constants.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. URL = "general.url"
  22. DESCRIPTION = "general.description"
  23. LICENSE = "general.license"
  24. SOURCE_URL = "general.source.url"
  25. SOURCE_HF_REPO = "general.source.huggingface.repository"
  26. FILE_TYPE = "general.file_type"
  27. class LLM:
  28. CONTEXT_LENGTH = "{arch}.context_length"
  29. EMBEDDING_LENGTH = "{arch}.embedding_length"
  30. BLOCK_COUNT = "{arch}.block_count"
  31. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  32. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  33. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  34. EXPERT_COUNT = "{arch}.expert_count"
  35. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  36. class Attention:
  37. HEAD_COUNT = "{arch}.attention.head_count"
  38. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  39. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  40. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  41. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  42. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  43. class Rope:
  44. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  45. FREQ_BASE = "{arch}.rope.freq_base"
  46. SCALING_TYPE = "{arch}.rope.scaling.type"
  47. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  48. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  49. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  50. class Tokenizer:
  51. MODEL = "tokenizer.ggml.model"
  52. LIST = "tokenizer.ggml.tokens"
  53. TOKEN_TYPE = "tokenizer.ggml.token_type"
  54. SCORES = "tokenizer.ggml.scores"
  55. MERGES = "tokenizer.ggml.merges"
  56. BOS_ID = "tokenizer.ggml.bos_token_id"
  57. EOS_ID = "tokenizer.ggml.eos_token_id"
  58. UNK_ID = "tokenizer.ggml.unknown_token_id"
  59. SEP_ID = "tokenizer.ggml.seperator_token_id"
  60. PAD_ID = "tokenizer.ggml.padding_token_id"
  61. ADD_BOS = "tokenizer.ggml.add_bos_token"
  62. ADD_EOS = "tokenizer.ggml.add_eos_token"
  63. HF_JSON = "tokenizer.huggingface.json"
  64. RWKV = "tokenizer.rwkv.world"
  65. CHAT_TEMPLATE = "tokenizer.chat_template"
  66. #
  67. # recommended mapping of model tensor names for storage in gguf
  68. #
  69. class MODEL_ARCH(IntEnum):
  70. LLAMA = auto()
  71. FALCON = auto()
  72. BAICHUAN = auto()
  73. GPT2 = auto()
  74. GPTJ = auto()
  75. GPTNEOX = auto()
  76. MPT = auto()
  77. STARCODER = auto()
  78. PERSIMMON = auto()
  79. REFACT = auto()
  80. BERT = auto()
  81. BLOOM = auto()
  82. STABLELM = auto()
  83. QWEN = auto()
  84. PHI2 = auto()
  85. class MODEL_TENSOR(IntEnum):
  86. TOKEN_EMBD = auto()
  87. TOKEN_EMBD_NORM = auto()
  88. TOKEN_TYPES = auto()
  89. POS_EMBD = auto()
  90. OUTPUT = auto()
  91. OUTPUT_NORM = auto()
  92. ROPE_FREQS = auto()
  93. ATTN_Q = auto()
  94. ATTN_K = auto()
  95. ATTN_V = auto()
  96. ATTN_QKV = auto()
  97. ATTN_OUT = auto()
  98. ATTN_NORM = auto()
  99. ATTN_NORM_2 = auto()
  100. ATTN_ROT_EMBD = auto()
  101. FFN_GATE_INP = auto()
  102. FFN_NORM = auto()
  103. FFN_GATE = auto()
  104. FFN_DOWN = auto()
  105. FFN_UP = auto()
  106. FFN_GATE_EXP = auto()
  107. FFN_DOWN_EXP = auto()
  108. FFN_UP_EXP = auto()
  109. ATTN_Q_NORM = auto()
  110. ATTN_K_NORM = auto()
