ggml.h 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdint.h>
  203. #include <stddef.h>
  204. #include <stdbool.h>
  205. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  206. #define GGML_FILE_VERSION 1
  207. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  208. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  209. #define GGML_MAX_DIMS 4
  210. #define GGML_MAX_PARAMS 2048
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 64
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #define GGML_DEFAULT_GRAPH_SIZE 2048
  217. #if UINTPTR_MAX == 0xFFFFFFFF
  218. #define GGML_MEM_ALIGN 4
  219. #else
  220. #define GGML_MEM_ALIGN 16
  221. #endif
  222. #define GGML_EXIT_SUCCESS 0
  223. #define GGML_EXIT_ABORTED 1
  224. #define GGUF_MAGIC "GGUF"
  225. #define GGUF_VERSION 3
  226. #define GGUF_DEFAULT_ALIGNMENT 32
  227. #define GGML_UNUSED(x) (void)(x)
  228. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  229. #define GGML_ASSERT(x) \
  230. do { \
  231. if (!(x)) { \
  232. fflush(stdout); \
  233. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  234. ggml_print_backtrace(); \
  235. abort(); \
  236. } \
  237. } while (0)
  238. #ifndef NDEBUG
  239. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  240. #elif defined(__GNUC__)
  241. #define GGML_UNREACHABLE() __builtin_unreachable()
  242. #else
  243. #define GGML_UNREACHABLE() ((void) 0)
  244. #endif
  245. // used to copy the number of elements and stride in bytes of tensors into local variables.
  246. // main purpose is to reduce code duplication and improve readability.
  247. //
  248. // example:
  249. //
  250. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  251. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  252. //
  253. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  254. const type prefix##0 = (pointer)->array[0]; \
  255. GGML_UNUSED(prefix##0);
  256. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  257. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  258. const type prefix##1 = (pointer)->array[1]; \
  259. GGML_UNUSED(prefix##1);
  260. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  261. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  262. const type prefix##2 = (pointer)->array[2]; \
  263. GGML_UNUSED(prefix##2);
  264. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  265. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  266. const type prefix##3 = (pointer)->array[3]; \
  267. GGML_UNUSED(prefix##3);
  268. #define GGML_TENSOR_UNARY_OP_LOCALS \
  269. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  270. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  271. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  272. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  273. #define GGML_TENSOR_BINARY_OP_LOCALS \
  274. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  275. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  276. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  277. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  278. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  279. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  280. #ifdef __cplusplus
  281. extern "C" {
  282. #endif
  283. #if defined(__ARM_NEON) && defined(__CUDACC__)
  284. typedef half ggml_fp16_t;
  285. #elif defined(__ARM_NEON) && !defined(_MSC_VER)
  286. typedef __fp16 ggml_fp16_t;
  287. #else
  288. typedef uint16_t ggml_fp16_t;
  289. #endif
  290. // convert FP16 <-> FP32
  291. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  292. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  293. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  294. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  295. struct ggml_object;
  296. struct ggml_context;
  297. enum ggml_type {
  298. GGML_TYPE_F32 = 0,
  299. GGML_TYPE_F16 = 1,
  300. GGML_TYPE_Q4_0 = 2,
  301. GGML_TYPE_Q4_1 = 3,
  302. // GGML_TYPE_Q4_2 = 4, support has been removed
  303. // GGML_TYPE_Q4_3 (5) support has been removed
  304. GGML_TYPE_Q5_0 = 6,
  305. GGML_TYPE_Q5_1 = 7,
  306. GGML_TYPE_Q8_0 = 8,
  307. GGML_TYPE_Q8_1 = 9,
  308. // k-quantizations
  309. GGML_TYPE_Q2_K = 10,
  310. GGML_TYPE_Q3_K = 11,
  311. GGML_TYPE_Q4_K = 12,
  312. GGML_TYPE_Q5_K = 13,
  313. GGML_TYPE_Q6_K = 14,
  314. GGML_TYPE_Q8_K = 15,
  315. GGML_TYPE_I8,
  316. GGML_TYPE_I16,
  317. GGML_TYPE_I32,
  318. GGML_TYPE_COUNT,
  319. };
  320. // precision
  321. enum ggml_prec {
  322. GGML_PREC_DEFAULT,
  323. GGML_PREC_F32,
  324. };
  325. enum ggml_backend_type {
  326. GGML_BACKEND_CPU = 0,
  327. GGML_BACKEND_GPU = 10,
  328. GGML_BACKEND_GPU_SPLIT = 20,
  329. };
  330. // model file types
  331. enum ggml_ftype {
  332. GGML_FTYPE_UNKNOWN = -1,
  333. GGML_FTYPE_ALL_F32 = 0,
  334. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  335. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  336. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  337. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  338. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  339. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  340. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  341. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  342. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  343. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  344. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  345. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  346. };
  347. // available tensor operations:
  348. enum ggml_op {
  349. GGML_OP_NONE = 0,
  350. GGML_OP_DUP,
  351. GGML_OP_ADD,
  352. GGML_OP_ADD1,
  353. GGML_OP_ACC,
  354. GGML_OP_SUB,
  355. GGML_OP_MUL,
  356. GGML_OP_DIV,
  357. GGML_OP_SQR,
  358. GGML_OP_SQRT,
  359. GGML_OP_LOG,
  360. GGML_OP_SUM,
  361. GGML_OP_SUM_ROWS,
  362. GGML_OP_MEAN,
  363. GGML_OP_ARGMAX,
  364. GGML_OP_REPEAT,
  365. GGML_OP_REPEAT_BACK,
  366. GGML_OP_CONCAT,
  367. GGML_OP_SILU_BACK,
  368. GGML_OP_NORM, // normalize
  369. GGML_OP_RMS_NORM,
  370. GGML_OP_RMS_NORM_BACK,
  371. GGML_OP_GROUP_NORM,
  372. GGML_OP_MUL_MAT,
  373. GGML_OP_MUL_MAT_ID,
  374. GGML_OP_OUT_PROD,
  375. GGML_OP_SCALE,
  376. GGML_OP_SET,
  377. GGML_OP_CPY,
  378. GGML_OP_CONT,
  379. GGML_OP_RESHAPE,
  380. GGML_OP_VIEW,
  381. GGML_OP_PERMUTE,
  382. GGML_OP_TRANSPOSE,
  383. GGML_OP_GET_ROWS,
  384. GGML_OP_GET_ROWS_BACK,
  385. GGML_OP_DIAG,
  386. GGML_OP_DIAG_MASK_INF,
  387. GGML_OP_DIAG_MASK_ZERO,
  388. GGML_OP_SOFT_MAX,
  389. GGML_OP_SOFT_MAX_BACK,
  390. GGML_OP_ROPE,
  391. GGML_OP_ROPE_BACK,
  392. GGML_OP_ALIBI,
  393. GGML_OP_CLAMP,
  394. GGML_OP_CONV_TRANSPOSE_1D,
  395. GGML_OP_IM2COL,
  396. GGML_OP_CONV_TRANSPOSE_2D,
  397. GGML_OP_POOL_1D,
  398. GGML_OP_POOL_2D,
  399. GGML_OP_UPSCALE, // nearest interpolate
  400. GGML_OP_PAD,
  401. GGML_OP_ARGSORT,
  402. GGML_OP_LEAKY_RELU,
  403. GGML_OP_FLASH_ATTN,
  404. GGML_OP_FLASH_FF,
  405. GGML_OP_FLASH_ATTN_BACK,
  406. GGML_OP_WIN_PART,
  407. GGML_OP_WIN_UNPART,
  408. GGML_OP_GET_REL_POS,
  409. GGML_OP_ADD_REL_POS,
  410. GGML_OP_UNARY,
  411. GGML_OP_MAP_UNARY,
  412. GGML_OP_MAP_BINARY,
  413. GGML_OP_MAP_CUSTOM1_F32,
  414. GGML_OP_MAP_CUSTOM2_F32,
  415. GGML_OP_MAP_CUSTOM3_F32,
  416. GGML_OP_MAP_CUSTOM1,
  417. GGML_OP_MAP_CUSTOM2,
  418. GGML_OP_MAP_CUSTOM3,
  419. GGML_OP_CROSS_ENTROPY_LOSS,
  420. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  421. GGML_OP_COUNT,
  422. };
  423. enum ggml_unary_op {
