ggml.c 635 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "PAD",
  1403. "ARGSORT",
  1404. "LEAKY_RELU",
  1405. "FLASH_ATTN",
  1406. "FLASH_FF",
  1407. "FLASH_ATTN_BACK",
  1408. "WIN_PART",
  1409. "WIN_UNPART",
  1410. "GET_REL_POS",
  1411. "ADD_REL_POS",
  1412. "UNARY",
  1413. "MAP_UNARY",
  1414. "MAP_BINARY",
  1415. "MAP_CUSTOM1_F32",
  1416. "MAP_CUSTOM2_F32",
  1417. "MAP_CUSTOM3_F32",
  1418. "MAP_CUSTOM1",
  1419. "MAP_CUSTOM2",
  1420. "MAP_CUSTOM3",
  1421. "CROSS_ENTROPY_LOSS",
  1422. "CROSS_ENTROPY_LOSS_BACK",
  1423. };
  1424. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1425. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1426. "none",
  1427. "x",
  1428. "x+y",
  1429. "x+y",
  1430. "view(x,nb,offset)+=y->x",
  1431. "x-y",
  1432. "x*y",
  1433. "x/y",
  1434. "x^2",
  1435. "√x",
  1436. "log(x)",
  1437. "Σx",
  1438. "Σx_k",
  1439. "Σx/n",
  1440. "argmax(x)",
  1441. "repeat(x)",
  1442. "repeat_back(x)",
  1443. "concat(x, y)",
  1444. "silu_back(x)",
  1445. "norm(x)",
  1446. "rms_norm(x)",
  1447. "rms_norm_back(x)",
  1448. "group_norm(x)",
  1449. "X*Y",
  1450. "X[i]*Y",
  1451. "X*Y",
  1452. "x*v",
  1453. "y-\\>view(x)",
  1454. "x-\\>y",
  1455. "cont(x)",
  1456. "reshape(x)",
  1457. "view(x)",
  1458. "permute(x)",
  1459. "transpose(x)",
  1460. "get_rows(x)",
  1461. "get_rows_back(x)",
  1462. "diag(x)",
  1463. "diag_mask_inf(x)",
  1464. "diag_mask_zero(x)",
  1465. "soft_max(x)",
  1466. "soft_max_back(x)",
  1467. "rope(x)",
  1468. "rope_back(x)",
  1469. "alibi(x)",
  1470. "clamp(x)",
  1471. "conv_transpose_1d(x)",
  1472. "im2col(x)",
  1473. "conv_transpose_2d(x)",
  1474. "pool_1d(x)",
  1475. "pool_2d(x)",
  1476. "upscale(x)",
  1477. "pad(x)",
  1478. "argsort(x)",
  1479. "leaky_relu(x)",
  1480. "flash_attn(x)",
  1481. "flash_ff(x)",
  1482. "flash_attn_back(x)",
  1483. "win_part(x)",
  1484. "win_unpart(x)",
  1485. "get_rel_pos(x)",
  1486. "add_rel_pos(x)",
  1487. "unary(x)",
  1488. "f(x)",
  1489. "f(x,y)",
  1490. "custom_f32(x)",
  1491. "custom_f32(x,y)",
  1492. "custom_f32(x,y,z)",
  1493. "custom(x)",
  1494. "custom(x,y)",
  1495. "custom(x,y,z)",
  1496. "cross_entropy_loss(x,y)",
  1497. "cross_entropy_loss_back(x,y)",
  1498. };
  1499. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1500. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1501. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1502. "ABS",
  1503. "SGN",
  1504. "NEG",
  1505. "STEP",
  1506. "TANH",
  1507. "ELU",
  1508. "RELU",
  1509. "GELU",
  1510. "GELU_QUICK",
  1511. "SILU",
  1512. };
  1513. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1514. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1515. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1516. // WARN:
  1517. // Mis-configuration can lead to problem that's hard to reason about:
  1518. // * At best it crash or talks nosense.
  1519. // * At worst it talks slightly difference but hard to perceive.
  1520. //
  1521. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1522. // Take care about compile options (e.g., GGML_USE_xxx).
  1523. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1524. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1525. static void ggml_setup_op_has_task_pass(void) {
  1526. { // INIT
  1527. bool * p = GGML_OP_HAS_INIT;
  1528. p[GGML_OP_ACC ] = true;
  1529. p[GGML_OP_MUL_MAT ] = true;
  1530. p[GGML_OP_MUL_MAT_ID ] = true;
  1531. p[GGML_OP_OUT_PROD ] = true;
  1532. p[GGML_OP_SET ] = true;
  1533. p[GGML_OP_GET_ROWS_BACK ] = true;
  1534. p[GGML_OP_DIAG_MASK_INF ] = true;
  1535. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1536. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1537. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1538. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1539. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1540. p[GGML_OP_ADD_REL_POS ] = true;
  1541. }
  1542. { // FINALIZE
  1543. bool * p = GGML_OP_HAS_FINALIZE;
  1544. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1545. }
  1546. }
  1547. //
  1548. // ggml context
  1549. //
  1550. struct ggml_context {
  1551. size_t mem_size;
  1552. void * mem_buffer;
  1553. bool mem_buffer_owned;
  1554. bool no_alloc;
  1555. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1556. int n_objects;
  1557. struct ggml_object * objects_begin;
  1558. struct ggml_object * objects_end;
  1559. struct ggml_scratch scratch;
  1560. struct ggml_scratch scratch_save;
  1561. };
  1562. struct ggml_context_container {
  1563. bool used;
  1564. struct ggml_context context;
  1565. };
  1566. //
  1567. // NUMA support
  1568. //
  1569. #define GGML_NUMA_MAX_NODES 8
  1570. #define GGML_NUMA_MAX_CPUS 512
  1571. struct ggml_numa_node {
  1572. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1573. uint32_t n_cpus;
  1574. };
  1575. struct ggml_numa_nodes {
  1576. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1577. uint32_t n_nodes;
  1578. uint32_t total_cpus; // hardware threads on system
  1579. };
  1580. //
  1581. // ggml state
  1582. //
  1583. struct ggml_state {
  1584. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1585. struct ggml_numa_nodes numa;
  1586. };
  1587. // global state
  1588. static struct ggml_state g_state;
  1589. static atomic_int g_state_barrier = 0;
  1590. // barrier via spin lock
  1591. inline static void ggml_critical_section_start(void) {
  1592. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1593. while (processing > 0) {
  1594. // wait for other threads to finish
  1595. atomic_fetch_sub(&g_state_barrier, 1);
  1596. sched_yield(); // TODO: reconsider this
  1597. processing = atomic_fetch_add(&g_state_barrier, 1);
  1598. }
  1599. }
  1600. // TODO: make this somehow automatically executed
  1601. // some sort of "sentry" mechanism
  1602. inline static void ggml_critical_section_end(void) {
  1603. atomic_fetch_sub(&g_state_barrier, 1);
  1604. }
  1605. void ggml_numa_init(void) {
  1606. if (g_state.numa.n_nodes > 0) {
  1607. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1608. return;
  1609. }
  1610. #ifdef __linux__
  1611. struct stat st;
  1612. char path[256];
  1613. int rv;
  1614. // enumerate nodes
  1615. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.n_nodes;
  1620. }
  1621. // enumerate CPUs
  1622. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1623. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1624. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1625. if (stat(path, &st) != 0) { break; }
  1626. ++g_state.numa.total_cpus;
  1627. }
  1628. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1629. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1630. g_state.numa.n_nodes = 0;
  1631. return;
  1632. }
  1633. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1634. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1635. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1636. node->n_cpus = 0;
  1637. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) == 0) {
  1641. node->cpus[node->n_cpus++] = c;
  1642. GGML_PRINT_DEBUG(" %u", c);
  1643. }
  1644. }
  1645. GGML_PRINT_DEBUG("\n");
  1646. }
  1647. if (ggml_is_numa()) {
  1648. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1649. if (fptr != NULL) {
  1650. char buf[42];
  1651. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1652. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1653. }
  1654. fclose(fptr);
  1655. }
  1656. }
  1657. #else
  1658. // TODO
  1659. #endif
  1660. }
  1661. bool ggml_is_numa(void) {
  1662. return g_state.numa.n_nodes > 1;
  1663. }
  1664. ////////////////////////////////////////////////////////////////////////////////
  1665. void ggml_print_object(const struct ggml_object * obj) {
  1666. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1667. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1668. }
  1669. void ggml_print_objects(const struct ggml_context * ctx) {
  1670. struct ggml_object * obj = ctx->objects_begin;
  1671. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1672. while (obj != NULL) {
  1673. ggml_print_object(obj);
  1674. obj = obj->next;
  1675. }
  1676. GGML_PRINT("%s: --- end ---\n", __func__);
  1677. }
  1678. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1679. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1680. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1681. }
  1682. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1683. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1684. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1685. }
  1686. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1687. size_t nbytes;
  1688. size_t blck_size = ggml_blck_size(tensor->type);
  1689. if (blck_size == 1) {
  1690. nbytes = ggml_type_size(tensor->type);
  1691. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1692. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1693. }
  1694. }
  1695. else {
  1696. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1697. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1698. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1699. }
  1700. }
  1701. return nbytes;
  1702. }
  1703. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1704. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1705. }
  1706. int ggml_blck_size(enum ggml_type type) {
  1707. return type_traits[type].blck_size;
  1708. }
  1709. size_t ggml_type_size(enum ggml_type type) {
  1710. return type_traits[type].type_size;
  1711. }
  1712. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1713. assert(ne % ggml_blck_size(type) == 0);
  1714. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1715. }
  1716. double ggml_type_sizef(enum ggml_type type) {
  1717. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1718. }
  1719. const char * ggml_type_name(enum ggml_type type) {
  1720. return type_traits[type].type_name;
  1721. }
  1722. bool ggml_is_quantized(enum ggml_type type) {
  1723. return type_traits[type].is_quantized;
  1724. }
  1725. const char * ggml_op_name(enum ggml_op op) {
  1726. return GGML_OP_NAME[op];
  1727. }
  1728. const char * ggml_op_symbol(enum ggml_op op) {
  1729. return GGML_OP_SYMBOL[op];
  1730. }
  1731. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1732. return GGML_UNARY_OP_NAME[op];
  1733. }
  1734. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1735. if (t->op == GGML_OP_UNARY) {
  1736. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1737. return ggml_unary_op_name(uop);
  1738. }
  1739. else {
  1740. return ggml_op_name(t->op);
  1741. }
  1742. }
  1743. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1744. return ggml_type_size(tensor->type);
  1745. }
  1746. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1747. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1748. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1749. }
  1750. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1751. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1752. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1753. }
  1754. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1757. }
  1758. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1759. return tensor->ne[3] == 1;
  1760. }
  1761. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1762. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1763. if (tensor->ne[i] > 1) {
  1764. return i + 1;
  1765. }
  1766. }
  1767. return 1;
  1768. }
  1769. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1770. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1771. return (t0->ne[0] == t1->ne[0]) &&
  1772. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1773. (t1->ne[3]%t0->ne[3] == 0);
  1774. }
  1775. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1776. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1777. return (t0->ne[1] == t1->ne[1]) &&
  1778. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1779. (t1->ne[3]%t0->ne[3] == 0);
  1780. }
  1781. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1782. enum ggml_type wtype = GGML_TYPE_COUNT;
  1783. switch (ftype) {
  1784. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1785. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1786. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1787. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1788. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1789. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1790. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1791. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1792. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1793. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1794. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1795. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1796. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1798. }
  1799. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1800. return wtype;
  1801. }
  1802. size_t ggml_tensor_overhead(void) {
  1803. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1804. }
  1805. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1806. return tensor->nb[0] > tensor->nb[1];
  1807. }
  1808. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1810. return
  1811. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1812. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1813. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1814. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1815. }
  1816. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1818. return
  1819. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1820. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1821. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1822. }
  1823. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1825. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1826. }
  1827. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1828. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1829. return
  1830. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1831. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1832. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1833. }
  1834. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1835. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1836. return
  1837. (t0->ne[0] == t1->ne[0] ) &&
  1838. (t0->ne[1] == t1->ne[1] ) &&
  1839. (t0->ne[2] == t1->ne[2] ) &&
  1840. (t0->ne[3] == t1->ne[3] );
  1841. }
  1842. // check if t1 can be represented as a repeatition of t0
  1843. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1844. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1845. return
  1846. (t1->ne[0]%t0->ne[0] == 0) &&
  1847. (t1->ne[1]%t0->ne[1] == 0) &&
  1848. (t1->ne[2]%t0->ne[2] == 0) &&
  1849. (t1->ne[3]%t0->ne[3] == 0);
  1850. }
  1851. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1854. }
  1855. static inline int ggml_up32(int n) {
  1856. return (n + 31) & ~31;
  1857. }
  1858. //static inline int ggml_up64(int n) {
  1859. // return (n + 63) & ~63;
  1860. //}
  1861. static inline int ggml_up(int n, int m) {
  1862. // assert m is a power of 2
  1863. GGML_ASSERT((m & (m - 1)) == 0);
  1864. return (n + m - 1) & ~(m - 1);
  1865. }
  1866. // assert that pointer is aligned to GGML_MEM_ALIGN
  1867. #define ggml_assert_aligned(ptr) \
  1868. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1869. ////////////////////////////////////////////////////////////////////////////////
  1870. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1871. // make this function thread safe
  1872. ggml_critical_section_start();
  1873. static bool is_first_call = true;
  1874. if (is_first_call) {
  1875. // initialize time system (required on Windows)
  1876. ggml_time_init();
  1877. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1878. {
  1879. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1880. ggml_fp16_t ii;
  1881. for (int i = 0; i < (1 << 16); ++i) {
  1882. uint16_t ui = i;
  1883. memcpy(&ii, &ui, sizeof(ii));
  1884. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1885. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1886. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1887. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1888. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1889. }
  1890. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1891. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1892. }
  1893. // initialize g_state
  1894. {
  1895. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1896. g_state = (struct ggml_state) {
  1897. /*.contexts =*/ { { 0 } },
  1898. /*.numa =*/ {
  1899. .n_nodes = 0,
  1900. .total_cpus = 0,
  1901. },
  1902. };
  1903. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1904. g_state.contexts[i].used = false;
  1905. }
  1906. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1907. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1908. }
  1909. #if defined(GGML_USE_CUBLAS)
  1910. ggml_init_cublas();
  1911. #elif defined(GGML_USE_CLBLAST)
  1912. ggml_cl_init();
  1913. #endif
  1914. ggml_setup_op_has_task_pass();
  1915. is_first_call = false;
  1916. }
  1917. // find non-used context in g_state
  1918. struct ggml_context * ctx = NULL;
  1919. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1920. if (!g_state.contexts[i].used) {
  1921. g_state.contexts[i].used = true;
  1922. ctx = &g_state.contexts[i].context;
  1923. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1924. break;
  1925. }
  1926. }
  1927. if (ctx == NULL) {
  1928. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1929. ggml_critical_section_end();
  1930. return NULL;
  1931. }
  1932. // allow to call ggml_init with 0 size
  1933. if (params.mem_size == 0) {
  1934. params.mem_size = GGML_MEM_ALIGN;
  1935. }
  1936. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1937. *ctx = (struct ggml_context) {
  1938. /*.mem_size =*/ mem_size,
  1939. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1940. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1941. /*.no_alloc =*/ params.no_alloc,
  1942. /*.no_alloc_save =*/ params.no_alloc,
  1943. /*.n_objects =*/ 0,
  1944. /*.objects_begin =*/ NULL,
  1945. /*.objects_end =*/ NULL,
  1946. /*.scratch =*/ { 0, 0, NULL, },
  1947. /*.scratch_save =*/ { 0, 0, NULL, },
  1948. };
  1949. GGML_ASSERT(ctx->mem_buffer != NULL);
  1950. ggml_assert_aligned(ctx->mem_buffer);
  1951. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1952. ggml_critical_section_end();
  1953. return ctx;
  1954. }
  1955. void ggml_free(struct ggml_context * ctx) {
  1956. // make this function thread safe
  1957. ggml_critical_section_start();
  1958. bool found = false;
  1959. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1960. if (&g_state.contexts[i].context == ctx) {
  1961. g_state.contexts[i].used = false;
  1962. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1963. __func__, i, ggml_used_mem(ctx));
  1964. if (ctx->mem_buffer_owned) {
  1965. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1966. }
  1967. found = true;
  1968. break;
  1969. }
  1970. }
  1971. if (!found) {
  1972. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1973. }
  1974. ggml_critical_section_end();
  1975. }
  1976. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1977. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1978. }
  1979. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1980. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1981. ctx->scratch = scratch;
  1982. return result;
  1983. }
  1984. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1985. return ctx->no_alloc;
  1986. }
  1987. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1988. ctx->no_alloc = no_alloc;
  1989. }
  1990. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1991. return ctx->mem_buffer;
  1992. }
  1993. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1994. return ctx->mem_size;
  1995. }
  1996. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1997. size_t max_size = 0;
  1998. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  1999. max_size = MAX(max_size, ggml_nbytes(tensor));
  2000. }
  2001. return max_size;
  2002. }
  2003. // IMPORTANT:
  2004. // when creating "opt" tensors, always save and load the scratch buffer
  2005. // this is an error prone process, but it is necessary to support inplace
  2006. // operators when using scratch buffers
  2007. // TODO: implement a better way
  2008. static void ggml_scratch_save(struct ggml_context * ctx) {
  2009. // this is needed to allow opt tensors to store their data
  2010. // TODO: again, need to find a better way
  2011. ctx->no_alloc_save = ctx->no_alloc;
  2012. ctx->no_alloc = false;
  2013. ctx->scratch_save = ctx->scratch;
  2014. ctx->scratch.data = NULL;
  2015. }
  2016. static void ggml_scratch_load(struct ggml_context * ctx) {
  2017. ctx->no_alloc = ctx->no_alloc_save;
  2018. ctx->scratch = ctx->scratch_save;
  2019. }
  2020. ////////////////////////////////////////////////////////////////////////////////
  2021. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2022. // always insert objects at the end of the context's memory pool
  2023. struct ggml_object * obj_cur = ctx->objects_end;
  2024. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2025. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2026. const size_t cur_end = cur_offs + cur_size;
  2027. // align to GGML_MEM_ALIGN
  2028. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2029. char * const mem_buffer = ctx->mem_buffer;
  2030. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2031. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2032. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2033. __func__, cur_end + size_needed, ctx->mem_size);
  2034. assert(false);
  2035. return NULL;
  2036. }
  2037. *obj_new = (struct ggml_object) {
  2038. .offs = cur_end + GGML_OBJECT_SIZE,
  2039. .size = size_needed,
  2040. .next = NULL,
  2041. .type = type,
  2042. };
  2043. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2044. if (obj_cur != NULL) {
  2045. obj_cur->next = obj_new;
  2046. } else {
  2047. // this is the first object in this context
  2048. ctx->objects_begin = obj_new;
  2049. }
  2050. ctx->objects_end = obj_new;
  2051. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2052. return obj_new;
  2053. }
  2054. static struct ggml_tensor * ggml_new_tensor_impl(
  2055. struct ggml_context * ctx,
  2056. enum ggml_type type,
  2057. int n_dims,
  2058. const int64_t * ne,
  2059. struct ggml_tensor * view_src,
  2060. size_t view_offs) {
  2061. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2062. // find the base tensor and absolute offset
  2063. if (view_src != NULL && view_src->view_src != NULL) {
  2064. view_offs += view_src->view_offs;
  2065. view_src = view_src->view_src;
  2066. }
  2067. size_t data_size = ggml_row_size(type, ne[0]);
  2068. for (int i = 1; i < n_dims; i++) {
  2069. data_size *= ne[i];
  2070. }
  2071. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2072. void * data = view_src != NULL ? view_src->data : NULL;
  2073. if (data != NULL) {
  2074. data = (char *) data + view_offs;
  2075. }
  2076. size_t obj_alloc_size = 0;
  2077. if (view_src == NULL && !ctx->no_alloc) {
  2078. if (ctx->scratch.data != NULL) {
  2079. // allocate tensor data in the scratch buffer
  2080. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2081. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2082. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2083. assert(false);
  2084. return NULL;
  2085. }
  2086. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2087. ctx->scratch.offs += data_size;
  2088. } else {
  2089. // allocate tensor data in the context's memory pool
  2090. obj_alloc_size = data_size;
  2091. }
  2092. }
  2093. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2094. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2095. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2096. *result = (struct ggml_tensor) {
  2097. /*.type =*/ type,
  2098. /*.backend =*/ GGML_BACKEND_CPU,
  2099. /*.buffer =*/ NULL,
  2100. /*.ne =*/ { 1, 1, 1, 1 },
  2101. /*.nb =*/ { 0, 0, 0, 0 },
  2102. /*.op =*/ GGML_OP_NONE,
  2103. /*.op_params =*/ { 0 },
  2104. /*.is_param =*/ false,
  2105. /*.grad =*/ NULL,
  2106. /*.src =*/ { NULL },
  2107. /*.perf_runs =*/ 0,
  2108. /*.perf_cycles =*/ 0,
  2109. /*.perf_time_us =*/ 0,
  2110. /*.view_src =*/ view_src,
  2111. /*.view_offs =*/ view_offs,
  2112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2113. /*.name =*/ { 0 },
  2114. /*.extra =*/ NULL,
  2115. /*.padding =*/ { 0 },
  2116. };
  2117. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2118. //ggml_assert_aligned(result->data);
  2119. for (int i = 0; i < n_dims; i++) {
  2120. result->ne[i] = ne[i];
  2121. }
  2122. result->nb[0] = ggml_type_size(type);
  2123. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2124. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2125. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2126. }
  2127. ctx->n_objects++;
  2128. return result;
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int n_dims,
  2134. const int64_t * ne) {
  2135. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2136. }
  2137. struct ggml_tensor * ggml_new_tensor_1d(
  2138. struct ggml_context * ctx,
  2139. enum ggml_type type,
  2140. int64_t ne0) {
  2141. return ggml_new_tensor(ctx, type, 1, &ne0);
  2142. }
  2143. struct ggml_tensor * ggml_new_tensor_2d(
  2144. struct ggml_context * ctx,
  2145. enum ggml_type type,
  2146. int64_t ne0,
  2147. int64_t ne1) {
  2148. const int64_t ne[2] = { ne0, ne1 };
  2149. return ggml_new_tensor(ctx, type, 2, ne);
  2150. }
  2151. struct ggml_tensor * ggml_new_tensor_3d(
  2152. struct ggml_context * ctx,
  2153. enum ggml_type type,
  2154. int64_t ne0,
  2155. int64_t ne1,
  2156. int64_t ne2) {
  2157. const int64_t ne[3] = { ne0, ne1, ne2 };
  2158. return ggml_new_tensor(ctx, type, 3, ne);
  2159. }
  2160. struct ggml_tensor * ggml_new_tensor_4d(
  2161. struct ggml_context * ctx,
  2162. enum ggml_type type,
  2163. int64_t ne0,
  2164. int64_t ne1,
  2165. int64_t ne2,
  2166. int64_t ne3) {
  2167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2168. return ggml_new_tensor(ctx, type, 4, ne);
  2169. }
  2170. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2171. ggml_scratch_save(ctx);
  2172. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2173. ggml_scratch_load(ctx);
  2174. ggml_set_i32(result, value);
  2175. return result;
  2176. }
  2177. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2178. ggml_scratch_save(ctx);
  2179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2180. ggml_scratch_load(ctx);
  2181. ggml_set_f32(result, value);
  2182. return result;
  2183. }
  2184. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2185. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2186. }
  2187. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2188. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2189. assert(params_size <= GGML_MAX_OP_PARAMS);
  2190. memcpy(tensor->op_params, params, params_size);
  2191. }
  2192. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2193. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2194. return ((const int32_t *)(tensor->op_params))[i];
  2195. }
  2196. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2198. ((int32_t *)(tensor->op_params))[i] = value;
  2199. }
  2200. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2201. memset(tensor->data, 0, ggml_nbytes(tensor));
  2202. return tensor;
  2203. }
  2204. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2205. const int n = ggml_nrows(tensor);
  2206. const int nc = tensor->ne[0];
  2207. const size_t n1 = tensor->nb[1];
  2208. char * const data = tensor->data;
  2209. switch (tensor->type) {
  2210. case GGML_TYPE_I8:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(int8_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2215. }
  2216. } break;
  2217. case GGML_TYPE_I16:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(int16_t));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. case GGML_TYPE_I32:
  2225. {
  2226. assert(tensor->nb[0] == sizeof(int32_t));
  2227. for (int i = 0; i < n; i++) {
  2228. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2229. }
  2230. } break;
  2231. case GGML_TYPE_F16:
  2232. {
  2233. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2234. for (int i = 0; i < n; i++) {
  2235. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2236. }
  2237. } break;
  2238. case GGML_TYPE_F32:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(float));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2243. }
  2244. } break;
  2245. default:
  2246. {
  2247. GGML_ASSERT(false);
  2248. } break;
  2249. }
  2250. return tensor;
  2251. }
  2252. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2253. const int n = ggml_nrows(tensor);
  2254. const int nc = tensor->ne[0];
  2255. const size_t n1 = tensor->nb[1];
  2256. char * const data = tensor->data;
  2257. switch (tensor->type) {
  2258. case GGML_TYPE_I8:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(int8_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2263. }
  2264. } break;
  2265. case GGML_TYPE_I16:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(int16_t));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. case GGML_TYPE_I32:
  2273. {
  2274. assert(tensor->nb[0] == sizeof(int32_t));
  2275. for (int i = 0; i < n; i++) {
  2276. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2277. }
  2278. } break;
  2279. case GGML_TYPE_F16:
  2280. {
  2281. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2282. for (int i = 0; i < n; i++) {
  2283. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2284. }
  2285. } break;
  2286. case GGML_TYPE_F32:
  2287. {
  2288. assert(tensor->nb[0] == sizeof(float));
  2289. for (int i = 0; i < n; i++) {
  2290. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2291. }
  2292. } break;
  2293. default:
  2294. {
  2295. GGML_ASSERT(false);
  2296. } break;
  2297. }
  2298. return tensor;
  2299. }
  2300. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2301. const int64_t ne2 = tensor->ne[2];
  2302. const int64_t ne1 = tensor->ne[1];
  2303. const int64_t ne0 = tensor->ne[0];
  2304. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2305. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2306. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2307. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2308. if (i0) {
  2309. * i0 = i0_;
  2310. }
  2311. if (i1) {
  2312. * i1 = i1_;
  2313. }
  2314. if (i2) {
  2315. * i2 = i2_;
  2316. }
  2317. if (i3) {
  2318. * i3 = i3_;
  2319. }
  2320. }
  2321. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2322. if (!ggml_is_contiguous(tensor)) {
  2323. int64_t id[4] = { 0, 0, 0, 0 };
  2324. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2325. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2326. }
  2327. switch (tensor->type) {
  2328. case GGML_TYPE_I8:
  2329. {
  2330. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2331. return ((int8_t *)(tensor->data))[i];
  2332. }
  2333. case GGML_TYPE_I16:
  2334. {
  2335. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2336. return ((int16_t *)(tensor->data))[i];
  2337. }
  2338. case GGML_TYPE_I32:
  2339. {
  2340. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2341. return ((int32_t *)(tensor->data))[i];
  2342. }
  2343. case GGML_TYPE_F16:
  2344. {
  2345. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2346. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2347. }
  2348. case GGML_TYPE_F32:
  2349. {
  2350. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2351. return ((float *)(tensor->data))[i];
  2352. }
  2353. default:
  2354. {
  2355. GGML_ASSERT(false);
  2356. }
  2357. }
  2358. return 0.0f;
  2359. }
  2360. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2361. if (!ggml_is_contiguous(tensor)) {
  2362. int64_t id[4] = { 0, 0, 0, 0 };
  2363. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2364. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2365. return;
  2366. }
  2367. switch (tensor->type) {
  2368. case GGML_TYPE_I8:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2371. ((int8_t *)(tensor->data))[i] = value;
  2372. } break;
  2373. case GGML_TYPE_I16:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2376. ((int16_t *)(tensor->data))[i] = value;
  2377. } break;
  2378. case GGML_TYPE_I32:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2381. ((int32_t *)(tensor->data))[i] = value;
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2387. } break;
  2388. case GGML_TYPE_F32:
  2389. {
  2390. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2391. ((float *)(tensor->data))[i] = value;
  2392. } break;
  2393. default:
  2394. {
  2395. GGML_ASSERT(false);
  2396. } break;
  2397. }
  2398. }
  2399. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2400. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2401. switch (tensor->type) {
  2402. case GGML_TYPE_I8:
  2403. return ((int8_t *) data)[0];
  2404. case GGML_TYPE_I16:
  2405. return ((int16_t *) data)[0];
  2406. case GGML_TYPE_I32:
  2407. return ((int32_t *) data)[0];
  2408. case GGML_TYPE_F16:
  2409. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2410. case GGML_TYPE_F32:
  2411. return ((float *) data)[0];
  2412. default:
  2413. GGML_ASSERT(false);
  2414. }
  2415. return 0.0f;
  2416. }
  2417. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2418. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2419. switch (tensor->type) {
  2420. case GGML_TYPE_I8:
  2421. {
  2422. ((int8_t *)(data))[0] = value;
  2423. } break;
  2424. case GGML_TYPE_I16:
  2425. {
  2426. ((int16_t *)(data))[0] = value;
  2427. } break;
  2428. case GGML_TYPE_I32:
  2429. {
  2430. ((int32_t *)(data))[0] = value;
  2431. } break;
  2432. case GGML_TYPE_F16:
  2433. {
  2434. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2435. } break;
  2436. case GGML_TYPE_F32:
  2437. {
  2438. ((float *)(data))[0] = value;
  2439. } break;
  2440. default:
  2441. {
  2442. GGML_ASSERT(false);
  2443. } break;
  2444. }
  2445. }
  2446. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2447. if (!ggml_is_contiguous(tensor)) {
  2448. int64_t id[4] = { 0, 0, 0, 0 };
  2449. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2450. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2451. }
  2452. switch (tensor->type) {
  2453. case GGML_TYPE_I8:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2456. return ((int8_t *)(tensor->data))[i];
  2457. }
  2458. case GGML_TYPE_I16:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2461. return ((int16_t *)(tensor->data))[i];
  2462. }
  2463. case GGML_TYPE_I32:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2466. return ((int32_t *)(tensor->data))[i];
  2467. }
  2468. case GGML_TYPE_F16:
  2469. {
  2470. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2471. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2472. }
  2473. case GGML_TYPE_F32:
  2474. {
  2475. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2476. return ((float *)(tensor->data))[i];
  2477. }
  2478. default:
  2479. {
  2480. GGML_ASSERT(false);
  2481. }
  2482. }
  2483. return 0.0f;
  2484. }
  2485. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2486. if (!ggml_is_contiguous(tensor)) {
  2487. int64_t id[4] = { 0, 0, 0, 0 };
  2488. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2489. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2490. return;
  2491. }
  2492. switch (tensor->type) {
  2493. case GGML_TYPE_I8:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2496. ((int8_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_I16:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2501. ((int16_t *)(tensor->data))[i] = value;
  2502. } break;
  2503. case GGML_TYPE_I32:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2506. ((int32_t *)(tensor->data))[i] = value;
  2507. } break;
  2508. case GGML_TYPE_F16:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2511. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2512. } break;
  2513. case GGML_TYPE_F32:
  2514. {
  2515. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2516. ((float *)(tensor->data))[i] = value;
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. }
  2523. }
  2524. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2525. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2526. switch (tensor->type) {
  2527. case GGML_TYPE_I8:
  2528. return ((int8_t *) data)[0];
  2529. case GGML_TYPE_I16:
  2530. return ((int16_t *) data)[0];
  2531. case GGML_TYPE_I32:
  2532. return ((int32_t *) data)[0];
  2533. case GGML_TYPE_F16:
  2534. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2535. case GGML_TYPE_F32:
  2536. return ((float *) data)[0];
  2537. default:
  2538. GGML_ASSERT(false);
  2539. }
  2540. return 0.0f;
  2541. }
  2542. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2543. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2544. switch (tensor->type) {
  2545. case GGML_TYPE_I8:
  2546. {
  2547. ((int8_t *)(data))[0] = value;
  2548. } break;
  2549. case GGML_TYPE_I16:
  2550. {
  2551. ((int16_t *)(data))[0] = value;
  2552. } break;
  2553. case GGML_TYPE_I32:
  2554. {
  2555. ((int32_t *)(data))[0] = value;
  2556. } break;
  2557. case GGML_TYPE_F16:
  2558. {
  2559. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2560. } break;
  2561. case GGML_TYPE_F32:
  2562. {
  2563. ((float *)(data))[0] = value;
  2564. } break;
  2565. default:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. }
  2570. }
  2571. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2572. return tensor->data;
  2573. }
  2574. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2575. assert(tensor->type == GGML_TYPE_F32);
  2576. return (float *)(tensor->data);
  2577. }
  2578. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2579. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2580. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2581. }
  2582. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2583. return tensor->name;
  2584. }
  2585. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2586. strncpy(tensor->name, name, sizeof(tensor->name));
  2587. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2588. return tensor;
  2589. }
  2590. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2591. va_list args;
  2592. va_start(args, fmt);
  2593. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2594. va_end(args);
  2595. return tensor;
  2596. }
  2597. struct ggml_tensor * ggml_view_tensor(
  2598. struct ggml_context * ctx,
  2599. struct ggml_tensor * src) {
  2600. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2601. ggml_format_name(result, "%s (view)", src->name);
  2602. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2603. result->nb[i] = src->nb[i];
  2604. }
  2605. return result;
  2606. }
  2607. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2608. struct ggml_object * obj = ctx->objects_begin;
  2609. char * const mem_buffer = ctx->mem_buffer;
  2610. while (obj != NULL) {
  2611. if (obj->type == GGML_OBJECT_TENSOR) {
  2612. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2613. }
  2614. obj = obj->next;
  2615. }
  2616. return NULL;
  2617. }
  2618. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2619. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2620. obj = obj->next;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2631. struct ggml_object * obj = ctx->objects_begin;
  2632. char * const mem_buffer = ctx->mem_buffer;
  2633. while (obj != NULL) {
  2634. if (obj->type == GGML_OBJECT_TENSOR) {
  2635. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2636. if (strcmp(cur->name, name) == 0) {
  2637. return cur;
  2638. }
  2639. }
  2640. obj = obj->next;
  2641. }
  2642. return NULL;
  2643. }
  2644. ////////////////////////////////////////////////////////////////////////////////
  2645. // ggml_dup
  2646. static struct ggml_tensor * ggml_dup_impl(
  2647. struct ggml_context * ctx,
  2648. struct ggml_tensor * a,
  2649. bool inplace) {
  2650. bool is_node = false;
  2651. if (!inplace && (a->grad)) {
  2652. is_node = true;
  2653. }
  2654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2655. result->op = GGML_OP_DUP;
  2656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2657. result->src[0] = a;
  2658. return result;
  2659. }
  2660. struct ggml_tensor * ggml_dup(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, false);
  2664. }
  2665. struct ggml_tensor * ggml_dup_inplace(
  2666. struct ggml_context * ctx,
  2667. struct ggml_tensor * a) {
  2668. return ggml_dup_impl(ctx, a, true);
  2669. }
  2670. // ggml_add
  2671. static struct ggml_tensor * ggml_add_impl(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b,
  2675. bool inplace) {
  2676. GGML_ASSERT(ggml_can_repeat(b, a));
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad || b->grad)) {
  2679. // TODO: support backward pass for broadcasting
  2680. GGML_ASSERT(ggml_are_same_shape(a, b));
  2681. is_node = true;
  2682. }
  2683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2684. result->op = GGML_OP_ADD;
  2685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2686. result->src[0] = a;
  2687. result->src[1] = b;
  2688. return result;
  2689. }
  2690. struct ggml_tensor * ggml_add(
  2691. struct ggml_context * ctx,
  2692. struct ggml_tensor * a,
  2693. struct ggml_tensor * b) {
  2694. return ggml_add_impl(ctx, a, b, false);
  2695. }
  2696. struct ggml_tensor * ggml_add_inplace(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a,
  2699. struct ggml_tensor * b) {
  2700. return ggml_add_impl(ctx, a, b, true);
  2701. }
  2702. // ggml_add_cast
  2703. static struct ggml_tensor * ggml_add_cast_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. struct ggml_tensor * b,
  2707. enum ggml_type type) {
  2708. // TODO: support less-strict constraint
  2709. // GGML_ASSERT(ggml_can_repeat(b, a));
  2710. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2711. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2712. bool is_node = false;
  2713. if (a->grad || b->grad) {
  2714. // TODO: support backward pass for broadcasting
  2715. GGML_ASSERT(ggml_are_same_shape(a, b));
  2716. is_node = true;
  2717. }
  2718. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2719. result->op = GGML_OP_ADD;
  2720. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2721. result->src[0] = a;
  2722. result->src[1] = b;
  2723. return result;
  2724. }
  2725. struct ggml_tensor * ggml_add_cast(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. struct ggml_tensor * b,
  2729. enum ggml_type type) {
  2730. return ggml_add_cast_impl(ctx, a, b, type);
  2731. }
  2732. // ggml_add1
  2733. static struct ggml_tensor * ggml_add1_impl(
  2734. struct ggml_context * ctx,
  2735. struct ggml_tensor * a,
  2736. struct ggml_tensor * b,
  2737. bool inplace) {
  2738. GGML_ASSERT(ggml_is_scalar(b));
  2739. GGML_ASSERT(ggml_is_padded_1d(a));
  2740. bool is_node = false;
  2741. if (a->grad || b->grad) {
  2742. is_node = true;
  2743. }
  2744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2745. result->op = GGML_OP_ADD1;
  2746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2747. result->src[0] = a;
  2748. result->src[1] = b;
  2749. return result;
  2750. }
  2751. struct ggml_tensor * ggml_add1(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. struct ggml_tensor * b) {
  2755. return ggml_add1_impl(ctx, a, b, false);
  2756. }
  2757. struct ggml_tensor * ggml_add1_inplace(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b) {
  2761. return ggml_add1_impl(ctx, a, b, true);
  2762. }
  2763. // ggml_acc
  2764. static struct ggml_tensor * ggml_acc_impl(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a,
  2767. struct ggml_tensor * b,
  2768. size_t nb1,
  2769. size_t nb2,
  2770. size_t nb3,
  2771. size_t offset,
  2772. bool inplace) {
  2773. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2774. GGML_ASSERT(ggml_is_contiguous(a));
  2775. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2776. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2777. bool is_node = false;
  2778. if (!inplace && (a->grad || b->grad)) {
  2779. is_node = true;
  2780. }
  2781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2782. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2783. ggml_set_op_params(result, params, sizeof(params));
  2784. result->op = GGML_OP_ACC;
  2785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2786. result->src[0] = a;
  2787. result->src[1] = b;
  2788. return result;
  2789. }
  2790. struct ggml_tensor * ggml_acc(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a,
  2793. struct ggml_tensor * b,
  2794. size_t nb1,
  2795. size_t nb2,
  2796. size_t nb3,
  2797. size_t offset) {
  2798. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2799. }
  2800. struct ggml_tensor * ggml_acc_inplace(
  2801. struct ggml_context * ctx,
  2802. struct ggml_tensor * a,
  2803. struct ggml_tensor * b,
  2804. size_t nb1,
  2805. size_t nb2,
  2806. size_t nb3,
  2807. size_t offset) {
  2808. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2809. }
  2810. // ggml_sub
  2811. static struct ggml_tensor * ggml_sub_impl(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a,
  2814. struct ggml_tensor * b,
  2815. bool inplace) {
  2816. GGML_ASSERT(ggml_are_same_shape(a, b));
  2817. bool is_node = false;
  2818. if (!inplace && (a->grad || b->grad)) {
  2819. is_node = true;
  2820. }
  2821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2822. result->op = GGML_OP_SUB;
  2823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2824. result->src[0] = a;
  2825. result->src[1] = b;
  2826. return result;
  2827. }
  2828. struct ggml_tensor * ggml_sub(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a,
  2831. struct ggml_tensor * b) {
  2832. return ggml_sub_impl(ctx, a, b, false);
  2833. }
  2834. struct ggml_tensor * ggml_sub_inplace(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a,
  2837. struct ggml_tensor * b) {
  2838. return ggml_sub_impl(ctx, a, b, true);
  2839. }
  2840. // ggml_mul
  2841. static struct ggml_tensor * ggml_mul_impl(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a,
  2844. struct ggml_tensor * b,
  2845. bool inplace) {
  2846. GGML_ASSERT(ggml_can_repeat(b, a));
  2847. bool is_node = false;
  2848. if (!inplace && (a->grad || b->grad)) {
  2849. // TODO: support backward pass for broadcasting
  2850. GGML_ASSERT(ggml_are_same_shape(a, b));
  2851. is_node = true;
  2852. }
  2853. if (inplace) {
  2854. GGML_ASSERT(!is_node);
  2855. }
  2856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2857. result->op = GGML_OP_MUL;
  2858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2859. result->src[0] = a;
  2860. result->src[1] = b;
  2861. return result;
  2862. }
  2863. struct ggml_tensor * ggml_mul(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a,
  2866. struct ggml_tensor * b) {
  2867. return ggml_mul_impl(ctx, a, b, false);
  2868. }
  2869. struct ggml_tensor * ggml_mul_inplace(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. struct ggml_tensor * b) {
  2873. return ggml_mul_impl(ctx, a, b, true);
  2874. }
  2875. // ggml_div
  2876. static struct ggml_tensor * ggml_div_impl(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. struct ggml_tensor * b,
  2880. bool inplace) {
  2881. GGML_ASSERT(ggml_can_repeat(b, a));
  2882. bool is_node = false;
  2883. if (!inplace && (a->grad || b->grad)) {
  2884. is_node = true;
  2885. }
  2886. if (inplace) {
  2887. GGML_ASSERT(!is_node);
  2888. }
  2889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2890. result->op = GGML_OP_DIV;
  2891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2892. result->src[0] = a;
  2893. result->src[1] = b;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_div(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. struct ggml_tensor * b) {
  2900. return ggml_div_impl(ctx, a, b, false);
  2901. }
  2902. struct ggml_tensor * ggml_div_inplace(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a,
  2905. struct ggml_tensor * b) {
  2906. return ggml_div_impl(ctx, a, b, true);
  2907. }
  2908. // ggml_sqr
  2909. static struct ggml_tensor * ggml_sqr_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. bool inplace) {
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad)) {
  2915. is_node = true;
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_SQR;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_sqr(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_sqr_impl(ctx, a, false);
  2927. }
  2928. struct ggml_tensor * ggml_sqr_inplace(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a) {
  2931. return ggml_sqr_impl(ctx, a, true);
  2932. }
  2933. // ggml_sqrt
  2934. static struct ggml_tensor * ggml_sqrt_impl(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. bool inplace) {
  2938. bool is_node = false;
  2939. if (!inplace && (a->grad)) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2943. result->op = GGML_OP_SQRT;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src[0] = a;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_sqrt(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_sqrt_impl(ctx, a, false);
  2952. }
  2953. struct ggml_tensor * ggml_sqrt_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_sqrt_impl(ctx, a, true);
  2957. }
  2958. // ggml_log
  2959. static struct ggml_tensor * ggml_log_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_LOG;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src[0] = a;
  2971. return result;
  2972. }
  2973. struct ggml_tensor * ggml_log(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a) {
  2976. return ggml_log_impl(ctx, a, false);
  2977. }
  2978. struct ggml_tensor * ggml_log_inplace(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a) {
  2981. return ggml_log_impl(ctx, a, true);
  2982. }
  2983. // ggml_sum
  2984. struct ggml_tensor * ggml_sum(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. bool is_node = false;
  2988. if (a->grad) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2992. result->op = GGML_OP_SUM;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src[0] = a;
  2995. return result;
  2996. }
  2997. // ggml_sum_rows
  2998. struct ggml_tensor * ggml_sum_rows(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a) {
  3001. bool is_node = false;
  3002. if (a->grad) {
  3003. is_node = true;
  3004. }
  3005. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3006. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3007. ne[i] = a->ne[i];
  3008. }
  3009. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3010. result->op = GGML_OP_SUM_ROWS;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src[0] = a;
  3013. return result;
  3014. }
  3015. // ggml_mean
  3016. struct ggml_tensor * ggml_mean(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false); // TODO: implement
  3022. is_node = true;
  3023. }
  3024. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3026. result->op = GGML_OP_MEAN;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_argmax
  3032. struct ggml_tensor * ggml_argmax(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a) {
  3035. GGML_ASSERT(ggml_is_matrix(a));
  3036. bool is_node = false;
  3037. if (a->grad) {
  3038. GGML_ASSERT(false);
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3042. result->op = GGML_OP_ARGMAX;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat
  3048. struct ggml_tensor * ggml_repeat(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(a, b));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3058. result->op = GGML_OP_REPEAT;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. return result;
  3062. }
  3063. // ggml_repeat_back
  3064. struct ggml_tensor * ggml_repeat_back(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. struct ggml_tensor * b) {
  3068. GGML_ASSERT(ggml_can_repeat(b, a));
  3069. bool is_node = false;
  3070. if (a->grad) {
  3071. is_node = true;
  3072. }
  3073. if (ggml_are_same_shape(a, b) && !is_node) {
  3074. return a;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3077. result->op = GGML_OP_REPEAT_BACK;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. return result;
  3081. }
  3082. // ggml_concat
  3083. struct ggml_tensor * ggml_concat(
  3084. struct ggml_context* ctx,
  3085. struct ggml_tensor* a,
  3086. struct ggml_tensor* b) {
  3087. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3088. bool is_node = false;
  3089. if (a->grad || b->grad) {
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3093. result->op = GGML_OP_CONCAT;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src[0] = a;
  3096. result->src[1] = b;
  3097. return result;
  3098. }
  3099. // ggml_abs
  3100. struct ggml_tensor * ggml_abs(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3104. }
  3105. struct ggml_tensor * ggml_abs_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3109. }
  3110. // ggml_sgn
  3111. struct ggml_tensor * ggml_sgn(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3115. }
  3116. struct ggml_tensor * ggml_sgn_inplace(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a) {
  3119. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3120. }
  3121. // ggml_neg
  3122. struct ggml_tensor * ggml_neg(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3126. }
  3127. struct ggml_tensor * ggml_neg_inplace(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3131. }
  3132. // ggml_step
  3133. struct ggml_tensor * ggml_step(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3137. }
  3138. struct ggml_tensor * ggml_step_inplace(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3142. }
  3143. // ggml_tanh
  3144. struct ggml_tensor * ggml_tanh(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3148. }
  3149. struct ggml_tensor * ggml_tanh_inplace(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a) {
  3152. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3153. }
  3154. // ggml_elu
  3155. struct ggml_tensor * ggml_elu(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3159. }
  3160. struct ggml_tensor * ggml_elu_inplace(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a) {
  3163. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3164. }
  3165. // ggml_relu
  3166. struct ggml_tensor * ggml_relu(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3170. }
  3171. struct ggml_tensor * ggml_relu_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3175. }
  3176. // ggml_leaky_relu
  3177. struct ggml_tensor * ggml_leaky_relu(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3180. bool is_node = false;
  3181. if (!inplace && (a->grad)) {
  3182. is_node = true;
  3183. }
  3184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3185. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3186. result->op = GGML_OP_LEAKY_RELU;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src[0] = a;
  3189. return result;
  3190. }
  3191. // ggml_gelu
  3192. struct ggml_tensor * ggml_gelu(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3196. }
  3197. struct ggml_tensor * ggml_gelu_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3201. }
  3202. // ggml_gelu_quick
  3203. struct ggml_tensor * ggml_gelu_quick(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3207. }
  3208. struct ggml_tensor * ggml_gelu_quick_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3212. }
  3213. // ggml_silu
  3214. struct ggml_tensor * ggml_silu(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3218. }
  3219. struct ggml_tensor * ggml_silu_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3223. }
  3224. // ggml_silu_back
  3225. struct ggml_tensor * ggml_silu_back(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b) {
  3229. bool is_node = false;
  3230. if (a->grad || b->grad) {
  3231. // TODO: implement backward
  3232. is_node = true;
  3233. }
  3234. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3235. result->op = GGML_OP_SILU_BACK;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src[0] = a;
  3238. result->src[1] = b;
  3239. return result;
  3240. }
  3241. // ggml_norm
  3242. static struct ggml_tensor * ggml_norm_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. float eps,
  3246. bool inplace) {
  3247. bool is_node = false;
  3248. if (!inplace && (a->grad)) {
  3249. GGML_ASSERT(false); // TODO: implement backward
  3250. is_node = true;
  3251. }
  3252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3253. ggml_set_op_params(result, &eps, sizeof(eps));
  3254. result->op = GGML_OP_NORM;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src[0] = a;
  3257. return result;
  3258. }
  3259. struct ggml_tensor * ggml_norm(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. float eps) {
  3263. return ggml_norm_impl(ctx, a, eps, false);
  3264. }
  3265. struct ggml_tensor * ggml_norm_inplace(
  3266. struct ggml_context * ctx,
  3267. struct ggml_tensor * a,
  3268. float eps) {
  3269. return ggml_norm_impl(ctx, a, eps, true);
  3270. }
  3271. // ggml_rms_norm
  3272. static struct ggml_tensor * ggml_rms_norm_impl(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a,
  3275. float eps,
  3276. bool inplace) {
  3277. bool is_node = false;
  3278. if (!inplace && (a->grad)) {
  3279. is_node = true;
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. ggml_set_op_params(result, &eps, sizeof(eps));
  3283. result->op = GGML_OP_RMS_NORM;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_rms_norm(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. float eps) {
  3292. return ggml_rms_norm_impl(ctx, a, eps, false);
  3293. }
  3294. struct ggml_tensor * ggml_rms_norm_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. float eps) {
  3298. return ggml_rms_norm_impl(ctx, a, eps, true);
  3299. }
  3300. // ggml_rms_norm_back
  3301. struct ggml_tensor * ggml_rms_norm_back(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. float eps) {
  3306. bool is_node = false;
  3307. if (a->grad) {
  3308. // TODO: implement backward
  3309. is_node = true;
  3310. }
  3311. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3312. ggml_set_op_params(result, &eps, sizeof(eps));
  3313. result->op = GGML_OP_RMS_NORM_BACK;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src[0] = a;
  3316. result->src[1] = b;
  3317. return result;
  3318. }
  3319. // ggml_group_norm
  3320. static struct ggml_tensor * ggml_group_norm_impl(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a,
  3323. int n_groups,
  3324. bool inplace) {
  3325. bool is_node = false;
  3326. if (!inplace && (a->grad)) {
  3327. GGML_ASSERT(false); // TODO: implement backward
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3331. result->op_params[0] = n_groups;
  3332. result->op = GGML_OP_GROUP_NORM;
  3333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3334. result->src[0] = a;
  3335. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3336. return result;
  3337. }
  3338. struct ggml_tensor * ggml_group_norm(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. int n_groups) {
  3342. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3343. }
  3344. struct ggml_tensor * ggml_group_norm_inplace(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a,
  3347. int n_groups) {
  3348. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3349. }
  3350. // ggml_mul_mat
  3351. struct ggml_tensor * ggml_mul_mat(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. struct ggml_tensor * b) {
  3355. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3356. GGML_ASSERT(!ggml_is_transposed(a));
  3357. bool is_node = false;
  3358. if (a->grad || b->grad) {
  3359. is_node = true;
  3360. }
  3361. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3362. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3363. result->op = GGML_OP_MUL_MAT;
  3364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3365. result->src[0] = a;
  3366. result->src[1] = b;
  3367. return result;
  3368. }
  3369. void ggml_mul_mat_set_prec(
  3370. struct ggml_tensor * a,
  3371. enum ggml_prec prec) {
  3372. const int32_t prec_i32 = (int32_t) prec;
  3373. ggml_set_op_params_i32(a, 0, prec_i32);
  3374. }
  3375. // ggml_mul_mat_id
  3376. struct ggml_tensor * ggml_mul_mat_id(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * const as[],
  3379. int n_as,
  3380. struct ggml_tensor * ids,
  3381. int id,
  3382. struct ggml_tensor * b) {
  3383. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3384. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3385. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3386. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3387. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3388. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3389. bool is_node = false;
  3390. if (as[0]->grad || b->grad) {
  3391. is_node = true;
  3392. }
  3393. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3394. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3395. ggml_set_op_params_i32(result, 0, id);
  3396. ggml_set_op_params_i32(result, 1, n_as);
  3397. result->op = GGML_OP_MUL_MAT_ID;
  3398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3399. result->src[0] = ids;
  3400. result->src[1] = b;
  3401. for (int i = 0; i < n_as; i++) {
  3402. struct ggml_tensor * a = as[i];
  3403. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3404. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3405. GGML_ASSERT(!ggml_is_transposed(a));
  3406. result->src[i + 2] = a;
  3407. }
  3408. return result;
  3409. }
  3410. // ggml_out_prod
  3411. struct ggml_tensor * ggml_out_prod(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a,
  3414. struct ggml_tensor * b) {
  3415. GGML_ASSERT(ggml_can_out_prod(a, b));
  3416. GGML_ASSERT(!ggml_is_transposed(a));
  3417. bool is_node = false;
  3418. if (a->grad || b->grad) {
  3419. is_node = true;
  3420. }
  3421. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3422. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3423. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3424. result->op = GGML_OP_OUT_PROD;
  3425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3426. result->src[0] = a;
  3427. result->src[1] = b;
  3428. return result;
  3429. }
  3430. // ggml_scale
  3431. static struct ggml_tensor * ggml_scale_impl(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a,
  3434. struct ggml_tensor * b,
  3435. bool inplace) {
  3436. GGML_ASSERT(ggml_is_scalar(b));
  3437. GGML_ASSERT(ggml_is_padded_1d(a));
  3438. bool is_node = false;
  3439. if (a->grad || b->grad) {
  3440. is_node = true;
  3441. }
  3442. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3443. result->op = GGML_OP_SCALE;
  3444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3445. result->src[0] = a;
  3446. result->src[1] = b;
  3447. return result;
  3448. }
  3449. struct ggml_tensor * ggml_scale(
  3450. struct ggml_context * ctx,
  3451. struct ggml_tensor * a,
  3452. struct ggml_tensor * b) {
  3453. return ggml_scale_impl(ctx, a, b, false);
  3454. }
  3455. struct ggml_tensor * ggml_scale_inplace(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b) {
  3459. return ggml_scale_impl(ctx, a, b, true);
  3460. }
  3461. // ggml_set
  3462. static struct ggml_tensor * ggml_set_impl(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b,
  3466. size_t nb1,
  3467. size_t nb2,
  3468. size_t nb3,
  3469. size_t offset,
  3470. bool inplace) {
  3471. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3472. bool is_node = false;
  3473. if (a->grad || b->grad) {
  3474. is_node = true;
  3475. }
  3476. // make a view of the destination
  3477. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3478. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3479. ggml_set_op_params(result, params, sizeof(params));
  3480. result->op = GGML_OP_SET;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src[0] = a;
  3483. result->src[1] = b;
  3484. return result;
  3485. }
  3486. struct ggml_tensor * ggml_set(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a,
  3489. struct ggml_tensor * b,
  3490. size_t nb1,
  3491. size_t nb2,
  3492. size_t nb3,
  3493. size_t offset) {
  3494. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3495. }
  3496. struct ggml_tensor * ggml_set_inplace(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b,
  3500. size_t nb1,
  3501. size_t nb2,
  3502. size_t nb3,
  3503. size_t offset) {
  3504. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3505. }
  3506. struct ggml_tensor * ggml_set_1d(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b,
  3510. size_t offset) {
  3511. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3512. }
  3513. struct ggml_tensor * ggml_set_1d_inplace(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. struct ggml_tensor * b,
  3517. size_t offset) {
  3518. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3519. }
  3520. struct ggml_tensor * ggml_set_2d(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b,
  3524. size_t nb1,
  3525. size_t offset) {
  3526. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3527. }
  3528. struct ggml_tensor * ggml_set_2d_inplace(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. size_t nb1,
  3533. size_t offset) {
  3534. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3535. }
  3536. // ggml_cpy
  3537. static struct ggml_tensor * ggml_cpy_impl(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. struct ggml_tensor * b,
  3541. bool inplace) {
  3542. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3543. bool is_node = false;
  3544. if (!inplace && (a->grad || b->grad)) {
  3545. is_node = true;
  3546. }
  3547. // make a view of the destination
  3548. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3549. if (strlen(b->name) > 0) {
