ggml.c 409 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. #if defined(__ARM_NEON)
  274. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  275. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  276. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  277. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  278. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  279. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  280. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  281. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  282. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  283. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  284. #endif
  285. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  286. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  287. // This is also true for POWER9.
  288. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  289. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  290. uint16_t s;
  291. memcpy(&s, &f, sizeof(uint16_t));
  292. return table_f32_f16[s];
  293. }
  294. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  295. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  296. #endif
  297. // note: do not use these inside ggml.c
  298. // these are meant to be used via the ggml.h API
  299. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  300. return (float) GGML_FP16_TO_FP32(x);
  301. }
  302. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  303. return GGML_FP32_TO_FP16(x);
  304. }
  305. //
  306. // timing
  307. //
  308. #if defined(_MSC_VER) || defined(__MINGW32__)
  309. static int64_t timer_freq;
  310. void ggml_time_init(void) {
  311. LARGE_INTEGER frequency;
  312. QueryPerformanceFrequency(&frequency);
  313. timer_freq = frequency.QuadPart;
  314. }
  315. int64_t ggml_time_ms(void) {
  316. LARGE_INTEGER t;
  317. QueryPerformanceCounter(&t);
  318. return (t.QuadPart * 1000) / timer_freq;
  319. }
  320. int64_t ggml_time_us(void) {
  321. LARGE_INTEGER t;
  322. QueryPerformanceCounter(&t);
  323. return (t.QuadPart * 1000000) / timer_freq;
  324. }
  325. #else
  326. void ggml_time_init(void) {}
  327. int64_t ggml_time_ms(void) {
  328. struct timespec ts;
  329. clock_gettime(CLOCK_MONOTONIC, &ts);
  330. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  331. }
  332. int64_t ggml_time_us(void) {
  333. struct timespec ts;
  334. clock_gettime(CLOCK_MONOTONIC, &ts);
  335. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  336. }
  337. #endif
  338. int64_t ggml_cycles(void) {
  339. return clock();
  340. }
  341. int64_t ggml_cycles_per_ms(void) {
  342. return CLOCKS_PER_SEC/1000;
  343. }
  344. #ifdef GGML_PERF
  345. #define ggml_perf_time_ms() ggml_time_ms()
  346. #define ggml_perf_time_us() ggml_time_us()
  347. #define ggml_perf_cycles() ggml_cycles()
  348. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  349. #else
  350. #define ggml_perf_time_ms() 0
  351. #define ggml_perf_time_us() 0
  352. #define ggml_perf_cycles() 0
  353. #define ggml_perf_cycles_per_ms() 0
  354. #endif
  355. //
  356. // cache line
  357. //
  358. #if defined(__cpp_lib_hardware_interference_size)
  359. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  360. #else
  361. #if defined(__POWER9_VECTOR__)
  362. #define CACHE_LINE_SIZE 128
  363. #else
  364. #define CACHE_LINE_SIZE 64
  365. #endif
  366. #endif
  367. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  368. //
  369. // quantization
  370. //
  371. #if __AVX__ || __AVX2__ || __AVX512F__
  372. // Unpack 16 4-bit fields into 16 bytes
  373. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  374. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  375. {
  376. // Load 8 bytes from memory
  377. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  378. // Expand bytes into uint16_t values
  379. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  380. // Unpack values into individual bytes
  381. const __m128i lowMask = _mm_set1_epi8( 0xF );
  382. __m128i high = _mm_andnot_si128( lowMask, bytes );
  383. __m128i low = _mm_and_si128( lowMask, bytes );
  384. high = _mm_slli_epi16( high, 4 );
  385. bytes = _mm_or_si128( low, high );
  386. return bytes;
  387. }
  388. // horizontally add 8 floats
  389. static inline float hsum_float_8(const __m256 x) {
  390. __m128 res = _mm256_extractf128_ps(x, 1);
  391. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  392. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  393. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  394. return _mm_cvtss_f32(res);
  395. }
  396. // horizontally add 8 int32_t
  397. static inline int hsum_i32_8(const __m256i a) {
  398. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  399. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  400. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  401. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  402. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  403. }
  404. // horizontally add 4 int32_t
  405. static inline int hsum_i32_4(const __m128i a) {
  406. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  407. const __m128i sum64 = _mm_add_epi32(hi64, a);
  408. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  409. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  410. }
  411. #if __AVX2__ || __AVX512F__
  412. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  413. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  414. uint32_t x32;
  415. memcpy(&x32, x, sizeof(uint32_t));
  416. const __m256i shuf_mask = _mm256_set_epi64x(
  417. 0x0303030303030303, 0x0202020202020202,
  418. 0x0101010101010101, 0x0000000000000000);
  419. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  420. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  421. bytes = _mm256_or_si256(bytes, bit_mask);
  422. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  423. }
  424. // Unpack 32 4-bit fields into 32 bytes
  425. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  426. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  427. {
  428. // Load 16 bytes from memory
  429. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  430. // Expand bytes into uint16_t values
  431. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  432. // Unpack values into individual bytes
  433. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  434. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  435. __m256i low = _mm256_and_si256( lowMask, bytes );
  436. high = _mm256_slli_epi16( high, 4 );
  437. bytes = _mm256_or_si256( low, high );
  438. return bytes;
  439. }
  440. // add int16_t pairwise and return as float vector
  441. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  442. const __m256i ones = _mm256_set1_epi16(1);
  443. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  444. return _mm256_cvtepi32_ps(summed_pairs);
  445. }
  446. // multiply int8_t, add results pairwise twice and return as float vector
  447. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  448. // Get absolute values of x vectors
  449. const __m256i ax = _mm256_sign_epi8(x, x);
  450. // Sign the values of the y vectors
  451. const __m256i sy = _mm256_sign_epi8(y, x);
  452. #if __AVXVNNI__
  453. const __m256i zero = _mm256_setzero_si256();
  454. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  455. return _mm256_cvtepi32_ps(summed_pairs);
  456. #else
  457. // Perform multiplication and create 16-bit values
  458. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  459. return sum_i16_pairs_float(dot);
  460. #endif
  461. }
  462. static inline __m128i packNibbles( __m256i bytes )
  463. {
  464. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  465. #if __AVX512F__
  466. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  467. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  468. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  469. #else
  470. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  471. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  472. __m256i low = _mm256_and_si256( lowByte, bytes );
  473. high = _mm256_srli_epi16( high, 4 );
  474. bytes = _mm256_or_si256( low, high );
  475. // Compress uint16_t lanes into bytes
  476. __m128i r0 = _mm256_castsi256_si128( bytes );
  477. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  478. return _mm_packus_epi16( r0, r1 );
  479. #endif
  480. }
  481. #else
  482. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  483. {
  484. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  485. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  486. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  487. __m128i low = _mm_and_si128( lowByte, bytes1 );
  488. high = _mm_srli_epi16( high, 4 );
  489. bytes1 = _mm_or_si128( low, high );
  490. high = _mm_andnot_si128( lowByte, bytes2 );
  491. low = _mm_and_si128( lowByte, bytes2 );
  492. high = _mm_srli_epi16( high, 4 );
  493. bytes2 = _mm_or_si128( low, high );
  494. return _mm_packus_epi16( bytes1, bytes2);
  495. }
  496. #endif
  497. #endif // __AVX__ || __AVX2__ || __AVX512F__
  498. #if __ARM_NEON
  499. #if !defined(__aarch64__)
  500. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  501. return
  502. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  503. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  504. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  505. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  506. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  507. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  508. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  509. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  510. }
  511. inline static int16_t vaddvq_s8(int8x16_t v) {
  512. return
  513. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  514. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  515. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  516. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  517. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  518. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  519. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  520. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  521. }
  522. inline static int32_t vaddvq_s16(int16x8_t v) {
  523. return
  524. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  525. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  526. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  527. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  528. }
  529. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  530. return
  531. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  532. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  533. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  534. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  535. }
  536. inline static int32_t vaddvq_s32(int32x4_t v) {
  537. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  538. }
  539. inline static float vaddvq_f32(float32x4_t v) {
  540. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  541. }
  542. float vminvq_f32(float32x4_t v) {
  543. return
  544. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  545. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  546. }
  547. float vmaxvq_f32(float32x4_t v) {
  548. return
  549. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  550. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  551. }
  552. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  553. return vget_low_s8(vcombine_s8(a, b));
  554. }
  555. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  556. return vget_high_s8(vcombine_s8(a, b));
  557. }
  558. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  559. return vget_low_u8(vcombine_u8(a, b));
  560. }
  561. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  562. return vget_high_u8(vcombine_u8(a, b));
  563. }
  564. #endif
  565. #endif
  566. #define QK4_0 32
  567. typedef struct {
  568. float d; // delta
  569. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  570. } block_q4_0;
  571. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  572. #define QK4_1 32
  573. typedef struct {
  574. float d; // delta
  575. float m; // min
  576. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  577. } block_q4_1;
  578. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  579. #define QK4_2 16
  580. typedef struct {
  581. ggml_fp16_t d; // delta
  582. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  583. } block_q4_2;
  584. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  585. #define QK4_3 16
  586. typedef struct {
  587. ggml_fp16_t d; // delta
  588. ggml_fp16_t m; // min
  589. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  590. } block_q4_3;
  591. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  592. #define QK5_0 32
  593. typedef struct {
  594. ggml_fp16_t d; // delta
  595. uint8_t qh[4]; // 5-th bit of quants
  596. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  597. } block_q5_0;
  598. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  599. #define QK5_1 32
  600. typedef struct {
  601. ggml_fp16_t d; // delta
  602. ggml_fp16_t m; // min
  603. uint8_t qh[4]; // 5-th bit of quants
  604. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  605. } block_q5_1;
  606. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  607. #define QK8_0 32
  608. typedef struct {
  609. float d; // delta
  610. int8_t qs[QK8_0]; // quants
  611. } block_q8_0;
  612. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  613. #define QK8_1 32
  614. typedef struct {
  615. float d; // delta
  616. float s0; // d * sum(qs[i]) low
  617. float s1; // d * sum(qs[i]) high
  618. int8_t qs[QK8_1]; // quants
  619. } block_q8_1;
  620. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  621. // reference implementation for deterministic creation of model files
  622. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  623. assert(k % QK4_0 == 0);
  624. const int nb = k / QK4_0;
  625. uint8_t pp[QK4_0/2];
  626. for (int i = 0; i < nb; i++) {
  627. float amax = 0.0f; // absolute max
  628. float max = 0.0f;
  629. for (int l = 0; l < QK4_0; l++) {
  630. const float v = x[i*QK4_0 + l];
  631. if (amax < fabsf(v)) {
  632. amax = fabsf(v);
  633. max = v;
  634. }
  635. }
  636. const float d = max / -8;
  637. const float id = d ? 1.0f/d : 0.0f;
  638. y[i].d = d;
  639. for (int l = 0; l < QK4_0; l += 2) {
  640. const float v0 = x[i*QK4_0 + l + 0]*id;
  641. const float v1 = x[i*QK4_0 + l + 1]*id;
  642. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  643. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  644. assert(vi0 < 16);
  645. assert(vi1 < 16);
  646. pp[l/2] = vi0 | (vi1 << 4);
  647. }
  648. memcpy(y[i].qs, pp, sizeof(pp));
  649. }
  650. }
  651. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  652. assert(k % QK4_0 == 0);
  653. const int nb = k / QK4_0;
  654. block_q4_0 * restrict y = vy;
  655. #if defined(__POWER9_VECTOR__)
  656. const vector float v85 = vec_splats(8.5f);
  657. const vector signed int v15 = vec_splats(15);
  658. for (int i = 0; i < nb; i++) {
  659. float max = 0.0f;
  660. float min = 0.0f;
  661. vector float srcv [8];
  662. vector float maxv[8];
  663. vector float minv[8];
  664. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  665. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  666. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  667. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  668. maxv[0] = vec_max(maxv[0], maxv[2]);
  669. maxv[4] = vec_max(maxv[4], maxv[6]);
  670. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  671. maxv[0] = vec_max(maxv[0], maxv[4]);
  672. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  673. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  674. minv[0] = vec_min(minv[0], minv[2]);
  675. minv[4] = vec_min(minv[4], minv[6]);
  676. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  677. minv[0] = vec_min(minv[0], minv[4]);
  678. max = MAX(
  679. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  680. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  681. min = MIN(