  111. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  112. MODEL_ARCH.LLAMA: "llama",
  113. MODEL_ARCH.FALCON: "falcon",
  114. MODEL_ARCH.BAICHUAN: "baichuan",
  115. MODEL_ARCH.GPT2: "gpt2",
  116. MODEL_ARCH.GPTJ: "gptj",
  117. MODEL_ARCH.GPTNEOX: "gptneox",
  118. MODEL_ARCH.MPT: "mpt",
  119. MODEL_ARCH.STARCODER: "starcoder",
  120. MODEL_ARCH.PERSIMMON: "persimmon",
  121. MODEL_ARCH.REFACT: "refact",
  122. MODEL_ARCH.BERT: "bert",
  123. MODEL_ARCH.BLOOM: "bloom",
  124. MODEL_ARCH.STABLELM: "stablelm",
  125. MODEL_ARCH.QWEN: "qwen",
  126. MODEL_ARCH.PHI2: "phi2",
  127. }
  128. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  129. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  130. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  131. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  132. MODEL_TENSOR.POS_EMBD: "position_embd",
  133. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  134. MODEL_TENSOR.OUTPUT: "output",
  135. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  136. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  137. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  138. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  139. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  140. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  141. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  142. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  143. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  144. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  145. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  146. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  147. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  148. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  149. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  150. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  151. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
  152. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
  153. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
  154. }
  155. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  156. MODEL_ARCH.LLAMA: [
  157. MODEL_TENSOR.TOKEN_EMBD,
  158. MODEL_TENSOR.OUTPUT_NORM,
  159. MODEL_TENSOR.OUTPUT,
  160. MODEL_TENSOR.ROPE_FREQS,
  161. MODEL_TENSOR.ATTN_NORM,
  162. MODEL_TENSOR.ATTN_Q,
  163. MODEL_TENSOR.ATTN_K,
  164. MODEL_TENSOR.ATTN_V,
  165. MODEL_TENSOR.ATTN_OUT,
  166. MODEL_TENSOR.ATTN_ROT_EMBD,
  167. MODEL_TENSOR.FFN_GATE_INP,
  168. MODEL_TENSOR.FFN_NORM,
  169. MODEL_TENSOR.FFN_GATE,
  170. MODEL_TENSOR.FFN_DOWN,
  171. MODEL_TENSOR.FFN_UP,
  172. MODEL_TENSOR.FFN_GATE_EXP,
  173. MODEL_TENSOR.FFN_DOWN_EXP,
  174. MODEL_TENSOR.FFN_UP_EXP,
  175. ],
  176. MODEL_ARCH.GPTNEOX: [
  177. MODEL_TENSOR.TOKEN_EMBD,
  178. MODEL_TENSOR.OUTPUT_NORM,
  179. MODEL_TENSOR.OUTPUT,
  180. MODEL_TENSOR.ATTN_NORM,
  181. MODEL_TENSOR.ATTN_QKV,
  182. MODEL_TENSOR.ATTN_OUT,
  183. MODEL_TENSOR.FFN_NORM,
  184. MODEL_TENSOR.FFN_DOWN,
  185. MODEL_TENSOR.FFN_UP,
  186. ],
  187. MODEL_ARCH.FALCON: [
  188. MODEL_TENSOR.TOKEN_EMBD,
  189. MODEL_TENSOR.OUTPUT_NORM,
  190. MODEL_TENSOR.OUTPUT,
  191. MODEL_TENSOR.ATTN_NORM,
  192. MODEL_TENSOR.ATTN_NORM_2,