  3550. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3551. } else {
  3552. ggml_format_name(result, "%s (copy)", a->name);
  3553. }
  3554. result->op = GGML_OP_CPY;
  3555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3556. result->src[0] = a;
  3557. result->src[1] = b;
  3558. return result;
  3559. }
  3560. struct ggml_tensor * ggml_cpy(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a,
  3563. struct ggml_tensor * b) {
  3564. return ggml_cpy_impl(ctx, a, b, false);
  3565. }
  3566. struct ggml_tensor * ggml_cpy_inplace(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b) {
  3570. return ggml_cpy_impl(ctx, a, b, true);
  3571. }
  3572. // ggml_cont
  3573. static struct ggml_tensor * ggml_cont_impl(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. bool inplace) {
  3577. bool is_node = false;
  3578. if (!inplace && a->grad) {
  3579. is_node = true;
  3580. }
  3581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3582. ggml_format_name(result, "%s (cont)", a->name);
  3583. result->op = GGML_OP_CONT;
  3584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3585. result->src[0] = a;
  3586. return result;
  3587. }
  3588. struct ggml_tensor * ggml_cont(
  3589. struct ggml_context * ctx,
  3590. struct ggml_tensor * a) {
  3591. return ggml_cont_impl(ctx, a, false);
  3592. }
  3593. struct ggml_tensor * ggml_cont_inplace(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a) {
  3596. return ggml_cont_impl(ctx, a, true);
  3597. }
  3598. // make contiguous, with new shape
  3599. GGML_API struct ggml_tensor * ggml_cont_1d(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a,
  3602. int64_t ne0) {
  3603. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3604. }
  3605. GGML_API struct ggml_tensor * ggml_cont_2d(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. int64_t ne0,
  3609. int64_t ne1) {
  3610. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3611. }
  3612. GGML_API struct ggml_tensor * ggml_cont_3d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int64_t ne0,
  3616. int64_t ne1,
  3617. int64_t ne2) {
  3618. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3619. }
  3620. struct ggml_tensor * ggml_cont_4d(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. int64_t ne0,
  3624. int64_t ne1,
  3625. int64_t ne2,
  3626. int64_t ne3) {
  3627. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3628. bool is_node = false;
  3629. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3630. ggml_format_name(result, "%s (cont)", a->name);
  3631. result->op = GGML_OP_CONT;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src[0] = a;
  3634. return result;
  3635. }
  3636. // ggml_reshape
  3637. struct ggml_tensor * ggml_reshape(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. struct ggml_tensor * b) {
  3641. GGML_ASSERT(ggml_is_contiguous(a));
  3642. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3643. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3644. bool is_node = false;
  3645. if (a->grad) {
  3646. is_node = true;
  3647. }
  3648. if (b->grad) {
  3649. // gradient propagation is not supported
  3650. //GGML_ASSERT(false);
  3651. }
  3652. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3653. ggml_format_name(result, "%s (reshaped)", a->name);
  3654. result->op = GGML_OP_RESHAPE;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src[0] = a;
  3657. return result;
  3658. }
  3659. struct ggml_tensor * ggml_reshape_1d(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a,
  3662. int64_t ne0) {
  3663. GGML_ASSERT(ggml_is_contiguous(a));
  3664. GGML_ASSERT(ggml_nelements(a) == ne0);
  3665. bool is_node = false;
  3666. if (a->grad) {
  3667. is_node = true;
  3668. }
  3669. const int64_t ne[1] = { ne0 };
  3670. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3671. ggml_format_name(result, "%s (reshaped)", a->name);
  3672. result->op = GGML_OP_RESHAPE;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src[0] = a;
  3675. return result;
  3676. }
  3677. struct ggml_tensor * ggml_reshape_2d(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. int64_t ne0,
  3681. int64_t ne1) {
  3682. GGML_ASSERT(ggml_is_contiguous(a));
  3683. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3684. bool is_node = false;
  3685. if (a->grad) {
  3686. is_node = true;
  3687. }
  3688. const int64_t ne[2] = { ne0, ne1 };
  3689. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3690. ggml_format_name(result, "%s (reshaped)", a->name);
  3691. result->op = GGML_OP_RESHAPE;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src[0] = a;
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_reshape_3d(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. int64_t ne0,
  3700. int64_t ne1,
  3701. int64_t ne2) {
  3702. GGML_ASSERT(ggml_is_contiguous(a));
  3703. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3704. bool is_node = false;
  3705. if (a->grad) {
  3706. is_node = true;
  3707. }
  3708. const int64_t ne[3] = { ne0, ne1, ne2 };
  3709. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3710. ggml_format_name(result, "%s (reshaped)", a->name);
  3711. result->op = GGML_OP_RESHAPE;
  3712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3713. result->src[0] = a;
  3714. return result;
  3715. }
  3716. struct ggml_tensor * ggml_reshape_4d(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. int64_t ne0,
  3720. int64_t ne1,
  3721. int64_t ne2,
  3722. int64_t ne3) {
  3723. GGML_ASSERT(ggml_is_contiguous(a));
  3724. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3725. bool is_node = false;
  3726. if (a->grad) {
  3727. is_node = true;
  3728. }
  3729. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3730. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3731. ggml_format_name(result, "%s (reshaped)", a->name);
  3732. result->op = GGML_OP_RESHAPE;
  3733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3734. result->src[0] = a;
  3735. return result;
  3736. }
  3737. static struct ggml_tensor * ggml_view_impl(
  3738. struct ggml_context * ctx,
  3739. struct ggml_tensor * a,
  3740. int n_dims,
  3741. const int64_t * ne,
  3742. size_t offset) {
  3743. bool is_node = false;
  3744. if (a->grad) {
  3745. is_node = true;
  3746. }
  3747. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3748. ggml_format_name(result, "%s (view)", a->name);
  3749. ggml_set_op_params(result, &offset, sizeof(offset));
  3750. result->op = GGML_OP_VIEW;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src[0] = a;
  3753. return result;
  3754. }
  3755. // ggml_view_1d
  3756. struct ggml_tensor * ggml_view_1d(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a,
  3759. int64_t ne0,
  3760. size_t offset) {
  3761. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3762. return result;
  3763. }
  3764. // ggml_view_2d
  3765. struct ggml_tensor * ggml_view_2d(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. int64_t ne0,
  3769. int64_t ne1,
  3770. size_t nb1,
  3771. size_t offset) {
  3772. const int64_t ne[2] = { ne0, ne1 };
  3773. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3774. result->nb[1] = nb1;
  3775. result->nb[2] = result->nb[1]*ne1;
  3776. result->nb[3] = result->nb[2];
  3777. return result;
  3778. }
  3779. // ggml_view_3d
  3780. struct ggml_tensor * ggml_view_3d(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int64_t ne0,
  3784. int64_t ne1,
  3785. int64_t ne2,
  3786. size_t nb1,
  3787. size_t nb2,
  3788. size_t offset) {
  3789. const int64_t ne[3] = { ne0, ne1, ne2 };
  3790. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3791. result->nb[1] = nb1;
  3792. result->nb[2] = nb2;
  3793. result->nb[3] = result->nb[2]*ne2;
  3794. return result;
  3795. }
  3796. // ggml_view_4d
  3797. struct ggml_tensor * ggml_view_4d(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. int64_t ne0,
  3801. int64_t ne1,
  3802. int64_t ne2,
  3803. int64_t ne3,
  3804. size_t nb1,
  3805. size_t nb2,
  3806. size_t nb3,
  3807. size_t offset) {
  3808. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3809. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3810. result->nb[1] = nb1;
  3811. result->nb[2] = nb2;
  3812. result->nb[3] = nb3;
  3813. return result;
  3814. }
  3815. // ggml_permute
  3816. struct ggml_tensor * ggml_permute(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. int axis0,
  3820. int axis1,
  3821. int axis2,
  3822. int axis3) {
  3823. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3824. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3825. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3826. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3827. GGML_ASSERT(axis0 != axis1);
  3828. GGML_ASSERT(axis0 != axis2);
  3829. GGML_ASSERT(axis0 != axis3);
  3830. GGML_ASSERT(axis1 != axis2);
  3831. GGML_ASSERT(axis1 != axis3);
  3832. GGML_ASSERT(axis2 != axis3);
  3833. bool is_node = false;
  3834. if (a->grad) {
  3835. is_node = true;
  3836. }
  3837. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3838. ggml_format_name(result, "%s (permuted)", a->name);
  3839. int ne[GGML_MAX_DIMS];
  3840. int nb[GGML_MAX_DIMS];
  3841. ne[axis0] = a->ne[0];
  3842. ne[axis1] = a->ne[1];
  3843. ne[axis2] = a->ne[2];
  3844. ne[axis3] = a->ne[3];
  3845. nb[axis0] = a->nb[0];
  3846. nb[axis1] = a->nb[1];
  3847. nb[axis2] = a->nb[2];
  3848. nb[axis3] = a->nb[3];
  3849. result->ne[0] = ne[0];
  3850. result->ne[1] = ne[1];
  3851. result->ne[2] = ne[2];
  3852. result->ne[3] = ne[3];
  3853. result->nb[0] = nb[0];
  3854. result->nb[1] = nb[1];
  3855. result->nb[2] = nb[2];
  3856. result->nb[3] = nb[3];
  3857. result->op = GGML_OP_PERMUTE;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src[0] = a;
  3860. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3861. ggml_set_op_params(result, params, sizeof(params));
  3862. return result;
  3863. }
  3864. // ggml_transpose
  3865. struct ggml_tensor * ggml_transpose(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. bool is_node = false;
  3869. if (a->grad) {
  3870. is_node = true;
  3871. }
  3872. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3873. ggml_format_name(result, "%s (transposed)", a->name);
  3874. result->ne[0] = a->ne[1];
  3875. result->ne[1] = a->ne[0];
  3876. result->nb[0] = a->nb[1];
  3877. result->nb[1] = a->nb[0];
  3878. result->op = GGML_OP_TRANSPOSE;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. return result;
  3882. }
  3883. // ggml_get_rows
  3884. struct ggml_tensor * ggml_get_rows(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. struct ggml_tensor * b) {
  3888. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3889. GGML_ASSERT(b->ne[3] == 1);
  3890. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3891. bool is_node = false;
  3892. if (a->grad || b->grad) {
  3893. is_node = true;
  3894. }
  3895. // TODO: implement non F32 return
  3896. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3897. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3898. result->op = GGML_OP_GET_ROWS;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src[0] = a;
  3901. result->src[1] = b;
  3902. return result;
  3903. }
  3904. // ggml_get_rows_back
  3905. struct ggml_tensor * ggml_get_rows_back(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a,
  3908. struct ggml_tensor * b,
  3909. struct ggml_tensor * c) {
  3910. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3911. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3912. bool is_node = false;
  3913. if (a->grad || b->grad) {
  3914. is_node = true;
  3915. }
  3916. // TODO: implement non F32 return
  3917. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3918. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3919. result->op = GGML_OP_GET_ROWS_BACK;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src[0] = a;
  3922. result->src[1] = b;
  3923. return result;
  3924. }
  3925. // ggml_diag
  3926. struct ggml_tensor * ggml_diag(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a) {
  3929. GGML_ASSERT(a->ne[1] == 1);
  3930. bool is_node = false;
  3931. if (a->grad) {
  3932. is_node = true;
  3933. }
  3934. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3935. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3936. result->op = GGML_OP_DIAG;
  3937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3938. result->src[0] = a;
  3939. return result;
  3940. }
  3941. // ggml_diag_mask_inf
  3942. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. int n_past,
  3946. bool inplace) {
  3947. bool is_node = false;
  3948. if (a->grad) {
  3949. is_node = true;
  3950. }
  3951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3952. int32_t params[] = { n_past };
  3953. ggml_set_op_params(result, params, sizeof(params));
  3954. result->op = GGML_OP_DIAG_MASK_INF;
  3955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3956. result->src[0] = a;
  3957. return result;
  3958. }
  3959. struct ggml_tensor * ggml_diag_mask_inf(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. int n_past) {
  3963. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3964. }
  3965. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. int n_past) {
  3969. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3970. }
  3971. // ggml_diag_mask_zero
  3972. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. int n_past,
  3976. bool inplace) {
  3977. bool is_node = false;
  3978. if (a->grad) {
  3979. is_node = true;
  3980. }
  3981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3982. int32_t params[] = { n_past };
  3983. ggml_set_op_params(result, params, sizeof(params));
  3984. result->op = GGML_OP_DIAG_MASK_ZERO;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src[0] = a;
  3987. return result;
  3988. }
  3989. struct ggml_tensor * ggml_diag_mask_zero(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. int n_past) {
  3993. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3994. }
  3995. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. int n_past) {
  3999. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4000. }
  4001. // ggml_soft_max
  4002. static struct ggml_tensor * ggml_soft_max_impl(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * mask,
  4006. float scale,
  4007. bool inplace) {
  4008. GGML_ASSERT(ggml_is_contiguous(a));
  4009. if (mask) {
  4010. GGML_ASSERT(ggml_is_contiguous(mask));
  4011. GGML_ASSERT(mask->ne[2] == 1);
  4012. GGML_ASSERT(mask->ne[3] == 1);
  4013. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4014. }
  4015. bool is_node = false;
  4016. if (a->grad) {
  4017. is_node = true;
  4018. }
  4019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4020. float params[] = { scale };
  4021. ggml_set_op_params(result, params, sizeof(params));
  4022. result->op = GGML_OP_SOFT_MAX;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src[0] = a;
  4025. result->src[1] = mask;
  4026. return result;
  4027. }
  4028. struct ggml_tensor * ggml_soft_max(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4032. }
  4033. struct ggml_tensor * ggml_soft_max_inplace(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4037. }
  4038. struct ggml_tensor * ggml_soft_max_ext(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * mask,
  4042. float scale) {
  4043. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4044. }
  4045. // ggml_soft_max_back
  4046. static struct ggml_tensor * ggml_soft_max_back_impl(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a,
  4049. struct ggml_tensor * b,
  4050. bool inplace) {
  4051. bool is_node = false;
  4052. if (a->grad || b->grad) {
  4053. is_node = true; // TODO : implement backward pass
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_SOFT_MAX_BACK;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src[0] = a;
  4059. result->src[1] = b;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_soft_max_back(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. struct ggml_tensor * b) {
  4066. return ggml_soft_max_back_impl(ctx, a, b, false);
  4067. }
  4068. struct ggml_tensor * ggml_soft_max_back_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. return ggml_soft_max_back_impl(ctx, a, b, true);
  4073. }
  4074. // ggml_rope
  4075. static struct ggml_tensor * ggml_rope_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. int n_dims,
  4080. int mode,
  4081. int n_ctx,
  4082. int n_orig_ctx,
  4083. float freq_base,
  4084. float freq_scale,
  4085. float ext_factor,
  4086. float attn_factor,
  4087. float beta_fast,
  4088. float beta_slow,
  4089. float xpos_base,
  4090. bool xpos_down,
  4091. bool inplace) {
  4092. GGML_ASSERT(ggml_is_vector(b));
  4093. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4094. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4095. bool is_node = false;
  4096. if (a->grad) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4101. memcpy(params + 5, &freq_base, sizeof(float));
  4102. memcpy(params + 6, &freq_scale, sizeof(float));
  4103. memcpy(params + 7, &ext_factor, sizeof(float));
  4104. memcpy(params + 8, &attn_factor, sizeof(float));
  4105. memcpy(params + 9, &beta_fast, sizeof(float));
  4106. memcpy(params + 10, &beta_slow, sizeof(float));
  4107. memcpy(params + 11, &xpos_base, sizeof(float));
  4108. memcpy(params + 12, &xpos_down, sizeof(bool));
  4109. ggml_set_op_params(result, params, sizeof(params));
  4110. result->op = GGML_OP_ROPE;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src[0] = a;
  4113. result->src[1] = b;
  4114. return result;
  4115. }
  4116. struct ggml_tensor * ggml_rope(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b,
  4120. int n_dims,
  4121. int mode,
  4122. int n_ctx) {
  4123. return ggml_rope_impl(
  4124. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4125. );
  4126. }
  4127. struct ggml_tensor * ggml_rope_inplace(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. struct ggml_tensor * b,
  4131. int n_dims,
  4132. int mode,
  4133. int n_ctx) {
  4134. return ggml_rope_impl(
  4135. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4136. );
  4137. }
  4138. struct ggml_tensor * ggml_rope_custom(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * b,
  4142. int n_dims,
  4143. int mode,
  4144. int n_ctx,
  4145. int n_orig_ctx,
  4146. float freq_base,
  4147. float freq_scale,
  4148. float ext_factor,
  4149. float attn_factor,
  4150. float beta_fast,
  4151. float beta_slow) {
  4152. return ggml_rope_impl(
  4153. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4154. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4155. );
  4156. }
  4157. struct ggml_tensor * ggml_rope_custom_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b,
  4161. int n_dims,
  4162. int mode,
  4163. int n_ctx,
  4164. int n_orig_ctx,
  4165. float freq_base,
  4166. float freq_scale,
  4167. float ext_factor,
  4168. float attn_factor,
  4169. float beta_fast,
  4170. float beta_slow) {
  4171. return ggml_rope_impl(
  4172. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4173. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4174. );
  4175. }
  4176. struct ggml_tensor * ggml_rope_xpos_inplace(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b,
  4180. int n_dims,
  4181. float base,
  4182. bool down) {
  4183. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4184. }
  4185. // ggml_rope_back
  4186. struct ggml_tensor * ggml_rope_back(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. int n_dims,
  4191. int mode,
  4192. int n_ctx,
  4193. int n_orig_ctx,
  4194. float freq_base,
  4195. float freq_scale,
  4196. float ext_factor,
  4197. float attn_factor,
  4198. float beta_fast,
  4199. float beta_slow,
  4200. float xpos_base,
  4201. bool xpos_down) {
  4202. GGML_ASSERT(ggml_is_vector(b));
  4203. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4204. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4205. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4206. bool is_node = false;
  4207. if (a->grad) {
  4208. is_node = false; // TODO: implement backward
  4209. }
  4210. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4211. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4212. memcpy(params + 5, &freq_base, sizeof(float));
  4213. memcpy(params + 6, &freq_scale, sizeof(float));
  4214. memcpy(params + 7, &ext_factor, sizeof(float));
  4215. memcpy(params + 8, &attn_factor, sizeof(float));
  4216. memcpy(params + 9, &beta_fast, sizeof(float));
  4217. memcpy(params + 10, &beta_slow, sizeof(float));
  4218. memcpy(params + 11, &xpos_base, sizeof(float));
  4219. memcpy(params + 12, &xpos_down, sizeof(bool));
  4220. ggml_set_op_params(result, params, sizeof(params));
  4221. result->op = GGML_OP_ROPE_BACK;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src[0] = a;
  4224. result->src[1] = b;
  4225. return result;
  4226. }
  4227. // ggml_alibi
  4228. struct ggml_tensor * ggml_alibi(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a,
  4231. int n_past,
  4232. int n_head,
  4233. float bias_max) {
  4234. GGML_ASSERT(n_past >= 0);
  4235. bool is_node = false;
  4236. if (a->grad) {
  4237. GGML_ASSERT(false); // TODO: implement backward
  4238. is_node = true;
  4239. }
  4240. // TODO: when implement backward, fix this:
  4241. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4242. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4243. int32_t op_params[3] = { n_past, n_head };
  4244. memcpy(op_params + 2, &bias_max, sizeof(float));
  4245. ggml_set_op_params(result, op_params, sizeof(op_params));
  4246. result->op = GGML_OP_ALIBI;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. return result;
  4250. }
  4251. // ggml_clamp
  4252. struct ggml_tensor * ggml_clamp(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. float min,
  4256. float max) {
  4257. bool is_node = false;
  4258. if (a->grad) {
  4259. GGML_ASSERT(false); // TODO: implement backward
  4260. is_node = true;
  4261. }
  4262. // TODO: when implement backward, fix this:
  4263. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4264. float params[] = { min, max };
  4265. ggml_set_op_params(result, params, sizeof(params));
  4266. result->op = GGML_OP_CLAMP;
  4267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4268. result->src[0] = a;
  4269. return result;
  4270. }
  4271. // ggml_conv_1d
  4272. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4273. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4274. }
  4275. GGML_API struct ggml_tensor * ggml_conv_1d(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. struct ggml_tensor * b,
  4279. int s0,
  4280. int p0,
  4281. int d0) {
  4282. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4283. struct ggml_tensor * result =
  4284. ggml_mul_mat(ctx,
  4285. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4286. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4287. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4288. return result;
  4289. }
  4290. // ggml_conv_1d_ph
  4291. struct ggml_tensor* ggml_conv_1d_ph(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. struct ggml_tensor * b,
  4295. int s,
  4296. int d) {
  4297. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4298. }
  4299. // ggml_conv_transpose_1d
  4300. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4301. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4302. }
  4303. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. int s0,
  4308. int p0,
  4309. int d0) {
  4310. GGML_ASSERT(ggml_is_matrix(b));
  4311. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4312. GGML_ASSERT(a->ne[3] == 1);
  4313. GGML_ASSERT(p0 == 0);
  4314. GGML_ASSERT(d0 == 1);
  4315. bool is_node = false;
  4316. if (a->grad || b->grad) {
  4317. GGML_ASSERT(false); // TODO: implement backward
  4318. is_node = true;
  4319. }
  4320. const int64_t ne[4] = {
  4321. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4322. a->ne[1], b->ne[2], 1,
  4323. };
  4324. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4325. int32_t params[] = { s0, p0, d0 };
  4326. ggml_set_op_params(result, params, sizeof(params));
  4327. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src[0] = a;
  4330. result->src[1] = b;
  4331. return result;
  4332. }
  4333. // ggml_conv_2d
  4334. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4335. // a: [OC,IC, KH, KW]
  4336. // b: [N, IC, IH, IW]
  4337. // result: [N, OH, OW, IC*KH*KW]
  4338. struct ggml_tensor * ggml_im2col(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. struct ggml_tensor * b,
  4342. int s0,
  4343. int s1,
  4344. int p0,
  4345. int p1,
  4346. int d0,
  4347. int d1,
  4348. bool is_2D) {
  4349. if(is_2D) {
  4350. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4351. } else {
  4352. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4353. }
  4354. bool is_node = false;
  4355. if (a->grad || b->grad) {
  4356. GGML_ASSERT(false); // TODO: implement backward
  4357. is_node = true;
  4358. }
  4359. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4360. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4361. const int64_t ne[4] = {
  4362. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4363. OW,
  4364. is_2D ? OH : b->ne[2],
  4365. is_2D ? b->ne[3] : 1,
  4366. };
  4367. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4368. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4369. ggml_set_op_params(result, params, sizeof(params));
  4370. result->op = GGML_OP_IM2COL;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. result->src[1] = b;
  4374. return result;
  4375. }
  4376. // a: [OC,IC, KH, KW]
  4377. // b: [N, IC, IH, IW]
  4378. // result: [N, OC, OH, OW]
  4379. struct ggml_tensor * ggml_conv_2d(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b,
  4383. int s0,
  4384. int s1,
  4385. int p0,
  4386. int p1,
  4387. int d0,
  4388. int d1) {
  4389. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4390. struct ggml_tensor * result =
  4391. ggml_mul_mat(ctx,
  4392. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4393. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4394. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4395. return result;
  4396. }
  4397. // ggml_conv_2d_sk_p0
  4398. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b) {
  4402. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4403. }
  4404. // ggml_conv_2d_s1_ph
  4405. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a,
  4408. struct ggml_tensor * b) {
  4409. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4410. }
  4411. // ggml_conv_transpose_2d_p0
  4412. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4413. return (ins - 1) * s - 2 * p + ks;
  4414. }
  4415. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. int stride) {
  4420. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4421. bool is_node = false;
  4422. if (a->grad || b->grad) {
  4423. GGML_ASSERT(false); // TODO: implement backward
  4424. is_node = true;
  4425. }
  4426. const int64_t ne[4] = {
  4427. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4428. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4429. a->ne[2], b->ne[3],
  4430. };
  4431. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4432. ggml_set_op_params_i32(result, 0, stride);
  4433. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src[0] = a;
  4436. result->src[1] = b;
  4437. return result;
  4438. }
  4439. // ggml_pool_*
  4440. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4441. return (ins + 2 * p - ks) / s + 1;
  4442. }
  4443. // ggml_pool_1d
  4444. struct ggml_tensor * ggml_pool_1d(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a,
  4447. enum ggml_op_pool op,
  4448. int k0,
  4449. int s0,
  4450. int p0) {
  4451. bool is_node = false;
  4452. if (a->grad) {
  4453. GGML_ASSERT(false); // TODO: implement backward
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[2] = {
  4457. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4458. a->ne[1],
  4459. };
  4460. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4461. int32_t params[] = { op, k0, s0, p0 };
  4462. ggml_set_op_params(result, params, sizeof(params));
  4463. result->op = GGML_OP_POOL_1D;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. return result;
  4467. }
  4468. // ggml_pool_2d
  4469. struct ggml_tensor * ggml_pool_2d(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. enum ggml_op_pool op,
  4473. int k0,
  4474. int k1,
  4475. int s0,
  4476. int s1,
  4477. float p0,
  4478. float p1) {
  4479. bool is_node = false;
  4480. if (a->grad) {
  4481. GGML_ASSERT(false); // TODO: implement backward
  4482. is_node = true;
  4483. }
  4484. const int64_t ne[3] = {
  4485. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4486. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4487. a->ne[2],
  4488. };
  4489. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4490. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4491. ggml_set_op_params(result, params, sizeof(params));
  4492. result->op = GGML_OP_POOL_2D;
  4493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4494. result->src[0] = a;
  4495. return result;
  4496. }
  4497. // ggml_upscale
  4498. static struct ggml_tensor * ggml_upscale_impl(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. int scale_factor) {
  4502. bool is_node = false;
  4503. if (a->grad) {
  4504. GGML_ASSERT(false); // TODO: implement backward
  4505. is_node = true;
  4506. }
  4507. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4508. a->ne[0] * scale_factor,
  4509. a->ne[1] * scale_factor,
  4510. a->ne[2], a->ne[3]);
  4511. result->op = GGML_OP_UPSCALE;
  4512. result->op_params[0] = scale_factor;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src[0] = a;
  4515. result->src[1] = NULL;
  4516. return result;
  4517. }
  4518. struct ggml_tensor * ggml_pad(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. int p0, int p1, int p2, int p3) {
  4522. bool is_node = false;
  4523. if (a->grad) {
  4524. GGML_ASSERT(false); // TODO: implement backward
  4525. is_node = true;
  4526. }
  4527. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4528. a->ne[0] + p0,
  4529. a->ne[1] + p1,
  4530. a->ne[2] + p2,
  4531. a->ne[3] + p3);
  4532. result->op = GGML_OP_PAD;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. return result;
  4536. }
  4537. struct ggml_tensor * ggml_upscale(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. int scale_factor) {
  4541. return ggml_upscale_impl(ctx, a, scale_factor);
  4542. }
  4543. // ggml_argsort
  4544. struct ggml_tensor * ggml_argsort(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. enum ggml_sort_order order) {
  4548. bool is_node = false;
  4549. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4550. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4551. result->op = GGML_OP_ARGSORT;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. return result;
  4555. }
  4556. // ggml_top_k
  4557. struct ggml_tensor * ggml_top_k(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. int k) {
  4561. GGML_ASSERT(a->ne[0] >= k);
  4562. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4563. result = ggml_view_4d(ctx, result,
  4564. k, result->ne[1], result->ne[2], result->ne[3],
  4565. result->nb[1], result->nb[2], result->nb[3],
  4566. 0);
  4567. return result;
  4568. }
  4569. // ggml_flash_attn
  4570. struct ggml_tensor * ggml_flash_attn(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * q,
  4573. struct ggml_tensor * k,
  4574. struct ggml_tensor * v,
  4575. bool masked) {
  4576. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4577. // TODO: check if vT can be multiplied by (k*qT)
  4578. bool is_node = false;
  4579. if (q->grad || k->grad || v->grad) {
  4580. is_node = true;
  4581. }
  4582. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4583. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4584. int32_t t = masked ? 1 : 0;
  4585. ggml_set_op_params(result, &t, sizeof(t));
  4586. result->op = GGML_OP_FLASH_ATTN;
  4587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4588. result->src[0] = q;
  4589. result->src[1] = k;
  4590. result->src[2] = v;
  4591. return result;
  4592. }
  4593. // ggml_flash_ff
  4594. struct ggml_tensor * ggml_flash_ff(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b0,
  4598. struct ggml_tensor * b1,
  4599. struct ggml_tensor * c0,
  4600. struct ggml_tensor * c1) {
  4601. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4602. // TODO: more checks
  4603. bool is_node = false;
  4604. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4605. is_node = true;
  4606. }
  4607. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4608. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4609. result->op = GGML_OP_FLASH_FF;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. result->src[1] = b0;
  4613. result->src[2] = b1;
  4614. result->src[3] = c0;
  4615. result->src[4] = c1;
  4616. return result;
  4617. }
  4618. // ggml_flash_attn_back
  4619. struct ggml_tensor * ggml_flash_attn_back(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * q,
  4622. struct ggml_tensor * k,
  4623. struct ggml_tensor * v,
  4624. struct ggml_tensor * d,
  4625. bool masked) {
  4626. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4627. // TODO: check if vT can be multiplied by (k*qT)
  4628. // d shape [D,N,ne2,ne3]
  4629. // q shape [D,N,ne2,ne3]
  4630. // k shape [D,M,kvne2,ne3]
  4631. // v shape [M,D,kvne2,ne3]
  4632. const int64_t D = q->ne[0];
  4633. const int64_t N = q->ne[1];
  4634. const int64_t M = k->ne[1];
  4635. const int64_t ne2 = q->ne[2];
  4636. const int64_t ne3 = q->ne[3];
  4637. const int64_t kvne2 = k->ne[2];
  4638. GGML_ASSERT(k->ne[0] == D);
  4639. GGML_ASSERT(v->ne[0] == M);
  4640. GGML_ASSERT(v->ne[1] == D);
  4641. GGML_ASSERT(d->ne[0] == D);
  4642. GGML_ASSERT(d->ne[1] == N);
  4643. GGML_ASSERT(k->ne[2] == kvne2);
  4644. GGML_ASSERT(k->ne[3] == ne3);
  4645. GGML_ASSERT(v->ne[2] == kvne2);
  4646. GGML_ASSERT(v->ne[3] == ne3);
  4647. GGML_ASSERT(d->ne[2] == ne2);
  4648. GGML_ASSERT(d->ne[3] == ne3);
  4649. GGML_ASSERT(ne2 % kvne2 == 0);
  4650. bool is_node = false;
  4651. if (q->grad || k->grad || v->grad) {
  4652. // when using this operation (in backwards pass) these grads are set.
  4653. // we don't want to create (big) grad of our result, so is_node is false.
  4654. is_node = false;
  4655. }
  4656. // store gradients of q, k and v as continuous tensors concatenated in result.
  4657. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4658. const int64_t elem_q = ggml_nelements(q);
  4659. const int64_t elem_k = ggml_nelements(k);
  4660. const int64_t elem_v = ggml_nelements(v);
  4661. enum ggml_type result_type = GGML_TYPE_F32;
  4662. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4663. const size_t tsize = ggml_type_size(result_type);
  4664. const size_t offs_q = 0;
  4665. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4666. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4667. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4668. const size_t nelements = (end + tsize - 1)/tsize;
  4669. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4670. int32_t masked_i = masked ? 1 : 0;
  4671. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4672. result->op = GGML_OP_FLASH_ATTN_BACK;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = q;
  4675. result->src[1] = k;
  4676. result->src[2] = v;
  4677. result->src[3] = d;
  4678. return result;
  4679. }
  4680. // ggml_win_part
  4681. struct ggml_tensor * ggml_win_part(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int w) {
  4685. GGML_ASSERT(a->ne[3] == 1);
  4686. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. // padding
  4693. const int px = (w - a->ne[1]%w)%w;
  4694. const int py = (w - a->ne[2]%w)%w;
  4695. const int npx = (px + a->ne[1])/w;
  4696. const int npy = (py + a->ne[2])/w;
  4697. const int np = npx*npy;
  4698. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4700. int32_t params[] = { npx, npy, w };
  4701. ggml_set_op_params(result, params, sizeof(params));
  4702. result->op = GGML_OP_WIN_PART;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. // ggml_win_unpart
  4708. struct ggml_tensor * ggml_win_unpart(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int w0,
  4712. int h0,
  4713. int w) {
  4714. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4721. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4722. int32_t params[] = { w };
  4723. ggml_set_op_params(result, params, sizeof(params));
  4724. result->op = GGML_OP_WIN_UNPART;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src[0] = a;
  4727. return result;
  4728. }
  4729. // ggml_get_rel_pos
  4730. struct ggml_tensor * ggml_get_rel_pos(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. int qh,
  4734. int kh) {
  4735. GGML_ASSERT(qh == kh);
  4736. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. GGML_ASSERT(false); // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4743. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4744. result->op = GGML_OP_GET_REL_POS;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = a;
  4747. result->src[1] = NULL;
  4748. return result;
  4749. }
  4750. // ggml_add_rel_pos
  4751. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * pw,
  4755. struct ggml_tensor * ph,
  4756. bool inplace) {
  4757. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4758. GGML_ASSERT(ggml_is_contiguous(a));
  4759. GGML_ASSERT(ggml_is_contiguous(pw));
  4760. GGML_ASSERT(ggml_is_contiguous(ph));
  4761. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4762. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4763. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4764. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4765. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4766. bool is_node = false;
  4767. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4768. is_node = true;
  4769. }
  4770. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4771. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4772. result->op = GGML_OP_ADD_REL_POS;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src[0] = a;
  4775. result->src[1] = pw;
  4776. result->src[2] = ph;
  4777. return result;
  4778. }
  4779. struct ggml_tensor * ggml_add_rel_pos(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. struct ggml_tensor * pw,
  4783. struct ggml_tensor * ph) {
  4784. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4785. }
  4786. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. struct ggml_tensor * pw,
  4790. struct ggml_tensor * ph) {
  4791. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4792. }
  4793. // gmml_unary
  4794. static struct ggml_tensor * ggml_unary_impl(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. enum ggml_unary_op op,
  4798. bool inplace) {
  4799. bool is_node = false;
  4800. if (!inplace && (a->grad)) {
  4801. is_node = true;
  4802. }
  4803. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4804. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4805. result->op = GGML_OP_UNARY;
  4806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4807. result->src[0] = a;
  4808. return result;
  4809. }
  4810. struct ggml_tensor * ggml_unary(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. enum ggml_unary_op op) {
  4814. return ggml_unary_impl(ctx, a, op, false);
  4815. }
  4816. struct ggml_tensor * ggml_unary_inplace(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. enum ggml_unary_op op) {
  4820. return ggml_unary_impl(ctx, a, op, true);
  4821. }
  4822. // ggml_map_unary
  4823. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. const ggml_unary_op_f32_t fun,
  4827. bool inplace) {
  4828. bool is_node = false;
  4829. if (!inplace && a->grad) {
  4830. is_node = true;
  4831. }
  4832. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4833. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4834. result->op = GGML_OP_MAP_UNARY;
  4835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4836. result->src[0] = a;
  4837. return result;
  4838. }
  4839. struct ggml_tensor * ggml_map_unary_f32(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. const ggml_unary_op_f32_t fun) {
  4843. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4844. }
  4845. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. const ggml_unary_op_f32_t fun) {
  4849. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4850. }
  4851. // ggml_map_binary
  4852. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b,
  4856. const ggml_binary_op_f32_t fun,
  4857. bool inplace) {
  4858. GGML_ASSERT(ggml_are_same_shape(a, b));
  4859. bool is_node = false;
  4860. if (!inplace && (a->grad || b->grad)) {
  4861. is_node = true;
  4862. }
  4863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4864. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4865. result->op = GGML_OP_MAP_BINARY;
  4866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4867. result->src[0] = a;
  4868. result->src[1] = b;
  4869. return result;
  4870. }
  4871. struct ggml_tensor * ggml_map_binary_f32(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. struct ggml_tensor * b,
  4875. const ggml_binary_op_f32_t fun) {
  4876. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4877. }
  4878. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. struct ggml_tensor * b,
  4882. const ggml_binary_op_f32_t fun) {
  4883. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4884. }
  4885. // ggml_map_custom1_f32
  4886. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. const ggml_custom1_op_f32_t fun,
  4890. bool inplace) {
  4891. bool is_node = false;
  4892. if (!inplace && a->grad) {
  4893. is_node = true;
  4894. }
  4895. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4896. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4897. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src[0] = a;
  4900. return result;
  4901. }
  4902. struct ggml_tensor * ggml_map_custom1_f32(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. const ggml_custom1_op_f32_t fun) {
  4906. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4907. }
  4908. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. const ggml_custom1_op_f32_t fun) {
  4912. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4913. }
  4914. // ggml_map_custom2_f32
  4915. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * a,
  4918. struct ggml_tensor * b,
  4919. const ggml_custom2_op_f32_t fun,
  4920. bool inplace) {
  4921. bool is_node = false;
  4922. if (!inplace && (a->grad || b->grad)) {
  4923. is_node = true;
  4924. }
  4925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4926. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4927. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4929. result->src[0] = a;
  4930. result->src[1] = b;
  4931. return result;
  4932. }
  4933. struct ggml_tensor * ggml_map_custom2_f32(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b,
  4937. const ggml_custom2_op_f32_t fun) {
  4938. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4939. }
  4940. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4941. struct ggml_context * ctx,
  4942. struct ggml_tensor * a,
  4943. struct ggml_tensor * b,
  4944. const ggml_custom2_op_f32_t fun) {
  4945. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4946. }
  4947. // ggml_map_custom3_f32
  4948. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. struct ggml_tensor * b,
  4952. struct ggml_tensor * c,
  4953. const ggml_custom3_op_f32_t fun,
  4954. bool inplace) {
  4955. bool is_node = false;
  4956. if (!inplace && (a->grad || b->grad || c->grad)) {
  4957. is_node = true;
  4958. }
  4959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4960. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4961. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. result->src[1] = b;
  4965. result->src[2] = c;
  4966. return result;
  4967. }
  4968. struct ggml_tensor * ggml_map_custom3_f32(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. struct ggml_tensor * c,
  4973. const ggml_custom3_op_f32_t fun) {
  4974. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4975. }
  4976. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b,
  4980. struct ggml_tensor * c,
  4981. const ggml_custom3_op_f32_t fun) {
  4982. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4983. }
  4984. // ggml_map_custom1
  4985. struct ggml_map_custom1_op_params {
  4986. ggml_custom1_op_t fun;
  4987. int n_tasks;
  4988. void * userdata;
  4989. };
  4990. static struct ggml_tensor * ggml_map_custom1_impl(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. const ggml_custom1_op_t fun,
  4994. int n_tasks,
  4995. void * userdata,
  4996. bool inplace) {
  4997. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4998. bool is_node = false;
  4999. if (!inplace && a->grad) {
  5000. is_node = true;
  5001. }
  5002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5003. struct ggml_map_custom1_op_params params = {
  5004. /*.fun =*/ fun,
  5005. /*.n_tasks =*/ n_tasks,
  5006. /*.userdata =*/ userdata
  5007. };
  5008. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5009. result->op = GGML_OP_MAP_CUSTOM1;
  5010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5011. result->src[0] = a;
  5012. return result;
  5013. }
  5014. struct ggml_tensor * ggml_map_custom1(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. const ggml_custom1_op_t fun,
  5018. int n_tasks,
  5019. void * userdata) {
  5020. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5021. }
  5022. struct ggml_tensor * ggml_map_custom1_inplace(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. const ggml_custom1_op_t fun,
  5026. int n_tasks,
  5027. void * userdata) {
  5028. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5029. }
  5030. // ggml_map_custom2
  5031. struct ggml_map_custom2_op_params {
  5032. ggml_custom2_op_t fun;
  5033. int n_tasks;
  5034. void * userdata;
  5035. };
  5036. static struct ggml_tensor * ggml_map_custom2_impl(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * b,
  5040. const ggml_custom2_op_t fun,
  5041. int n_tasks,
  5042. void * userdata,
  5043. bool inplace) {
  5044. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5045. bool is_node = false;
  5046. if (!inplace && (a->grad || b->grad)) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5050. struct ggml_map_custom2_op_params params = {
  5051. /*.fun =*/ fun,
  5052. /*.n_tasks =*/ n_tasks,
  5053. /*.userdata =*/ userdata
  5054. };
  5055. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5056. result->op = GGML_OP_MAP_CUSTOM2;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. result->src[1] = b;
  5060. return result;
  5061. }
  5062. struct ggml_tensor * ggml_map_custom2(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. struct ggml_tensor * b,
  5066. const ggml_custom2_op_t fun,
  5067. int n_tasks,
  5068. void * userdata) {
  5069. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5070. }
  5071. struct ggml_tensor * ggml_map_custom2_inplace(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a,
  5074. struct ggml_tensor * b,
  5075. const ggml_custom2_op_t fun,
  5076. int n_tasks,
  5077. void * userdata) {
  5078. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5079. }
  5080. // ggml_map_custom3
  5081. struct ggml_map_custom3_op_params {
  5082. ggml_custom3_op_t fun;
  5083. int n_tasks;
  5084. void * userdata;
  5085. };
  5086. static struct ggml_tensor * ggml_map_custom3_impl(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. struct ggml_tensor * b,
  5090. struct ggml_tensor * c,
  5091. const ggml_custom3_op_t fun,
  5092. int n_tasks,
  5093. void * userdata,
  5094. bool inplace) {
  5095. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5096. bool is_node = false;
  5097. if (!inplace && (a->grad || b->grad || c->grad)) {
  5098. is_node = true;
  5099. }
  5100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5101. struct ggml_map_custom3_op_params params = {
  5102. /*.fun =*/ fun,
  5103. /*.n_tasks =*/ n_tasks,
  5104. /*.userdata =*/ userdata
  5105. };
  5106. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5107. result->op = GGML_OP_MAP_CUSTOM3;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src[0] = a;
  5110. result->src[1] = b;
  5111. result->src[2] = c;
  5112. return result;
  5113. }
  5114. struct ggml_tensor * ggml_map_custom3(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. struct ggml_tensor * b,
  5118. struct ggml_tensor * c,
  5119. const ggml_custom3_op_t fun,
  5120. int n_tasks,
  5121. void * userdata) {
  5122. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5123. }
  5124. struct ggml_tensor * ggml_map_custom3_inplace(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. struct ggml_tensor * b,
  5128. struct ggml_tensor * c,
  5129. const ggml_custom3_op_t fun,
  5130. int n_tasks,
  5131. void * userdata) {
  5132. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5133. }
  5134. // ggml_cross_entropy_loss
  5135. struct ggml_tensor * ggml_cross_entropy_loss(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * b) {
  5139. GGML_ASSERT(ggml_are_same_shape(a, b));
  5140. bool is_node = false;
  5141. if (a->grad || b->grad) {
  5142. is_node = true;
  5143. }
  5144. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5145. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src[0] = a;
  5148. result->src[1] = b;
  5149. return result;
  5150. }
  5151. // ggml_cross_entropy_loss_back
  5152. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. struct ggml_tensor * b,
  5156. struct ggml_tensor * c) {
  5157. GGML_ASSERT(ggml_are_same_shape(a, b));
  5158. GGML_ASSERT(ggml_is_scalar(c));
  5159. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5160. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5161. result->grad = NULL;
  5162. result->src[0] = a;
  5163. result->src[1] = b;
  5164. result->src[2] = c;
  5165. return result;
  5166. }
  5167. ////////////////////////////////////////////////////////////////////////////////
  5168. void ggml_set_param(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * tensor) {
  5171. tensor->is_param = true;
  5172. GGML_ASSERT(tensor->grad == NULL);
  5173. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5174. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5175. }
  5176. // ggml_compute_forward_dup
  5177. static void ggml_compute_forward_dup_same_cont(
  5178. const struct ggml_compute_params * params,
  5179. const struct ggml_tensor * src0,
  5180. struct ggml_tensor * dst) {
  5181. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5182. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5183. GGML_ASSERT(src0->type == dst->type);
  5184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5185. return;
  5186. }
  5187. const size_t nb00 = src0->nb[0];
  5188. const size_t nb0 = dst->nb[0];
  5189. const int ith = params->ith; // thread index
  5190. const int nth = params->nth; // number of threads
  5191. // parallelize by elements
  5192. const int ne = ggml_nelements(dst);
  5193. const int dr = (ne + nth - 1) / nth;
  5194. const int ie0 = dr * ith;
  5195. const int ie1 = MIN(ie0 + dr, ne);
  5196. if (ie0 < ie1) {
  5197. memcpy(
  5198. ((char *) dst->data + ie0*nb0),
  5199. ((char *) src0->data + ie0*nb00),
  5200. (ie1 - ie0) * ggml_type_size(src0->type));
  5201. }
  5202. }
  5203. static void ggml_compute_forward_dup_f16(
  5204. const struct ggml_compute_params * params,
  5205. const struct ggml_tensor * src0,
  5206. struct ggml_tensor * dst) {
  5207. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5209. return;
  5210. }
  5211. GGML_TENSOR_UNARY_OP_LOCALS
  5212. const int ith = params->ith; // thread index
  5213. const int nth = params->nth; // number of threads
  5214. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5215. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5216. return;
  5217. }
  5218. // parallelize by rows
  5219. const int nr = ne01;
  5220. // number of rows per thread
  5221. const int dr = (nr + nth - 1) / nth;
  5222. // row range for this thread
  5223. const int ir0 = dr * ith;
  5224. const int ir1 = MIN(ir0 + dr, nr);
  5225. if (src0->type == dst->type &&
  5226. ne00 == ne0 &&
  5227. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5228. // copy by rows
  5229. const size_t rs = ne00*nb00;
  5230. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5231. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5232. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5233. memcpy(
  5234. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5235. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5236. rs);
  5237. }
  5238. }
  5239. }
  5240. return;
  5241. }
  5242. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5243. if (ggml_is_contiguous(dst)) {
  5244. if (nb00 == sizeof(ggml_fp16_t)) {
  5245. if (dst->type == GGML_TYPE_F16) {
  5246. size_t id = 0;
  5247. const size_t rs = ne00 * nb00;
  5248. char * dst_ptr = (char *) dst->data;
  5249. for (int i03 = 0; i03 < ne03; i03++) {
  5250. for (int i02 = 0; i02 < ne02; i02++) {
  5251. id += rs * ir0;
  5252. for (int i01 = ir0; i01 < ir1; i01++) {
  5253. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5254. memcpy(dst_ptr + id, src0_ptr, rs);
  5255. id += rs;
  5256. }
  5257. id += rs * (ne01 - ir1);
  5258. }
  5259. }
  5260. } else if (dst->type == GGML_TYPE_F32) {
  5261. size_t id = 0;
  5262. float * dst_ptr = (float *) dst->data;
  5263. for (int i03 = 0; i03 < ne03; i03++) {
  5264. for (int i02 = 0; i02 < ne02; i02++) {
  5265. id += ne00 * ir0;
  5266. for (int i01 = ir0; i01 < ir1; i01++) {
  5267. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5268. for (int i00 = 0; i00 < ne00; i00++) {
  5269. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5270. id++;
  5271. }
  5272. }
  5273. id += ne00 * (ne01 - ir1);
  5274. }
  5275. }
  5276. } else if (type_traits[dst->type].from_float) {
  5277. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5278. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5279. size_t id = 0;
  5280. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5281. char * dst_ptr = (char *) dst->data;
  5282. for (int i03 = 0; i03 < ne03; i03++) {
  5283. for (int i02 = 0; i02 < ne02; i02++) {
  5284. id += rs * ir0;
  5285. for (int i01 = ir0; i01 < ir1; i01++) {
  5286. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5287. for (int i00 = 0; i00 < ne00; i00++) {
  5288. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5289. }
  5290. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5291. id += rs;
  5292. }
  5293. id += rs * (ne01 - ir1);
  5294. }
  5295. }
  5296. } else {
  5297. GGML_ASSERT(false); // TODO: implement
  5298. }
  5299. } else {
  5300. //printf("%s: this is not optimal - fix me\n", __func__);
  5301. if (dst->type == GGML_TYPE_F32) {
  5302. size_t id = 0;
  5303. float * dst_ptr = (float *) dst->data;
  5304. for (int i03 = 0; i03 < ne03; i03++) {
  5305. for (int i02 = 0; i02 < ne02; i02++) {
  5306. id += ne00 * ir0;
  5307. for (int i01 = ir0; i01 < ir1; i01++) {
  5308. for (int i00 = 0; i00 < ne00; i00++) {
  5309. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5310. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5311. id++;
  5312. }
  5313. }
  5314. id += ne00 * (ne01 - ir1);
  5315. }
  5316. }
  5317. } else if (dst->type == GGML_TYPE_F16) {
  5318. size_t id = 0;
  5319. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5320. for (int i03 = 0; i03 < ne03; i03++) {
  5321. for (int i02 = 0; i02 < ne02; i02++) {
  5322. id += ne00 * ir0;
  5323. for (int i01 = ir0; i01 < ir1; i01++) {
  5324. for (int i00 = 0; i00 < ne00; i00++) {
  5325. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5326. dst_ptr[id] = *src0_ptr;
  5327. id++;
  5328. }
  5329. }
  5330. id += ne00 * (ne01 - ir1);
  5331. }
  5332. }
  5333. } else {
  5334. GGML_ASSERT(false); // TODO: implement
  5335. }
  5336. }
  5337. return;
  5338. }
  5339. // dst counters
  5340. int64_t i10 = 0;
  5341. int64_t i11 = 0;
  5342. int64_t i12 = 0;
  5343. int64_t i13 = 0;
  5344. if (dst->type == GGML_TYPE_F16) {
  5345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5347. i10 += ne00 * ir0;
  5348. while (i10 >= ne0) {
  5349. i10 -= ne0;
  5350. if (++i11 == ne1) {
  5351. i11 = 0;
  5352. if (++i12 == ne2) {
  5353. i12 = 0;
  5354. if (++i13 == ne3) {
  5355. i13 = 0;
  5356. }
  5357. }
  5358. }
  5359. }
  5360. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5361. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5362. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5363. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5364. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5365. if (++i10 == ne00) {
  5366. i10 = 0;
  5367. if (++i11 == ne01) {
  5368. i11 = 0;
  5369. if (++i12 == ne02) {
  5370. i12 = 0;
  5371. if (++i13 == ne03) {
  5372. i13 = 0;
  5373. }
  5374. }
  5375. }
  5376. }
  5377. }
  5378. }
  5379. i10 += ne00 * (ne01 - ir1);
  5380. while (i10 >= ne0) {
  5381. i10 -= ne0;
  5382. if (++i11 == ne1) {
  5383. i11 = 0;
  5384. if (++i12 == ne2) {
  5385. i12 = 0;
  5386. if (++i13 == ne3) {
  5387. i13 = 0;
  5388. }
  5389. }
  5390. }
  5391. }
  5392. }
  5393. }
  5394. } else if (dst->type == GGML_TYPE_F32) {
  5395. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5396. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5397. i10 += ne00 * ir0;
  5398. while (i10 >= ne0) {
  5399. i10 -= ne0;
  5400. if (++i11 == ne1) {
  5401. i11 = 0;
  5402. if (++i12 == ne2) {
  5403. i12 = 0;
  5404. if (++i13 == ne3) {
  5405. i13 = 0;
  5406. }
  5407. }
  5408. }
  5409. }
  5410. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5411. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5412. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5413. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5414. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5415. if (++i10 == ne0) {
  5416. i10 = 0;
  5417. if (++i11 == ne1) {
  5418. i11 = 0;
  5419. if (++i12 == ne2) {
  5420. i12 = 0;
  5421. if (++i13 == ne3) {
  5422. i13 = 0;
  5423. }
  5424. }
  5425. }
  5426. }
  5427. }
  5428. }
  5429. i10 += ne00 * (ne01 - ir1);
  5430. while (i10 >= ne0) {
  5431. i10 -= ne0;
  5432. if (++i11 == ne1) {
  5433. i11 = 0;
  5434. if (++i12 == ne2) {
  5435. i12 = 0;
  5436. if (++i13 == ne3) {
  5437. i13 = 0;
  5438. }
  5439. }
  5440. }
  5441. }
  5442. }
  5443. }
  5444. } else {
  5445. GGML_ASSERT(false); // TODO: implement
  5446. }
  5447. }
  5448. static void ggml_compute_forward_dup_f32(
  5449. const struct ggml_compute_params * params,
  5450. const struct ggml_tensor * src0,
  5451. struct ggml_tensor * dst) {
  5452. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5454. return;
  5455. }
  5456. GGML_TENSOR_UNARY_OP_LOCALS
  5457. const int ith = params->ith; // thread index
  5458. const int nth = params->nth; // number of threads
  5459. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5460. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5461. return;
  5462. }
  5463. // parallelize by rows
  5464. const int nr = ne01;
  5465. // number of rows per thread
  5466. const int dr = (nr + nth - 1) / nth;
  5467. // row range for this thread
  5468. const int ir0 = dr * ith;
  5469. const int ir1 = MIN(ir0 + dr, nr);
  5470. if (src0->type == dst->type &&
  5471. ne00 == ne0 &&
  5472. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5473. // copy by rows
  5474. const size_t rs = ne00*nb00;
  5475. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5476. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5477. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5478. memcpy(
  5479. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5480. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5481. rs);
  5482. }
  5483. }
  5484. }
  5485. return;
  5486. }
  5487. if (ggml_is_contiguous(dst)) {
  5488. // TODO: simplify
  5489. if (nb00 == sizeof(float)) {
  5490. if (dst->type == GGML_TYPE_F32) {
  5491. size_t id = 0;
  5492. const size_t rs = ne00 * nb00;
  5493. char * dst_ptr = (char *) dst->data;
  5494. for (int i03 = 0; i03 < ne03; i03++) {
  5495. for (int i02 = 0; i02 < ne02; i02++) {
  5496. id += rs * ir0;
  5497. for (int i01 = ir0; i01 < ir1; i01++) {
  5498. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5499. memcpy(dst_ptr + id, src0_ptr, rs);
  5500. id += rs;
  5501. }
  5502. id += rs * (ne01 - ir1);
  5503. }
  5504. }
  5505. } else if (type_traits[dst->type].from_float) {
  5506. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5507. size_t id = 0;
  5508. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5509. char * dst_ptr = (char *) dst->data;
  5510. for (int i03 = 0; i03 < ne03; i03++) {
  5511. for (int i02 = 0; i02 < ne02; i02++) {
  5512. id += rs * ir0;
  5513. for (int i01 = ir0; i01 < ir1; i01++) {
  5514. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5515. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5516. id += rs;
  5517. }
  5518. id += rs * (ne01 - ir1);
  5519. }
  5520. }
  5521. } else {
  5522. GGML_ASSERT(false); // TODO: implement
  5523. }
  5524. } else {
  5525. //printf("%s: this is not optimal - fix me\n", __func__);
  5526. if (dst->type == GGML_TYPE_F32) {
  5527. size_t id = 0;
  5528. float * dst_ptr = (float *) dst->data;
  5529. for (int i03 = 0; i03 < ne03; i03++) {
  5530. for (int i02 = 0; i02 < ne02; i02++) {
  5531. id += ne00 * ir0;
  5532. for (int i01 = ir0; i01 < ir1; i01++) {
  5533. for (int i00 = 0; i00 < ne00; i00++) {
  5534. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5535. dst_ptr[id] = *src0_ptr;
  5536. id++;
  5537. }
  5538. }
  5539. id += ne00 * (ne01 - ir1);
  5540. }
  5541. }
  5542. } else if (dst->type == GGML_TYPE_F16) {
  5543. size_t id = 0;
  5544. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5545. for (int i03 = 0; i03 < ne03; i03++) {
  5546. for (int i02 = 0; i02 < ne02; i02++) {
  5547. id += ne00 * ir0;
  5548. for (int i01 = ir0; i01 < ir1; i01++) {
  5549. for (int i00 = 0; i00 < ne00; i00++) {
  5550. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5551. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5552. id++;
  5553. }
  5554. }
  5555. id += ne00 * (ne01 - ir1);
  5556. }
  5557. }
  5558. } else {
  5559. GGML_ASSERT(false); // TODO: implement
  5560. }
  5561. }
  5562. return;
  5563. }
  5564. // dst counters
  5565. int64_t i10 = 0;
  5566. int64_t i11 = 0;
  5567. int64_t i12 = 0;
  5568. int64_t i13 = 0;
  5569. if (dst->type == GGML_TYPE_F32) {
  5570. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5571. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5572. i10 += ne00 * ir0;
  5573. while (i10 >= ne0) {
  5574. i10 -= ne0;
  5575. if (++i11 == ne1) {
  5576. i11 = 0;
  5577. if (++i12 == ne2) {
  5578. i12 = 0;
  5579. if (++i13 == ne3) {
  5580. i13 = 0;
  5581. }
  5582. }
  5583. }
  5584. }
  5585. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5586. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5587. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5588. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5589. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5590. if (++i10 == ne0) {
  5591. i10 = 0;
  5592. if (++i11 == ne1) {
  5593. i11 = 0;
  5594. if (++i12 == ne2) {
  5595. i12 = 0;
  5596. if (++i13 == ne3) {
  5597. i13 = 0;
  5598. }
  5599. }
  5600. }
  5601. }
  5602. }
  5603. }
  5604. i10 += ne00 * (ne01 - ir1);
  5605. while (i10 >= ne0) {
  5606. i10 -= ne0;
  5607. if (++i11 == ne1) {
  5608. i11 = 0;
  5609. if (++i12 == ne2) {
  5610. i12 = 0;
  5611. if (++i13 == ne3) {
  5612. i13 = 0;
  5613. }
  5614. }
  5615. }
  5616. }
  5617. }
  5618. }
  5619. } else if (dst->type == GGML_TYPE_F16) {
  5620. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5621. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5622. i10 += ne00 * ir0;
  5623. while (i10 >= ne0) {
  5624. i10 -= ne0;
  5625. if (++i11 == ne1) {
  5626. i11 = 0;
  5627. if (++i12 == ne2) {
  5628. i12 = 0;
  5629. if (++i13 == ne3) {
  5630. i13 = 0;
  5631. }
  5632. }
  5633. }
  5634. }
  5635. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5637. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5638. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5639. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5640. if (++i10 == ne0) {
  5641. i10 = 0;
  5642. if (++i11 == ne1) {
  5643. i11 = 0;
  5644. if (++i12 == ne2) {
  5645. i12 = 0;
  5646. if (++i13 == ne3) {
  5647. i13 = 0;
  5648. }
  5649. }
  5650. }
  5651. }
  5652. }
  5653. }
  5654. i10 += ne00 * (ne01 - ir1);
  5655. while (i10 >= ne0) {
  5656. i10 -= ne0;
  5657. if (++i11 == ne1) {
  5658. i11 = 0;
  5659. if (++i12 == ne2) {
  5660. i12 = 0;
  5661. if (++i13 == ne3) {
  5662. i13 = 0;
  5663. }
  5664. }
  5665. }
  5666. }
  5667. }
  5668. }
  5669. } else {
  5670. GGML_ASSERT(false); // TODO: implement
  5671. }
  5672. }
  5673. static void ggml_compute_forward_dup(
  5674. const struct ggml_compute_params * params,
  5675. const struct ggml_tensor * src0,
  5676. struct ggml_tensor * dst) {
  5677. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5678. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5679. return;
  5680. }
  5681. switch (src0->type) {
  5682. case GGML_TYPE_F16:
  5683. {
  5684. ggml_compute_forward_dup_f16(params, src0, dst);
  5685. } break;
  5686. case GGML_TYPE_F32:
  5687. {
  5688. ggml_compute_forward_dup_f32(params, src0, dst);
  5689. } break;
  5690. default:
  5691. {
  5692. GGML_ASSERT(false);
  5693. } break;
  5694. }
  5695. }
  5696. // ggml_compute_forward_add
  5697. static void ggml_compute_forward_add_f32(
  5698. const struct ggml_compute_params * params,
  5699. const struct ggml_tensor * src0,
  5700. const struct ggml_tensor * src1,
  5701. struct ggml_tensor * dst) {
  5702. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5704. return;
  5705. }
  5706. const int ith = params->ith;
  5707. const int nth = params->nth;
  5708. const int nr = ggml_nrows(src0);
