llama-bench.cpp 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case CSV: return "csv";
  137. case JSON: return "json";
  138. case MARKDOWN: return "md";
  139. case SQL: return "sql";
  140. default: GGML_ASSERT(!"invalid output format");
  141. }
  142. }
  143. static const char * split_mode_str(llama_split_mode mode) {
  144. switch (mode) {
  145. case LLAMA_SPLIT_MODE_NONE: return "none";
  146. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  147. case LLAMA_SPLIT_MODE_ROW: return "row";
  148. default: GGML_ASSERT(!"invalid split mode");
  149. }
  150. }
  151. static std::string pair_str(const std::pair<int, int> & p) {
  152. static char buf[32];
  153. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  154. return buf;
  155. }
  156. struct cmd_params {
  157. std::vector<std::string> model;
  158. std::vector<int> n_prompt;
  159. std::vector<int> n_gen;
  160. std::vector<std::pair<int, int>> n_pg;
  161. std::vector<int> n_batch;
  162. std::vector<int> n_ubatch;
  163. std::vector<ggml_type> type_k;
  164. std::vector<ggml_type> type_v;
  165. std::vector<int> n_threads;
  166. std::vector<int> n_gpu_layers;
  167. std::vector<std::string> rpc_servers;
  168. std::vector<llama_split_mode> split_mode;
  169. std::vector<int> main_gpu;
  170. std::vector<bool> no_kv_offload;
  171. std::vector<bool> flash_attn;
  172. std::vector<std::vector<float>> tensor_split;
  173. std::vector<bool> use_mmap;
  174. std::vector<bool> embeddings;
  175. ggml_numa_strategy numa;
  176. int reps;
  177. bool verbose;
  178. output_formats output_format;
  179. };
  180. static const cmd_params cmd_params_defaults = {
  181. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  182. /* n_prompt */ {512},
  183. /* n_gen */ {128},
  184. /* n_pg */ {},
  185. /* n_batch */ {2048},
  186. /* n_ubatch */ {512},
  187. /* type_k */ {GGML_TYPE_F16},
  188. /* type_v */ {GGML_TYPE_F16},
  189. /* n_threads */ {cpu_get_num_math()},
  190. /* n_gpu_layers */ {99},
  191. /* rpc_servers */ {""},
  192. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  193. /* main_gpu */ {0},
  194. /* no_kv_offload */ {false},
  195. /* flash_attn */ {false},
  196. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  197. /* use_mmap */ {true},
  198. /* embeddings */ {false},
  199. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  200. /* reps */ 5,
  201. /* verbose */ false,
  202. /* output_format */ MARKDOWN
  203. };
  204. static void print_usage(int /* argc */, char ** argv) {
  205. printf("usage: %s [options]\n", argv[0]);
  206. printf("\n");
  207. printf("options:\n");
  208. printf(" -h, --help\n");
  209. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  210. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  211. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  212. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  213. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  214. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  215. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  216. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  217. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  218. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  219. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  220. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  221. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  222. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  223. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  224. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  225. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  226. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  227. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  228. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  229. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  230. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  231. printf("\n");
  232. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  233. }
  234. static ggml_type ggml_type_from_name(const std::string & s) {
  235. if (s == "f16") {
  236. return GGML_TYPE_F16;
  237. }
  238. if (s == "q8_0") {
  239. return GGML_TYPE_Q8_0;
  240. }
  241. if (s == "q4_0") {
  242. return GGML_TYPE_Q4_0;
  243. }
  244. if (s == "q4_1") {
  245. return GGML_TYPE_Q4_1;
  246. }
  247. if (s == "q5_0") {
  248. return GGML_TYPE_Q5_0;
  249. }
  250. if (s == "q5_1") {
  251. return GGML_TYPE_Q5_1;
  252. }
  253. if (s == "iq4_nl") {
  254. return GGML_TYPE_IQ4_NL;
  255. }
  256. return GGML_TYPE_COUNT;
  257. }
  258. static cmd_params parse_cmd_params(int argc, char ** argv) {
  259. cmd_params params;
  260. std::string arg;
  261. bool invalid_param = false;
  262. const std::string arg_prefix = "--";
  263. const char split_delim = ',';
  264. params.verbose = cmd_params_defaults.verbose;
  265. params.output_format = cmd_params_defaults.output_format;
  266. params.reps = cmd_params_defaults.reps;
  267. for (int i = 1; i < argc; i++) {
  268. arg = argv[i];
  269. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  270. std::replace(arg.begin(), arg.end(), '_', '-');
  271. }
  272. if (arg == "-h" || arg == "--help") {
  273. print_usage(argc, argv);
  274. exit(0);
  275. } else if (arg == "-m" || arg == "--model") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<std::string>(argv[i], split_delim);
  281. params.model.insert(params.model.end(), p.begin(), p.end());
  282. } else if (arg == "-p" || arg == "--n-prompt") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. auto p = split<int>(argv[i], split_delim);
  288. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  289. } else if (arg == "-n" || arg == "--n-gen") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. auto p = split<int>(argv[i], split_delim);
  295. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  296. } else if (arg == "-pg") {
  297. if (++i >= argc) {
  298. invalid_param = true;
  299. break;
  300. }
  301. auto p = split<std::string>(argv[i], ',');
  302. if (p.size() != 2) {
  303. invalid_param = true;
  304. break;
  305. }
  306. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  307. } else if (arg == "-b" || arg == "--batch-size") {
  308. if (++i >= argc) {
  309. invalid_param = true;
  310. break;
  311. }
  312. auto p = split<int>(argv[i], split_delim);
  313. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  314. } else if (arg == "-ub" || arg == "--ubatch-size") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. auto p = split<int>(argv[i], split_delim);
  320. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  321. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. auto p = split<std::string>(argv[i], split_delim);
  327. std::vector<ggml_type> types;
  328. for (const auto & t : p) {
  329. ggml_type gt = ggml_type_from_name(t);
  330. if (gt == GGML_TYPE_COUNT) {
  331. invalid_param = true;
  332. break;
  333. }
  334. types.push_back(gt);
  335. }
  336. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  337. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  338. if (++i >= argc) {
  339. invalid_param = true;
  340. break;
  341. }
  342. auto p = split<std::string>(argv[i], split_delim);
  343. std::vector<ggml_type> types;
  344. for (const auto & t : p) {
  345. ggml_type gt = ggml_type_from_name(t);
  346. if (gt == GGML_TYPE_COUNT) {
  347. invalid_param = true;
  348. break;
  349. }
  350. types.push_back(gt);
  351. }
  352. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  353. } else if (arg == "-t" || arg == "--threads") {
  354. if (++i >= argc) {
  355. invalid_param = true;
  356. break;
  357. }
  358. auto p = split<int>(argv[i], split_delim);
  359. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  360. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  361. if (++i >= argc) {
  362. invalid_param = true;
  363. break;
  364. }
  365. auto p = split<int>(argv[i], split_delim);
  366. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  367. } else if (arg == "-rpc" || arg == "--rpc") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. params.rpc_servers.push_back(argv[i]);
  373. } else if (arg == "-sm" || arg == "--split-mode") {
  374. if (++i >= argc) {
  375. invalid_param = true;
  376. break;
  377. }
  378. auto p = split<std::string>(argv[i], split_delim);
  379. std::vector<llama_split_mode> modes;
  380. for (const auto & m : p) {
  381. llama_split_mode mode;
  382. if (m == "none") {
  383. mode = LLAMA_SPLIT_MODE_NONE;
  384. } else if (m == "layer") {
  385. mode = LLAMA_SPLIT_MODE_LAYER;
  386. } else if (m == "row") {
  387. mode = LLAMA_SPLIT_MODE_ROW;
  388. } else {
  389. invalid_param = true;
  390. break;
  391. }
  392. modes.push_back(mode);
  393. }
  394. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  395. } else if (arg == "-mg" || arg == "--main-gpu") {
  396. if (++i >= argc) {
  397. invalid_param = true;
  398. break;
  399. }
  400. params.main_gpu = split<int>(argv[i], split_delim);
  401. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  402. if (++i >= argc) {
  403. invalid_param = true;
  404. break;
  405. }
  406. auto p = split<bool>(argv[i], split_delim);
  407. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  408. } else if (arg == "--numa") {
  409. if (++i >= argc) {
  410. invalid_param = true;
  411. break;
  412. } else {
  413. std::string value(argv[i]);
  414. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  415. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  416. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  417. else { invalid_param = true; break; }
  418. }
  419. } else if (arg == "-fa" || arg == "--flash-attn") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. auto p = split<bool>(argv[i], split_delim);
  425. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  426. } else if (arg == "-mmp" || arg == "--mmap") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. auto p = split<bool>(argv[i], split_delim);
  432. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  433. } else if (arg == "-embd" || arg == "--embeddings") {
  434. if (++i >= argc) {
  435. invalid_param = true;
  436. break;
  437. }
  438. auto p = split<bool>(argv[i], split_delim);
  439. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  440. } else if (arg == "-ts" || arg == "--tensor-split") {
  441. if (++i >= argc) {
  442. invalid_param = true;
  443. break;
  444. }
  445. for (auto ts : split<std::string>(argv[i], split_delim)) {
  446. // split string by ; and /
  447. const std::regex regex{R"([;/]+)"};
  448. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  449. std::vector<std::string> split_arg{it, {}};
  450. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  451. std::vector<float> tensor_split(llama_max_devices());
  452. for (size_t i = 0; i < llama_max_devices(); ++i) {
  453. if (i < split_arg.size()) {
  454. tensor_split[i] = std::stof(split_arg[i]);
  455. } else {
  456. tensor_split[i] = 0.0f;
  457. }
  458. }
  459. params.tensor_split.push_back(tensor_split);
  460. }
  461. } else if (arg == "-r" || arg == "--repetitions") {
  462. if (++i >= argc) {
  463. invalid_param = true;
  464. break;
  465. }
  466. params.reps = std::stoi(argv[i]);
  467. } else if (arg == "-o" || arg == "--output") {
  468. if (++i >= argc) {
  469. invalid_param = true;
  470. break;
  471. }
  472. if (argv[i] == std::string("csv")) {
  473. params.output_format = CSV;
  474. } else if (argv[i] == std::string("json")) {
  475. params.output_format = JSON;
  476. } else if (argv[i] == std::string("md")) {
  477. params.output_format = MARKDOWN;
  478. } else if (argv[i] == std::string("sql")) {
  479. params.output_format = SQL;
  480. } else {
  481. invalid_param = true;
  482. break;
  483. }
  484. } else if (arg == "-v" || arg == "--verbose") {
  485. params.verbose = true;
  486. } else {
  487. invalid_param = true;
  488. break;
  489. }
  490. }
  491. if (invalid_param) {
  492. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  493. print_usage(argc, argv);
  494. exit(1);
  495. }
  496. // set defaults
  497. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  498. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  499. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  500. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  501. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  502. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  503. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  504. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  505. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  506. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  507. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  508. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  509. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  510. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  511. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  512. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  513. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  514. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  515. return params;
  516. }
  517. struct cmd_params_instance {
  518. std::string model;
  519. int n_prompt;
  520. int n_gen;
  521. int n_batch;
  522. int n_ubatch;
  523. ggml_type type_k;
  524. ggml_type type_v;
  525. int n_threads;
  526. int n_gpu_layers;
  527. std::string rpc_servers;
  528. llama_split_mode split_mode;
  529. int main_gpu;
  530. bool no_kv_offload;
  531. bool flash_attn;
  532. std::vector<float> tensor_split;
  533. bool use_mmap;
  534. bool embeddings;
  535. llama_model_params to_llama_mparams() const {
  536. llama_model_params mparams = llama_model_default_params();
  537. mparams.n_gpu_layers = n_gpu_layers;
  538. if (!rpc_servers.empty()) {
  539. mparams.rpc_servers = rpc_servers.c_str();
  540. }
  541. mparams.split_mode = split_mode;
  542. mparams.main_gpu = main_gpu;
  543. mparams.tensor_split = tensor_split.data();
  544. mparams.use_mmap = use_mmap;
  545. return mparams;
  546. }
  547. bool equal_mparams(const cmd_params_instance & other) const {
  548. return model == other.model &&
  549. n_gpu_layers == other.n_gpu_layers &&
  550. rpc_servers == other.rpc_servers &&
  551. split_mode == other.split_mode &&
  552. main_gpu == other.main_gpu &&
  553. use_mmap == other.use_mmap &&
  554. tensor_split == other.tensor_split;
  555. }
  556. llama_context_params to_llama_cparams() const {
  557. llama_context_params cparams = llama_context_default_params();
  558. cparams.n_ctx = n_prompt + n_gen;
  559. cparams.n_batch = n_batch;
  560. cparams.n_ubatch = n_ubatch;
  561. cparams.type_k = type_k;
  562. cparams.type_v = type_v;
  563. cparams.offload_kqv = !no_kv_offload;
  564. cparams.flash_attn = flash_attn;
  565. cparams.embeddings = embeddings;
  566. return cparams;
  567. }
  568. };
  569. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  570. std::vector<cmd_params_instance> instances;
  571. // this ordering minimizes the number of times that each model needs to be reloaded
  572. for (const auto & m : params.model)
  573. for (const auto & nl : params.n_gpu_layers)
  574. for (const auto & rpc : params.rpc_servers)
  575. for (const auto & sm : params.split_mode)
  576. for (const auto & mg : params.main_gpu)
  577. for (const auto & ts : params.tensor_split)
  578. for (const auto & mmp : params.use_mmap)
  579. for (const auto & embd : params.embeddings)
  580. for (const auto & nb : params.n_batch)
  581. for (const auto & nub : params.n_ubatch)
  582. for (const auto & tk : params.type_k)
  583. for (const auto & tv : params.type_v)
  584. for (const auto & nkvo : params.no_kv_offload)
  585. for (const auto & fa : params.flash_attn)
  586. for (const auto & nt : params.n_threads) {
  587. for (const auto & n_prompt : params.n_prompt) {
  588. if (n_prompt == 0) {
  589. continue;
  590. }
  591. cmd_params_instance instance = {
  592. /* .model = */ m,
  593. /* .n_prompt = */ n_prompt,
  594. /* .n_gen = */ 0,
  595. /* .n_batch = */ nb,
  596. /* .n_ubatch = */ nub,
  597. /* .type_k = */ tk,
  598. /* .type_v = */ tv,
  599. /* .n_threads = */ nt,
  600. /* .n_gpu_layers = */ nl,
  601. /* .rpc_servers = */ rpc,
  602. /* .split_mode = */ sm,
  603. /* .main_gpu = */ mg,
  604. /* .no_kv_offload= */ nkvo,
  605. /* .flash_attn = */ fa,
  606. /* .tensor_split = */ ts,
  607. /* .use_mmap = */ mmp,
  608. /* .embeddings = */ embd,
  609. };
  610. instances.push_back(instance);
  611. }
  612. for (const auto & n_gen : params.n_gen) {
  613. if (n_gen == 0) {
  614. continue;
  615. }
  616. cmd_params_instance instance = {
  617. /* .model = */ m,
  618. /* .n_prompt = */ 0,
  619. /* .n_gen = */ n_gen,
  620. /* .n_batch = */ nb,
  621. /* .n_ubatch = */ nub,
  622. /* .type_k = */ tk,
  623. /* .type_v = */ tv,
  624. /* .n_threads = */ nt,
  625. /* .n_gpu_layers = */ nl,
  626. /* .rpc_servers = */ rpc,
  627. /* .split_mode = */ sm,
  628. /* .main_gpu = */ mg,
  629. /* .no_kv_offload= */ nkvo,
  630. /* .flash_attn = */ fa,
  631. /* .tensor_split = */ ts,
  632. /* .use_mmap = */ mmp,
  633. /* .embeddings = */ embd,
  634. };
  635. instances.push_back(instance);
  636. }
  637. for (const auto & n_pg : params.n_pg) {
  638. if (n_pg.first == 0 && n_pg.second == 0) {
  639. continue;
  640. }
  641. cmd_params_instance instance = {
  642. /* .model = */ m,
  643. /* .n_prompt = */ n_pg.first,
  644. /* .n_gen = */ n_pg.second,
  645. /* .n_batch = */ nb,
  646. /* .n_ubatch = */ nub,
  647. /* .type_k = */ tk,
  648. /* .type_v = */ tv,
  649. /* .n_threads = */ nt,
  650. /* .n_gpu_layers = */ nl,
  651. /* .rpc_servers = */ rpc,
  652. /* .split_mode = */ sm,
  653. /* .main_gpu = */ mg,
  654. /* .no_kv_offload= */ nkvo,
  655. /* .flash_attn = */ fa,
  656. /* .tensor_split = */ ts,
  657. /* .use_mmap = */ mmp,
  658. /* .embeddings = */ embd,
  659. };
  660. instances.push_back(instance);
  661. }
  662. }
  663. return instances;
  664. }
  665. struct test {
  666. static const std::string build_commit;
  667. static const int build_number;
  668. static const bool cuda;
  669. static const bool opencl;
  670. static const bool vulkan;
  671. static const bool kompute;
  672. static const bool metal;
  673. static const bool sycl;
  674. static const bool rpc;
  675. static const bool gpu_blas;
  676. static const bool blas;
  677. static const std::string cpu_info;
  678. static const std::string gpu_info;
  679. std::string model_filename;
  680. std::string model_type;
  681. uint64_t model_size;
  682. uint64_t model_n_params;
  683. int n_batch;
  684. int n_ubatch;
  685. int n_threads;
  686. ggml_type type_k;
  687. ggml_type type_v;
  688. int n_gpu_layers;
  689. llama_split_mode split_mode;
  690. int main_gpu;
  691. bool no_kv_offload;
  692. bool flash_attn;
  693. std::vector<float> tensor_split;
  694. bool use_mmap;
  695. bool embeddings;
  696. int n_prompt;
  697. int n_gen;
  698. std::string test_time;
  699. std::vector<uint64_t> samples_ns;
  700. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  701. model_filename = inst.model;
  702. char buf[128];
  703. llama_model_desc(lmodel, buf, sizeof(buf));
  704. model_type = buf;
  705. model_size = llama_model_size(lmodel);
  706. model_n_params = llama_model_n_params(lmodel);
  707. n_batch = inst.n_batch;
  708. n_ubatch = inst.n_ubatch;
  709. n_threads = inst.n_threads;
  710. type_k = inst.type_k;
  711. type_v = inst.type_v;
  712. n_gpu_layers = inst.n_gpu_layers;
  713. split_mode = inst.split_mode;
  714. main_gpu = inst.main_gpu;
  715. no_kv_offload = inst.no_kv_offload;
  716. flash_attn = inst.flash_attn;
  717. tensor_split = inst.tensor_split;
  718. use_mmap = inst.use_mmap;
  719. embeddings = inst.embeddings;
  720. n_prompt = inst.n_prompt;
  721. n_gen = inst.n_gen;
  722. // RFC 3339 date-time format
  723. time_t t = time(NULL);
  724. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  725. test_time = buf;
  726. (void) ctx;
  727. }
  728. uint64_t avg_ns() const {
  729. return ::avg(samples_ns);
  730. }
  731. uint64_t stdev_ns() const {
  732. return ::stdev(samples_ns);
  733. }
  734. std::vector<double> get_ts() const {
  735. int n_tokens = n_prompt + n_gen;
  736. std::vector<double> ts;
  737. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  738. return ts;
  739. }
  740. double avg_ts() const {
  741. return ::avg(get_ts());
  742. }
  743. double stdev_ts() const {
  744. return ::stdev(get_ts());
  745. }
  746. static std::string get_backend() {
  747. if (cuda) {
  748. return GGML_CUDA_NAME;
  749. }
  750. if (opencl) {
  751. return "OpenCL";
  752. }
  753. if (vulkan) {
  754. return "Vulkan";
  755. }
  756. if (kompute) {
  757. return "Kompute";
  758. }
  759. if (metal) {
  760. return "Metal";
  761. }
  762. if (sycl) {
  763. return GGML_SYCL_NAME;
  764. }
  765. if (rpc) {
  766. return "RPC";
  767. }
  768. if (gpu_blas) {
  769. return "GPU BLAS";
  770. }
  771. if (blas) {
  772. return "BLAS";
  773. }
  774. return "CPU";
  775. }
  776. static const std::vector<std::string> & get_fields() {
  777. static const std::vector<std::string> fields = {
  778. "build_commit", "build_number",
  779. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  780. "cpu_info", "gpu_info",
  781. "model_filename", "model_type", "model_size", "model_n_params",
  782. "n_batch", "n_ubatch",
  783. "n_threads", "type_k", "type_v",
  784. "n_gpu_layers", "split_mode",
  785. "main_gpu", "no_kv_offload", "flash_attn",
  786. "tensor_split", "use_mmap", "embeddings",
  787. "n_prompt", "n_gen", "test_time",
  788. "avg_ns", "stddev_ns",
  789. "avg_ts", "stddev_ts"
  790. };
  791. return fields;
  792. }
  793. enum field_type {STRING, BOOL, INT, FLOAT};
  794. static field_type get_field_type(const std::string & field) {
  795. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  796. field == "n_threads" ||
  797. field == "model_size" || field == "model_n_params" ||
  798. field == "n_gpu_layers" || field == "main_gpu" ||
  799. field == "n_prompt" || field == "n_gen" ||
  800. field == "avg_ns" || field == "stddev_ns") {
  801. return INT;
  802. }
  803. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  804. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  805. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  806. return BOOL;
  807. }
  808. if (field == "avg_ts" || field == "stddev_ts") {
  809. return FLOAT;
  810. }
  811. return STRING;
  812. }
  813. std::vector<std::string> get_values() const {
  814. std::string tensor_split_str;
  815. int max_nonzero = 0;
  816. for (size_t i = 0; i < llama_max_devices(); i++) {
  817. if (tensor_split[i] > 0) {
  818. max_nonzero = i;
  819. }
  820. }
  821. for (int i = 0; i <= max_nonzero; i++) {
  822. char buf[32];
  823. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  824. tensor_split_str += buf;
  825. if (i < max_nonzero) {
  826. tensor_split_str += "/";
  827. }
  828. }
  829. std::vector<std::string> values = {
  830. build_commit, std::to_string(build_number),
  831. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  832. std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
  833. cpu_info, gpu_info,
  834. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  835. std::to_string(n_batch), std::to_string(n_ubatch),
  836. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  837. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  838. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  839. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  840. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  841. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  842. std::to_string(avg_ts()), std::to_string(stdev_ts())
  843. };
  844. return values;
  845. }
  846. std::map<std::string, std::string> get_map() const {
  847. std::map<std::string, std::string> map;
  848. auto fields = get_fields();
  849. auto values = get_values();
  850. std::transform(fields.begin(), fields.end(), values.begin(),
  851. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  852. return map;
  853. }
  854. };
  855. const std::string test::build_commit = LLAMA_COMMIT;
  856. const int test::build_number = LLAMA_BUILD_NUMBER;
  857. const bool test::cuda = !!ggml_cpu_has_cuda();
  858. const bool test::opencl = !!ggml_cpu_has_clblast();
  859. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  860. const bool test::kompute = !!ggml_cpu_has_kompute();
  861. const bool test::metal = !!ggml_cpu_has_metal();
  862. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  863. const bool test::blas = !!ggml_cpu_has_blas();
  864. const bool test::sycl = !!ggml_cpu_has_sycl();
  865. const bool test::rpc = !!ggml_cpu_has_rpc();
  866. const std::string test::cpu_info = get_cpu_info();
  867. const std::string test::gpu_info = get_gpu_info();
  868. struct printer {
  869. virtual ~printer() {}
  870. FILE * fout;
  871. virtual void print_header(const cmd_params & params) { (void) params; }
  872. virtual void print_test(const test & t) = 0;
  873. virtual void print_footer() { }
  874. };
  875. struct csv_printer : public printer {
  876. static std::string escape_csv(const std::string & field) {
  877. std::string escaped = "\"";
  878. for (auto c : field) {
  879. if (c == '"') {
  880. escaped += "\"";
  881. }
  882. escaped += c;
  883. }
  884. escaped += "\"";
  885. return escaped;
  886. }
  887. void print_header(const cmd_params & params) override {
  888. std::vector<std::string> fields = test::get_fields();
  889. fprintf(fout, "%s\n", join(fields, ",").c_str());
  890. (void) params;
  891. }
  892. void print_test(const test & t) override {
  893. std::vector<std::string> values = t.get_values();
  894. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  895. fprintf(fout, "%s\n", join(values, ",").c_str());
  896. }
  897. };
  898. struct json_printer : public printer {
  899. bool first = true;
  900. static std::string escape_json(const std::string & value) {
  901. std::string escaped;
  902. for (auto c : value) {
  903. if (c == '"') {
  904. escaped += "\\\"";
  905. } else if (c == '\\') {
  906. escaped += "\\\\";
  907. } else if (c <= 0x1f) {
  908. char buf[8];
  909. snprintf(buf, sizeof(buf), "\\u%04x", c);
  910. escaped += buf;
  911. } else {
  912. escaped += c;
  913. }
  914. }
  915. return escaped;
  916. }
  917. static std::string format_value(const std::string & field, const std::string & value) {
  918. switch (test::get_field_type(field)) {
  919. case test::STRING:
  920. return "\"" + escape_json(value) + "\"";
  921. case test::BOOL:
  922. return value == "0" ? "false" : "true";
  923. default:
  924. return value;
  925. }
  926. }
  927. void print_header(const cmd_params & params) override {
  928. fprintf(fout, "[\n");
  929. (void) params;
  930. }
  931. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  932. assert(fields.size() == values.size());
  933. for (size_t i = 0; i < fields.size(); i++) {
  934. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  935. }
  936. }
  937. void print_test(const test & t) override {
  938. if (first) {
  939. first = false;
  940. } else {
  941. fprintf(fout, ",\n");
  942. }
  943. fprintf(fout, " {\n");
  944. print_fields(test::get_fields(), t.get_values());
  945. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  946. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  947. fprintf(fout, " }");
  948. fflush(fout);
  949. }
  950. void print_footer() override {
  951. fprintf(fout, "\n]\n");
  952. }
  953. };
  954. struct markdown_printer : public printer {
  955. std::vector<std::string> fields;
  956. static int get_field_width(const std::string & field) {
  957. if (field == "model") {
  958. return -30;
  959. }
  960. if (field == "t/s") {
  961. return 16;
  962. }
  963. if (field == "size" || field == "params") {
  964. return 10;
  965. }
  966. if (field == "n_gpu_layers") {
  967. return 3;
  968. }
  969. if (field == "test") {
  970. return 13;
  971. }
  972. int width = std::max((int)field.length(), 10);
  973. if (test::get_field_type(field) == test::STRING) {
  974. return -width;
  975. }
  976. return width;
  977. }
  978. static std::string get_field_display_name(const std::string & field) {
  979. if (field == "n_gpu_layers") {
  980. return "ngl";
  981. }
  982. if (field == "split_mode") {
  983. return "sm";
  984. }
  985. if (field == "n_threads") {
  986. return "threads";
  987. }
  988. if (field == "no_kv_offload") {
  989. return "nkvo";
  990. }
  991. if (field == "flash_attn") {
  992. return "fa";
  993. }
  994. if (field == "use_mmap") {
  995. return "mmap";
  996. }
  997. if (field == "embeddings") {
  998. return "embd";
  999. }
  1000. if (field == "tensor_split") {
  1001. return "ts";
  1002. }
  1003. return field;
  1004. }
  1005. void print_header(const cmd_params & params) override {
  1006. // select fields to print
  1007. fields.emplace_back("model");
  1008. fields.emplace_back("size");
  1009. fields.emplace_back("params");
  1010. fields.emplace_back("backend");
  1011. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1012. if (!is_cpu_backend) {
  1013. fields.emplace_back("n_gpu_layers");
  1014. }
  1015. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1016. fields.emplace_back("n_threads");
  1017. }
  1018. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1019. fields.emplace_back("n_batch");
  1020. }
  1021. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1022. fields.emplace_back("n_ubatch");
  1023. }
  1024. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1025. fields.emplace_back("type_k");
  1026. }
  1027. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1028. fields.emplace_back("type_v");
  1029. }
  1030. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1031. fields.emplace_back("main_gpu");
  1032. }
  1033. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1034. fields.emplace_back("split_mode");
  1035. }
  1036. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1037. fields.emplace_back("no_kv_offload");
  1038. }
  1039. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1040. fields.emplace_back("flash_attn");
  1041. }
  1042. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1043. fields.emplace_back("tensor_split");
  1044. }
  1045. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1046. fields.emplace_back("use_mmap");
  1047. }
  1048. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1049. fields.emplace_back("embeddings");
  1050. }
  1051. fields.emplace_back("test");
  1052. fields.emplace_back("t/s");
  1053. fprintf(fout, "|");
  1054. for (const auto & field : fields) {
  1055. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1056. }
  1057. fprintf(fout, "\n");
  1058. fprintf(fout, "|");
  1059. for (const auto & field : fields) {
  1060. int width = get_field_width(field);
  1061. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1062. }
  1063. fprintf(fout, "\n");
  1064. }
  1065. void print_test(const test & t) override {
  1066. std::map<std::string, std::string> vmap = t.get_map();
  1067. fprintf(fout, "|");
  1068. for (const auto & field : fields) {
  1069. std::string value;
  1070. char buf[128];
  1071. if (field == "model") {
  1072. value = t.model_type;
  1073. } else if (field == "size") {
  1074. if (t.model_size < 1024*1024*1024) {
  1075. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1076. } else {
  1077. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1078. }
  1079. value = buf;
  1080. } else if (field == "params") {
  1081. if (t.model_n_params < 1000*1000*1000) {
  1082. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1083. } else {
  1084. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1085. }
  1086. value = buf;
  1087. } else if (field == "backend") {
  1088. value = test::get_backend();
  1089. } else if (field == "test") {
  1090. if (t.n_prompt > 0 && t.n_gen == 0) {
  1091. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1092. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1093. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1094. } else {
  1095. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1096. }
  1097. value = buf;
  1098. } else if (field == "t/s") {
  1099. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1100. value = buf;
  1101. } else if (vmap.find(field) != vmap.end()) {
  1102. value = vmap.at(field);
  1103. } else {
  1104. assert(false);
  1105. exit(1);
  1106. }
  1107. int width = get_field_width(field);
  1108. if (field == "t/s") {
  1109. // HACK: the utf-8 character is 2 bytes
  1110. width += 1;
  1111. }
  1112. fprintf(fout, " %*s |", width, value.c_str());
  1113. }
  1114. fprintf(fout, "\n");
  1115. }
  1116. void print_footer() override {
  1117. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1118. }
  1119. };
  1120. struct sql_printer : public printer {
  1121. static std::string get_sql_field_type(const std::string & field) {
  1122. switch (test::get_field_type(field)) {
  1123. case test::STRING:
  1124. return "TEXT";
  1125. case test::BOOL:
  1126. case test::INT:
  1127. return "INTEGER";
  1128. case test::FLOAT:
  1129. return "REAL";
  1130. default:
  1131. assert(false);
  1132. exit(1);
  1133. }
  1134. }
  1135. void print_header(const cmd_params & params) override {
  1136. std::vector<std::string> fields = test::get_fields();
  1137. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1138. for (size_t i = 0; i < fields.size(); i++) {
  1139. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1140. }
  1141. fprintf(fout, ");\n");
  1142. fprintf(fout, "\n");
  1143. (void) params;
  1144. }
  1145. void print_test(const test & t) override {
  1146. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1147. fprintf(fout, "VALUES (");
  1148. std::vector<std::string> values = t.get_values();
  1149. for (size_t i = 0; i < values.size(); i++) {
  1150. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1151. }
  1152. fprintf(fout, ");\n");
  1153. }
  1154. };
  1155. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1156. llama_set_n_threads(ctx, n_threads, n_threads);
  1157. const llama_model * model = llama_get_model(ctx);
  1158. const int32_t n_vocab = llama_n_vocab(model);
  1159. std::vector<llama_token> tokens(n_batch);
  1160. int n_processed = 0;
  1161. while (n_processed < n_prompt) {
  1162. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1163. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1164. for (int i = 1; i < n_tokens; i++) {
  1165. tokens[i] = std::rand() % n_vocab;
  1166. }
  1167. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1168. n_processed += n_tokens;
  1169. }
  1170. llama_synchronize(ctx);
  1171. }
  1172. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1173. llama_set_n_threads(ctx, n_threads, n_threads);
  1174. const llama_model * model = llama_get_model(ctx);
  1175. const int32_t n_vocab = llama_n_vocab(model);
  1176. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1177. for (int i = 0; i < n_gen; i++) {
  1178. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1179. llama_synchronize(ctx);
  1180. token = std::rand() % n_vocab;
  1181. }
  1182. }
  1183. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1184. (void) level;
  1185. (void) text;
  1186. (void) user_data;
  1187. }
  1188. int main(int argc, char ** argv) {
  1189. // try to set locale for unicode characters in markdown
  1190. setlocale(LC_CTYPE, ".UTF-8");
  1191. #if !defined(NDEBUG)
  1192. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1193. #endif
  1194. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1195. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1196. #endif
  1197. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1198. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1199. #endif
  1200. cmd_params params = parse_cmd_params(argc, argv);
  1201. // initialize llama.cpp
  1202. if (!params.verbose) {
  1203. llama_log_set(llama_null_log_callback, NULL);
  1204. }
  1205. llama_backend_init();
  1206. llama_numa_init(params.numa);
  1207. // initialize printer
  1208. std::unique_ptr<printer> p;
  1209. switch (params.output_format) {
  1210. case CSV:
  1211. p.reset(new csv_printer());
  1212. break;
  1213. case JSON:
  1214. p.reset(new json_printer());
  1215. break;
  1216. case MARKDOWN:
  1217. p.reset(new markdown_printer());
  1218. break;
  1219. case SQL:
  1220. p.reset(new sql_printer());
  1221. break;
  1222. default:
  1223. assert(false);
  1224. exit(1);
  1225. }
  1226. p->fout = stdout;
  1227. p->print_header(params);
  1228. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1229. llama_model * lmodel = nullptr;
  1230. const cmd_params_instance * prev_inst = nullptr;
  1231. for (const auto & inst : params_instances) {
  1232. // keep the same model between tests when possible
  1233. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1234. if (lmodel) {
  1235. llama_free_model(lmodel);
  1236. }
  1237. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1238. if (lmodel == NULL) {
  1239. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1240. return 1;
  1241. }
  1242. prev_inst = &inst;
  1243. }
  1244. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1245. if (ctx == NULL) {
  1246. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1247. llama_free_model(lmodel);
  1248. return 1;
  1249. }
  1250. test t(inst, lmodel, ctx);
  1251. llama_kv_cache_clear(ctx);
  1252. // warmup run
  1253. if (t.n_prompt > 0) {
  1254. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1255. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1256. }
  1257. if (t.n_gen > 0) {
  1258. test_gen(ctx, 1, 0, t.n_threads);
  1259. }
  1260. for (int i = 0; i < params.reps; i++) {
  1261. llama_kv_cache_clear(ctx);
  1262. uint64_t t_start = get_time_ns();
  1263. if (t.n_prompt > 0) {
  1264. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1265. }
  1266. if (t.n_gen > 0) {
  1267. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1268. }
  1269. uint64_t t_ns = get_time_ns() - t_start;
  1270. t.samples_ns.push_back(t_ns);
  1271. }
  1272. p->print_test(t);
  1273. llama_print_timings(ctx);
  1274. llama_free(ctx);
  1275. }
  1276. llama_free_model(lmodel);
  1277. p->print_footer();
  1278. llama_backend_free();
  1279. return 0;
  1280. }