  682. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  683. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  684. const float magnitude = max >= fabsf(min) ? max : min;
  685. const float d = magnitude / -8;
  686. const float id = d ? 1.0/d : 0.0;
  687. y[i].d = d;
  688. const vector float vid = vec_splats(id);
  689. uint8_t * restrict pb = y[i].qs;
  690. for (int l = 0; l < 8; l++) {
  691. const vector float vf = vec_madd(srcv[l], vid, v85);
  692. const vector signed int vi = vec_signed(vf);
  693. const vector signed int vc = vec_min(vi, v15);
  694. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  695. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  696. }
  697. }
  698. #elif __ARM_NEON
  699. for (int i = 0; i < nb; i++) {
  700. float32x4_t srcv [8];
  701. float32x4_t maxv[8];
  702. float32x4_t minv[8];
  703. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  704. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  705. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  706. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  707. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  708. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  709. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  710. const float max = vmaxvq_f32(maxv[0]);
  711. const float min = vminvq_f32(minv[0]);
  712. const float magnitude = max >= fabsf(min) ? max : min;
  713. const float d = magnitude / -8;
  714. const float id = d ? 1.0f/d : 0.0f;
  715. y[i].d = d;
  716. for (int l = 0; l < 8; l++) {
  717. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  718. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  719. const int32x4_t vi = vcvtq_s32_f32(vf);
  720. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  721. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  722. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  723. }
  724. }
  725. #elif defined(__AVX2__)
  726. for (int i = 0; i < nb; i++) {
  727. // Load elements into 4 AVX vectors
  728. __m256 v0 = _mm256_loadu_ps( x );
  729. __m256 v1 = _mm256_loadu_ps( x + 8 );
  730. __m256 v2 = _mm256_loadu_ps( x + 16 );
  731. __m256 v3 = _mm256_loadu_ps( x + 24 );
  732. x += 32;
  733. // Compute max for the block
  734. __m256 max = _mm256_max_ps( v0, v1 );
  735. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  736. max = _mm256_max_ps( max, maxTmp );
  737. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  738. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  739. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  740. const float maxScalar = _mm_cvtss_f32( max4 );
  741. // Compute min for the block
  742. __m256 min = _mm256_min_ps( v0, v1 );
  743. __m256 minTmp = _mm256_min_ps( v2, v3 );
  744. min = _mm256_min_ps( min, minTmp );
  745. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  746. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  747. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  748. const float minScalar = _mm_cvtss_f32( min4 );
  749. // Quantize these floats
  750. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  751. const float d = magnitude / -8.0f;
  752. y[i].d = d;
  753. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  754. const __m256 mul = _mm256_set1_ps( id );
  755. // Apply the multiplier
  756. v0 = _mm256_mul_ps( v0, mul );
  757. v1 = _mm256_mul_ps( v1, mul );
  758. v2 = _mm256_mul_ps( v2, mul );
  759. v3 = _mm256_mul_ps( v3, mul );
  760. // Round to nearest integer
  761. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  762. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  763. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  764. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  765. // Convert floats to integers
  766. __m256i i0 = _mm256_cvtps_epi32( v0 );
  767. __m256i i1 = _mm256_cvtps_epi32( v1 );
  768. __m256i i2 = _mm256_cvtps_epi32( v2 );
  769. __m256i i3 = _mm256_cvtps_epi32( v3 );
  770. // Convert int32 to int16
  771. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  772. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  773. // Convert int16 to int8
  774. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  775. // We got our precious signed bytes, but the order is now wrong
  776. // These AVX2 pack instructions process 16-byte pieces independently
  777. // The following instruction is fixing the order
  778. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  779. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  780. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  781. const __m256i off = _mm256_set1_epi8( 8 );
  782. i0 = _mm256_add_epi8( i0, off );
  783. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  784. i0 = _mm256_min_epi8( i0, maxNibble );
  785. // Compress the vector into 4 bit/value, and store
  786. __m128i res = packNibbles( i0 );
  787. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  788. }
  789. #elif defined(__AVX__)
  790. for (int i = 0; i < nb; i++) {
  791. // Load elements into 4 AVX vectors
  792. __m256 v0 = _mm256_loadu_ps( x );
  793. __m256 v1 = _mm256_loadu_ps( x + 8 );
  794. __m256 v2 = _mm256_loadu_ps( x + 16 );
  795. __m256 v3 = _mm256_loadu_ps( x + 24 );
  796. x += 32;
  797. // Compute max for the block
  798. __m256 max = _mm256_max_ps( v0, v1 );
  799. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  800. max = _mm256_max_ps( max, maxTmp );
  801. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  802. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  803. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  804. const float maxScalar = _mm_cvtss_f32( max4 );
  805. // Compute min for the block
  806. __m256 min = _mm256_min_ps( v0, v1 );
  807. __m256 minTmp = _mm256_min_ps( v2, v3 );
  808. min = _mm256_min_ps( min, minTmp );
  809. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  810. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  811. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  812. const float minScalar = _mm_cvtss_f32( min4 );
  813. // Quantize these floats
  814. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  815. const float d = magnitude / -8.0f;
  816. y[i].d = d;
  817. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  818. const __m256 mul = _mm256_set1_ps( id );
  819. // Apply the multiplier
  820. v0 = _mm256_mul_ps( v0, mul );
  821. v1 = _mm256_mul_ps( v1, mul );
  822. v2 = _mm256_mul_ps( v2, mul );
  823. v3 = _mm256_mul_ps( v3, mul );
  824. // Round to nearest integer
  825. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  826. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  827. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  828. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  829. // Convert floats to integers
  830. __m256i i0 = _mm256_cvtps_epi32( v0 );
  831. __m256i i1 = _mm256_cvtps_epi32( v1 );
  832. __m256i i2 = _mm256_cvtps_epi32( v2 );
  833. __m256i i3 = _mm256_cvtps_epi32( v3 );
  834. // Since we don't have in AVX some necessary functions,
  835. // we split the registers in half and call AVX2 analogs from SSE
  836. __m128i ni0 = _mm256_castsi256_si128( i0 );
  837. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  838. __m128i ni2 = _mm256_castsi256_si128( i1 );
  839. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  840. __m128i ni4 = _mm256_castsi256_si128( i2 );
  841. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  842. __m128i ni6 = _mm256_castsi256_si128( i3 );
  843. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  844. // Convert int32 to int16
  845. ni0 = _mm_packs_epi32( ni0, ni1 );
  846. ni2 = _mm_packs_epi32( ni2, ni3 );
  847. ni4 = _mm_packs_epi32( ni4, ni5 );
  848. ni6 = _mm_packs_epi32( ni6, ni7 );
  849. // Convert int16 to int8
  850. ni0 = _mm_packs_epi16( ni0, ni2 );
  851. ni4 = _mm_packs_epi16( ni4, ni6 );
  852. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  853. const __m128i off = _mm_set1_epi8( 8 );
  854. ni0 = _mm_add_epi8( ni0, off );
  855. ni4 = _mm_add_epi8( ni4, off );
  856. const __m128i maxNibble = _mm_set1_epi8( 15 );
  857. ni0 = _mm_min_epi8( ni0, maxNibble );
  858. ni4 = _mm_min_epi8( ni4, maxNibble );
  859. // Compress the vector into 4 bit/value, and store
  860. __m128i res = packNibbles( ni0, ni4 );
  861. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  862. }
  863. #elif defined(__wasm_simd128__)
  864. for (int i = 0; i < nb; i++) {
  865. float max = 0.0f;
  866. float min = 0.0f;
  867. v128_t srcv [8];
  868. v128_t maxv[8];
  869. v128_t minv[8];
  870. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  871. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  872. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  873. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  874. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  875. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  876. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  877. max = MAX(
  878. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  879. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  880. min = MIN(
  881. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  882. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  883. const float magnitude = max >= fabsf(min) ? max : min;
  884. const float d = magnitude / -8;
  885. const float id = d ? 1.0/d : 0.0;
  886. y[i].d = d;
  887. for (int l = 0; l < 8; l++) {
  888. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  889. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  890. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  891. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  892. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  893. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  894. }
  895. }
  896. #else
  897. // scalar
  898. quantize_row_q4_0_reference(x, y, k);
  899. #endif
  900. }
  901. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  902. assert(k % QK4_1 == 0);
  903. const int nb = k / QK4_1;
  904. block_q4_1 * restrict y = vy;
  905. uint8_t pp[QK4_1/2];
  906. for (int i = 0; i < nb; i++) {
  907. float min = FLT_MAX;
  908. float max = -FLT_MAX;
  909. for (int l = 0; l < QK4_1; l++) {
  910. const float v = x[i*QK4_1 + l];
  911. if (v < min) min = v;
  912. if (v > max) max = v;
  913. }
  914. const float d = (max - min) / ((1 << 4) - 1);
  915. const float id = d ? 1.0f/d : 0.0f;
  916. y[i].d = d;
  917. y[i].m = min;
  918. for (int l = 0; l < QK4_1; l += 2) {
  919. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  920. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  921. const uint8_t vi0 = roundf(v0);
  922. const uint8_t vi1 = roundf(v1);
  923. assert(vi0 < 16);
  924. assert(vi1 < 16);
  925. pp[l/2] = vi0 | (vi1 << 4);
  926. }
  927. memcpy(y[i].qs, pp, sizeof(pp));
  928. }
  929. }
  930. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  931. assert(k % QK4_1 == 0);
  932. const int nb = k / QK4_1;
  933. block_q4_1 * restrict y = vy;
  934. #if defined(__AVX2__)
  935. for (int i = 0; i < nb; i++) {
  936. // Load elements into 4 AVX vectors
  937. __m256 v0 = _mm256_loadu_ps( x );
  938. __m256 v1 = _mm256_loadu_ps( x + 8 );
  939. __m256 v2 = _mm256_loadu_ps( x + 16 );
  940. __m256 v3 = _mm256_loadu_ps( x + 24 );
  941. x += 32;
  942. // Compute max for the block
  943. __m256 vmax;
  944. vmax = _mm256_max_ps( v0, v1 );
  945. vmax = _mm256_max_ps( vmax, v2 );
  946. vmax = _mm256_max_ps( vmax, v3 );
  947. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  948. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  949. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  950. const float maxScalar = _mm_cvtss_f32( max4 );
  951. // Compute min for the block
  952. __m256 vmin;
  953. vmin = _mm256_min_ps( v0, v1 );
  954. vmin = _mm256_min_ps( vmin, v2 );
  955. vmin = _mm256_min_ps( vmin, v3 );
  956. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  957. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  958. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  959. const float minScalar = _mm_cvtss_f32( min4 );
  960. // Quantize these floats
  961. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  962. const float id = d ? 1.0f/d : 0.0f;
  963. y[i].m = minScalar;
  964. y[i].d = d;
  965. // x = (x-min)*id
  966. const __m256 mul = _mm256_set1_ps( id );
  967. const __m256 off = _mm256_set1_ps( minScalar );
  968. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  969. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  970. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  971. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  972. // Round to nearest integer
  973. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  974. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  975. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  976. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  977. // Convert floats to integers
  978. __m256i i0 = _mm256_cvtps_epi32( v0 );
  979. __m256i i1 = _mm256_cvtps_epi32( v1 );
  980. __m256i i2 = _mm256_cvtps_epi32( v2 );
  981. __m256i i3 = _mm256_cvtps_epi32( v3 );
  982. // Convert int32 to int16
  983. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  984. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  985. // Convert int16 to int8
  986. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  987. // We got our precious signed bytes, but the order is now wrong
  988. // These AVX2 pack instructions process 16-byte pieces independently
  989. // The following instruction is fixing the order
  990. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  991. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  992. // Compress the vector into 4 bit/value, and store
  993. __m128i res = packNibbles( i0 );
  994. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  995. }
  996. #elif __ARM_NEON
  997. for (int i = 0; i < nb; i++) {
  998. float32x4_t srcv[8];
  999. float32x4_t minv[8];
  1000. float32x4_t maxv[8];
  1001. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1002. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1003. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1004. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1005. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1006. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1007. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1008. const float min = vminvq_f32(minv[0]);
  1009. const float max = vmaxvq_f32(maxv[0]);
  1010. const float d = (max - min) / ((1 << 4) - 1);
  1011. const float id = d ? 1.0f/d : 0.0f;
  1012. y[i].d = d;
  1013. y[i].m = min;
  1014. const float32x4_t minv0 = vdupq_n_f32(min);
  1015. for (int l = 0; l < 8; l++) {
  1016. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1017. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1018. const int32x4_t vi = vcvtq_s32_f32(vf);
  1019. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1020. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1021. }
  1022. }
  1023. #else
  1024. // scalar
  1025. quantize_row_q4_1_reference(x, vy, k);
  1026. #endif
  1027. }
  1028. // reference implementation for deterministic creation of model files
  1029. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1030. assert(k % QK4_2 == 0);
  1031. const int nb = k / QK4_2;
  1032. for (int i = 0; i < nb; i++) {
  1033. float amax = 0.0f; // absolute max
  1034. float max = 0.0f;
  1035. for (int l = 0; l < QK4_2; l++) {
  1036. const float v = x[i*QK4_2 + l];
  1037. if (amax < fabsf(v)) {
  1038. amax = fabsf(v);
  1039. max = v;
  1040. }
  1041. }
  1042. const float d = max / -8;
  1043. const float id = d ? 1.0f/d : 0.0f;
  1044. y[i].d = GGML_FP32_TO_FP16(d);
  1045. for (int l = 0; l < QK4_2; l += 2) {
  1046. const float v0 = x[i*QK4_2 + l + 0]*id;
  1047. const float v1 = x[i*QK4_2 + l + 1]*id;
  1048. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1049. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1050. assert(vi0 < 16);
  1051. assert(vi1 < 16);
  1052. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1053. }