  5709. GGML_TENSOR_BINARY_OP_LOCALS
  5710. GGML_ASSERT( nb0 == sizeof(float));
  5711. GGML_ASSERT(nb00 == sizeof(float));
  5712. // rows per thread
  5713. const int dr = (nr + nth - 1)/nth;
  5714. // row range for this thread
  5715. const int ir0 = dr*ith;
  5716. const int ir1 = MIN(ir0 + dr, nr);
  5717. if (nb10 == sizeof(float)) {
  5718. for (int ir = ir0; ir < ir1; ++ir) {
  5719. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5720. const int64_t i03 = ir/(ne02*ne01);
  5721. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5722. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5723. const int64_t i13 = i03 % ne13;
  5724. const int64_t i12 = i02 % ne12;
  5725. const int64_t i11 = i01 % ne11;
  5726. const int64_t nr0 = ne00 / ne10;
  5727. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5728. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5729. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5730. for (int64_t r = 0; r < nr0; ++r) {
  5731. #ifdef GGML_USE_ACCELERATE
  5732. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5733. #else
  5734. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5735. #endif
  5736. }
  5737. }
  5738. } else {
  5739. // src1 is not contiguous
  5740. for (int ir = ir0; ir < ir1; ++ir) {
  5741. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5742. const int64_t i03 = ir/(ne02*ne01);
  5743. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5744. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5745. const int64_t i13 = i03 % ne13;
  5746. const int64_t i12 = i02 % ne12;
  5747. const int64_t i11 = i01 % ne11;
  5748. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5749. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5750. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5751. const int64_t i10 = i0 % ne10;
  5752. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5753. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5754. }
  5755. }
  5756. }
  5757. }
  5758. static void ggml_compute_forward_add_f16_f32(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. const struct ggml_tensor * src1,
  5762. struct ggml_tensor * dst) {
  5763. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5765. return;
  5766. }
  5767. const int ith = params->ith;
  5768. const int nth = params->nth;
  5769. const int nr = ggml_nrows(src0);
  5770. GGML_TENSOR_BINARY_OP_LOCALS
  5771. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5772. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5773. if (dst->type == GGML_TYPE_F32) {
  5774. GGML_ASSERT( nb0 == sizeof(float));
  5775. }
  5776. else {
  5777. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5778. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5779. }
  5780. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5781. // rows per thread
  5782. const int dr = (nr + nth - 1)/nth;
  5783. // row range for this thread
  5784. const int ir0 = dr*ith;
  5785. const int ir1 = MIN(ir0 + dr, nr);
  5786. if (nb10 == sizeof(float)) {
  5787. if (dst->type == GGML_TYPE_F16) {
  5788. for (int ir = ir0; ir < ir1; ++ir) {
  5789. // src0, src1 and dst are same shape => same indices
  5790. const int i3 = ir/(ne2*ne1);
  5791. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5792. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5793. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5794. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5795. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5796. for (int i = 0; i < ne0; i++) {
  5797. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5798. }
  5799. }
  5800. } else {
  5801. for (int ir = ir0; ir < ir1; ++ir) {
  5802. // src0, src1 and dst are same shape => same indices
  5803. const int i3 = ir/(ne2*ne1);
  5804. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5805. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5806. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5807. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5808. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5809. for (int i = 0; i < ne0; i++) {
  5810. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5811. }
  5812. }
  5813. }
  5814. }
  5815. else {
  5816. // src1 is not contiguous
  5817. GGML_ASSERT(false);
  5818. }
  5819. }
  5820. static void ggml_compute_forward_add_f16_f16(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. const struct ggml_tensor * src1,
  5824. struct ggml_tensor * dst) {
  5825. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5827. return;
  5828. }
  5829. const int ith = params->ith;
  5830. const int nth = params->nth;
  5831. const int nr = ggml_nrows(src0);
  5832. GGML_TENSOR_BINARY_OP_LOCALS
  5833. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5834. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5835. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5836. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5837. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5838. // rows per thread
  5839. const int dr = (nr + nth - 1)/nth;
  5840. // row range for this thread
  5841. const int ir0 = dr*ith;
  5842. const int ir1 = MIN(ir0 + dr, nr);
  5843. if (nb10 == sizeof(ggml_fp16_t)) {
  5844. for (int ir = ir0; ir < ir1; ++ir) {
  5845. // src0, src1 and dst are same shape => same indices
  5846. const int i3 = ir/(ne2*ne1);
  5847. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5848. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5849. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5850. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5851. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5852. for (int i = 0; i < ne0; i++) {
  5853. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5854. }
  5855. }
  5856. }
  5857. else {
  5858. // src1 is not contiguous
  5859. GGML_ASSERT(false);
  5860. }
  5861. }
  5862. static void ggml_compute_forward_add_q_f32(
  5863. const struct ggml_compute_params * params,
  5864. const struct ggml_tensor * src0,
  5865. const struct ggml_tensor * src1,
  5866. struct ggml_tensor * dst) {
  5867. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5869. return;
  5870. }
  5871. const int nr = ggml_nrows(src0);
  5872. GGML_TENSOR_BINARY_OP_LOCALS
  5873. const int ith = params->ith;
  5874. const int nth = params->nth;
  5875. const enum ggml_type type = src0->type;
  5876. const enum ggml_type dtype = dst->type;
  5877. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5878. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5879. // we don't support permuted src0 or src1
  5880. GGML_ASSERT(nb00 == ggml_type_size(type));
  5881. GGML_ASSERT(nb10 == sizeof(float));
  5882. // dst cannot be transposed or permuted
  5883. GGML_ASSERT(nb0 <= nb1);
  5884. GGML_ASSERT(nb1 <= nb2);
  5885. GGML_ASSERT(nb2 <= nb3);
  5886. GGML_ASSERT(ggml_is_quantized(src0->type));
  5887. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5888. // rows per thread
  5889. const int dr = (nr + nth - 1)/nth;
  5890. // row range for this thread
  5891. const int ir0 = dr*ith;
  5892. const int ir1 = MIN(ir0 + dr, nr);
  5893. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5894. for (int ir = ir0; ir < ir1; ++ir) {
  5895. // src0 indices
  5896. const int i03 = ir/(ne02*ne01);
  5897. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5898. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5899. // src1 and dst are same shape as src0 => same indices
  5900. const int i13 = i03;
  5901. const int i12 = i02;
  5902. const int i11 = i01;
  5903. const int i3 = i03;
  5904. const int i2 = i02;
  5905. const int i1 = i01;
  5906. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5907. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5908. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5909. assert(ne00 % 32 == 0);
  5910. // unquantize row from src0 to temp buffer
  5911. dequantize_row_q(src0_row, wdata, ne00);
  5912. // add src1
  5913. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5914. // quantize row to dst
  5915. if (quantize_row_q != NULL) {
  5916. quantize_row_q(wdata, dst_row, ne00);
  5917. } else {
  5918. memcpy(dst_row, wdata, ne0*nb0);
  5919. }
  5920. }
  5921. }
  5922. static void ggml_compute_forward_add(
  5923. const struct ggml_compute_params * params,
  5924. const struct ggml_tensor * src0,
  5925. const struct ggml_tensor * src1,
  5926. struct ggml_tensor * dst) {
  5927. switch (src0->type) {
  5928. case GGML_TYPE_F32:
  5929. {
  5930. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5931. } break;
  5932. case GGML_TYPE_F16:
  5933. {
  5934. if (src1->type == GGML_TYPE_F16) {
  5935. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5936. }
  5937. else if (src1->type == GGML_TYPE_F32) {
  5938. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5939. }
  5940. else {
  5941. GGML_ASSERT(false);
  5942. }
  5943. } break;
  5944. case GGML_TYPE_Q4_0:
  5945. case GGML_TYPE_Q4_1:
  5946. case GGML_TYPE_Q5_0:
  5947. case GGML_TYPE_Q5_1:
  5948. case GGML_TYPE_Q8_0:
  5949. case GGML_TYPE_Q2_K:
  5950. case GGML_TYPE_Q3_K:
  5951. case GGML_TYPE_Q4_K:
  5952. case GGML_TYPE_Q5_K:
  5953. case GGML_TYPE_Q6_K:
  5954. {
  5955. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5956. } break;
  5957. default:
  5958. {
  5959. GGML_ASSERT(false);
  5960. } break;
  5961. }
  5962. }
  5963. // ggml_compute_forward_add1
  5964. static void ggml_compute_forward_add1_f32(
  5965. const struct ggml_compute_params * params,
  5966. const struct ggml_tensor * src0,
  5967. const struct ggml_tensor * src1,
  5968. struct ggml_tensor * dst) {
  5969. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5970. GGML_ASSERT(ggml_is_scalar(src1));
  5971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5972. return;
  5973. }
  5974. const int ith = params->ith;
  5975. const int nth = params->nth;
  5976. const int nr = ggml_nrows(src0);
  5977. GGML_TENSOR_UNARY_OP_LOCALS
  5978. GGML_ASSERT( nb0 == sizeof(float));
  5979. GGML_ASSERT(nb00 == sizeof(float));
  5980. // rows per thread
  5981. const int dr = (nr + nth - 1)/nth;
  5982. // row range for this thread
  5983. const int ir0 = dr*ith;
  5984. const int ir1 = MIN(ir0 + dr, nr);
  5985. for (int ir = ir0; ir < ir1; ++ir) {
  5986. // src0 and dst are same shape => same indices
  5987. const int i3 = ir/(ne2*ne1);
  5988. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5989. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5990. #ifdef GGML_USE_ACCELERATE
  5991. UNUSED(ggml_vec_add1_f32);
  5992. vDSP_vadd(
  5993. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5994. (float *) ((char *) src1->data), 0,
  5995. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5996. ne0);
  5997. #else
  5998. ggml_vec_add1_f32(ne0,
  5999. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6000. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6001. *(float *) src1->data);
  6002. #endif
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add1_f16_f32(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6011. GGML_ASSERT(ggml_is_scalar(src1));
  6012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6013. return;
  6014. }
  6015. // scalar to add
  6016. const float v = *(float *) src1->data;
  6017. const int ith = params->ith;
  6018. const int nth = params->nth;
  6019. const int nr = ggml_nrows(src0);
  6020. GGML_TENSOR_UNARY_OP_LOCALS
  6021. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6022. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6023. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6024. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6026. // rows per thread
  6027. const int dr = (nr + nth - 1)/nth;
  6028. // row range for this thread
  6029. const int ir0 = dr*ith;
  6030. const int ir1 = MIN(ir0 + dr, nr);
  6031. for (int ir = ir0; ir < ir1; ++ir) {
  6032. // src0 and dst are same shape => same indices
  6033. const int i3 = ir/(ne2*ne1);
  6034. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6035. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6036. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6037. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6038. for (int i = 0; i < ne0; i++) {
  6039. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6040. }
  6041. }
  6042. }
  6043. static void ggml_compute_forward_add1_f16_f16(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. const struct ggml_tensor * src1,
  6047. struct ggml_tensor * dst) {
  6048. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6049. GGML_ASSERT(ggml_is_scalar(src1));
  6050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6051. return;
  6052. }
  6053. // scalar to add
  6054. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6055. const int ith = params->ith;
  6056. const int nth = params->nth;
  6057. const int nr = ggml_nrows(src0);
  6058. GGML_TENSOR_UNARY_OP_LOCALS
  6059. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6060. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6061. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6062. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6063. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6064. // rows per thread
  6065. const int dr = (nr + nth - 1)/nth;
  6066. // row range for this thread
  6067. const int ir0 = dr*ith;
  6068. const int ir1 = MIN(ir0 + dr, nr);
  6069. for (int ir = ir0; ir < ir1; ++ir) {
  6070. // src0 and dst are same shape => same indices
  6071. const int i3 = ir/(ne2*ne1);
  6072. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6073. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6074. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6075. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6076. for (int i = 0; i < ne0; i++) {
  6077. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6078. }
  6079. }
  6080. }
  6081. static void ggml_compute_forward_add1_q_f32(
  6082. const struct ggml_compute_params * params,
  6083. const struct ggml_tensor * src0,
  6084. const struct ggml_tensor * src1,
  6085. struct ggml_tensor * dst) {
  6086. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6087. GGML_ASSERT(ggml_is_scalar(src1));
  6088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6089. return;
  6090. }
  6091. // scalar to add
  6092. const float v = *(float *) src1->data;
  6093. const int ith = params->ith;
  6094. const int nth = params->nth;
  6095. const int nr = ggml_nrows(src0);
  6096. GGML_TENSOR_UNARY_OP_LOCALS
  6097. const enum ggml_type type = src0->type;
  6098. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6099. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6100. // we don't support permuted src0
  6101. GGML_ASSERT(nb00 == ggml_type_size(type));
  6102. // dst cannot be transposed or permuted
  6103. GGML_ASSERT(nb0 <= nb1);
  6104. GGML_ASSERT(nb1 <= nb2);
  6105. GGML_ASSERT(nb2 <= nb3);
  6106. GGML_ASSERT(ggml_is_quantized(src0->type));
  6107. GGML_ASSERT(dst->type == src0->type);
  6108. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6109. // rows per thread
  6110. const int dr = (nr + nth - 1)/nth;
  6111. // row range for this thread
  6112. const int ir0 = dr*ith;
  6113. const int ir1 = MIN(ir0 + dr, nr);
  6114. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6115. for (int ir = ir0; ir < ir1; ++ir) {
  6116. // src0 and dst are same shape => same indices
  6117. const int i3 = ir/(ne2*ne1);
  6118. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6119. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6120. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6121. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6122. assert(ne0 % 32 == 0);
  6123. // unquantize row from src0 to temp buffer
  6124. dequantize_row_q(src0_row, wdata, ne0);
  6125. // add src1
  6126. ggml_vec_acc1_f32(ne0, wdata, v);
  6127. // quantize row to dst
  6128. quantize_row_q(wdata, dst_row, ne0);
  6129. }
  6130. }
  6131. static void ggml_compute_forward_add1(
  6132. const struct ggml_compute_params * params,
  6133. const struct ggml_tensor * src0,
  6134. const struct ggml_tensor * src1,
  6135. struct ggml_tensor * dst) {
  6136. switch (src0->type) {
  6137. case GGML_TYPE_F32:
  6138. {
  6139. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6140. } break;
  6141. case GGML_TYPE_F16:
  6142. {
  6143. if (src1->type == GGML_TYPE_F16) {
  6144. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6145. }
  6146. else if (src1->type == GGML_TYPE_F32) {
  6147. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6148. }
  6149. else {
  6150. GGML_ASSERT(false);
  6151. }
  6152. } break;
  6153. case GGML_TYPE_Q4_0:
  6154. case GGML_TYPE_Q4_1:
  6155. case GGML_TYPE_Q5_0:
  6156. case GGML_TYPE_Q5_1:
  6157. case GGML_TYPE_Q8_0:
  6158. case GGML_TYPE_Q8_1:
  6159. case GGML_TYPE_Q2_K:
  6160. case GGML_TYPE_Q3_K:
  6161. case GGML_TYPE_Q4_K:
  6162. case GGML_TYPE_Q5_K:
  6163. case GGML_TYPE_Q6_K:
  6164. {
  6165. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6166. } break;
  6167. default:
  6168. {
  6169. GGML_ASSERT(false);
  6170. } break;
  6171. }
  6172. }
  6173. // ggml_compute_forward_acc
  6174. static void ggml_compute_forward_acc_f32(
  6175. const struct ggml_compute_params * params,
  6176. const struct ggml_tensor * src0,
  6177. const struct ggml_tensor * src1,
  6178. struct ggml_tensor * dst) {
  6179. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6180. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6181. // view src0 and dst with these strides and data offset inbytes during acc
  6182. // nb0 is implicitly element_size because src0 and dst are contiguous
  6183. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6184. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6185. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6186. size_t offset = ((int32_t *) dst->op_params)[3];
  6187. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6188. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6189. // memcpy needs to be synchronized across threads to avoid race conditions.
  6190. // => do it in INIT phase
  6191. memcpy(
  6192. ((char *) dst->data),
  6193. ((char *) src0->data),
  6194. ggml_nbytes(dst));
  6195. }
  6196. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6197. return;
  6198. }
  6199. const int ith = params->ith;
  6200. const int nth = params->nth;
  6201. const int nr = ggml_nrows(src1);
  6202. const int nc = src1->ne[0];
  6203. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6204. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6205. // src0 and dst as viewed during acc
  6206. const size_t nb0 = ggml_element_size(src0);
  6207. const size_t nb00 = nb0;
  6208. const size_t nb01 = nb1;
  6209. const size_t nb02 = nb2;
  6210. const size_t nb03 = nb3;
  6211. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6212. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6213. GGML_ASSERT(nb10 == sizeof(float));
  6214. // rows per thread
  6215. const int dr = (nr + nth - 1)/nth;
  6216. // row range for this thread
  6217. const int ir0 = dr*ith;
  6218. const int ir1 = MIN(ir0 + dr, nr);
  6219. for (int ir = ir0; ir < ir1; ++ir) {
  6220. // src0 and dst are viewed with shape of src1 and offset
  6221. // => same indices
  6222. const int i3 = ir/(ne12*ne11);
  6223. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6224. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6225. #ifdef GGML_USE_ACCELERATE
  6226. vDSP_vadd(
  6227. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6228. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6229. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6230. #else
  6231. ggml_vec_add_f32(nc,
  6232. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6233. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6234. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6235. #endif
  6236. }
  6237. }
  6238. static void ggml_compute_forward_acc(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. const struct ggml_tensor * src1,
  6242. struct ggml_tensor * dst) {
  6243. switch (src0->type) {
  6244. case GGML_TYPE_F32:
  6245. {
  6246. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6247. } break;
  6248. case GGML_TYPE_F16:
  6249. case GGML_TYPE_Q4_0:
  6250. case GGML_TYPE_Q4_1:
  6251. case GGML_TYPE_Q5_0:
  6252. case GGML_TYPE_Q5_1:
  6253. case GGML_TYPE_Q8_0:
  6254. case GGML_TYPE_Q8_1:
  6255. case GGML_TYPE_Q2_K:
  6256. case GGML_TYPE_Q3_K:
  6257. case GGML_TYPE_Q4_K:
  6258. case GGML_TYPE_Q5_K:
  6259. case GGML_TYPE_Q6_K:
  6260. default:
  6261. {
  6262. GGML_ASSERT(false);
  6263. } break;
  6264. }
  6265. }
  6266. // ggml_compute_forward_sub
  6267. static void ggml_compute_forward_sub_f32(
  6268. const struct ggml_compute_params * params,
  6269. const struct ggml_tensor * src0,
  6270. const struct ggml_tensor * src1,
  6271. struct ggml_tensor * dst) {
  6272. assert(params->ith == 0);
  6273. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6275. return;
  6276. }
  6277. const int nr = ggml_nrows(src0);
  6278. GGML_TENSOR_BINARY_OP_LOCALS
  6279. GGML_ASSERT( nb0 == sizeof(float));
  6280. GGML_ASSERT(nb00 == sizeof(float));
  6281. if (nb10 == sizeof(float)) {
  6282. for (int ir = 0; ir < nr; ++ir) {
  6283. // src0, src1 and dst are same shape => same indices
  6284. const int i3 = ir/(ne2*ne1);
  6285. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6286. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6287. #ifdef GGML_USE_ACCELERATE
  6288. vDSP_vsub(
  6289. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6290. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6291. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6292. ne0);
  6293. #else
  6294. ggml_vec_sub_f32(ne0,
  6295. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6296. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6297. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6298. #endif
  6299. // }
  6300. // }
  6301. }
  6302. } else {
  6303. // src1 is not contiguous
  6304. for (int ir = 0; ir < nr; ++ir) {
  6305. // src0, src1 and dst are same shape => same indices
  6306. const int i3 = ir/(ne2*ne1);
  6307. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6308. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6309. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6310. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6311. for (int i0 = 0; i0 < ne0; i0++) {
  6312. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6313. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6314. }
  6315. }
  6316. }
  6317. }
  6318. static void ggml_compute_forward_sub(
  6319. const struct ggml_compute_params * params,
  6320. const struct ggml_tensor * src0,
  6321. const struct ggml_tensor * src1,
  6322. struct ggml_tensor * dst) {
  6323. switch (src0->type) {
  6324. case GGML_TYPE_F32:
  6325. {
  6326. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6327. } break;
  6328. default:
  6329. {
  6330. GGML_ASSERT(false);
  6331. } break;
  6332. }
  6333. }
  6334. // ggml_compute_forward_mul
  6335. static void ggml_compute_forward_mul_f32(
  6336. const struct ggml_compute_params * params,
  6337. const struct ggml_tensor * src0,
  6338. const struct ggml_tensor * src1,
  6339. struct ggml_tensor * dst) {
  6340. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6342. return;
  6343. }
  6344. const int ith = params->ith;
  6345. const int nth = params->nth;
  6346. #ifdef GGML_USE_CLBLAST
  6347. if (src1->backend == GGML_BACKEND_GPU) {
  6348. // TODO: OpenCL kernel support full broadcast
  6349. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6350. if (ith == 0) {
  6351. ggml_cl_mul(src0, src1, dst);
  6352. }
  6353. return;
  6354. }
  6355. #endif
  6356. const int64_t nr = ggml_nrows(src0);
  6357. GGML_TENSOR_BINARY_OP_LOCALS
  6358. GGML_ASSERT( nb0 == sizeof(float));
  6359. GGML_ASSERT(nb00 == sizeof(float));
  6360. if (nb10 == sizeof(float)) {
  6361. for (int64_t ir = ith; ir < nr; ir += nth) {
  6362. // src0 and dst are same shape => same indices
  6363. const int64_t i03 = ir/(ne02*ne01);
  6364. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6365. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6366. const int64_t i13 = i03 % ne13;
  6367. const int64_t i12 = i02 % ne12;
  6368. const int64_t i11 = i01 % ne11;
  6369. const int64_t nr0 = ne00 / ne10;
  6370. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6371. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6372. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6373. for (int64_t r = 0 ; r < nr0; ++r) {
  6374. #ifdef GGML_USE_ACCELERATE
  6375. UNUSED(ggml_vec_mul_f32);
  6376. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6377. #else
  6378. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6379. #endif
  6380. }
  6381. }
  6382. } else {
  6383. // src1 is not contiguous
  6384. for (int64_t ir = ith; ir < nr; ir += nth) {
  6385. // src0 and dst are same shape => same indices
  6386. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6387. const int64_t i03 = ir/(ne02*ne01);
  6388. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6389. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6390. const int64_t i13 = i03 % ne13;
  6391. const int64_t i12 = i02 % ne12;
  6392. const int64_t i11 = i01 % ne11;
  6393. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6394. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6395. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6396. const int64_t i10 = i0 % ne10;
  6397. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6398. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6399. }
  6400. }
  6401. }
  6402. }
  6403. static void ggml_compute_forward_mul(
  6404. const struct ggml_compute_params * params,
  6405. const struct ggml_tensor * src0,
  6406. const struct ggml_tensor * src1,
  6407. struct ggml_tensor * dst) {
  6408. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F32:
  6411. {
  6412. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6413. } break;
  6414. default:
  6415. {
  6416. GGML_ASSERT(false);
  6417. } break;
  6418. }
  6419. }
  6420. // ggml_compute_forward_div
  6421. static void ggml_compute_forward_div_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. const struct ggml_tensor * src1,
  6425. struct ggml_tensor * dst) {
  6426. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int ith = params->ith;
  6431. const int nth = params->nth;
  6432. const int64_t nr = ggml_nrows(src0);
  6433. GGML_TENSOR_BINARY_OP_LOCALS
  6434. GGML_ASSERT( nb0 == sizeof(float));
  6435. GGML_ASSERT(nb00 == sizeof(float));
  6436. if (nb10 == sizeof(float)) {
  6437. for (int64_t ir = ith; ir < nr; ir += nth) {
  6438. // src0 and dst are same shape => same indices
  6439. const int64_t i03 = ir/(ne02*ne01);
  6440. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6441. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6442. const int64_t i13 = i03 % ne13;
  6443. const int64_t i12 = i02 % ne12;
  6444. const int64_t i11 = i01 % ne11;
  6445. const int64_t nr0 = ne00 / ne10;
  6446. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6447. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6448. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6449. for (int64_t r = 0; r < nr0; ++r) {
  6450. #ifdef GGML_USE_ACCELERATE
  6451. UNUSED(ggml_vec_div_f32);
  6452. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6453. #else
  6454. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6455. #endif
  6456. }
  6457. }
  6458. } else {
  6459. // src1 is not contiguous
  6460. for (int64_t ir = ith; ir < nr; ir += nth) {
  6461. // src0 and dst are same shape => same indices
  6462. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6463. const int64_t i03 = ir/(ne02*ne01);
  6464. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6465. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6466. const int64_t i13 = i03 % ne13;
  6467. const int64_t i12 = i02 % ne12;
  6468. const int64_t i11 = i01 % ne11;
  6469. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6470. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6471. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6472. const int64_t i10 = i0 % ne10;
  6473. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6474. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6475. }
  6476. }
  6477. }
  6478. }
  6479. static void ggml_compute_forward_div(
  6480. const struct ggml_compute_params * params,
  6481. const struct ggml_tensor * src0,
  6482. const struct ggml_tensor * src1,
  6483. struct ggml_tensor * dst) {
  6484. switch (src0->type) {
  6485. case GGML_TYPE_F32:
  6486. {
  6487. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6488. } break;
  6489. default:
  6490. {
  6491. GGML_ASSERT(false);
  6492. } break;
  6493. }
  6494. }
  6495. // ggml_compute_forward_sqr
  6496. static void ggml_compute_forward_sqr_f32(
  6497. const struct ggml_compute_params * params,
  6498. const struct ggml_tensor * src0,
  6499. struct ggml_tensor * dst) {
  6500. assert(params->ith == 0);
  6501. assert(ggml_are_same_shape(src0, dst));
  6502. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6503. return;
  6504. }
  6505. const int n = ggml_nrows(src0);
  6506. const int nc = src0->ne[0];
  6507. assert( dst->nb[0] == sizeof(float));
  6508. assert(src0->nb[0] == sizeof(float));
  6509. for (int i = 0; i < n; i++) {
  6510. ggml_vec_sqr_f32(nc,
  6511. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6512. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6513. }
  6514. }
  6515. static void ggml_compute_forward_sqr(
  6516. const struct ggml_compute_params * params,
  6517. const struct ggml_tensor * src0,
  6518. struct ggml_tensor * dst) {
  6519. switch (src0->type) {
  6520. case GGML_TYPE_F32:
  6521. {
  6522. ggml_compute_forward_sqr_f32(params, src0, dst);
  6523. } break;
  6524. default:
  6525. {
  6526. GGML_ASSERT(false);
  6527. } break;
  6528. }
  6529. }
  6530. // ggml_compute_forward_sqrt
  6531. static void ggml_compute_forward_sqrt_f32(
  6532. const struct ggml_compute_params * params,
  6533. const struct ggml_tensor * src0,
  6534. struct ggml_tensor * dst) {
  6535. assert(params->ith == 0);
  6536. assert(ggml_are_same_shape(src0, dst));
  6537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6538. return;
  6539. }
  6540. const int n = ggml_nrows(src0);
  6541. const int nc = src0->ne[0];
  6542. assert( dst->nb[0] == sizeof(float));
  6543. assert(src0->nb[0] == sizeof(float));
  6544. for (int i = 0; i < n; i++) {
  6545. ggml_vec_sqrt_f32(nc,
  6546. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6547. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6548. }
  6549. }
  6550. static void ggml_compute_forward_sqrt(
  6551. const struct ggml_compute_params * params,
  6552. const struct ggml_tensor * src0,
  6553. struct ggml_tensor * dst) {
  6554. switch (src0->type) {
  6555. case GGML_TYPE_F32:
  6556. {
  6557. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6558. } break;
  6559. default:
  6560. {
  6561. GGML_ASSERT(false);
  6562. } break;
  6563. }
  6564. }
  6565. // ggml_compute_forward_log
  6566. static void ggml_compute_forward_log_f32(
  6567. const struct ggml_compute_params * params,
  6568. const struct ggml_tensor * src0,
  6569. struct ggml_tensor * dst) {
  6570. GGML_ASSERT(params->ith == 0);
  6571. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6573. return;
  6574. }
  6575. const int n = ggml_nrows(src0);
  6576. const int nc = src0->ne[0];
  6577. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6578. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6579. for (int i = 0; i < n; i++) {
  6580. ggml_vec_log_f32(nc,
  6581. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6582. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6583. }
  6584. }
  6585. static void ggml_compute_forward_log(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0,
  6588. struct ggml_tensor * dst) {
  6589. switch (src0->type) {
  6590. case GGML_TYPE_F32:
  6591. {
  6592. ggml_compute_forward_log_f32(params, src0, dst);
  6593. } break;
  6594. default:
  6595. {
  6596. GGML_ASSERT(false);
  6597. } break;
  6598. }
  6599. }
  6600. // ggml_compute_forward_sum
  6601. static void ggml_compute_forward_sum_f32(
  6602. const struct ggml_compute_params * params,
  6603. const struct ggml_tensor * src0,
  6604. struct ggml_tensor * dst) {
  6605. assert(params->ith == 0);
  6606. assert(ggml_is_scalar(dst));
  6607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6608. return;
  6609. }
  6610. assert(ggml_is_scalar(dst));
  6611. assert(src0->nb[0] == sizeof(float));
  6612. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6613. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6614. ggml_float sum = 0;
  6615. ggml_float row_sum = 0;
  6616. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6617. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6618. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6619. ggml_vec_sum_f32_ggf(ne00,
  6620. &row_sum,
  6621. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6622. sum += row_sum;
  6623. }
  6624. }
  6625. }
  6626. ((float *) dst->data)[0] = sum;
  6627. }
  6628. static void ggml_compute_forward_sum_f16(
  6629. const struct ggml_compute_params * params,
  6630. const struct ggml_tensor * src0,
  6631. struct ggml_tensor * dst) {
  6632. assert(params->ith == 0);
  6633. assert(ggml_is_scalar(dst));
  6634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6635. return;
  6636. }
  6637. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6638. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6639. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6640. float sum = 0;
  6641. float row_sum = 0;
  6642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6645. ggml_vec_sum_f16_ggf(ne00,
  6646. &row_sum,
  6647. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6648. sum += row_sum;
  6649. }
  6650. }
  6651. }
  6652. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6653. }
  6654. static void ggml_compute_forward_sum(
  6655. const struct ggml_compute_params * params,
  6656. const struct ggml_tensor * src0,
  6657. struct ggml_tensor * dst) {
  6658. switch (src0->type) {
  6659. case GGML_TYPE_F32:
  6660. {
  6661. ggml_compute_forward_sum_f32(params, src0, dst);
  6662. } break;
  6663. case GGML_TYPE_F16:
  6664. {
  6665. ggml_compute_forward_sum_f16(params, src0, dst);
  6666. } break;
  6667. default:
  6668. {
  6669. GGML_ASSERT(false);
  6670. } break;
  6671. }
  6672. }
  6673. // ggml_compute_forward_sum_rows
  6674. static void ggml_compute_forward_sum_rows_f32(
  6675. const struct ggml_compute_params * params,
  6676. const struct ggml_tensor * src0,
  6677. struct ggml_tensor * dst) {
  6678. GGML_ASSERT(params->ith == 0);
  6679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6680. return;
  6681. }
  6682. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6683. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6684. GGML_TENSOR_UNARY_OP_LOCALS
  6685. GGML_ASSERT(ne0 == 1);
  6686. GGML_ASSERT(ne1 == ne01);
  6687. GGML_ASSERT(ne2 == ne02);
  6688. GGML_ASSERT(ne3 == ne03);
  6689. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6690. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6691. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6692. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6693. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6694. float row_sum = 0;
  6695. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6696. dst_row[0] = row_sum;
  6697. }
  6698. }
  6699. }
  6700. }
  6701. static void ggml_compute_forward_sum_rows(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. struct ggml_tensor * dst) {
  6705. switch (src0->type) {
  6706. case GGML_TYPE_F32:
  6707. {
  6708. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6709. } break;
  6710. default:
  6711. {
  6712. GGML_ASSERT(false);
  6713. } break;
  6714. }
  6715. }
  6716. // ggml_compute_forward_mean
  6717. static void ggml_compute_forward_mean_f32(
  6718. const struct ggml_compute_params * params,
  6719. const struct ggml_tensor * src0,
  6720. struct ggml_tensor * dst) {
  6721. assert(params->ith == 0);
  6722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6723. return;
  6724. }
  6725. assert(src0->nb[0] == sizeof(float));
  6726. GGML_TENSOR_UNARY_OP_LOCALS
  6727. assert(ne0 == 1);
  6728. assert(ne1 == ne01);
  6729. assert(ne2 == ne02);
  6730. assert(ne3 == ne03);
  6731. UNUSED(ne0);
  6732. UNUSED(ne1);
  6733. UNUSED(ne2);
  6734. UNUSED(ne3);
  6735. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6736. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6737. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6738. ggml_vec_sum_f32(ne00,
  6739. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6740. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6741. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6742. }
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_mean(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * src0,
  6749. struct ggml_tensor * dst) {
  6750. switch (src0->type) {
  6751. case GGML_TYPE_F32:
  6752. {
  6753. ggml_compute_forward_mean_f32(params, src0, dst);
  6754. } break;
  6755. default:
  6756. {
  6757. GGML_ASSERT(false);
  6758. } break;
  6759. }
  6760. }
  6761. // ggml_compute_forward_argmax
  6762. static void ggml_compute_forward_argmax_f32(
  6763. const struct ggml_compute_params * params,
  6764. const struct ggml_tensor * src0,
  6765. struct ggml_tensor * dst) {
  6766. assert(params->ith == 0);
  6767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6768. return;
  6769. }
  6770. assert(src0->nb[0] == sizeof(float));
  6771. assert(dst->nb[0] == sizeof(float));
  6772. const int64_t ne00 = src0->ne[0];
  6773. const int64_t ne01 = src0->ne[1];
  6774. const size_t nb01 = src0->nb[1];
  6775. const size_t nb0 = dst->nb[0];
  6776. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6777. float * src = (float *) ((char *) src0->data + i1*nb01);
  6778. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6779. int v = 0;
  6780. ggml_vec_argmax_f32(ne00, &v, src);
  6781. dst_[0] = v;
  6782. }
  6783. }
  6784. static void ggml_compute_forward_argmax(
  6785. const struct ggml_compute_params * params,
  6786. const struct ggml_tensor * src0,
  6787. struct ggml_tensor * dst) {
  6788. switch (src0->type) {
  6789. case GGML_TYPE_F32:
  6790. {
  6791. ggml_compute_forward_argmax_f32(params, src0, dst);
  6792. } break;
  6793. default:
  6794. {
  6795. GGML_ASSERT(false);
  6796. } break;
  6797. }
  6798. }
  6799. // ggml_compute_forward_repeat
  6800. static void ggml_compute_forward_repeat_f32(
  6801. const struct ggml_compute_params * params,
  6802. const struct ggml_tensor * src0,
  6803. struct ggml_tensor * dst) {
  6804. GGML_ASSERT(params->ith == 0);
  6805. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6806. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6807. return;
  6808. }
  6809. GGML_TENSOR_UNARY_OP_LOCALS
  6810. // guaranteed to be an integer due to the check in ggml_can_repeat
  6811. const int nr0 = (int)(ne0/ne00);
  6812. const int nr1 = (int)(ne1/ne01);
  6813. const int nr2 = (int)(ne2/ne02);
  6814. const int nr3 = (int)(ne3/ne03);
  6815. // TODO: support for transposed / permuted tensors
  6816. GGML_ASSERT(nb0 == sizeof(float));
  6817. GGML_ASSERT(nb00 == sizeof(float));
  6818. // TODO: maybe this is not optimal?
  6819. for (int i3 = 0; i3 < nr3; i3++) {
  6820. for (int k3 = 0; k3 < ne03; k3++) {
  6821. for (int i2 = 0; i2 < nr2; i2++) {
  6822. for (int k2 = 0; k2 < ne02; k2++) {
  6823. for (int i1 = 0; i1 < nr1; i1++) {
  6824. for (int k1 = 0; k1 < ne01; k1++) {
  6825. for (int i0 = 0; i0 < nr0; i0++) {
  6826. ggml_vec_cpy_f32(ne00,
  6827. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6828. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6829. }
  6830. }
  6831. }
  6832. }
  6833. }
  6834. }
  6835. }
  6836. }
  6837. static void ggml_compute_forward_repeat_f16(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. struct ggml_tensor * dst) {
  6841. GGML_ASSERT(params->ith == 0);
  6842. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. GGML_TENSOR_UNARY_OP_LOCALS
  6847. // guaranteed to be an integer due to the check in ggml_can_repeat
  6848. const int nr0 = (int)(ne0/ne00);
  6849. const int nr1 = (int)(ne1/ne01);
  6850. const int nr2 = (int)(ne2/ne02);
  6851. const int nr3 = (int)(ne3/ne03);
  6852. // TODO: support for transposed / permuted tensors
  6853. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6854. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6855. // TODO: maybe this is not optimal?
  6856. for (int i3 = 0; i3 < nr3; i3++) {
  6857. for (int k3 = 0; k3 < ne03; k3++) {
  6858. for (int i2 = 0; i2 < nr2; i2++) {
  6859. for (int k2 = 0; k2 < ne02; k2++) {
  6860. for (int i1 = 0; i1 < nr1; i1++) {
  6861. for (int k1 = 0; k1 < ne01; k1++) {
  6862. for (int i0 = 0; i0 < nr0; i0++) {
  6863. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6864. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6865. // ggml_vec_cpy_f16(ne00, y, x)
  6866. for (int i = 0; i < ne00; ++i) {
  6867. y[i] = x[i];
  6868. }
  6869. }
  6870. }
  6871. }
  6872. }
  6873. }
  6874. }
  6875. }
  6876. }
  6877. static void ggml_compute_forward_repeat(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. switch (src0->type) {
  6882. case GGML_TYPE_F16:
  6883. {
  6884. ggml_compute_forward_repeat_f16(params, src0, dst);
  6885. } break;
  6886. case GGML_TYPE_F32:
  6887. {
  6888. ggml_compute_forward_repeat_f32(params, src0, dst);
  6889. } break;
  6890. default:
  6891. {
  6892. GGML_ASSERT(false);
  6893. } break;
  6894. }
  6895. }
  6896. // ggml_compute_forward_repeat_back
  6897. static void ggml_compute_forward_repeat_back_f32(
  6898. const struct ggml_compute_params * params,
  6899. const struct ggml_tensor * src0,
  6900. struct ggml_tensor * dst) {
  6901. GGML_ASSERT(params->ith == 0);
  6902. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6904. return;
  6905. }
  6906. GGML_TENSOR_UNARY_OP_LOCALS
  6907. // guaranteed to be an integer due to the check in ggml_can_repeat
  6908. const int nr0 = (int)(ne00/ne0);
  6909. const int nr1 = (int)(ne01/ne1);
  6910. const int nr2 = (int)(ne02/ne2);
  6911. const int nr3 = (int)(ne03/ne3);
  6912. // TODO: support for transposed / permuted tensors
  6913. GGML_ASSERT(nb0 == sizeof(float));
  6914. GGML_ASSERT(nb00 == sizeof(float));
  6915. if (ggml_is_contiguous(dst)) {
  6916. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6917. } else {
  6918. for (int k3 = 0; k3 < ne3; k3++) {
  6919. for (int k2 = 0; k2 < ne2; k2++) {
  6920. for (int k1 = 0; k1 < ne1; k1++) {
  6921. ggml_vec_set_f32(ne0,
  6922. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6923. 0);
  6924. }
  6925. }
  6926. }
  6927. }
  6928. // TODO: maybe this is not optimal?
  6929. for (int i3 = 0; i3 < nr3; i3++) {
  6930. for (int k3 = 0; k3 < ne3; k3++) {
  6931. for (int i2 = 0; i2 < nr2; i2++) {
  6932. for (int k2 = 0; k2 < ne2; k2++) {
  6933. for (int i1 = 0; i1 < nr1; i1++) {
  6934. for (int k1 = 0; k1 < ne1; k1++) {
  6935. for (int i0 = 0; i0 < nr0; i0++) {
  6936. ggml_vec_acc_f32(ne0,
  6937. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6938. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. }
  6946. }
  6947. static void ggml_compute_forward_repeat_back(
  6948. const struct ggml_compute_params * params,
  6949. const struct ggml_tensor * src0,
  6950. struct ggml_tensor * dst) {
  6951. switch (src0->type) {
  6952. case GGML_TYPE_F32:
  6953. {
  6954. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6955. } break;
  6956. default:
  6957. {
  6958. GGML_ASSERT(false);
  6959. } break;
  6960. }
  6961. }
  6962. // ggml_compute_forward_concat
  6963. static void ggml_compute_forward_concat_f32(
  6964. const struct ggml_compute_params * params,
  6965. const struct ggml_tensor * src0,
  6966. const struct ggml_tensor * src1,
  6967. struct ggml_tensor * dst) {
  6968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6969. return;
  6970. }
  6971. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6972. const int ith = params->ith;
  6973. const int nth = params->nth;
  6974. GGML_TENSOR_BINARY_OP_LOCALS
  6975. // TODO: support for transposed / permuted tensors
  6976. GGML_ASSERT(nb0 == sizeof(float));
  6977. GGML_ASSERT(nb00 == sizeof(float));
  6978. GGML_ASSERT(nb10 == sizeof(float));
  6979. for (int i3 = 0; i3 < ne3; i3++) {
  6980. for (int i2 = ith; i2 < ne2; i2 += nth) {
  6981. if (i2 < ne02) { // src0
  6982. for (int i1 = 0; i1 < ne1; i1++) {
  6983. for (int i0 = 0; i0 < ne0; i0++) {
  6984. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6985. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6986. *y = *x;
  6987. }
  6988. }
  6989. } // src1
  6990. else {
  6991. for (int i1 = 0; i1 < ne1; i1++) {
  6992. for (int i0 = 0; i0 < ne0; i0++) {
  6993. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6994. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6995. *y = *x;
  6996. }
  6997. }
  6998. }
  6999. }
  7000. }
  7001. }
  7002. static void ggml_compute_forward_concat(
  7003. const struct ggml_compute_params* params,
  7004. const struct ggml_tensor* src0,
  7005. const struct ggml_tensor* src1,
  7006. struct ggml_tensor* dst) {
  7007. switch (src0->type) {
  7008. case GGML_TYPE_F32:
  7009. {
  7010. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7011. } break;
  7012. default:
  7013. {
  7014. GGML_ASSERT(false);
  7015. } break;
  7016. }
  7017. }
  7018. // ggml_compute_forward_abs
  7019. static void ggml_compute_forward_abs_f32(
  7020. const struct ggml_compute_params * params,
  7021. const struct ggml_tensor * src0,
  7022. struct ggml_tensor * dst) {
  7023. assert(params->ith == 0);
  7024. assert(ggml_are_same_shape(src0, dst));
  7025. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7026. return;
  7027. }
  7028. const int n = ggml_nrows(src0);
  7029. const int nc = src0->ne[0];
  7030. assert(dst->nb[0] == sizeof(float));
  7031. assert(src0->nb[0] == sizeof(float));
  7032. for (int i = 0; i < n; i++) {
  7033. ggml_vec_abs_f32(nc,
  7034. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7035. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7036. }
  7037. }
  7038. static void ggml_compute_forward_abs(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * src0,
  7041. struct ggml_tensor * dst) {
  7042. switch (src0->type) {
  7043. case GGML_TYPE_F32:
  7044. {
  7045. ggml_compute_forward_abs_f32(params, src0, dst);
  7046. } break;
  7047. default:
  7048. {
  7049. GGML_ASSERT(false);
  7050. } break;
  7051. }
  7052. }
  7053. // ggml_compute_forward_sgn
  7054. static void ggml_compute_forward_sgn_f32(
  7055. const struct ggml_compute_params * params,
  7056. const struct ggml_tensor * src0,
  7057. struct ggml_tensor * dst) {
  7058. assert(params->ith == 0);
  7059. assert(ggml_are_same_shape(src0, dst));
  7060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7061. return;
  7062. }
  7063. const int n = ggml_nrows(src0);
  7064. const int nc = src0->ne[0];
  7065. assert(dst->nb[0] == sizeof(float));
  7066. assert(src0->nb[0] == sizeof(float));
  7067. for (int i = 0; i < n; i++) {
  7068. ggml_vec_sgn_f32(nc,
  7069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7070. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7071. }
  7072. }
  7073. static void ggml_compute_forward_sgn(
  7074. const struct ggml_compute_params * params,
  7075. const struct ggml_tensor * src0,
  7076. struct ggml_tensor * dst) {
  7077. switch (src0->type) {
  7078. case GGML_TYPE_F32:
  7079. {
  7080. ggml_compute_forward_sgn_f32(params, src0, dst);
  7081. } break;
  7082. default:
  7083. {
  7084. GGML_ASSERT(false);
  7085. } break;
  7086. }
  7087. }
  7088. // ggml_compute_forward_neg
  7089. static void ggml_compute_forward_neg_f32(
  7090. const struct ggml_compute_params * params,
  7091. const struct ggml_tensor * src0,
  7092. struct ggml_tensor * dst) {
  7093. assert(params->ith == 0);
  7094. assert(ggml_are_same_shape(src0, dst));
  7095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7096. return;
  7097. }
  7098. const int n = ggml_nrows(src0);
  7099. const int nc = src0->ne[0];
  7100. assert(dst->nb[0] == sizeof(float));
  7101. assert(src0->nb[0] == sizeof(float));
  7102. for (int i = 0; i < n; i++) {
  7103. ggml_vec_neg_f32(nc,
  7104. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7105. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7106. }
  7107. }
  7108. static void ggml_compute_forward_neg(
  7109. const struct ggml_compute_params * params,
  7110. const struct ggml_tensor * src0,
  7111. struct ggml_tensor * dst) {
  7112. switch (src0->type) {
  7113. case GGML_TYPE_F32:
  7114. {
  7115. ggml_compute_forward_neg_f32(params, src0, dst);
  7116. } break;
  7117. default:
  7118. {
  7119. GGML_ASSERT(false);
  7120. } break;
  7121. }
  7122. }
  7123. // ggml_compute_forward_step
  7124. static void ggml_compute_forward_step_f32(
  7125. const struct ggml_compute_params * params,
  7126. const struct ggml_tensor * src0,
  7127. struct ggml_tensor * dst) {
  7128. assert(params->ith == 0);
  7129. assert(ggml_are_same_shape(src0, dst));
  7130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7131. return;
  7132. }
  7133. const int n = ggml_nrows(src0);
  7134. const int nc = src0->ne[0];
  7135. assert(dst->nb[0] == sizeof(float));
  7136. assert(src0->nb[0] == sizeof(float));
  7137. for (int i = 0; i < n; i++) {
  7138. ggml_vec_step_f32(nc,
  7139. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7140. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7141. }
  7142. }
  7143. static void ggml_compute_forward_step(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. struct ggml_tensor * dst) {
  7147. switch (src0->type) {
  7148. case GGML_TYPE_F32:
  7149. {
  7150. ggml_compute_forward_step_f32(params, src0, dst);
  7151. } break;
  7152. default:
  7153. {
  7154. GGML_ASSERT(false);
  7155. } break;
  7156. }
  7157. }
  7158. // ggml_compute_forward_tanh
  7159. static void ggml_compute_forward_tanh_f32(
  7160. const struct ggml_compute_params * params,
  7161. const struct ggml_tensor * src0,
  7162. struct ggml_tensor * dst) {
  7163. assert(params->ith == 0);
  7164. assert(ggml_are_same_shape(src0, dst));
  7165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7166. return;
  7167. }
  7168. const int n = ggml_nrows(src0);
  7169. const int nc = src0->ne[0];
  7170. assert(dst->nb[0] == sizeof(float));
  7171. assert(src0->nb[0] == sizeof(float));
  7172. for (int i = 0; i < n; i++) {
  7173. ggml_vec_tanh_f32(nc,
  7174. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7175. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7176. }
  7177. }
  7178. static void ggml_compute_forward_tanh(
  7179. const struct ggml_compute_params * params,
  7180. const struct ggml_tensor * src0,
  7181. struct ggml_tensor * dst) {
  7182. switch (src0->type) {
  7183. case GGML_TYPE_F32:
  7184. {
  7185. ggml_compute_forward_tanh_f32(params, src0, dst);
  7186. } break;
  7187. default:
  7188. {
  7189. GGML_ASSERT(false);
  7190. } break;
  7191. }
  7192. }
  7193. // ggml_compute_forward_elu
  7194. static void ggml_compute_forward_elu_f32(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. struct ggml_tensor * dst) {
  7198. assert(params->ith == 0);
  7199. assert(ggml_are_same_shape(src0, dst));
  7200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7201. return;
  7202. }
  7203. const int n = ggml_nrows(src0);
  7204. const int nc = src0->ne[0];
  7205. assert(dst->nb[0] == sizeof(float));
  7206. assert(src0->nb[0] == sizeof(float));
  7207. for (int i = 0; i < n; i++) {
  7208. ggml_vec_elu_f32(nc,
  7209. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7210. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7211. }
  7212. }
  7213. static void ggml_compute_forward_elu(
  7214. const struct ggml_compute_params * params,
  7215. const struct ggml_tensor * src0,
  7216. struct ggml_tensor * dst) {
  7217. switch (src0->type) {
  7218. case GGML_TYPE_F32:
  7219. {
  7220. ggml_compute_forward_elu_f32(params, src0, dst);
  7221. } break;
  7222. default:
  7223. {
  7224. GGML_ASSERT(false);
  7225. } break;
  7226. }
  7227. }
  7228. // ggml_compute_forward_relu
  7229. static void ggml_compute_forward_relu_f32(
  7230. const struct ggml_compute_params * params,
  7231. const struct ggml_tensor * src0,
  7232. struct ggml_tensor * dst) {
  7233. assert(params->ith == 0);
  7234. assert(ggml_are_same_shape(src0, dst));
  7235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7236. return;
  7237. }
  7238. const int n = ggml_nrows(src0);
  7239. const int nc = src0->ne[0];
  7240. assert(dst->nb[0] == sizeof(float));
  7241. assert(src0->nb[0] == sizeof(float));
  7242. for (int i = 0; i < n; i++) {
  7243. ggml_vec_relu_f32(nc,
  7244. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7245. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7246. }
  7247. }
  7248. static void ggml_compute_forward_relu(
  7249. const struct ggml_compute_params * params,
  7250. const struct ggml_tensor * src0,
  7251. struct ggml_tensor * dst) {
  7252. switch (src0->type) {
  7253. case GGML_TYPE_F32:
  7254. {
  7255. ggml_compute_forward_relu_f32(params, src0, dst);
  7256. } break;
  7257. default:
  7258. {
  7259. GGML_ASSERT(false);
  7260. } break;
  7261. }
  7262. }
  7263. // ggml_compute_forward_gelu
  7264. static void ggml_compute_forward_gelu_f32(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. struct ggml_tensor * dst) {
  7268. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7269. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7270. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7272. return;
  7273. }
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nc = src0->ne[0];
  7277. const int nr = ggml_nrows(src0);
  7278. // rows per thread
  7279. const int dr = (nr + nth - 1)/nth;
  7280. // row range for this thread
  7281. const int ir0 = dr*ith;
  7282. const int ir1 = MIN(ir0 + dr, nr);
  7283. for (int i1 = ir0; i1 < ir1; i1++) {
  7284. ggml_vec_gelu_f32(nc,
  7285. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7286. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7287. #ifndef NDEBUG
  7288. for (int k = 0; k < nc; k++) {
  7289. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7290. UNUSED(x);
  7291. assert(!isnan(x));
  7292. assert(!isinf(x));
  7293. }
  7294. #endif
  7295. }
  7296. }
  7297. static void ggml_compute_forward_gelu(
  7298. const struct ggml_compute_params * params,
  7299. const struct ggml_tensor * src0,
  7300. struct ggml_tensor * dst) {
  7301. switch (src0->type) {
  7302. case GGML_TYPE_F32:
  7303. {
  7304. ggml_compute_forward_gelu_f32(params, src0, dst);
  7305. } break;
  7306. default:
  7307. {
  7308. GGML_ASSERT(false);
  7309. } break;
  7310. }
  7311. }
  7312. // ggml_compute_forward_gelu_quick
  7313. static void ggml_compute_forward_gelu_quick_f32(
  7314. const struct ggml_compute_params * params,
  7315. const struct ggml_tensor * src0,
  7316. struct ggml_tensor * dst) {
  7317. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7318. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7319. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7321. return;
  7322. }
  7323. const int ith = params->ith;
  7324. const int nth = params->nth;
  7325. const int nc = src0->ne[0];
  7326. const int nr = ggml_nrows(src0);
  7327. // rows per thread
  7328. const int dr = (nr + nth - 1)/nth;
  7329. // row range for this thread
  7330. const int ir0 = dr*ith;
  7331. const int ir1 = MIN(ir0 + dr, nr);
  7332. for (int i1 = ir0; i1 < ir1; i1++) {
  7333. ggml_vec_gelu_quick_f32(nc,
  7334. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7335. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7336. #ifndef NDEBUG
  7337. for (int k = 0; k < nc; k++) {
  7338. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7339. UNUSED(x);
  7340. assert(!isnan(x));
  7341. assert(!isinf(x));
  7342. }
  7343. #endif
  7344. }
  7345. }
  7346. static void ggml_compute_forward_gelu_quick(
  7347. const struct ggml_compute_params * params,
  7348. const struct ggml_tensor * src0,
  7349. struct ggml_tensor * dst) {
  7350. switch (src0->type) {
  7351. case GGML_TYPE_F32:
  7352. {
  7353. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7354. } break;
  7355. default:
  7356. {
  7357. GGML_ASSERT(false);
  7358. } break;
  7359. }
  7360. }
  7361. // ggml_compute_forward_silu
  7362. static void ggml_compute_forward_silu_f32(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. struct ggml_tensor * dst) {
  7366. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7367. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7368. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. const int ith = params->ith;
  7373. const int nth = params->nth;
  7374. const int nc = src0->ne[0];
  7375. const int nr = ggml_nrows(src0);
  7376. // rows per thread
  7377. const int dr = (nr + nth - 1)/nth;
  7378. // row range for this thread
  7379. const int ir0 = dr*ith;
  7380. const int ir1 = MIN(ir0 + dr, nr);
  7381. for (int i1 = ir0; i1 < ir1; i1++) {
  7382. ggml_vec_silu_f32(nc,
  7383. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7384. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7385. #ifndef NDEBUG
  7386. for (int k = 0; k < nc; k++) {
  7387. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7388. UNUSED(x);
  7389. assert(!isnan(x));
  7390. assert(!isinf(x));
  7391. }
  7392. #endif
  7393. }
  7394. }
  7395. static void ggml_compute_forward_silu(
  7396. const struct ggml_compute_params * params,
  7397. const struct ggml_tensor * src0,
  7398. struct ggml_tensor * dst) {
  7399. switch (src0->type) {
  7400. case GGML_TYPE_F32:
  7401. {
  7402. ggml_compute_forward_silu_f32(params, src0, dst);
  7403. } break;
  7404. default:
  7405. {
  7406. GGML_ASSERT(false);
  7407. } break;
  7408. }
  7409. }
  7410. // ggml_compute_forward_leaky_relu
  7411. static void ggml_compute_forward_leaky_relu_f32(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. struct ggml_tensor * dst) {
  7415. assert(params->ith == 0);
  7416. assert(ggml_are_same_shape(src0, dst));
  7417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7418. return;
  7419. }
  7420. const int n = ggml_nrows(src0);
  7421. const int nc = src0->ne[0];
  7422. float negative_slope;
  7423. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7424. assert(dst->nb[0] == sizeof(float));
  7425. assert(src0->nb[0] == sizeof(float));
  7426. for (int i = 0; i < n; i++) {
  7427. ggml_vec_leaky_relu_f32(nc,
  7428. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7429. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7430. }
  7431. }
  7432. static void ggml_compute_forward_leaky_relu(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. struct ggml_tensor * dst) {
  7436. switch (src0->type) {
  7437. case GGML_TYPE_F32:
  7438. {
  7439. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7440. } break;
  7441. default:
  7442. {
  7443. GGML_ASSERT(false);
  7444. } break;
  7445. }
  7446. }
  7447. // ggml_compute_forward_silu_back
  7448. static void ggml_compute_forward_silu_back_f32(
  7449. const struct ggml_compute_params * params,
  7450. const struct ggml_tensor * src0,
  7451. const struct ggml_tensor * grad,
  7452. struct ggml_tensor * dst) {
  7453. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7454. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7455. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7456. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7457. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7459. return;
  7460. }
  7461. const int ith = params->ith;
  7462. const int nth = params->nth;
  7463. const int nc = src0->ne[0];
  7464. const int nr = ggml_nrows(src0);
  7465. // rows per thread
  7466. const int dr = (nr + nth - 1)/nth;
  7467. // row range for this thread
  7468. const int ir0 = dr*ith;
  7469. const int ir1 = MIN(ir0 + dr, nr);
  7470. for (int i1 = ir0; i1 < ir1; i1++) {
  7471. ggml_vec_silu_backward_f32(nc,
  7472. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7473. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7474. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7475. #ifndef NDEBUG
  7476. for (int k = 0; k < nc; k++) {
  7477. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7478. UNUSED(x);
  7479. assert(!isnan(x));
  7480. assert(!isinf(x));
  7481. }
  7482. #endif
  7483. }
  7484. }
  7485. static void ggml_compute_forward_silu_back(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. const struct ggml_tensor * grad,
  7489. struct ggml_tensor * dst) {
  7490. switch (src0->type) {
  7491. case GGML_TYPE_F32:
  7492. {
  7493. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7494. } break;
  7495. default:
  7496. {
  7497. GGML_ASSERT(false);
  7498. } break;
  7499. }
  7500. }
  7501. // ggml_compute_forward_norm
  7502. static void ggml_compute_forward_norm_f32(
  7503. const struct ggml_compute_params * params,
  7504. const struct ggml_tensor * src0,
  7505. struct ggml_tensor * dst) {
  7506. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7508. return;
  7509. }
  7510. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7511. const int ith = params->ith;
  7512. const int nth = params->nth;
  7513. GGML_TENSOR_UNARY_OP_LOCALS
  7514. float eps;
  7515. memcpy(&eps, dst->op_params, sizeof(float));
  7516. GGML_ASSERT(eps > 0.0f);
  7517. // TODO: optimize
  7518. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7520. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7521. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7522. ggml_float sum = 0.0;
  7523. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7524. sum += (ggml_float)x[i00];
  7525. }
  7526. float mean = sum/ne00;
  7527. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7528. ggml_float sum2 = 0.0;
  7529. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7530. float v = x[i00] - mean;
  7531. y[i00] = v;
  7532. sum2 += (ggml_float)(v*v);
  7533. }
  7534. float variance = sum2/ne00;
  7535. const float scale = 1.0f/sqrtf(variance + eps);
  7536. ggml_vec_scale_f32(ne00, y, scale);
  7537. }
  7538. }
  7539. }
  7540. }
  7541. static void ggml_compute_forward_norm(
  7542. const struct ggml_compute_params * params,
  7543. const struct ggml_tensor * src0,
  7544. struct ggml_tensor * dst) {
  7545. switch (src0->type) {
  7546. case GGML_TYPE_F32:
  7547. {
  7548. ggml_compute_forward_norm_f32(params, src0, dst);
  7549. } break;
  7550. default:
  7551. {
  7552. GGML_ASSERT(false);
  7553. } break;
  7554. }
  7555. }
  7556. // ggml_compute_forward_group_rms_norm
  7557. static void ggml_compute_forward_rms_norm_f32(
  7558. const struct ggml_compute_params * params,
  7559. const struct ggml_tensor * src0,
  7560. struct ggml_tensor * dst) {
  7561. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7563. return;
  7564. }
  7565. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7566. const int ith = params->ith;
  7567. const int nth = params->nth;
  7568. GGML_TENSOR_UNARY_OP_LOCALS
  7569. float eps;
  7570. memcpy(&eps, dst->op_params, sizeof(float));
  7571. GGML_ASSERT(eps > 0.0f);
  7572. // TODO: optimize
  7573. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7574. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7575. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7576. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7577. ggml_float sum = 0.0;
  7578. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7579. sum += (ggml_float)(x[i00] * x[i00]);
  7580. }
  7581. const float mean = sum/ne00;
  7582. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7583. memcpy(y, x, ne00 * sizeof(float));
  7584. // for (int i00 = 0; i00 < ne00; i00++) {
  7585. // y[i00] = x[i00];
  7586. // }
  7587. const float scale = 1.0f/sqrtf(mean + eps);
  7588. ggml_vec_scale_f32(ne00, y, scale);
  7589. }
  7590. }
  7591. }
  7592. }
  7593. static void ggml_compute_forward_rms_norm(
  7594. const struct ggml_compute_params * params,
  7595. const struct ggml_tensor * src0,
  7596. struct ggml_tensor * dst) {
  7597. switch (src0->type) {
  7598. case GGML_TYPE_F32:
  7599. {
  7600. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7601. } break;
  7602. default:
  7603. {
  7604. GGML_ASSERT(false);
  7605. } break;
  7606. }
  7607. }
  7608. static void ggml_compute_forward_rms_norm_back_f32(
  7609. const struct ggml_compute_params * params,
  7610. const struct ggml_tensor * src0,
  7611. const struct ggml_tensor * src1,
  7612. struct ggml_tensor * dst) {
  7613. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7615. return;
  7616. }
  7617. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7618. const int ith = params->ith;
  7619. const int nth = params->nth;
  7620. GGML_TENSOR_BINARY_OP_LOCALS
  7621. float eps;
  7622. memcpy(&eps, dst->op_params, sizeof(float));
  7623. // TODO: optimize
  7624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7626. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7627. // src1 is same shape as src0 => same indices
  7628. const int64_t i11 = i01;
  7629. const int64_t i12 = i02;
  7630. const int64_t i13 = i03;
  7631. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7632. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7633. ggml_float sum_xx = 0.0;
  7634. ggml_float sum_xdz = 0.0;
  7635. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7636. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7637. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7638. }
  7639. //const float mean = (float)(sum_xx)/ne00;
  7640. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7641. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7642. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7643. // we could cache rms from forward pass to improve performance.