  193. MODEL_TENSOR.ATTN_QKV,
  194. MODEL_TENSOR.ATTN_OUT,
  195. MODEL_TENSOR.FFN_DOWN,
  196. MODEL_TENSOR.FFN_UP,
  197. ],
  198. MODEL_ARCH.BAICHUAN: [
  199. MODEL_TENSOR.TOKEN_EMBD,
  200. MODEL_TENSOR.OUTPUT_NORM,
  201. MODEL_TENSOR.OUTPUT,
  202. MODEL_TENSOR.ROPE_FREQS,
  203. MODEL_TENSOR.ATTN_NORM,
  204. MODEL_TENSOR.ATTN_Q,
  205. MODEL_TENSOR.ATTN_K,
  206. MODEL_TENSOR.ATTN_V,
  207. MODEL_TENSOR.ATTN_OUT,
  208. MODEL_TENSOR.ATTN_ROT_EMBD,
  209. MODEL_TENSOR.FFN_NORM,
  210. MODEL_TENSOR.FFN_GATE,
  211. MODEL_TENSOR.FFN_DOWN,
  212. MODEL_TENSOR.FFN_UP,
  213. ],
  214. MODEL_ARCH.STARCODER: [
  215. MODEL_TENSOR.TOKEN_EMBD,
  216. MODEL_TENSOR.POS_EMBD,
  217. MODEL_TENSOR.OUTPUT_NORM,
  218. MODEL_TENSOR.OUTPUT,
  219. MODEL_TENSOR.ATTN_NORM,
  220. MODEL_TENSOR.ATTN_QKV,
  221. MODEL_TENSOR.ATTN_OUT,
  222. MODEL_TENSOR.FFN_NORM,
  223. MODEL_TENSOR.FFN_DOWN,
  224. MODEL_TENSOR.FFN_UP,
  225. ],
  226. MODEL_ARCH.BERT: [
  227. MODEL_TENSOR.TOKEN_EMBD,
  228. MODEL_TENSOR.TOKEN_TYPES,
  229. MODEL_TENSOR.POS_EMBD,
  230. MODEL_TENSOR.OUTPUT_NORM,
  231. MODEL_TENSOR.ATTN_NORM,
  232. MODEL_TENSOR.ATTN_Q,
  233. MODEL_TENSOR.ATTN_K,
  234. MODEL_TENSOR.ATTN_V,
  235. MODEL_TENSOR.ATTN_OUT,
  236. MODEL_TENSOR.FFN_NORM,
  237. MODEL_TENSOR.FFN_DOWN,
  238. MODEL_TENSOR.FFN_UP,
  239. ],
  240. MODEL_ARCH.MPT: [
  241. MODEL_TENSOR.TOKEN_EMBD,
  242. MODEL_TENSOR.OUTPUT_NORM,
  243. MODEL_TENSOR.OUTPUT,
  244. MODEL_TENSOR.ATTN_NORM,
  245. MODEL_TENSOR.ATTN_QKV,
  246. MODEL_TENSOR.ATTN_OUT,
  247. MODEL_TENSOR.FFN_NORM,
  248. MODEL_TENSOR.FFN_DOWN,
  249. MODEL_TENSOR.FFN_UP,
  250. ],
  251. MODEL_ARCH.GPTJ: [
  252. MODEL_TENSOR.TOKEN_EMBD,
  253. MODEL_TENSOR.OUTPUT_NORM,
  254. MODEL_TENSOR.OUTPUT,
  255. MODEL_TENSOR.ATTN_NORM,
  256. MODEL_TENSOR.ATTN_Q,
  257. MODEL_TENSOR.ATTN_K,
  258. MODEL_TENSOR.ATTN_V,
  259. MODEL_TENSOR.ATTN_OUT,
  260. MODEL_TENSOR.FFN_DOWN,
  261. MODEL_TENSOR.FFN_UP,
  262. ],
  263. MODEL_ARCH.PERSIMMON: [
  264. MODEL_TENSOR.TOKEN_EMBD,
  265. MODEL_TENSOR.OUTPUT,
  266. MODEL_TENSOR.OUTPUT_NORM,
  267. MODEL_TENSOR.ATTN_NORM,
  268. MODEL_TENSOR.ATTN_QKV,
  269. MODEL_TENSOR.ATTN_OUT,
  270. MODEL_TENSOR.FFN_NORM,
  271. MODEL_TENSOR.FFN_DOWN,
  272. MODEL_TENSOR.FFN_UP,
  273. MODEL_TENSOR.ATTN_Q_NORM,
  274. MODEL_TENSOR.ATTN_K_NORM,
  275. MODEL_TENSOR.ATTN_ROT_EMBD,
  276. ],
  277. MODEL_ARCH.REFACT: [
  278. MODEL_TENSOR.TOKEN_EMBD,
  279. MODEL_TENSOR.OUTPUT_NORM,
  280. MODEL_TENSOR.OUTPUT,
  281. MODEL_TENSOR.ATTN_NORM,
  282. MODEL_TENSOR.ATTN_Q,
  283. MODEL_TENSOR.ATTN_K,
  284. MODEL_TENSOR.ATTN_V,
  285. MODEL_TENSOR.ATTN_OUT,
  286. MODEL_TENSOR.FFN_NORM,
  287. MODEL_TENSOR.FFN_GATE,
  288. MODEL_TENSOR.FFN_DOWN,
  289. MODEL_TENSOR.FFN_UP,
  290. ],
  291. MODEL_ARCH.BLOOM: [
  292. MODEL_TENSOR.TOKEN_EMBD,
  293. MODEL_TENSOR.TOKEN_EMBD_NORM,
  294. MODEL_TENSOR.OUTPUT_NORM,
  295. MODEL_TENSOR.OUTPUT,
  296. MODEL_TENSOR.ATTN_NORM,
  297. MODEL_TENSOR.ATTN_QKV,
  298. MODEL_TENSOR.ATTN_OUT,
  299. MODEL_TENSOR.FFN_NORM,
  300. MODEL_TENSOR.FFN_DOWN,
  301. MODEL_TENSOR.FFN_UP,
  302. ],
  303. MODEL_ARCH.STABLELM: [
  304. MODEL_TENSOR.TOKEN_EMBD,
  305. MODEL_TENSOR.OUTPUT_NORM,
  306. MODEL_TENSOR.OUTPUT,