  1054. }
  1055. }
  1056. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1057. assert(k % QK4_2 == 0);
  1058. block_q4_2 * restrict y = vy;
  1059. quantize_row_q4_2_reference(x, y, k);
  1060. }
  1061. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1062. assert(k % QK4_3 == 0);
  1063. const int nb = k / QK4_3;
  1064. for (int i = 0; i < nb; i++) {
  1065. float min = FLT_MAX;
  1066. float max = -FLT_MAX;
  1067. for (int l = 0; l < QK4_3; l++) {
  1068. const float v = x[i*QK4_3 + l];
  1069. if (v < min) min = v;
  1070. if (v > max) max = v;
  1071. }
  1072. const float d = (max - min) / ((1 << 4) - 1);
  1073. const float id = d ? 1.0f/d : 0.0f;
  1074. y[i].d = GGML_FP32_TO_FP16(d);
  1075. y[i].m = GGML_FP32_TO_FP16(min);
  1076. for (int l = 0; l < QK4_3; l += 2) {
  1077. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1078. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1079. const uint8_t vi0 = (int) (v0 + 0.5f);
  1080. const uint8_t vi1 = (int) (v1 + 0.5f);
  1081. assert(vi0 < 16);
  1082. assert(vi1 < 16);
  1083. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1084. }
  1085. }
  1086. }
  1087. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK4_3 == 0);
  1089. block_q4_3 * restrict y = vy;
  1090. quantize_row_q4_3_reference(x, y, k);
  1091. }
  1092. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1093. assert(k % QK5_0 == 0);
  1094. const int nb = k / QK5_0;
  1095. for (int i = 0; i < nb; i++) {
  1096. float amax = 0.0f; // absolute max
  1097. float max = 0.0f;
  1098. for (int l = 0; l < QK5_0; l++) {
  1099. const float v = x[i*QK5_0 + l];
  1100. if (amax < fabsf(v)) {
  1101. amax = fabsf(v);
  1102. max = v;
  1103. }
  1104. }
  1105. const float d = max / -16;
  1106. const float id = d ? 1.0f/d : 0.0f;
  1107. y[i].d = GGML_FP32_TO_FP16(d);
  1108. uint32_t qh = 0;
  1109. for (int l = 0; l < QK5_0; l += 2) {
  1110. const float v0 = x[i*QK5_0 + l + 0]*id;
  1111. const float v1 = x[i*QK5_0 + l + 1]*id;
  1112. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1113. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1114. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1115. // get the 5-th bit and store it in qh at the right position
  1116. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1117. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1118. }
  1119. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1120. }
  1121. }
  1122. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1123. assert(k % QK5_0 == 0);
  1124. block_q5_0 * restrict y = vy;
  1125. quantize_row_q5_0_reference(x, y, k);
  1126. }
  1127. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1128. assert(k % QK5_1 == 0);
  1129. const int nb = k / QK5_1;
  1130. for (int i = 0; i < nb; i++) {
  1131. float min = FLT_MAX;
  1132. float max = -FLT_MAX;
  1133. for (int l = 0; l < QK5_1; l++) {
  1134. const float v = x[i*QK5_1 + l];
  1135. if (v < min) min = v;
  1136. if (v > max) max = v;
  1137. }
  1138. const float d = (max - min) / ((1 << 5) - 1);
  1139. const float id = d ? 1.0f/d : 0.0f;
  1140. y[i].d = GGML_FP32_TO_FP16(d);
  1141. y[i].m = GGML_FP32_TO_FP16(min);
  1142. uint32_t qh = 0;
  1143. for (int l = 0; l < QK5_1; l += 2) {
  1144. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1145. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1146. const uint32_t vi0 = (int) (v0 + 0.5f);
  1147. const uint32_t vi1 = (int) (v1 + 0.5f);
  1148. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1149. // get the 5-th bit and store it in qh at the right position
  1150. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1151. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1152. }
  1153. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1154. }
  1155. }
  1156. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1157. assert(k % QK5_1 == 0);
  1158. block_q5_1 * restrict y = vy;
  1159. quantize_row_q5_1_reference(x, y, k);
  1160. }
  1161. // reference implementation for deterministic creation of model files
  1162. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1163. assert(k % QK8_0 == 0);
  1164. const int nb = k / QK8_0;
  1165. for (int i = 0; i < nb; i++) {
  1166. float amax = 0.0f; // absolute max
  1167. for (int l = 0; l < QK8_0; l++) {
  1168. const float v = x[i*QK8_0 + l];
  1169. amax = MAX(amax, fabsf(v));
  1170. }
  1171. const float d = amax / ((1 << 7) - 1);
  1172. const float id = d ? 1.0f/d : 0.0f;
  1173. y[i].d = d;
  1174. for (int l = 0; l < QK8_0; ++l) {
  1175. const float v0 = x[i*QK8_0 + l]*id;
  1176. y[i].qs[l] = roundf(v0);
  1177. }
  1178. }
  1179. }
  1180. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1181. assert(k % QK8_0 == 0);
  1182. block_q8_0 * restrict y = vy;
  1183. quantize_row_q8_0_reference(x, y, k);
  1184. }
  1185. // reference implementation for deterministic creation of model files
  1186. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1187. assert(k % QK8_1 == 0);
  1188. const int nb = k / QK8_1;
  1189. for (int i = 0; i < nb; i++) {
  1190. float amax = 0.0f; // absolute max
  1191. for (int l = 0; l < QK8_1; l++) {
  1192. const float v = x[i*QK8_1 + l];
  1193. amax = MAX(amax, fabsf(v));
  1194. }
  1195. const float d = amax / ((1 << 7) - 1);
  1196. const float id = d ? 1.0f/d : 0.0f;
  1197. y[i].d = d;
  1198. int sum0 = 0;
  1199. int sum1 = 0;
  1200. for (int l = 0; l < QK8_1/2; ++l) {
  1201. const float v0 = x[i*QK8_1 + l]*id;
  1202. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1203. y[i].qs[ l] = roundf(v0);
  1204. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1205. sum0 += y[i].qs[ l];
  1206. sum1 += y[i].qs[QK8_1/2 + l];
  1207. }
  1208. y[i].s0 = d * sum0;
  1209. y[i].s1 = d * sum1;
  1210. }
  1211. }
  1212. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1213. assert(k % QK8_1 == 0);
  1214. const int nb = k / QK8_1;
  1215. block_q8_1 * restrict y = vy;
  1216. #if defined(__ARM_NEON)
  1217. for (int i = 0; i < nb; i++) {
  1218. float32x4_t srcv [8];
  1219. float32x4_t asrcv[8];
  1220. float32x4_t amaxv[8];
  1221. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1222. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1223. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1224. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1225. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1226. const float amax = vmaxvq_f32(amaxv[0]);
  1227. const float d = amax / ((1 << 7) - 1);
  1228. const float id = d ? 1.0f/d : 0.0f;
  1229. y[i].d = d;
  1230. int32x4_t accv0 = vdupq_n_s32(0);
  1231. int32x4_t accv1 = vdupq_n_s32(0);
  1232. // low half
  1233. for (int l = 0; l < 4; l++) {
  1234. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1235. const int32x4_t vi = vcvtnq_s32_f32(v);
  1236. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1237. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1238. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1239. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1240. accv0 = vaddq_s32(accv0, vi);
  1241. }
  1242. // high half
  1243. for (int l = 4; l < 8; l++) {
  1244. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1245. const int32x4_t vi = vcvtnq_s32_f32(v);
  1246. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1247. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1248. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1249. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1250. accv1 = vaddq_s32(accv1, vi);
  1251. }
  1252. const int32_t sum0 = vaddvq_s32(accv0);
  1253. const int32_t sum1 = vaddvq_s32(accv1);
  1254. y[i].s0 = d * sum0;
  1255. y[i].s1 = d * sum1;
  1256. }
  1257. #elif defined(__AVX2__) || defined(__AVX__)
  1258. for (int i = 0; i < nb; i++) {
  1259. // Load elements into 4 AVX vectors
  1260. __m256 v0 = _mm256_loadu_ps( x );
  1261. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1262. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1263. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1264. x += 32;
  1265. // Compute max(abs(e)) for the block
  1266. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1267. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1268. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1271. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1272. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1273. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1274. const float maxScalar = _mm_cvtss_f32( max4 );
  1275. // Quantize these floats
  1276. const float d = maxScalar / 127.f;
  1277. y[i].d = d;
  1278. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1279. const __m256 mul = _mm256_set1_ps( id );
  1280. // Apply the multiplier
  1281. v0 = _mm256_mul_ps( v0, mul );
  1282. v1 = _mm256_mul_ps( v1, mul );
  1283. v2 = _mm256_mul_ps( v2, mul );
  1284. v3 = _mm256_mul_ps( v3, mul );
  1285. // Round to nearest integer
  1286. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1287. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1288. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1289. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1290. // Convert floats to integers
  1291. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1292. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1293. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1294. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1295. #if defined(__AVX2__)
  1296. // Compute the sum of the quants and set y[i].s
  1297. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1298. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1299. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1300. // Convert int32 to int16
  1301. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1302. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1303. // Convert int16 to int8
  1304. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // We got our precious signed bytes, but the order is now wrong
  1306. // These AVX2 pack instructions process 16-byte pieces independently
  1307. // The following instruction is fixing the order
  1308. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1309. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1310. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1311. #else
  1312. // Since we don't have in AVX some necessary functions,
  1313. // we split the registers in half and call AVX2 analogs from SSE
  1314. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1315. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1316. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1317. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1318. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1319. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1320. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1321. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1322. // Compute the sum of the quants and set y[i].s
  1323. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1324. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1325. y[i].s0 = d * hsum_i32_4(s0);
  1326. y[i].s1 = d * hsum_i32_4(s1);
  1327. // Convert int32 to int16
  1328. ni0 = _mm_packs_epi32( ni0, ni1 );
  1329. ni2 = _mm_packs_epi32( ni2, ni3 );
  1330. ni4 = _mm_packs_epi32( ni4, ni5 );
  1331. ni6 = _mm_packs_epi32( ni6, ni7 );
  1332. // Convert int16 to int8
  1333. ni0 = _mm_packs_epi16( ni0, ni2 );
  1334. ni4 = _mm_packs_epi16( ni4, ni6 );
  1335. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1336. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1337. #endif
  1338. }
  1339. #else
  1340. // scalar
  1341. quantize_row_q8_1_reference(x, y, k);
  1342. #endif
  1343. }
  1344. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1345. assert(k % QK4_0 == 0);
  1346. const int nb = k / QK4_0;
  1347. const block_q4_0 * restrict x = vx;
  1348. #if defined(__AVX2__)
  1349. for (int i = 0; i < nb; i++) {
  1350. // scale factor
  1351. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1352. const uint8_t * restrict pp = x[i].qs;
  1353. for (int l = 0; l < QK4_0; l += 32) {
  1354. // Load 32x4-bit integers into 32x8-bit integers
  1355. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1356. // Subtract 8 from the integers
  1357. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1358. // Convert to 16-bit int
  1359. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1360. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1361. // Convert to 32-bit int -> float 32
  1362. const __m256 vf[4] = {
  1363. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1364. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1367. };
  1368. // Scale and store
  1369. for (int j = 0; j < 4; j++) {
  1370. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1371. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1372. }
  1373. }
  1374. }
  1375. #elif defined(__ARM_NEON)
  1376. for (int i = 0; i < nb; i++) {
  1377. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1378. const uint8_t * restrict pp = x[i].qs;
  1379. for (int l = 0; l < QK4_0; l += 16) {
  1380. // Load 16x4-bit integers into 8x8-bit integers
  1381. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1382. // Expand 4-bit qs to 8-bit bytes
  1383. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1384. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1385. // Convert to signed 8-bit integers
  1386. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1387. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1388. // Subtract 8 from each byte
  1389. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1390. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1391. // Interleave and combine
  1392. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1393. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1394. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1395. // convert to 2x int16x8_t
  1396. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1397. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1398. // convert to 4x float32x4_t
  1399. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1400. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1401. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1402. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1403. // Multiply by d
  1404. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1405. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1406. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1407. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1408. // Store
  1409. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1410. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1411. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1412. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1413. }
  1414. }
  1415. #else
  1416. // scalar
  1417. for (int i = 0; i < nb; i++) {
  1418. const float d = x[i].d;
  1419. const uint8_t * restrict pp = x[i].qs;
  1420. for (int l = 0; l < QK4_0; l += 2) {
  1421. const uint8_t vi = pp[l/2];
  1422. const int8_t vi0 = vi & 0x0F;
  1423. const int8_t vi1 = vi >> 4;
  1424. const float v0 = (vi0 - 8)*d;
  1425. const float v1 = (vi1 - 8)*d;
  1426. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1427. y[i*QK4_0 + l + 0] = v0;
  1428. y[i*QK4_0 + l + 1] = v1;
  1429. assert(!isnan(y[i*QK4_0 + l + 0]));
  1430. assert(!isnan(y[i*QK4_0 + l + 1]));
  1431. }
  1432. }
  1433. #endif
  1434. }
  1435. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1436. assert(k % QK4_1 == 0);
  1437. const int nb = k / QK4_1;
  1438. const block_q4_1 * restrict x = vx;
  1439. #if defined(__AVX2__)
  1440. for (int i = 0; i < nb; i++) {
  1441. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1442. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1443. const uint8_t * restrict pp = x[i].qs;
  1444. for (int l = 0; l < QK4_1; l += 32) {
  1445. // Load 32x4-bit integers into 32x8-bit integers
  1446. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1447. // Convert to 16-bit int
  1448. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1449. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1450. // Convert to 32-bit int -> float 32
  1451. const __m256 vf[4] = {
  1452. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1453. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1456. };
  1457. // Scale, add m and store
  1458. for (int j = 0; j < 4; j++) {
  1459. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1460. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1461. }
  1462. }
  1463. }
  1464. #elif defined(__ARM_NEON)
  1465. for (int i = 0; i < nb; i++) {
  1466. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1467. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1468. const uint8_t * restrict pp = x[i].qs;
  1469. for (int l = 0; l < QK4_1; l += 16) {
  1470. // Load 16x4-bit integers into 8x8-bit integers
  1471. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1472. // Expand 4-bit qs to 8-bit bytes
  1473. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1474. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1475. // Interleave and combine
  1476. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1477. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1478. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1479. // convert to 2x uint16x8_t
  1480. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1481. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1482. // convert to 4x float32x4_t
  1483. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1484. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1485. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1486. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1487. // multiply by d and add m
  1488. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1489. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1490. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1491. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1492. // Store
  1493. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1494. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1495. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1496. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1497. }
  1498. }
  1499. #else
  1500. for (int i = 0; i < nb; i++) {
  1501. const float d = x[i].d;
  1502. const float m = x[i].m;
  1503. const uint8_t * restrict pp = x[i].qs;
  1504. for (int l = 0; l < QK4_1; l += 2) {
  1505. const uint8_t vi = pp[l/2];
  1506. const int8_t vi0 = vi & 0x0F;
  1507. const int8_t vi1 = vi >> 4;
  1508. const float v0 = vi0*d + m;
  1509. const float v1 = vi1*d + m;
  1510. y[i*QK4_1 + l + 0] = v0;
  1511. y[i*QK4_1 + l + 1] = v1;
  1512. assert(!isnan(y[i*QK4_1 + l + 0]));
  1513. assert(!isnan(y[i*QK4_1 + l + 1]));
  1514. }
  1515. }
  1516. #endif
  1517. }
  1518. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1519. assert(k % QK4_2 == 0);
  1520. const int nb = k / QK4_2;
  1521. const block_q4_2 * restrict x = vx;
  1522. for (int i = 0; i < nb; i++) {
  1523. const float d = GGML_FP16_TO_FP32(x[i].d);
  1524. const uint8_t * restrict pp = x[i].qs;
  1525. for (int l = 0; l < QK4_2; l += 2) {
  1526. const uint8_t vi = pp[l/2];
  1527. const int8_t vi0 = vi & 0x0F;
  1528. const int8_t vi1 = vi >> 4;
  1529. const float v0 = (vi0 - 8)*d;
  1530. const float v1 = (vi1 - 8)*d;
  1531. y[i*QK4_2 + l + 0] = v0;
  1532. y[i*QK4_2 + l + 1] = v1;
  1533. assert(!isnan(y[i*QK4_2 + l + 0]));
  1534. assert(!isnan(y[i*QK4_2 + l + 1]));
  1535. }
  1536. }
  1537. }
  1538. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1539. assert(k % QK4_3 == 0);
  1540. const int nb = k / QK4_3;
  1541. const block_q4_3 * restrict x = vx;
  1542. for (int i = 0; i < nb; i++) {
  1543. const float d = GGML_FP16_TO_FP32(x[i].d);
  1544. const float m = GGML_FP16_TO_FP32(x[i].m);
  1545. const uint8_t * restrict pp = x[i].qs;
  1546. for (int l = 0; l < QK4_3; l += 2) {
  1547. const uint8_t vi = pp[l/2];
  1548. const int8_t vi0 = vi & 0x0F;
  1549. const int8_t vi1 = vi >> 4;
  1550. const float v0 = vi0*d + m;
  1551. const float v1 = vi1*d + m;
  1552. y[i*QK4_3 + l + 0] = v0;
  1553. y[i*QK4_3 + l + 1] = v1;
  1554. assert(!isnan(y[i*QK4_3 + l + 0]));
  1555. assert(!isnan(y[i*QK4_3 + l + 1]));
  1556. }
  1557. }
  1558. }
  1559. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1560. assert(k % QK5_0 == 0);
  1561. const int nb = k / QK5_0;
  1562. const block_q5_0 * restrict x = vx;
  1563. for (int i = 0; i < nb; i++) {
  1564. const float d = GGML_FP16_TO_FP32(x[i].d);
  1565. const uint8_t * restrict pp = x[i].qs;
  1566. uint32_t qh;
  1567. memcpy(&qh, x[i].qh, sizeof(qh));
  1568. for (int l = 0; l < QK5_0; l += 2) {
  1569. const uint8_t vi = pp[l/2];
  1570. // extract the 5-th bit from qh
  1571. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1572. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1573. const int8_t vi0 = (vi & 0x0F) | vh0;
  1574. const int8_t vi1 = (vi >> 4) | vh1;
  1575. const float v0 = (vi0 - 16)*d;
  1576. const float v1 = (vi1 - 16)*d;
  1577. y[i*QK5_0 + l + 0] = v0;
  1578. y[i*QK5_0 + l + 1] = v1;
  1579. assert(!isnan(y[i*QK5_0 + l + 0]));
  1580. assert(!isnan(y[i*QK5_0 + l + 1]));
  1581. }
  1582. }
  1583. }
  1584. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1585. assert(k % QK5_1 == 0);
  1586. const int nb = k / QK5_1;
  1587. const block_q5_1 * restrict x = vx;
  1588. for (int i = 0; i < nb; i++) {
  1589. const float d = GGML_FP16_TO_FP32(x[i].d);
  1590. const float m = GGML_FP16_TO_FP32(x[i].m);
  1591. const uint8_t * restrict pp = x[i].qs;
  1592. uint32_t qh;
  1593. memcpy(&qh, x[i].qh, sizeof(qh));
  1594. for (int l = 0; l < QK5_1; l += 2) {
  1595. const uint8_t vi = pp[l/2];
  1596. // extract the 5-th bit from qh
  1597. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1598. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1599. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1600. const uint8_t vi1 = (vi >> 4) | vh1;
  1601. const float v0 = vi0*d + m;
  1602. const float v1 = vi1*d + m;
  1603. y[i*QK5_1 + l + 0] = v0;
  1604. y[i*QK5_1 + l + 1] = v1;
  1605. assert(!isnan(y[i*QK5_1 + l + 0]));
  1606. assert(!isnan(y[i*QK5_1 + l + 1]));
  1607. }
  1608. }
  1609. }
  1610. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1611. assert(k % QK8_0 == 0);
  1612. const int nb = k / QK8_0;
  1613. const block_q8_0 * restrict x = vx;
  1614. for (int i = 0; i < nb; i++) {
  1615. const float d = x[i].d;
  1616. const int8_t * restrict pp = x[i].qs;
  1617. for (int l = 0; l < QK8_0; ++l) {
  1618. y[i*QK8_0 + l] = pp[l]*d;
  1619. }
  1620. }
  1621. }
  1622. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1623. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1624. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1625. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1626. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1627. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1628. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1629. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1630. [GGML_TYPE_Q4_0] = {
  1631. .dequantize_row_q = dequantize_row_q4_0,
  1632. .quantize_row_q = quantize_row_q4_0,
  1633. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1634. .quantize_row_q_dot = quantize_row_q8_0,
  1635. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1636. .vec_dot_type = GGML_TYPE_Q8_0,
  1637. },
  1638. [GGML_TYPE_Q4_1] = {
  1639. .dequantize_row_q = dequantize_row_q4_1,
  1640. .quantize_row_q = quantize_row_q4_1,
  1641. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1642. .quantize_row_q_dot = quantize_row_q8_1,
  1643. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1644. .vec_dot_type = GGML_TYPE_Q8_1,
  1645. },
  1646. [GGML_TYPE_Q4_2] = {
  1647. .dequantize_row_q = dequantize_row_q4_2,
  1648. .quantize_row_q = quantize_row_q4_2,
  1649. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1650. .quantize_row_q_dot = quantize_row_q8_0,
  1651. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1652. .vec_dot_type = GGML_TYPE_Q8_0,
  1653. },
  1654. [GGML_TYPE_Q4_3] = {
  1655. .dequantize_row_q = dequantize_row_q4_3,
  1656. .quantize_row_q = quantize_row_q4_3,
  1657. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1658. .quantize_row_q_dot = quantize_row_q8_1,
  1659. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1660. .vec_dot_type = GGML_TYPE_Q8_1,
  1661. },
  1662. [GGML_TYPE_Q5_0] = {
  1663. .dequantize_row_q = dequantize_row_q5_0,
  1664. .quantize_row_q = quantize_row_q5_0,
  1665. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1666. .quantize_row_q_dot = quantize_row_q8_0,
  1667. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1668. .vec_dot_type = GGML_TYPE_Q8_0,
  1669. },
  1670. [GGML_TYPE_Q5_1] = {
  1671. .dequantize_row_q = dequantize_row_q5_1,
  1672. .quantize_row_q = quantize_row_q5_1,
  1673. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1674. .quantize_row_q_dot = quantize_row_q8_1,
  1675. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1676. .vec_dot_type = GGML_TYPE_Q8_1,
  1677. },
  1678. [GGML_TYPE_Q8_0] = {
  1679. .dequantize_row_q = dequantize_row_q8_0,
  1680. .quantize_row_q = quantize_row_q8_0,
  1681. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1682. .quantize_row_q_dot = quantize_row_q8_0,
  1683. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1684. .vec_dot_type = GGML_TYPE_Q8_0,
  1685. },
  1686. [GGML_TYPE_Q8_1] = {
  1687. .dequantize_row_q = NULL, // TODO
  1688. .quantize_row_q = quantize_row_q8_1,
  1689. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1690. .quantize_row_q_dot = quantize_row_q8_1,
  1691. .vec_dot_q = NULL, // TODO
  1692. .vec_dot_type = GGML_TYPE_Q8_1,
  1693. },
  1694. };
  1695. // For internal test use
  1696. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1697. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1698. return quantize_fns[i];
  1699. }
  1700. //
  1701. // simd mappings
  1702. //
  1703. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1704. // we then implement the fundamental computation operations below using only these macros
  1705. // adding support for new architectures requires to define the corresponding SIMD macros
  1706. //
  1707. // GGML_F32_STEP / GGML_F16_STEP
  1708. // number of elements to process in a single step
  1709. //
  1710. // GGML_F32_EPR / GGML_F16_EPR
  1711. // number of elements to fit in a single register
  1712. //
  1713. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1714. #define GGML_SIMD
  1715. // F32 NEON
  1716. #define GGML_F32_STEP 16
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 float32x4_t
  1719. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1720. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1721. #define GGML_F32x4_LOAD vld1q_f32
  1722. #define GGML_F32x4_STORE vst1q_f32
  1723. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1724. #define GGML_F32x4_ADD vaddq_f32
  1725. #define GGML_F32x4_MUL vmulq_f32
  1726. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1727. #define GGML_F32x4_REDUCE(res, x) \
  1728. { \
  1729. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1730. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1731. } \
  1732. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1733. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1734. } \
  1735. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1736. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1737. } \
  1738. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1739. }
  1740. #define GGML_F32_VEC GGML_F32x4
  1741. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1742. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1743. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1744. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1745. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1746. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1747. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1748. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1749. // F16 NEON
  1750. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1751. #define GGML_F16_STEP 32
  1752. #define GGML_F16_EPR 8
  1753. #define GGML_F16x8 float16x8_t
  1754. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1755. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1756. #define GGML_F16x8_LOAD vld1q_f16
  1757. #define GGML_F16x8_STORE vst1q_f16
  1758. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1759. #define GGML_F16x8_ADD vaddq_f16
  1760. #define GGML_F16x8_MUL vmulq_f16
  1761. #define GGML_F16x8_REDUCE(res, x) \
  1762. { \
  1763. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1764. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1765. } \
  1766. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1767. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1768. } \
  1769. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1770. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1771. } \
  1772. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1773. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1774. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1775. }
  1776. #define GGML_F16_VEC GGML_F16x8
  1777. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1778. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1779. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1780. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1781. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1782. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1783. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1784. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1785. #else
  1786. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1787. // and take advantage of the vcvt_ functions to convert to/from FP16
  1788. #define GGML_F16_STEP 16
  1789. #define GGML_F16_EPR 4
  1790. #define GGML_F32Cx4 float32x4_t
  1791. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1792. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1793. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1794. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1795. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1796. #define GGML_F32Cx4_ADD vaddq_f32
  1797. #define GGML_F32Cx4_MUL vmulq_f32
  1798. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1799. #define GGML_F16_VEC GGML_F32Cx4
  1800. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1801. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1802. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1803. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1804. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1805. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1806. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1807. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1808. #endif
  1809. #elif defined(__AVX__)
  1810. #define GGML_SIMD
  1811. // F32 AVX
  1812. #define GGML_F32_STEP 32
  1813. #define GGML_F32_EPR 8
  1814. #define GGML_F32x8 __m256
  1815. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1816. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1817. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1818. #define GGML_F32x8_STORE _mm256_storeu_ps
  1819. #if defined(__FMA__)
  1820. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1821. #else
  1822. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1823. #endif
  1824. #define GGML_F32x8_ADD _mm256_add_ps
  1825. #define GGML_F32x8_MUL _mm256_mul_ps
  1826. #define GGML_F32x8_REDUCE(res, x) \
  1827. { \
  1828. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1829. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1830. } \
  1831. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1832. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1833. } \
  1834. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1835. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1836. } \
  1837. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1838. _mm256_extractf128_ps(x[0], 1)); \
  1839. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1840. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1841. }
  1842. // TODO: is this optimal ?