  7644. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7645. //const float rms = sqrtf(mean_eps);
  7646. const float rrms = 1.0f / sqrtf(mean_eps);
  7647. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7648. {
  7649. // z = rms_norm(x)
  7650. //
  7651. // rms_norm(src0) =
  7652. // scale(
  7653. // src0,
  7654. // div(
  7655. // 1,
  7656. // sqrt(
  7657. // add(
  7658. // scale(
  7659. // sum(
  7660. // sqr(
  7661. // src0)),
  7662. // (1.0/N)),
  7663. // eps))));
  7664. // postorder:
  7665. // ## op args grad
  7666. // 00 param src0 grad[#00]
  7667. // 01 const 1
  7668. // 02 sqr (#00) grad[#02]
  7669. // 03 sum (#02) grad[#03]
  7670. // 04 const 1/N
  7671. // 05 scale (#03, #04) grad[#05]
  7672. // 06 const eps
  7673. // 07 add (#05, #06) grad[#07]
  7674. // 08 sqrt (#07) grad[#08]
  7675. // 09 div (#01,#08) grad[#09]
  7676. // 10 scale (#00,#09) grad[#10]
  7677. //
  7678. // backward pass, given grad[#10]
  7679. // #10: scale
  7680. // grad[#00] += scale(grad[#10],#09)
  7681. // grad[#09] += sum(mul(grad[#10],#00))
  7682. // #09: div
  7683. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7684. // #08: sqrt
  7685. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7686. // #07: add
  7687. // grad[#05] += grad[#07]
  7688. // #05: scale
  7689. // grad[#03] += scale(grad[#05],#04)
  7690. // #03: sum
  7691. // grad[#02] += repeat(grad[#03], #02)
  7692. // #02:
  7693. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7694. //
  7695. // substitute and simplify:
  7696. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7697. // grad[#02] = repeat(grad[#03], #02)
  7698. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7699. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7700. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7701. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7702. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7703. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7704. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7705. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7706. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7707. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7708. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7709. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7710. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7711. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7712. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7713. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7714. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7715. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7716. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7717. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7718. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7719. // a = b*c + d*e
  7720. // a = b*c*f/f + d*e*f/f
  7721. // a = (b*c*f + d*e*f)*(1/f)
  7722. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7723. // a = (b + d*e/c)*c
  7724. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7725. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7726. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7727. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7728. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7729. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7730. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7731. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7732. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7733. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7734. }
  7735. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7736. // post-order:
  7737. // dx := x
  7738. // dx := scale(dx,-mean_xdz/mean_eps)
  7739. // dx := add(dx, dz)
  7740. // dx := scale(dx, rrms)
  7741. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7742. ggml_vec_cpy_f32 (ne00, dx, x);
  7743. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7744. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7745. ggml_vec_acc_f32 (ne00, dx, dz);
  7746. ggml_vec_scale_f32(ne00, dx, rrms);
  7747. }
  7748. }
  7749. }
  7750. }
  7751. static void ggml_compute_forward_rms_norm_back(
  7752. const struct ggml_compute_params * params,
  7753. const struct ggml_tensor * src0,
  7754. const struct ggml_tensor * src1,
  7755. struct ggml_tensor * dst) {
  7756. switch (src0->type) {
  7757. case GGML_TYPE_F32:
  7758. {
  7759. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7760. } break;
  7761. default:
  7762. {
  7763. GGML_ASSERT(false);
  7764. } break;
  7765. }
  7766. }
  7767. // ggml_compute_forward_group_norm
  7768. static void ggml_compute_forward_group_norm_f32(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7774. return;
  7775. }
  7776. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7777. const int ith = params->ith;
  7778. const int nth = params->nth;
  7779. GGML_TENSOR_UNARY_OP_LOCALS
  7780. const float eps = 1e-6f; // TODO: make this a parameter
  7781. // TODO: optimize
  7782. int n_channels = src0->ne[2];
  7783. int n_groups = dst->op_params[0];
  7784. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7785. for (int i = ith; i < n_groups; i+=nth) {
  7786. int start = i * n_channels_per_group;
  7787. int end = start + n_channels_per_group;
  7788. if (end > n_channels) {
  7789. end = n_channels;
  7790. }
  7791. int step = end - start;
  7792. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7793. ggml_float sum = 0.0;
  7794. for (int64_t i02 = start; i02 < end; i02++) {
  7795. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7796. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7797. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7798. sum += (ggml_float)x[i00];
  7799. }
  7800. }
  7801. }
  7802. float mean = sum / (ne00 * ne01 * step);
  7803. ggml_float sum2 = 0.0;
  7804. for (int64_t i02 = start; i02 < end; i02++) {
  7805. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7806. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7807. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7808. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7809. float v = x[i00] - mean;
  7810. y[i00] = v;
  7811. sum2 += (ggml_float)(v * v);
  7812. }
  7813. }
  7814. }
  7815. float variance = sum2 / (ne00 * ne01 * step);
  7816. const float scale = 1.0f / sqrtf(variance + eps);
  7817. for (int64_t i02 = start; i02 < end; i02++) {
  7818. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7819. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7820. ggml_vec_scale_f32(ne00, y, scale);
  7821. }
  7822. }
  7823. }
  7824. }
  7825. }
  7826. static void ggml_compute_forward_group_norm(
  7827. const struct ggml_compute_params * params,
  7828. const struct ggml_tensor * src0,
  7829. struct ggml_tensor * dst) {
  7830. switch (src0->type) {
  7831. case GGML_TYPE_F32:
  7832. {
  7833. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7834. } break;
  7835. default:
  7836. {
  7837. GGML_ASSERT(false);
  7838. } break;
  7839. }
  7840. }
  7841. // ggml_compute_forward_mul_mat
  7842. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7843. // helper function to determine if it is better to use BLAS or not
  7844. // for large matrices, BLAS is faster
  7845. static bool ggml_compute_forward_mul_mat_use_blas(
  7846. const struct ggml_tensor * src0,
  7847. const struct ggml_tensor * src1,
  7848. struct ggml_tensor * dst) {
  7849. //const int64_t ne00 = src0->ne[0];
  7850. //const int64_t ne01 = src0->ne[1];
  7851. const int64_t ne10 = src1->ne[0];
  7852. const int64_t ne0 = dst->ne[0];
  7853. const int64_t ne1 = dst->ne[1];
  7854. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7855. // all the experts for each batch element and the processing would become incredibly slow
  7856. // TODO: find the optimal values for these
  7857. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7858. ggml_is_contiguous(src0) &&
  7859. ggml_is_contiguous(src1) &&
  7860. //src0->type == GGML_TYPE_F32 &&
  7861. src1->type == GGML_TYPE_F32 &&
  7862. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7863. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7864. return true;
  7865. }
  7866. return false;
  7867. }
  7868. #endif
  7869. static void ggml_compute_forward_mul_mat(
  7870. const struct ggml_compute_params * params,
  7871. const struct ggml_tensor * src0,
  7872. const struct ggml_tensor * src1,
  7873. struct ggml_tensor * dst) {
  7874. int64_t t0 = ggml_perf_time_us();
  7875. UNUSED(t0);
  7876. GGML_TENSOR_BINARY_OP_LOCALS
  7877. const int ith = params->ith;
  7878. const int nth = params->nth;
  7879. const enum ggml_type type = src0->type;
  7880. const bool src1_cont = ggml_is_contiguous(src1);
  7881. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7882. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7883. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7884. GGML_ASSERT(ne0 == ne01);
  7885. GGML_ASSERT(ne1 == ne11);
  7886. GGML_ASSERT(ne2 == ne12);
  7887. GGML_ASSERT(ne3 == ne13);
  7888. // we don't support permuted src0 or src1
  7889. GGML_ASSERT(nb00 == ggml_type_size(type));
  7890. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7891. // dst cannot be transposed or permuted
  7892. GGML_ASSERT(nb0 == sizeof(float));
  7893. GGML_ASSERT(nb0 <= nb1);
  7894. GGML_ASSERT(nb1 <= nb2);
  7895. GGML_ASSERT(nb2 <= nb3);
  7896. // broadcast factors
  7897. const int64_t r2 = ne12/ne02;
  7898. const int64_t r3 = ne13/ne03;
  7899. // nb01 >= nb00 - src0 is not transposed
  7900. // compute by src0 rows
  7901. #if defined(GGML_USE_CLBLAST)
  7902. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7903. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7904. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7905. }
  7906. return;
  7907. }
  7908. #endif
  7909. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7910. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7911. if (params->ith != 0) {
  7912. return;
  7913. }
  7914. if (params->type == GGML_TASK_INIT) {
  7915. return;
  7916. }
  7917. if (params->type == GGML_TASK_FINALIZE) {
  7918. return;
  7919. }
  7920. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7921. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7922. // broadcast src0 into src1 across 2nd,3rd dimension
  7923. const int64_t i03 = i13/r3;
  7924. const int64_t i02 = i12/r2;
  7925. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7926. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7927. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7928. if (type != GGML_TYPE_F32) {
  7929. float * const wdata = params->wdata;
  7930. ggml_to_float_t const to_float = type_traits[type].to_float;
  7931. size_t id = 0;
  7932. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7933. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7934. id += ne00;
  7935. }
  7936. assert(id*sizeof(float) <= params->wsize);
  7937. x = wdata;
  7938. }
  7939. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7940. ne1, ne01, ne10,
  7941. 1.0f, y, ne10,
  7942. x, ne00,
  7943. 0.0f, d, ne01);
  7944. }
  7945. }
  7946. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7947. return;
  7948. }
  7949. #endif
  7950. if (params->type == GGML_TASK_INIT) {
  7951. if (src1->type != vec_dot_type) {
  7952. char * wdata = params->wdata;
  7953. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  7954. assert(params->wsize >= ne11*ne12*ne13*row_size);
  7955. assert(src1->type == GGML_TYPE_F32);
  7956. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7957. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7958. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7959. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7960. wdata += row_size;
  7961. }
  7962. }
  7963. }
  7964. }
  7965. return;
  7966. }
  7967. if (params->type == GGML_TASK_FINALIZE) {
  7968. return;
  7969. }
  7970. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7971. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  7972. const int64_t nr0 = ne01; // src0 rows
  7973. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  7974. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7975. // distribute the thread work across the inner or outer loop based on which one is larger
  7976. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7977. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7978. const int64_t ith0 = ith % nth0;
  7979. const int64_t ith1 = ith / nth0;
  7980. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7981. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7982. const int64_t ir010 = dr0*ith0;
  7983. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7984. const int64_t ir110 = dr1*ith1;
  7985. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7986. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7987. // threads with no work simply yield (not sure if it helps)
  7988. if (ir010 >= ir011 || ir110 >= ir111) {
  7989. sched_yield();
  7990. return;
  7991. }
  7992. assert(ne12 % ne02 == 0);
  7993. assert(ne13 % ne03 == 0);
  7994. // block-tiling attempt
  7995. const int64_t blck_0 = 16;
  7996. const int64_t blck_1 = 16;
  7997. // attempt to reduce false-sharing (does not seem to make a difference)
  7998. float tmp[16];
  7999. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8000. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8001. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8002. const int64_t i13 = (ir1/(ne12*ne1));
  8003. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8004. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8005. // broadcast src0 into src1
  8006. const int64_t i03 = i13/r3;
  8007. const int64_t i02 = i12/r2;
  8008. const int64_t i1 = i11;
  8009. const int64_t i2 = i12;
  8010. const int64_t i3 = i13;
  8011. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8012. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8013. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8014. // the original src1 data pointer, so we should index using the indices directly
  8015. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8016. const char * src1_col = (const char *) wdata +
  8017. (src1_cont || src1->type != vec_dot_type
  8018. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8019. : (i11*nb11 + i12*nb12 + i13*nb13));
  8020. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8021. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8022. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8023. //}
  8024. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8025. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8026. }
  8027. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8028. }
  8029. }
  8030. }
  8031. }
  8032. // ggml_compute_forward_mul_mat_id
  8033. static void ggml_compute_forward_mul_mat_id(
  8034. const struct ggml_compute_params * params,
  8035. const struct ggml_tensor * ids,
  8036. const struct ggml_tensor * src1,
  8037. struct ggml_tensor * dst) {
  8038. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8039. GGML_TENSOR_BINARY_OP_LOCALS
  8040. const int ith = params->ith;
  8041. const int nth = params->nth;
  8042. const enum ggml_type type = src0->type;
  8043. const bool src1_cont = ggml_is_contiguous(src1);
  8044. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8045. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8046. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8047. GGML_ASSERT(ne0 == ne01);
  8048. GGML_ASSERT(ne1 == ne11);
  8049. GGML_ASSERT(ne2 == ne12);
  8050. GGML_ASSERT(ne3 == ne13);
  8051. // we don't support permuted src0 or src1
  8052. GGML_ASSERT(nb00 == ggml_type_size(type));
  8053. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8054. // dst cannot be transposed or permuted
  8055. GGML_ASSERT(nb0 == sizeof(float));
  8056. GGML_ASSERT(nb0 <= nb1);
  8057. GGML_ASSERT(nb1 <= nb2);
  8058. GGML_ASSERT(nb2 <= nb3);
  8059. // broadcast factors
  8060. const int64_t r2 = ne12/ne02;
  8061. const int64_t r3 = ne13/ne03;
  8062. // row groups
  8063. const int id = ggml_get_op_params_i32(dst, 0);
  8064. const int n_as = ggml_get_op_params_i32(dst, 1);
  8065. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8066. (char *) params->wdata :
  8067. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8068. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8069. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8070. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8071. if (params->type == GGML_TASK_INIT) {
  8072. char * wdata = params->wdata;
  8073. if (src1->type != vec_dot_type) {
  8074. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8075. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8076. assert(src1->type == GGML_TYPE_F32);
  8077. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8078. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8079. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8080. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8081. wdata += row_size;
  8082. }
  8083. }
  8084. }
  8085. }
  8086. // initialize matrix_row_counts
  8087. GGML_ASSERT(wdata == wdata_src1_end);
  8088. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8089. // group rows by src0 matrix
  8090. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8091. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8092. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8093. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8094. matrix_row_counts[row_id] += 1;
  8095. }
  8096. return;
  8097. }
  8098. if (params->type == GGML_TASK_FINALIZE) {
  8099. return;
  8100. }
  8101. // compute each matrix multiplication in sequence
  8102. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8103. const int64_t cne1 = matrix_row_counts[cur_a];
  8104. if (cne1 == 0) {
  8105. continue;
  8106. }
  8107. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8108. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8109. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8110. const int64_t nr0 = ne01; // src0 rows
  8111. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8112. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8113. // distribute the thread work across the inner or outer loop based on which one is larger
  8114. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8115. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8116. const int64_t ith0 = ith % nth0;
  8117. const int64_t ith1 = ith / nth0;
  8118. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8119. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8120. const int64_t ir010 = dr0*ith0;
  8121. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8122. const int64_t ir110 = dr1*ith1;
  8123. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8124. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8125. // threads with no work simply yield (not sure if it helps)
  8126. if (ir010 >= ir011 || ir110 >= ir111) {
  8127. sched_yield();
  8128. continue;
  8129. }
  8130. assert(ne12 % ne02 == 0);
  8131. assert(ne13 % ne03 == 0);
  8132. // block-tiling attempt
  8133. const int64_t blck_0 = 16;
  8134. const int64_t blck_1 = 16;
  8135. // attempt to reduce false-sharing (does not seem to make a difference)
  8136. float tmp[16];
  8137. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8138. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8139. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8140. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8141. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8142. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8143. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8144. // broadcast src0 into src1
  8145. const int64_t i03 = i13/r3;
  8146. const int64_t i02 = i12/r2;
  8147. const int64_t i1 = i11;
  8148. const int64_t i2 = i12;
  8149. const int64_t i3 = i13;
  8150. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8151. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8152. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8153. // the original src1 data pointer, so we should index using the indices directly
  8154. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8155. const char * src1_col = (const char *) wdata +
  8156. (src1_cont || src1->type != vec_dot_type
  8157. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8158. : (i11*nb11 + i12*nb12 + i13*nb13));
  8159. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8160. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8161. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8162. //}
  8163. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8164. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8165. }
  8166. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8167. }
  8168. }
  8169. }
  8170. }
  8171. #undef MMID_MATRIX_ROW
  8172. }
  8173. // ggml_compute_forward_out_prod
  8174. static void ggml_compute_forward_out_prod_f32(
  8175. const struct ggml_compute_params * params,
  8176. const struct ggml_tensor * src0,
  8177. const struct ggml_tensor * src1,
  8178. struct ggml_tensor * dst) {
  8179. // int64_t t0 = ggml_perf_time_us();
  8180. // UNUSED(t0);
  8181. GGML_TENSOR_BINARY_OP_LOCALS
  8182. const int ith = params->ith;
  8183. const int nth = params->nth;
  8184. GGML_ASSERT(ne0 == ne00);
  8185. GGML_ASSERT(ne1 == ne10);
  8186. GGML_ASSERT(ne2 == ne02);
  8187. GGML_ASSERT(ne02 == ne12);
  8188. GGML_ASSERT(ne3 == ne13);
  8189. GGML_ASSERT(ne03 == ne13);
  8190. // we don't support permuted src0 or src1
  8191. GGML_ASSERT(nb00 == sizeof(float));
  8192. // dst cannot be transposed or permuted
  8193. GGML_ASSERT(nb0 == sizeof(float));
  8194. // GGML_ASSERT(nb0 <= nb1);
  8195. // GGML_ASSERT(nb1 <= nb2);
  8196. // GGML_ASSERT(nb2 <= nb3);
  8197. // nb01 >= nb00 - src0 is not transposed
  8198. // compute by src0 rows
  8199. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8200. // TODO: #if defined(GGML_USE_CLBLAST)
  8201. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8202. bool use_blas = ggml_is_matrix(src0) &&
  8203. ggml_is_matrix(src1) &&
  8204. ggml_is_contiguous(src0) &&
  8205. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8206. #endif
  8207. if (params->type == GGML_TASK_INIT) {
  8208. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8209. if (use_blas) {
  8210. return;
  8211. }
  8212. #endif
  8213. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8214. return;
  8215. }
  8216. if (params->type == GGML_TASK_FINALIZE) {
  8217. return;
  8218. }
  8219. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8220. if (use_blas) {
  8221. if (params->ith != 0) { // All threads other than the first do no work.
  8222. return;
  8223. }
  8224. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8225. // src0: (k,n)
  8226. // src1: (k,m)
  8227. // dst: (m,n)
  8228. //
  8229. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8230. // Also expressed as (major,minor)
  8231. // a: (m,k): so src1 transposed
  8232. // b: (k,n): so src0
  8233. // c: (m,n)
  8234. //
  8235. // However, if ggml_is_transposed(src1) is true, then
  8236. // src1->data already contains a transposed version, so sgemm mustn't
  8237. // transpose it further.
  8238. int n = src0->ne[0];
  8239. int k = src0->ne[1];
  8240. int m = src1->ne[0];
  8241. int transposeA, lda;
  8242. if (!ggml_is_transposed(src1)) {
  8243. transposeA = CblasTrans;
  8244. lda = m;
  8245. } else {
  8246. transposeA = CblasNoTrans;
  8247. lda = k;
  8248. }
  8249. float * a = (float *) ((char *) src1->data);
  8250. float * b = (float *) ((char *) src0->data);
  8251. float * c = (float *) ((char *) dst->data);
  8252. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8253. return;
  8254. }
  8255. #endif
  8256. // dst[:,:,:,:] = 0
  8257. // for i2,i3:
  8258. // for i1:
  8259. // for i01:
  8260. // for i0:
  8261. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8262. // parallelize by last three dimensions
  8263. // total rows in dst
  8264. const int64_t nr = ne1*ne2*ne3;
  8265. // rows per thread
  8266. const int64_t dr = (nr + nth - 1)/nth;
  8267. // row range for this thread
  8268. const int64_t ir0 = dr*ith;
  8269. const int64_t ir1 = MIN(ir0 + dr, nr);
  8270. // block-tiling attempt
  8271. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8272. const int64_t blck_1 = 16;
  8273. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8274. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8275. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8276. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8277. for (int64_t ir = bir; ir < bir1; ++ir) {
  8278. // dst indices
  8279. const int64_t i3 = ir/(ne2*ne1);
  8280. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8281. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8282. const int64_t i02 = i2;
  8283. const int64_t i03 = i3;
  8284. //const int64_t i10 = i1;
  8285. const int64_t i12 = i2;
  8286. const int64_t i13 = i3;
  8287. #if GGML_VEC_MAD_UNROLL > 2
  8288. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8289. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8290. const int64_t i11 = i01;
  8291. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8292. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8293. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8294. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8295. }
  8296. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8297. const int64_t i11 = i01;
  8298. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8299. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8300. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8301. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8302. }
  8303. #else
  8304. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8305. const int64_t i11 = i01;
  8306. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8307. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8308. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8309. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8310. }
  8311. #endif
  8312. }
  8313. }
  8314. }
  8315. //int64_t t1 = ggml_perf_time_us();
  8316. //static int64_t acc = 0;
  8317. //acc += t1 - t0;
  8318. //if (t1 - t0 > 10) {
  8319. // printf("\n");
  8320. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8321. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8322. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8323. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8324. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8325. //}
  8326. }
  8327. static void ggml_compute_forward_out_prod_q_f32(
  8328. const struct ggml_compute_params * params,
  8329. const struct ggml_tensor * src0,
  8330. const struct ggml_tensor * src1,
  8331. struct ggml_tensor * dst) {
  8332. // int64_t t0 = ggml_perf_time_us();
  8333. // UNUSED(t0);
  8334. GGML_TENSOR_BINARY_OP_LOCALS;
  8335. const int ith = params->ith;
  8336. const int nth = params->nth;
  8337. const enum ggml_type type = src0->type;
  8338. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8339. GGML_ASSERT(ne02 == ne12);
  8340. GGML_ASSERT(ne03 == ne13);
  8341. GGML_ASSERT(ne2 == ne12);
  8342. GGML_ASSERT(ne3 == ne13);
  8343. // we don't support permuted src0 dim0
  8344. GGML_ASSERT(nb00 == ggml_type_size(type));
  8345. // dst dim0 cannot be transposed or permuted
  8346. GGML_ASSERT(nb0 == sizeof(float));
  8347. // GGML_ASSERT(nb0 <= nb1);
  8348. // GGML_ASSERT(nb1 <= nb2);
  8349. // GGML_ASSERT(nb2 <= nb3);
  8350. GGML_ASSERT(ne0 == ne00);
  8351. GGML_ASSERT(ne1 == ne10);
  8352. GGML_ASSERT(ne2 == ne02);
  8353. GGML_ASSERT(ne3 == ne03);
  8354. // nb01 >= nb00 - src0 is not transposed
  8355. // compute by src0 rows
  8356. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8357. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8358. if (params->type == GGML_TASK_INIT) {
  8359. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8360. return;
  8361. }
  8362. if (params->type == GGML_TASK_FINALIZE) {
  8363. return;
  8364. }
  8365. // parallelize by last three dimensions
  8366. // total rows in dst
  8367. const int64_t nr = ne1*ne2*ne3;
  8368. // rows per thread
  8369. const int64_t dr = (nr + nth - 1)/nth;
  8370. // row range for this thread
  8371. const int64_t ir0 = dr*ith;
  8372. const int64_t ir1 = MIN(ir0 + dr, nr);
  8373. // dst[:,:,:,:] = 0
  8374. // for i2,i3:
  8375. // for i1:
  8376. // for i01:
  8377. // for i0:
  8378. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8379. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8380. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8381. // dst indices
  8382. const int64_t i3 = ir/(ne2*ne1);
  8383. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8384. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8385. const int64_t i02 = i2;
  8386. const int64_t i03 = i3;
  8387. //const int64_t i10 = i1;
  8388. const int64_t i12 = i2;
  8389. const int64_t i13 = i3;
  8390. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8391. const int64_t i11 = i01;
  8392. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8393. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8394. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8395. dequantize_row_q(s0, wdata, ne0);
  8396. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8397. }
  8398. }
  8399. //int64_t t1 = ggml_perf_time_us();
  8400. //static int64_t acc = 0;
  8401. //acc += t1 - t0;
  8402. //if (t1 - t0 > 10) {
  8403. // printf("\n");
  8404. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8405. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8406. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8407. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8408. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8409. //}
  8410. }
  8411. static void ggml_compute_forward_out_prod(
  8412. const struct ggml_compute_params * params,
  8413. const struct ggml_tensor * src0,
  8414. const struct ggml_tensor * src1,
  8415. struct ggml_tensor * dst) {
  8416. switch (src0->type) {
  8417. case GGML_TYPE_Q4_0:
  8418. case GGML_TYPE_Q4_1:
  8419. case GGML_TYPE_Q5_0:
  8420. case GGML_TYPE_Q5_1:
  8421. case GGML_TYPE_Q8_0:
  8422. case GGML_TYPE_Q2_K:
  8423. case GGML_TYPE_Q3_K:
  8424. case GGML_TYPE_Q4_K:
  8425. case GGML_TYPE_Q5_K:
  8426. case GGML_TYPE_Q6_K:
  8427. {
  8428. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8429. } break;
  8430. case GGML_TYPE_F16:
  8431. {
  8432. GGML_ASSERT(false); // todo
  8433. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8434. } break;
  8435. case GGML_TYPE_F32:
  8436. {
  8437. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8438. } break;
  8439. default:
  8440. {
  8441. GGML_ASSERT(false);
  8442. } break;
  8443. }
  8444. }
  8445. // ggml_compute_forward_scale
  8446. static void ggml_compute_forward_scale_f32(
  8447. const struct ggml_compute_params * params,
  8448. const struct ggml_tensor * src0,
  8449. const struct ggml_tensor * src1,
  8450. struct ggml_tensor * dst) {
  8451. GGML_ASSERT(ggml_is_contiguous(src0));
  8452. GGML_ASSERT(ggml_is_contiguous(dst));
  8453. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8454. GGML_ASSERT(ggml_is_scalar(src1));
  8455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8456. return;
  8457. }
  8458. // scale factor
  8459. const float v = *(float *) src1->data;
  8460. const int ith = params->ith;
  8461. const int nth = params->nth;
  8462. const int nc = src0->ne[0];
  8463. const int nr = ggml_nrows(src0);
  8464. // rows per thread
  8465. const int dr = (nr + nth - 1)/nth;
  8466. // row range for this thread
  8467. const int ir0 = dr*ith;
  8468. const int ir1 = MIN(ir0 + dr, nr);
  8469. const size_t nb01 = src0->nb[1];
  8470. const size_t nb1 = dst->nb[1];
  8471. for (int i1 = ir0; i1 < ir1; i1++) {
  8472. if (dst->data != src0->data) {
  8473. // src0 is same shape as dst => same indices
  8474. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8475. }
  8476. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8477. }
  8478. }
  8479. static void ggml_compute_forward_scale(
  8480. const struct ggml_compute_params * params,
  8481. const struct ggml_tensor * src0,
  8482. const struct ggml_tensor * src1,
  8483. struct ggml_tensor * dst) {
  8484. switch (src0->type) {
  8485. case GGML_TYPE_F32:
  8486. {
  8487. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8488. } break;
  8489. default:
  8490. {
  8491. GGML_ASSERT(false);
  8492. } break;
  8493. }
  8494. }
  8495. // ggml_compute_forward_set
  8496. static void ggml_compute_forward_set_f32(
  8497. const struct ggml_compute_params * params,
  8498. const struct ggml_tensor * src0,
  8499. const struct ggml_tensor * src1,
  8500. struct ggml_tensor * dst) {
  8501. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8502. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8503. // view src0 and dst with these strides and data offset inbytes during set
  8504. // nb0 is implicitly element_size because src0 and dst are contiguous
  8505. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8506. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8507. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8508. size_t offset = ((int32_t *) dst->op_params)[3];
  8509. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8510. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8511. // memcpy needs to be synchronized across threads to avoid race conditions.
  8512. // => do it in INIT phase
  8513. memcpy(
  8514. ((char *) dst->data),
  8515. ((char *) src0->data),
  8516. ggml_nbytes(dst));
  8517. }
  8518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8519. return;
  8520. }
  8521. const int ith = params->ith;
  8522. const int nth = params->nth;
  8523. const int nr = ggml_nrows(src1);
  8524. const int nc = src1->ne[0];
  8525. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8526. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8527. // src0 and dst as viewed during set
  8528. const size_t nb0 = ggml_element_size(src0);
  8529. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8530. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8531. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8532. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8533. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8534. GGML_ASSERT(nb10 == sizeof(float));
  8535. // rows per thread
  8536. const int dr = (nr + nth - 1)/nth;
  8537. // row range for this thread
  8538. const int ir0 = dr*ith;
  8539. const int ir1 = MIN(ir0 + dr, nr);
  8540. for (int ir = ir0; ir < ir1; ++ir) {
  8541. // src0 and dst are viewed with shape of src1 and offset
  8542. // => same indices
  8543. const int i3 = ir/(ne12*ne11);
  8544. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8545. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8546. ggml_vec_cpy_f32(nc,
  8547. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8548. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8549. }
  8550. }
  8551. static void ggml_compute_forward_set(
  8552. const struct ggml_compute_params * params,
  8553. const struct ggml_tensor * src0,
  8554. const struct ggml_tensor * src1,
  8555. struct ggml_tensor * dst) {
  8556. switch (src0->type) {
  8557. case GGML_TYPE_F32:
  8558. {
  8559. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8560. } break;
  8561. case GGML_TYPE_F16:
  8562. case GGML_TYPE_Q4_0:
  8563. case GGML_TYPE_Q4_1:
  8564. case GGML_TYPE_Q5_0:
  8565. case GGML_TYPE_Q5_1:
  8566. case GGML_TYPE_Q8_0:
  8567. case GGML_TYPE_Q8_1:
  8568. case GGML_TYPE_Q2_K:
  8569. case GGML_TYPE_Q3_K:
  8570. case GGML_TYPE_Q4_K:
  8571. case GGML_TYPE_Q5_K:
  8572. case GGML_TYPE_Q6_K:
  8573. default:
  8574. {
  8575. GGML_ASSERT(false);
  8576. } break;
  8577. }
  8578. }
  8579. // ggml_compute_forward_cpy
  8580. static void ggml_compute_forward_cpy(
  8581. const struct ggml_compute_params * params,
  8582. const struct ggml_tensor * src0,
  8583. struct ggml_tensor * dst) {
  8584. ggml_compute_forward_dup(params, src0, dst);
  8585. }
  8586. // ggml_compute_forward_cont
  8587. static void ggml_compute_forward_cont(
  8588. const struct ggml_compute_params * params,
  8589. const struct ggml_tensor * src0,
  8590. struct ggml_tensor * dst) {
  8591. ggml_compute_forward_dup(params, src0, dst);
  8592. }
  8593. // ggml_compute_forward_reshape
  8594. static void ggml_compute_forward_reshape(
  8595. const struct ggml_compute_params * params,
  8596. const struct ggml_tensor * src0,
  8597. struct ggml_tensor * dst) {
  8598. // NOP
  8599. UNUSED(params);
  8600. UNUSED(src0);
  8601. UNUSED(dst);
  8602. }
  8603. // ggml_compute_forward_view
  8604. static void ggml_compute_forward_view(
  8605. const struct ggml_compute_params * params,
  8606. const struct ggml_tensor * src0) {
  8607. // NOP
  8608. UNUSED(params);
  8609. UNUSED(src0);
  8610. }
  8611. // ggml_compute_forward_permute
  8612. static void ggml_compute_forward_permute(
  8613. const struct ggml_compute_params * params,
  8614. const struct ggml_tensor * src0) {
  8615. // NOP
  8616. UNUSED(params);
  8617. UNUSED(src0);
  8618. }
  8619. // ggml_compute_forward_transpose
  8620. static void ggml_compute_forward_transpose(
  8621. const struct ggml_compute_params * params,
  8622. const struct ggml_tensor * src0) {
  8623. // NOP
  8624. UNUSED(params);
  8625. UNUSED(src0);
  8626. }
  8627. // ggml_compute_forward_get_rows
  8628. static void ggml_compute_forward_get_rows_q(
  8629. const struct ggml_compute_params * params,
  8630. const struct ggml_tensor * src0,
  8631. const struct ggml_tensor * src1,
  8632. struct ggml_tensor * dst) {
  8633. assert(params->ith == 0);
  8634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8635. return;
  8636. }
  8637. GGML_TENSOR_BINARY_OP_LOCALS
  8638. const int64_t nc = ne00;
  8639. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8640. const enum ggml_type type = src0->type;
  8641. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8642. assert(ne0 == nc);
  8643. assert(ne02 == ne11);
  8644. assert(nb00 == ggml_type_size(type));
  8645. assert(ggml_nrows(dst) == nr);
  8646. // TODO: multi-thread
  8647. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8648. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8649. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8650. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8651. dequantize_row_q(
  8652. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8653. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8654. }
  8655. }
  8656. }
  8657. }
  8658. static void ggml_compute_forward_get_rows_f16(
  8659. const struct ggml_compute_params * params,
  8660. const struct ggml_tensor * src0,
  8661. const struct ggml_tensor * src1,
  8662. struct ggml_tensor * dst) {
  8663. assert(params->ith == 0);
  8664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8665. return;
  8666. }
  8667. GGML_TENSOR_BINARY_OP_LOCALS
  8668. const int64_t nc = ne00;
  8669. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8670. assert(ne0 == nc);
  8671. assert(ne02 == ne11);
  8672. assert(nb00 == sizeof(ggml_fp16_t));
  8673. assert(ggml_nrows(dst) == nr);
  8674. // TODO: multi-thread
  8675. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8676. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8677. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8678. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8679. ggml_fp16_to_fp32_row(
  8680. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8681. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8682. }
  8683. }
  8684. }
  8685. }
  8686. static void ggml_compute_forward_get_rows_f32(
  8687. const struct ggml_compute_params * params,
  8688. const struct ggml_tensor * src0,
  8689. const struct ggml_tensor * src1,
  8690. struct ggml_tensor * dst) {
  8691. assert(params->ith == 0);
  8692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8693. return;
  8694. }
  8695. GGML_TENSOR_BINARY_OP_LOCALS
  8696. const int64_t nc = ne00;
  8697. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8698. assert(ne0 == nc);
  8699. assert(ne02 == ne11);
  8700. assert(nb00 == sizeof(float));
  8701. assert(ggml_nrows(dst) == nr);
  8702. // TODO: multi-thread
  8703. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8704. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8705. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8706. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8707. ggml_vec_cpy_f32(nc,
  8708. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8709. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8710. }
  8711. }
  8712. }
  8713. }
  8714. static void ggml_compute_forward_get_rows(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * src1,
  8718. struct ggml_tensor * dst) {
  8719. switch (src0->type) {
  8720. case GGML_TYPE_Q4_0:
  8721. case GGML_TYPE_Q4_1:
  8722. case GGML_TYPE_Q5_0:
  8723. case GGML_TYPE_Q5_1:
  8724. case GGML_TYPE_Q8_0:
  8725. case GGML_TYPE_Q8_1:
  8726. case GGML_TYPE_Q2_K:
  8727. case GGML_TYPE_Q3_K:
  8728. case GGML_TYPE_Q4_K:
  8729. case GGML_TYPE_Q5_K:
  8730. case GGML_TYPE_Q6_K:
  8731. {
  8732. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8733. } break;
  8734. case GGML_TYPE_F16:
  8735. {
  8736. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8737. } break;
  8738. case GGML_TYPE_F32:
  8739. {
  8740. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8741. } break;
  8742. default:
  8743. {
  8744. GGML_ASSERT(false);
  8745. } break;
  8746. }
  8747. //static bool first = true;
  8748. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8749. //if (first) {
  8750. // first = false;
  8751. //} else {
  8752. // for (int k = 0; k < dst->ne[1]; ++k) {
  8753. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8754. // for (int i = 0; i < 16; ++i) {
  8755. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8756. // }
  8757. // printf("\n");
  8758. // }
  8759. // printf("\n");
  8760. // }
  8761. // printf("\n");
  8762. // exit(0);
  8763. //}
  8764. }
  8765. // ggml_compute_forward_get_rows_back
  8766. static void ggml_compute_forward_get_rows_back_f32_f16(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. const struct ggml_tensor * src1,
  8770. struct ggml_tensor * dst) {
  8771. GGML_ASSERT(params->ith == 0);
  8772. GGML_ASSERT(ggml_is_contiguous(dst));
  8773. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8774. if (params->type == GGML_TASK_INIT) {
  8775. memset(dst->data, 0, ggml_nbytes(dst));
  8776. }
  8777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8778. return;
  8779. }
  8780. const int nc = src0->ne[0];
  8781. const int nr = ggml_nelements(src1);
  8782. GGML_ASSERT( dst->ne[0] == nc);
  8783. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8784. for (int i = 0; i < nr; ++i) {
  8785. const int r = ((int32_t *) src1->data)[i];
  8786. for (int j = 0; j < nc; ++j) {
  8787. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8788. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8789. }
  8790. }
  8791. }
  8792. static void ggml_compute_forward_get_rows_back_f32(
  8793. const struct ggml_compute_params * params,
  8794. const struct ggml_tensor * src0,
  8795. const struct ggml_tensor * src1,
  8796. struct ggml_tensor * dst) {
  8797. GGML_ASSERT(params->ith == 0);
  8798. GGML_ASSERT(ggml_is_contiguous(dst));
  8799. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8800. if (params->type == GGML_TASK_INIT) {
  8801. memset(dst->data, 0, ggml_nbytes(dst));
  8802. }
  8803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8804. return;
  8805. }
  8806. const int nc = src0->ne[0];
  8807. const int nr = ggml_nelements(src1);
  8808. GGML_ASSERT( dst->ne[0] == nc);
  8809. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8810. for (int i = 0; i < nr; ++i) {
  8811. const int r = ((int32_t *) src1->data)[i];
  8812. ggml_vec_add_f32(nc,
  8813. (float *) ((char *) dst->data + r*dst->nb[1]),
  8814. (float *) ((char *) dst->data + r*dst->nb[1]),
  8815. (float *) ((char *) src0->data + i*src0->nb[1]));
  8816. }
  8817. }
  8818. static void ggml_compute_forward_get_rows_back(
  8819. const struct ggml_compute_params * params,
  8820. const struct ggml_tensor * src0,
  8821. const struct ggml_tensor * src1,
  8822. struct ggml_tensor * dst) {
  8823. switch (src0->type) {
  8824. case GGML_TYPE_F16:
  8825. {
  8826. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8827. } break;
  8828. case GGML_TYPE_F32:
  8829. {
  8830. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8831. } break;
  8832. default:
  8833. {
  8834. GGML_ASSERT(false);
  8835. } break;
  8836. }
  8837. //static bool first = true;
  8838. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8839. //if (first) {
  8840. // first = false;
  8841. //} else {
  8842. // for (int k = 0; k < dst->ne[1]; ++k) {
  8843. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8844. // for (int i = 0; i < 16; ++i) {
  8845. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8846. // }
  8847. // printf("\n");
  8848. // }
  8849. // printf("\n");
  8850. // }
  8851. // printf("\n");
  8852. // exit(0);
  8853. //}
  8854. }
  8855. // ggml_compute_forward_diag
  8856. static void ggml_compute_forward_diag_f32(
  8857. const struct ggml_compute_params * params,
  8858. const struct ggml_tensor * src0,
  8859. struct ggml_tensor * dst) {
  8860. GGML_ASSERT(params->ith == 0);
  8861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8862. return;
  8863. }
  8864. // TODO: handle transposed/permuted matrices
  8865. GGML_TENSOR_UNARY_OP_LOCALS
  8866. GGML_ASSERT(ne00 == ne0);
  8867. GGML_ASSERT(ne00 == ne1);
  8868. GGML_ASSERT(ne01 == 1);
  8869. GGML_ASSERT(ne02 == ne2);
  8870. GGML_ASSERT(ne03 == ne3);
  8871. GGML_ASSERT(nb00 == sizeof(float));
  8872. GGML_ASSERT(nb0 == sizeof(float));
  8873. for (int i3 = 0; i3 < ne3; i3++) {
  8874. for (int i2 = 0; i2 < ne2; i2++) {
  8875. for (int i1 = 0; i1 < ne1; i1++) {
  8876. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8877. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8878. for (int i0 = 0; i0 < i1; i0++) {
  8879. d[i0] = 0;
  8880. }
  8881. d[i1] = s[i1];
  8882. for (int i0 = i1+1; i0 < ne0; i0++) {
  8883. d[i0] = 0;
  8884. }
  8885. }
  8886. }
  8887. }
  8888. }
  8889. static void ggml_compute_forward_diag(
  8890. const struct ggml_compute_params * params,
  8891. const struct ggml_tensor * src0,
  8892. struct ggml_tensor * dst) {
  8893. switch (src0->type) {
  8894. case GGML_TYPE_F32:
  8895. {
  8896. ggml_compute_forward_diag_f32(params, src0, dst);
  8897. } break;
  8898. default:
  8899. {
  8900. GGML_ASSERT(false);
  8901. } break;
  8902. }
  8903. }
  8904. // ggml_compute_forward_diag_mask_inf
  8905. static void ggml_compute_forward_diag_mask_f32(
  8906. const struct ggml_compute_params * params,
  8907. const struct ggml_tensor * src0,
  8908. struct ggml_tensor * dst,
  8909. const float value) {
  8910. const int ith = params->ith;
  8911. const int nth = params->nth;
  8912. const int n_past = ((int32_t *) dst->op_params)[0];
  8913. const bool inplace = src0->data == dst->data;
  8914. GGML_ASSERT(n_past >= 0);
  8915. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8916. // memcpy needs to be synchronized across threads to avoid race conditions.
