst);
- // TODO: mmq/mmv support
- #endif
- const int64_t nb11 = src1->nb[1];
- const int64_t nb1 = dst->nb[1];
- const struct ggml_tensor * ids = src0;
- const int32_t id = ((int32_t *) dst->op_params)[0];
- const int32_t n_as = ((int32_t *) dst->op_params)[1];
- std::vector<char> ids_host(ggml_nbytes(ids));
- const cudaStream_t stream = g_cudaStreams[g_main_device][0];
- if (ids->backend == GGML_BACKEND_GPU) {
- const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
- } else {
- memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
- }
- const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
- const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu src1_row_extra;
- ggml_tensor_extra_gpu dst_row_extra;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- src1_row.backend = GGML_BACKEND_GPU;
- dst_row.backend = GGML_BACKEND_GPU;
- src1_row.extra = &src1_row_extra;
- dst_row.extra = &dst_row_extra;
- char * src1_original = src1->backend == GGML_BACKEND_CPU ?
- (char *) src1->data : (char *) src1_extra->data_device[g_main_device];
- char * dst_original = dst->backend == GGML_BACKEND_CPU ?
- (char *) dst->data : (char *) dst_extra->data_device[g_main_device];
- if (src1->ne[1] == 1) {
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- //int32_t row_id;
- //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
- //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
- const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
- src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
- dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
- dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
- }
- } else {
- size_t as_src1, as_dst;
- char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1);
- char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst);
- src1_row_extra.data_device[g_main_device] = src1_contiguous;
- dst_row_extra.data_device[g_main_device] = dst_contiguous;
- const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
- cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
- const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ?
- cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
- for (int32_t row_id = 0; row_id < n_as; ++row_id) {
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- int64_t num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11,
- nb11, src1_kind, stream));
- num_src1_rows++;
- }
- if (num_src1_rows == 0) {
- continue;
- }
- src1_row.ne[1] = num_src1_rows;
- dst_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
- num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1,
- nb1, dst_kind, stream));
- num_src1_rows++;
- }
- }
- ggml_cuda_pool_free(src1_contiguous, as_src1);
- ggml_cuda_pool_free(dst_contiguous, as_dst);
- }
- if (dst->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(cudaStreamSynchronize(stream));
- }
- }
- static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
- }
- static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
- }
- static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- GGML_ASSERT(src0->ne[3] == 1);
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- GGML_ASSERT(src1->ne[3] == 1);
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
- ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // TODO: why do we pass dst as src1 here?
- ggml_cuda_cpy(src0, dst, nullptr);
- (void) src1;
- }
- static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
- }
- static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
- }
- static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
- }
- static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
- }
- static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
- }
- static void ggml_cuda_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sum_rows);
- }
- static void ggml_cuda_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_argsort);
- }
- static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_backend_type backend = tensor->backend;
- ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- for (int64_t id = 0; id < g_device_count; ++id) {
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
- ggml_cuda_set_device(id);
- int64_t row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- const int64_t rounding = get_row_rounding(tensor->type);
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_low -= row_low % rounding;
- if (id == g_device_count - 1) {
- row_high = nrows;
- } else {
- row_high = nrows*g_tensor_split[id + 1];
- row_high -= row_high % rounding;
- }
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t nrows_split = row_high - row_low;
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- char * buf_host = (char *)data + offset_split;
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
- extra->data_device[id] = buf;
- if (backend == GGML_BACKEND_GPU_SPLIT) {
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- }
- tensor->extra = extra;
- }
- void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int64_t id = 0; id < g_device_count; ++id) {
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(ggml_cuda_set_device(id));
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(ggml_cuda_set_device(id));
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- }
- delete extra;
- }
- static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
- static size_t g_temp_tensor_extra_index = 0;
- static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- if (g_temp_tensor_extras == nullptr) {
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
- }
- size_t alloc_index = g_temp_tensor_extra_index;
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
- if (scratch && g_scratch_size == 0) {
- return;
- }
- tensor->backend = GGML_BACKEND_GPU;
- // recursively assign CUDA buffers until a compute tensor is found
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
- const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
- ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
- ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
- }
- if (scratch && no_alloc) {
- return;
- }
- ggml_tensor_extra_gpu * extra;
- const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW ||
- force_inplace;
- const size_t size = ggml_nbytes(tensor);
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->op_params, sizeof(size_t));
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = data + g_scratch_offset;
- g_scratch_offset += size;
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- CUDA_CHECK(cudaMalloc(&data, size));
- CUDA_CHECK(cudaMemset(data, 0, size));
- extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- extra->data_device[g_main_device] = data;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) {
- if (g_scratch_size == 0) {
- return;
- }
- if (g_scratch_buffer == nullptr) {
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size));
- }
- ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
- const bool inplace = tensor->view_src != nullptr;
- if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t view_offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&view_offset, tensor->op_params, sizeof(size_t));
- }
- extra->data_device[g_main_device] = src0_ddc + view_offset;
- } else {
- extra->data_device[g_main_device] = (char *) g_scratch_buffer + offset;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_is_contiguous(tensor));
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- CUDA_CHECK(ggml_cuda_set_device(g_main_device));
- CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice));
- }
- void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false, false);
- }
- void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false, true);
- }
- void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, false, false);
- }
- void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, true, false);
- }
- void ggml_cuda_set_main_device(const int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- if (g_main_device != main_device && g_device_count > 1) {
- g_main_device = main_device;
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- void ggml_cuda_set_scratch_size(const size_t scratch_size) {
- // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
- // it still won't always work as expected, but it's better than nothing
- if (scratch_size > g_scratch_size) {
- ggml_cuda_free_scratch();
- }
- g_scratch_size = std::max(g_scratch_size, scratch_size);
- }
- void ggml_cuda_free_scratch() {
- if (g_scratch_buffer == nullptr) {
- return;
- }
- CUDA_CHECK(cudaFree(g_scratch_buffer));
- g_scratch_buffer = nullptr;
- }
- bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- if (!g_cublas_loaded) return false;
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
- || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
- || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
- if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
- return false;
- }
- if (tensor->op == GGML_OP_MUL_MAT) {
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
- #ifndef NDEBUG
- fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
- #endif
- return false;
- }
- }
- switch (tensor->op) {
- case GGML_OP_REPEAT:
- func = ggml_cuda_repeat;
- break;
- case GGML_OP_GET_ROWS:
- func = ggml_cuda_get_rows;
- break;
- case GGML_OP_DUP:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_ADD:
- func = ggml_cuda_add;
- break;
- case GGML_OP_ACC:
- func = ggml_cuda_acc;
- break;
- case GGML_OP_MUL:
- func = ggml_cuda_mul;
- break;
- case GGML_OP_DIV:
- func = ggml_cuda_div;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- func = ggml_cuda_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- func = ggml_cuda_silu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- func = ggml_cuda_gelu_quick;
- break;
- case GGML_UNARY_OP_TANH:
- func = ggml_cuda_tanh;
- break;
- case GGML_UNARY_OP_RELU:
- func = ggml_cuda_relu;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- func = ggml_cuda_norm;
- break;
- case GGML_OP_GROUP_NORM:
- func = ggml_cuda_group_norm;
- break;
- case GGML_OP_CONCAT:
- func = ggml_cuda_concat;
- break;
- case GGML_OP_UPSCALE:
- func = ggml_cuda_upscale;
- break;
- case GGML_OP_PAD:
- func = ggml_cuda_pad;
- break;
- case GGML_OP_LEAKY_RELU:
- func = ggml_cuda_leaky_relu;
- break;
- case GGML_OP_RMS_NORM:
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- func = ggml_cuda_scale;
- break;
- case GGML_OP_SQR:
- func = ggml_cuda_sqr;
- break;
- case GGML_OP_CLAMP:
- func = ggml_cuda_clamp;
- break;
- case GGML_OP_CPY:
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_CONT:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- func = ggml_cuda_rope;
- break;
- case GGML_OP_ALIBI:
- func = ggml_cuda_alibi;
- break;
- case GGML_OP_IM2COL:
- func = ggml_cuda_im2col;
- break;
- case GGML_OP_SUM_ROWS:
- func = ggml_cuda_sum_rows;
- break;
- case GGML_OP_ARGSORT:
- func = ggml_cuda_argsort;
- break;
- default:
- return false;
- }
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
- ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return true;
- }
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
- }
- int ggml_cuda_get_device_count() {
- int device_count;
- if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
- return 0;
- }
- return device_count;
- }
- void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- #define UNUSED GGML_UNUSED
- // cuda buffer
- struct ggml_backend_buffer_context_cuda {
- int device;
- void * dev_ptr = nullptr;
- ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
- size_t temp_tensor_extra_index = 0;
- ggml_backend_buffer_context_cuda(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
- ~ggml_backend_buffer_context_cuda() {
- delete[] temp_tensor_extras;
- }
- ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- if (temp_tensor_extras == nullptr) {
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
- }
- size_t alloc_index = temp_tensor_extra_index;
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- };
- static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- CUDA_CHECK(cudaFree(ctx->dev_ptr));
- delete ctx;
- }
- static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- return ctx->dev_ptr;
- }
- static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
- return;
- }
- ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[ctx->device] = tensor->data;
- tensor->backend = GGML_BACKEND_GPU;
- tensor->extra = extra;
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- int64_t row_low = 0;
- int64_t row_high = ggml_nrows(tensor);
- int64_t nrows_split = row_high - row_low;
- size_t original_size = ggml_nbytes_split(tensor, nrows_split);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[ctx->device][0]));
- }
- }
- UNUSED(buffer);
- }
- static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
- }
- static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
- }
- static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
- }
- static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
- /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor_from = */ NULL,
- /* .cpy_tensor_to = */ NULL,
- /* .clear = */ ggml_backend_cuda_buffer_clear,
- };
- // cuda buffer type
- static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- int device = (int) (intptr_t) buft->context;
- ggml_cuda_set_device(device);
- size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
- void * dev_ptr;
- CUDA_CHECK(cudaMalloc(&dev_ptr, size));
- ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda(device, dev_ptr);
- return ggml_backend_buffer_init(buft, cuda_backend_buffer_interface, ctx, size);
- }
- static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, ggml_tensor * tensor) {
- int64_t row_low = 0;
- int64_t row_high = ggml_nrows(tensor);
- int64_t nrows_split = row_high - row_low;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- UNUSED(buft);
- }
- static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cuda(backend);
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
- /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
- /* .is_host = */ nullptr,
- };
- ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
- static bool ggml_backend_cuda_buffer_type_initialized = false;
- if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
- ggml_backend_cuda_buffer_types[i] = {
- /* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
- };
- }
- ggml_backend_cuda_buffer_type_initialized = true;
- }
- return &ggml_backend_cuda_buffer_types[device];
- }
- // host buffer type
- static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- CUDA_CHECK(cudaFreeHost(buffer->context));
- }
- static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr;
- CUDA_CHECK(cudaMallocHost(&ptr, size));
- // FIXME: this is a hack to avoid having to implement a new buffer type
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
- return buffer;
- }
- ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
- /* .iface = */ {
- /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_cuda_buffer_type_host;
- }
- // backend
- struct ggml_backend_context_cuda {
- int device;
- };
- static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
- return GGML_CUDA_NAME;
- UNUSED(backend);
- }
- static void ggml_backend_cuda_free(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- delete cuda_ctx;
- delete backend;
- }
- static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- return ggml_backend_cuda_buffer_type(cuda_ctx->device);
- }
- static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
- }
- static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
- }
- static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
- UNUSED(backend);
- }
- static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_t backend, ggml_cgraph * cgraph) {
- GGML_ASSERT(!"not implemented");
- return nullptr;
- UNUSED(backend);
- UNUSED(cgraph);
- }
- static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(!"not implemented");
- UNUSED(backend);
- UNUSED(plan);
- }
- static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(!"not implemented");
- UNUSED(backend);
- UNUSED(plan);
- }
- static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
- ggml_cuda_set_main_device(cuda_ctx->device);
- ggml_compute_params params = {};
- params.type = GGML_TASK_COMPUTE;
- params.ith = 0;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
- continue;
- assert(node->backend == GGML_BACKEND_GPU);
- assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- assert(node->extra != nullptr);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->backend == GGML_BACKEND_GPU);
- assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- assert(node->src[j]->extra != nullptr);
- }
- }
- bool ok = ggml_cuda_compute_forward(¶ms, node);
- if (!ok) {
- fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- #if 0
- if (node->type == GGML_TYPE_F32) {
- cudaDeviceSynchronize();
- std::vector<float> tmp(ggml_nelements(node), 0.0f);
- cudaMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), cudaMemcpyDeviceToHost);
- printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
- ggml_type_name(node->src[0]->type),
- node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
- node->src[0]->name,
- node->src[1] ? node->src[1]->name : "none");
- double sum = 0.0;
- double sq_sum = 0.0;
- for (int i = 0; i < ggml_nelements(node); i++) {
- printf("%f ", tmp[i]);
- sum += tmp[i];
- sq_sum += tmp[i]*tmp[i];
- }
- printf("\n");
- printf("sum: %f, ", sum);
- printf("sq_sum: %f\n", sq_sum);
- }
- #endif
- }
- UNUSED(backend);
- }
- static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return true;
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- return true;
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_REPEAT:
- case GGML_OP_DUP:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ALIBI:
- case GGML_OP_IM2COL:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_CONCAT:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_LEAKY_RELU:
- return true;
- default:
- return false;
- }
- UNUSED(backend);
- }
- static ggml_backend_i cuda_backend_i = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_from_async = */ NULL,
- /* .cpy_tensor_to_async = */ NULL,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ ggml_backend_cuda_graph_plan_create,
- /* .graph_plan_free = */ ggml_backend_cuda_graph_plan_free,
- /* .graph_plan_compute = */ ggml_backend_cuda_graph_plan_compute,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- };
- ggml_backend_t ggml_backend_cuda_init(int device) {
- ggml_init_cublas(); // TODO: remove from ggml.c
- if (device < 0 || device >= ggml_cuda_get_device_count()) {
- fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
- return nullptr;
- }
- // not strictly necessary, but it may reduce the overhead of the first graph_compute
- ggml_cuda_set_main_device(device);
- ggml_backend_context_cuda * ctx = new ggml_backend_context_cuda {
- /* .device = */ device
- };
- ggml_backend_t cuda_backend = new ggml_backend {
- /* .interface = */ cuda_backend_i,
- /* .context = */ ctx
- };
- return cuda_backend;
- }
- bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend->iface.get_name == ggml_backend_cuda_name;
- }
- static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
- UNUSED(params);
- }
- extern "C" int ggml_backend_cuda_reg_devices();
- int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
- }
|