  1843. #define GGML_F32_VEC GGML_F32x8
  1844. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1845. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1846. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1847. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1848. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1849. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1850. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1851. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1852. // F16 AVX
  1853. #define GGML_F16_STEP 32
  1854. #define GGML_F16_EPR 8
  1855. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1856. #define GGML_F32Cx8 __m256
  1857. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1858. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1859. #if defined(__F16C__)
  1860. // the _mm256_cvt intrinsics require F16C
  1861. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1862. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1863. #else
  1864. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1865. float tmp[8];
  1866. for (int i = 0; i < 8; i++)
  1867. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1868. return _mm256_loadu_ps(tmp);
  1869. }
  1870. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1871. float arr[8];
  1872. _mm256_storeu_ps(arr, y);
  1873. for (int i = 0; i < 8; i++)
  1874. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1875. }
  1876. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1877. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1878. #endif
  1879. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1880. #define GGML_F32Cx8_ADD _mm256_add_ps
  1881. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1882. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1883. #define GGML_F16_VEC GGML_F32Cx8
  1884. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1885. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1886. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1887. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1888. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1889. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1890. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1891. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1892. #elif defined(__POWER9_VECTOR__)
  1893. #define GGML_SIMD
  1894. // F32 POWER9
  1895. #define GGML_F32_STEP 32
  1896. #define GGML_F32_EPR 4
  1897. #define GGML_F32x4 vector float
  1898. #define GGML_F32x4_ZERO 0.0f
  1899. #define GGML_F32x4_SET1 vec_splats
  1900. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1901. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1902. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1903. #define GGML_F32x4_ADD vec_add
  1904. #define GGML_F32x4_MUL vec_mul
  1905. #define GGML_F32x4_REDUCE(res, x) \
  1906. { \
  1907. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1908. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1909. } \
  1910. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1911. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1912. } \
  1913. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1914. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1915. } \
  1916. res = vec_extract(x[0], 0) + \
  1917. vec_extract(x[0], 1) + \
  1918. vec_extract(x[0], 2) + \
  1919. vec_extract(x[0], 3); \
  1920. }
  1921. #define GGML_F32_VEC GGML_F32x4
  1922. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1923. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1924. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1925. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1926. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1927. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1928. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1929. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1930. // F16 POWER9
  1931. #define GGML_F16_STEP GGML_F32_STEP
  1932. #define GGML_F16_EPR GGML_F32_EPR
  1933. #define GGML_F16_VEC GGML_F32x4
  1934. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1935. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1936. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1937. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1938. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1939. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1940. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1941. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1942. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1943. #define GGML_F16_VEC_STORE(p, r, i) \
  1944. if (i & 0x1) \
  1945. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1946. r[i - GGML_ENDIAN_BYTE(0)]), \
  1947. 0, p - GGML_F16_EPR)
  1948. #elif defined(__wasm_simd128__)
  1949. #define GGML_SIMD
  1950. // F32 WASM
  1951. #define GGML_F32_STEP 16
  1952. #define GGML_F32_EPR 4
  1953. #define GGML_F32x4 v128_t
  1954. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1955. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1956. #define GGML_F32x4_LOAD wasm_v128_load
  1957. #define GGML_F32x4_STORE wasm_v128_store
  1958. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1959. #define GGML_F32x4_ADD wasm_f32x4_add
  1960. #define GGML_F32x4_MUL wasm_f32x4_mul
  1961. #define GGML_F32x4_REDUCE(res, x) \
  1962. { \
  1963. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1964. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1965. } \
  1966. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1967. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1968. } \
  1969. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1970. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1971. } \
  1972. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1973. wasm_f32x4_extract_lane(x[0], 1) + \
  1974. wasm_f32x4_extract_lane(x[0], 2) + \
  1975. wasm_f32x4_extract_lane(x[0], 3); \
  1976. }
  1977. #define GGML_F32_VEC GGML_F32x4
  1978. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1979. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1980. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1981. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1982. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1983. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1984. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1985. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1986. // F16 WASM
  1987. #define GGML_F16_STEP 16
  1988. #define GGML_F16_EPR 4
  1989. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1990. float tmp[4];
  1991. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1992. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1993. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1994. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1995. return wasm_v128_load(tmp);
  1996. }
  1997. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1998. float tmp[4];
  1999. wasm_v128_store(tmp, x);
  2000. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2001. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2002. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2003. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2004. }
  2005. #define GGML_F16x4 v128_t
  2006. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2007. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2008. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2009. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2010. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2011. #define GGML_F16x4_ADD wasm_f32x4_add
  2012. #define GGML_F16x4_MUL wasm_f32x4_mul
  2013. #define GGML_F16x4_REDUCE(res, x) \
  2014. { \
  2015. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2016. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2017. } \
  2018. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2019. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2020. } \
  2021. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2022. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2023. } \
  2024. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2025. wasm_f32x4_extract_lane(x[0], 1) + \
  2026. wasm_f32x4_extract_lane(x[0], 2) + \
  2027. wasm_f32x4_extract_lane(x[0], 3); \
  2028. }
  2029. #define GGML_F16_VEC GGML_F16x4
  2030. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2031. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2032. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2034. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2035. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2036. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2037. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2038. #elif defined(__SSE3__)
  2039. #define GGML_SIMD
  2040. // F32 SSE
  2041. #define GGML_F32_STEP 32
  2042. #define GGML_F32_EPR 4
  2043. #define GGML_F32x4 __m128
  2044. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2045. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2046. #define GGML_F32x4_LOAD _mm_loadu_ps
  2047. #define GGML_F32x4_STORE _mm_storeu_ps
  2048. #if defined(__FMA__)
  2049. // TODO: Does this work?
  2050. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2051. #else
  2052. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2053. #endif
  2054. #define GGML_F32x4_ADD _mm_add_ps
  2055. #define GGML_F32x4_MUL _mm_mul_ps
  2056. #define GGML_F32x4_REDUCE(res, x) \
  2057. { \
  2058. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2059. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2060. } \
  2061. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2062. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2063. } \
  2064. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2065. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2066. } \
  2067. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2068. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2069. }
  2070. // TODO: is this optimal ?