  424. GGML_UNARY_OP_ABS,
  425. GGML_UNARY_OP_SGN,
  426. GGML_UNARY_OP_NEG,
  427. GGML_UNARY_OP_STEP,
  428. GGML_UNARY_OP_TANH,
  429. GGML_UNARY_OP_ELU,
  430. GGML_UNARY_OP_RELU,
  431. GGML_UNARY_OP_GELU,
  432. GGML_UNARY_OP_GELU_QUICK,
  433. GGML_UNARY_OP_SILU,
  434. GGML_UNARY_OP_COUNT,
  435. };
  436. enum ggml_object_type {
  437. GGML_OBJECT_TENSOR,
  438. GGML_OBJECT_GRAPH,
  439. GGML_OBJECT_WORK_BUFFER
  440. };
  441. enum ggml_log_level {
  442. GGML_LOG_LEVEL_ERROR = 2,
  443. GGML_LOG_LEVEL_WARN = 3,
  444. GGML_LOG_LEVEL_INFO = 4
  445. };
  446. // ggml object
  447. struct ggml_object {
  448. size_t offs;
  449. size_t size;
  450. struct ggml_object * next;
  451. enum ggml_object_type type;
  452. char padding[4];
  453. };
  454. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  455. // n-dimensional tensor
  456. struct ggml_tensor {
  457. enum ggml_type type;
  458. enum ggml_backend_type backend;
  459. struct ggml_backend_buffer * buffer;
  460. int64_t ne[GGML_MAX_DIMS]; // number of elements
  461. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  462. // nb[0] = ggml_type_size(type)
  463. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  464. // nb[i] = nb[i-1] * ne[i-1]
  465. // compute data
  466. enum ggml_op op;
  467. // op params - allocated as int32_t for alignment
  468. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  469. bool is_param;
  470. struct ggml_tensor * grad;
  471. struct ggml_tensor * src[GGML_MAX_SRC];
  472. // performance
  473. int perf_runs;
  474. int64_t perf_cycles;
  475. int64_t perf_time_us;
  476. struct ggml_tensor * view_src;
  477. size_t view_offs;
  478. void * data;
  479. char name[GGML_MAX_NAME];
  480. void * extra; // extra things e.g. for ggml-cuda.cu
  481. char padding[8];
  482. };
  483. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  484. // the compute plan that needs to be prepared for ggml_graph_compute()
  485. // since https://github.com/ggerganov/ggml/issues/287
  486. struct ggml_cplan {
  487. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  488. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  489. int n_threads;
  490. // abort ggml_graph_compute when true
  491. bool (*abort_callback)(void * data);
  492. void * abort_callback_data;
  493. };
  494. enum ggml_cgraph_eval_order {
  495. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  496. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  497. GGML_CGRAPH_EVAL_ORDER_COUNT
  498. };
  499. struct ggml_hash_set {
  500. size_t size;
  501. struct ggml_tensor ** keys;
  502. };
  503. // computation graph
  504. struct ggml_cgraph {
  505. int size;
  506. int n_nodes;
  507. int n_leafs;
  508. struct ggml_tensor ** nodes;
  509. struct ggml_tensor ** grads;
  510. struct ggml_tensor ** leafs;
  511. struct ggml_hash_set visited_hash_table;
  512. enum ggml_cgraph_eval_order order;
  513. // performance
  514. int perf_runs;
  515. int64_t perf_cycles;
  516. int64_t perf_time_us;
  517. };
  518. // scratch buffer
  519. struct ggml_scratch {
  520. size_t offs;
  521. size_t size;
  522. void * data;
  523. };
  524. struct ggml_init_params {
  525. // memory pool
  526. size_t mem_size; // bytes
  527. void * mem_buffer; // if NULL, memory will be allocated internally
  528. bool no_alloc; // don't allocate memory for the tensor data
  529. };
  530. // compute types
  531. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  532. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  533. enum ggml_task_type {
  534. GGML_TASK_INIT = 0,
  535. GGML_TASK_COMPUTE,
  536. GGML_TASK_FINALIZE,
  537. };
  538. struct ggml_compute_params {
  539. enum ggml_task_type type;
  540. // ith = thread index, nth = number of threads
  541. int ith, nth;
  542. // work buffer for all threads
  543. size_t wsize;
  544. void * wdata;
  545. };
  546. // misc
  547. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  548. GGML_API int64_t ggml_time_ms(void);
  549. GGML_API int64_t ggml_time_us(void);
  550. GGML_API int64_t ggml_cycles(void);
  551. GGML_API int64_t ggml_cycles_per_ms(void);
  552. GGML_API void ggml_print_backtrace(void);
  553. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  554. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  555. GGML_API void ggml_print_object (const struct ggml_object * obj);
  556. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  557. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  558. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  559. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  560. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  561. GGML_API int ggml_blck_size(enum ggml_type type);
  562. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  563. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  564. GGML_DEPRECATED(
  565. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  566. "use ggml_row_size() instead");
  567. GGML_API const char * ggml_type_name(enum ggml_type type);
  568. GGML_API const char * ggml_op_name (enum ggml_op op);
  569. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  570. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  571. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  572. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  573. GGML_API bool ggml_is_quantized(enum ggml_type type);
  574. // TODO: temporary until model loading of ggml examples is refactored
  575. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  576. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  577. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  578. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  579. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  580. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  581. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  582. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  583. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  584. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  585. // use this to compute the memory overhead of a tensor
  586. GGML_API size_t ggml_tensor_overhead(void);
  587. // main
  588. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  589. GGML_API void ggml_free(struct ggml_context * ctx);
  590. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  591. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  592. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  593. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  594. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  595. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  596. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  597. GGML_API struct ggml_tensor * ggml_new_tensor(
  598. struct ggml_context * ctx,
  599. enum ggml_type type,
  600. int n_dims,
  601. const int64_t *ne);
  602. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  603. struct ggml_context * ctx,
  604. enum ggml_type type,
  605. int64_t ne0);
  606. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  607. struct ggml_context * ctx,
  608. enum ggml_type type,
  609. int64_t ne0,
  610. int64_t ne1);
  611. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  612. struct ggml_context * ctx,
  613. enum ggml_type type,
  614. int64_t ne0,
  615. int64_t ne1,
  616. int64_t ne2);
  617. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  618. struct ggml_context * ctx,
  619. enum ggml_type type,
  620. int64_t ne0,
  621. int64_t ne1,
  622. int64_t ne2,
  623. int64_t ne3);
  624. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  625. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  626. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  627. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  628. // Context tensor enumeration and lookup
  629. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  630. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  631. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  632. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  633. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  634. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  635. // Converts a flat index into coordinates
  636. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  637. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  638. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  639. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  640. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  641. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  642. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  643. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  644. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  645. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  646. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  647. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  648. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  649. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  650. GGML_ATTRIBUTE_FORMAT(2, 3)
  651. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  652. //
  653. // operations on tensors with backpropagation
  654. //
  655. GGML_API struct ggml_tensor * ggml_dup(
  656. struct ggml_context * ctx,
  657. struct ggml_tensor * a);
  658. // in-place, returns view(a)
  659. GGML_API struct ggml_tensor * ggml_dup_inplace(
  660. struct ggml_context * ctx,
  661. struct ggml_tensor * a);
  662. GGML_API struct ggml_tensor * ggml_add(
  663. struct ggml_context * ctx,
  664. struct ggml_tensor * a,
  665. struct ggml_tensor * b);
  666. GGML_API struct ggml_tensor * ggml_add_inplace(
  667. struct ggml_context * ctx,
  668. struct ggml_tensor * a,
  669. struct ggml_tensor * b);
  670. GGML_API struct ggml_tensor * ggml_add_cast(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a,
  673. struct ggml_tensor * b,
  674. enum ggml_type type);
  675. GGML_API struct ggml_tensor * ggml_add1(
  676. struct ggml_context * ctx,
  677. struct ggml_tensor * a,
  678. struct ggml_tensor * b);
  679. GGML_API struct ggml_tensor * ggml_add1_inplace(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a,
  682. struct ggml_tensor * b);
  683. // dst = a
  684. // view(dst, nb1, nb2, nb3, offset) += b
  685. // return dst
  686. GGML_API struct ggml_tensor * ggml_acc(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a,
  689. struct ggml_tensor * b,
  690. size_t nb1,
  691. size_t nb2,
  692. size_t nb3,
  693. size_t offset);
  694. GGML_API struct ggml_tensor * ggml_acc_inplace(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b,
  698. size_t nb1,
  699. size_t nb2,
  700. size_t nb3,
  701. size_t offset);
  702. GGML_API struct ggml_tensor * ggml_sub(
  703. struct ggml_context * ctx,
  704. struct ggml_tensor * a,
  705. struct ggml_tensor * b);
  706. GGML_API struct ggml_tensor * ggml_sub_inplace(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a,
  709. struct ggml_tensor * b);
  710. GGML_API struct ggml_tensor * ggml_mul(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a,
  713. struct ggml_tensor * b);
  714. GGML_API struct ggml_tensor * ggml_mul_inplace(
  715. struct ggml_context * ctx,
  716. struct ggml_tensor * a,
  717. struct ggml_tensor * b);
  718. GGML_API struct ggml_tensor * ggml_div(
  719. struct ggml_context * ctx,
  720. struct ggml_tensor * a,
  721. struct ggml_tensor * b);
  722. GGML_API struct ggml_tensor * ggml_div_inplace(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. struct ggml_tensor * b);
  726. GGML_API struct ggml_tensor * ggml_sqr(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a);
  729. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  730. struct ggml_context * ctx,
  731. struct ggml_tensor * a);
  732. GGML_API struct ggml_tensor * ggml_sqrt(
  733. struct ggml_context * ctx,
  734. struct ggml_tensor * a);
  735. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a);
  738. GGML_API struct ggml_tensor * ggml_log(
  739. struct ggml_context * ctx,
  740. struct ggml_tensor * a);
  741. GGML_API struct ggml_tensor * ggml_log_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a);
  744. // return scalar
  745. GGML_API struct ggml_tensor * ggml_sum(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a);
  748. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  749. GGML_API struct ggml_tensor * ggml_sum_rows(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. // mean along rows
  753. GGML_API struct ggml_tensor * ggml_mean(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a);
  756. // argmax along rows
  757. GGML_API struct ggml_tensor * ggml_argmax(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a);
  760. // if a is the same shape as b, and a is not parameter, return a
  761. // otherwise, return a new tensor: repeat(a) to fit in b
  762. GGML_API struct ggml_tensor * ggml_repeat(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a,
  765. struct ggml_tensor * b);
  766. // sums repetitions in a into shape of b
  767. GGML_API struct ggml_tensor * ggml_repeat_back(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a,
  770. struct ggml_tensor * b);
  771. // concat a and b on dim 2
  772. // used in stable-diffusion
  773. GGML_API struct ggml_tensor * ggml_concat(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a,
  776. struct ggml_tensor * b);
  777. GGML_API struct ggml_tensor * ggml_abs(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * a);
  780. GGML_API struct ggml_tensor * ggml_abs_inplace(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a);
  783. GGML_API struct ggml_tensor * ggml_sgn(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a);
  786. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a);
  789. GGML_API struct ggml_tensor * ggml_neg(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a);
  792. GGML_API struct ggml_tensor * ggml_neg_inplace(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a);
  795. GGML_API struct ggml_tensor * ggml_step(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a);
  798. GGML_API struct ggml_tensor * ggml_step_inplace(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a);
  801. GGML_API struct ggml_tensor * ggml_tanh(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a);
  804. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a);
  807. GGML_API struct ggml_tensor * ggml_elu(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. GGML_API struct ggml_tensor * ggml_elu_inplace(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. GGML_API struct ggml_tensor * ggml_relu(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a);
  816. GGML_API struct ggml_tensor * ggml_leaky_relu(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a, float negative_slope, bool inplace);
  819. GGML_API struct ggml_tensor * ggml_relu_inplace(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. GGML_API struct ggml_tensor * ggml_gelu(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a);
  828. GGML_API struct ggml_tensor * ggml_gelu_quick(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a);
  831. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a);
  834. GGML_API struct ggml_tensor * ggml_silu(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. GGML_API struct ggml_tensor * ggml_silu_inplace(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a);
  840. // a - x
  841. // b - dy
  842. GGML_API struct ggml_tensor * ggml_silu_back(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a,
  845. struct ggml_tensor * b);
  846. // normalize along rows
  847. GGML_API struct ggml_tensor * ggml_norm(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a,
  850. float eps);
  851. GGML_API struct ggml_tensor * ggml_norm_inplace(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a,
  854. float eps);
  855. GGML_API struct ggml_tensor * ggml_rms_norm(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a,
  858. float eps);
  859. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a,
  862. float eps);
  863. // group normalize along ne0*ne1*n_groups
  864. // used in stable-diffusion
  865. // TODO: eps is hardcoded to 1e-6 for now
  866. GGML_API struct ggml_tensor * ggml_group_norm(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a,
  869. int n_groups);
  870. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. int n_groups);
  874. // a - x
  875. // b - dy
  876. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a,
  879. struct ggml_tensor * b,
  880. float eps);
  881. // A: k columns, n rows => [ne03, ne02, n, k]
  882. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  883. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  884. GGML_API struct ggml_tensor * ggml_mul_mat(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a,
  887. struct ggml_tensor * b);
  888. // change the precision of a matrix multiplication
  889. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  890. GGML_API void ggml_mul_mat_set_prec(
  891. struct ggml_tensor * a,
  892. enum ggml_prec prec);
  893. // indirect matrix multiplication
  894. // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
  895. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * const as[],
  898. int n_as,
  899. struct ggml_tensor * ids,
  900. int id,
  901. struct ggml_tensor * b);
  902. // A: m columns, n rows,
  903. // B: p columns, n rows,
  904. // result is m columns, p rows
  905. GGML_API struct ggml_tensor * ggml_out_prod(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a,
  908. struct ggml_tensor * b);
  909. //
  910. // operations on tensors without backpropagation
  911. //
  912. GGML_API struct ggml_tensor * ggml_scale(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. struct ggml_tensor * b);
  916. // in-place, returns view(a)
  917. GGML_API struct ggml_tensor * ggml_scale_inplace(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a,
  920. struct ggml_tensor * b);
  921. // b -> view(a,offset,nb1,nb2,3), return modified a
  922. GGML_API struct ggml_tensor * ggml_set(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a,
  925. struct ggml_tensor * b,
  926. size_t nb1,
  927. size_t nb2,
  928. size_t nb3,
  929. size_t offset);
  930. // b -> view(a,offset,nb1,nb2,3), return view(a)
  931. GGML_API struct ggml_tensor * ggml_set_inplace(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. struct ggml_tensor * b,
  935. size_t nb1,
  936. size_t nb2,
  937. size_t nb3,
  938. size_t offset);
  939. GGML_API struct ggml_tensor * ggml_set_1d(
  940. struct ggml_context * ctx,
  941. struct ggml_tensor * a,
  942. struct ggml_tensor * b,
  943. size_t offset);
  944. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. struct ggml_tensor * b,
  948. size_t offset);
  949. // b -> view(a,offset,nb1,nb2,3), return modified a
  950. GGML_API struct ggml_tensor * ggml_set_2d(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. struct ggml_tensor * b,
  954. size_t nb1,
  955. size_t offset);
  956. // b -> view(a,offset,nb1,nb2,3), return view(a)
  957. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a,
  960. struct ggml_tensor * b,
  961. size_t nb1,
  962. size_t offset);
  963. // a -> b, return view(b)
  964. GGML_API struct ggml_tensor * ggml_cpy(
  965. struct ggml_context * ctx,
  966. struct ggml_tensor * a,
  967. struct ggml_tensor * b);
  968. // a -> b, in-place, return view(b)
  969. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a,
  972. struct ggml_tensor * b);
  973. // make contiguous
  974. GGML_API struct ggml_tensor * ggml_cont(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a);
  977. // make contiguous, in-place
  978. GGML_API struct ggml_tensor * ggml_cont_inplace(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a);
  981. // make contiguous, with new shape
  982. GGML_API struct ggml_tensor * ggml_cont_1d(
  983. struct ggml_context * ctx,
  984. struct ggml_tensor * a,
  985. int64_t ne0);
  986. GGML_API struct ggml_tensor * ggml_cont_2d(
  987. struct ggml_context * ctx,
  988. struct ggml_tensor * a,
  989. int64_t ne0,
  990. int64_t ne1);
  991. GGML_API struct ggml_tensor * ggml_cont_3d(
  992. struct ggml_context * ctx,
  993. struct ggml_tensor * a,
  994. int64_t ne0,
  995. int64_t ne1,
  996. int64_t ne2);
  997. GGML_API struct ggml_tensor * ggml_cont_4d(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a,
  1000. int64_t ne0,
  1001. int64_t ne1,
  1002. int64_t ne2,
  1003. int64_t ne3);
  1004. // return view(a), b specifies the new shape
  1005. // TODO: when we start computing gradient, make a copy instead of view
  1006. GGML_API struct ggml_tensor * ggml_reshape(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a,
  1009. struct ggml_tensor * b);
  1010. // return view(a)
  1011. // TODO: when we start computing gradient, make a copy instead of view
  1012. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. int64_t ne0);
  1016. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1017. struct ggml_context * ctx,
  1018. struct ggml_tensor * a,
  1019. int64_t ne0,
  1020. int64_t ne1);
  1021. // return view(a)
  1022. // TODO: when we start computing gradient, make a copy instead of view
  1023. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. int64_t ne0,
  1027. int64_t ne1,
  1028. int64_t ne2);
  1029. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1030. struct ggml_context * ctx,
  1031. struct ggml_tensor * a,
  1032. int64_t ne0,
  1033. int64_t ne1,
  1034. int64_t ne2,
  1035. int64_t ne3);
  1036. // offset in bytes
  1037. GGML_API struct ggml_tensor * ggml_view_1d(
  1038. struct ggml_context * ctx,
  1039. struct ggml_tensor * a,
  1040. int64_t ne0,
  1041. size_t offset);
  1042. GGML_API struct ggml_tensor * ggml_view_2d(
  1043. struct ggml_context * ctx,
  1044. struct ggml_tensor * a,
  1045. int64_t ne0,
  1046. int64_t ne1,
  1047. size_t nb1, // row stride in bytes
  1048. size_t offset);
  1049. GGML_API struct ggml_tensor * ggml_view_3d(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. int64_t ne0,
  1053. int64_t ne1,
  1054. int64_t ne2,
  1055. size_t nb1, // row stride in bytes
  1056. size_t nb2, // slice stride in bytes
  1057. size_t offset);
  1058. GGML_API struct ggml_tensor * ggml_view_4d(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. int64_t ne0,
  1062. int64_t ne1,
  1063. int64_t ne2,
  1064. int64_t ne3,
  1065. size_t nb1, // row stride in bytes
  1066. size_t nb2, // slice stride in bytes
  1067. size_t nb3,
  1068. size_t offset);
  1069. GGML_API struct ggml_tensor * ggml_permute(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. int axis0,
  1073. int axis1,
  1074. int axis2,
  1075. int axis3);
  1076. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1077. GGML_API struct ggml_tensor * ggml_transpose(
  1078. struct ggml_context * ctx,
  1079. struct ggml_tensor * a);
  1080. // supports 3D: a->ne[2] == b->ne[1]
  1081. GGML_API struct ggml_tensor * ggml_get_rows(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. struct ggml_tensor * b);
  1085. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a,
  1088. struct ggml_tensor * b,
  1089. struct ggml_tensor * c);
  1090. GGML_API struct ggml_tensor * ggml_diag(
  1091. struct ggml_context * ctx,
  1092. struct ggml_tensor * a);
  1093. // set elements above the diagonal to -INF
  1094. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1095. struct ggml_context * ctx,
  1096. struct ggml_tensor * a,
  1097. int n_past);
  1098. // in-place, returns view(a)
  1099. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. int n_past);
  1103. // set elements above the diagonal to 0
  1104. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1105. struct ggml_context * ctx,
  1106. struct ggml_tensor * a,
  1107. int n_past);
  1108. // in-place, returns view(a)
  1109. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1110. struct ggml_context * ctx,
  1111. struct ggml_tensor * a,
  1112. int n_past);
  1113. GGML_API struct ggml_tensor * ggml_soft_max(
  1114. struct ggml_context * ctx,
  1115. struct ggml_tensor * a);
  1116. // in-place, returns view(a)
  1117. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1118. struct ggml_context * ctx,
  1119. struct ggml_tensor * a);
  1120. // fused soft_max(a*scale + mask)
  1121. // mask is optional
  1122. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1123. struct ggml_context * ctx,
  1124. struct ggml_tensor * a,
  1125. struct ggml_tensor * mask,
  1126. float scale);
  1127. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. struct ggml_tensor * b);
  1131. // in-place, returns view(a)
  1132. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * a,
  1135. struct ggml_tensor * b);
  1136. // rotary position embedding
  1137. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1138. // if mode & 2 == 1, GPT-NeoX style
  1139. // if mode & 4 == 1, ChatGLM style
  1140. //
  1141. // b is an int32 vector with size a->ne[2], it contains the positions
  1142. GGML_API struct ggml_tensor * ggml_rope(
  1143. struct ggml_context * ctx,
  1144. struct ggml_tensor * a,
  1145. struct ggml_tensor * b,
  1146. int n_dims,
  1147. int mode,
  1148. int n_ctx);
  1149. // in-place, returns view(a)
  1150. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. struct ggml_tensor * b,
  1154. int n_dims,
  1155. int mode,
  1156. int n_ctx);
  1157. // custom RoPE
  1158. GGML_API struct ggml_tensor * ggml_rope_custom(
  1159. struct ggml_context * ctx,
  1160. struct ggml_tensor * a,
  1161. struct ggml_tensor * b,
  1162. int n_dims,
  1163. int mode,
  1164. int n_ctx,
  1165. int n_orig_ctx,
  1166. float freq_base,
  1167. float freq_scale,
  1168. float ext_factor,
  1169. float attn_factor,
  1170. float beta_fast,
  1171. float beta_slow);
  1172. // in-place, returns view(a)
  1173. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a,
  1176. struct ggml_tensor * b,
  1177. int n_dims,
  1178. int mode,
  1179. int n_ctx,
  1180. int n_orig_ctx,
  1181. float freq_base,
  1182. float freq_scale,
  1183. float ext_factor,
  1184. float attn_factor,
  1185. float beta_fast,
  1186. float beta_slow);
  1187. // compute correction dims for YaRN RoPE scaling
  1188. void ggml_rope_yarn_corr_dims(
  1189. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1190. // xPos RoPE, in-place, returns view(a)
  1191. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1192. struct ggml_context * ctx,
  1193. struct ggml_tensor * a,
  1194. struct ggml_tensor * b,
  1195. int n_dims,
  1196. float base,
  1197. bool down);
  1198. // rotary position embedding backward, i.e compute dx from dy
  1199. // a - dy
  1200. GGML_API struct ggml_tensor * ggml_rope_back(
  1201. struct ggml_context * ctx,
  1202. struct ggml_tensor * a,
  1203. struct ggml_tensor * b,
  1204. int n_dims,
  1205. int mode,
  1206. int n_ctx,
  1207. int n_orig_ctx,
  1208. float freq_base,
  1209. float freq_scale,
  1210. float ext_factor,
  1211. float attn_factor,
  1212. float beta_fast,
  1213. float beta_slow,
  1214. float xpos_base,
  1215. bool xpos_down);
  1216. // alibi position embedding
  1217. // in-place, returns view(a)
  1218. GGML_API struct ggml_tensor * ggml_alibi(
  1219. struct ggml_context * ctx,
  1220. struct ggml_tensor * a,
  1221. int n_past,
  1222. int n_head,
  1223. float bias_max);
  1224. // clamp
  1225. // in-place, returns view(a)
  1226. GGML_API struct ggml_tensor * ggml_clamp(
  1227. struct ggml_context * ctx,
  1228. struct ggml_tensor * a,
  1229. float min,
  1230. float max);
  1231. GGML_API struct ggml_tensor * ggml_im2col(
  1232. struct ggml_context * ctx,
  1233. struct ggml_tensor * a,
  1234. struct ggml_tensor * b,
  1235. int s0,
  1236. int s1,
  1237. int p0,
  1238. int p1,
  1239. int d0,
  1240. int d1,
  1241. bool is_2D);
  1242. GGML_API struct ggml_tensor * ggml_conv_1d(
  1243. struct ggml_context * ctx,
  1244. struct ggml_tensor * a,
  1245. struct ggml_tensor * b,
  1246. int s0, // stride
  1247. int p0, // padding
  1248. int d0); // dilation
  1249. // conv_1d with padding = half
  1250. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1251. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a,
  1254. struct ggml_tensor * b,
  1255. int s,
  1256. int d);
  1257. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1258. struct ggml_context * ctx,
  1259. struct ggml_tensor * a,
  1260. struct ggml_tensor * b,
  1261. int s0,
  1262. int p0,
  1263. int d0);
  1264. GGML_API struct ggml_tensor * ggml_conv_2d(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. struct ggml_tensor * b,
  1268. int s0,
  1269. int s1,
  1270. int p0,
  1271. int p1,
  1272. int d0,
  1273. int d1);
  1274. // kernel size is a->ne[0] x a->ne[1]
  1275. // stride is equal to kernel size
  1276. // padding is zero
  1277. // example:
  1278. // a: 16 16 3 768
  1279. // b: 1024 1024 3 1
  1280. // res: 64 64 768 1
  1281. // used in sam
  1282. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1283. struct ggml_context * ctx,
  1284. struct ggml_tensor * a,
  1285. struct ggml_tensor * b);
  1286. // kernel size is a->ne[0] x a->ne[1]
  1287. // stride is 1
  1288. // padding is half
  1289. // example:
  1290. // a: 3 3 256 256
  1291. // b: 64 64 256 1
  1292. // res: 64 64 256 1
  1293. // used in sam
  1294. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1295. struct ggml_context * ctx,
  1296. struct ggml_tensor * a,
  1297. struct ggml_tensor * b);
  1298. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1299. struct ggml_context * ctx,
  1300. struct ggml_tensor * a,
  1301. struct ggml_tensor * b,
  1302. int stride);
  1303. enum ggml_op_pool {
  1304. GGML_OP_POOL_MAX,
  1305. GGML_OP_POOL_AVG,
  1306. GGML_OP_POOL_COUNT,
  1307. };
  1308. GGML_API struct ggml_tensor * ggml_pool_1d(
  1309. struct ggml_context * ctx,
  1310. struct ggml_tensor * a,
  1311. enum ggml_op_pool op,
  1312. int k0, // kernel size
