tensor_mapping.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "transformer.embd.wte", # phi2
  17. ),
  18. # Token type embeddings
  19. MODEL_TENSOR.TOKEN_TYPES: (
  20. "embeddings.token_type_embeddings", # bert
  21. ),
  22. # Normalization of token embeddings
  23. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  24. "word_embeddings_layernorm", # bloom
  25. ),
  26. # Position embeddings
  27. MODEL_TENSOR.POS_EMBD: (
  28. "transformer.wpe", # gpt2
  29. "embeddings.position_embeddings", # bert
  30. ),
  31. # Output
  32. MODEL_TENSOR.OUTPUT: (
  33. "embed_out", # gptneox
  34. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  35. "output", # llama-pth bloom
  36. "word_embeddings_for_head", # persimmon
  37. "lm_head.linear", # phi2
  38. ),
  39. # Output norm
  40. MODEL_TENSOR.OUTPUT_NORM: (
  41. "gpt_neox.final_layer_norm", # gptneox
  42. "transformer.ln_f", # gpt2 gpt-j falcon
  43. "model.norm", # llama-hf baichuan
  44. "norm", # llama-pth
  45. "embeddings.LayerNorm", # bert
  46. "transformer.norm_f", # mpt
  47. "ln_f", # refact bloom qwen
  48. "language_model.encoder.final_layernorm", # persimmon
  49. "lm_head.ln", # phi2
  50. ),
  51. # Rope frequencies
  52. MODEL_TENSOR.ROPE_FREQS: (
  53. "rope.freqs", # llama-pth
  54. ),
  55. }
  56. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  57. # Attention norm
  58. MODEL_TENSOR.ATTN_NORM: (
  59. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  60. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  61. "transformer.blocks.{bid}.norm_1", # mpt
  62. "transformer.h.{bid}.input_layernorm", # falcon7b
  63. "h.{bid}.input_layernorm", # bloom
  64. "transformer.h.{bid}.ln_mlp", # falcon40b
  65. "model.layers.{bid}.input_layernorm", # llama-hf
  66. "layers.{bid}.attention_norm", # llama-pth
  67. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  68. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  69. "model.layers.{bid}.ln1", # yi
  70. "transformer.h.{bid}.ln", # phi2
  71. ),
  72. # Attention norm 2
  73. MODEL_TENSOR.ATTN_NORM_2: (
  74. "transformer.h.{bid}.ln_attn", # falcon40b
  75. ),
  76. # Attention query-key-value
  77. MODEL_TENSOR.ATTN_QKV: (
  78. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  79. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  80. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  81. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  82. "h.{bid}.self_attention.query_key_value", # bloom
  83. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  84. "transformer.h.{bid}.mixer.Wqkv", # phi2
  85. ),
  86. # Attention query
  87. MODEL_TENSOR.ATTN_Q: (
  88. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  89. "layers.{bid}.attention.wq", # llama-pth
  90. "encoder.layer.{bid}.attention.self.query", # bert
  91. "transformer.h.{bid}.attn.q_proj", # gpt-j
  92. ),
  93. # Attention key
  94. MODEL_TENSOR.ATTN_K: (
  95. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  96. "layers.{bid}.attention.wk", # llama-pth
  97. "encoder.layer.{bid}.attention.self.key", # bert
  98. "transformer.h.{bid}.attn.k_proj", # gpt-j
  99. ),
  100. # Attention value
  101. MODEL_TENSOR.ATTN_V: (
  102. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  103. "layers.{bid}.attention.wv", # llama-pth
  104. "encoder.layer.{bid}.attention.self.value", # bert
  105. "transformer.h.{bid}.attn.v_proj", # gpt-j
  106. ),
  107. # Attention output
  108. MODEL_TENSOR.ATTN_OUT: (
  109. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  110. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  111. "transformer.blocks.{bid}.attn.out_proj", # mpt
  112. "transformer.h.{bid}.self_attention.dense", # falcon
  113. "h.{bid}.self_attention.dense", # bloom
  114. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  115. "layers.{bid}.attention.wo", # llama-pth
  116. "encoder.layer.{bid}.attention.output.dense", # bert
  117. "transformer.h.{bid}.attn.out_proj", # gpt-j
  118. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  119. "transformer.h.{bid}.mixer.out_proj", # phi2
  120. ),
  121. # Rotary embeddings
  122. MODEL_TENSOR.ATTN_ROT_EMBD: (
  123. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  124. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  125. ),
  126. # Feed-forward norm
  127. MODEL_TENSOR.FFN_NORM: (
  128. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  129. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  130. "h.{bid}.post_attention_layernorm", # bloom
  131. "transformer.blocks.{bid}.norm_2", # mpt
  132. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  133. "layers.{bid}.ffn_norm", # llama-pth
  134. "encoder.layer.{bid}.output.LayerNorm", # bert
  135. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  136. "model.layers.{bid}.ln2", # yi
  137. ),
  138. MODEL_TENSOR.FFN_GATE_INP: (
  139. "layers.{bid}.feed_forward.gate", # mixtral
  140. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  141. ),
  142. # Feed-forward up
  143. MODEL_TENSOR.FFN_UP: (
  144. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  145. "transformer.h.{bid}.mlp.c_fc", # gpt2
  146. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  147. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  148. "h.{bid}.mlp.dense_h_to_4h", # bloom
  149. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  150. "layers.{bid}.feed_forward.w3", # llama-pth
  151. "encoder.layer.{bid}.intermediate.dense", # bert
  152. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  153. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  154. "transformer.h.{bid}.mlp.w1", # qwen
  155. "transformer.h.{bid}.mlp.fc1", # phi2
  156. ),
  157. MODEL_TENSOR.FFN_UP_EXP: (
  158. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  159. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  160. ),
  161. # Feed-forward gate
  162. MODEL_TENSOR.FFN_GATE: (
  163. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  164. "layers.{bid}.feed_forward.w1", # llama-pth
  165. "transformer.h.{bid}.mlp.w2", # qwen
  166. ),
  167. MODEL_TENSOR.FFN_GATE_EXP: (
  168. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  169. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  170. ),
  171. # Feed-forward down
  172. MODEL_TENSOR.FFN_DOWN: (
  173. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  174. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  175. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  176. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  177. "h.{bid}.mlp.dense_4h_to_h", # bloom
  178. "model.layers.{bid}.mlp.down_proj", # llama-hf
  179. "layers.{bid}.feed_forward.w2", # llama-pth
  180. "encoder.layer.{bid}.output.dense", # bert
  181. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  182. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  183. "transformer.h.{bid}.mlp.fc2", # phi2
  184. ),
  185. MODEL_TENSOR.FFN_DOWN_EXP: (
  186. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  187. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  188. ),
  189. MODEL_TENSOR.ATTN_Q_NORM: (
  190. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  191. ),
  192. MODEL_TENSOR.ATTN_K_NORM: (
  193. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  194. ),
  195. MODEL_TENSOR.ROPE_FREQS: (
  196. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  197. ),
  198. }
  199. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  200. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  201. self.mapping = {}
  202. for tensor, keys in self.mappings_cfg.items():
  203. if tensor not in MODEL_TENSORS[arch]:
  204. continue
  205. tensor_name = TENSOR_NAMES[tensor]
  206. self.mapping[tensor_name] = (tensor, tensor_name)
  207. for key in keys:
  208. self.mapping[key] = (tensor, tensor_name)
  209. for bid in range(n_blocks):
  210. for tensor, keys in self.block_mappings_cfg.items():
  211. if tensor not in MODEL_TENSORS[arch]:
  212. continue
  213. # TODO: make this configurable
  214. n_experts = 8
  215. for xid in range(n_experts):
  216. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  217. self.mapping[tensor_name] = (tensor, tensor_name)
  218. for key in keys:
  219. key = key.format(bid = bid, xid = xid)
  220. self.mapping[key] = (tensor, tensor_name)
  221. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  222. result = self.mapping.get(key)
  223. if result is not None:
  224. return result
  225. for suffix in try_suffixes:
  226. if key.endswith(suffix):
  227. result = self.mapping.get(key[:-len(suffix)])
  228. if result is not None:
  229. return result[0], result[1] + suffix
  230. return None
  231. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  232. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  233. if result is None:
  234. return None
  235. return result[1]
  236. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  237. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  238. if result is None:
  239. return None
  240. return result[0]
  241. def __getitem__(self, key: str) -> str:
  242. try:
  243. return self.mapping[key][1]
  244. except KeyError:
  245. raise KeyError(key)
  246. def __contains__(self, key: str) -> bool:
  247. return key in self.mapping
  248. def __repr__(self) -> str:
  249. return repr(self.mapping)
  250. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  251. return TensorNameMap(arch, n_blocks)