  2071. #define GGML_F32_VEC GGML_F32x4
  2072. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2073. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2074. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2075. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2076. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2077. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2078. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2079. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2080. // F16 SSE
  2081. #define GGML_F16_STEP 32
  2082. #define GGML_F16_EPR 4
  2083. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2084. float tmp[4];
  2085. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2086. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2087. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2088. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2089. return _mm_loadu_ps(tmp);
  2090. }
  2091. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2092. float arr[4];
  2093. _mm_storeu_ps(arr, y);
  2094. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2095. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2096. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2097. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2098. }
  2099. #define GGML_F32Cx4 __m128
  2100. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2101. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2102. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2103. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2104. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2105. #define GGML_F32Cx4_ADD _mm_add_ps
  2106. #define GGML_F32Cx4_MUL _mm_mul_ps
  2107. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2108. #define GGML_F16_VEC GGML_F32Cx4
  2109. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2110. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2111. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2112. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2113. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2114. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2115. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2116. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2117. #endif
  2118. // GGML_F32_ARR / GGML_F16_ARR
  2119. // number of registers to use per step
  2120. #ifdef GGML_SIMD
  2121. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2122. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2123. #endif
  2124. //
  2125. // fundamental operations
  2126. //
  2127. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2128. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2129. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2130. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2131. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2132. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2133. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2134. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2135. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2136. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2137. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2138. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2139. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2140. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2141. #ifdef GGML_SIMD
  2142. float sumf = 0.0f;
  2143. const int np = (n & ~(GGML_F32_STEP - 1));
  2144. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2145. GGML_F32_VEC ax[GGML_F32_ARR];
  2146. GGML_F32_VEC ay[GGML_F32_ARR];
  2147. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2148. for (int j = 0; j < GGML_F32_ARR; j++) {
  2149. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2150. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2151. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2152. }
  2153. }
  2154. // reduce sum0..sum3 to sum0
  2155. GGML_F32_VEC_REDUCE(sumf, sum);
  2156. // leftovers
  2157. for (int i = np; i < n; ++i) {
  2158. sumf += x[i]*y[i];
  2159. }
  2160. #else
  2161. // scalar
  2162. ggml_float sumf = 0.0;
  2163. for (int i = 0; i < n; ++i) {
  2164. sumf += (ggml_float)(x[i]*y[i]);
  2165. }
  2166. #endif
  2167. *s = sumf;
  2168. }
  2169. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2170. ggml_float sumf = 0.0;
  2171. #if defined(GGML_SIMD)
  2172. const int np = (n & ~(GGML_F16_STEP - 1));
  2173. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2174. GGML_F16_VEC ax[GGML_F16_ARR];
  2175. GGML_F16_VEC ay[GGML_F16_ARR];
  2176. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2177. for (int j = 0; j < GGML_F16_ARR; j++) {
  2178. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2179. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2180. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2181. }
  2182. }
  2183. // reduce sum0..sum3 to sum0
  2184. GGML_F16_VEC_REDUCE(sumf, sum);
  2185. // leftovers
  2186. for (int i = np; i < n; ++i) {
  2187. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2188. }
  2189. #else
  2190. for (int i = 0; i < n; ++i) {
  2191. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2192. }
  2193. #endif
  2194. *s = sumf;
  2195. }
  2196. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2197. const int nb = n / QK8_0;
  2198. assert(n % QK8_0 == 0);
  2199. assert(nb % 2 == 0);
  2200. const block_q4_0 * restrict x = vx;
  2201. const block_q8_0 * restrict y = vy;
  2202. #if defined(__ARM_NEON)
  2203. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2204. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2205. for (int i = 0; i < nb; i += 2) {
  2206. const block_q4_0 * restrict x0 = &x[i + 0];
  2207. const block_q4_0 * restrict x1 = &x[i + 1];
  2208. const block_q8_0 * restrict y0 = &y[i + 0];
  2209. const block_q8_0 * restrict y1 = &y[i + 1];
  2210. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2211. const int8x16_t s8b = vdupq_n_s8(0x8);
  2212. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2213. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2214. // 4-bit -> 8-bit
  2215. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2216. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2217. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2218. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2219. // sub 8
  2220. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2221. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2222. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2223. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2224. // load y
  2225. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2226. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2227. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2228. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2229. // interleave
  2230. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2231. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2232. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2233. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2234. #if defined(__ARM_FEATURE_DOTPROD)
  2235. // dot product into int32x4_t
  2236. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2237. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2238. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2239. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2240. #else
  2241. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2242. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2243. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2244. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2245. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2246. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2247. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2248. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2249. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2250. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2251. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2252. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2253. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2254. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2255. #endif
  2256. }
  2257. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2258. #elif defined(__AVX2__)
  2259. // Initialize accumulator with zeros
  2260. __m256 acc = _mm256_setzero_ps();
  2261. // Main loop
  2262. for (int i = 0; i < nb; ++i) {
  2263. /* Compute combined scale for the block */
  2264. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2265. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2266. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2267. const __m256i off = _mm256_set1_epi8( 8 );
  2268. bx = _mm256_sub_epi8( bx, off );
  2269. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2270. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2271. /* Multiply q with scale and accumulate */
  2272. acc = _mm256_fmadd_ps( d, q, acc );
  2273. }
  2274. *s = hsum_float_8(acc);
  2275. #elif defined(__AVX__)
  2276. // Initialize accumulator with zeros
  2277. __m256 acc = _mm256_setzero_ps();
  2278. // Main loop
  2279. for (int i = 0; i < nb; ++i) {
  2280. // Compute combined scale for the block
  2281. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2282. __m128i i32[2];
  2283. for (int j = 0; j < 2; ++j) {
  2284. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2285. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2286. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2287. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2288. const __m128i off = _mm_set1_epi8( 8 );
  2289. bx = _mm_sub_epi8( bx, off );
  2290. // Get absolute values of x vectors
  2291. const __m128i ax = _mm_sign_epi8(bx, bx);
  2292. // Sign the values of the y vectors
  2293. const __m128i sy = _mm_sign_epi8(by, bx);
  2294. // Perform multiplication and create 16-bit values
  2295. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2296. const __m128i ones = _mm_set1_epi16(1);
  2297. i32[j] = _mm_madd_epi16(ones, dot);
  2298. }
  2299. // Convert int32_t to float
  2300. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2301. // Apply the scale, and accumulate
  2302. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2303. }
  2304. *s = hsum_float_8(acc);
  2305. #else
  2306. // scalar
  2307. float sumf = 0.0;
  2308. for (int i = 0; i < nb; i++) {
  2309. const float d0 = x[i].d;
  2310. const float d1 = y[i].d;
  2311. const uint8_t * restrict p0 = x[i].qs;
  2312. const int8_t * restrict p1 = y[i].qs;
  2313. int sumi = 0;
  2314. for (int j = 0; j < QK8_0/2; j++) {
  2315. const uint8_t v0 = p0[j];
  2316. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2317. const int i1 = (int8_t) (v0 >> 4) - 8;
  2318. const int i2 = p1[2*j + 0];
  2319. const int i3 = p1[2*j + 1];
  2320. sumi += i0*i2 + i1*i3;
  2321. }
  2322. sumf += d0*d1*sumi;
  2323. }
  2324. *s = sumf;
  2325. #endif
  2326. }
  2327. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2328. const int nb = n / QK8_1;
  2329. assert(n % QK8_1 == 0);
  2330. assert(nb % 2 == 0);
  2331. const block_q4_1 * restrict x = vx;
  2332. const block_q8_1 * restrict y = vy;
  2333. // TODO: add AVX / WASM SIMD / etc
  2334. #if defined(__ARM_NEON)
  2335. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2336. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2337. float summs = 0;
  2338. for (int i = 0; i < nb; i += 2) {
  2339. const block_q4_1 * restrict x0 = &x[i + 0];
  2340. const block_q4_1 * restrict x1 = &x[i + 1];
  2341. const block_q8_1 * restrict y0 = &y[i + 0];
  2342. const block_q8_1 * restrict y1 = &y[i + 1];
  2343. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2344. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2345. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2346. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2347. // 4-bit -> 8-bit
  2348. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2349. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2350. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2351. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2352. // interleave
  2353. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2354. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2355. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2356. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2357. // load y
  2358. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2359. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2360. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2361. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2362. #if defined(__ARM_FEATURE_DOTPROD)
  2363. // dot product into int32x4_t
  2364. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2365. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2366. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2367. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2368. #else
  2369. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2370. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2371. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2372. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2373. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2374. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2375. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2376. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2377. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2378. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2379. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2380. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2381. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2382. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2383. #endif
  2384. }
  2385. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2386. #elif defined(__AVX2__)
  2387. // Initialize accumulator with zeros
  2388. __m256 acc = _mm256_setzero_ps();
  2389. float summs = 0;
  2390. // Main loop
  2391. for (int i = 0; i < nb; ++i) {
  2392. const float * d0 = &x[i].d;
  2393. const float * d1 = &y[i].d;
  2394. summs += x[i].m * (y[i].s0 + y[i].s1);
  2395. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2396. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2397. // Compute combined scales
  2398. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2399. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2400. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2401. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2402. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2403. // Accumulate d0*d1*x*y
  2404. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2405. }
  2406. *s = hsum_float_8(acc) + summs;
  2407. #else
  2408. // scalar
  2409. float sumf = 0.0;
  2410. for (int i = 0; i < nb; i++) {
  2411. const float d0 = x[i].d;
  2412. const float m0 = x[i].m;
  2413. const float d1 = y[i].d;
  2414. const uint8_t * restrict p0 = x[i].qs;
  2415. const int8_t * restrict p1 = y[i].qs;
  2416. // TODO: this is very slow ..
  2417. for (int j = 0; j < QK8_1/2; j++) {
  2418. const uint8_t v0 = p0[j];
  2419. const float f0 = d0*(v0 & 0x0F) + m0;
  2420. const float f1 = d0*(v0 >> 4) + m0;
  2421. const float f2 = d1*p1[2*j + 0];
  2422. const float f3 = d1*p1[2*j + 1];
  2423. sumf += f0*f2 + f1*f3;
  2424. }
  2425. }
  2426. *s = sumf;
  2427. #endif
  2428. }
  2429. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2430. const int nb = n / QK8_0;
  2431. assert(n % QK8_0 == 0);
  2432. assert(nb % 2 == 0);
  2433. assert(QK8_0 == 2*QK4_2);
  2434. const block_q4_2 * restrict x = vx;
  2435. const block_q8_0 * restrict y = vy;
  2436. #if defined(__ARM_NEON)
  2437. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2438. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2439. for (int i = 0; i < nb; i += 2) {
  2440. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2441. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2442. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2443. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2444. const block_q8_0 * restrict y0 = &y[i + 0];
  2445. const block_q8_0 * restrict y1 = &y[i + 1];
  2446. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2447. const int8x16_t s8b = vdupq_n_s8(0x8);
  2448. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2449. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2450. // 4-bit -> 8-bit
  2451. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2452. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2453. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2454. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2455. // sub 8
  2456. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2457. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2458. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2459. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2460. // interleave
  2461. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2462. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2463. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2464. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2465. // load y
  2466. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2467. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2468. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2469. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2470. #if defined(__ARM_FEATURE_DOTPROD)
  2471. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2472. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2473. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2474. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2475. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2476. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2477. #else
  2478. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2479. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2480. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2481. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2482. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2483. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2484. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2485. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2486. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2487. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2488. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2489. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2490. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2491. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2492. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2493. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2494. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2495. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2496. #endif
  2497. }
  2498. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2499. #elif defined(__AVX2__)
  2500. // Initialize accumulator with zeros
  2501. __m256 acc = _mm256_setzero_ps();
  2502. // Main loop
  2503. for (int i = 0; i < nb; i++) {
  2504. /* Compute combined scale for the block */
  2505. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2506. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2507. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2508. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2509. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2510. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2511. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2512. const __m256i off = _mm256_set1_epi8(8);
  2513. bx = _mm256_sub_epi8(bx, off);
  2514. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2515. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2516. /* Multiply q with scale and accumulate */
  2517. acc = _mm256_fmadd_ps(d, q, acc);
  2518. }
  2519. *s = hsum_float_8(acc);
  2520. #else
  2521. // scalar
  2522. float sumf = 0.0;
  2523. for (int i = 0; i < nb; i++) {
  2524. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2525. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2526. const int8_t * restrict y0 = y[i].qs;
  2527. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2528. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2529. int sumi_0 = 0;
  2530. int sumi_1 = 0;
  2531. for (int j = 0; j < QK8_0/4; j++) {
  2532. const uint8_t v0 = x0[j];
  2533. const uint8_t v1 = x1[j];
  2534. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2535. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2536. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2537. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2538. const int i2_0 = y0[2*j + 0];
  2539. const int i3_0 = y0[2*j + 1];
  2540. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2541. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2542. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2543. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2544. }
  2545. sumf += (d0 * y[i].d) * sumi_0;
  2546. sumf += (d1 * y[i].d) * sumi_1;
  2547. }
  2548. *s = sumf;
  2549. #endif
  2550. }
  2551. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2552. const int nb = n / QK8_1;
  2553. assert(n % QK8_1 == 0);
  2554. assert(nb % 2 == 0);
  2555. assert(QK8_1 == 2*QK4_3);
  2556. const block_q4_3 * restrict x = vx;
  2557. const block_q8_1 * restrict y = vy;
  2558. #if defined(__ARM_NEON)
  2559. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2560. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2561. float summs0 = 0.0f;
  2562. float summs1 = 0.0f;
  2563. for (int i = 0; i < nb; ++i) {