  1313. int s0, // stride
  1314. int p0); // padding
  1315. // the result will have 2*p0 padding for the first dimension
  1316. // and 2*p1 padding for the second dimension
  1317. GGML_API struct ggml_tensor * ggml_pool_2d(
  1318. struct ggml_context * ctx,
  1319. struct ggml_tensor * a,
  1320. enum ggml_op_pool op,
  1321. int k0,
  1322. int k1,
  1323. int s0,
  1324. int s1,
  1325. float p0,
  1326. float p1);
  1327. // nearest interpolate
  1328. // used in stable-diffusion
  1329. GGML_API struct ggml_tensor * ggml_upscale(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. int scale_factor);
  1333. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1334. GGML_API struct ggml_tensor * ggml_pad(
  1335. struct ggml_context * ctx,
  1336. struct ggml_tensor * a,
  1337. int p0,
  1338. int p1,
  1339. int p2,
  1340. int p3);
  1341. // sort rows
  1342. enum ggml_sort_order {
  1343. GGML_SORT_ASC,
  1344. GGML_SORT_DESC,
  1345. };
  1346. GGML_API struct ggml_tensor * ggml_argsort(
  1347. struct ggml_context * ctx,
  1348. struct ggml_tensor * a,
  1349. enum ggml_sort_order order);
  1350. // top k elements per row
  1351. GGML_API struct ggml_tensor * ggml_top_k(
  1352. struct ggml_context * ctx,
  1353. struct ggml_tensor * a,
  1354. int k);
  1355. GGML_API struct ggml_tensor * ggml_flash_attn(
  1356. struct ggml_context * ctx,
  1357. struct ggml_tensor * q,
  1358. struct ggml_tensor * k,
  1359. struct ggml_tensor * v,
  1360. bool masked);
  1361. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1362. struct ggml_context * ctx,
  1363. struct ggml_tensor * q,
  1364. struct ggml_tensor * k,
  1365. struct ggml_tensor * v,
  1366. struct ggml_tensor * d,
  1367. bool masked);
  1368. GGML_API struct ggml_tensor * ggml_flash_ff(
  1369. struct ggml_context * ctx,
  1370. struct ggml_tensor * a,
  1371. struct ggml_tensor * b0,
  1372. struct ggml_tensor * b1,
  1373. struct ggml_tensor * c0,
  1374. struct ggml_tensor * c1);
  1375. // partition into non-overlapping windows with padding if needed
  1376. // example:
  1377. // a: 768 64 64 1
  1378. // w: 14
  1379. // res: 768 14 14 25
  1380. // used in sam
  1381. GGML_API struct ggml_tensor * ggml_win_part(
  1382. struct ggml_context * ctx,
  1383. struct ggml_tensor * a,
  1384. int w);
  1385. // reverse of ggml_win_part
  1386. // used in sam
  1387. GGML_API struct ggml_tensor * ggml_win_unpart(
  1388. struct ggml_context * ctx,
  1389. struct ggml_tensor * a,
  1390. int w0,
  1391. int h0,
  1392. int w);
  1393. GGML_API struct ggml_tensor * ggml_unary(
  1394. struct ggml_context * ctx,
  1395. struct ggml_tensor * a,
  1396. enum ggml_unary_op op);
  1397. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1398. struct ggml_context * ctx,
  1399. struct ggml_tensor * a,
  1400. enum ggml_unary_op op);
  1401. // used in sam
  1402. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1403. struct ggml_context * ctx,
  1404. struct ggml_tensor * a,
  1405. int qh,
  1406. int kh);
  1407. // used in sam
  1408. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1409. struct ggml_context * ctx,
  1410. struct ggml_tensor * a,
  1411. struct ggml_tensor * pw,
  1412. struct ggml_tensor * ph);
  1413. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1414. struct ggml_context * ctx,
  1415. struct ggml_tensor * a,
  1416. struct ggml_tensor * pw,
  1417. struct ggml_tensor * ph);
  1418. // custom operators
  1419. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1420. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1421. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1422. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1423. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1424. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a,
  1427. ggml_unary_op_f32_t fun),
  1428. "use ggml_map_custom1 instead");
  1429. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1430. struct ggml_context * ctx,
  1431. struct ggml_tensor * a,
  1432. ggml_unary_op_f32_t fun),
  1433. "use ggml_map_custom1_inplace instead");
  1434. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1435. struct ggml_context * ctx,
  1436. struct ggml_tensor * a,
  1437. struct ggml_tensor * b,
  1438. ggml_binary_op_f32_t fun),
  1439. "use ggml_map_custom2 instead");
  1440. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1441. struct ggml_context * ctx,
  1442. struct ggml_tensor * a,
  1443. struct ggml_tensor * b,
  1444. ggml_binary_op_f32_t fun),
  1445. "use ggml_map_custom2_inplace instead");
  1446. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. ggml_custom1_op_f32_t fun),
  1450. "use ggml_map_custom1 instead");
  1451. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * a,
  1454. ggml_custom1_op_f32_t fun),
  1455. "use ggml_map_custom1_inplace instead");
  1456. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1457. struct ggml_context * ctx,
  1458. struct ggml_tensor * a,
  1459. struct ggml_tensor * b,
  1460. ggml_custom2_op_f32_t fun),
  1461. "use ggml_map_custom2 instead");
  1462. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1463. struct ggml_context * ctx,
  1464. struct ggml_tensor * a,
  1465. struct ggml_tensor * b,
  1466. ggml_custom2_op_f32_t fun),
  1467. "use ggml_map_custom2_inplace instead");
  1468. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1469. struct ggml_context * ctx,
  1470. struct ggml_tensor * a,
  1471. struct ggml_tensor * b,
  1472. struct ggml_tensor * c,
  1473. ggml_custom3_op_f32_t fun),
  1474. "use ggml_map_custom3 instead");
  1475. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1476. struct ggml_context * ctx,
  1477. struct ggml_tensor * a,
  1478. struct ggml_tensor * b,
  1479. struct ggml_tensor * c,
  1480. ggml_custom3_op_f32_t fun),
  1481. "use ggml_map_custom3_inplace instead");
  1482. // custom operators v2
  1483. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1484. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1485. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1486. #define GGML_N_TASKS_MAX -1
  1487. GGML_API struct ggml_tensor * ggml_map_custom1(
  1488. struct ggml_context * ctx,
  1489. struct ggml_tensor * a,
  1490. ggml_custom1_op_t fun,
  1491. int n_tasks,
  1492. void * userdata);
  1493. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. ggml_custom1_op_t fun,
  1497. int n_tasks,
  1498. void * userdata);
  1499. GGML_API struct ggml_tensor * ggml_map_custom2(
  1500. struct ggml_context * ctx,
  1501. struct ggml_tensor * a,
  1502. struct ggml_tensor * b,
  1503. ggml_custom2_op_t fun,
  1504. int n_tasks,
  1505. void * userdata);
  1506. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1507. struct ggml_context * ctx,
  1508. struct ggml_tensor * a,
  1509. struct ggml_tensor * b,
  1510. ggml_custom2_op_t fun,
  1511. int n_tasks,
  1512. void * userdata);
  1513. GGML_API struct ggml_tensor * ggml_map_custom3(
  1514. struct ggml_context * ctx,
  1515. struct ggml_tensor * a,
  1516. struct ggml_tensor * b,
  1517. struct ggml_tensor * c,
  1518. ggml_custom3_op_t fun,
  1519. int n_tasks,
  1520. void * userdata);
  1521. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1522. struct ggml_context * ctx,
  1523. struct ggml_tensor * a,
  1524. struct ggml_tensor * b,
  1525. struct ggml_tensor * c,
  1526. ggml_custom3_op_t fun,
  1527. int n_tasks,
  1528. void * userdata);
  1529. // loss function
  1530. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1531. struct ggml_context * ctx,
  1532. struct ggml_tensor * a,
  1533. struct ggml_tensor * b);
  1534. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1535. struct ggml_context * ctx,
  1536. struct ggml_tensor * a,
  1537. struct ggml_tensor * b,
  1538. struct ggml_tensor * c);
  1539. //
  1540. // automatic differentiation
  1541. //
  1542. GGML_API void ggml_set_param(
  1543. struct ggml_context * ctx,
  1544. struct ggml_tensor * tensor);
  1545. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1546. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1547. // graph allocation in a context
  1548. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1549. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1550. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1551. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1552. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1553. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1554. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1555. GGML_API size_t ggml_graph_overhead(void);
  1556. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1557. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1558. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1559. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1560. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1561. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1562. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1563. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1564. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1565. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1566. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1567. // print info and performance information for the graph
  1568. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1569. // dump the graph into a file using the dot format
  1570. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1571. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1572. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1573. // but without the second forward pass nodes.
  1574. GGML_API void ggml_build_backward_gradient_checkpointing(
  1575. struct ggml_context * ctx,
  1576. struct ggml_cgraph * gf,
  1577. struct ggml_cgraph * gb,
  1578. struct ggml_cgraph * gb_tmp,
  1579. struct ggml_tensor * * checkpoints,
  1580. int n_checkpoints);
  1581. //
  1582. // optimization
  1583. //
  1584. // optimization methods
  1585. enum ggml_opt_type {
  1586. GGML_OPT_ADAM,
  1587. GGML_OPT_LBFGS,
  1588. };
  1589. // linesearch methods
  1590. enum ggml_linesearch {
  1591. GGML_LINESEARCH_DEFAULT = 1,
  1592. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1593. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1594. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1595. };
  1596. // optimization return values
  1597. enum ggml_opt_result {
  1598. GGML_OPT_OK = 0,
  1599. GGML_OPT_DID_NOT_CONVERGE,
  1600. GGML_OPT_NO_CONTEXT,
  1601. GGML_OPT_INVALID_WOLFE,
  1602. GGML_OPT_FAIL,
  1603. GGML_OPT_CANCEL,
  1604. GGML_LINESEARCH_FAIL = -128,
  1605. GGML_LINESEARCH_MINIMUM_STEP,
  1606. GGML_LINESEARCH_MAXIMUM_STEP,
  1607. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1608. GGML_LINESEARCH_INVALID_PARAMETERS,
  1609. };
  1610. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1611. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1612. // optimization parameters
  1613. //
  1614. // see ggml.c (ggml_opt_default_params) for default values
  1615. //
  1616. struct ggml_opt_params {
  1617. enum ggml_opt_type type;
  1618. size_t graph_size;
  1619. int n_threads;
  1620. // delta-based convergence test
  1621. //
  1622. // if past == 0 - disabled
  1623. // if past > 0:
  1624. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1625. //
  1626. int past;
  1627. float delta;
  1628. // maximum number of iterations without improvement
  1629. //
  1630. // if 0 - disabled
  1631. // if > 0:
  1632. // assume convergence if no cost improvement in this number of iterations
  1633. //
  1634. int max_no_improvement;
  1635. bool print_forward_graph;
  1636. bool print_backward_graph;
  1637. int n_gradient_accumulation;
  1638. // ADAM parameters
  1639. struct {
  1640. int n_iter;
  1641. float sched; // schedule multiplier (fixed, decay or warmup)
  1642. float decay; // weight decay for AdamW, use 0.0f to disable
  1643. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1644. float alpha; // learning rate
  1645. float beta1;
  1646. float beta2;
  1647. float eps; // epsilon for numerical stability
  1648. float eps_f; // epsilon for convergence test
  1649. float eps_g; // epsilon for convergence test
  1650. float gclip; // gradient clipping
  1651. } adam;
  1652. // LBFGS parameters
  1653. struct {
  1654. int m; // number of corrections to approximate the inv. Hessian
  1655. int n_iter;
  1656. int max_linesearch;
  1657. float eps; // convergence tolerance
  1658. float ftol; // line search tolerance
  1659. float wolfe;
  1660. float min_step;
  1661. float max_step;
  1662. enum ggml_linesearch linesearch;
  1663. } lbfgs;
  1664. };
  1665. struct ggml_opt_context {
  1666. struct ggml_context * ctx;
  1667. struct ggml_opt_params params;
  1668. int iter;
  1669. int64_t nx; // number of parameter elements
  1670. bool just_initialized;
  1671. float loss_before;
  1672. float loss_after;
  1673. struct {
  1674. struct ggml_tensor * g; // current gradient
  1675. struct ggml_tensor * m; // first moment
  1676. struct ggml_tensor * v; // second moment
  1677. struct ggml_tensor * pf; // past function values
  1678. float fx_best;
  1679. float fx_prev;
  1680. int n_no_improvement;
  1681. } adam;
  1682. struct {
  1683. struct ggml_tensor * x; // current parameters
  1684. struct ggml_tensor * xp; // previous parameters
  1685. struct ggml_tensor * g; // current gradient
  1686. struct ggml_tensor * gp; // previous gradient
  1687. struct ggml_tensor * d; // search direction
  1688. struct ggml_tensor * pf; // past function values
  1689. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1690. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1691. struct ggml_tensor * lms; // the L-BFGS memory s
  1692. struct ggml_tensor * lmy; // the L-BFGS memory y
  1693. float fx_best;
  1694. float step;
  1695. int j;
  1696. int k;
  1697. int end;
  1698. int n_no_improvement;
  1699. } lbfgs;
  1700. };
  1701. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1702. // optimize the function defined by the tensor f
  1703. GGML_API enum ggml_opt_result ggml_opt(
  1704. struct ggml_context * ctx,
  1705. struct ggml_opt_params params,
  1706. struct ggml_tensor * f);
  1707. // initialize optimizer context
  1708. GGML_API void ggml_opt_init(
  1709. struct ggml_context * ctx,
  1710. struct ggml_opt_context * opt,
  1711. struct ggml_opt_params params,
  1712. int64_t nx);
  1713. // continue optimizing the function defined by the tensor f
  1714. GGML_API enum ggml_opt_result ggml_opt_resume(
  1715. struct ggml_context * ctx,
  1716. struct ggml_opt_context * opt,
  1717. struct ggml_tensor * f);
  1718. // continue optimizing the function defined by the tensor f
  1719. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1720. struct ggml_context * ctx,
  1721. struct ggml_opt_context * opt,
  1722. struct ggml_tensor * f,
  1723. struct ggml_cgraph * gf,
  1724. struct ggml_cgraph * gb,
  1725. ggml_opt_callback callback,
  1726. void * callback_data);
  1727. //
  1728. // quantization
  1729. //
  1730. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1731. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1732. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1733. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1734. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1735. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1736. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1737. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1738. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1739. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1740. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1741. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1742. //
  1743. // gguf
  1744. //
  1745. enum gguf_type {
  1746. GGUF_TYPE_UINT8 = 0,
  1747. GGUF_TYPE_INT8 = 1,
  1748. GGUF_TYPE_UINT16 = 2,
  1749. GGUF_TYPE_INT16 = 3,
  1750. GGUF_TYPE_UINT32 = 4,
  1751. GGUF_TYPE_INT32 = 5,
  1752. GGUF_TYPE_FLOAT32 = 6,
  1753. GGUF_TYPE_BOOL = 7,
  1754. GGUF_TYPE_STRING = 8,
  1755. GGUF_TYPE_ARRAY = 9,
  1756. GGUF_TYPE_UINT64 = 10,
  1757. GGUF_TYPE_INT64 = 11,
  1758. GGUF_TYPE_FLOAT64 = 12,
  1759. GGUF_TYPE_COUNT, // marks the end of the enum
  1760. };
  1761. struct gguf_context;
  1762. struct gguf_init_params {
  1763. bool no_alloc;
  1764. // if not NULL, create a ggml_context and allocate the tensor data in it
  1765. struct ggml_context ** ctx;
  1766. };
  1767. GGML_API struct gguf_context * gguf_init_empty(void);
  1768. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1769. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1770. GGML_API void gguf_free(struct gguf_context * ctx);
  1771. GGML_API const char * gguf_type_name(enum gguf_type type);
  1772. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1773. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1774. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1775. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1776. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1777. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1778. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1779. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1780. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1781. // will abort if the wrong type is used for the key
  1782. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1783. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1784. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1785. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1786. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1787. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1788. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1789. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1790. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1791. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1792. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1793. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1794. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1795. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1796. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1797. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1798. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1799. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1800. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1801. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1802. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1803. // overrides existing values or adds a new one
  1804. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1805. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1806. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1807. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1808. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1809. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1810. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1811. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1812. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1813. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1814. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1815. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1816. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1817. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1818. // set or add KV pairs from another context
  1819. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1820. // manage tensor info
  1821. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1822. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1823. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1824. // writing gguf files can be done in 2 ways:
  1825. //
  1826. // - write the entire gguf_context to a binary file in a single pass:
  1827. //
  1828. // gguf_write_to_file(ctx, fname);
  1829. //
  1830. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1831. //
  1832. // FILE * f = fopen(fname, "wb");
  1833. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1834. // fwrite(f, ...);
  1835. // void * data = gguf_meta_get_meta_data(ctx);
  1836. // fseek(f, 0, SEEK_SET);
  1837. // fwrite(f, data, gguf_get_meta_size(ctx));
  1838. // free(data);
  1839. // fclose(f);
  1840. //
  1841. // write the entire context to a binary file
  1842. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1843. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1844. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1845. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1846. //
  1847. // system info
  1848. //
  1849. GGML_API int ggml_cpu_has_avx (void);
  1850. GGML_API int ggml_cpu_has_avx2 (void);
  1851. GGML_API int ggml_cpu_has_avx512 (void);
  1852. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1853. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1854. GGML_API int ggml_cpu_has_fma (void);
  1855. GGML_API int ggml_cpu_has_neon (void);
  1856. GGML_API int ggml_cpu_has_arm_fma (void);
  1857. GGML_API int ggml_cpu_has_metal (void);
  1858. GGML_API int ggml_cpu_has_f16c (void);
  1859. GGML_API int ggml_cpu_has_fp16_va (void);
  1860. GGML_API int ggml_cpu_has_wasm_simd (void);
  1861. GGML_API int ggml_cpu_has_blas (void);
  1862. GGML_API int ggml_cpu_has_cublas (void);
  1863. GGML_API int ggml_cpu_has_clblast (void);
  1864. GGML_API int ggml_cpu_has_gpublas (void);
  1865. GGML_API int ggml_cpu_has_sse3 (void);
  1866. GGML_API int ggml_cpu_has_ssse3 (void);
  1867. GGML_API int ggml_cpu_has_vsx (void);
  1868. //
  1869. // Internal types and functions exposed for tests and benchmarks
  1870. //
  1871. #ifdef __cplusplus
  1872. // restrict not standard in C++
  1873. #define GGML_RESTRICT
  1874. #else
  1875. #define GGML_RESTRICT restrict
  1876. #endif
  1877. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1878. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1879. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1880. typedef struct {
  1881. const char * type_name;
  1882. int blck_size;
  1883. size_t type_size;
  1884. bool is_quantized;
  1885. ggml_to_float_t to_float;
  1886. ggml_from_float_t from_float;
  1887. ggml_from_float_t from_float_reference;
  1888. ggml_vec_dot_t vec_dot;
  1889. enum ggml_type vec_dot_type;
  1890. } ggml_type_traits_t;
  1891. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1892. #ifdef __cplusplus
  1893. }
  1894. #endif