  8917. // => do it in INIT phase
  8918. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8919. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8920. memcpy(
  8921. ((char *) dst->data),
  8922. ((char *) src0->data),
  8923. ggml_nbytes(dst));
  8924. }
  8925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8926. return;
  8927. }
  8928. // TODO: handle transposed/permuted matrices
  8929. const int n = ggml_nrows(src0);
  8930. const int nc = src0->ne[0];
  8931. const int nr = src0->ne[1];
  8932. const int nz = n/nr;
  8933. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8934. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8935. for (int k = 0; k < nz; k++) {
  8936. for (int j = ith; j < nr; j += nth) {
  8937. for (int i = n_past; i < nc; i++) {
  8938. if (i > n_past + j) {
  8939. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8940. }
  8941. }
  8942. }
  8943. }
  8944. }
  8945. static void ggml_compute_forward_diag_mask_inf(
  8946. const struct ggml_compute_params * params,
  8947. const struct ggml_tensor * src0,
  8948. struct ggml_tensor * dst) {
  8949. switch (src0->type) {
  8950. case GGML_TYPE_F32:
  8951. {
  8952. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8953. } break;
  8954. default:
  8955. {
  8956. GGML_ASSERT(false);
  8957. } break;
  8958. }
  8959. }
  8960. static void ggml_compute_forward_diag_mask_zero(
  8961. const struct ggml_compute_params * params,
  8962. const struct ggml_tensor * src0,
  8963. struct ggml_tensor * dst) {
  8964. switch (src0->type) {
  8965. case GGML_TYPE_F32:
  8966. {
  8967. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8968. } break;
  8969. default:
  8970. {
  8971. GGML_ASSERT(false);
  8972. } break;
  8973. }
  8974. }
  8975. // ggml_compute_forward_soft_max
  8976. static void ggml_compute_forward_soft_max_f32(
  8977. const struct ggml_compute_params * params,
  8978. const struct ggml_tensor * src0,
  8979. const struct ggml_tensor * src1,
  8980. struct ggml_tensor * dst) {
  8981. assert(ggml_is_contiguous(dst));
  8982. assert(ggml_are_same_shape(src0, dst));
  8983. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8984. return;
  8985. }
  8986. float scale = 1.0f;
  8987. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8988. // TODO: handle transposed/permuted matrices
  8989. const int ith = params->ith;
  8990. const int nth = params->nth;
  8991. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8992. const int nc = src0->ne[0];
  8993. const int nr = ggml_nrows(src0);
  8994. // rows per thread
  8995. const int dr = (nr + nth - 1)/nth;
  8996. // row range for this thread
  8997. const int ir0 = dr*ith;
  8998. const int ir1 = MIN(ir0 + dr, nr);
  8999. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9000. for (int i1 = ir0; i1 < ir1; i1++) {
  9001. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9002. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9003. // broadcast the mask across rows
  9004. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9005. ggml_vec_cpy_f32 (nc, wp, sp);
  9006. ggml_vec_scale_f32(nc, wp, scale);
  9007. if (mp) {
  9008. ggml_vec_acc_f32(nc, wp, mp);
  9009. }
  9010. #ifndef NDEBUG
  9011. for (int i = 0; i < nc; ++i) {
  9012. //printf("p[%d] = %f\n", i, p[i]);
  9013. assert(!isnan(wp[i]));
  9014. }
  9015. #endif
  9016. float max = -INFINITY;
  9017. ggml_vec_max_f32(nc, &max, wp);
  9018. ggml_float sum = 0.0;
  9019. uint16_t scvt;
  9020. for (int i = 0; i < nc; i++) {
  9021. if (wp[i] == -INFINITY) {
  9022. dp[i] = 0.0f;
  9023. } else {
  9024. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9025. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9026. memcpy(&scvt, &s, sizeof(scvt));
  9027. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9028. sum += (ggml_float)val;
  9029. dp[i] = val;
  9030. }
  9031. }
  9032. assert(sum > 0.0);
  9033. sum = 1.0/sum;
  9034. ggml_vec_scale_f32(nc, dp, sum);
  9035. #ifndef NDEBUG
  9036. for (int i = 0; i < nc; ++i) {
  9037. assert(!isnan(dp[i]));
  9038. assert(!isinf(dp[i]));
  9039. }
  9040. #endif
  9041. }
  9042. }
  9043. static void ggml_compute_forward_soft_max(
  9044. const struct ggml_compute_params * params,
  9045. const struct ggml_tensor * src0,
  9046. const struct ggml_tensor * src1,
  9047. struct ggml_tensor * dst) {
  9048. switch (src0->type) {
  9049. case GGML_TYPE_F32:
  9050. {
  9051. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9052. } break;
  9053. default:
  9054. {
  9055. GGML_ASSERT(false);
  9056. } break;
  9057. }
  9058. }
  9059. // ggml_compute_forward_soft_max_back
  9060. static void ggml_compute_forward_soft_max_back_f32(
  9061. const struct ggml_compute_params * params,
  9062. const struct ggml_tensor * src0,
  9063. const struct ggml_tensor * src1,
  9064. struct ggml_tensor * dst) {
  9065. GGML_ASSERT(ggml_is_contiguous(src0));
  9066. GGML_ASSERT(ggml_is_contiguous(src1));
  9067. GGML_ASSERT(ggml_is_contiguous(dst));
  9068. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9069. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9071. return;
  9072. }
  9073. // TODO: handle transposed/permuted matrices
  9074. const int ith = params->ith;
  9075. const int nth = params->nth;
  9076. const int nc = src0->ne[0];
  9077. const int nr = ggml_nrows(src0);
  9078. // rows per thread
  9079. const int dr = (nr + nth - 1)/nth;
  9080. // row range for this thread
  9081. const int ir0 = dr*ith;
  9082. const int ir1 = MIN(ir0 + dr, nr);
  9083. for (int i1 = ir0; i1 < ir1; i1++) {
  9084. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9085. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9086. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9087. #ifndef NDEBUG
  9088. for (int i = 0; i < nc; ++i) {
  9089. //printf("p[%d] = %f\n", i, p[i]);
  9090. assert(!isnan(dy[i]));
  9091. assert(!isnan(y[i]));
  9092. }
  9093. #endif
  9094. // Jii = yi - yi*yi
  9095. // Jij = -yi*yj
  9096. // J = diag(y)-y.T*y
  9097. // dx = J * dy
  9098. // dxk = sum_i(Jki * dyi)
  9099. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9100. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9101. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9102. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9103. // dxk = -yk * dot(y, dy) + yk*dyk
  9104. // dxk = yk * (- dot(y, dy) + dyk)
  9105. // dxk = yk * (dyk - dot(y, dy))
  9106. //
  9107. // post-order:
  9108. // dot_y_dy := dot(y, dy)
  9109. // dx := dy
  9110. // dx := dx - dot_y_dy
  9111. // dx := dx * y
  9112. // linear runtime, no additional memory
  9113. float dot_y_dy = 0;
  9114. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9115. ggml_vec_cpy_f32 (nc, dx, dy);
  9116. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9117. ggml_vec_mul_f32 (nc, dx, dx, y);
  9118. #ifndef NDEBUG
  9119. for (int i = 0; i < nc; ++i) {
  9120. assert(!isnan(dx[i]));
  9121. assert(!isinf(dx[i]));
  9122. }
  9123. #endif
  9124. }
  9125. }
  9126. static void ggml_compute_forward_soft_max_back(
  9127. const struct ggml_compute_params * params,
  9128. const struct ggml_tensor * src0,
  9129. const struct ggml_tensor * src1,
  9130. struct ggml_tensor * dst) {
  9131. switch (src0->type) {
  9132. case GGML_TYPE_F32:
  9133. {
  9134. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9135. } break;
  9136. default:
  9137. {
  9138. GGML_ASSERT(false);
  9139. } break;
  9140. }
  9141. }
  9142. // ggml_compute_forward_alibi
  9143. static void ggml_compute_forward_alibi_f32(
  9144. const struct ggml_compute_params * params,
  9145. const struct ggml_tensor * src0,
  9146. struct ggml_tensor * dst) {
  9147. assert(params->ith == 0);
  9148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9149. return;
  9150. }
  9151. //const int n_past = ((int32_t *) dst->op_params)[0];
  9152. const int n_head = ((int32_t *) dst->op_params)[1];
  9153. float max_bias;
  9154. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9155. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9156. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9157. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9158. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9159. const int64_t n = ggml_nrows(src0);
  9160. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9161. const size_t nb0 = src0->nb[0];
  9162. const size_t nb1 = src0->nb[1];
  9163. const size_t nb2 = src0->nb[2];
  9164. //const int nb3 = src0->nb[3];
  9165. GGML_ASSERT(nb0 == sizeof(float));
  9166. GGML_ASSERT(n_head == ne2);
  9167. // add alibi to src0 (KQ_scaled)
  9168. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9169. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9170. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9171. for (int64_t i = 0; i < ne0; i++) {
  9172. for (int64_t j = 0; j < ne1; j++) {
  9173. for (int64_t k = 0; k < ne2_ne3; k++) {
  9174. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9175. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9176. // TODO: k*nb2 or k*nb3
  9177. float m_k;
  9178. if (k < n_heads_log2_floor) {
  9179. m_k = powf(m0, k + 1);
  9180. } else {
  9181. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9182. }
  9183. pdst[0] = i * m_k + src[0];
  9184. }
  9185. }
  9186. }
  9187. }
  9188. static void ggml_compute_forward_alibi_f16(
  9189. const struct ggml_compute_params * params,
  9190. const struct ggml_tensor * src0,
  9191. struct ggml_tensor * dst) {
  9192. assert(params->ith == 0);
  9193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9194. return;
  9195. }
  9196. //const int n_past = ((int32_t *) dst->op_params)[0];
  9197. const int n_head = ((int32_t *) dst->op_params)[1];
  9198. float max_bias;
  9199. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9200. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9201. const int ne1 = src0->ne[1]; // seq_len_without_past
  9202. const int ne2 = src0->ne[2]; // n_head -> this is k
  9203. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9204. const int n = ggml_nrows(src0);
  9205. const int ne2_ne3 = n/ne1; // ne2*ne3
  9206. const int nb0 = src0->nb[0];
  9207. const int nb1 = src0->nb[1];
  9208. const int nb2 = src0->nb[2];
  9209. //const int nb3 = src0->nb[3];
  9210. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9211. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9212. GGML_ASSERT(n_head == ne2);
  9213. // add alibi to src0 (KQ_scaled)
  9214. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9215. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9216. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9217. for (int i = 0; i < ne0; i++) {
  9218. for (int j = 0; j < ne1; j++) {
  9219. for (int k = 0; k < ne2_ne3; k++) {
  9220. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9221. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9222. // TODO: k*nb2 or k*nb3
  9223. float m_k;
  9224. if (k < n_heads_log2_floor) {
  9225. m_k = powf(m0, k + 1);
  9226. } else {
  9227. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9228. }
  9229. // we return F32
  9230. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9231. }
  9232. }
  9233. }
  9234. }
  9235. static void ggml_compute_forward_alibi(
  9236. const struct ggml_compute_params * params,
  9237. const struct ggml_tensor * src0,
  9238. struct ggml_tensor * dst) {
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F16:
  9241. {
  9242. ggml_compute_forward_alibi_f16(params, src0, dst);
  9243. } break;
  9244. case GGML_TYPE_F32:
  9245. {
  9246. ggml_compute_forward_alibi_f32(params, src0, dst);
  9247. } break;
  9248. case GGML_TYPE_Q4_0:
  9249. case GGML_TYPE_Q4_1:
  9250. case GGML_TYPE_Q5_0:
  9251. case GGML_TYPE_Q5_1:
  9252. case GGML_TYPE_Q8_0:
  9253. case GGML_TYPE_Q8_1:
  9254. case GGML_TYPE_Q2_K:
  9255. case GGML_TYPE_Q3_K:
  9256. case GGML_TYPE_Q4_K:
  9257. case GGML_TYPE_Q5_K:
  9258. case GGML_TYPE_Q6_K:
  9259. case GGML_TYPE_Q8_K:
  9260. case GGML_TYPE_I8:
  9261. case GGML_TYPE_I16:
  9262. case GGML_TYPE_I32:
  9263. case GGML_TYPE_COUNT:
  9264. {
  9265. GGML_ASSERT(false);
  9266. } break;
  9267. }
  9268. }
  9269. // ggml_compute_forward_clamp
  9270. static void ggml_compute_forward_clamp_f32(
  9271. const struct ggml_compute_params * params,
  9272. const struct ggml_tensor * src0,
  9273. struct ggml_tensor * dst) {
  9274. assert(params->ith == 0);
  9275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9276. return;
  9277. }
  9278. float min;
  9279. float max;
  9280. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9281. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9282. const int ith = params->ith;
  9283. const int nth = params->nth;
  9284. const int n = ggml_nrows(src0);
  9285. const int nc = src0->ne[0];
  9286. const size_t nb00 = src0->nb[0];
  9287. const size_t nb01 = src0->nb[1];
  9288. const size_t nb0 = dst->nb[0];
  9289. const size_t nb1 = dst->nb[1];
  9290. GGML_ASSERT( nb0 == sizeof(float));
  9291. GGML_ASSERT(nb00 == sizeof(float));
  9292. for (int j = ith; j < n; j += nth) {
  9293. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9294. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9295. for (int i = 0; i < nc; i++) {
  9296. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9297. }
  9298. }
  9299. }
  9300. static void ggml_compute_forward_clamp(
  9301. const struct ggml_compute_params * params,
  9302. const struct ggml_tensor * src0,
  9303. struct ggml_tensor * dst) {
  9304. switch (src0->type) {
  9305. case GGML_TYPE_F32:
  9306. {
  9307. ggml_compute_forward_clamp_f32(params, src0, dst);
  9308. } break;
  9309. case GGML_TYPE_F16:
  9310. case GGML_TYPE_Q4_0:
  9311. case GGML_TYPE_Q4_1:
  9312. case GGML_TYPE_Q5_0:
  9313. case GGML_TYPE_Q5_1:
  9314. case GGML_TYPE_Q8_0:
  9315. case GGML_TYPE_Q8_1:
  9316. case GGML_TYPE_Q2_K:
  9317. case GGML_TYPE_Q3_K:
  9318. case GGML_TYPE_Q4_K:
  9319. case GGML_TYPE_Q5_K:
  9320. case GGML_TYPE_Q6_K:
  9321. case GGML_TYPE_Q8_K:
  9322. case GGML_TYPE_I8:
  9323. case GGML_TYPE_I16:
  9324. case GGML_TYPE_I32:
  9325. case GGML_TYPE_COUNT:
  9326. {
  9327. GGML_ASSERT(false);
  9328. } break;
  9329. }
  9330. }
  9331. // ggml_compute_forward_rope
  9332. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9333. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9334. return 1 - MIN(1, MAX(0, y));
  9335. }
  9336. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9337. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9338. static void rope_yarn(
  9339. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9340. float * cos_theta, float * sin_theta
  9341. ) {
  9342. // Get n-d rotational scaling corrected for extrapolation
  9343. float theta_interp = freq_scale * theta_extrap;
  9344. float theta = theta_interp;
  9345. if (ext_factor != 0.0f) {
  9346. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9347. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9348. // Get n-d magnitude scaling corrected for interpolation
  9349. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9350. }
  9351. *cos_theta = cosf(theta) * mscale;
  9352. *sin_theta = sinf(theta) * mscale;
  9353. }
  9354. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9355. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9356. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9357. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9358. }
  9359. void ggml_rope_yarn_corr_dims(
  9360. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9361. ) {
  9362. // start and end correction dims
  9363. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9364. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9365. }
  9366. static void ggml_compute_forward_rope_f32(
  9367. const struct ggml_compute_params * params,
  9368. const struct ggml_tensor * src0,
  9369. const struct ggml_tensor * src1,
  9370. struct ggml_tensor * dst,
  9371. const bool forward) {
  9372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9373. return;
  9374. }
  9375. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9376. // these two only relevant for xPos RoPE:
  9377. float xpos_base;
  9378. bool xpos_down;
  9379. //const int n_past = ((int32_t *) dst->op_params)[0];
  9380. const int n_dims = ((int32_t *) dst->op_params)[1];
  9381. const int mode = ((int32_t *) dst->op_params)[2];
  9382. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9383. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9384. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9385. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9386. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9387. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9388. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9389. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9390. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9391. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9392. GGML_TENSOR_UNARY_OP_LOCALS
  9393. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9394. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9395. GGML_ASSERT(nb00 == sizeof(float));
  9396. const int ith = params->ith;
  9397. const int nth = params->nth;
  9398. const int nr = ggml_nrows(dst);
  9399. GGML_ASSERT(n_dims <= ne0);
  9400. GGML_ASSERT(n_dims % 2 == 0);
  9401. // rows per thread
  9402. const int dr = (nr + nth - 1)/nth;
  9403. // row range for this thread
  9404. const int ir0 = dr*ith;
  9405. const int ir1 = MIN(ir0 + dr, nr);
  9406. // row index used to determine which thread to use
  9407. int ir = 0;
  9408. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9409. const float inv_ndims = -1.f/n_dims;
  9410. float corr_dims[2];
  9411. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9412. const bool is_neox = mode & 2;
  9413. const bool is_glm = mode & 4;
  9414. // backward process uses inverse rotation by cos and sin.
  9415. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9416. // this essentially just switches the sign of sin.
  9417. const float sin_sign = forward ? 1.0f : -1.0f;
  9418. const int32_t * pos = (const int32_t *) src1->data;
  9419. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9420. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9421. const int64_t p = pos[i2];
  9422. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9423. if (ir++ < ir0) continue;
  9424. if (ir > ir1) break;
  9425. float theta_base = (float)p;
  9426. if (is_glm) {
  9427. theta_base = MIN(p, n_ctx - 2);
  9428. float block_theta = MAX(p - (n_ctx - 2), 0);
  9429. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9430. const float cos_theta = cosf(theta_base);
  9431. const float sin_theta = sinf(theta_base) * sin_sign;
  9432. const float cos_block_theta = cosf(block_theta);
  9433. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9434. theta_base *= theta_scale;
  9435. block_theta *= theta_scale;
  9436. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9437. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9438. const float x0 = src[0];
  9439. const float x1 = src[n_dims/2];
  9440. const float x2 = src[n_dims];
  9441. const float x3 = src[n_dims/2*3];
  9442. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9443. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9444. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9445. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9446. }
  9447. } else if (!is_neox) {
  9448. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9449. float cos_theta, sin_theta;
  9450. rope_yarn(
  9451. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9452. );
  9453. sin_theta *= sin_sign;
  9454. // zeta scaling for xPos only:
  9455. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9456. if (xpos_down) zeta = 1.0f / zeta;
  9457. theta_base *= theta_scale;
  9458. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9459. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9460. const float x0 = src[0];
  9461. const float x1 = src[1];
  9462. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9463. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9464. }
  9465. } else {
  9466. // TODO: this might be wrong for ne0 != n_dims - need double check
  9467. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9468. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9469. theta_base *= freq_scale;
  9470. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9471. if (ic < n_dims) {
  9472. const int64_t ib = 0;
  9473. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9474. float cur_rot = inv_ndims * ic - ib;
  9475. float cos_theta, sin_theta;
  9476. rope_yarn(
  9477. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9478. &cos_theta, &sin_theta
  9479. );
  9480. sin_theta *= sin_sign;
  9481. theta_base *= theta_scale;
  9482. const int64_t i0 = ib*n_dims + ic/2;
  9483. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9484. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9485. const float x0 = src[0];
  9486. const float x1 = src[n_dims/2];
  9487. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9488. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9489. } else {
  9490. const int64_t i0 = ic;
  9491. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9492. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9493. dst_data[0] = src[0];
  9494. dst_data[1] = src[1];
  9495. }
  9496. }
  9497. }
  9498. }
  9499. }
  9500. }
  9501. }
  9502. static void ggml_compute_forward_rope_f16(
  9503. const struct ggml_compute_params * params,
  9504. const struct ggml_tensor * src0,
  9505. const struct ggml_tensor * src1,
  9506. struct ggml_tensor * dst,
  9507. const bool forward) {
  9508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9509. return;
  9510. }
  9511. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9512. //const int n_past = ((int32_t *) dst->op_params)[0];
  9513. const int n_dims = ((int32_t *) dst->op_params)[1];
  9514. const int mode = ((int32_t *) dst->op_params)[2];
  9515. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9516. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9517. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9518. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9519. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9520. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9521. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9522. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9523. GGML_TENSOR_UNARY_OP_LOCALS
  9524. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9525. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9526. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9527. const int ith = params->ith;
  9528. const int nth = params->nth;
  9529. const int nr = ggml_nrows(dst);
  9530. GGML_ASSERT(n_dims <= ne0);
  9531. GGML_ASSERT(n_dims % 2 == 0);
  9532. // rows per thread
  9533. const int dr = (nr + nth - 1)/nth;
  9534. // row range for this thread
  9535. const int ir0 = dr*ith;
  9536. const int ir1 = MIN(ir0 + dr, nr);
  9537. // row index used to determine which thread to use
  9538. int ir = 0;
  9539. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9540. const float inv_ndims = -1.f/n_dims;
  9541. float corr_dims[2];
  9542. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9543. const bool is_neox = mode & 2;
  9544. const bool is_glm = mode & 4;
  9545. // backward process uses inverse rotation by cos and sin.
  9546. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9547. // this essentially just switches the sign of sin.
  9548. const float sin_sign = forward ? 1.0f : -1.0f;
  9549. const int32_t * pos = (const int32_t *) src1->data;
  9550. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9551. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9552. const int64_t p = pos[i2];
  9553. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9554. if (ir++ < ir0) continue;
  9555. if (ir > ir1) break;
  9556. float theta_base = (float)p;
  9557. if (is_glm) {
  9558. theta_base = MIN(p, n_ctx - 2);
  9559. float block_theta = MAX(p - (n_ctx - 2), 0);
  9560. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9561. const float cos_theta = cosf(theta_base);
  9562. const float sin_theta = sinf(theta_base) * sin_sign;
  9563. const float cos_block_theta = cosf(block_theta);
  9564. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9565. theta_base *= theta_scale;
  9566. block_theta *= theta_scale;
  9567. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9568. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9569. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9570. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9571. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9572. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9573. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9574. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9575. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9576. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9577. }
  9578. } else if (!is_neox) {
  9579. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9580. float cos_theta, sin_theta;
  9581. rope_yarn(
  9582. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9583. );
  9584. sin_theta *= sin_sign;
  9585. theta_base *= theta_scale;
  9586. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9587. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9588. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9589. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9590. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9591. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9592. }
  9593. } else {
  9594. // TODO: this might be wrong for ne0 != n_dims - need double check
  9595. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9596. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9597. theta_base *= freq_scale;
  9598. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9599. if (ic < n_dims) {
  9600. const int64_t ib = 0;
  9601. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9602. float cur_rot = inv_ndims * ic - ib;
  9603. float cos_theta, sin_theta;
  9604. rope_yarn(
  9605. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9606. &cos_theta, &sin_theta
  9607. );
  9608. sin_theta *= sin_sign;
  9609. theta_base *= theta_scale;
  9610. const int64_t i0 = ib*n_dims + ic/2;
  9611. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9612. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9613. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9614. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9615. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9616. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9617. } else {
  9618. const int64_t i0 = ic;
  9619. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9620. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9621. dst_data[0] = src[0];
  9622. dst_data[1] = src[1];
  9623. }
  9624. }
  9625. }
  9626. }
  9627. }
  9628. }
  9629. }
  9630. static void ggml_compute_forward_rope(
  9631. const struct ggml_compute_params * params,
  9632. const struct ggml_tensor * src0,
  9633. const struct ggml_tensor * src1,
  9634. struct ggml_tensor * dst) {
  9635. switch (src0->type) {
  9636. case GGML_TYPE_F16:
  9637. {
  9638. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9639. } break;
  9640. case GGML_TYPE_F32:
  9641. {
  9642. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9643. } break;
  9644. default:
  9645. {
  9646. GGML_ASSERT(false);
  9647. } break;
  9648. }
  9649. }
  9650. // ggml_compute_forward_rope_back
  9651. static void ggml_compute_forward_rope_back(
  9652. const struct ggml_compute_params * params,
  9653. const struct ggml_tensor * src0,
  9654. const struct ggml_tensor * src1,
  9655. struct ggml_tensor * dst) {
  9656. switch (src0->type) {
  9657. case GGML_TYPE_F16:
  9658. {
  9659. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9660. } break;
  9661. case GGML_TYPE_F32:
  9662. {
  9663. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9664. } break;
  9665. default:
  9666. {
  9667. GGML_ASSERT(false);
  9668. } break;
  9669. }
  9670. }
  9671. // ggml_compute_forward_conv_transpose_1d
  9672. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9673. const struct ggml_compute_params * params,
  9674. const struct ggml_tensor * src0,
  9675. const struct ggml_tensor * src1,
  9676. struct ggml_tensor * dst) {
  9677. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9678. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9679. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9680. int64_t t0 = ggml_perf_time_us();
  9681. UNUSED(t0);
  9682. GGML_TENSOR_BINARY_OP_LOCALS
  9683. const int ith = params->ith;
  9684. const int nth = params->nth;
  9685. const int nk = ne00*ne01*ne02;
  9686. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9687. GGML_ASSERT(nb10 == sizeof(float));
  9688. if (params->type == GGML_TASK_INIT) {
  9689. memset(params->wdata, 0, params->wsize);
  9690. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9691. {
  9692. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9693. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9694. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9695. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9696. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9698. dst_data[i00*ne02 + i02] = src[i00];
  9699. }
  9700. }
  9701. }
  9702. }
  9703. // permute source data (src1) from (L x Cin) to (Cin x L)
  9704. {
  9705. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9706. ggml_fp16_t * dst_data = wdata;
  9707. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9708. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9709. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9710. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9711. }
  9712. }
  9713. }
  9714. // need to zero dst since we are accumulating into it
  9715. memset(dst->data, 0, ggml_nbytes(dst));
  9716. return;
  9717. }
  9718. if (params->type == GGML_TASK_FINALIZE) {
  9719. return;
  9720. }
  9721. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9722. // total rows in dst
  9723. const int nr = ne1;
  9724. // rows per thread
  9725. const int dr = (nr + nth - 1)/nth;
  9726. // row range for this thread
  9727. const int ir0 = dr*ith;
  9728. const int ir1 = MIN(ir0 + dr, nr);
  9729. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9730. ggml_fp16_t * const wdata_src = wdata + nk;
  9731. for (int i1 = ir0; i1 < ir1; i1++) {
  9732. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9733. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9734. for (int i10 = 0; i10 < ne10; i10++) {
  9735. const int i1n = i10*ne11;
  9736. for (int i00 = 0; i00 < ne00; i00++) {
  9737. float v = 0;
  9738. ggml_vec_dot_f16(ne02, &v,
  9739. (ggml_fp16_t *) wdata_src + i1n,
  9740. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9741. dst_data[i10*s0 + i00] += v;
  9742. }
  9743. }
  9744. }
  9745. }
  9746. static void ggml_compute_forward_conv_transpose_1d_f32(
  9747. const struct ggml_compute_params * params,
  9748. const struct ggml_tensor * src0,
  9749. const struct ggml_tensor * src1,
  9750. struct ggml_tensor * dst) {
  9751. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9752. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9753. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9754. int64_t t0 = ggml_perf_time_us();
  9755. UNUSED(t0);
  9756. GGML_TENSOR_BINARY_OP_LOCALS
  9757. const int ith = params->ith;
  9758. const int nth = params->nth;
  9759. const int nk = ne00*ne01*ne02;
  9760. GGML_ASSERT(nb00 == sizeof(float));
  9761. GGML_ASSERT(nb10 == sizeof(float));
  9762. if (params->type == GGML_TASK_INIT) {
  9763. memset(params->wdata, 0, params->wsize);
  9764. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9765. {
  9766. float * const wdata = (float *) params->wdata + 0;
  9767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9768. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9769. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9770. float * dst_data = wdata + i01*ne00*ne02;
  9771. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9772. dst_data[i00*ne02 + i02] = src[i00];
  9773. }
  9774. }
  9775. }
  9776. }
  9777. // prepare source data (src1)
  9778. {
  9779. float * const wdata = (float *) params->wdata + nk;
  9780. float * dst_data = wdata;
  9781. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9782. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9783. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9784. dst_data[i10*ne11 + i11] = src[i10];
  9785. }
  9786. }
  9787. }
  9788. // need to zero dst since we are accumulating into it
  9789. memset(dst->data, 0, ggml_nbytes(dst));
  9790. return;
  9791. }
  9792. if (params->type == GGML_TASK_FINALIZE) {
  9793. return;
  9794. }
  9795. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9796. // total rows in dst
  9797. const int nr = ne1;
  9798. // rows per thread
  9799. const int dr = (nr + nth - 1)/nth;
  9800. // row range for this thread
  9801. const int ir0 = dr*ith;
  9802. const int ir1 = MIN(ir0 + dr, nr);
  9803. float * const wdata = (float *) params->wdata + 0;
  9804. float * const wdata_src = wdata + nk;
  9805. for (int i1 = ir0; i1 < ir1; i1++) {
  9806. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9807. float * wdata_kernel = wdata + i1*ne02*ne00;
  9808. for (int i10 = 0; i10 < ne10; i10++) {
  9809. const int i1n = i10*ne11;
  9810. for (int i00 = 0; i00 < ne00; i00++) {
  9811. float v = 0;
  9812. ggml_vec_dot_f32(ne02, &v,
  9813. wdata_src + i1n,
  9814. wdata_kernel + i00*ne02);
  9815. dst_data[i10*s0 + i00] += v;
  9816. }
  9817. }
  9818. }
  9819. }
  9820. static void ggml_compute_forward_conv_transpose_1d(
  9821. const struct ggml_compute_params * params,
  9822. const struct ggml_tensor * src0,
  9823. const struct ggml_tensor * src1,
  9824. struct ggml_tensor * dst) {
  9825. switch (src0->type) {
  9826. case GGML_TYPE_F16:
  9827. {
  9828. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9829. } break;
  9830. case GGML_TYPE_F32:
  9831. {
  9832. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9833. } break;
  9834. default:
  9835. {
  9836. GGML_ASSERT(false);
  9837. } break;
  9838. }
  9839. }
  9840. // src0: kernel [OC, IC, KH, KW]
  9841. // src1: image [N, IC, IH, IW]
  9842. // dst: result [N, OH, OW, IC*KH*KW]
  9843. static void ggml_compute_forward_im2col_f16(
  9844. const struct ggml_compute_params * params,
  9845. const struct ggml_tensor * src0,
  9846. const struct ggml_tensor * src1,
  9847. struct ggml_tensor * dst) {
  9848. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9850. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9851. int64_t t0 = ggml_perf_time_us();
  9852. UNUSED(t0);
  9853. GGML_TENSOR_BINARY_OP_LOCALS;
  9854. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9855. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9856. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9857. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9858. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9859. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9860. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9861. const int ith = params->ith;
  9862. const int nth = params->nth;
  9863. const int64_t N = is_2D ? ne13 : ne12;
  9864. const int64_t IC = is_2D ? ne12 : ne11;
  9865. const int64_t IH = is_2D ? ne11 : 1;
  9866. const int64_t IW = ne10;
  9867. const int64_t KH = is_2D ? ne01 : 1;
  9868. const int64_t KW = ne00;
  9869. const int64_t OH = is_2D ? ne2 : 1;
  9870. const int64_t OW = ne1;
  9871. int ofs0 = is_2D ? nb13 : nb12;
  9872. int ofs1 = is_2D ? nb12 : nb11;
  9873. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9874. GGML_ASSERT(nb10 == sizeof(float));
  9875. if (params->type == GGML_TASK_INIT) {
  9876. return;
  9877. }
  9878. if (params->type == GGML_TASK_FINALIZE) {
  9879. return;
  9880. }
  9881. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9882. {
  9883. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9884. for (int64_t in = 0; in < N; in++) {
  9885. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9886. for (int64_t iow = 0; iow < OW; iow++) {
  9887. for (int64_t iic = ith; iic < IC; iic += nth) {
  9888. // micro kernel
  9889. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9890. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9891. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9892. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9893. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9894. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9895. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9896. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9897. } else {
  9898. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9899. }
  9900. }
  9901. }
  9902. }
  9903. }
  9904. }
  9905. }
  9906. }
  9907. }
  9908. static void ggml_compute_forward_im2col(
  9909. const struct ggml_compute_params * params,
  9910. const struct ggml_tensor * src0,
  9911. const struct ggml_tensor * src1,
  9912. struct ggml_tensor * dst) {
  9913. switch (src0->type) {
  9914. case GGML_TYPE_F16:
  9915. {
  9916. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9917. } break;
  9918. case GGML_TYPE_F32:
  9919. {
  9920. GGML_ASSERT(false);
  9921. } break;
  9922. default:
  9923. {
  9924. GGML_ASSERT(false);
  9925. } break;
  9926. }
  9927. }
  9928. // ggml_compute_forward_conv_transpose_2d
  9929. static void ggml_compute_forward_conv_transpose_2d(
  9930. const struct ggml_compute_params * params,
  9931. const struct ggml_tensor * src0,
  9932. const struct ggml_tensor * src1,
  9933. struct ggml_tensor * dst) {
  9934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9936. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9937. int64_t t0 = ggml_perf_time_us();
  9938. UNUSED(t0);
  9939. GGML_TENSOR_BINARY_OP_LOCALS
  9940. const int ith = params->ith;
  9941. const int nth = params->nth;
  9942. const int nk = ne00*ne01*ne02*ne03;
  9943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9944. GGML_ASSERT(nb10 == sizeof(float));
  9945. if (params->type == GGML_TASK_INIT) {
  9946. memset(params->wdata, 0, params->wsize);
  9947. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9948. {
  9949. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9950. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9951. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9953. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9954. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9955. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9956. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9957. }
  9958. }
  9959. }
  9960. }
  9961. }
  9962. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9963. {
  9964. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9965. for (int i12 = 0; i12 < ne12; i12++) {
  9966. for (int i11 = 0; i11 < ne11; i11++) {
  9967. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9968. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9969. for (int i10 = 0; i10 < ne10; i10++) {
  9970. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9971. }
  9972. }
  9973. }
  9974. }
  9975. memset(dst->data, 0, ggml_nbytes(dst));
  9976. return;
  9977. }
  9978. if (params->type == GGML_TASK_FINALIZE) {
  9979. return;
  9980. }
  9981. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9982. // total patches in dst
  9983. const int np = ne2;
  9984. // patches per thread
  9985. const int dp = (np + nth - 1)/nth;
  9986. // patch range for this thread
  9987. const int ip0 = dp*ith;
  9988. const int ip1 = MIN(ip0 + dp, np);
  9989. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9990. ggml_fp16_t * const wdata_src = wdata + nk;
  9991. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9992. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9993. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9994. for (int i11 = 0; i11 < ne11; i11++) {
  9995. for (int i10 = 0; i10 < ne10; i10++) {
  9996. const int i1n = i11*ne10*ne12 + i10*ne12;
  9997. for (int i01 = 0; i01 < ne01; i01++) {
  9998. for (int i00 = 0; i00 < ne00; i00++) {
  9999. float v = 0;
  10000. ggml_vec_dot_f16(ne03, &v,
  10001. wdata_src + i1n,
  10002. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10003. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10004. }
  10005. }
  10006. }
  10007. }
  10008. }
  10009. }
  10010. // ggml_compute_forward_pool_1d_sk_p0
  10011. static void ggml_compute_forward_pool_1d_sk_p0(
  10012. const struct ggml_compute_params * params,
  10013. const enum ggml_op_pool op,
  10014. const struct ggml_tensor * src,
  10015. const int k,
  10016. struct ggml_tensor * dst) {
  10017. assert(src->type == GGML_TYPE_F32);
  10018. assert(params->ith == 0);
  10019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10020. return;
  10021. }
  10022. const char * cdata = (const char *)src->data;
  10023. const char * const data_end = cdata + ggml_nbytes(src);
  10024. float * drow = (float *)dst->data;
  10025. const int64_t rs = dst->ne[0];
  10026. while (cdata < data_end) {
  10027. const float * const srow = (const float *)cdata;
  10028. int j = 0;
  10029. for (int64_t i = 0; i < rs; ++i) {
  10030. switch (op) {
  10031. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10032. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10033. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10034. }
  10035. for (int ki = 0; ki < k; ++ki) {
  10036. switch (op) {
  10037. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10038. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10039. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10040. }
  10041. ++j;
  10042. }
  10043. switch (op) {
  10044. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10045. case GGML_OP_POOL_MAX: break;
  10046. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10047. }
  10048. }
  10049. cdata += src->nb[1];
  10050. drow += rs;
  10051. }
  10052. }
  10053. // ggml_compute_forward_pool_1d
  10054. static void ggml_compute_forward_pool_1d(
  10055. const struct ggml_compute_params * params,
  10056. const struct ggml_tensor * src0,
  10057. struct ggml_tensor * dst) {
  10058. const int32_t * opts = (const int32_t *)dst->op_params;
  10059. enum ggml_op_pool op = opts[0];
  10060. const int k0 = opts[1];
  10061. const int s0 = opts[2];
  10062. const int p0 = opts[3];
  10063. GGML_ASSERT(p0 == 0); // padding not supported
  10064. GGML_ASSERT(k0 == s0); // only s = k supported
  10065. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10066. }
  10067. // ggml_compute_forward_pool_2d
  10068. static void ggml_compute_forward_pool_2d(
  10069. const struct ggml_compute_params * params,
  10070. const struct ggml_tensor * src,
  10071. struct ggml_tensor * dst) {
  10072. assert(src->type == GGML_TYPE_F32);
  10073. assert(params->ith == 0);
  10074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10075. return;
  10076. }
  10077. const int32_t * opts = (const int32_t *)dst->op_params;
  10078. enum ggml_op_pool op = opts[0];
  10079. const int k0 = opts[1];
  10080. const int k1 = opts[2];
  10081. const int s0 = opts[3];
  10082. const int s1 = opts[4];
  10083. const int p0 = opts[5];
  10084. const int p1 = opts[6];
  10085. const char * cdata = (const char*)src->data;
  10086. const char * const data_end = cdata + ggml_nbytes(src);
  10087. const int64_t px = dst->ne[0];
  10088. const int64_t py = dst->ne[1];
  10089. const int64_t pa = px * py;
  10090. float * dplane = (float *)dst->data;
  10091. const int ka = k0 * k1;
  10092. const int offset0 = -p0;
  10093. const int offset1 = -p1;
  10094. while (cdata < data_end) {
  10095. for (int oy = 0; oy < py; ++oy) {
  10096. float * const drow = dplane + oy * px;
  10097. for (int ox = 0; ox < px; ++ox) {
  10098. float * const out = drow + ox;
  10099. switch (op) {
  10100. case GGML_OP_POOL_AVG: *out = 0; break;
  10101. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10102. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10103. }
  10104. const int ix = offset0 + ox * s0;
  10105. const int iy = offset1 + oy * s1;
  10106. for (int ky = 0; ky < k1; ++ky) {
  10107. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10108. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10109. for (int kx = 0; kx < k0; ++kx) {
  10110. int j = ix + kx;
  10111. if (j < 0 || j >= src->ne[0]) continue;
  10112. switch (op) {
  10113. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10114. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10115. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10116. }
  10117. }
  10118. }
  10119. switch (op) {
  10120. case GGML_OP_POOL_AVG: *out /= ka; break;
  10121. case GGML_OP_POOL_MAX: break;
  10122. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10123. }
  10124. }
  10125. }
  10126. cdata += src->nb[2];
  10127. dplane += pa;
  10128. }
  10129. }
  10130. // ggml_compute_forward_upscale
  10131. static void ggml_compute_forward_upscale_f32(
  10132. const struct ggml_compute_params * params,
  10133. const struct ggml_tensor * src0,
  10134. struct ggml_tensor * dst) {
  10135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10136. return;
  10137. }
  10138. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10139. const int ith = params->ith;
  10140. const int nth = params->nth;
  10141. GGML_TENSOR_UNARY_OP_LOCALS
  10142. const int scale_factor = dst->op_params[0];
  10143. // TODO: optimize
  10144. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10145. const int64_t i03 = i3;
  10146. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10147. const int64_t i02 = i2;
  10148. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10149. const int64_t i01 = i1 / scale_factor;
  10150. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10151. const int64_t i00 = i0 / scale_factor;
  10152. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10153. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10154. *y = *x;
  10155. }
  10156. }
  10157. }
  10158. }
  10159. }
  10160. static void ggml_compute_forward_upscale(
  10161. const struct ggml_compute_params * params,
  10162. const struct ggml_tensor * src0,
  10163. struct ggml_tensor * dst) {
  10164. switch (src0->type) {
  10165. case GGML_TYPE_F32:
  10166. {
  10167. ggml_compute_forward_upscale_f32(params, src0, dst);
  10168. } break;
  10169. default:
  10170. {
  10171. GGML_ASSERT(false);
  10172. } break;
  10173. }
  10174. }
  10175. // ggml_compute_forward_pad
  10176. static void ggml_compute_forward_pad_f32(
  10177. const struct ggml_compute_params * params,
  10178. const struct ggml_tensor * src0,
  10179. struct ggml_tensor * dst) {
  10180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10181. return;
  10182. }
  10183. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10184. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10185. const int ith = params->ith;
  10186. const int nth = params->nth;
  10187. GGML_TENSOR_UNARY_OP_LOCALS
  10188. float * dst_ptr = (float *) dst->data;
  10189. // TODO: optimize
  10190. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10191. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10192. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10193. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10194. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10195. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10196. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10197. dst_ptr[dst_idx] = *src_ptr;
  10198. } else {
  10199. dst_ptr[dst_idx] = 0;
  10200. }
  10201. }
  10202. }
  10203. }
  10204. }
  10205. }
  10206. static void ggml_compute_forward_pad(
  10207. const struct ggml_compute_params * params,
  10208. const struct ggml_tensor * src0,
  10209. struct ggml_tensor * dst) {
  10210. switch (src0->type) {
  10211. case GGML_TYPE_F32:
  10212. {
  10213. ggml_compute_forward_pad_f32(params, src0, dst);
  10214. } break;
  10215. default:
  10216. {
  10217. GGML_ASSERT(false);
  10218. } break;
  10219. }
  10220. }
  10221. // ggml_compute_forward_argsort
  10222. static void ggml_compute_forward_argsort_f32(
  10223. const struct ggml_compute_params * params,
  10224. const struct ggml_tensor * src0,
  10225. struct ggml_tensor * dst) {
  10226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10227. return;
  10228. }
  10229. GGML_TENSOR_UNARY_OP_LOCALS
  10230. GGML_ASSERT(nb0 == sizeof(float));
  10231. const int ith = params->ith;
  10232. const int nth = params->nth;
  10233. const int64_t nr = ggml_nrows(src0);
  10234. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10235. for (int64_t i = ith; i < nr; i += nth) {
  10236. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10237. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10238. for (int64_t j = 0; j < ne0; j++) {
  10239. dst_data[j] = j;
  10240. }
  10241. // C doesn't have a functional sort, so we do a bubble sort instead
  10242. for (int64_t j = 0; j < ne0; j++) {
  10243. for (int64_t k = j + 1; k < ne0; k++) {
  10244. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10245. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10246. int32_t tmp = dst_data[j];
  10247. dst_data[j] = dst_data[k];
  10248. dst_data[k] = tmp;
  10249. }
  10250. }
  10251. }
  10252. }
  10253. }
  10254. static void ggml_compute_forward_argsort(
  10255. const struct ggml_compute_params * params,
  10256. const struct ggml_tensor * src0,
  10257. struct ggml_tensor * dst) {
  10258. switch (src0->type) {
  10259. case GGML_TYPE_F32:
  10260. {
  10261. ggml_compute_forward_argsort_f32(params, src0, dst);
  10262. } break;
  10263. default:
  10264. {
  10265. GGML_ASSERT(false);
  10266. } break;
  10267. }
  10268. }
  10269. // ggml_compute_forward_flash_attn
  10270. static void ggml_compute_forward_flash_attn_f32(
  10271. const struct ggml_compute_params * params,
  10272. const struct ggml_tensor * q,
  10273. const struct ggml_tensor * k,
  10274. const struct ggml_tensor * v,
  10275. const bool masked,
  10276. struct ggml_tensor * dst) {
  10277. int64_t t0 = ggml_perf_time_us();
  10278. UNUSED(t0);
  10279. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10280. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10281. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10282. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10283. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10284. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10287. const int ith = params->ith;
  10288. const int nth = params->nth;
  10289. const int64_t D = neq0;
  10290. const int64_t N = neq1;
  10291. const int64_t P = nek1 - N;
  10292. const int64_t M = P + N;
  10293. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10294. GGML_ASSERT(ne0 == D);
  10295. GGML_ASSERT(ne1 == N);
  10296. GGML_ASSERT(P >= 0);
  10297. GGML_ASSERT(nbq0 == sizeof(float));
  10298. GGML_ASSERT(nbk0 == sizeof(float));
  10299. GGML_ASSERT(nbv0 == sizeof(float));
  10300. GGML_ASSERT(neq0 == D);
  10301. GGML_ASSERT(nek0 == D);
  10302. GGML_ASSERT(nev1 == D);
  10303. GGML_ASSERT(neq1 == N);
  10304. GGML_ASSERT(nek1 == N + P);
  10305. GGML_ASSERT(nev1 == D);
  10306. // dst cannot be transposed or permuted
  10307. GGML_ASSERT(nb0 == sizeof(float));
  10308. GGML_ASSERT(nb0 <= nb1);
  10309. GGML_ASSERT(nb1 <= nb2);
  10310. GGML_ASSERT(nb2 <= nb3);
  10311. if (params->type == GGML_TASK_INIT) {
  10312. return;
  10313. }
  10314. if (params->type == GGML_TASK_FINALIZE) {
  10315. return;
  10316. }
  10317. // parallelize by q rows using ggml_vec_dot_f32
  10318. // total rows in q
  10319. const int nr = neq1*neq2*neq3;
  10320. // rows per thread
  10321. const int dr = (nr + nth - 1)/nth;
  10322. // row range for this thread
  10323. const int ir0 = dr*ith;
  10324. const int ir1 = MIN(ir0 + dr, nr);
  10325. const float scale = 1.0f/sqrtf(D);
  10326. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10327. for (int ir = ir0; ir < ir1; ++ir) {
  10328. // q indices
  10329. const int iq3 = ir/(neq2*neq1);
  10330. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10331. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10332. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10333. for (int i = M; i < Mup; ++i) {
  10334. S[i] = -INFINITY;
  10335. }
  10336. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10337. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10338. // k indices
  10339. const int ik3 = iq3;
  10340. const int ik2 = iq2 % nek2;
  10341. const int ik1 = ic;
  10342. // S indices
  10343. const int i1 = ik1;
  10344. ggml_vec_dot_f32(neq0,
  10345. S + i1,
  10346. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10347. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10348. }
  10349. // scale
  10350. ggml_vec_scale_f32(masked_begin, S, scale);
  10351. for (int64_t i = masked_begin; i < M; i++) {
  10352. S[i] = -INFINITY;
  10353. }
  10354. // softmax
  10355. // exclude known -INF S[..] values from max and loop
  10356. // dont forget to set their SW values to zero
  10357. {
  10358. float max = -INFINITY;
  10359. ggml_vec_max_f32(masked_begin, &max, S);
  10360. ggml_float sum = 0.0;
  10361. {
  10362. #ifdef GGML_SOFT_MAX_ACCELERATE
  10363. max = -max;
  10364. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10365. vvexpf(S, S, &Mup);
  10366. ggml_vec_sum_f32(Mup, &sum, S);
  10367. #else
  10368. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10369. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10370. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10371. if (i >= masked_begin) {
  10372. break;
  10373. }
  10374. float * SS = S + i;
  10375. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10376. if (i + j >= masked_begin) {
  10377. break;
  10378. } else if (SS[j] == -INFINITY) {
  10379. SS[j] = 0.0f;
  10380. } else {
  10381. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10382. const float val = expf(SS[j] - max);
  10383. #else
  10384. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10385. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10386. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10387. #endif
  10388. sump[j] += (ggml_float)val;
  10389. SS[j] = val;
  10390. }
  10391. }
  10392. }
  10393. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10394. sum += sump[i];
  10395. }
  10396. #endif
  10397. }
  10398. assert(sum > 0.0);
  10399. sum = 1.0/sum;
  10400. ggml_vec_scale_f32(masked_begin, S, sum);
  10401. #ifndef NDEBUG
  10402. for (int i = 0; i < masked_begin; ++i) {
  10403. assert(!isnan(S[i]));
  10404. assert(!isinf(S[i]));
  10405. }
  10406. #endif
  10407. }
  10408. for (int64_t ic = 0; ic < nev1; ++ic) {
  10409. // dst indices
  10410. const int i1 = iq1;
  10411. const int i2 = iq2;
  10412. const int i3 = iq3;
  10413. // v indices
  10414. const int iv2 = iq2 % nev2;
  10415. const int iv3 = iq3;
  10416. ggml_vec_dot_f32(masked_begin,
  10417. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10418. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10419. S);
  10420. }
  10421. }
  10422. }
  10423. static void ggml_compute_forward_flash_attn_f16(
  10424. const struct ggml_compute_params * params,
  10425. const struct ggml_tensor * q,
  10426. const struct ggml_tensor * k,
  10427. const struct ggml_tensor * v,
  10428. const bool masked,
  10429. struct ggml_tensor * dst) {
  10430. int64_t t0 = ggml_perf_time_us();
  10431. UNUSED(t0);
  10432. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10433. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10434. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10435. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10436. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10437. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10438. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10439. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10440. const int ith = params->ith;
  10441. const int nth = params->nth;
  10442. const int64_t D = neq0;
  10443. const int64_t N = neq1;
  10444. const int64_t P = nek1 - N;
  10445. const int64_t M = P + N;
  10446. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10447. GGML_ASSERT(ne0 == D);
  10448. GGML_ASSERT(ne1 == N);
  10449. GGML_ASSERT(P >= 0);
  10450. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10451. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10452. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10453. GGML_ASSERT(neq0 == D);
  10454. GGML_ASSERT(nek0 == D);
  10455. GGML_ASSERT(nev1 == D);
  10456. GGML_ASSERT(neq1 == N);
  10457. GGML_ASSERT(nek1 == N + P);
  10458. GGML_ASSERT(nev1 == D);
  10459. // dst cannot be transposed or permuted
  10460. GGML_ASSERT(nb0 == sizeof(float));
  10461. GGML_ASSERT(nb0 <= nb1);
  10462. GGML_ASSERT(nb1 <= nb2);
  10463. GGML_ASSERT(nb2 <= nb3);
  10464. if (params->type == GGML_TASK_INIT) {
  10465. return;
  10466. }
  10467. if (params->type == GGML_TASK_FINALIZE) {
  10468. return;
  10469. }
  10470. // parallelize by q rows using ggml_vec_dot_f32
  10471. // total rows in q
  10472. const int nr = neq1*neq2*neq3;
  10473. // rows per thread
  10474. const int dr = (nr + nth - 1)/nth;
  10475. // row range for this thread
  10476. const int ir0 = dr*ith;
  10477. const int ir1 = MIN(ir0 + dr, nr);
  10478. const float scale = 1.0f/sqrtf(D);
  10479. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10480. for (int ir = ir0; ir < ir1; ++ir) {
  10481. // q indices
  10482. const int iq3 = ir/(neq2*neq1);
  10483. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10484. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10485. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10486. for (int i = M; i < Mup; ++i) {
  10487. S[i] = -INFINITY;
  10488. }
  10489. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10490. for (int64_t ic = 0; ic < nek1; ++ic) {
  10491. // k indices
  10492. const int ik3 = iq3;
  10493. const int ik2 = iq2 % nek2;
  10494. const int ik1 = ic;
  10495. // S indices
  10496. const int i1 = ik1;
  10497. ggml_vec_dot_f16(neq0,
  10498. S + i1,
  10499. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10500. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10501. }
  10502. } else {
  10503. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10504. // k indices
  10505. const int ik3 = iq3;
  10506. const int ik2 = iq2 % nek2;
  10507. const int ik1 = ic;
  10508. // S indices
  10509. const int i1 = ik1;
  10510. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10511. S + i1,
  10512. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10513. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10514. }
  10515. }
  10516. // scale
  10517. ggml_vec_scale_f32(nek1, S, scale);
  10518. if (masked) {
  10519. for (int64_t i = P; i < M; i++) {
  10520. if (i > P + iq1) {
  10521. S[i] = -INFINITY;
  10522. }
  10523. }
  10524. }
  10525. // softmax
  10526. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10527. // dont forget to set their S values to zero
  10528. {
  10529. float max = -INFINITY;
  10530. ggml_vec_max_f32(M, &max, S);
  10531. ggml_float sum = 0.0;
  10532. {
  10533. #ifdef GGML_SOFT_MAX_ACCELERATE
  10534. max = -max;
  10535. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10536. vvexpf(S, S, &Mup);
  10537. ggml_vec_sum_f32(Mup, &sum, S);
  10538. #else
  10539. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10540. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10541. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10542. float * SS = S + i;
  10543. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10544. if (SS[j] == -INFINITY) {
  10545. SS[j] = 0.0f;
  10546. } else {
  10547. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10548. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10549. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10550. sump[j] += (ggml_float)val;
  10551. SS[j] = val;
  10552. }
  10553. }
  10554. }
  10555. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10556. sum += sump[i];
  10557. }
  10558. #endif
  10559. }
  10560. assert(sum > 0.0);
  10561. sum = 1.0/sum;
  10562. ggml_vec_scale_f32(M, S, sum);
  10563. #ifndef NDEBUG
  10564. for (int i = 0; i < M; ++i) {
  10565. assert(!isnan(S[i]));
  10566. assert(!isinf(S[i]));
  10567. }
  10568. #endif
  10569. }
  10570. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10571. for (int64_t i = 0; i < M; i++) {
  10572. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10573. }
  10574. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10575. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10576. for (int64_t ic = 0; ic < nev1; ++ic) {
  10577. // dst indices
  10578. const int i1 = iq1;
  10579. const int i2 = iq2;
  10580. const int i3 = iq3;
  10581. // v indices
  10582. const int iv2 = iq2 % nev2;
  10583. const int iv3 = iq3;
  10584. ggml_vec_dot_f16(nev0,
  10585. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10586. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10587. S16);
  10588. }
  10589. } else {
  10590. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10591. // dst indices
  10592. const int i1 = iq1;
  10593. const int i2 = iq2;
  10594. const int i3 = iq3;
  10595. // v indices
  10596. const int iv2 = iq2 % nev2;
  10597. const int iv3 = iq3;
  10598. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10599. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10600. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10601. S16);
  10602. }
  10603. }
  10604. }
  10605. }
  10606. static void ggml_compute_forward_flash_attn(
  10607. const struct ggml_compute_params * params,
  10608. const struct ggml_tensor * q,
  10609. const struct ggml_tensor * k,
  10610. const struct ggml_tensor * v,
  10611. const bool masked,
  10612. struct ggml_tensor * dst) {
  10613. switch (q->type) {
  10614. case GGML_TYPE_F16:
  10615. {
  10616. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10617. } break;
  10618. case GGML_TYPE_F32:
  10619. {
  10620. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10621. } break;
  10622. default:
  10623. {
  10624. GGML_ASSERT(false);
  10625. } break;
  10626. }
  10627. }
  10628. // ggml_compute_forward_flash_ff
  10629. static void ggml_compute_forward_flash_ff_f16(
  10630. const struct ggml_compute_params * params,
  10631. const struct ggml_tensor * a, // F16
  10632. const struct ggml_tensor * b0, // F16 fc_w
  10633. const struct ggml_tensor * b1, // F32 fc_b
  10634. const struct ggml_tensor * c0, // F16 proj_w
  10635. const struct ggml_tensor * c1, // F32 proj_b
  10636. struct ggml_tensor * dst) {
  10637. int64_t t0 = ggml_perf_time_us();
  10638. UNUSED(t0);
  10639. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10640. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10641. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10642. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10643. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10644. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10645. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10646. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10647. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10648. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10649. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10650. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10651. const int ith = params->ith;
  10652. const int nth = params->nth;
  10653. const int64_t D = nea0;
  10654. //const int64_t N = nea1;
  10655. const int64_t M = neb01;
  10656. GGML_ASSERT(ne0 == nea0);
  10657. GGML_ASSERT(ne1 == nea1);
  10658. GGML_ASSERT(ne2 == nea2);
  10659. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10660. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10661. GGML_ASSERT(nbb10 == sizeof(float));
  10662. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10663. GGML_ASSERT(nbc10 == sizeof(float));
  10664. GGML_ASSERT(neb00 == D);
  10665. GGML_ASSERT(neb01 == M);
  10666. GGML_ASSERT(neb10 == M);
  10667. GGML_ASSERT(neb11 == 1);
  10668. GGML_ASSERT(nec00 == M);
  10669. GGML_ASSERT(nec01 == D);
  10670. GGML_ASSERT(nec10 == D);
  10671. GGML_ASSERT(nec11 == 1);
  10672. // dst cannot be transposed or permuted
  10673. GGML_ASSERT(nb0 == sizeof(float));
  10674. GGML_ASSERT(nb0 <= nb1);
  10675. GGML_ASSERT(nb1 <= nb2);
  10676. GGML_ASSERT(nb2 <= nb3);
  10677. if (params->type == GGML_TASK_INIT) {
  10678. return;
  10679. }
  10680. if (params->type == GGML_TASK_FINALIZE) {
  10681. return;
  10682. }
  10683. // parallelize by a rows using ggml_vec_dot_f32
  10684. // total rows in a
  10685. const int nr = nea1*nea2*nea3;
  10686. // rows per thread
  10687. const int dr = (nr + nth - 1)/nth;
  10688. // row range for this thread
  10689. const int ir0 = dr*ith;
  10690. const int ir1 = MIN(ir0 + dr, nr);
  10691. for (int ir = ir0; ir < ir1; ++ir) {
  10692. // a indices
  10693. const int ia3 = ir/(nea2*nea1);
  10694. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10695. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10696. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10697. for (int64_t ic = 0; ic < neb01; ++ic) {
  10698. // b0 indices
  10699. const int ib03 = ia3;
  10700. const int ib02 = ia2;
  10701. const int ib01 = ic;
  10702. // S indices
  10703. const int i1 = ib01;
  10704. ggml_vec_dot_f16(nea0,
  10705. S + i1,
  10706. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10707. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10708. }
  10709. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10710. //ggml_vec_gelu_f32(neb01, S, S);
  10711. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10712. for (int64_t i = 0; i < M; i++) {
  10713. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10714. }
  10715. ggml_vec_gelu_f16(neb01, S16, S16);
  10716. {
  10717. // dst indices
  10718. const int i1 = ia1;
  10719. const int i2 = ia2;
  10720. const int i3 = ia3;
  10721. for (int64_t ic = 0; ic < nec01; ++ic) {
  10722. ggml_vec_dot_f16(neb01,
  10723. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10724. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10725. S16);
  10726. }
  10727. ggml_vec_add_f32(nec01,
  10728. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10729. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10730. (float *) c1->data);
  10731. }
  10732. }
  10733. }
  10734. static void ggml_compute_forward_flash_ff(
  10735. const struct ggml_compute_params * params,
  10736. const struct ggml_tensor * a,
  10737. const struct ggml_tensor * b0,
  10738. const struct ggml_tensor * b1,
  10739. const struct ggml_tensor * c0,
  10740. const struct ggml_tensor * c1,
  10741. struct ggml_tensor * dst) {
  10742. switch (b0->type) {
  10743. case GGML_TYPE_F16:
  10744. {
  10745. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10746. } break;
  10747. case GGML_TYPE_F32:
  10748. {
  10749. GGML_ASSERT(false); // TODO
  10750. } break;
  10751. default:
  10752. {
  10753. GGML_ASSERT(false);
  10754. } break;
  10755. }
  10756. }
  10757. // ggml_compute_forward_flash_attn_back
  10758. static void ggml_compute_forward_flash_attn_back_f32(
  10759. const struct ggml_compute_params * params,
  10760. const struct ggml_tensor * q,
  10761. const struct ggml_tensor * k,
  10762. const struct ggml_tensor * v,
  10763. const struct ggml_tensor * d,
  10764. const bool masked,
  10765. struct ggml_tensor * dst) {
  10766. int64_t t0 = ggml_perf_time_us();
  10767. UNUSED(t0);
  10768. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10769. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10770. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10771. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10772. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10773. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10774. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10775. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10776. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10777. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10778. const int ith = params->ith;
  10779. const int nth = params->nth;
  10780. const int64_t D = neq0;
  10781. const int64_t N = neq1;
  10782. const int64_t P = nek1 - N;
  10783. const int64_t M = P + N;
  10784. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10785. const int mxDM = MAX(D, Mup);
  10786. // GGML_ASSERT(ne0 == D);
  10787. // GGML_ASSERT(ne1 == N);
  10788. GGML_ASSERT(P >= 0);
  10789. GGML_ASSERT(nbq0 == sizeof(float));
  10790. GGML_ASSERT(nbk0 == sizeof(float));
  10791. GGML_ASSERT(nbv0 == sizeof(float));
  10792. GGML_ASSERT(neq0 == D);
  10793. GGML_ASSERT(nek0 == D);
  10794. GGML_ASSERT(nev1 == D);
  10795. GGML_ASSERT(ned0 == D);
  10796. GGML_ASSERT(neq1 == N);
  10797. GGML_ASSERT(nek1 == N + P);
  10798. GGML_ASSERT(nev1 == D);
  10799. GGML_ASSERT(ned1 == N);
  10800. // dst cannot be transposed or permuted
  10801. GGML_ASSERT(nb0 == sizeof(float));
  10802. GGML_ASSERT(nb0 <= nb1);
  10803. GGML_ASSERT(nb1 <= nb2);
  10804. GGML_ASSERT(nb2 <= nb3);
  10805. if (params->type == GGML_TASK_INIT) {
  10806. if (ith == 0) {
  10807. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10808. }
  10809. return;
  10810. }
  10811. if (params->type == GGML_TASK_FINALIZE) {
  10812. return;
  10813. }
  10814. const int64_t elem_q = ggml_nelements(q);
  10815. const int64_t elem_k = ggml_nelements(k);
  10816. enum ggml_type result_type = dst->type;
  10817. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10818. const size_t tsize = ggml_type_size(result_type);
  10819. const size_t offs_q = 0;
  10820. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10821. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10822. void * grad_q = (char *) dst->data;
  10823. void * grad_k = (char *) dst->data + offs_k;
  10824. void * grad_v = (char *) dst->data + offs_v;
  10825. const size_t nbgq1 = nb0*neq0;
  10826. const size_t nbgq2 = nb0*neq0*neq1;
  10827. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10828. const size_t nbgk1 = nb0*nek0;
  10829. const size_t nbgk2 = nb0*nek0*nek1;
  10830. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10831. const size_t nbgv1 = nb0*nev0;
  10832. const size_t nbgv2 = nb0*nev0*nev1;
  10833. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10834. // parallelize by k rows using ggml_vec_dot_f32
  10835. // total rows in k
  10836. const int nr = nek2*nek3;
  10837. // rows per thread
  10838. const int dr = (nr + nth - 1)/nth;
  10839. // row range for this thread
  10840. const int ir0 = dr*ith;
  10841. const int ir1 = MIN(ir0 + dr, nr);
  10842. const float scale = 1.0f/sqrtf(D);
  10843. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10844. // how often k2 (and v2) is repeated in q2
  10845. int nrep = neq2/nek2;
  10846. for (int ir = ir0; ir < ir1; ++ir) {
  10847. // q indices
  10848. const int ik3 = ir/(nek2);
  10849. const int ik2 = ir - ik3*nek2;
  10850. const int iq3 = ik3;
  10851. const int id3 = ik3;
  10852. const int iv3 = ik3;
  10853. const int iv2 = ik2;
  10854. for (int irep = 0; irep < nrep; ++irep) {
  10855. const int iq2 = ik2 + irep*nek2;
  10856. const int id2 = iq2;
  10857. // (ik2 + irep*nek2) % nek2 == ik2
  10858. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10859. const int id1 = iq1;
  10860. // not sure about CACHE_LINE_SIZE_F32..
  10861. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10862. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10863. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10864. for (int i = M; i < Mup; ++i) {
  10865. S[i] = -INFINITY;
  10866. }
  10867. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10868. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10869. // k indices
  10870. const int ik1 = ic;
  10871. // S indices
  10872. const int i1 = ik1;
  10873. ggml_vec_dot_f32(neq0,
  10874. S + i1,
  10875. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10876. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10877. }
  10878. // scale
  10879. ggml_vec_scale_f32(masked_begin, S, scale);
  10880. for (int64_t i = masked_begin; i < M; i++) {
  10881. S[i] = -INFINITY;
  10882. }
  10883. // softmax
  10884. // exclude known -INF S[..] values from max and loop
  10885. // dont forget to set their SM values to zero
  10886. {
  10887. float max = -INFINITY;
  10888. ggml_vec_max_f32(masked_begin, &max, S);
  10889. ggml_float sum = 0.0;
  10890. {
  10891. #ifdef GGML_SOFT_MAX_ACCELERATE
  10892. max = -max;
  10893. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10894. vvexpf(SM, SM, &Mup);
  10895. ggml_vec_sum_f32(Mup, &sum, SM);
  10896. #else
  10897. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10898. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10899. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10900. if (i >= masked_begin) {
  10901. break;
  10902. }
  10903. float * SR = S + i;
  10904. float * SW = SM + i;
  10905. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10906. if (i + j >= masked_begin) {
  10907. break;
  10908. } else if (SR[j] == -INFINITY) {
  10909. SW[j] = 0.0f;
  10910. } else {
  10911. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10912. const float val = expf(SR[j] - max);
  10913. #else
  10914. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10915. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10916. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10917. #endif
  10918. sump[j] += (ggml_float)val;
  10919. SW[j] = val;
  10920. }
  10921. }
  10922. }
  10923. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10924. sum += sump[i];
  10925. }
  10926. #endif
  10927. }
  10928. assert(sum > 0.0);
  10929. sum = 1.0/sum;
  10930. ggml_vec_scale_f32(masked_begin, SM, sum);
  10931. }
  10932. // step-by-step explanation
  10933. {
  10934. // forward-process shape grads from backward process
  10935. // parallel_for ik2,ik3:
  10936. // for irep:
  10937. // iq2 = ik2 + irep*nek2
  10938. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10939. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10940. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10941. // for iq1:
  10942. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10943. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10944. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10945. // S0 = -Inf [D,1,1,1]
  10946. // ~S1[i] = dot(kcur[:D,i], qcur)
  10947. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10948. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10949. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10950. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10951. // ~S5[i] = dot(vcur[:,i], S4)
  10952. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10953. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10954. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10955. // dst backward-/ grad[dst] = d
  10956. //
  10957. // output gradients with their dependencies:
  10958. //
  10959. // grad[kcur] = grad[S1].T @ qcur
  10960. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10961. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10962. // grad[S4] = grad[S5] @ vcur
  10963. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10964. // grad[qcur] = grad[S1] @ kcur
  10965. // grad[vcur] = grad[S5].T @ S4
  10966. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10967. //
  10968. // in post-order:
  10969. //
  10970. // S1 = qcur @ kcur.T
  10971. // S2 = S1 * scale
  10972. // S3 = diag_mask_inf(S2, P)
  10973. // S4 = softmax(S3)
  10974. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10975. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10976. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10977. // grad[qcur] = grad[S1] @ kcur
  10978. // grad[kcur] = grad[S1].T @ qcur
  10979. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10980. //
  10981. // using less variables (SM=S4):
  10982. //
  10983. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10984. // SM = softmax(S)
  10985. // S = d[:D,iq1,iq2,iq3] @ vcur
  10986. // dot_SM_gradSM = dot(SM, S)
  10987. // S = SM * (S - dot(SM, S))
  10988. // S = diag_mask_zero(S, P) * scale
  10989. //
  10990. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10991. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10992. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10993. }
  10994. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10995. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10996. // for ic:
  10997. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10998. // exclude known future zero S[..] values from operation
  10999. ggml_vec_set_f32(masked_begin, S, 0);
  11000. for (int64_t ic = 0; ic < D; ++ic) {
  11001. ggml_vec_mad_f32(masked_begin,
  11002. S,
  11003. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11004. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11005. }
  11006. // S = SM * (S - dot(SM, S))
  11007. float dot_SM_gradSM = 0;
  11008. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11009. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11010. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11011. // S = diag_mask_zero(S, P) * scale
  11012. // already done by above ggml_vec_set_f32
  11013. // exclude known zero S[..] values from operation
  11014. ggml_vec_scale_f32(masked_begin, S, scale);
  11015. // S shape [M,1]
  11016. // SM shape [M,1]
  11017. // kcur shape [D,M]
  11018. // qcur shape [D,1]
  11019. // vcur shape [M,D]
  11020. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11021. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11022. // for ic:
  11023. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11024. // exclude known zero S[..] values from loop
  11025. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11026. ggml_vec_mad_f32(D,
  11027. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11028. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11029. S[ic]);
  11030. }
  11031. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11032. // for ic:
  11033. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11034. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11035. // exclude known zero S[..] values from loop
  11036. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11037. ggml_vec_mad_f32(D,
  11038. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11039. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11040. S[ic]);
  11041. }
  11042. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11043. // for ic:
  11044. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11045. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11046. // exclude known zero SM[..] values from mad
  11047. for (int64_t ic = 0; ic < D; ++ic) {
  11048. ggml_vec_mad_f32(masked_begin,
  11049. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11050. SM,
  11051. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11052. }
  11053. }
  11054. }
  11055. }
  11056. }
  11057. static void ggml_compute_forward_flash_attn_back(
  11058. const struct ggml_compute_params * params,
  11059. const struct ggml_tensor * q,
  11060. const struct ggml_tensor * k,
  11061. const struct ggml_tensor * v,
  11062. const struct ggml_tensor * d,
  11063. const bool masked,
  11064. struct ggml_tensor * dst) {
  11065. switch (q->type) {
  11066. case GGML_TYPE_F32:
  11067. {
  11068. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11069. } break;
  11070. default:
  11071. {
  11072. GGML_ASSERT(false);
  11073. } break;
  11074. }
  11075. }
  11076. // ggml_compute_forward_win_part
  11077. static void ggml_compute_forward_win_part_f32(
  11078. const struct ggml_compute_params * params,
  11079. const struct ggml_tensor * src0,
  11080. struct ggml_tensor * dst) {
  11081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11082. return;
  11083. }
  11084. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11085. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11086. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11087. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11088. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11089. assert(ne00 == ne0);
  11090. assert(ne3 == nep0*nep1);
  11091. // TODO: optimize / multi-thread
  11092. for (int py = 0; py < nep1; ++py) {
  11093. for (int px = 0; px < nep0; ++px) {
  11094. const int64_t i3 = py*nep0 + px;
  11095. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11096. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11097. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11098. const int64_t i02 = py*w + i2;
  11099. const int64_t i01 = px*w + i1;
  11100. const int64_t i00 = i0;
  11101. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11102. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11103. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11104. ((float *) dst->data)[i] = 0.0f;
  11105. } else {
  11106. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11107. }
  11108. }
  11109. }
  11110. }
  11111. }
  11112. }
  11113. }
  11114. static void ggml_compute_forward_win_part(
  11115. const struct ggml_compute_params * params,
  11116. const struct ggml_tensor * src0,
  11117. struct ggml_tensor * dst) {
  11118. switch (src0->type) {
  11119. case GGML_TYPE_F32:
  11120. {
  11121. ggml_compute_forward_win_part_f32(params, src0, dst);
  11122. } break;
  11123. default:
  11124. {
  11125. GGML_ASSERT(false);
  11126. } break;
  11127. }
  11128. }
  11129. // ggml_compute_forward_win_unpart
  11130. static void ggml_compute_forward_win_unpart_f32(
  11131. const struct ggml_compute_params * params,
  11132. const struct ggml_tensor * src0,
  11133. struct ggml_tensor * dst) {
  11134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11135. return;
  11136. }
  11137. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11138. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11139. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11140. // padding
  11141. const int px = (w - ne1%w)%w;
  11142. //const int py = (w - ne2%w)%w;
  11143. const int npx = (px + ne1)/w;
  11144. //const int npy = (py + ne2)/w;
  11145. assert(ne0 == ne00);
  11146. // TODO: optimize / multi-thread
  11147. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11148. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11149. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11150. const int ip2 = i2/w;
  11151. const int ip1 = i1/w;
  11152. const int64_t i02 = i2%w;
  11153. const int64_t i01 = i1%w;
  11154. const int64_t i00 = i0;
  11155. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11156. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11157. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11158. }
  11159. }
  11160. }
  11161. }
  11162. static void ggml_compute_forward_win_unpart(
  11163. const struct ggml_compute_params * params,
  11164. const struct ggml_tensor * src0,
  11165. struct ggml_tensor * dst) {
  11166. switch (src0->type) {
  11167. case GGML_TYPE_F32:
  11168. {
  11169. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11170. } break;
  11171. default:
  11172. {
  11173. GGML_ASSERT(false);
  11174. } break;
  11175. }
  11176. }
  11177. //gmml_compute_forward_unary
  11178. static void ggml_compute_forward_unary(
  11179. const struct ggml_compute_params * params,
  11180. const struct ggml_tensor * src0,
  11181. struct ggml_tensor * dst) {
  11182. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11183. switch (op) {
  11184. case GGML_UNARY_OP_ABS:
  11185. {
  11186. ggml_compute_forward_abs(params, src0, dst);
  11187. } break;
  11188. case GGML_UNARY_OP_SGN:
  11189. {
  11190. ggml_compute_forward_sgn(params, src0, dst);
  11191. } break;
  11192. case GGML_UNARY_OP_NEG:
  11193. {
  11194. ggml_compute_forward_neg(params, src0, dst);
  11195. } break;
  11196. case GGML_UNARY_OP_STEP:
  11197. {
  11198. ggml_compute_forward_step(params, src0, dst);
  11199. } break;
  11200. case GGML_UNARY_OP_TANH:
  11201. {
  11202. ggml_compute_forward_tanh(params, src0, dst);
  11203. } break;
  11204. case GGML_UNARY_OP_ELU:
  11205. {
  11206. ggml_compute_forward_elu(params, src0, dst);
  11207. } break;
  11208. case GGML_UNARY_OP_RELU:
  11209. {
  11210. ggml_compute_forward_relu(params, src0, dst);
  11211. } break;
  11212. case GGML_UNARY_OP_GELU:
  11213. {
  11214. ggml_compute_forward_gelu(params, src0, dst);
  11215. } break;
  11216. case GGML_UNARY_OP_GELU_QUICK:
  11217. {
  11218. ggml_compute_forward_gelu_quick(params, src0, dst);
  11219. } break;
  11220. case GGML_UNARY_OP_SILU:
  11221. {
  11222. ggml_compute_forward_silu(params, src0, dst);
  11223. } break;
  11224. default:
  11225. {
  11226. GGML_ASSERT(false);
  11227. } break;
  11228. }
  11229. }
  11230. // ggml_compute_forward_get_rel_pos
  11231. static void ggml_compute_forward_get_rel_pos_f16(
  11232. const struct ggml_compute_params * params,
  11233. const struct ggml_tensor * src0,
  11234. struct ggml_tensor * dst) {
  11235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11236. return;
  11237. }
  11238. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11239. GGML_TENSOR_UNARY_OP_LOCALS
  11240. const int64_t w = ne1;
  11241. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11242. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11243. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11244. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11245. const int64_t pos = (w - i1 - 1) + i2;
  11246. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11247. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11248. }
  11249. }
  11250. }
  11251. }
  11252. static void ggml_compute_forward_get_rel_pos(
  11253. const struct ggml_compute_params * params,
  11254. const struct ggml_tensor * src0,
  11255. struct ggml_tensor * dst) {
  11256. switch (src0->type) {
  11257. case GGML_TYPE_F16:
  11258. {
  11259. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11260. } break;
  11261. default:
  11262. {
  11263. GGML_ASSERT(false);
  11264. } break;
  11265. }
  11266. }
  11267. // ggml_compute_forward_add_rel_pos
  11268. static void ggml_compute_forward_add_rel_pos_f32(
  11269. const struct ggml_compute_params * params,
  11270. const struct ggml_tensor * src0,
  11271. const struct ggml_tensor * src1,
  11272. const struct ggml_tensor * src2,
  11273. struct ggml_tensor * dst) {
  11274. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11275. if (!inplace && params->type == GGML_TASK_INIT) {
  11276. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11277. return;
  11278. }
  11279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11280. return;
  11281. }
  11282. int64_t t0 = ggml_perf_time_us();
  11283. UNUSED(t0);
  11284. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11285. float * src1_data = (float *) src1->data;
  11286. float * src2_data = (float *) src2->data;
  11287. float * dst_data = (float *) dst->data;
  11288. const int64_t ne10 = src1->ne[0];
  11289. const int64_t ne11 = src1->ne[1];
  11290. const int64_t ne12 = src1->ne[2];
  11291. const int64_t ne13 = src1->ne[3];
  11292. const int ith = params->ith;
  11293. const int nth = params->nth;
  11294. // total patches in dst
  11295. const int np = ne13;
  11296. // patches per thread
  11297. const int dp = (np + nth - 1)/nth;
  11298. // patch range for this thread
  11299. const int ip0 = dp*ith;
  11300. const int ip1 = MIN(ip0 + dp, np);
  11301. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11302. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11303. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11304. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11305. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11306. const int64_t jp0 = jp1 + i10;
  11307. const float src1_e = src1_data[jp0];
  11308. const float src2_e = src2_data[jp0];
  11309. const int64_t jdh = jp0 * ne10;
  11310. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11311. for (int64_t j = 0; j < ne10; ++j) {
  11312. dst_data[jdh + j ] += src2_e;
  11313. dst_data[jdw + j*ne10] += src1_e;
  11314. }
  11315. }
  11316. }
  11317. }
  11318. }
  11319. }
  11320. static void ggml_compute_forward_add_rel_pos(
  11321. const struct ggml_compute_params * params,
  11322. const struct ggml_tensor * src0,
  11323. const struct ggml_tensor * src1,
  11324. const struct ggml_tensor * src2,
  11325. struct ggml_tensor * dst) {
  11326. switch (src0->type) {
  11327. case GGML_TYPE_F32:
  11328. {
  11329. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11330. } break;
  11331. default:
  11332. {
  11333. GGML_ASSERT(false);
  11334. } break;
  11335. }
  11336. }
  11337. // ggml_compute_forward_map_unary
  11338. static void ggml_compute_forward_map_unary_f32(
  11339. const struct ggml_compute_params * params,
  11340. const struct ggml_tensor * src0,
  11341. struct ggml_tensor * dst,
  11342. const ggml_unary_op_f32_t fun) {
  11343. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11345. return;
  11346. }
  11347. const int n = ggml_nrows(src0);
  11348. const int nc = src0->ne[0];
  11349. assert( dst->nb[0] == sizeof(float));
  11350. assert(src0->nb[0] == sizeof(float));
  11351. for (int i = 0; i < n; i++) {
  11352. fun(nc,
  11353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11354. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11355. }
  11356. }
  11357. static void ggml_compute_forward_map_unary(
  11358. const struct ggml_compute_params * params,
  11359. const struct ggml_tensor * src0,
  11360. struct ggml_tensor * dst,
  11361. const ggml_unary_op_f32_t fun) {
  11362. switch (src0->type) {
  11363. case GGML_TYPE_F32:
  11364. {
  11365. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11366. } break;
  11367. default:
  11368. {
  11369. GGML_ASSERT(false);
  11370. } break;
  11371. }
  11372. }
  11373. // ggml_compute_forward_map_binary
  11374. static void ggml_compute_forward_map_binary_f32(
  11375. const struct ggml_compute_params * params,
  11376. const struct ggml_tensor * src0,
  11377. const struct ggml_tensor * src1,
  11378. struct ggml_tensor * dst,
  11379. const ggml_binary_op_f32_t fun) {
  11380. assert(params->ith == 0);
  11381. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11383. return;
  11384. }
  11385. const int n = ggml_nrows(src0);
  11386. const int nc = src0->ne[0];
  11387. assert( dst->nb[0] == sizeof(float));
  11388. assert(src0->nb[0] == sizeof(float));
  11389. assert(src1->nb[0] == sizeof(float));
  11390. for (int i = 0; i < n; i++) {
  11391. fun(nc,
  11392. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11393. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11394. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11395. }
  11396. }
  11397. static void ggml_compute_forward_map_binary(
  11398. const struct ggml_compute_params * params,
  11399. const struct ggml_tensor * src0,
  11400. const struct ggml_tensor * src1,
  11401. struct ggml_tensor * dst,
  11402. const ggml_binary_op_f32_t fun) {
  11403. switch (src0->type) {
  11404. case GGML_TYPE_F32:
  11405. {
  11406. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11407. } break;
  11408. default:
  11409. {
  11410. GGML_ASSERT(false);
  11411. } break;
  11412. }
  11413. }
  11414. // ggml_compute_forward_map_custom1
  11415. static void ggml_compute_forward_map_custom1_f32(
  11416. const struct ggml_compute_params * params,
  11417. const struct ggml_tensor * a,
  11418. struct ggml_tensor * dst,
  11419. const ggml_custom1_op_f32_t fun) {
  11420. assert(params->ith == 0);
  11421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11422. return;
  11423. }
  11424. fun(dst, a);
  11425. }
  11426. // ggml_compute_forward_map_custom2
  11427. static void ggml_compute_forward_map_custom2_f32(
  11428. const struct ggml_compute_params * params,
  11429. const struct ggml_tensor * a,
  11430. const struct ggml_tensor * b,
  11431. struct ggml_tensor * dst,
  11432. const ggml_custom2_op_f32_t fun) {
  11433. assert(params->ith == 0);
  11434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11435. return;
  11436. }
  11437. fun(dst, a, b);
  11438. }
  11439. // ggml_compute_forward_map_custom3
  11440. static void ggml_compute_forward_map_custom3_f32(
  11441. const struct ggml_compute_params * params,
  11442. const struct ggml_tensor * a,
  11443. const struct ggml_tensor * b,
  11444. const struct ggml_tensor * c,
  11445. struct ggml_tensor * dst,
  11446. const ggml_custom3_op_f32_t fun) {
  11447. assert(params->ith == 0);
  11448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11449. return;
  11450. }
  11451. fun(dst, a, b, c);
  11452. }
  11453. // ggml_compute_forward_map_custom1
  11454. static void ggml_compute_forward_map_custom1(
  11455. const struct ggml_compute_params * params,
  11456. const struct ggml_tensor * a,
  11457. struct ggml_tensor * dst) {
  11458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11459. return;
  11460. }
  11461. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11462. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11463. }
  11464. // ggml_compute_forward_map_custom2
  11465. static void ggml_compute_forward_map_custom2(
  11466. const struct ggml_compute_params * params,
  11467. const struct ggml_tensor * a,
  11468. const struct ggml_tensor * b,
  11469. struct ggml_tensor * dst) {
  11470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11471. return;
  11472. }
  11473. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11474. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11475. }
  11476. // ggml_compute_forward_map_custom3
  11477. static void ggml_compute_forward_map_custom3(
  11478. const struct ggml_compute_params * params,
  11479. const struct ggml_tensor * a,
  11480. const struct ggml_tensor * b,
  11481. const struct ggml_tensor * c,
  11482. struct ggml_tensor * dst) {
  11483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11484. return;
  11485. }
  11486. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11487. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11488. }
  11489. // ggml_compute_forward_cross_entropy_loss
  11490. static void ggml_compute_forward_cross_entropy_loss_f32(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. const struct ggml_tensor * src1,
  11494. struct ggml_tensor * dst) {
  11495. GGML_ASSERT(ggml_is_contiguous(src0));
  11496. GGML_ASSERT(ggml_is_contiguous(src1));
  11497. GGML_ASSERT(ggml_is_scalar(dst));
  11498. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11499. const int ith = params->ith;
  11500. const int nth = params->nth;
  11501. float * sums = (float *) params->wdata;
  11502. // TODO: handle transposed/permuted matrices
  11503. const int nc = src0->ne[0];
  11504. const int nr = ggml_nrows(src0);
  11505. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11506. if (params->type == GGML_TASK_INIT) {
  11507. if (ith == 0) {
  11508. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11509. }
  11510. return;
  11511. }
  11512. if (params->type == GGML_TASK_FINALIZE) {
  11513. if (ith == 0) {
  11514. float * dp = (float *) dst->data;
  11515. ggml_vec_sum_f32(nth, dp, sums);
  11516. dp[0] *= -1.0f / (float) nr;
  11517. }
  11518. return;
  11519. }
  11520. const double eps = 1e-9;
  11521. // rows per thread
  11522. const int dr = (nr + nth - 1)/nth;
  11523. // row range for this thread
  11524. const int ir0 = dr*ith;
  11525. const int ir1 = MIN(ir0 + dr, nr);
  11526. for (int i1 = ir0; i1 < ir1; i1++) {
  11527. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11528. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11529. float * st = ((float *) params->wdata) + nth + ith*nc;
  11530. #ifndef NDEBUG
  11531. for (int i = 0; i < nc; ++i) {
  11532. //printf("p[%d] = %f\n", i, p[i]);
  11533. assert(!isnan(s0[i]));
  11534. assert(!isnan(s1[i]));
  11535. }
  11536. #endif
  11537. // soft_max
  11538. ggml_float sum = 0.0;
  11539. {
  11540. float max = -INFINITY;
  11541. ggml_vec_max_f32(nc, &max, s0);
  11542. uint16_t scvt; UNUSED(scvt);
  11543. for (int i = 0; i < nc; i++) {
  11544. if (s0[i] == -INFINITY) {
  11545. st[i] = 0.0f;
  11546. } else {
  11547. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11548. const float s = s0[i] - max;
  11549. const float val = expf(s);
  11550. #else
  11551. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11552. memcpy(&scvt, &s, sizeof(scvt));
  11553. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11554. #endif
  11555. sum += (ggml_float)val;
  11556. st[i] = val;
  11557. }
  11558. }
  11559. assert(sum > 0.0);
  11560. // sum = 1.0/sum;
  11561. }
  11562. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11563. sum = (1.0 - eps) / sum;
  11564. ggml_vec_scale_f32(nc, st, sum);
  11565. ggml_vec_add1_f32(nc, st, st, eps);
  11566. ggml_vec_log_f32(nc, st, st);
  11567. ggml_vec_mul_f32(nc, st, st, s1);
  11568. float st_sum = 0;
  11569. ggml_vec_sum_f32(nc, &st_sum, st);
  11570. sums[ith] += st_sum;
  11571. #ifndef NDEBUG
  11572. for (int i = 0; i < nc; ++i) {
  11573. assert(!isnan(st[i]));
  11574. assert(!isinf(st[i]));
  11575. }
  11576. #endif
  11577. }
  11578. }
  11579. static void ggml_compute_forward_cross_entropy_loss(
  11580. const struct ggml_compute_params * params,
  11581. const struct ggml_tensor * src0,
  11582. const struct ggml_tensor * src1,
  11583. struct ggml_tensor * dst) {
  11584. switch (src0->type) {
  11585. case GGML_TYPE_F32:
  11586. {
  11587. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11588. } break;
  11589. default:
  11590. {
  11591. GGML_ASSERT(false);
  11592. } break;
  11593. }
  11594. }
  11595. // ggml_compute_forward_cross_entropy_loss_back
  11596. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11597. const struct ggml_compute_params * params,
  11598. const struct ggml_tensor * src0,
  11599. const struct ggml_tensor * src1,
  11600. const struct ggml_tensor * opt0,
  11601. struct ggml_tensor * dst) {
  11602. GGML_ASSERT(ggml_is_contiguous(dst));
  11603. GGML_ASSERT(ggml_is_contiguous(src0));
  11604. GGML_ASSERT(ggml_is_contiguous(src1));
  11605. GGML_ASSERT(ggml_is_contiguous(opt0));
  11606. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11607. const int64_t ith = params->ith;
  11608. const int64_t nth = params->nth;
  11609. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11610. return;
  11611. }
  11612. const double eps = 1e-9;
  11613. // TODO: handle transposed/permuted matrices
  11614. const int64_t nc = src0->ne[0];
  11615. const int64_t nr = ggml_nrows(src0);
  11616. // rows per thread
  11617. const int64_t dr = (nr + nth - 1)/nth;
  11618. // row range for this thread
  11619. const int64_t ir0 = dr*ith;
  11620. const int64_t ir1 = MIN(ir0 + dr, nr);
  11621. float * d = (float *) opt0->data;
  11622. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11623. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11624. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11625. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11626. #ifndef NDEBUG
  11627. for (int i = 0; i < nc; ++i) {
  11628. //printf("p[%d] = %f\n", i, p[i]);
  11629. assert(!isnan(s0[i]));
  11630. assert(!isnan(s1[i]));
  11631. }
  11632. #endif
  11633. // soft_max
  11634. ggml_float sum = 0.0;
  11635. {
  11636. float max = -INFINITY;
  11637. ggml_vec_max_f32(nc, &max, s0);
  11638. uint16_t scvt; UNUSED(scvt);
  11639. for (int i = 0; i < nc; i++) {
  11640. if (s0[i] == -INFINITY) {
  11641. ds0[i] = 0.0f;
  11642. } else {
  11643. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11644. const float s = s0[i] - max;
  11645. const float val = expf(s);
  11646. #else
  11647. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11648. memcpy(&scvt, &s, sizeof(scvt));
  11649. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11650. #endif
  11651. sum += (ggml_float)val;
  11652. ds0[i] = val;
  11653. }
  11654. }
  11655. assert(sum > 0.0);
  11656. sum = (1.0 - eps)/sum;
  11657. }
  11658. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11659. ggml_vec_scale_f32(nc, ds0, sum);
  11660. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11661. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11662. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11663. #ifndef NDEBUG
  11664. for (int i = 0; i < nc; ++i) {
  11665. assert(!isnan(ds0[i]));
  11666. assert(!isinf(ds0[i]));
  11667. }
  11668. #endif
  11669. }
  11670. }
  11671. static void ggml_compute_forward_cross_entropy_loss_back(
  11672. const struct ggml_compute_params * params,
  11673. const struct ggml_tensor * src0,
  11674. const struct ggml_tensor * src1,
  11675. const struct ggml_tensor * opt0,
  11676. struct ggml_tensor * dst) {
  11677. switch (src0->type) {
  11678. case GGML_TYPE_F32:
  11679. {
  11680. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11681. } break;
  11682. default:
  11683. {
  11684. GGML_ASSERT(false);
  11685. } break;
  11686. }
  11687. }
  11688. /////////////////////////////////
  11689. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11690. GGML_ASSERT(params);
  11691. if (tensor->op == GGML_OP_NONE) {
  11692. return;
  11693. }
  11694. #ifdef GGML_USE_CUBLAS
  11695. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11696. if (skip_cpu) {
  11697. return;
  11698. }
  11699. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11700. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11701. #endif // GGML_USE_CUBLAS
  11702. switch (tensor->op) {
  11703. case GGML_OP_DUP:
  11704. {
  11705. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11706. } break;
  11707. case GGML_OP_ADD:
  11708. {
  11709. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11710. } break;
  11711. case GGML_OP_ADD1:
  11712. {
  11713. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11714. } break;
  11715. case GGML_OP_ACC:
  11716. {
  11717. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11718. } break;
  11719. case GGML_OP_SUB:
  11720. {
  11721. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11722. } break;
  11723. case GGML_OP_MUL:
  11724. {
  11725. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11726. } break;
  11727. case GGML_OP_DIV:
  11728. {
  11729. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11730. } break;
  11731. case GGML_OP_SQR:
  11732. {
  11733. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11734. } break;
  11735. case GGML_OP_SQRT:
  11736. {
  11737. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11738. } break;
  11739. case GGML_OP_LOG:
  11740. {
  11741. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11742. } break;
  11743. case GGML_OP_SUM:
  11744. {
  11745. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11746. } break;
  11747. case GGML_OP_SUM_ROWS:
  11748. {
  11749. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11750. } break;
  11751. case GGML_OP_MEAN:
  11752. {
  11753. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11754. } break;
  11755. case GGML_OP_ARGMAX:
  11756. {
  11757. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11758. } break;
  11759. case GGML_OP_REPEAT:
  11760. {
  11761. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11762. } break;
  11763. case GGML_OP_REPEAT_BACK:
  11764. {
  11765. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11766. } break;
  11767. case GGML_OP_CONCAT:
  11768. {
  11769. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11770. } break;
  11771. case GGML_OP_SILU_BACK:
  11772. {
  11773. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11774. } break;
  11775. case GGML_OP_NORM:
  11776. {
  11777. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11778. } break;
  11779. case GGML_OP_RMS_NORM:
  11780. {
  11781. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11782. } break;
  11783. case GGML_OP_RMS_NORM_BACK:
  11784. {
  11785. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11786. } break;
  11787. case GGML_OP_GROUP_NORM:
  11788. {
  11789. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11790. } break;
  11791. case GGML_OP_MUL_MAT:
  11792. {
  11793. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11794. } break;
  11795. case GGML_OP_MUL_MAT_ID:
  11796. {
  11797. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11798. } break;
  11799. case GGML_OP_OUT_PROD:
  11800. {
  11801. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11802. } break;
  11803. case GGML_OP_SCALE:
  11804. {
  11805. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11806. } break;
  11807. case GGML_OP_SET:
  11808. {
  11809. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11810. } break;
  11811. case GGML_OP_CPY:
  11812. {
  11813. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11814. } break;
  11815. case GGML_OP_CONT:
  11816. {
  11817. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11818. } break;
  11819. case GGML_OP_RESHAPE:
  11820. {
  11821. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11822. } break;
  11823. case GGML_OP_VIEW:
  11824. {
  11825. ggml_compute_forward_view(params, tensor->src[0]);
  11826. } break;
  11827. case GGML_OP_PERMUTE:
  11828. {
  11829. ggml_compute_forward_permute(params, tensor->src[0]);
  11830. } break;
  11831. case GGML_OP_TRANSPOSE:
  11832. {
  11833. ggml_compute_forward_transpose(params, tensor->src[0]);
  11834. } break;
  11835. case GGML_OP_GET_ROWS:
  11836. {
  11837. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11838. } break;
  11839. case GGML_OP_GET_ROWS_BACK:
  11840. {
  11841. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11842. } break;
  11843. case GGML_OP_DIAG:
  11844. {
  11845. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11846. } break;
  11847. case GGML_OP_DIAG_MASK_INF:
  11848. {
  11849. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11850. } break;
  11851. case GGML_OP_DIAG_MASK_ZERO:
  11852. {
  11853. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11854. } break;
  11855. case GGML_OP_SOFT_MAX:
  11856. {
  11857. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11858. } break;
  11859. case GGML_OP_SOFT_MAX_BACK:
  11860. {
  11861. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11862. } break;
  11863. case GGML_OP_ROPE:
  11864. {
  11865. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11866. } break;
  11867. case GGML_OP_ROPE_BACK:
  11868. {
  11869. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11870. } break;
  11871. case GGML_OP_ALIBI:
  11872. {
  11873. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11874. } break;
  11875. case GGML_OP_CLAMP:
  11876. {
  11877. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11878. } break;
  11879. case GGML_OP_CONV_TRANSPOSE_1D:
  11880. {
  11881. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11882. } break;
  11883. case GGML_OP_IM2COL:
  11884. {
  11885. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11886. } break;
  11887. case GGML_OP_CONV_TRANSPOSE_2D:
  11888. {
  11889. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11890. } break;
  11891. case GGML_OP_POOL_1D:
  11892. {
  11893. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11894. } break;
  11895. case GGML_OP_POOL_2D:
  11896. {
  11897. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11898. } break;
  11899. case GGML_OP_UPSCALE:
  11900. {
  11901. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11902. } break;
  11903. case GGML_OP_PAD:
  11904. {
  11905. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  11906. } break;
  11907. case GGML_OP_ARGSORT:
  11908. {
  11909. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  11910. } break;
  11911. case GGML_OP_LEAKY_RELU:
  11912. {
  11913. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  11914. } break;
  11915. case GGML_OP_FLASH_ATTN:
  11916. {
  11917. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11918. GGML_ASSERT(t == 0 || t == 1);
  11919. const bool masked = t != 0;
  11920. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11921. } break;
  11922. case GGML_OP_FLASH_FF:
  11923. {
  11924. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11925. } break;
  11926. case GGML_OP_FLASH_ATTN_BACK:
  11927. {
  11928. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11929. GGML_ASSERT(t == 0 || t == 1);
  11930. bool masked = t != 0;
  11931. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11932. } break;
  11933. case GGML_OP_WIN_PART:
  11934. {
  11935. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_WIN_UNPART:
  11938. {
  11939. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_UNARY:
  11942. {
  11943. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_GET_REL_POS:
  11946. {
  11947. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_ADD_REL_POS:
  11950. {
  11951. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11952. } break;
  11953. case GGML_OP_MAP_UNARY:
  11954. {
  11955. ggml_unary_op_f32_t fun;
  11956. memcpy(&fun, tensor->op_params, sizeof(fun));
  11957. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11958. }
  11959. break;
  11960. case GGML_OP_MAP_BINARY:
  11961. {
  11962. ggml_binary_op_f32_t fun;
  11963. memcpy(&fun, tensor->op_params, sizeof(fun));
  11964. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11965. }
  11966. break;
  11967. case GGML_OP_MAP_CUSTOM1_F32:
  11968. {
  11969. ggml_custom1_op_f32_t fun;
  11970. memcpy(&fun, tensor->op_params, sizeof(fun));
  11971. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11972. }
  11973. break;
  11974. case GGML_OP_MAP_CUSTOM2_F32:
  11975. {
  11976. ggml_custom2_op_f32_t fun;
  11977. memcpy(&fun, tensor->op_params, sizeof(fun));
  11978. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11979. }
  11980. break;
  11981. case GGML_OP_MAP_CUSTOM3_F32:
  11982. {
  11983. ggml_custom3_op_f32_t fun;
  11984. memcpy(&fun, tensor->op_params, sizeof(fun));
  11985. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11986. }
  11987. break;
  11988. case GGML_OP_MAP_CUSTOM1:
  11989. {
  11990. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11991. }
  11992. break;
  11993. case GGML_OP_MAP_CUSTOM2:
  11994. {
  11995. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11996. }
  11997. break;
  11998. case GGML_OP_MAP_CUSTOM3:
  11999. {
  12000. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12001. }
  12002. break;
  12003. case GGML_OP_CROSS_ENTROPY_LOSS:
  12004. {
  12005. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12006. }
  12007. break;
  12008. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12009. {
  12010. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12011. }
  12012. break;
  12013. case GGML_OP_NONE:
  12014. {
  12015. // nop
  12016. } break;
  12017. case GGML_OP_COUNT:
  12018. {
  12019. GGML_ASSERT(false);
  12020. } break;
  12021. }
  12022. }
  12023. ////////////////////////////////////////////////////////////////////////////////
  12024. static size_t ggml_hash_size(size_t min_sz) {
  12025. // next primes after powers of two
  12026. static const size_t primes[] = {
  12027. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12028. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12029. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12030. 16777259, 33554467, 67108879, 134217757, 268435459,
  12031. 536870923, 1073741827, 2147483659
  12032. };
  12033. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12034. // find the smallest prime that is larger or equal to min_sz
  12035. size_t l = 0;
  12036. size_t r = n_primes;
  12037. while (l < r) {
  12038. size_t m = (l + r)/2;
  12039. if (primes[m] < min_sz) {
  12040. l = m + 1;
  12041. } else {
  12042. r = m;
  12043. }
  12044. }
  12045. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12046. return sz;
  12047. }
  12048. static size_t ggml_hash(const void * p) {
  12049. return (size_t)p;
  12050. }
  12051. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12052. size_t h = ggml_hash(key) % hash_set.size;
  12053. // linear probing
  12054. size_t i = h;
  12055. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12056. i = (i + 1) % hash_set.size;
  12057. if (i == h) {
  12058. // visited all hash table entries -> not found
  12059. return GGML_HASHTABLE_FULL;
  12060. }
  12061. }
  12062. return i;
  12063. }
  12064. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12065. size_t i = ggml_hash_find(hash_set, key);
  12066. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12067. }
  12068. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12069. size_t i = ggml_hash_find(hash_set, key);
  12070. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12071. if (hash_set.keys[i] == key) {
  12072. return GGML_HASHTABLE_ALREADY_EXISTS;
  12073. }
  12074. // insert
  12075. GGML_ASSERT(hash_set.keys[i] == NULL);
  12076. hash_set.keys[i] = key;
  12077. return i;
  12078. }
  12079. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12080. size_t i = ggml_hash_find(hash_set, key);
  12081. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12082. hash_set.keys[i] = key;
  12083. return i;
  12084. }
  12085. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12086. size = ggml_hash_size(size);
  12087. struct ggml_hash_set result;
  12088. result.size = size;
  12089. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12090. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12091. return result;
  12092. }
  12093. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12094. free(hash_set.keys);
  12095. }
  12096. struct hash_map {
  12097. struct ggml_hash_set set;
  12098. struct ggml_tensor ** vals;
  12099. };
  12100. static struct hash_map * ggml_new_hash_map(size_t size) {
  12101. struct hash_map * result = malloc(sizeof(struct hash_map));
  12102. result->set = ggml_hash_set_new(size);
  12103. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12104. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12105. return result;
  12106. }
  12107. static void ggml_hash_map_free(struct hash_map * map) {
  12108. ggml_hash_set_free(map->set);
  12109. free(map->vals);
  12110. free(map);
  12111. }
  12112. // gradient checkpointing
  12113. static struct ggml_tensor * ggml_recompute_graph_node(
  12114. struct ggml_context * ctx,
  12115. struct ggml_cgraph * graph,
  12116. struct hash_map * replacements,
  12117. struct ggml_tensor * node) {
  12118. if (node == NULL) {
  12119. return NULL;
  12120. }
  12121. if (node->is_param) {
  12122. return node;
  12123. }
  12124. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12125. return node;
  12126. }
  12127. int count_children = 0;
  12128. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12129. if (node->src[k]) {
  12130. ++count_children;
  12131. }
  12132. }
  12133. if (count_children == 0) {
  12134. return node;
  12135. }
  12136. size_t i = ggml_hash_find(replacements->set, node);
  12137. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12138. if (replacements->set.keys[i] == node) {
  12139. return replacements->vals[i];
  12140. }
  12141. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12142. // insert clone into replacements
  12143. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12144. replacements->set.keys[i] = node;
  12145. replacements->vals[i] = clone;
  12146. clone->op = node->op;
  12147. clone->grad = node->grad;
  12148. clone->is_param = node->is_param;
  12149. clone->extra = node->extra;
  12150. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12151. clone->nb[k] = node->nb[k];
  12152. }
  12153. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12154. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12155. }
  12156. if (node->view_src != NULL) {
  12157. clone->data = (node->view_src->data == NULL)
  12158. ? NULL // view_src not yet allocated
  12159. : (char *) node->view_src->data // view_src already allocated
  12160. + node->view_offs;
  12161. clone->view_src = node->view_src;
  12162. clone->view_offs = node->view_offs;
  12163. }
  12164. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12165. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12166. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12167. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12168. return clone;
  12169. }
  12170. void ggml_build_backward_gradient_checkpointing(
  12171. struct ggml_context * ctx,
  12172. struct ggml_cgraph * gf,
  12173. struct ggml_cgraph * gb,
  12174. struct ggml_cgraph * gb_tmp,
  12175. struct ggml_tensor * * checkpoints,
  12176. int n_checkpoints) {
  12177. ggml_graph_cpy(gf, gb_tmp);
  12178. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12179. if (n_checkpoints <= 0) {
  12180. ggml_graph_cpy(gb_tmp, gb);
  12181. return;
  12182. }
  12183. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12184. // insert checkpoints in replacements
  12185. for (int i = 0; i < n_checkpoints; ++i) {
  12186. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12187. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12188. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12189. replacements->set.keys[k] = checkpoints[i];
  12190. replacements->vals[k] = checkpoints[i];
  12191. }
  12192. ggml_graph_cpy(gf, gb);
  12193. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12194. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12195. // by recomputing them from checkpoints
  12196. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12197. struct ggml_tensor * node = gb_tmp->nodes[i];
  12198. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12199. // insert new tensors recomputing src, reusing already made replacements,
  12200. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12201. // recurse for input tensors,
  12202. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12203. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12204. }
  12205. // insert rewritten backward node with replacements made into resulting backward graph gb
  12206. ggml_build_forward_expand(gb, node);
  12207. }
  12208. ggml_hash_map_free(replacements);
  12209. }
  12210. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12211. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12212. if (ggml_hash_contains(zero_table, a)) {
  12213. return b;
  12214. } else {
  12215. return ggml_add_impl(ctx, a, b, false);
  12216. }
  12217. }
  12218. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12219. if (ggml_hash_contains(zero_table, a)) {
  12220. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12221. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12222. } else {
  12223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12224. }
  12225. }
  12226. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12227. if (ggml_hash_contains(zero_table, a)) {
  12228. return ggml_repeat(ctx, b, a);
  12229. } else {
  12230. return ggml_add1_impl(ctx, a, b, false);
  12231. }
  12232. }
  12233. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12234. if (ggml_hash_contains(zero_table, a)) {
  12235. return ggml_neg(ctx, b);
  12236. } else {
  12237. return ggml_sub_impl(ctx, a, b, false);
  12238. }
  12239. }
  12240. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12241. struct ggml_tensor * src0 = tensor->src[0];
  12242. struct ggml_tensor * src1 = tensor->src[1];
  12243. switch (tensor->op) {
  12244. case GGML_OP_DUP:
  12245. {
  12246. if (src0->grad) {
  12247. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12248. }
  12249. } break;
  12250. case GGML_OP_ADD:
  12251. {
  12252. if (src0->grad) {
  12253. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12254. }
  12255. if (src1->grad) {
  12256. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12257. }
  12258. } break;
  12259. case GGML_OP_ADD1:
  12260. {
  12261. if (src0->grad) {
  12262. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12263. }
  12264. if (src1->grad) {
  12265. src1->grad = ggml_add_or_set(ctx,
  12266. src1->grad,
  12267. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12268. zero_table);
  12269. }
  12270. } break;
  12271. case GGML_OP_ACC:
  12272. {
  12273. if (src0->grad) {
  12274. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12275. }
  12276. if (src1->grad) {
  12277. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12278. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12279. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12280. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12281. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12282. tensor->grad,
  12283. src1->grad->ne[0],
  12284. src1->grad->ne[1],
  12285. src1->grad->ne[2],
  12286. src1->grad->ne[3],
  12287. nb1, nb2, nb3, offset);
  12288. src1->grad =
  12289. ggml_add_or_set(ctx,
  12290. src1->grad,
  12291. ggml_reshape(ctx,
  12292. ggml_cont(ctx, tensor_grad_view),
  12293. src1->grad),
  12294. zero_table);
  12295. }
  12296. } break;
  12297. case GGML_OP_SUB:
  12298. {
  12299. if (src0->grad) {
  12300. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12301. }
  12302. if (src1->grad) {
  12303. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12304. }
  12305. } break;
  12306. case GGML_OP_MUL:
  12307. {
  12308. if (src0->grad) {
  12309. src0->grad =
  12310. ggml_add_or_set(ctx,
  12311. src0->grad,
  12312. ggml_mul(ctx, src1, tensor->grad),
  12313. zero_table);
  12314. }
  12315. if (src1->grad) {
  12316. src1->grad =
  12317. ggml_add_or_set(ctx,
  12318. src1->grad,
  12319. ggml_mul(ctx, src0, tensor->grad),
  12320. zero_table);
  12321. }
  12322. } break;
  12323. case GGML_OP_DIV:
  12324. {
  12325. if (src0->grad) {
  12326. src0->grad =
  12327. ggml_add_or_set(ctx,
  12328. src0->grad,
  12329. ggml_div(ctx, tensor->grad, src1),
  12330. zero_table);
  12331. }
  12332. if (src1->grad) {
  12333. src1->grad =
  12334. ggml_sub_or_set(ctx,
  12335. src1->grad,
  12336. ggml_mul(ctx,
  12337. tensor->grad,
  12338. ggml_div(ctx, tensor, src1)),
  12339. zero_table);
  12340. }
  12341. } break;
  12342. case GGML_OP_SQR:
  12343. {
  12344. if (src0->grad) {
  12345. src0->grad =
  12346. ggml_add_or_set(ctx,
  12347. src0->grad,
  12348. ggml_scale(ctx,
  12349. ggml_mul(ctx, src0, tensor->grad),
  12350. ggml_new_f32(ctx, 2.0f)),
  12351. zero_table);
  12352. }
  12353. } break;
  12354. case GGML_OP_SQRT:
  12355. {
  12356. if (src0->grad) {
  12357. src0->grad =
  12358. ggml_add_or_set(ctx,
  12359. src0->grad,
  12360. ggml_scale(ctx,
  12361. ggml_div(ctx,
  12362. tensor->grad,
  12363. tensor),
  12364. ggml_new_f32(ctx, 0.5f)),
  12365. zero_table);
  12366. }
  12367. } break;
  12368. case GGML_OP_LOG:
  12369. {
  12370. if (src0->grad) {
  12371. src0->grad =
  12372. ggml_add_or_set(ctx,
  12373. src0->grad,
  12374. ggml_div(ctx,
  12375. tensor->grad,
  12376. src0),
  12377. zero_table);
  12378. }
  12379. } break;
  12380. case GGML_OP_SUM:
  12381. {
  12382. if (src0->grad) {
  12383. src0->grad =
  12384. ggml_add1_or_set(ctx,
  12385. src0->grad,
  12386. tensor->grad,
  12387. zero_table);
  12388. }
  12389. } break;
  12390. case GGML_OP_SUM_ROWS:
  12391. {
  12392. if (src0->grad) {
  12393. src0->grad =
  12394. ggml_add_or_set(ctx,
  12395. src0->grad,
  12396. ggml_repeat(ctx,
  12397. tensor->grad,
  12398. src0->grad),
  12399. zero_table);
  12400. }
  12401. } break;
  12402. case GGML_OP_MEAN:
  12403. case GGML_OP_ARGMAX:
  12404. {
  12405. GGML_ASSERT(false); // TODO: implement
  12406. } break;
  12407. case GGML_OP_REPEAT:
  12408. {
  12409. // necessary for llama
  12410. if (src0->grad) {
  12411. src0->grad = ggml_add_or_set(ctx,
  12412. src0->grad,
  12413. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12414. zero_table);
  12415. }
  12416. } break;
  12417. case GGML_OP_REPEAT_BACK:
  12418. {
  12419. if (src0->grad) {
  12420. // TODO: test this
  12421. src0->grad = ggml_add_or_set(ctx,
  12422. src0->grad,
  12423. ggml_repeat(ctx, tensor->grad, src0->grad),
  12424. zero_table);
  12425. }
  12426. } break;
  12427. case GGML_OP_CONCAT:
  12428. {
  12429. GGML_ASSERT(false); // TODO: implement
  12430. } break;
  12431. case GGML_OP_SILU_BACK:
  12432. {
  12433. GGML_ASSERT(false); // TODO: not implemented
  12434. } break;
  12435. case GGML_OP_NORM:
  12436. {
  12437. GGML_ASSERT(false); // TODO: not implemented
  12438. } break;
  12439. case GGML_OP_RMS_NORM:
  12440. {
  12441. // necessary for llama
  12442. if (src0->grad) {
  12443. float eps;
  12444. memcpy(&eps, tensor->op_params, sizeof(float));
  12445. src0->grad = ggml_add_or_set(ctx,
  12446. src0->grad,
  12447. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12448. zero_table);
  12449. }
  12450. } break;
  12451. case GGML_OP_RMS_NORM_BACK:
  12452. {
  12453. GGML_ASSERT(false); // TODO: not implemented
  12454. } break;
  12455. case GGML_OP_GROUP_NORM:
  12456. {
  12457. GGML_ASSERT(false); // TODO: not implemented
  12458. } break;
  12459. case GGML_OP_MUL_MAT:
  12460. {
  12461. // https://cs231n.github.io/optimization-2/#staged
  12462. // # forward pass
  12463. // s0 = np.random.randn(5, 10)
  12464. // s1 = np.random.randn(10, 3)
  12465. // t = s0.dot(s1)
  12466. // # now suppose we had the gradient on t from above in the circuit
  12467. // dt = np.random.randn(*t.shape) # same shape as t
  12468. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12469. // ds1 = t.T.dot(dt)
  12470. // tensor.shape [m,p,qq,rr]
  12471. // src0.shape [n,m,q1,r1]
  12472. // src1.shape [n,p,qq,rr]
  12473. // necessary for llama
  12474. if (src0->grad) {
  12475. struct ggml_tensor * s1_tg =
  12476. ggml_out_prod(ctx, // [n,m,qq,rr]
  12477. src1, // [n,p,qq,rr]
  12478. tensor->grad); // [m,p,qq,rr]
  12479. const int64_t qq = s1_tg->ne[2];
  12480. const int64_t rr = s1_tg->ne[3];
  12481. const int64_t q1 = src0->ne[2];
  12482. const int64_t r1 = src0->ne[3];
  12483. const bool ne2_broadcasted = qq > q1;
  12484. const bool ne3_broadcasted = rr > r1;
  12485. if (ne2_broadcasted || ne3_broadcasted) {
  12486. // sum broadcast repetitions of s1_tg into shape of src0
  12487. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12488. }
  12489. src0->grad =
  12490. ggml_add_or_set(ctx,
  12491. src0->grad, // [n,m,q1,r1]
  12492. s1_tg, // [n,m,q1,r1]
  12493. zero_table);
  12494. }
  12495. if (src1->grad) {
  12496. src1->grad =
  12497. ggml_add_or_set(ctx,
  12498. src1->grad, // [n,p,qq,rr]
  12499. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12500. // ggml_cont(ctx, // [m,n,q1,r1]
  12501. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12502. // tensor->grad), // [m,p,qq,rr]
  12503. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12504. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12505. // // and then use ggml_out_prod
  12506. ggml_out_prod(ctx, // [n,p,qq,rr]
  12507. src0, // [n,m,q1,r1]
  12508. ggml_transpose(ctx, // [p,m,qq,rr]
  12509. tensor->grad)), // [m,p,qq,rr]
  12510. zero_table);
  12511. }
  12512. } break;
  12513. case GGML_OP_MUL_MAT_ID:
  12514. {
  12515. GGML_ASSERT(false); // TODO: not implemented
  12516. } break;
  12517. case GGML_OP_OUT_PROD:
  12518. {
  12519. GGML_ASSERT(false); // TODO: not implemented
  12520. } break;
  12521. case GGML_OP_SCALE:
  12522. {
  12523. // necessary for llama
  12524. if (src0->grad) {
  12525. src0->grad =
  12526. ggml_add_or_set(ctx,
  12527. src0->grad,
  12528. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12529. zero_table);
  12530. }
  12531. if (src1->grad) {
  12532. src1->grad =
  12533. ggml_add_or_set(ctx,
  12534. src1->grad,
  12535. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12536. zero_table);
  12537. }
  12538. } break;
  12539. case GGML_OP_SET:
  12540. {
  12541. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12542. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12543. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12544. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12545. struct ggml_tensor * tensor_grad_view = NULL;
  12546. if (src0->grad || src1->grad) {
  12547. GGML_ASSERT(src0->type == tensor->type);
  12548. GGML_ASSERT(tensor->grad->type == tensor->type);
  12549. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12550. tensor_grad_view = ggml_view_4d(ctx,
  12551. tensor->grad,
  12552. src1->grad->ne[0],
  12553. src1->grad->ne[1],
  12554. src1->grad->ne[2],
  12555. src1->grad->ne[3],
  12556. nb1, nb2, nb3, offset);
  12557. }
  12558. if (src0->grad) {
  12559. src0->grad = ggml_add_or_set(ctx,
  12560. src0->grad,
  12561. ggml_acc_impl(ctx,
  12562. tensor->grad,
  12563. ggml_neg(ctx, tensor_grad_view),
  12564. nb1, nb2, nb3, offset, false),
  12565. zero_table);
  12566. }
  12567. if (src1->grad) {
  12568. src1->grad =
  12569. ggml_add_or_set(ctx,
  12570. src1->grad,
  12571. ggml_reshape(ctx,
  12572. ggml_cont(ctx, tensor_grad_view),
  12573. src1->grad),
  12574. zero_table);
  12575. }
  12576. } break;
  12577. case GGML_OP_CPY:
  12578. {
  12579. // necessary for llama
  12580. // cpy overwrites value of src1 by src0 and returns view(src1)
  12581. // the overwriting is mathematically equivalent to:
  12582. // tensor = src0 * 1 + src1 * 0
  12583. if (src0->grad) {
  12584. // dsrc0 = dtensor * 1
  12585. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12586. }
  12587. if (src1->grad) {
  12588. // dsrc1 = dtensor * 0 -> noop
  12589. }
  12590. } break;
  12591. case GGML_OP_CONT:
  12592. {
  12593. // same as cpy
  12594. if (src0->grad) {
  12595. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12596. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12597. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12598. }
  12599. } break;
  12600. case GGML_OP_RESHAPE:
  12601. {
  12602. // necessary for llama
  12603. if (src0->grad) {
  12604. src0->grad =
  12605. ggml_add_or_set(ctx, src0->grad,
  12606. ggml_reshape(ctx,
  12607. ggml_is_contiguous(tensor->grad)
  12608. ? tensor->grad
  12609. : ggml_cont(ctx, tensor->grad),
  12610. src0->grad),
  12611. zero_table);
  12612. }
  12613. } break;
  12614. case GGML_OP_VIEW:
  12615. {
  12616. // necessary for llama
  12617. if (src0->grad) {
  12618. size_t offset;
  12619. memcpy(&offset, tensor->op_params, sizeof(offset));
  12620. size_t nb1 = tensor->nb[1];
  12621. size_t nb2 = tensor->nb[2];
  12622. size_t nb3 = tensor->nb[3];
  12623. if (src0->type != src0->grad->type) {
  12624. // gradient is typically F32, but src0 could be other type
  12625. size_t ng = ggml_element_size(src0->grad);
  12626. size_t n0 = ggml_element_size(src0);
  12627. GGML_ASSERT(offset % n0 == 0);
  12628. GGML_ASSERT(nb1 % n0 == 0);
  12629. GGML_ASSERT(nb2 % n0 == 0);
  12630. GGML_ASSERT(nb3 % n0 == 0);
  12631. offset = (offset / n0) * ng;
  12632. nb1 = (nb1 / n0) * ng;
  12633. nb2 = (nb2 / n0) * ng;
  12634. nb3 = (nb3 / n0) * ng;
  12635. }
  12636. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12637. }
  12638. } break;
  12639. case GGML_OP_PERMUTE:
  12640. {
  12641. // necessary for llama
  12642. if (src0->grad) {
  12643. int32_t * axes = (int32_t *) tensor->op_params;
  12644. int axis0 = axes[0] & 0x3;
  12645. int axis1 = axes[1] & 0x3;
  12646. int axis2 = axes[2] & 0x3;
  12647. int axis3 = axes[3] & 0x3;
  12648. int axes_backward[4] = {0,0,0,0};
  12649. axes_backward[axis0] = 0;
  12650. axes_backward[axis1] = 1;
  12651. axes_backward[axis2] = 2;
  12652. axes_backward[axis3] = 3;
  12653. src0->grad =
  12654. ggml_add_or_set(ctx, src0->grad,
  12655. ggml_permute(ctx,
  12656. tensor->grad,
  12657. axes_backward[0],
  12658. axes_backward[1],
  12659. axes_backward[2],
  12660. axes_backward[3]),
  12661. zero_table);
  12662. }
  12663. } break;
  12664. case GGML_OP_TRANSPOSE:
  12665. {
  12666. // necessary for llama
  12667. if (src0->grad) {
  12668. src0->grad =
  12669. ggml_add_or_set(ctx, src0->grad,
  12670. ggml_transpose(ctx, tensor->grad),
  12671. zero_table);
  12672. }
  12673. } break;
  12674. case GGML_OP_GET_ROWS:
  12675. {
  12676. // necessary for llama (only for tokenizer)
  12677. if (src0->grad) {
  12678. src0->grad =
  12679. ggml_add_or_set(ctx, src0->grad,
  12680. // last ggml_get_rows_back argument src0->grad is only
  12681. // necessary to setup correct output shape
  12682. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12683. zero_table);
  12684. }
  12685. if (src1->grad) {
  12686. // noop
  12687. }
  12688. } break;
  12689. case GGML_OP_GET_ROWS_BACK:
  12690. {
  12691. GGML_ASSERT(false); // TODO: not implemented
  12692. } break;
  12693. case GGML_OP_DIAG:
  12694. {
  12695. GGML_ASSERT(false); // TODO: not implemented
  12696. } break;
  12697. case GGML_OP_DIAG_MASK_INF:
  12698. {
  12699. // necessary for llama
  12700. if (src0->grad) {
  12701. const int n_past = ((int32_t *) tensor->op_params)[0];
  12702. src0->grad =
  12703. ggml_add_or_set(ctx, src0->grad,
  12704. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12705. zero_table);
  12706. }
  12707. } break;
  12708. case GGML_OP_DIAG_MASK_ZERO:
  12709. {
  12710. // necessary for llama
  12711. if (src0->grad) {
  12712. const int n_past = ((int32_t *) tensor->op_params)[0];
  12713. src0->grad =
  12714. ggml_add_or_set(ctx, src0->grad,
  12715. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12716. zero_table);
  12717. }
  12718. } break;
  12719. case GGML_OP_SOFT_MAX:
  12720. {
  12721. // necessary for llama
  12722. if (src0->grad) {
  12723. src0->grad =
  12724. ggml_add_or_set(ctx, src0->grad,
  12725. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12726. zero_table);
  12727. }
  12728. } break;
  12729. case GGML_OP_SOFT_MAX_BACK:
  12730. {
  12731. GGML_ASSERT(false); // TODO: not implemented
  12732. } break;
  12733. case GGML_OP_ROPE:
  12734. {
  12735. // necessary for llama
  12736. if (src0->grad) {
  12737. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12738. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12739. const int mode = ((int32_t *) tensor->op_params)[2];
  12740. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12741. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12742. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12743. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12744. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12745. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12746. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12747. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12748. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12749. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12750. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12751. src0->grad = ggml_add_or_set(ctx,
  12752. src0->grad,
  12753. ggml_rope_back(ctx,
  12754. tensor->grad,
  12755. src1,
  12756. n_dims,
  12757. mode,
  12758. n_ctx,
  12759. n_orig_ctx,
  12760. freq_base,
  12761. freq_scale,
  12762. ext_factor,
  12763. attn_factor,
  12764. beta_fast,
  12765. beta_slow,
  12766. xpos_base,
  12767. xpos_down),
  12768. zero_table);
  12769. }
  12770. } break;
  12771. case GGML_OP_ROPE_BACK:
  12772. {
  12773. if (src0->grad) {
  12774. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12775. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12776. const int mode = ((int32_t *) tensor->op_params)[2];
  12777. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12778. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12779. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12780. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12781. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12782. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12783. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12784. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12785. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12786. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12787. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12788. src0->grad = ggml_add_or_set(ctx,
  12789. src0->grad,
  12790. ggml_rope_impl(ctx,
  12791. tensor->grad,
  12792. src1,
  12793. n_dims,
  12794. mode,
  12795. n_ctx,
  12796. n_orig_ctx,
  12797. freq_base,
  12798. freq_scale,
  12799. ext_factor,
  12800. attn_factor,
  12801. beta_fast,
  12802. beta_slow,
  12803. xpos_base,
  12804. xpos_down,
  12805. false),
  12806. zero_table);
  12807. }
  12808. } break;
  12809. case GGML_OP_ALIBI:
  12810. {
  12811. GGML_ASSERT(false); // TODO: not implemented
  12812. } break;
  12813. case GGML_OP_CLAMP:
  12814. {
  12815. GGML_ASSERT(false); // TODO: not implemented
  12816. } break;
  12817. case GGML_OP_CONV_TRANSPOSE_1D:
  12818. {
  12819. GGML_ASSERT(false); // TODO: not implemented
  12820. } break;
  12821. case GGML_OP_IM2COL:
  12822. {
  12823. GGML_ASSERT(false); // TODO: not implemented
  12824. } break;
  12825. case GGML_OP_CONV_TRANSPOSE_2D:
  12826. {
  12827. GGML_ASSERT(false); // TODO: not implemented
  12828. } break;
  12829. case GGML_OP_POOL_1D:
  12830. {
  12831. GGML_ASSERT(false); // TODO: not implemented
  12832. } break;
  12833. case GGML_OP_POOL_2D:
  12834. {
  12835. GGML_ASSERT(false); // TODO: not implemented
  12836. } break;
  12837. case GGML_OP_UPSCALE:
  12838. {
  12839. GGML_ASSERT(false); // TODO: not implemented
  12840. } break;
  12841. case GGML_OP_PAD:
  12842. {
  12843. GGML_ASSERT(false); // TODO: not implemented
  12844. } break;
  12845. case GGML_OP_ARGSORT:
  12846. {
  12847. GGML_ASSERT(false); // TODO: not implemented
  12848. } break;
  12849. case GGML_OP_LEAKY_RELU:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_FLASH_ATTN:
  12854. {
  12855. struct ggml_tensor * flash_grad = NULL;
  12856. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12857. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12858. GGML_ASSERT(t == 0 || t == 1);
  12859. bool masked = t != 0;
  12860. flash_grad =
  12861. ggml_flash_attn_back(ctx,
  12862. src0,
  12863. src1,
  12864. tensor->src[2],
  12865. tensor->grad,
  12866. masked);
  12867. }
  12868. struct ggml_tensor * src2 = tensor->src[2];
  12869. const int64_t elem_q = ggml_nelements(src0);
  12870. const int64_t elem_k = ggml_nelements(src1);
  12871. const int64_t elem_v = ggml_nelements(src2);
  12872. enum ggml_type result_type = flash_grad->type;
  12873. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12874. const size_t tsize = ggml_type_size(result_type);
  12875. const size_t offs_q = 0;
  12876. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12877. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12878. if (src0->grad) {
  12879. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12880. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12881. src0->grad = ggml_add_or_set(ctx,
  12882. src0->grad,
  12883. grad_q,
  12884. zero_table);
  12885. }
  12886. if (src1->grad) {
  12887. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12888. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12889. src1->grad = ggml_add_or_set(ctx,
  12890. src1->grad,
  12891. grad_k,
  12892. zero_table);
  12893. }
  12894. if (src2->grad) {
  12895. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12896. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12897. src2->grad = ggml_add_or_set(ctx,
  12898. src2->grad,
  12899. grad_v,
  12900. zero_table);
  12901. }
  12902. } break;
  12903. case GGML_OP_FLASH_FF:
  12904. {
  12905. GGML_ASSERT(false); // not supported
  12906. } break;
  12907. case GGML_OP_FLASH_ATTN_BACK:
  12908. {
  12909. GGML_ASSERT(false); // not supported
  12910. } break;
  12911. case GGML_OP_WIN_PART:
  12912. case GGML_OP_WIN_UNPART:
  12913. case GGML_OP_UNARY:
  12914. {
  12915. switch (ggml_get_unary_op(tensor)) {
  12916. case GGML_UNARY_OP_ABS:
  12917. {
  12918. if (src0->grad) {
  12919. src0->grad =
  12920. ggml_add_or_set(ctx,
  12921. src0->grad,
  12922. ggml_mul(ctx,
  12923. ggml_sgn(ctx, src0),
  12924. tensor->grad),
  12925. zero_table);
  12926. }
  12927. } break;
  12928. case GGML_UNARY_OP_SGN:
  12929. {
  12930. if (src0->grad) {
  12931. // noop
  12932. }
  12933. } break;
  12934. case GGML_UNARY_OP_NEG:
  12935. {
  12936. if (src0->grad) {
  12937. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12938. }
  12939. } break;
  12940. case GGML_UNARY_OP_STEP:
  12941. {
  12942. if (src0->grad) {
  12943. // noop
  12944. }
  12945. } break;
  12946. case GGML_UNARY_OP_TANH:
  12947. {
  12948. GGML_ASSERT(false); // TODO: not implemented
  12949. } break;
  12950. case GGML_UNARY_OP_ELU:
  12951. {
  12952. GGML_ASSERT(false); // TODO: not implemented
  12953. } break;
  12954. case GGML_UNARY_OP_RELU:
  12955. {
  12956. if (src0->grad) {
  12957. src0->grad = ggml_add_or_set(ctx,
  12958. src0->grad,
  12959. ggml_mul(ctx,
  12960. ggml_step(ctx, src0),
  12961. tensor->grad),
  12962. zero_table);
  12963. }
  12964. } break;
  12965. case GGML_UNARY_OP_GELU:
  12966. {
  12967. GGML_ASSERT(false); // TODO: not implemented
  12968. } break;
  12969. case GGML_UNARY_OP_GELU_QUICK:
  12970. {
  12971. GGML_ASSERT(false); // TODO: not implemented
  12972. } break;
  12973. case GGML_UNARY_OP_SILU:
  12974. {
  12975. // necessary for llama
  12976. if (src0->grad) {
  12977. src0->grad = ggml_add_or_set(ctx,
  12978. src0->grad,
  12979. ggml_silu_back(ctx, src0, tensor->grad),
  12980. zero_table);
  12981. }
  12982. } break;
  12983. default:
  12984. GGML_ASSERT(false);
  12985. }
  12986. } break;
  12987. case GGML_OP_GET_REL_POS:
  12988. case GGML_OP_ADD_REL_POS:
  12989. case GGML_OP_MAP_UNARY:
  12990. case GGML_OP_MAP_BINARY:
  12991. case GGML_OP_MAP_CUSTOM1_F32:
  12992. case GGML_OP_MAP_CUSTOM2_F32:
  12993. case GGML_OP_MAP_CUSTOM3_F32:
  12994. case GGML_OP_MAP_CUSTOM1:
  12995. case GGML_OP_MAP_CUSTOM2:
  12996. case GGML_OP_MAP_CUSTOM3:
  12997. {
  12998. GGML_ASSERT(false); // not supported
  12999. } break;
  13000. case GGML_OP_CROSS_ENTROPY_LOSS:
  13001. {
  13002. if (src0->grad) {
  13003. src0->grad = ggml_add_or_set(ctx,
  13004. src0->grad,
  13005. ggml_cross_entropy_loss_back(ctx,
  13006. src0,
  13007. src1,
  13008. tensor->grad),
  13009. zero_table);
  13010. }
  13011. } break;
  13012. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13013. {
  13014. GGML_ASSERT(false); // not supported
  13015. } break;
  13016. case GGML_OP_NONE:
  13017. {
  13018. // nop
  13019. } break;
  13020. case GGML_OP_COUNT:
  13021. {
  13022. GGML_ASSERT(false);
  13023. } break;
  13024. }
  13025. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13026. if (tensor->src[i] && tensor->src[i]->grad) {
  13027. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13028. }
  13029. }
  13030. }
  13031. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13032. if (node->grad == NULL) {
  13033. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13034. // it can also happen during forward pass, if the user performs computations with constants
  13035. if (node->op != GGML_OP_NONE) {
  13036. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13037. }
  13038. }
  13039. // check if already visited
  13040. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13041. return;
  13042. }
  13043. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13044. const int k =
  13045. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13046. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13047. /* unknown order, just fall back to using i*/ i;
  13048. if (node->src[k]) {
  13049. ggml_visit_parents(cgraph, node->src[k]);
  13050. }
  13051. }
  13052. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13053. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13054. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13055. if (strlen(node->name) == 0) {
  13056. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13057. }
  13058. cgraph->leafs[cgraph->n_leafs] = node;
  13059. cgraph->n_leafs++;
  13060. } else {
  13061. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13062. if (strlen(node->name) == 0) {
  13063. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13064. }
  13065. cgraph->nodes[cgraph->n_nodes] = node;
  13066. if (cgraph->grads) {
  13067. cgraph->grads[cgraph->n_nodes] = node->grad;
  13068. }
  13069. cgraph->n_nodes++;
  13070. }
  13071. }
  13072. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13073. if (!expand) {
  13074. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13075. ggml_graph_clear(cgraph);
  13076. }
  13077. const int n0 = cgraph->n_nodes;
  13078. UNUSED(n0);
  13079. ggml_visit_parents(cgraph, tensor);
  13080. const int n_new = cgraph->n_nodes - n0;
  13081. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13082. if (n_new > 0) {
  13083. // the last added node should always be starting point
  13084. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13085. }
  13086. }
  13087. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13088. ggml_build_forward_impl(cgraph, tensor, true);
  13089. }
  13090. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13091. GGML_ASSERT(gf->n_nodes > 0);
  13092. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13093. if (keep) {
  13094. for (int i = 0; i < gf->n_nodes; i++) {
  13095. struct ggml_tensor * node = gf->nodes[i];
  13096. if (node->grad) {
  13097. node->grad = ggml_dup_tensor(ctx, node);
  13098. gf->grads[i] = node->grad;
  13099. }
  13100. }
  13101. }
  13102. // remember original gradients which start with zero values
  13103. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13104. for (int i = 0; i < gf->n_nodes; i++) {
  13105. if (gf->grads[i]) {
  13106. ggml_hash_insert(zero_table, gf->grads[i]);
  13107. }
  13108. }
  13109. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13110. struct ggml_tensor * node = gf->nodes[i];
  13111. // inplace operations to add gradients are not created by ggml_compute_backward
  13112. // use allocator to automatically make inplace operations
  13113. if (node->grad) {
  13114. ggml_compute_backward(ctx, node, zero_table);
  13115. }
  13116. }
  13117. for (int i = 0; i < gf->n_nodes; i++) {
  13118. struct ggml_tensor * node = gf->nodes[i];
  13119. if (node->is_param) {
  13120. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13121. ggml_build_forward_expand(gb, node->grad);
  13122. }
  13123. }
  13124. ggml_hash_set_free(zero_table);
  13125. }
  13126. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13127. size_t nbytes = sizeof(struct ggml_cgraph);
  13128. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13129. if (grads) {
  13130. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13131. }
  13132. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13133. return nbytes;
  13134. }
  13135. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13136. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13137. }
  13138. size_t ggml_graph_overhead(void) {
  13139. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13140. }
  13141. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13142. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13143. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13144. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13145. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13146. size_t hash_size = ggml_hash_size(size * 2);
  13147. struct ggml_tensor ** nodes_ptr = data_start;
  13148. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13149. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13150. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13151. // check that we allocated the correct amount of memory
  13152. assert(obj_size == (size_t) (
  13153. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13154. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13155. *cgraph = (struct ggml_cgraph) {
  13156. /*.size =*/ size,
  13157. /*.n_nodes =*/ 0,
  13158. /*.n_leafs =*/ 0,
  13159. /*.nodes =*/ nodes_ptr,
  13160. /*.grads =*/ grads_ptr,
  13161. /*.leafs =*/ leafs_ptr,
  13162. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13163. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13164. /*.perf_runs =*/ 0,
  13165. /*.perf_cycles =*/ 0,
  13166. /*.perf_time_us =*/ 0,
  13167. };
  13168. return cgraph;
  13169. }
  13170. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13171. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13172. }
  13173. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13174. struct ggml_cgraph cgraph = {
  13175. /*.size =*/ 0,
  13176. /*.n_nodes =*/ i1 - i0,
  13177. /*.n_leafs =*/ 0,
  13178. /*.nodes =*/ cgraph0->nodes + i0,
  13179. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13180. /*.leafs =*/ NULL,
  13181. /*.hash_table =*/ { 0, NULL },
  13182. /*.order =*/ cgraph0->order,
  13183. /*.perf_runs =*/ 0,
  13184. /*.perf_cycles =*/ 0,
  13185. /*.perf_time_us =*/ 0,
  13186. };
  13187. return cgraph;
  13188. }
  13189. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13190. GGML_ASSERT(dst->size >= src->n_leafs);
  13191. GGML_ASSERT(dst->size >= src->n_nodes);
  13192. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13193. dst->n_leafs = src->n_leafs;
  13194. dst->n_nodes = src->n_nodes;
  13195. dst->order = src->order;
  13196. for (int i = 0; i < src->n_leafs; ++i) {
  13197. dst->leafs[i] = src->leafs[i];
  13198. }
  13199. for (int i = 0; i < src->n_nodes; ++i) {
  13200. dst->nodes[i] = src->nodes[i];
  13201. }
  13202. if (src->grads) {
  13203. GGML_ASSERT(dst->grads != NULL);
  13204. for (int i = 0; i < src->n_nodes; ++i) {
  13205. dst->grads[i] = src->grads[i];
  13206. }
  13207. }
  13208. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13209. if (src->visited_hash_table.keys[i]) {
  13210. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13211. }
  13212. }
  13213. }
  13214. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13215. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13216. ggml_graph_cpy(cgraph, result);
  13217. return result;
  13218. }
  13219. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13220. GGML_ASSERT(cgraph->grads != NULL);
  13221. for (int i = 0; i < cgraph->n_nodes; i++) {
  13222. struct ggml_tensor * grad = cgraph->grads[i];
  13223. if (grad) {
  13224. ggml_set_zero(grad);
  13225. }
  13226. }
  13227. }
  13228. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13229. cgraph->n_leafs = 0;
  13230. cgraph->n_nodes = 0;
  13231. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13232. }
  13233. //
  13234. // thread data
  13235. //
  13236. // synchronization is done via busy loops
  13237. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13238. //
  13239. #ifdef __APPLE__
  13240. //#include <os/lock.h>
  13241. //
  13242. //typedef os_unfair_lock ggml_lock_t;
  13243. //
  13244. //#define ggml_lock_init(x) UNUSED(x)
  13245. //#define ggml_lock_destroy(x) UNUSED(x)
  13246. //#define ggml_lock_lock os_unfair_lock_lock
  13247. //#define ggml_lock_unlock os_unfair_lock_unlock
  13248. //
  13249. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13250. typedef int ggml_lock_t;
  13251. #define ggml_lock_init(x) UNUSED(x)
  13252. #define ggml_lock_destroy(x) UNUSED(x)
  13253. #define ggml_lock_lock(x) UNUSED(x)
  13254. #define ggml_lock_unlock(x) UNUSED(x)
  13255. #define GGML_LOCK_INITIALIZER 0
  13256. typedef pthread_t ggml_thread_t;
  13257. #define ggml_thread_create pthread_create
  13258. #define ggml_thread_join pthread_join
  13259. #else
  13260. //typedef pthread_spinlock_t ggml_lock_t;
  13261. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13262. //#define ggml_lock_destroy pthread_spin_destroy
  13263. //#define ggml_lock_lock pthread_spin_lock
  13264. //#define ggml_lock_unlock pthread_spin_unlock
  13265. typedef int ggml_lock_t;
  13266. #define ggml_lock_init(x) UNUSED(x)
  13267. #define ggml_lock_destroy(x) UNUSED(x)
  13268. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13269. #define ggml_lock_lock(x) _mm_pause()
  13270. #else
  13271. #define ggml_lock_lock(x) UNUSED(x)
  13272. #endif
  13273. #define ggml_lock_unlock(x) UNUSED(x)
  13274. #define GGML_LOCK_INITIALIZER 0
  13275. typedef pthread_t ggml_thread_t;
  13276. #define ggml_thread_create pthread_create
  13277. #define ggml_thread_join pthread_join
  13278. #endif
  13279. // Android's libc implementation "bionic" does not support setting affinity
  13280. #if defined(__linux__) && !defined(__BIONIC__)
  13281. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13282. if (!ggml_is_numa()) {
  13283. return;
  13284. }
  13285. // run thread on node_num thread_n / (threads per node)
  13286. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13287. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13288. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13289. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13290. CPU_ZERO_S(setsize, cpus);
  13291. for (size_t i = 0; i < node->n_cpus; ++i) {
  13292. CPU_SET_S(node->cpus[i], setsize, cpus);
  13293. }
  13294. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13295. if (rv) {
  13296. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13297. strerror(rv));
  13298. }
  13299. CPU_FREE(cpus);
  13300. }
  13301. static void clear_numa_thread_affinity(void) {
  13302. if (!ggml_is_numa()) {
  13303. return;
  13304. }
  13305. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13306. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13307. CPU_ZERO_S(setsize, cpus);
  13308. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13309. CPU_SET_S(i, setsize, cpus);
  13310. }
  13311. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13312. if (rv) {
  13313. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13314. strerror(rv));
  13315. }
  13316. CPU_FREE(cpus);
  13317. }
  13318. #else
  13319. // TODO: Windows etc.
  13320. // (the linux implementation may also work on BSD, someone should test)
  13321. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13322. static void clear_numa_thread_affinity(void) {}
  13323. #endif
  13324. struct ggml_compute_state_shared {
  13325. const struct ggml_cgraph * cgraph;
  13326. const struct ggml_cplan * cplan;
  13327. int64_t perf_node_start_cycles;
  13328. int64_t perf_node_start_time_us;
  13329. const int n_threads;
  13330. // synchronization primitives
  13331. atomic_int n_active; // num active threads
  13332. atomic_int node_n; // active graph node
  13333. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13334. void * abort_callback_data;
  13335. };
  13336. struct ggml_compute_state {
  13337. ggml_thread_t thrd;
  13338. int ith;
  13339. struct ggml_compute_state_shared * shared;
  13340. };
  13341. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13342. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13343. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13344. node->perf_runs++;
  13345. node->perf_cycles += cycles_cur;
  13346. node->perf_time_us += time_us_cur;
  13347. }
  13348. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13349. int n_tasks = 0;
  13350. switch (node->op) {
  13351. case GGML_OP_CPY:
  13352. case GGML_OP_DUP:
  13353. case GGML_OP_ADD:
  13354. case GGML_OP_ADD1:
  13355. case GGML_OP_ACC:
  13356. {
  13357. n_tasks = n_threads;
  13358. } break;
  13359. case GGML_OP_SUB:
  13360. case GGML_OP_SQR:
  13361. case GGML_OP_SQRT:
  13362. case GGML_OP_LOG:
  13363. case GGML_OP_SUM:
  13364. case GGML_OP_SUM_ROWS:
  13365. case GGML_OP_MEAN:
  13366. case GGML_OP_ARGMAX:
  13367. case GGML_OP_REPEAT:
  13368. case GGML_OP_REPEAT_BACK:
  13369. case GGML_OP_LEAKY_RELU:
  13370. {
  13371. n_tasks = 1;
  13372. } break;
  13373. case GGML_OP_UNARY:
  13374. switch (ggml_get_unary_op(node)) {
  13375. case GGML_UNARY_OP_ABS:
  13376. case GGML_UNARY_OP_SGN:
  13377. case GGML_UNARY_OP_NEG:
  13378. case GGML_UNARY_OP_STEP:
  13379. case GGML_UNARY_OP_TANH:
  13380. case GGML_UNARY_OP_ELU:
  13381. case GGML_UNARY_OP_RELU:
  13382. {
  13383. n_tasks = 1;
  13384. } break;
  13385. case GGML_UNARY_OP_GELU:
  13386. case GGML_UNARY_OP_GELU_QUICK:
  13387. case GGML_UNARY_OP_SILU:
  13388. {
  13389. n_tasks = n_threads;
  13390. } break;
  13391. default:
  13392. GGML_ASSERT(false);
  13393. }
  13394. break;
  13395. case GGML_OP_SILU_BACK:
  13396. case GGML_OP_MUL:
  13397. case GGML_OP_DIV:
  13398. case GGML_OP_NORM:
  13399. case GGML_OP_RMS_NORM:
  13400. case GGML_OP_RMS_NORM_BACK:
  13401. case GGML_OP_GROUP_NORM:
  13402. case GGML_OP_CONCAT:
  13403. {
  13404. n_tasks = n_threads;
  13405. } break;
  13406. case GGML_OP_MUL_MAT:
  13407. {
  13408. n_tasks = n_threads;
  13409. // TODO: use different scheduling for different matrix sizes
  13410. //const int nr0 = ggml_nrows(node->src[0]);
  13411. //const int nr1 = ggml_nrows(node->src[1]);
  13412. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13413. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13414. #if defined(GGML_USE_CUBLAS)
  13415. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13416. n_tasks = 1; // TODO: this actually is doing nothing
  13417. // the threads are still spinning
  13418. }
  13419. #elif defined(GGML_USE_CLBLAST)
  13420. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13421. n_tasks = 1; // TODO: this actually is doing nothing
  13422. // the threads are still spinning
  13423. }
  13424. #endif
  13425. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13426. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13427. n_tasks = 1; // TODO: this actually is doing nothing
  13428. // the threads are still spinning
  13429. }
  13430. #endif
  13431. } break;
  13432. case GGML_OP_MUL_MAT_ID:
  13433. {
  13434. n_tasks = n_threads;
  13435. } break;
  13436. case GGML_OP_OUT_PROD:
  13437. {
  13438. n_tasks = n_threads;
  13439. } break;
  13440. case GGML_OP_SCALE:
  13441. case GGML_OP_SET:
  13442. case GGML_OP_CONT:
  13443. case GGML_OP_RESHAPE:
  13444. case GGML_OP_VIEW:
  13445. case GGML_OP_PERMUTE:
  13446. case GGML_OP_TRANSPOSE:
  13447. case GGML_OP_GET_ROWS:
  13448. case GGML_OP_GET_ROWS_BACK:
  13449. case GGML_OP_DIAG:
  13450. {
  13451. n_tasks = 1;
  13452. } break;
  13453. case GGML_OP_DIAG_MASK_ZERO:
  13454. case GGML_OP_DIAG_MASK_INF:
  13455. case GGML_OP_SOFT_MAX_BACK:
  13456. case GGML_OP_ROPE:
  13457. case GGML_OP_ROPE_BACK:
  13458. case GGML_OP_ADD_REL_POS:
  13459. {
  13460. n_tasks = n_threads;
  13461. } break;
  13462. case GGML_OP_ALIBI:
  13463. {
  13464. n_tasks = 1; //TODO
  13465. } break;
  13466. case GGML_OP_CLAMP:
  13467. {
  13468. n_tasks = 1; //TODO
  13469. } break;
  13470. case GGML_OP_SOFT_MAX:
  13471. {
  13472. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13473. } break;
  13474. case GGML_OP_CONV_TRANSPOSE_1D:
  13475. {
  13476. n_tasks = n_threads;
  13477. } break;
  13478. case GGML_OP_IM2COL:
  13479. {
  13480. n_tasks = n_threads;
  13481. } break;
  13482. case GGML_OP_CONV_TRANSPOSE_2D:
  13483. {
  13484. n_tasks = n_threads;
  13485. } break;
  13486. case GGML_OP_POOL_1D:
  13487. case GGML_OP_POOL_2D:
  13488. {
  13489. n_tasks = 1;
  13490. } break;
  13491. case GGML_OP_UPSCALE:
  13492. {
  13493. n_tasks = n_threads;
  13494. } break;
  13495. case GGML_OP_PAD:
  13496. {
  13497. n_tasks = n_threads;
  13498. } break;
  13499. case GGML_OP_ARGSORT:
  13500. {
  13501. n_tasks = n_threads;
  13502. } break;
  13503. case GGML_OP_FLASH_ATTN:
  13504. {
  13505. n_tasks = n_threads;
  13506. } break;
  13507. case GGML_OP_FLASH_FF:
  13508. {
  13509. n_tasks = n_threads;
  13510. } break;
  13511. case GGML_OP_FLASH_ATTN_BACK:
  13512. {
  13513. n_tasks = n_threads;
  13514. } break;
  13515. case GGML_OP_WIN_PART:
  13516. case GGML_OP_WIN_UNPART:
  13517. case GGML_OP_GET_REL_POS:
  13518. case GGML_OP_MAP_UNARY:
  13519. case GGML_OP_MAP_BINARY:
  13520. case GGML_OP_MAP_CUSTOM1_F32:
  13521. case GGML_OP_MAP_CUSTOM2_F32:
  13522. case GGML_OP_MAP_CUSTOM3_F32:
  13523. {
  13524. n_tasks = 1;
  13525. } break;
  13526. case GGML_OP_MAP_CUSTOM1:
  13527. {
  13528. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13529. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13530. n_tasks = n_threads;
  13531. } else {
  13532. n_tasks = MIN(p->n_tasks, n_threads);
  13533. }
  13534. } break;
  13535. case GGML_OP_MAP_CUSTOM2:
  13536. {
  13537. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13538. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13539. n_tasks = n_threads;
  13540. } else {
  13541. n_tasks = MIN(p->n_tasks, n_threads);
  13542. }
  13543. } break;
  13544. case GGML_OP_MAP_CUSTOM3:
  13545. {
  13546. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13547. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13548. n_tasks = n_threads;
  13549. } else {
  13550. n_tasks = MIN(p->n_tasks, n_threads);
  13551. }
  13552. } break;
  13553. case GGML_OP_CROSS_ENTROPY_LOSS:
  13554. {
  13555. n_tasks = n_threads;
  13556. } break;
  13557. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13558. {
  13559. n_tasks = n_threads;
  13560. } break;
  13561. case GGML_OP_NONE:
  13562. {
  13563. n_tasks = 1;
  13564. } break;
  13565. case GGML_OP_COUNT:
  13566. {
  13567. GGML_ASSERT(false);
  13568. } break;
  13569. default:
  13570. {
  13571. fprintf(stderr, "%s: op not implemented: ", __func__);
  13572. if (node->op < GGML_OP_COUNT) {
  13573. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13574. } else {
  13575. fprintf(stderr, "%d\n", node->op);
  13576. }
  13577. GGML_ASSERT(false);
  13578. } break;
  13579. }
  13580. assert(n_tasks > 0);
  13581. return n_tasks;
  13582. }
  13583. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13584. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13585. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13586. const struct ggml_cplan * cplan = state->shared->cplan;
  13587. const int n_threads = state->shared->n_threads;
  13588. set_numa_thread_affinity(state->ith, n_threads);
  13589. int node_n = -1;
  13590. while (true) {
  13591. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13592. state->shared->node_n += 1;
  13593. return (thread_ret_t) GGML_EXIT_ABORTED;
  13594. }
  13595. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13596. // all other threads are finished and spinning
  13597. // do finalize and init here so we don't have synchronize again
  13598. struct ggml_compute_params params = {
  13599. /*.type =*/ GGML_TASK_FINALIZE,
  13600. /*.ith =*/ 0,
  13601. /*.nth =*/ 0,
  13602. /*.wsize =*/ cplan->work_size,
  13603. /*.wdata =*/ cplan->work_data,
  13604. };
  13605. if (node_n != -1) {
  13606. /* FINALIZE */
  13607. struct ggml_tensor * node = cgraph->nodes[node_n];
  13608. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13609. params.nth = ggml_get_n_tasks(node, n_threads);
  13610. ggml_compute_forward(&params, node);
  13611. }
  13612. ggml_graph_compute_perf_stats_node(node, state->shared);
  13613. }
  13614. // distribute new work or execute it direct if 1T
  13615. while (++node_n < cgraph->n_nodes) {
  13616. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13617. struct ggml_tensor * node = cgraph->nodes[node_n];
  13618. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13619. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13620. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13621. params.nth = n_tasks;
  13622. /* INIT */
  13623. if (GGML_OP_HAS_INIT[node->op]) {
  13624. params.type = GGML_TASK_INIT;
  13625. ggml_compute_forward(&params, node);
  13626. }
  13627. if (n_tasks == 1) {
  13628. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13629. // they do something more efficient than spinning (?)
  13630. params.type = GGML_TASK_COMPUTE;
  13631. ggml_compute_forward(&params, node);
  13632. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13633. params.type = GGML_TASK_FINALIZE;
  13634. ggml_compute_forward(&params, node);
  13635. }
  13636. ggml_graph_compute_perf_stats_node(node, state->shared);
  13637. } else {
  13638. break;
  13639. }
  13640. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13641. break;
  13642. }
  13643. }
  13644. atomic_store(&state->shared->n_active, n_threads);
  13645. atomic_store(&state->shared->node_n, node_n);
  13646. } else {
  13647. // wait for other threads to finish
  13648. const int last = node_n;
  13649. while (true) {
  13650. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13651. // depending on the workload and the operating system.
  13652. // since it is not clear what is the best approach, it should potentially become user-configurable
  13653. // ref: https://github.com/ggerganov/ggml/issues/291
  13654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13655. sched_yield();
  13656. #endif
  13657. node_n = atomic_load(&state->shared->node_n);
  13658. if (node_n != last) break;
  13659. };
  13660. }
  13661. // check if we should stop
  13662. if (node_n >= cgraph->n_nodes) break;
  13663. /* COMPUTE */
  13664. struct ggml_tensor * node = cgraph->nodes[node_n];
  13665. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13666. struct ggml_compute_params params = {
  13667. /*.type =*/ GGML_TASK_COMPUTE,
  13668. /*.ith =*/ state->ith,
  13669. /*.nth =*/ n_tasks,
  13670. /*.wsize =*/ cplan->work_size,
  13671. /*.wdata =*/ cplan->work_data,
  13672. };
  13673. if (state->ith < n_tasks) {
  13674. ggml_compute_forward(&params, node);
  13675. }
  13676. }
  13677. return GGML_EXIT_SUCCESS;
  13678. }
  13679. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13680. if (n_threads <= 0) {
  13681. n_threads = GGML_DEFAULT_N_THREADS;
  13682. }
  13683. size_t work_size = 0;
  13684. struct ggml_cplan cplan;
  13685. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13686. // thread scheduling for the different operations + work buffer size estimation
  13687. for (int i = 0; i < cgraph->n_nodes; i++) {
  13688. struct ggml_tensor * node = cgraph->nodes[i];
  13689. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13690. size_t cur = 0;
  13691. switch (node->op) {
  13692. case GGML_OP_CPY:
  13693. case GGML_OP_DUP:
  13694. {
  13695. if (ggml_is_quantized(node->type)) {
  13696. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13697. }
  13698. } break;
  13699. case GGML_OP_ADD:
  13700. case GGML_OP_ADD1:
  13701. {
  13702. if (ggml_is_quantized(node->src[0]->type)) {
  13703. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13704. }
  13705. } break;
  13706. case GGML_OP_ACC:
  13707. {
  13708. if (ggml_is_quantized(node->src[0]->type)) {
  13709. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13710. }
  13711. } break;
  13712. case GGML_OP_MUL_MAT:
  13713. {
  13714. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13715. #if defined(GGML_USE_CLBLAST)
  13716. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13717. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13718. } else
  13719. #endif
  13720. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13721. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13722. if (node->src[0]->type != GGML_TYPE_F32) {
  13723. // here we need memory just for single 2D matrix from src0
  13724. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13725. }
  13726. } else
  13727. #endif
  13728. if (node->src[1]->type != vec_dot_type) {
  13729. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13730. }
  13731. } break;
  13732. case GGML_OP_MUL_MAT_ID:
  13733. {
  13734. const struct ggml_tensor * src0 = node->src[2];
  13735. const struct ggml_tensor * src1 = node->src[1];
  13736. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13737. if (src1->type != vec_dot_type) {
  13738. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13739. }
  13740. const int n_as = ggml_get_op_params_i32(node, 1);
  13741. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13742. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13743. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13744. } break;
  13745. case GGML_OP_OUT_PROD:
  13746. {
  13747. if (ggml_is_quantized(node->src[0]->type)) {
  13748. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13749. }
  13750. } break;
  13751. case GGML_OP_SOFT_MAX:
  13752. {
  13753. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13754. } break;
  13755. case GGML_OP_CONV_TRANSPOSE_1D:
  13756. {
  13757. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13758. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13759. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13760. const int64_t ne00 = node->src[0]->ne[0]; // K
  13761. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13762. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13763. const int64_t ne10 = node->src[1]->ne[0]; // L
  13764. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13765. if (node->src[0]->type == GGML_TYPE_F16 &&
  13766. node->src[1]->type == GGML_TYPE_F32) {
  13767. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13768. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13769. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13770. node->src[1]->type == GGML_TYPE_F32) {
  13771. cur += sizeof(float)*ne00*ne01*ne02;
  13772. cur += sizeof(float)*ne10*ne11;
  13773. } else {
  13774. GGML_ASSERT(false);
  13775. }
  13776. } break;
  13777. case GGML_OP_CONV_TRANSPOSE_2D:
  13778. {
  13779. const int64_t ne00 = node->src[0]->ne[0]; // W
  13780. const int64_t ne01 = node->src[0]->ne[1]; // H
  13781. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13782. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13783. const int64_t ne10 = node->src[1]->ne[0]; // W
  13784. const int64_t ne11 = node->src[1]->ne[1]; // H
  13785. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13786. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13787. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13788. } break;
  13789. case GGML_OP_FLASH_ATTN:
  13790. {
  13791. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13792. if (node->src[1]->type == GGML_TYPE_F32) {
  13793. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13794. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13795. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13796. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13797. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13798. }
  13799. } break;
  13800. case GGML_OP_FLASH_FF:
  13801. {
  13802. if (node->src[1]->type == GGML_TYPE_F32) {
  13803. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13804. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13805. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13806. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13807. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13808. }
  13809. } break;
  13810. case GGML_OP_FLASH_ATTN_BACK:
  13811. {
  13812. const int64_t D = node->src[0]->ne[0];
  13813. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13814. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13815. if (node->src[1]->type == GGML_TYPE_F32) {
  13816. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13817. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13818. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13819. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13820. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13821. }
  13822. } break;
  13823. case GGML_OP_CROSS_ENTROPY_LOSS:
  13824. {
  13825. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13826. } break;
  13827. case GGML_OP_COUNT:
  13828. {
  13829. GGML_ASSERT(false);
  13830. } break;
  13831. default:
  13832. break;
  13833. }
  13834. work_size = MAX(work_size, cur);
  13835. }
  13836. if (work_size > 0) {
  13837. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13838. }
  13839. cplan.n_threads = n_threads;
  13840. cplan.work_size = work_size;
  13841. cplan.work_data = NULL;
  13842. return cplan;
  13843. }
  13844. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13845. {
  13846. GGML_ASSERT(cplan);
  13847. GGML_ASSERT(cplan->n_threads > 0);
  13848. if (cplan->work_size > 0) {
  13849. GGML_ASSERT(cplan->work_data);
  13850. }
  13851. }
  13852. const int n_threads = cplan->n_threads;
  13853. struct ggml_compute_state_shared state_shared = {
  13854. /*.cgraph =*/ cgraph,
  13855. /*.cgraph_plan =*/ cplan,
  13856. /*.perf_node_start_cycles =*/ 0,
  13857. /*.perf_node_start_time_us =*/ 0,
  13858. /*.n_threads =*/ n_threads,
  13859. /*.n_active =*/ n_threads,
  13860. /*.node_n =*/ -1,
  13861. /*.abort_callback =*/ NULL,
  13862. /*.abort_callback_data =*/ NULL,
  13863. };
  13864. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13865. // create thread pool
  13866. if (n_threads > 1) {
  13867. for (int j = 1; j < n_threads; ++j) {
  13868. workers[j] = (struct ggml_compute_state) {
  13869. .thrd = 0,
  13870. .ith = j,
  13871. .shared = &state_shared,
  13872. };
  13873. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13874. GGML_ASSERT(rc == 0);
  13875. UNUSED(rc);
  13876. }
  13877. }
  13878. workers[0].ith = 0;
  13879. workers[0].shared = &state_shared;
  13880. const int64_t perf_start_cycles = ggml_perf_cycles();
  13881. const int64_t perf_start_time_us = ggml_perf_time_us();
  13882. // this is a work thread too
  13883. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13884. // don't leave affinity set on the main thread
  13885. clear_numa_thread_affinity();
  13886. // join or kill thread pool
  13887. if (n_threads > 1) {
  13888. for (int j = 1; j < n_threads; j++) {
  13889. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13890. GGML_ASSERT(rc == 0);
  13891. }
  13892. }
  13893. // performance stats (graph)
  13894. {
  13895. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13896. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13897. cgraph->perf_runs++;
  13898. cgraph->perf_cycles += perf_cycles_cur;
  13899. cgraph->perf_time_us += perf_time_us_cur;
  13900. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13901. __func__, cgraph->perf_runs,
  13902. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13903. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13904. (double) perf_time_us_cur / 1000.0,
  13905. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13906. }
  13907. return compute_status;
  13908. }
  13909. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13910. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13911. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13912. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13913. ggml_graph_compute(cgraph, &cplan);
  13914. }
  13915. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13916. for (int i = 0; i < cgraph->n_leafs; i++) {
  13917. struct ggml_tensor * leaf = cgraph->leafs[i];
  13918. if (strcmp(leaf->name, name) == 0) {
  13919. return leaf;
  13920. }
  13921. }
  13922. for (int i = 0; i < cgraph->n_nodes; i++) {
  13923. struct ggml_tensor * node = cgraph->nodes[i];
  13924. if (strcmp(node->name, name) == 0) {
  13925. return node;
  13926. }
  13927. }
  13928. return NULL;
  13929. }
  13930. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13931. const int64_t * ne = tensor->ne;
  13932. const size_t * nb = tensor->nb;
  13933. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13934. ggml_type_name(tensor->type),
  13935. ggml_op_name (tensor->op),
  13936. ggml_n_dims(tensor),
  13937. ne[0], ne[1], ne[2], ne[3],
  13938. nb[0], nb[1], nb[2], nb[3],
  13939. tensor->data,
  13940. tensor->name);
  13941. }
  13942. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13943. const int64_t * ne = tensor->ne;
  13944. const size_t * nb = tensor->nb;
  13945. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13946. arg,
  13947. ggml_type_name(tensor->type),
  13948. ggml_op_name (tensor->op),
  13949. ggml_n_dims(tensor),
  13950. ne[0], ne[1], ne[2], ne[3],
  13951. nb[0], nb[1], nb[2], nb[3],
  13952. tensor->data,
  13953. tensor->name);
  13954. }
  13955. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13956. uint64_t size_eval = 0;
  13957. // compute size of intermediate results
  13958. // TODO: does not take into account scratch buffers !!!!
  13959. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13960. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13961. }
  13962. // print
  13963. {
  13964. FILE * fout = stdout;
  13965. fprintf(fout, "\n");
  13966. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13967. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13968. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13969. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13970. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13971. // header
  13972. fprintf(fout, "\n");
  13973. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13974. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13975. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13976. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13977. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13978. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13979. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13980. }
  13981. // header
  13982. fprintf(fout, "\n");
  13983. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13984. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13985. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13986. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13987. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13988. if (cgraph->nodes[i]->src[j]) {
  13989. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13990. }
  13991. }
  13992. fprintf(fout, "\n");
  13993. }
  13994. fprintf(fout, "\n");
  13995. }
  13996. // write binary data
  13997. {
  13998. FILE * fout = fopen(fname, "wb");
  13999. if (!fout) {
  14000. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14001. return;
  14002. }
  14003. // header
  14004. {
  14005. const uint32_t magic = GGML_FILE_MAGIC;
  14006. const uint32_t version = GGML_FILE_VERSION;
  14007. const uint32_t n_leafs = cgraph->n_leafs;
  14008. const uint32_t n_nodes = cgraph->n_nodes;
  14009. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14010. fwrite(&version, sizeof(uint32_t), 1, fout);
  14011. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14012. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14013. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14014. }
  14015. // leafs
  14016. {
  14017. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14018. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14019. const uint32_t type = tensor->type;
  14020. const uint32_t op = tensor->op;
  14021. fwrite(&type, sizeof(uint32_t), 1, fout);
  14022. fwrite(&op, sizeof(uint32_t), 1, fout);
  14023. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14024. const uint64_t ne = tensor->ne[j];
  14025. const uint64_t nb = tensor->nb[j];
  14026. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14027. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14028. }
  14029. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14030. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14031. // dump the data
  14032. // TODO: pad this to 32 byte boundary
  14033. {
  14034. const size_t size = ggml_nbytes(tensor);
  14035. fwrite(tensor->data, sizeof(char), size, fout);
  14036. }
  14037. }
  14038. }
  14039. // nodes
  14040. {
  14041. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14042. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14043. const uint32_t type = tensor->type;
  14044. const uint32_t op = tensor->op;
  14045. fwrite(&type, sizeof(uint32_t), 1, fout);
  14046. fwrite(&op, sizeof(uint32_t), 1, fout);
  14047. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14048. const uint64_t ne = tensor->ne[j];
  14049. const uint64_t nb = tensor->nb[j];
  14050. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14051. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14052. }
  14053. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14054. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14055. // output the op arguments
  14056. {
  14057. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14058. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14059. args[j] = tensor->src[j];
  14060. }
  14061. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14062. if (args[j]) {
  14063. int32_t idx = -1;
  14064. // check if leaf
  14065. {
  14066. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14067. if (args[j] == cgraph->leafs[k]) {
  14068. idx = k;
  14069. break;
  14070. }
  14071. }
  14072. }
  14073. // check if node
  14074. if (idx == -1) {
  14075. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14076. if (args[j] == cgraph->nodes[k]) {
  14077. idx = cgraph->n_leafs + k;
  14078. break;
  14079. }
  14080. }
  14081. }
  14082. if (idx == -1) {
  14083. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14084. fclose(fout);
  14085. return;
  14086. }
  14087. fwrite(&idx, sizeof(int32_t), 1, fout);
  14088. } else {
  14089. const int32_t nul = -1;
  14090. fwrite(&nul, sizeof(int32_t), 1, fout);
  14091. }
  14092. }
  14093. }
  14094. }
  14095. }
  14096. fclose(fout);
  14097. }
  14098. }
  14099. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14100. assert(*ctx_data == NULL);
  14101. assert(*ctx_eval == NULL);
  14102. struct ggml_cgraph * result = NULL;
  14103. struct ggml_tensor * data = NULL;
  14104. // read file into data
  14105. {
  14106. FILE * fin = fopen(fname, "rb");
  14107. if (!fin) {
  14108. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14109. return result;
  14110. }
  14111. size_t fsize = 0;
  14112. fseek(fin, 0, SEEK_END);
  14113. fsize = ftell(fin);
  14114. fseek(fin, 0, SEEK_SET);
  14115. // create the data context
  14116. {
  14117. const size_t overhead = 1*ggml_tensor_overhead();
  14118. struct ggml_init_params params = {
  14119. .mem_size = fsize + overhead,
  14120. .mem_buffer = NULL,
  14121. .no_alloc = false,
  14122. };
  14123. *ctx_data = ggml_init(params);
  14124. if (!*ctx_data) {
  14125. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14126. fclose(fin);
  14127. return result;
  14128. }
  14129. }
  14130. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14131. {
  14132. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14133. if (ret != fsize) {
  14134. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14135. fclose(fin);
  14136. return result;
  14137. }
  14138. }
  14139. fclose(fin);
  14140. }
  14141. // populate result
  14142. {
  14143. char * ptr = (char *) data->data;
  14144. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14145. if (magic != GGML_FILE_MAGIC) {
  14146. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14147. return result;
  14148. }
  14149. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14150. if (version != GGML_FILE_VERSION) {
  14151. fprintf(stderr, "%s: invalid version number\n", __func__);
  14152. return result;
  14153. }
  14154. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14155. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14156. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14157. const int graph_size = MAX(n_leafs, n_nodes);
  14158. // create the data context
  14159. {
  14160. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14161. struct ggml_init_params params = {
  14162. .mem_size = size_eval + overhead,
  14163. .mem_buffer = NULL,
  14164. .no_alloc = true,
  14165. };
  14166. *ctx_eval = ggml_init(params);
  14167. if (!*ctx_eval) {
  14168. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14169. return result;
  14170. }
  14171. }
  14172. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14173. result->n_leafs = n_leafs;
  14174. result->n_nodes = n_nodes;
  14175. // leafs
  14176. {
  14177. uint32_t type;
  14178. uint32_t op;
  14179. for (uint32_t i = 0; i < n_leafs; ++i) {
  14180. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14181. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14182. int64_t ne[GGML_MAX_DIMS];
  14183. size_t nb[GGML_MAX_DIMS];
  14184. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14185. uint64_t ne_cur;
  14186. uint64_t nb_cur;
  14187. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14188. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14189. ne[j] = ne_cur;
  14190. nb[j] = nb_cur;
  14191. }
  14192. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14193. tensor->op = (enum ggml_op) op;
  14194. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14195. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14196. tensor->data = (void *) ptr;
  14197. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14198. tensor->nb[j] = nb[j];
  14199. }
  14200. result->leafs[i] = tensor;
  14201. ptr += ggml_nbytes(tensor);
  14202. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14203. }
  14204. }
  14205. ggml_set_no_alloc(*ctx_eval, false);
  14206. // nodes
  14207. {
  14208. uint32_t type;
  14209. uint32_t op;
  14210. for (uint32_t i = 0; i < n_nodes; ++i) {
  14211. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14212. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14213. enum ggml_op eop = (enum ggml_op) op;
  14214. int64_t ne[GGML_MAX_DIMS];
  14215. size_t nb[GGML_MAX_DIMS];
  14216. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14217. uint64_t ne_cur;
  14218. uint64_t nb_cur;
  14219. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14220. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14221. ne[j] = ne_cur;
  14222. nb[j] = nb_cur;
  14223. }
  14224. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14225. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14226. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14227. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14228. // parse args
  14229. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14230. const int32_t arg_idx = ptr_arg_idx[j];
  14231. if (arg_idx == -1) {
  14232. continue;
  14233. }
  14234. if (arg_idx < result->n_leafs) {
  14235. args[j] = result->leafs[arg_idx];
  14236. } else {
  14237. args[j] = result->nodes[arg_idx - result->n_leafs];
  14238. }
  14239. }
  14240. // create the tensor
  14241. // "view" operations are handled differently
  14242. // TODO: handle inplace ops - currently a copy is always made
  14243. struct ggml_tensor * tensor = NULL;
  14244. switch (eop) {
  14245. // TODO: implement other view ops
  14246. case GGML_OP_RESHAPE:
  14247. {
  14248. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14249. } break;
  14250. case GGML_OP_VIEW:
  14251. {
  14252. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14253. size_t offs;
  14254. memcpy(&offs, ptr_op_params, sizeof(offs));
  14255. tensor->data = ((char *) tensor->data) + offs;
  14256. } break;
  14257. case GGML_OP_TRANSPOSE:
  14258. {
  14259. tensor = ggml_transpose(*ctx_eval, args[0]);
  14260. } break;
  14261. case GGML_OP_PERMUTE:
  14262. {
  14263. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14264. } break;
  14265. default:
  14266. {
  14267. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14268. tensor->op = eop;
  14269. } break;
  14270. }
  14271. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14272. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14273. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14274. tensor->nb[j] = nb[j];
  14275. }
  14276. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14277. tensor->src[j] = args[j];
  14278. }
  14279. result->nodes[i] = tensor;
  14280. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14281. }
  14282. }
  14283. }
  14284. return result;
  14285. }
  14286. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14287. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14288. GGML_PRINT("=== GRAPH ===\n");
  14289. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14290. for (int i = 0; i < cgraph->n_nodes; i++) {
  14291. struct ggml_tensor * node = cgraph->nodes[i];
  14292. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14293. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14294. i,
  14295. node->ne[0], node->ne[1], node->ne[2],
  14296. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14297. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14298. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14299. (double) node->perf_time_us / 1000.0,
  14300. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14301. }
  14302. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14303. for (int i = 0; i < cgraph->n_leafs; i++) {
  14304. struct ggml_tensor * node = cgraph->leafs[i];
  14305. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14306. i,
  14307. node->ne[0], node->ne[1],
  14308. ggml_op_name(node->op),
  14309. ggml_get_name(node));
  14310. }
  14311. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14312. if (perf_total_per_op_us[i] == 0) {
  14313. continue;
  14314. }
  14315. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14316. }
  14317. GGML_PRINT("========================================\n");
  14318. }
  14319. // check if node is part of the graph
  14320. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14321. if (cgraph == NULL) {
  14322. return true;
  14323. }
  14324. for (int i = 0; i < cgraph->n_nodes; i++) {
  14325. if (cgraph->nodes[i] == node) {
  14326. return true;
  14327. }
  14328. }
  14329. return false;
  14330. }
  14331. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14332. for (int i = 0; i < cgraph->n_nodes; i++) {
  14333. struct ggml_tensor * parent = cgraph->nodes[i];
  14334. if (parent->grad == node) {
  14335. return parent;
  14336. }
  14337. }
  14338. return NULL;
  14339. }
  14340. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14341. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14342. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14343. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14344. gparent0 ? (void *) gparent0 : (void *) parent,
  14345. gparent0 ? "g" : "x",
  14346. gparent ? (void *) gparent : (void *) node,
  14347. gparent ? "g" : "x",
  14348. gparent ? "empty" : "vee",
  14349. gparent ? "dashed" : "solid",
  14350. label);
  14351. }
  14352. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14353. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14354. (void *) parent, "x",
  14355. (void *) node, "x",
  14356. label);
  14357. }
  14358. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14359. char color[16];
  14360. FILE * fp = fopen(filename, "w");
  14361. GGML_ASSERT(fp);
  14362. fprintf(fp, "digraph G {\n");
  14363. fprintf(fp, " newrank = true;\n");
  14364. fprintf(fp, " rankdir = LR;\n");
  14365. for (int i = 0; i < gb->n_nodes; i++) {
  14366. struct ggml_tensor * node = gb->nodes[i];
  14367. if (ggml_graph_get_parent(gb, node) != NULL) {
  14368. continue;
  14369. }
  14370. if (node->is_param) {
  14371. snprintf(color, sizeof(color), "yellow");
  14372. } else if (node->grad) {
  14373. if (ggml_graph_find(gf, node)) {
  14374. snprintf(color, sizeof(color), "green");
  14375. } else {
  14376. snprintf(color, sizeof(color), "lightblue");
  14377. }
  14378. } else {
  14379. snprintf(color, sizeof(color), "white");
  14380. }
  14381. fprintf(fp, " \"%p\" [ "
  14382. "style = filled; fillcolor = %s; shape = record; "
  14383. "label=\"",
  14384. (void *) node, color);
  14385. if (strlen(node->name) > 0) {
  14386. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14387. } else {
  14388. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14389. }
  14390. if (ggml_is_matrix(node)) {
  14391. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14392. } else {
  14393. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14394. }
  14395. if (node->grad) {
  14396. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14397. } else {
  14398. fprintf(fp, "\"; ]\n");
  14399. }
  14400. }
  14401. for (int i = 0; i < gb->n_leafs; i++) {
  14402. struct ggml_tensor * node = gb->leafs[i];
  14403. snprintf(color, sizeof(color), "pink");
  14404. fprintf(fp, " \"%p\" [ "
  14405. "style = filled; fillcolor = %s; shape = record; "
  14406. "label=\"<x>",
  14407. (void *) node, color);
  14408. if (strlen(node->name) > 0) {
  14409. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14410. } else {
  14411. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14412. }
  14413. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14414. if (ggml_nelements(node) < 5) {
  14415. fprintf(fp, " | (");
  14416. for (int j = 0; j < ggml_nelements(node); j++) {
  14417. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14418. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14419. }
  14420. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14421. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14422. }
  14423. else {
  14424. fprintf(fp, "#");
  14425. }
  14426. if (j < ggml_nelements(node) - 1) {
  14427. fprintf(fp, ", ");
  14428. }
  14429. }
  14430. fprintf(fp, ")");
  14431. }
  14432. fprintf(fp, "\"; ]\n");
  14433. }
  14434. for (int i = 0; i < gb->n_nodes; i++) {
  14435. struct ggml_tensor * node = gb->nodes[i];
  14436. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14437. if (node->src[j]) {
  14438. char label[16];
  14439. snprintf(label, sizeof(label), "src %d", j);
  14440. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14441. }
  14442. }
  14443. }
  14444. for (int i = 0; i < gb->n_leafs; i++) {
  14445. struct ggml_tensor * node = gb->leafs[i];
  14446. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14447. if (node->src[j]) {
  14448. char label[16];
  14449. snprintf(label, sizeof(label), "src %d", j);
  14450. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14451. }
  14452. }
  14453. }
  14454. fprintf(fp, "}\n");
  14455. fclose(fp);
  14456. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14457. }
  14458. ////////////////////////////////////////////////////////////////////////////////
  14459. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14460. int i = 0;
  14461. for (int p = 0; p < np; ++p) {
  14462. const int64_t ne = ggml_nelements(ps[p]) ;
  14463. // TODO: add function to set tensor from array
  14464. for (int64_t j = 0; j < ne; ++j) {
  14465. ggml_set_f32_1d(ps[p], j, x[i++]);
  14466. }
  14467. }
  14468. }
  14469. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14470. int i = 0;
  14471. for (int p = 0; p < np; ++p) {
  14472. const int64_t ne = ggml_nelements(ps[p]) ;
  14473. // TODO: add function to get all elements at once
  14474. for (int64_t j = 0; j < ne; ++j) {
  14475. x[i++] = ggml_get_f32_1d(ps[p], j);
  14476. }
  14477. }
  14478. }
  14479. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14480. int64_t i = 0;
  14481. for (int p = 0; p < np; ++p) {
  14482. const int64_t ne = ggml_nelements(ps[p]) ;
  14483. // TODO: add function to get all elements at once
  14484. for (int64_t j = 0; j < ne; ++j) {
  14485. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14486. }
  14487. }
  14488. }
  14489. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14490. int64_t i = 0;
  14491. for (int p = 0; p < np; ++p) {
  14492. const int64_t ne = ggml_nelements(ps[p]) ;
  14493. // TODO: add function to get all elements at once
  14494. for (int64_t j = 0; j < ne; ++j) {
  14495. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14496. }
  14497. }
  14498. }
  14499. //
  14500. // ADAM
  14501. //
  14502. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14503. //
  14504. static enum ggml_opt_result ggml_opt_adam(
  14505. struct ggml_context * ctx,
  14506. struct ggml_opt_context * opt,
  14507. struct ggml_opt_params params,
  14508. struct ggml_tensor * f,
  14509. struct ggml_cgraph * gf,
  14510. struct ggml_cgraph * gb,
  14511. ggml_opt_callback callback,
  14512. void * callback_data) {
  14513. GGML_ASSERT(ggml_is_scalar(f));
  14514. // these will store the parameters we want to optimize
  14515. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14516. int np = 0;
  14517. int64_t nx = 0;
  14518. for (int i = 0; i < gf->n_nodes; ++i) {
  14519. if (gf->nodes[i]->is_param) {
  14520. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14521. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14522. ps[np++] = gf->nodes[i];
  14523. nx += ggml_nelements(gf->nodes[i]);
  14524. }
  14525. }
  14526. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14527. int iter = opt->iter;
  14528. ggml_opt_init(opt->ctx, opt, params, nx);
  14529. opt->iter = iter;
  14530. }
  14531. // constants
  14532. float sched = params.adam.sched;
  14533. const float alpha = params.adam.alpha;
  14534. const float decay = params.adam.decay * alpha;
  14535. const float beta1 = params.adam.beta1;
  14536. const float beta2 = params.adam.beta2;
  14537. const float eps = params.adam.eps;
  14538. const float gclip = params.adam.gclip;
  14539. const int decay_min_ndim = params.adam.decay_min_ndim;
  14540. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14541. const float accum_norm = 1.0f / (float) n_accum;
  14542. float * g = opt->adam.g->data; // gradients
  14543. float * m = opt->adam.m->data; // first moment
  14544. float * v = opt->adam.v->data; // second moment
  14545. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14546. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14547. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14548. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14549. bool cancel = false;
  14550. // compute the function value
  14551. float fx = 0;
  14552. ggml_set_zero(opt->adam.g);
  14553. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14554. if (callback) {
  14555. callback(callback_data, accum_step, &sched, &cancel);
  14556. if (cancel) {
  14557. return GGML_OPT_CANCEL;
  14558. }
  14559. }
  14560. // ggml_graph_reset (gf);
  14561. ggml_set_f32 (f->grad, 1.0f);
  14562. ggml_graph_compute(gb, &cplan);
  14563. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14564. fx += ggml_get_f32_1d(f, 0);
  14565. }
  14566. fx *= accum_norm;
  14567. opt->adam.fx_prev = fx;
  14568. opt->adam.fx_best = opt->adam.fx_prev;
  14569. if (pf) {
  14570. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14571. }
  14572. opt->loss_before = opt->adam.fx_prev;
  14573. opt->loss_after = opt->adam.fx_prev;
  14574. // initialize
  14575. if (opt->just_initialized) {
  14576. opt->adam.n_no_improvement = 0;
  14577. opt->just_initialized = false;
  14578. }
  14579. float * fx_best = &opt->adam.fx_best;
  14580. float * fx_prev = &opt->adam.fx_prev;
  14581. int * n_no_improvement = &opt->adam.n_no_improvement;
  14582. int iter0 = opt->iter;
  14583. // run the optimizer
  14584. for (int t = 0; t < params.adam.n_iter; ++t) {
  14585. opt->iter = iter0 + t + 1;
  14586. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14587. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14588. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14589. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14590. for (int i = 0; i < np; ++i) {
  14591. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14592. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14593. }
  14594. const int64_t t_start_wall = ggml_time_us();
  14595. const int64_t t_start_cpu = ggml_cycles();
  14596. UNUSED(t_start_wall);
  14597. UNUSED(t_start_cpu);
  14598. {
  14599. float gnorm = 1.0f;
  14600. if (gclip > 0.0f) {
  14601. // gradient clipping
  14602. ggml_float sum = 0.0;
  14603. for (int64_t i = 0; i < nx; ++i) {
  14604. sum += (ggml_float)(g[i]*g[i]);
  14605. }
  14606. ggml_float norm = sqrt(sum);
  14607. if (norm > (ggml_float) gclip) {
  14608. gnorm = (float) ((ggml_float) gclip / norm);
  14609. }
  14610. }
  14611. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14612. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14613. int64_t i = 0;
  14614. for (int p = 0; p < np; ++p) {
  14615. const int64_t ne = ggml_nelements(ps[p]);
  14616. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14617. for (int64_t j = 0; j < ne; ++j) {
  14618. float x = ggml_get_f32_1d(ps[p], j);
  14619. float g_ = g[i]*gnorm;
  14620. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14621. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14622. float mh = m[i]*beta1h;
  14623. float vh = v[i]*beta2h;
  14624. vh = sqrtf(vh) + eps;
  14625. x = x*(1.0f - p_decay) - mh/vh;
  14626. ggml_set_f32_1d(ps[p], j, x);
  14627. ++i;
  14628. }
  14629. }
  14630. }
  14631. fx = 0;
  14632. ggml_set_zero(opt->adam.g);
  14633. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14634. if (callback) {
  14635. callback(callback_data, accum_step, &sched, &cancel);
  14636. if (cancel) {
  14637. return GGML_OPT_CANCEL;;
  14638. }
  14639. }
  14640. // ggml_graph_reset (gf);
  14641. ggml_set_f32 (f->grad, 1.0f);
  14642. ggml_graph_compute(gb, &cplan);
  14643. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14644. fx += ggml_get_f32_1d(f, 0);
  14645. }
  14646. fx *= accum_norm;
  14647. opt->loss_after = fx;
  14648. // check convergence
  14649. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14650. GGML_PRINT_DEBUG("converged\n");
  14651. return GGML_OPT_OK;
  14652. }
  14653. // delta-based convergence test
  14654. if (pf != NULL) {
  14655. // need at least params.past iterations to start checking for convergence
  14656. if (params.past <= iter0 + t) {
  14657. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14658. if (fabsf(rate) < params.delta) {
  14659. return GGML_OPT_OK;
  14660. }
  14661. }
  14662. pf[(iter0 + t)%params.past] = fx;
  14663. }
  14664. // check for improvement
  14665. if (params.max_no_improvement > 0) {
  14666. if (fx_best[0] > fx) {
  14667. fx_best[0] = fx;
  14668. n_no_improvement[0] = 0;
  14669. } else {
  14670. ++n_no_improvement[0];
  14671. if (n_no_improvement[0] >= params.max_no_improvement) {
  14672. return GGML_OPT_OK;
  14673. }
  14674. }
  14675. }
  14676. fx_prev[0] = fx;
  14677. {
  14678. const int64_t t_end_cpu = ggml_cycles();
  14679. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14680. UNUSED(t_end_cpu);
  14681. const int64_t t_end_wall = ggml_time_us();
  14682. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14683. UNUSED(t_end_wall);
  14684. }
  14685. }
  14686. return GGML_OPT_DID_NOT_CONVERGE;
  14687. }
  14688. //
  14689. // L-BFGS
  14690. //
  14691. // the L-BFGS implementation below is based on the following implementation:
  14692. //
  14693. // https://github.com/chokkan/liblbfgs
  14694. //
  14695. struct ggml_lbfgs_iteration_data {
  14696. float alpha;
  14697. float ys;
  14698. float * s;
  14699. float * y;
  14700. };
  14701. static enum ggml_opt_result linesearch_backtracking(
  14702. const struct ggml_opt_params * params,
  14703. int nx,
  14704. float * x,
  14705. float * fx,
  14706. float * g,
  14707. float * d,
  14708. float * step,
  14709. const float * xp,
  14710. struct ggml_tensor * f,
  14711. struct ggml_cgraph * gb,
  14712. struct ggml_cplan * cplan,
  14713. const int np,
  14714. struct ggml_tensor * ps[],
  14715. bool * cancel,
  14716. ggml_opt_callback callback,
  14717. void * callback_data) {
  14718. int count = 0;
  14719. float width = 0.0f;
  14720. float dg = 0.0f;
  14721. float finit = 0.0f;
  14722. float dginit = 0.0f;
  14723. float dgtest = 0.0f;
  14724. const float dec = 0.5f;
  14725. const float inc = 2.1f;
  14726. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14727. const float accum_norm = 1.0f / (float) n_accum;
  14728. if (*step <= 0.f) {
  14729. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14730. }
  14731. // compute the initial gradient in the search direction
  14732. ggml_vec_dot_f32(nx, &dginit, g, d);
  14733. // make sure that d points to a descent direction
  14734. if (0 < dginit) {
  14735. return GGML_LINESEARCH_FAIL;
  14736. }
  14737. // initialize local variables
  14738. finit = *fx;
  14739. dgtest = params->lbfgs.ftol*dginit;
  14740. while (true) {
  14741. ggml_vec_cpy_f32(nx, x, xp);
  14742. ggml_vec_mad_f32(nx, x, d, *step);
  14743. // evaluate the function and gradient values
  14744. {
  14745. ggml_opt_set_params(np, ps, x);
  14746. *fx = 0;
  14747. memset(g, 0, sizeof(float)*nx);
  14748. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14749. if (callback) {
  14750. // LBFG-S does not support learning rate -> ignore learning schedule
  14751. float sched = 0;
  14752. callback(callback_data, accum_step, &sched, cancel);
  14753. if (*cancel) {
  14754. return GGML_OPT_CANCEL;
  14755. }
  14756. }
  14757. // ggml_graph_reset (gf);
  14758. ggml_set_f32 (f->grad, 1.0f);
  14759. ggml_graph_compute(gb, cplan);
  14760. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14761. *fx += ggml_get_f32_1d(f, 0);
  14762. }
  14763. *fx *= accum_norm;
  14764. }
  14765. ++count;
  14766. if (*fx > finit + (*step)*dgtest) {
  14767. width = dec;
  14768. } else {
  14769. // Armijo condition is satisfied
  14770. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14771. return count;
  14772. }
  14773. ggml_vec_dot_f32(nx, &dg, g, d);
  14774. // check the Wolfe condition
  14775. if (dg < params->lbfgs.wolfe * dginit) {
  14776. width = inc;
  14777. } else {
  14778. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14779. // regular Wolfe conditions
  14780. return count;
  14781. }
  14782. if(dg > -params->lbfgs.wolfe*dginit) {
  14783. width = dec;
  14784. } else {
  14785. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14786. return count;
  14787. }
  14788. }
  14789. }
  14790. if (*step < params->lbfgs.min_step) {
  14791. return GGML_LINESEARCH_MINIMUM_STEP;
  14792. }
  14793. if (*step > params->lbfgs.max_step) {
  14794. return GGML_LINESEARCH_MAXIMUM_STEP;
  14795. }
  14796. if (params->lbfgs.max_linesearch <= count) {
  14797. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14798. }
  14799. (*step) *= width;
  14800. }
  14801. GGML_UNREACHABLE();
  14802. }
  14803. static enum ggml_opt_result ggml_opt_lbfgs(
  14804. struct ggml_context * ctx,
  14805. struct ggml_opt_context * opt,
  14806. struct ggml_opt_params params,
  14807. struct ggml_tensor * f,
  14808. struct ggml_cgraph * gf,
  14809. struct ggml_cgraph * gb,
  14810. ggml_opt_callback callback,
  14811. void * callback_data) {
  14812. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14813. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14814. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14815. return GGML_OPT_INVALID_WOLFE;
  14816. }
  14817. }
  14818. const int m = params.lbfgs.m;
  14819. // these will store the parameters we want to optimize
  14820. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14821. int np = 0;
  14822. int nx = 0;
  14823. for (int i = 0; i < gf->n_nodes; ++i) {
  14824. if (gf->nodes[i]->is_param) {
  14825. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14826. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14827. ps[np++] = gf->nodes[i];
  14828. nx += ggml_nelements(gf->nodes[i]);
  14829. }
  14830. }
  14831. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14832. int iter = opt->iter;
  14833. ggml_opt_init(ctx, opt, params, nx);
  14834. opt->iter = iter;
  14835. }
  14836. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14837. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14838. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14839. float * x = opt->lbfgs.x->data; // current parameters
  14840. float * xp = opt->lbfgs.xp->data; // previous parameters
  14841. float * g = opt->lbfgs.g->data; // current gradient
  14842. float * gp = opt->lbfgs.gp->data; // previous gradient
  14843. float * d = opt->lbfgs.d->data; // search direction
  14844. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14845. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14846. const float accum_norm = 1.0f / (float) n_accum;
  14847. float fx = 0.0f; // cost function value
  14848. float xnorm = 0.0f; // ||x||
  14849. float gnorm = 0.0f; // ||g||
  14850. // initialize x from the graph nodes
  14851. ggml_opt_get_params(np, ps, x);
  14852. // the L-BFGS memory
  14853. float * lm_alpha = opt->lbfgs.lmal->data;
  14854. float * lm_ys = opt->lbfgs.lmys->data;
  14855. float * lm_s = opt->lbfgs.lms->data;
  14856. float * lm_y = opt->lbfgs.lmy->data;
  14857. bool cancel = false;
  14858. // evaluate the function value and its gradient
  14859. {
  14860. ggml_opt_set_params(np, ps, x);
  14861. fx = 0;
  14862. memset(g, 0, sizeof(float)*nx);
  14863. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14864. if (callback) {
  14865. // LBFG-S does not support learning rate -> ignore learning schedule
  14866. float sched = 0;
  14867. callback(callback_data, accum_step, &sched, &cancel);
  14868. if (cancel) {
  14869. return GGML_OPT_CANCEL;
  14870. }
  14871. }
  14872. // ggml_graph_reset (gf);
  14873. ggml_set_f32 (f->grad, 1.0f);
  14874. ggml_graph_compute(gb, &cplan);
  14875. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14876. fx += ggml_get_f32_1d(f, 0);
  14877. }
  14878. fx *= accum_norm;
  14879. opt->loss_before = fx;
  14880. opt->loss_after = fx;
  14881. }
  14882. // search direction = -gradient
  14883. ggml_vec_neg_f32(nx, d, g);
  14884. // ||x||, ||g||
  14885. ggml_vec_norm_f32(nx, &xnorm, x);
  14886. ggml_vec_norm_f32(nx, &gnorm, g);
  14887. if (xnorm < 1.0f) {
  14888. xnorm = 1.0f;
  14889. }
  14890. // already optimized
  14891. if (gnorm/xnorm <= params.lbfgs.eps) {
  14892. return GGML_OPT_OK;
  14893. }
  14894. if (opt->just_initialized) {
  14895. if (pf) {
  14896. pf[0] = fx;
  14897. }
  14898. opt->lbfgs.fx_best = fx;
  14899. // initial step
  14900. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14901. opt->lbfgs.j = 0;
  14902. opt->lbfgs.k = 1;
  14903. opt->lbfgs.end = 0;
  14904. opt->lbfgs.n_no_improvement = 0;
  14905. opt->just_initialized = false;
  14906. }
  14907. float * fx_best = &opt->lbfgs.fx_best;
  14908. float * step = &opt->lbfgs.step;
  14909. int * j = &opt->lbfgs.j;
  14910. int * k = &opt->lbfgs.k;
  14911. int * end = &opt->lbfgs.end;
  14912. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14913. int ls = 0;
  14914. int bound = 0;
  14915. float ys = 0.0f;
  14916. float yy = 0.0f;
  14917. float beta = 0.0f;
  14918. int it = 0;
  14919. while (true) {
  14920. // store the current position and gradient vectors
  14921. ggml_vec_cpy_f32(nx, xp, x);
  14922. ggml_vec_cpy_f32(nx, gp, g);
  14923. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14924. // to determine if the optimization should be cancelled
  14925. // this is a simple change, but not doing this atm, since I don't have a nice
  14926. // way to test and don't want to break something with so many changes lined up
  14927. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14928. if (cancel) {
  14929. return GGML_OPT_CANCEL;
  14930. }
  14931. if (ls < 0) {
  14932. // linesearch failed - go back to the previous point and return
  14933. ggml_vec_cpy_f32(nx, x, xp);
  14934. ggml_vec_cpy_f32(nx, g, gp);
  14935. return ls;
  14936. }
  14937. opt->loss_after = fx;
  14938. ggml_vec_norm_f32(nx, &xnorm, x);
  14939. ggml_vec_norm_f32(nx, &gnorm, g);
  14940. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14941. if (xnorm < 1.0f) {
  14942. xnorm = 1.0f;
  14943. }
  14944. if (gnorm/xnorm <= params.lbfgs.eps) {
  14945. // converged
  14946. return GGML_OPT_OK;
  14947. }
  14948. // delta-based convergence test
  14949. if (pf != NULL) {
  14950. // need at least params.past iterations to start checking for convergence
  14951. if (params.past <= k[0]) {
  14952. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14953. if (fabsf(rate) < params.delta) {
  14954. return GGML_OPT_OK;
  14955. }
  14956. }
  14957. pf[k[0]%params.past] = fx;
  14958. }
  14959. // check for improvement
  14960. if (params.max_no_improvement > 0) {
  14961. if (fx < fx_best[0]) {
  14962. fx_best[0] = fx;
  14963. n_no_improvement[0] = 0;
  14964. } else {
  14965. n_no_improvement[0]++;
  14966. if (n_no_improvement[0] >= params.max_no_improvement) {
  14967. return GGML_OPT_OK;
  14968. }
  14969. }
  14970. }
  14971. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14972. // reached the maximum number of iterations
  14973. return GGML_OPT_DID_NOT_CONVERGE;
  14974. }
  14975. // update vectors s and y:
  14976. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14977. // y_{k+1} = g_{k+1} - g_{k}.
  14978. //
  14979. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14980. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14981. // compute scalars ys and yy:
  14982. // ys = y^t \cdot s -> 1 / \rho.
  14983. // yy = y^t \cdot y.
  14984. //
  14985. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14986. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14987. lm_ys[end[0]] = ys;
  14988. // find new search direction
  14989. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14990. bound = (m <= k[0]) ? m : k[0];
  14991. k[0]++;
  14992. it++;
  14993. end[0] = (end[0] + 1)%m;
  14994. // initialize search direction with -g
  14995. ggml_vec_neg_f32(nx, d, g);
  14996. j[0] = end[0];
  14997. for (int i = 0; i < bound; ++i) {
  14998. j[0] = (j[0] + m - 1) % m;
  14999. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15000. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15001. lm_alpha[j[0]] /= lm_ys[j[0]];
  15002. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15003. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15004. }
  15005. ggml_vec_scale_f32(nx, d, ys/yy);
  15006. for (int i = 0; i < bound; ++i) {
  15007. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15008. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15009. beta /= lm_ys[j[0]];
  15010. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15011. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15012. j[0] = (j[0] + 1)%m;
  15013. }
  15014. step[0] = 1.0;
  15015. }
  15016. GGML_UNREACHABLE();
  15017. }
  15018. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15019. struct ggml_opt_params result;
  15020. switch (type) {
  15021. case GGML_OPT_ADAM:
  15022. {
  15023. result = (struct ggml_opt_params) {
  15024. .type = GGML_OPT_ADAM,
  15025. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15026. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15027. .past = 0,
  15028. .delta = 1e-5f,
  15029. .max_no_improvement = 100,
  15030. .print_forward_graph = true,
  15031. .print_backward_graph = true,
  15032. .n_gradient_accumulation = 1,
  15033. .adam = {
  15034. .n_iter = 10000,
  15035. .sched = 1.000f,
  15036. .decay = 0.0f,
  15037. .decay_min_ndim = 2,
  15038. .alpha = 0.001f,
  15039. .beta1 = 0.9f,
  15040. .beta2 = 0.999f,
  15041. .eps = 1e-8f,
  15042. .eps_f = 1e-5f,
  15043. .eps_g = 1e-3f,
  15044. .gclip = 0.0f,
  15045. },
  15046. };
  15047. } break;
  15048. case GGML_OPT_LBFGS:
  15049. {
  15050. result = (struct ggml_opt_params) {
  15051. .type = GGML_OPT_LBFGS,
  15052. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15053. .n_threads = 1,
  15054. .past = 0,
  15055. .delta = 1e-5f,
  15056. .max_no_improvement = 0,
  15057. .print_forward_graph = true,
  15058. .print_backward_graph = true,
  15059. .n_gradient_accumulation = 1,
  15060. .lbfgs = {
  15061. .m = 6,
  15062. .n_iter = 100,
  15063. .max_linesearch = 20,
  15064. .eps = 1e-5f,
  15065. .ftol = 1e-4f,
  15066. .wolfe = 0.9f,
  15067. .min_step = 1e-20f,
  15068. .max_step = 1e+20f,
  15069. .linesearch = GGML_LINESEARCH_DEFAULT,
  15070. },
  15071. };
  15072. } break;
  15073. }
  15074. return result;
  15075. }
  15076. GGML_API void ggml_opt_init(
  15077. struct ggml_context * ctx,
  15078. struct ggml_opt_context * opt,
  15079. struct ggml_opt_params params,
  15080. int64_t nx) {
  15081. opt->ctx = ctx;
  15082. opt->params = params;
  15083. opt->iter = 0;
  15084. opt->nx = nx;
  15085. opt->just_initialized = true;
  15086. if (opt->ctx == NULL) {
  15087. struct ggml_init_params ctx_opt_params;
  15088. if (opt->params.type == GGML_OPT_ADAM) {
  15089. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15090. if (opt->params.past > 0) {
  15091. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15092. }
  15093. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15094. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15095. if (opt->params.past > 0) {
  15096. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15097. }
  15098. }
  15099. ctx_opt_params.mem_buffer = NULL;
  15100. ctx_opt_params.no_alloc = false;
  15101. opt->ctx = ggml_init(ctx_opt_params);
  15102. }
  15103. switch (opt->params.type) {
  15104. case GGML_OPT_ADAM:
  15105. {
  15106. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15107. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15108. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15109. opt->adam.pf = params.past > 0
  15110. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15111. : NULL;
  15112. ggml_set_zero(opt->adam.m);
  15113. ggml_set_zero(opt->adam.v);
  15114. if (opt->adam.pf) {
  15115. ggml_set_zero(opt->adam.pf);
  15116. }
  15117. } break;
  15118. case GGML_OPT_LBFGS:
  15119. {
  15120. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15121. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15122. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15123. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15124. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15125. opt->lbfgs.pf = params.past > 0
  15126. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15127. : NULL;
  15128. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15129. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15130. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15131. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15132. ggml_set_zero(opt->lbfgs.x);
  15133. ggml_set_zero(opt->lbfgs.xp);
  15134. ggml_set_zero(opt->lbfgs.g);
  15135. ggml_set_zero(opt->lbfgs.gp);
  15136. ggml_set_zero(opt->lbfgs.d);
  15137. if (opt->lbfgs.pf) {
  15138. ggml_set_zero(opt->lbfgs.pf);
  15139. }
  15140. ggml_set_zero(opt->lbfgs.lmal);
  15141. ggml_set_zero(opt->lbfgs.lmys);
  15142. ggml_set_zero(opt->lbfgs.lms);
  15143. ggml_set_zero(opt->lbfgs.lmy);
  15144. } break;
  15145. }
  15146. }
  15147. enum ggml_opt_result ggml_opt(
  15148. struct ggml_context * ctx,
  15149. struct ggml_opt_params params,
  15150. struct ggml_tensor * f) {
  15151. bool free_ctx = false;
  15152. if (ctx == NULL) {
  15153. struct ggml_init_params params_ctx = {
  15154. .mem_size = 16*1024*1024,
  15155. .mem_buffer = NULL,
  15156. .no_alloc = false,
  15157. };
  15158. ctx = ggml_init(params_ctx);
  15159. if (ctx == NULL) {
  15160. return GGML_OPT_NO_CONTEXT;
  15161. }
  15162. free_ctx = true;
  15163. }
  15164. enum ggml_opt_result result = GGML_OPT_OK;
  15165. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15166. ggml_opt_init(ctx, opt, params, 0);
  15167. result = ggml_opt_resume(ctx, opt, f);
  15168. if (free_ctx) {
  15169. ggml_free(ctx);
  15170. }
  15171. return result;
  15172. }
  15173. enum ggml_opt_result ggml_opt_resume(
  15174. struct ggml_context * ctx,
  15175. struct ggml_opt_context * opt,
  15176. struct ggml_tensor * f) {
  15177. // build forward + backward compute graphs
  15178. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15179. ggml_build_forward_expand(gf, f);
  15180. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15181. ggml_build_backward_expand(ctx, gf, gb, true);
  15182. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15183. }
  15184. enum ggml_opt_result ggml_opt_resume_g(
  15185. struct ggml_context * ctx,
  15186. struct ggml_opt_context * opt,
  15187. struct ggml_tensor * f,
  15188. struct ggml_cgraph * gf,
  15189. struct ggml_cgraph * gb,
  15190. ggml_opt_callback callback,
  15191. void * callback_data) {
  15192. // build forward + backward compute graphs
  15193. enum ggml_opt_result result = GGML_OPT_OK;
  15194. switch (opt->params.type) {
  15195. case GGML_OPT_ADAM:
  15196. {
  15197. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15198. } break;
  15199. case GGML_OPT_LBFGS:
  15200. {
  15201. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15202. } break;
  15203. }
  15204. if (opt->params.print_forward_graph) {
  15205. ggml_graph_print (gf);
  15206. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15207. }
  15208. if (opt->params.print_backward_graph) {
  15209. ggml_graph_print (gb);
  15210. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15211. }
  15212. return result;
  15213. }
  15214. ////////////////////////////////////////////////////////////////////////////////
  15215. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15216. assert(k % QK4_0 == 0);
  15217. const int nb = k / QK4_0;
  15218. for (int b = 0; b < n; b += k) {
  15219. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15220. quantize_row_q4_0_reference(src + b, y, k);
  15221. for (int i = 0; i < nb; i++) {
  15222. for (int j = 0; j < QK4_0; j += 2) {
  15223. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15224. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15225. hist[vi0]++;
  15226. hist[vi1]++;
  15227. }
  15228. }
  15229. }
  15230. return (n/QK4_0*sizeof(block_q4_0));
  15231. }
  15232. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15233. assert(k % QK4_1 == 0);
  15234. const int nb = k / QK4_1;
  15235. for (int b = 0; b < n; b += k) {
  15236. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15237. quantize_row_q4_1_reference(src + b, y, k);
  15238. for (int i = 0; i < nb; i++) {
  15239. for (int j = 0; j < QK4_1; j += 2) {
  15240. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15241. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15242. hist[vi0]++;
  15243. hist[vi1]++;
  15244. }
  15245. }
  15246. }
  15247. return (n/QK4_1*sizeof(block_q4_1));
  15248. }
  15249. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15250. assert(k % QK5_0 == 0);
  15251. const int nb = k / QK5_0;
  15252. for (int b = 0; b < n; b += k) {
  15253. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15254. quantize_row_q5_0_reference(src + b, y, k);
  15255. for (int i = 0; i < nb; i++) {
  15256. uint32_t qh;
  15257. memcpy(&qh, &y[i].qh, sizeof(qh));
  15258. for (int j = 0; j < QK5_0; j += 2) {
  15259. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15260. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15261. // cast to 16 bins
  15262. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15263. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15264. hist[vi0]++;
  15265. hist[vi1]++;
  15266. }
  15267. }
  15268. }
  15269. return (n/QK5_0*sizeof(block_q5_0));
  15270. }
  15271. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15272. assert(k % QK5_1 == 0);
  15273. const int nb = k / QK5_1;
  15274. for (int b = 0; b < n; b += k) {
  15275. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15276. quantize_row_q5_1_reference(src + b, y, k);
  15277. for (int i = 0; i < nb; i++) {
  15278. uint32_t qh;
  15279. memcpy(&qh, &y[i].qh, sizeof(qh));
  15280. for (int j = 0; j < QK5_1; j += 2) {
  15281. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15282. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15283. // cast to 16 bins
  15284. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15285. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15286. hist[vi0]++;
  15287. hist[vi1]++;
  15288. }
  15289. }
  15290. }
  15291. return (n/QK5_1*sizeof(block_q5_1));
  15292. }
  15293. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15294. assert(k % QK8_0 == 0);
  15295. const int nb = k / QK8_0;
  15296. for (int b = 0; b < n; b += k) {
  15297. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15298. quantize_row_q8_0_reference(src + b, y, k);
  15299. for (int i = 0; i < nb; i++) {
  15300. for (int j = 0; j < QK8_0; ++j) {
  15301. const int8_t vi = y[i].qs[j];
  15302. hist[vi/16 + 8]++;
  15303. }
  15304. }
  15305. }
  15306. return (n/QK8_0*sizeof(block_q8_0));
  15307. }
  15308. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15309. size_t result = 0;
  15310. switch (type) {
  15311. case GGML_TYPE_Q4_0:
  15312. {
  15313. GGML_ASSERT(start % QK4_0 == 0);
  15314. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15315. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15316. } break;
  15317. case GGML_TYPE_Q4_1:
  15318. {
  15319. GGML_ASSERT(start % QK4_1 == 0);
  15320. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15321. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15322. } break;
  15323. case GGML_TYPE_Q5_0:
  15324. {
  15325. GGML_ASSERT(start % QK5_0 == 0);
  15326. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15327. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15328. } break;
  15329. case GGML_TYPE_Q5_1:
  15330. {
  15331. GGML_ASSERT(start % QK5_1 == 0);
  15332. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15333. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15334. } break;
  15335. case GGML_TYPE_Q8_0:
  15336. {
  15337. GGML_ASSERT(start % QK8_0 == 0);
  15338. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15339. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15340. } break;
  15341. case GGML_TYPE_Q2_K:
  15342. {
  15343. GGML_ASSERT(start % QK_K == 0);
  15344. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15345. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15346. } break;
  15347. case GGML_TYPE_Q3_K:
  15348. {
  15349. GGML_ASSERT(start % QK_K == 0);
  15350. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15351. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15352. } break;
  15353. case GGML_TYPE_Q4_K:
  15354. {
  15355. GGML_ASSERT(start % QK_K == 0);
  15356. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15357. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15358. } break;
  15359. case GGML_TYPE_Q5_K:
  15360. {
  15361. GGML_ASSERT(start % QK_K == 0);
  15362. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15363. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15364. } break;
  15365. case GGML_TYPE_Q6_K:
  15366. {
  15367. GGML_ASSERT(start % QK_K == 0);
  15368. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15369. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15370. } break;
  15371. case GGML_TYPE_F16:
  15372. {
  15373. int elemsize = sizeof(ggml_fp16_t);
  15374. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15375. result = n * elemsize;
  15376. } break;
  15377. case GGML_TYPE_F32:
  15378. {
  15379. int elemsize = sizeof(float);
  15380. result = n * elemsize;
  15381. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15382. } break;
  15383. default:
  15384. assert(false);
  15385. }
  15386. return result;
  15387. }
  15388. ////////////////////////////////////////////////////////////////////////////////
  15389. struct gguf_str {
  15390. uint64_t n; // GGUFv2
  15391. char * data;
  15392. };
  15393. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15394. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15395. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15396. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15397. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15398. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15399. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15400. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15401. [GGUF_TYPE_BOOL] = sizeof(bool),
  15402. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15403. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15404. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15405. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15406. [GGUF_TYPE_ARRAY] = 0, // undefined
  15407. };
  15408. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15409. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15410. [GGUF_TYPE_UINT8] = "u8",
  15411. [GGUF_TYPE_INT8] = "i8",
  15412. [GGUF_TYPE_UINT16] = "u16",
  15413. [GGUF_TYPE_INT16] = "i16",
  15414. [GGUF_TYPE_UINT32] = "u32",
  15415. [GGUF_TYPE_INT32] = "i32",
  15416. [GGUF_TYPE_FLOAT32] = "f32",
  15417. [GGUF_TYPE_BOOL] = "bool",
  15418. [GGUF_TYPE_STRING] = "str",
  15419. [GGUF_TYPE_ARRAY] = "arr",
  15420. [GGUF_TYPE_UINT64] = "u64",
  15421. [GGUF_TYPE_INT64] = "i64",
  15422. [GGUF_TYPE_FLOAT64] = "f64",
  15423. };
  15424. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15425. union gguf_value {
  15426. uint8_t uint8;
  15427. int8_t int8;
  15428. uint16_t uint16;
  15429. int16_t int16;
  15430. uint32_t uint32;
  15431. int32_t int32;
  15432. float float32;
  15433. uint64_t uint64;
  15434. int64_t int64;
  15435. double float64;
  15436. bool bool_;
  15437. struct gguf_str str;
  15438. struct {
  15439. enum gguf_type type;
  15440. uint64_t n; // GGUFv2
  15441. void * data;
  15442. } arr;
  15443. };
  15444. struct gguf_kv {
  15445. struct gguf_str key;
  15446. enum gguf_type type;
  15447. union gguf_value value;
  15448. };
  15449. struct gguf_header {
  15450. char magic[4];
  15451. uint32_t version;
  15452. uint64_t n_tensors; // GGUFv2
  15453. uint64_t n_kv; // GGUFv2
  15454. };
  15455. struct gguf_tensor_info {
  15456. struct gguf_str name;
  15457. uint32_t n_dims;
  15458. uint64_t ne[GGML_MAX_DIMS];
  15459. enum ggml_type type;
  15460. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15461. // for writing API
  15462. const void * data;
  15463. size_t size;
  15464. };
  15465. struct gguf_context {
  15466. struct gguf_header header;
  15467. struct gguf_kv * kv;
  15468. struct gguf_tensor_info * infos;
  15469. size_t alignment;
  15470. size_t offset; // offset of `data` from beginning of file
  15471. size_t size; // size of `data` in bytes
  15472. //uint8_t * padding;
  15473. void * data;
  15474. };
  15475. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15476. const size_t n = fread(dst, 1, size, file);
  15477. *offset += n;
  15478. return n == size;
  15479. }
  15480. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15481. p->n = 0;
  15482. p->data = NULL;
  15483. bool ok = true;
  15484. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15485. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15486. return ok;
  15487. }
  15488. struct gguf_context * gguf_init_empty(void) {
  15489. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15490. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15491. ctx->header.version = GGUF_VERSION;
  15492. ctx->header.n_tensors = 0;
  15493. ctx->header.n_kv = 0;
  15494. ctx->kv = NULL;
  15495. ctx->infos = NULL;
  15496. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15497. ctx->offset = 0;
  15498. ctx->size = 0;
  15499. ctx->data = NULL;
  15500. return ctx;
  15501. }
  15502. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15503. FILE * file = fopen(fname, "rb");
  15504. if (!file) {
  15505. return NULL;
  15506. }
  15507. // offset from start of file
  15508. size_t offset = 0;
  15509. char magic[4];
  15510. // check the magic before making allocations
  15511. {
  15512. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15513. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15514. if (magic[i] != GGUF_MAGIC[i]) {
  15515. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15516. fclose(file);
  15517. return NULL;
  15518. }
  15519. }
  15520. }
  15521. bool ok = true;
  15522. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15523. // read the header
  15524. {
  15525. strncpy(ctx->header.magic, magic, 4);
  15526. ctx->kv = NULL;
  15527. ctx->infos = NULL;
  15528. ctx->data = NULL;
  15529. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15530. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15531. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15532. if (ctx->header.version == 1) {
  15533. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15534. fclose(file);
  15535. gguf_free(ctx);
  15536. return NULL;
  15537. }
  15538. if (!ok) {
  15539. fprintf(stderr, "%s: failed to read header\n", __func__);
  15540. fclose(file);
  15541. gguf_free(ctx);
  15542. return NULL;
  15543. }
  15544. }
  15545. // read the kv pairs
  15546. {
  15547. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15548. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15549. struct gguf_kv * kv = &ctx->kv[i];
  15550. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15551. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15552. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15553. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15554. switch (kv->type) {
  15555. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15556. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15557. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15558. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15559. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15560. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15561. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15562. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15563. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15564. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15565. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15566. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15567. case GGUF_TYPE_ARRAY:
  15568. {
  15569. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15570. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15571. switch (kv->value.arr.type) {
  15572. case GGUF_TYPE_UINT8:
  15573. case GGUF_TYPE_INT8:
  15574. case GGUF_TYPE_UINT16:
  15575. case GGUF_TYPE_INT16:
  15576. case GGUF_TYPE_UINT32:
  15577. case GGUF_TYPE_INT32:
  15578. case GGUF_TYPE_FLOAT32:
  15579. case GGUF_TYPE_UINT64:
  15580. case GGUF_TYPE_INT64:
  15581. case GGUF_TYPE_FLOAT64:
  15582. case GGUF_TYPE_BOOL:
  15583. {
  15584. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15585. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15586. } break;
  15587. case GGUF_TYPE_STRING:
  15588. {
  15589. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15590. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15591. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15592. }
  15593. } break;
  15594. case GGUF_TYPE_ARRAY:
  15595. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15596. }
  15597. } break;
  15598. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15599. }
  15600. if (!ok) {
  15601. break;
  15602. }
  15603. }
  15604. if (!ok) {
  15605. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15606. fclose(file);
  15607. gguf_free(ctx);
  15608. return NULL;
  15609. }
  15610. }
  15611. // read the tensor infos
  15612. {
  15613. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15614. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15615. struct gguf_tensor_info * info = &ctx->infos[i];
  15616. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15617. info->ne[j] = 1;
  15618. }
  15619. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15620. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15621. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15622. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15623. }
  15624. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15625. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15626. if (!ok) {
  15627. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15628. fclose(file);
  15629. gguf_free(ctx);
  15630. return NULL;
  15631. }
  15632. }
  15633. }
  15634. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15635. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15636. if (alignment_idx != -1) {
  15637. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15638. }
  15639. // we require the data section to be aligned, so take into account any padding
  15640. {
  15641. const size_t offset_pad = offset % ctx->alignment;
  15642. if (offset_pad != 0) {
  15643. offset += ctx->alignment - offset_pad;
  15644. fseek(file, offset, SEEK_SET);
  15645. }
  15646. }
  15647. // store the current file offset - this is where the data section starts
  15648. ctx->offset = offset;
  15649. // compute the total size of the data section, taking into account the alignment
  15650. {
  15651. ctx->size = 0;
  15652. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15653. struct gguf_tensor_info * info = &ctx->infos[i];
  15654. const int64_t ne =
  15655. (int64_t) info->ne[0] *
  15656. (int64_t) info->ne[1] *
  15657. (int64_t) info->ne[2] *
  15658. (int64_t) info->ne[3];
  15659. if (ne % ggml_blck_size(info->type) != 0) {
  15660. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15661. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15662. fclose(file);
  15663. gguf_free(ctx);
  15664. return NULL;
  15665. }
  15666. const size_t size_cur = ggml_row_size(info->type, ne);
  15667. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15668. }
  15669. }
  15670. // load the tensor data only if requested
  15671. if (params.ctx != NULL) {
  15672. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15673. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15674. // the ggml_tensor structs to the appropriate locations in the binary blob
  15675. // compute the exact size needed for the new ggml_context
  15676. const size_t mem_size =
  15677. params.no_alloc ?
  15678. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15679. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15680. struct ggml_init_params pdata = {
  15681. .mem_size = mem_size,
  15682. .mem_buffer = NULL,
  15683. .no_alloc = params.no_alloc,
  15684. };
  15685. *params.ctx = ggml_init(pdata);
  15686. struct ggml_context * ctx_data = *params.ctx;
  15687. struct ggml_tensor * data = NULL;
  15688. if (!params.no_alloc) {
  15689. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15690. ok = ok && data != NULL;
  15691. // read the binary blob with the tensor data
  15692. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15693. if (!ok) {
  15694. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15695. fclose(file);
  15696. ggml_free(ctx_data);
  15697. gguf_free(ctx);
  15698. return NULL;
  15699. }
  15700. ctx->data = data->data;
  15701. }
  15702. ggml_set_no_alloc(ctx_data, true);
  15703. // create the tensors
  15704. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15705. const int64_t ne[GGML_MAX_DIMS] = {
  15706. ctx->infos[i].ne[0],
  15707. ctx->infos[i].ne[1],
  15708. ctx->infos[i].ne[2],
  15709. ctx->infos[i].ne[3],
  15710. };
  15711. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15712. ok = ok && cur != NULL;
  15713. ggml_set_name(cur, ctx->infos[i].name.data);
  15714. if (!ok) {
  15715. break;
  15716. }
  15717. // point the data member to the appropriate location in the binary blob using the tensor infos
  15718. if (!params.no_alloc) {
  15719. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15720. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15721. }
  15722. }
  15723. if (!ok) {
  15724. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15725. fclose(file);
  15726. ggml_free(ctx_data);
  15727. gguf_free(ctx);
  15728. return NULL;
  15729. }
  15730. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15731. }
  15732. fclose(file);
  15733. return ctx;
  15734. }
  15735. void gguf_free(struct gguf_context * ctx) {
  15736. if (ctx == NULL) {
  15737. return;
  15738. }
  15739. if (ctx->kv) {
  15740. // free string memory - not great..
  15741. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15742. struct gguf_kv * kv = &ctx->kv[i];
  15743. if (kv->key.data) {
  15744. free(kv->key.data);
  15745. }
  15746. if (kv->type == GGUF_TYPE_STRING) {
  15747. if (kv->value.str.data) {
  15748. free(kv->value.str.data);
  15749. }
  15750. }
  15751. if (kv->type == GGUF_TYPE_ARRAY) {
  15752. if (kv->value.arr.data) {
  15753. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15754. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15755. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15756. if (str->data) {
  15757. free(str->data);
  15758. }
  15759. }
  15760. }
  15761. free(kv->value.arr.data);
  15762. }
  15763. }
  15764. }
  15765. free(ctx->kv);
  15766. }
  15767. if (ctx->infos) {
  15768. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15769. struct gguf_tensor_info * info = &ctx->infos[i];
  15770. if (info->name.data) {
  15771. free(info->name.data);
  15772. }
  15773. }
  15774. free(ctx->infos);
  15775. }
  15776. GGML_ALIGNED_FREE(ctx);
  15777. }
  15778. const char * gguf_type_name(enum gguf_type type) {
  15779. return GGUF_TYPE_NAME[type];
  15780. }
  15781. int gguf_get_version(const struct gguf_context * ctx) {
  15782. return ctx->header.version;
  15783. }
  15784. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15785. return ctx->alignment;
  15786. }
  15787. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15788. return ctx->offset;
  15789. }
  15790. void * gguf_get_data(const struct gguf_context * ctx) {
  15791. return ctx->data;
  15792. }
  15793. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15794. return ctx->header.n_kv;
  15795. }
  15796. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15797. // return -1 if key not found
  15798. int keyfound = -1;
  15799. const int n_kv = gguf_get_n_kv(ctx);
  15800. for (int i = 0; i < n_kv; ++i) {
  15801. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15802. keyfound = i;
  15803. break;
  15804. }
  15805. }
  15806. return keyfound;
  15807. }
  15808. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15809. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15810. return ctx->kv[key_id].key.data;
  15811. }
  15812. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15813. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15814. return ctx->kv[key_id].type;
  15815. }
  15816. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15817. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15818. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15819. return ctx->kv[key_id].value.arr.type;
  15820. }
  15821. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15822. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15823. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15824. return ctx->kv[key_id].value.arr.data;
  15825. }
  15826. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15827. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15828. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15829. struct gguf_kv * kv = &ctx->kv[key_id];
  15830. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15831. return str->data;
  15832. }
  15833. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15834. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15835. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15836. return ctx->kv[key_id].value.arr.n;
  15837. }
  15838. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15839. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15840. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15841. return ctx->kv[key_id].value.uint8;
  15842. }
  15843. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15844. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15845. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15846. return ctx->kv[key_id].value.int8;
  15847. }
  15848. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15849. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15850. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15851. return ctx->kv[key_id].value.uint16;
  15852. }
  15853. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15854. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15855. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15856. return ctx->kv[key_id].value.int16;
  15857. }
  15858. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15859. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15860. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15861. return ctx->kv[key_id].value.uint32;
  15862. }
  15863. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15864. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15865. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15866. return ctx->kv[key_id].value.int32;
  15867. }
  15868. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15869. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15870. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15871. return ctx->kv[key_id].value.float32;
  15872. }
  15873. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15874. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15875. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15876. return ctx->kv[key_id].value.uint64;
  15877. }
  15878. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15879. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15880. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15881. return ctx->kv[key_id].value.int64;
  15882. }
  15883. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15884. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15885. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15886. return ctx->kv[key_id].value.float64;
  15887. }
  15888. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15889. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15890. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15891. return ctx->kv[key_id].value.bool_;
  15892. }
  15893. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15894. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15895. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15896. return ctx->kv[key_id].value.str.data;
  15897. }
  15898. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15899. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15900. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15901. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15902. return &ctx->kv[key_id].value;
  15903. }
  15904. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15905. return ctx->header.n_tensors;
  15906. }
  15907. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15908. // return -1 if tensor not found
  15909. int tensorfound = -1;
  15910. const int n_tensors = gguf_get_n_tensors(ctx);
  15911. for (int i = 0; i < n_tensors; ++i) {
  15912. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15913. tensorfound = i;
  15914. break;
  15915. }
  15916. }
  15917. return tensorfound;
  15918. }
  15919. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15920. return ctx->infos[i].offset;
  15921. }
  15922. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15923. return ctx->infos[i].name.data;
  15924. }
  15925. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  15926. return ctx->infos[i].type;
  15927. }
  15928. // returns the index
  15929. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15930. const int idx = gguf_find_key(ctx, key);
  15931. if (idx >= 0) {
  15932. return idx;
  15933. }
  15934. const int n_kv = gguf_get_n_kv(ctx);
  15935. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15936. ctx->kv[n_kv].key.n = strlen(key);
  15937. ctx->kv[n_kv].key.data = strdup(key);
  15938. ctx->header.n_kv++;
  15939. return n_kv;
  15940. }
  15941. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15942. const int idx = gguf_get_or_add_key(ctx, key);
  15943. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15944. ctx->kv[idx].value.uint8 = val;
  15945. }
  15946. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15947. const int idx = gguf_get_or_add_key(ctx, key);
  15948. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15949. ctx->kv[idx].value.int8 = val;
  15950. }
  15951. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15952. const int idx = gguf_get_or_add_key(ctx, key);
  15953. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15954. ctx->kv[idx].value.uint16 = val;
  15955. }
  15956. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15957. const int idx = gguf_get_or_add_key(ctx, key);
  15958. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15959. ctx->kv[idx].value.int16 = val;
  15960. }
  15961. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15962. const int idx = gguf_get_or_add_key(ctx, key);
  15963. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15964. ctx->kv[idx].value.uint32 = val;
  15965. }
  15966. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15967. const int idx = gguf_get_or_add_key(ctx, key);
  15968. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15969. ctx->kv[idx].value.int32 = val;
  15970. }
  15971. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15972. const int idx = gguf_get_or_add_key(ctx, key);
  15973. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15974. ctx->kv[idx].value.float32 = val;
  15975. }
  15976. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15977. const int idx = gguf_get_or_add_key(ctx, key);
  15978. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15979. ctx->kv[idx].value.uint64 = val;
  15980. }
  15981. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15982. const int idx = gguf_get_or_add_key(ctx, key);
  15983. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15984. ctx->kv[idx].value.int64 = val;
  15985. }
  15986. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15987. const int idx = gguf_get_or_add_key(ctx, key);
  15988. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15989. ctx->kv[idx].value.float64 = val;
  15990. }
  15991. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15992. const int idx = gguf_get_or_add_key(ctx, key);
  15993. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15994. ctx->kv[idx].value.bool_ = val;
  15995. }
  15996. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15997. const int idx = gguf_get_or_add_key(ctx, key);
  15998. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15999. ctx->kv[idx].value.str.n = strlen(val);
  16000. ctx->kv[idx].value.str.data = strdup(val);
  16001. }
  16002. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16003. const int idx = gguf_get_or_add_key(ctx, key);
  16004. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16005. ctx->kv[idx].value.arr.type = type;
  16006. ctx->kv[idx].value.arr.n = n;
  16007. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16008. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16009. }
  16010. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16011. const int idx = gguf_get_or_add_key(ctx, key);
  16012. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16013. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16014. ctx->kv[idx].value.arr.n = n;
  16015. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16016. for (int i = 0; i < n; i++) {
  16017. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16018. str->n = strlen(data[i]);
  16019. str->data = strdup(data[i]);
  16020. }
  16021. }
  16022. // set or add KV pairs from another context
  16023. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16024. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16025. switch (src->kv[i].type) {
  16026. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16027. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16028. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16029. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16030. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16031. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16032. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16033. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16034. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16035. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16036. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16037. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16038. case GGUF_TYPE_ARRAY:
  16039. {
  16040. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16041. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16042. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16043. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16044. }
  16045. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16046. free(data);
  16047. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16048. GGML_ASSERT(false && "nested arrays not supported");
  16049. } else {
  16050. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16051. }
  16052. } break;
  16053. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16054. }
  16055. }
  16056. }
  16057. void gguf_add_tensor(
  16058. struct gguf_context * ctx,
  16059. const struct ggml_tensor * tensor) {
  16060. const int idx = ctx->header.n_tensors;
  16061. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16062. ctx->infos[idx].name.n = strlen(tensor->name);
  16063. ctx->infos[idx].name.data = strdup(tensor->name);
  16064. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16065. ctx->infos[idx].ne[i] = 1;
  16066. }
  16067. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16068. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16069. ctx->infos[idx].ne[i] = tensor->ne[i];
  16070. }
  16071. ctx->infos[idx].type = tensor->type;
  16072. ctx->infos[idx].offset = 0;
  16073. ctx->infos[idx].data = tensor->data;
  16074. ctx->infos[idx].size = ggml_nbytes(tensor);
  16075. if (ctx->header.n_tensors > 0) {
  16076. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16077. }
  16078. ctx->header.n_tensors++;
  16079. }
  16080. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16081. const int idx = gguf_find_tensor(ctx, name);
  16082. if (idx < 0) {
  16083. GGML_ASSERT(false && "tensor not found");
  16084. }
  16085. ctx->infos[idx].type = type;
  16086. }
  16087. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16088. const int idx = gguf_find_tensor(ctx, name);
  16089. if (idx < 0) {
  16090. GGML_ASSERT(false && "tensor not found");
  16091. }
  16092. ctx->infos[idx].data = data;
  16093. ctx->infos[idx].size = size;
  16094. // update offsets
  16095. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16096. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16097. }
  16098. }
  16099. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16100. // fwrite(&val->n, sizeof(val->n), 1, file);
  16101. // fwrite(val->data, sizeof(char), val->n, file);
  16102. //}
  16103. //
  16104. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16105. // fwrite(val, sizeof(char), size, file);
  16106. //}
  16107. struct gguf_buf {
  16108. void * data;
  16109. size_t size;
  16110. size_t offset;
  16111. };
  16112. static struct gguf_buf gguf_buf_init(size_t size) {
  16113. struct gguf_buf buf = {
  16114. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16115. /*buf.size =*/ size,
  16116. /*buf.offset =*/ 0,
  16117. };
  16118. return buf;
  16119. }
  16120. static void gguf_buf_free(struct gguf_buf buf) {
  16121. if (buf.data) {
  16122. free(buf.data);
  16123. }
  16124. }
  16125. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16126. if (buf->offset + size > buf->size) {
  16127. buf->size = 1.5*(buf->offset + size);
  16128. if (buf->data) {
  16129. buf->data = realloc(buf->data, buf->size);
  16130. }
  16131. }
  16132. }
  16133. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16134. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16135. if (buf->data) {
  16136. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16137. }
  16138. buf->offset += sizeof(val->n);
  16139. if (buf->data) {
  16140. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16141. }
  16142. buf->offset += val->n;
  16143. }
  16144. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16145. gguf_buf_grow(buf, el_size);
  16146. if (buf->data) {
  16147. memcpy((char *) buf->data + buf->offset, val, el_size);
  16148. }
  16149. buf->offset += el_size;
  16150. }
  16151. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16152. // write header
  16153. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16154. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16155. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16156. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16157. // write key-value pairs
  16158. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16159. struct gguf_kv * kv = &ctx->kv[i];
  16160. gguf_bwrite_str(buf, &kv->key);
  16161. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16162. switch (kv->type) {
  16163. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16164. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16165. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16166. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16167. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16168. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16169. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16170. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16171. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16172. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16173. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16174. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16175. case GGUF_TYPE_ARRAY:
  16176. {
  16177. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16178. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16179. switch (kv->value.arr.type) {
  16180. case GGUF_TYPE_UINT8:
  16181. case GGUF_TYPE_INT8:
  16182. case GGUF_TYPE_UINT16:
  16183. case GGUF_TYPE_INT16:
  16184. case GGUF_TYPE_UINT32:
  16185. case GGUF_TYPE_INT32:
  16186. case GGUF_TYPE_FLOAT32:
  16187. case GGUF_TYPE_UINT64:
  16188. case GGUF_TYPE_INT64:
  16189. case GGUF_TYPE_FLOAT64:
  16190. case GGUF_TYPE_BOOL:
  16191. {
  16192. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16193. } break;
  16194. case GGUF_TYPE_STRING:
  16195. {
  16196. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16197. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16198. }
  16199. } break;
  16200. case GGUF_TYPE_ARRAY:
  16201. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16202. }
  16203. } break;
  16204. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16205. }
  16206. }
  16207. // write tensor infos
  16208. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16209. struct gguf_tensor_info * info = &ctx->infos[i];
  16210. gguf_bwrite_str(buf, &info->name);
  16211. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16212. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16213. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16214. }
  16215. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16216. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16217. }
  16218. // we require the data section to be aligned, so take into account any padding
  16219. {
  16220. const size_t offset = buf->offset;
  16221. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16222. if (offset_pad != offset) {
  16223. uint8_t pad = 0;
  16224. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16225. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16226. }
  16227. }
  16228. }
  16229. if (only_meta) {
  16230. return;
  16231. }
  16232. size_t offset = 0;
  16233. // write tensor data
  16234. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16235. struct gguf_tensor_info * info = &ctx->infos[i];
  16236. const size_t size = info->size;
  16237. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16238. gguf_bwrite_el(buf, info->data, size);
  16239. if (size_pad != size) {
  16240. uint8_t pad = 0;
  16241. for (size_t j = 0; j < size_pad - size; ++j) {
  16242. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16243. }
  16244. }
  16245. GGML_ASSERT(offset == info->offset);
  16246. offset += size_pad;
  16247. }
  16248. }
  16249. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16250. FILE * file = fopen(fname, "wb");
  16251. if (!file) {
  16252. GGML_ASSERT(false && "failed to open file for writing");
  16253. }
  16254. struct gguf_buf buf = gguf_buf_init(16*1024);
  16255. gguf_write_to_buf(ctx, &buf, only_meta);
  16256. fwrite(buf.data, 1, buf.offset, file);
  16257. gguf_buf_free(buf);
  16258. fclose(file);
  16259. }
  16260. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16261. // no allocs - only compute size
  16262. struct gguf_buf buf = gguf_buf_init(0);
  16263. gguf_write_to_buf(ctx, &buf, true);
  16264. return buf.offset;
  16265. }
  16266. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16267. struct gguf_buf buf = gguf_buf_init(16*1024);
  16268. gguf_write_to_buf(ctx, &buf, true);
  16269. memcpy(data, buf.data, buf.offset);
  16270. gguf_buf_free(buf);
  16271. }
  16272. ////////////////////////////////////////////////////////////////////////////////
  16273. int ggml_cpu_has_avx(void) {
  16274. #if defined(__AVX__)
  16275. return 1;
  16276. #else
  16277. return 0;
  16278. #endif
  16279. }
  16280. int ggml_cpu_has_avx2(void) {
  16281. #if defined(__AVX2__)
  16282. return 1;
  16283. #else
  16284. return 0;
  16285. #endif
  16286. }
  16287. int ggml_cpu_has_avx512(void) {
  16288. #if defined(__AVX512F__)
  16289. return 1;
  16290. #else
  16291. return 0;
  16292. #endif
  16293. }
  16294. int ggml_cpu_has_avx512_vbmi(void) {
  16295. #if defined(__AVX512VBMI__)
  16296. return 1;
  16297. #else
  16298. return 0;
  16299. #endif
  16300. }
  16301. int ggml_cpu_has_avx512_vnni(void) {
  16302. #if defined(__AVX512VNNI__)
  16303. return 1;
  16304. #else
  16305. return 0;
  16306. #endif
  16307. }
  16308. int ggml_cpu_has_fma(void) {
  16309. #if defined(__FMA__)
  16310. return 1;
  16311. #else
  16312. return 0;
  16313. #endif
  16314. }
  16315. int ggml_cpu_has_neon(void) {
  16316. #if defined(__ARM_NEON)
  16317. return 1;
  16318. #else
  16319. return 0;
  16320. #endif
  16321. }
  16322. int ggml_cpu_has_arm_fma(void) {
  16323. #if defined(__ARM_FEATURE_FMA)
  16324. return 1;
  16325. #else
  16326. return 0;
  16327. #endif
  16328. }
  16329. int ggml_cpu_has_metal(void) {
  16330. #if defined(GGML_USE_METAL)
  16331. return 1;
  16332. #else
  16333. return 0;
  16334. #endif
  16335. }
  16336. int ggml_cpu_has_f16c(void) {
  16337. #if defined(__F16C__)
  16338. return 1;
  16339. #else
  16340. return 0;
  16341. #endif
  16342. }
  16343. int ggml_cpu_has_fp16_va(void) {
  16344. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16345. return 1;
  16346. #else
  16347. return 0;
  16348. #endif
  16349. }
  16350. int ggml_cpu_has_wasm_simd(void) {
  16351. #if defined(__wasm_simd128__)
  16352. return 1;
  16353. #else
  16354. return 0;
  16355. #endif
  16356. }
  16357. int ggml_cpu_has_blas(void) {
  16358. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16359. return 1;
  16360. #else
  16361. return 0;
  16362. #endif
  16363. }
  16364. int ggml_cpu_has_cublas(void) {
  16365. #if defined(GGML_USE_CUBLAS)
  16366. return 1;
  16367. #else
  16368. return 0;
  16369. #endif
  16370. }
  16371. int ggml_cpu_has_clblast(void) {
  16372. #if defined(GGML_USE_CLBLAST)
  16373. return 1;
  16374. #else
  16375. return 0;
  16376. #endif
  16377. }
  16378. int ggml_cpu_has_gpublas(void) {
  16379. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16380. }
  16381. int ggml_cpu_has_sse3(void) {
  16382. #if defined(__SSE3__)
  16383. return 1;
  16384. #else
  16385. return 0;
  16386. #endif
  16387. }
  16388. int ggml_cpu_has_ssse3(void) {
  16389. #if defined(__SSSE3__)
  16390. return 1;
  16391. #else
  16392. return 0;
  16393. #endif
  16394. }
  16395. int ggml_cpu_has_vsx(void) {
  16396. #if defined(__POWER9_VECTOR__)
  16397. return 1;
  16398. #else
  16399. return 0;
  16400. #endif
  16401. }
  16402. ////////////////////////////////////////////////////////////////////////////////