  307. MODEL_TENSOR.ROPE_FREQS,
  308. MODEL_TENSOR.ATTN_NORM,
  309. MODEL_TENSOR.ATTN_Q,
  310. MODEL_TENSOR.ATTN_K,
  311. MODEL_TENSOR.ATTN_V,
  312. MODEL_TENSOR.ATTN_OUT,
  313. MODEL_TENSOR.FFN_NORM,
  314. MODEL_TENSOR.FFN_GATE,
  315. MODEL_TENSOR.FFN_DOWN,
  316. MODEL_TENSOR.FFN_UP,
  317. ],
  318. MODEL_ARCH.QWEN: [
  319. MODEL_TENSOR.TOKEN_EMBD,
  320. MODEL_TENSOR.OUTPUT_NORM,
  321. MODEL_TENSOR.OUTPUT,
  322. MODEL_TENSOR.ROPE_FREQS,
  323. MODEL_TENSOR.ATTN_NORM,
  324. MODEL_TENSOR.ATTN_QKV,
  325. MODEL_TENSOR.ATTN_OUT,
  326. MODEL_TENSOR.ATTN_ROT_EMBD,
  327. MODEL_TENSOR.FFN_NORM,
  328. MODEL_TENSOR.FFN_GATE,
  329. MODEL_TENSOR.FFN_DOWN,
  330. MODEL_TENSOR.FFN_UP,
  331. ],
  332. MODEL_ARCH.GPT2: [
  333. # TODO
  334. ],
  335. MODEL_ARCH.PHI2: [
  336. MODEL_TENSOR.TOKEN_EMBD,
  337. MODEL_TENSOR.OUTPUT_NORM,
  338. MODEL_TENSOR.OUTPUT,
  339. MODEL_TENSOR.ATTN_NORM,
  340. MODEL_TENSOR.ATTN_QKV,
  341. MODEL_TENSOR.ATTN_OUT,
  342. MODEL_TENSOR.FFN_NORM,
  343. MODEL_TENSOR.FFN_DOWN,
  344. MODEL_TENSOR.FFN_UP,
  345. ]
  346. # TODO
  347. }
  348. # tensors that will not be serialized
  349. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  350. MODEL_ARCH.LLAMA: [
  351. MODEL_TENSOR.ROPE_FREQS,
  352. MODEL_TENSOR.ATTN_ROT_EMBD,
  353. ],
  354. MODEL_ARCH.BAICHUAN: [
  355. MODEL_TENSOR.ROPE_FREQS,
  356. MODEL_TENSOR.ATTN_ROT_EMBD,
  357. ],
  358. MODEL_ARCH.PERSIMMON: [
  359. MODEL_TENSOR.ROPE_FREQS,
  360. ],
  361. MODEL_ARCH.QWEN: [
  362. MODEL_TENSOR.ROPE_FREQS,
  363. MODEL_TENSOR.ATTN_ROT_EMBD,
  364. ],
  365. }
  366. #
  367. # types
  368. #
  369. class TokenType(IntEnum):
  370. NORMAL = 1
  371. UNKNOWN = 2
  372. CONTROL = 3
  373. USER_DEFINED = 4
  374. UNUSED = 5
  375. BYTE = 6
  376. class RopeScalingType(Enum):
  377. NONE = 'none'
  378. LINEAR = 'linear'
  379. YARN = 'yarn'
  380. class GGMLQuantizationType(IntEnum):
  381. F32 = 0
  382. F16 = 1
  383. Q4_0 = 2
  384. Q4_1 = 3
  385. Q5_0 = 6
  386. Q5_1 = 7
  387. Q8_0 = 8
  388. Q8_1 = 9
  389. Q2_K = 10
  390. Q3_K = 11
  391. Q4_K = 12
  392. Q5_K = 13
  393. Q6_K = 14
  394. Q8_K = 15
  395. class GGUFEndian(IntEnum):
  396. LITTLE = 0
  397. BIG = 1
  398. class GGUFValueType(IntEnum):
  399. UINT8 = 0
  400. INT8 = 1
  401. UINT16 = 2
  402. INT16 = 3
  403. UINT32 = 4
  404. INT32 = 5
  405. FLOAT32 = 6
  406. BOOL = 7
  407. STRING = 8
  408. ARRAY = 9
  409. UINT64 = 10
  410. INT64 = 11
  411. FLOAT64 = 12
  412. @staticmethod
  413. def get_type(val: Any) -> GGUFValueType:
  414. if isinstance(val, (str, bytes, bytearray)):
  415. return GGUFValueType.STRING
  416. elif isinstance(val, list):
  417. return GGUFValueType.ARRAY
  418. elif isinstance(val, float):
  419. return GGUFValueType.FLOAT32
  420. elif isinstance(val, bool):
  421. return GGUFValueType.BOOL
  422. elif isinstance(val, int):
  423. return GGUFValueType.INT32
  424. # TODO: need help with 64-bit types in Python
  425. else:
  426. print("Unknown type:", type(val))
  427. sys.exit()
  428. # Note: Does not support GGML_QKK_64
  429. QK_K = 256
  430. # Items here are (block size, type size)
  431. GGML_QUANT_SIZES = {
  432. GGMLQuantizationType.F32: (1, 4),
  433. GGMLQuantizationType.F16: (1, 2),
  434. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  435. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  436. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  437. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  438. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  439. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  440. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  441. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  442. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  443. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  444. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  445. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  446. }
  447. # Aliases for backward compatibility.
  448. # general
  449. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  450. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  451. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  452. KEY_GENERAL_NAME = Keys.General.NAME
  453. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  454. KEY_GENERAL_URL = Keys.General.URL
  455. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  456. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  457. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  458. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  459. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  460. # LLM
  461. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  462. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  463. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  464. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  465. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  466. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  467. # attention
  468. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  469. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  470. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  471. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  472. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  473. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  474. # RoPE
  475. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  476. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  477. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  478. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  479. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  480. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  481. # tokenization
  482. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  483. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  484. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  485. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  486. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  487. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  488. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  489. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  490. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  491. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  492. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  493. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV