| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- # Convert a LLaMA model checkpoint to a ggml compatible file
- #
- # Load the model using Torch
- # Iterate over all variables and write them to a binary file.
- #
- # For each variable, write the following:
- # - Number of dimensions (int)
- # - Name length (int)
- # - Dimensions (int[n_dims])
- # - Name (char[name_length])
- # - Data (float[n_dims])
- #
- # At the start of the ggml file we write the model parameters
- # and vocabulary.
- #
- import argparse
- import os
- import sys
- import json
- import struct
- import numpy as np
- import torch
- from sentencepiece import SentencePieceProcessor
- QK = 32
- GGML_TYPE_Q4_0 = 0
- GGML_TYPE_Q4_1 = 1
- GGML_TYPE_I8 = 2
- GGML_TYPE_I16 = 3
- GGML_TYPE_I32 = 4
- GGML_TYPE_F16 = 5
- GGML_TYPE_F32 = 6
- WTYPES = {
- 0: GGML_TYPE_F32,
- 1: GGML_TYPE_F16,
- 2: GGML_TYPE_Q4_0,
- 3: GGML_TYPE_Q4_1,
- }
- GGML_BLCK_SIZE = {
- GGML_TYPE_Q4_0: QK,
- GGML_TYPE_Q4_1: QK,
- GGML_TYPE_I8: 1,
- GGML_TYPE_I16: 1,
- GGML_TYPE_I32: 1,
- GGML_TYPE_F16: 1,
- GGML_TYPE_F32: 1,
- }
- GGML_TYPE_SIZE = {
- GGML_TYPE_Q4_0: 4 + QK/2,
- GGML_TYPE_Q4_1: 4*2 + QK/2,
- GGML_TYPE_I8: 1,
- GGML_TYPE_I16: 2,
- GGML_TYPE_I32: 4,
- GGML_TYPE_F16: 2,
- GGML_TYPE_F32: 4,
- }
- def ggml_nelements(shape):
- r = 1
- for i in shape:
- r *= i
- return r
- def ggml_nbytes(shape, ftype):
- x = ggml_nelements(shape)
- t = WTYPES[ftype]
- x *= GGML_TYPE_SIZE[t]
- x //= GGML_BLCK_SIZE[t]
- return x
- def parse_args():
- parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
- parser.add_argument('dir_model', help='directory containing the model checkpoint')
- parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
- parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
- return parser.parse_args()
- def get_n_parts(dim):
- mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
- n_parts = mappings.get(dim)
- if n_parts is None:
- print(f"Invalid dim: {dim}")
- sys.exit(1)
- print(f"n_parts = {n_parts}\n")
- return n_parts
- def load_hparams_and_tokenizer(dir_model):
- # `dir_model` is something like `models/7B` or `models/7B/`.
- # "tokenizer.model" is expected under model's parent dir.
- # When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
- # Let's use the model's parent dir directly.
- model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
- fname_hparams = f"{dir_model}/params.json"
- fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
- with open(fname_hparams, "r") as f:
- hparams = json.load(f)
- print(hparams)
- tokenizer = SentencePieceProcessor(fname_tokenizer)
- hparams.update({"vocab_size": tokenizer.vocab_size()})
- return hparams, tokenizer
- def write_header(fout, hparams, ftype):
- keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
- values = [
- 0x67676a74, # magic: ggjt in hex
- 1, # file version
- *[hparams[key] for key in keys],
- hparams["dim"] // hparams["n_heads"], # rot (obsolete)
- ftype
- ]
- fout.write(struct.pack("i" * len(values), *values))
- def write_tokens(fout, tokenizer):
- for i in range(tokenizer.vocab_size()):
- if tokenizer.is_unknown(i):
- text = " \u2047 ".encode("utf-8")
- elif tokenizer.is_control(i):
- text = b""
- elif tokenizer.is_byte(i):
- piece = tokenizer.id_to_piece(i)
- if len(piece) != 6:
- print(f"Invalid token: {piece}")
- sys.exit(1)
- byte_value = int(piece[3:-1], 16)
- text = struct.pack("B", byte_value)
- else:
- text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- fout.write(struct.pack("f", tokenizer.get_score(i)))
- def process_and_write_variables(fout, model, ftype, part_id, n_parts):
- for name, datao in model.items():
- if name.endswith("freqs"):
- continue
- # remove dimensions with a single element
- data = datao.numpy().squeeze()
- partshape = data.shape
- n_dims = len(data.shape)
- assert n_dims in (1, 2)
- print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")
- # coerce single-dimensional tensors from float16 to float32
- ftype_cur = 1
- if ftype == 0 or n_dims == 1:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
- type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]
- # determine dimension along which multipart tensor is sharded
- #
- # split_dim 0 regex:
- # - output.*
- # - layers.*.attention.wq.weight
- # - layers.*.attention.wk.weight
- # - layers.*.attention.wv.weight
- # - layers.*.feed_forward.w1.weight
- # - layers.*.feed_forward.w3.weight
- #
- # split_dim 1 regex:
- # - tok_embeddings.*
- # - layers.*.attention.wo.weight
- # - layers.*.feed_forward.w2.weight
- #
- if n_dims > 1:
- split_dim = 1
- if "tok_embeddings" in name:
- split_dim = 1
- elif "layers" in name:
- if "attention.wo.weight" in name:
- split_dim = 1
- elif "feed_forward.w2.weight" in name:
- split_dim = 1
- else:
- split_dim = 0
- elif "output" in name:
- split_dim = 0
- # output tensor header
- fullshape = list(partshape)
- if n_dims > 1:
- fullshape[split_dim] *= n_parts
- sname = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
- for dim in reversed(fullshape):
- fout.write(struct.pack("i", dim))
- fout.write(sname)
- # ensure tensor data is aligned
- tensor_data_offset = fout.tell()
- while tensor_data_offset % QK != 0:
- fout.write(struct.pack("B", 0))
- tensor_data_offset += 1
- # output unified mappable tensor data
- if n_dims == 1 or n_parts == 1:
- # copy tensor which we thankfully received in one piece
- if part_id == 0:
- data.tofile(fout)
- elif split_dim == 0:
- # reassemble multifile tensor containing some of the rows
- rows_per_chunk = partshape[0]
- current_row = part_id * rows_per_chunk
- bytes_per_row = fullshape[1] // blck_size * type_size
- offset = current_row * bytes_per_row
- fout.seek(tensor_data_offset + offset)
- data.tofile(fout)
- elif split_dim == 1:
- # reassemble multifile tensor containing some of the cols
- cols_per_chunk = partshape[1]
- current_col = part_id * cols_per_chunk
- bytes_per_row = fullshape[1] // blck_size * type_size
- offset_current_col = current_col // blck_size * type_size
- for row in range(partshape[0]):
- offset_row = row * bytes_per_row
- offset = offset_row + offset_current_col
- fout.seek(tensor_data_offset + offset)
- data[row].tofile(fout)
- # advance file position to next tensor
- fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))
- def main():
- args = parse_args()
- dir_model = args.dir_model
- ftype = args.ftype
- ftype_str = ["f32", "f16"]
- hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
- print(args)
- # if only writing vocab to file
- if args.vocab_only:
- fname_model = f"{dir_model}/consolidated.00.pth"
- fname_out = f"{dir_model}/ggml-vocab.bin"
- print(f"Extracting only the vocab from '{fname_model}'\n")
- model = torch.load(fname_model, map_location="cpu")
- with open(fname_out, "wb") as fout:
- write_header(fout, hparams, ftype)
- write_tokens(fout, tokenizer)
- del model
- print(f"Done. Output file: {fname_out}\n")
- return
- n_parts = get_n_parts(hparams["dim"])
- fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
- # we output a single file for ggml
- with open(fname_out, "wb") as fout:
- write_header(fout, hparams, ftype)
- write_tokens(fout, tokenizer)
- offset_of_tensors = fout.tell()
- # the tensors we load could be split across multiple files
- for part_id in range(n_parts):
- fout.seek(offset_of_tensors)
- print(f"Processing part {part_id+1} of {n_parts}\n")
- fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
- model = torch.load(fname_model, map_location="cpu")
- process_and_write_variables(fout, model, ftype, part_id, n_parts)
- del model
- print(f"Done. Output file: {fname_out}\n")
- if __name__ == "__main__":
- main()
|