  2564. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2565. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2566. const block_q8_1 * restrict y0 = &y[i + 0];
  2567. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2568. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2569. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2570. // 4-bit -> 8-bit
  2571. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
  2572. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2573. // interleave
  2574. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2575. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2576. // load y
  2577. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2578. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2579. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2580. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2581. #if defined(__ARM_FEATURE_DOTPROD)
  2582. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2583. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2584. #else
  2585. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2586. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2587. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2588. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2589. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2590. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2591. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2592. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2593. #endif
  2594. }
  2595. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2596. #elif defined(__AVX2__)
  2597. // Initialize accumulator with zeros
  2598. __m256 acc = _mm256_setzero_ps();
  2599. float summs = 0.0f;
  2600. // Main loop
  2601. for (int i = 0; i < nb; i++) {
  2602. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2603. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2604. const __m256 dx = _mm256_set_m128(d1, d0);
  2605. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2606. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2607. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2608. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2609. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2610. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2611. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2612. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2613. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2614. }
  2615. *s = hsum_float_8(acc) + summs;
  2616. #else
  2617. // scalar
  2618. float sumf = 0.0;
  2619. for (int i = 0; i < nb; i++) {
  2620. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2621. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2622. const int8_t * restrict y0 = y[i].qs;
  2623. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2624. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2625. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2626. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2627. int sxy_0 = 0;
  2628. int sxy_1 = 0;
  2629. for (int j = 0; j < QK8_1/4; j++) {
  2630. const uint8_t v0 = x0[j];
  2631. const uint8_t v1 = x1[j];
  2632. const int x0_0 = v0 & 0x0F;
  2633. const int x1_0 = v0 >> 4;
  2634. const int x0_1 = v1 & 0x0F;
  2635. const int x1_1 = v1 >> 4;
  2636. const int y0_0 = y0[2*j + 0];
  2637. const int y1_0 = y0[2*j + 1];
  2638. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2639. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2640. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2641. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2642. }
  2643. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2644. }
  2645. *s = sumf;
  2646. #endif
  2647. }
  2648. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2649. const int nb = n / QK8_0;
  2650. assert(n % QK8_0 == 0);
  2651. assert(nb % 2 == 0);
  2652. assert(QK8_0 == QK5_0);
  2653. const block_q5_0 * restrict x = vx;
  2654. const block_q8_0 * restrict y = vy;
  2655. #if defined(__ARM_NEON)
  2656. float32x4_t sumv = vdupq_n_f32(0.0f);
  2657. uint64_t tmp[4];
  2658. for (int i = 0; i < nb; ++i) {
  2659. const block_q5_0 * restrict x0 = &x[i];
  2660. const block_q8_0 * restrict y0 = &y[i];
  2661. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2662. const int8x16_t s16b = vdupq_n_s8(0x10);
  2663. // extract the 5th bit
  2664. uint32_t qh;
  2665. memcpy(&qh, x0->qh, sizeof(qh));
  2666. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2667. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2668. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2669. tmp[3] = table_b2b_u[(qh >> 24) ];
  2670. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2671. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2672. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2673. // 4-bit -> 8-bit
  2674. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2675. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2676. // interleave
  2677. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2678. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2679. // add high bit and sub 16
  2680. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2681. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2682. // load y
  2683. const int8x16_t v1l = vld1q_s8(y0->qs);
  2684. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2685. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2686. #if defined(__ARM_FEATURE_DOTPROD)
  2687. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2688. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2689. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2690. #else
  2691. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2692. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2693. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2694. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2695. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2696. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2697. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2698. #endif
  2699. }
  2700. *s = vaddvq_f32(sumv);
  2701. #elif defined(__AVX2__)
  2702. // Initialize accumulator with zeros
  2703. __m256 acc = _mm256_setzero_ps();
  2704. // Main loop
  2705. for (int i = 0; i < nb; i++) {
  2706. /* Compute combined scale for the block */
  2707. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2708. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2709. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2710. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2711. bx = _mm256_or_si256(bx, bxhi);
  2712. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2713. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2714. /* Multiply q with scale and accumulate */
  2715. acc = _mm256_fmadd_ps(d, q, acc);
  2716. }
  2717. *s = hsum_float_8(acc);
  2718. #else
  2719. // scalar
  2720. float sumf = 0.0;
  2721. for (int i = 0; i < nb; i++) {
  2722. const uint8_t * restrict x0 = x[i].qs;
  2723. const int8_t * restrict y0 = y[i].qs;
  2724. uint32_t qh;
  2725. memcpy(&qh, x[i].qh, sizeof(qh));
  2726. const float d = GGML_FP16_TO_FP32(x[i].d);
  2727. int sxy = 0;
  2728. for (int j = 0; j < QK8_0/2; j++) {
  2729. const uint8_t v0 = x0[j];
  2730. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2731. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2732. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2733. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2734. const int y0_0 = y0[2*j + 0];
  2735. const int y1_0 = y0[2*j + 1];
  2736. sxy += x0_0*y0_0 + x1_0*y1_0;
  2737. }
  2738. sumf += (d*sxy)*y[i].d;
  2739. }
  2740. *s = sumf;
  2741. #endif
  2742. }
  2743. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2744. const int nb = n / QK8_1;
  2745. assert(n % QK8_1 == 0);
  2746. assert(nb % 2 == 0);
  2747. assert(QK8_1 == QK5_1);
  2748. const block_q5_1 * restrict x = vx;
  2749. const block_q8_1 * restrict y = vy;
  2750. #if defined(__ARM_NEON)
  2751. float32x4_t sumv = vdupq_n_f32(0.0f);
  2752. float summs = 0.0f;
  2753. uint64_t tmp[4];
  2754. for (int i = 0; i < nb; ++i) {
  2755. const block_q5_1 * restrict x0 = &x[i];
  2756. const block_q8_1 * restrict y0 = &y[i];
  2757. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2758. // extract the 5th bit
  2759. uint32_t qh;
  2760. memcpy(&qh, x0->qh, sizeof(qh));
  2761. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2762. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2763. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2764. tmp[3] = table_b2b_u[(qh >> 24) ];
  2765. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2766. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2767. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2768. // 4-bit -> 8-bit
  2769. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2770. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2771. // interleave
  2772. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2773. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2774. // add
  2775. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2776. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2777. // load y
  2778. const int8x16_t v1l = vld1q_s8(y0->qs);
  2779. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2780. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2781. #if defined(__ARM_FEATURE_DOTPROD)
  2782. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2783. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2784. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2785. #else
  2786. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2787. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2788. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2789. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2790. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2791. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2792. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2793. #endif
  2794. }
  2795. *s = vaddvq_f32(sumv) + summs;
  2796. #elif defined(__AVX2__)
  2797. // Initialize accumulator with zeros
  2798. __m256 acc = _mm256_setzero_ps();
  2799. float summs = 0.0f;
  2800. // Main loop
  2801. for (int i = 0; i < nb; i++) {
  2802. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2803. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2804. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2805. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2806. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2807. bx = _mm256_or_si256(bx, bxhi);
  2808. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2809. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2810. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2811. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2812. }
  2813. *s = hsum_float_8(acc) + summs;
  2814. #else
  2815. float sumf = 0.0;
  2816. for (int i = 0; i < nb; i++) {
  2817. const uint8_t * restrict x0 = x[i].qs;
  2818. const int8_t * restrict y0 = y[i].qs;
  2819. uint32_t qh;
  2820. memcpy(&qh, x[i].qh, sizeof(qh));
  2821. const float d = GGML_FP16_TO_FP32(x[i].d);
  2822. const float m = GGML_FP16_TO_FP32(x[i].m);
  2823. int sxy = 0;
  2824. for (int j = 0; j < QK8_1/2; j++) {
  2825. const uint8_t v0 = x0[j];
  2826. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2827. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2828. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2829. const int x1_0 = (v0 >> 4) | x1_0h;
  2830. const int y0_0 = y0[2*j + 0];
  2831. const int y1_0 = y0[2*j + 1];
  2832. sxy += x0_0*y0_0 + x1_0*y1_0;
  2833. }
  2834. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2835. }
  2836. *s = sumf;
  2837. #endif
  2838. }
  2839. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2840. const int nb = n / QK8_0;
  2841. assert(n % QK8_0 == 0);
  2842. assert(nb % 2 == 0);
  2843. assert(QK8_0 == QK8_0);
  2844. const block_q8_0 * restrict x = vx;
  2845. const block_q8_0 * restrict y = vy;
  2846. #if defined(__ARM_NEON)
  2847. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2848. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2849. for (int i = 0; i < nb; i += 2) {
  2850. const block_q8_0 * restrict x0 = &x[i + 0];
  2851. const block_q8_0 * restrict x1 = &x[i + 1];
  2852. const block_q8_0 * restrict y0 = &y[i + 0];
  2853. const block_q8_0 * restrict y1 = &y[i + 1];
  2854. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2855. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2856. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2857. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2858. // load y
  2859. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2860. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2861. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2862. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2863. #if defined(__ARM_FEATURE_DOTPROD)
  2864. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2865. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2866. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2867. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2868. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2869. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2870. #else
  2871. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2872. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2873. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2874. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2875. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2876. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2877. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2878. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2879. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2880. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2881. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2882. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2883. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2884. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2885. #endif
  2886. }
  2887. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2888. #elif defined(__AVX2__)
  2889. // Initialize accumulator with zeros
  2890. __m256 acc = _mm256_setzero_ps();
  2891. // Main loop
  2892. for (int i = 0; i < nb; ++i) {
  2893. // Compute combined scale for the block
  2894. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2895. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2896. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2897. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2898. // Multiply q with scale and accumulate
  2899. acc = _mm256_fmadd_ps( d, q, acc );
  2900. }
  2901. *s = hsum_float_8(acc);
  2902. #else
  2903. // scalar
  2904. float sumf = 0.0;
  2905. for (int i = 0; i < nb; i++) {
  2906. const int8_t * restrict x0 = x[i].qs;
  2907. const int8_t * restrict y0 = y[i].qs;
  2908. int sumi = 0;
  2909. for (int j = 0; j < QK8_0; j++) {
  2910. const int v0 = x0[j];
  2911. const int v1 = y0[j];
  2912. sumi += v0*v1;
  2913. }
  2914. sumf += (x[i].d*y[i].d)*sumi;
  2915. }
  2916. *s = sumf;
  2917. #endif
  2918. }
  2919. // compute GGML_VEC_DOT_UNROLL dot products at once
  2920. // xs - x row stride in bytes
  2921. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2922. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2923. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2924. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2925. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2926. }
  2927. #if defined(GGML_SIMD)
  2928. const int np = (n & ~(GGML_F16_STEP - 1));
  2929. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2930. GGML_F16_VEC ax[GGML_F16_ARR];
  2931. GGML_F16_VEC ay[GGML_F16_ARR];
  2932. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2933. for (int j = 0; j < GGML_F16_ARR; j++) {
  2934. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2935. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2936. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2937. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2938. }
  2939. }
  2940. }
  2941. // reduce sum0..sum3 to sum0
  2942. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2943. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2944. }
  2945. // leftovers
  2946. for (int i = np; i < n; ++i) {
  2947. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2948. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2949. }
  2950. }
  2951. #else
  2952. for (int i = 0; i < n; ++i) {
  2953. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2954. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2955. }
  2956. }
  2957. #endif
  2958. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2959. s[i] = sumf[i];
  2960. }
  2961. }
  2962. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2963. #if defined(GGML_SIMD)
  2964. const int np = (n & ~(GGML_F32_STEP - 1));
  2965. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2966. GGML_F32_VEC ax[GGML_F32_ARR];
  2967. GGML_F32_VEC ay[GGML_F32_ARR];
  2968. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2969. for (int j = 0; j < GGML_F32_ARR; j++) {
  2970. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2971. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2972. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2973. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2974. }
  2975. }
  2976. // leftovers
  2977. for (int i = np; i < n; ++i) {
  2978. y[i] += x[i]*v;
  2979. }
  2980. #else
  2981. // scalar
  2982. for (int i = 0; i < n; ++i) {
  2983. y[i] += x[i]*v;
  2984. }
  2985. #endif
  2986. }
  2987. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2988. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2989. #if defined(GGML_SIMD)
  2990. const int np = (n & ~(GGML_F32_STEP - 1));
  2991. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2992. GGML_F32_VEC ay[GGML_F32_ARR];
  2993. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2994. for (int j = 0; j < GGML_F32_ARR; j++) {
  2995. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2996. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2997. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2998. }
  2999. }
  3000. // leftovers
  3001. for (int i = np; i < n; ++i) {
  3002. y[i] *= v;
  3003. }
  3004. #else
  3005. // scalar
  3006. for (int i = 0; i < n; ++i) {
  3007. y[i] *= v;
  3008. }
  3009. #endif
  3010. }
  3011. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3012. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3013. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3014. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3015. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3016. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3017. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3018. static const float GELU_COEF_A = 0.044715f;
  3019. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3020. inline static float ggml_gelu_f32(float x) {
  3021. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3022. }
  3023. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3024. const uint16_t * i16 = (const uint16_t *) x;
  3025. for (int i = 0; i < n; ++i) {
  3026. y[i] = table_gelu_f16[i16[i]];
  3027. }
  3028. }
  3029. #ifdef GGML_GELU_FP16
  3030. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3031. uint16_t t;
  3032. for (int i = 0; i < n; ++i) {
  3033. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3034. memcpy(&t, &fp16, sizeof(uint16_t));
  3035. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3036. }
  3037. }
  3038. #else
  3039. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3040. for (int i = 0; i < n; ++i) {
  3041. y[i] = ggml_gelu_f32(x[i]);
  3042. }
  3043. }
  3044. #endif
  3045. // Sigmoid Linear Unit (SiLU) function
  3046. inline static float ggml_silu_f32(float x) {
  3047. return x/(1.0f + expf(-x));
  3048. }
  3049. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3050. const uint16_t * i16 = (const uint16_t *) x;
  3051. for (int i = 0; i < n; ++i) {
  3052. y[i] = table_silu_f16[i16[i]];
  3053. }
  3054. }
  3055. #ifdef GGML_SILU_FP16
  3056. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3057. uint16_t t;
  3058. for (int i = 0; i < n; ++i) {
  3059. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3060. memcpy(&t, &fp16, sizeof(uint16_t));
  3061. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3062. }
  3063. }
  3064. #else
  3065. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3066. for (int i = 0; i < n; ++i) {
  3067. y[i] = ggml_silu_f32(x[i]);
  3068. }
  3069. }
  3070. #endif
  3071. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3072. #ifndef GGML_USE_ACCELERATE
  3073. ggml_float sum = 0.0;
  3074. for (int i = 0; i < n; ++i) {
  3075. sum += (ggml_float)x[i];
  3076. }
  3077. *s = sum;
  3078. #else
  3079. vDSP_sve(x, 1, s, n);
  3080. #endif
  3081. }
  3082. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3083. ggml_float sum = 0.0;
  3084. for (int i = 0; i < n; ++i) {
  3085. sum += (ggml_float)x[i];
  3086. }
  3087. *s = sum;
  3088. }
  3089. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3090. #ifndef GGML_USE_ACCELERATE
  3091. float max = -INFINITY;
  3092. for (int i = 0; i < n; ++i) {
  3093. max = MAX(max, x[i]);
  3094. }
  3095. *s = max;
  3096. #else
  3097. vDSP_maxv(x, 1, s, n);
  3098. #endif
  3099. }
  3100. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3101. ggml_vec_norm_f32(n, s, x);
  3102. *s = 1.f/(*s);
  3103. }
  3104. //
  3105. // logging
  3106. //
  3107. #if (GGML_DEBUG >= 1)
  3108. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3109. #else
  3110. #define GGML_PRINT_DEBUG(...)
  3111. #endif
  3112. #if (GGML_DEBUG >= 5)
  3113. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3114. #else
  3115. #define GGML_PRINT_DEBUG_5(...)
  3116. #endif
  3117. #if (GGML_DEBUG >= 10)
  3118. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3119. #else
  3120. #define GGML_PRINT_DEBUG_10(...)
  3121. #endif
  3122. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3123. //
  3124. // data types
  3125. //
  3126. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3127. [GGML_TYPE_F32] = 1,
  3128. [GGML_TYPE_F16] = 1,
  3129. [GGML_TYPE_Q4_0] = QK4_0,
  3130. [GGML_TYPE_Q4_1] = QK4_1,
  3131. [GGML_TYPE_Q4_2] = QK4_2,
  3132. [GGML_TYPE_Q4_3] = QK4_3,
  3133. [GGML_TYPE_Q5_0] = QK5_0,
  3134. [GGML_TYPE_Q5_1] = QK5_1,
  3135. [GGML_TYPE_Q8_0] = QK8_0,
  3136. [GGML_TYPE_Q8_1] = QK8_1,
  3137. [GGML_TYPE_I8] = 1,
  3138. [GGML_TYPE_I16] = 1,
  3139. [GGML_TYPE_I32] = 1,
  3140. };
  3141. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3142. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3143. [GGML_TYPE_F32] = sizeof(float),
  3144. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3145. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3146. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3147. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3148. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  3149. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3150. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3151. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3152. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3153. [GGML_TYPE_I8] = sizeof(int8_t),
  3154. [GGML_TYPE_I16] = sizeof(int16_t),
  3155. [GGML_TYPE_I32] = sizeof(int32_t),
  3156. };
  3157. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3158. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3159. [GGML_TYPE_F32] = "f32",
  3160. [GGML_TYPE_F16] = "f16",
  3161. [GGML_TYPE_Q4_0] = "q4_0",
  3162. [GGML_TYPE_Q4_1] = "q4_1",
  3163. [GGML_TYPE_Q4_2] = "q4_2",
  3164. [GGML_TYPE_Q4_3] = "q4_3",
  3165. [GGML_TYPE_Q5_0] = "q5_0",
  3166. [GGML_TYPE_Q5_1] = "q5_1",
  3167. [GGML_TYPE_Q8_0] = "q8_0",
  3168. [GGML_TYPE_Q8_1] = "q8_1",
  3169. [GGML_TYPE_I8] = "i8",
  3170. [GGML_TYPE_I16] = "i16",
  3171. [GGML_TYPE_I32] = "i32",
  3172. };
  3173. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3174. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3175. [GGML_TYPE_F32] = false,
  3176. [GGML_TYPE_F16] = false,
  3177. [GGML_TYPE_Q4_0] = true,
  3178. [GGML_TYPE_Q4_1] = true,
  3179. [GGML_TYPE_Q4_2] = true,
  3180. [GGML_TYPE_Q4_3] = true,
  3181. [GGML_TYPE_Q5_0] = true,
  3182. [GGML_TYPE_Q5_1] = true,
  3183. [GGML_TYPE_Q8_0] = true,
  3184. [GGML_TYPE_Q8_1] = true,
  3185. [GGML_TYPE_I8] = false,
  3186. [GGML_TYPE_I16] = false,
  3187. [GGML_TYPE_I32] = false,
  3188. };
  3189. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3190. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3191. "NONE",
  3192. "DUP",
  3193. "ADD",
  3194. "SUB",
  3195. "MUL",
  3196. "DIV",
  3197. "SQR",
  3198. "SQRT",
  3199. "SUM",
  3200. "MEAN",
  3201. "REPEAT",
  3202. "ABS",
  3203. "SGN",
  3204. "NEG",
  3205. "STEP",
  3206. "RELU",
  3207. "GELU",
  3208. "SILU",
  3209. "NORM",
  3210. "RMS_NORM",
  3211. "MUL_MAT",
  3212. "SCALE",
  3213. "CPY",
  3214. "CONT",
  3215. "RESHAPE",
  3216. "VIEW",
  3217. "PERMUTE",
  3218. "TRANSPOSE",
  3219. "GET_ROWS",
  3220. "DIAG_MASK_INF",
  3221. "SOFT_MAX",
  3222. "ROPE",
  3223. "CONV_1D_1S",
  3224. "CONV_1D_2S",
  3225. "FLASH_ATTN",
  3226. "FLASH_FF",
  3227. "MAP_UNARY",
  3228. "MAP_BINARY",
  3229. };
  3230. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3231. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3232. "none",
  3233. "x",
  3234. "x+y",
  3235. "x-y",
  3236. "x*y",
  3237. "x/y",
  3238. "x^2",
  3239. "√x",
  3240. "Σx",
  3241. "Σx/n",
  3242. "repeat(x)",
  3243. "abs(x)",
  3244. "sgn(x)",
  3245. "-x",
  3246. "step(x)",
  3247. "relu(x)",
  3248. "gelu(x)",
  3249. "silu(x)",
  3250. "norm(x)",
  3251. "rms_norm(x)",
  3252. "X*Y",
  3253. "x*v",
  3254. "x-\\>y",
  3255. "cont(x)",
  3256. "reshape(x)",
  3257. "view(x)",
  3258. "permute(x)",
  3259. "transpose(x)",
  3260. "get_rows(x)",
  3261. "diag_mask_inf(x)",
  3262. "soft_max(x)",
  3263. "rope(x)",
  3264. "conv_1d_1s(x)",
  3265. "conv_1d_2s(x)",
  3266. "flash_attn(x)",
  3267. "flash_ff(x)",
  3268. "f(x)",
  3269. "f(x,y)",
  3270. };
  3271. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3272. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3273. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3274. //
  3275. // ggml context
  3276. //
  3277. struct ggml_context {
  3278. size_t mem_size;
  3279. void * mem_buffer;
  3280. bool mem_buffer_owned;
  3281. bool no_alloc;
  3282. int n_objects;
  3283. struct ggml_object * objects_begin;
  3284. struct ggml_object * objects_end;
  3285. struct ggml_scratch scratch;
  3286. struct ggml_scratch scratch_save;
  3287. };
  3288. struct ggml_context_container {
  3289. bool used;
  3290. struct ggml_context context;
  3291. };
  3292. //
  3293. // compute types
  3294. //
  3295. enum ggml_task_type {
  3296. GGML_TASK_INIT = 0,
  3297. GGML_TASK_COMPUTE,
  3298. GGML_TASK_FINALIZE,
  3299. };
  3300. struct ggml_compute_params {
  3301. enum ggml_task_type type;
  3302. int ith, nth;
  3303. // work buffer for all threads
  3304. size_t wsize;
  3305. void * wdata;
  3306. };
  3307. //
  3308. // ggml state
  3309. //
  3310. struct ggml_state {
  3311. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3312. };
  3313. // global state
  3314. static struct ggml_state g_state;
  3315. static atomic_int g_state_barrier = 0;
  3316. // barrier via spin lock
  3317. inline static void ggml_critical_section_start(void) {
  3318. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3319. while (processing > 0) {
  3320. // wait for other threads to finish
  3321. atomic_fetch_sub(&g_state_barrier, 1);
  3322. sched_yield(); // TODO: reconsider this
  3323. processing = atomic_fetch_add(&g_state_barrier, 1);
  3324. }
  3325. }
  3326. // TODO: make this somehow automatically executed
  3327. // some sort of "sentry" mechanism
  3328. inline static void ggml_critical_section_end(void) {
  3329. atomic_fetch_sub(&g_state_barrier, 1);
  3330. }
  3331. ////////////////////////////////////////////////////////////////////////////////
  3332. void ggml_print_object(const struct ggml_object * obj) {
  3333. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3334. obj->offs, obj->size, (const void *) obj->next);
  3335. }
  3336. void ggml_print_objects(const struct ggml_context * ctx) {
  3337. struct ggml_object * obj = ctx->objects_begin;
  3338. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3339. while (obj != NULL) {
  3340. ggml_print_object(obj);
  3341. obj = obj->next;
  3342. }
  3343. GGML_PRINT("%s: --- end ---\n", __func__);
  3344. }
  3345. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3346. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3347. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3348. }
  3349. int ggml_nrows(const struct ggml_tensor * tensor) {
  3350. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3351. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3352. }
  3353. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3355. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3356. }
  3357. int ggml_blck_size(enum ggml_type type) {
  3358. return GGML_BLCK_SIZE[type];
  3359. }
  3360. size_t ggml_type_size(enum ggml_type type) {
  3361. return GGML_TYPE_SIZE[type];
  3362. }
  3363. float ggml_type_sizef(enum ggml_type type) {
  3364. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3365. }
  3366. const char * ggml_type_name(enum ggml_type type) {
  3367. return GGML_TYPE_NAME[type];
  3368. }
  3369. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3370. return GGML_TYPE_SIZE[tensor->type];
  3371. }
  3372. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3373. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3374. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3375. }
  3376. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3378. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3379. }
  3380. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3381. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3382. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3383. }
  3384. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3385. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3386. return
  3387. (t0->ne[0] == t1->ne[0]) &&
  3388. (t0->ne[2] == t1->ne[2]) &&
  3389. (t0->ne[3] == t1->ne[3]);
  3390. }
  3391. bool ggml_is_quantized(enum ggml_type type) {
  3392. return GGML_IS_QUANTIZED[type];
  3393. }
  3394. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3395. return tensor->nb[0] > tensor->nb[1];
  3396. }
  3397. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3399. return
  3400. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3401. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3402. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3403. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3404. }
  3405. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3406. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3407. return
  3408. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3409. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3410. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3411. }
  3412. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3413. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3414. return
  3415. (t0->ne[0] == t1->ne[0] ) &&
  3416. (t0->ne[1] == t1->ne[1] ) &&
  3417. (t0->ne[2] == t1->ne[2] ) &&
  3418. (t0->ne[3] == t1->ne[3] );
  3419. }
  3420. // check if t1 can be represented as a repeatition of t0
  3421. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3422. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3423. return
  3424. (t1->ne[0]%t0->ne[0] == 0) &&
  3425. (t1->ne[1]%t0->ne[1] == 0) &&
  3426. (t1->ne[2]%t0->ne[2] == 0) &&
  3427. (t1->ne[3]%t0->ne[3] == 0);
  3428. }
  3429. static inline int ggml_up32(int n) {
  3430. return (n + 31) & ~31;
  3431. }
  3432. static inline int ggml_up64(int n) {
  3433. return (n + 63) & ~63;
  3434. }
  3435. static inline int ggml_up(int n, int m) {
  3436. // assert m is a power of 2
  3437. GGML_ASSERT((m & (m - 1)) == 0);
  3438. return (n + m - 1) & ~(m - 1);
  3439. }
  3440. // assert that pointer is aligned to GGML_MEM_ALIGN
  3441. #define ggml_assert_aligned(ptr) \
  3442. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3443. ////////////////////////////////////////////////////////////////////////////////
  3444. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3445. // make this function thread safe
  3446. ggml_critical_section_start();
  3447. static bool is_first_call = true;
  3448. if (is_first_call) {
  3449. // initialize time system (required on Windows)
  3450. ggml_time_init();
  3451. // initialize GELU, SILU and EXP F32 tables
  3452. {
  3453. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3454. ggml_fp16_t ii;
  3455. for (int i = 0; i < (1 << 16); ++i) {
  3456. uint16_t ui = i;
  3457. memcpy(&ii, &ui, sizeof(ii));
  3458. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3459. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3460. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3461. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3462. }
  3463. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3464. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3465. }
  3466. // initialize g_state
  3467. {
  3468. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3469. g_state = (struct ggml_state) {
  3470. /*.contexts =*/ { { 0 } },
  3471. };
  3472. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3473. g_state.contexts[i].used = false;
  3474. }
  3475. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3476. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3477. }
  3478. // initialize cuBLAS
  3479. #if defined(GGML_USE_CUBLAS)
  3480. ggml_init_cublas();
  3481. #endif
  3482. is_first_call = false;
  3483. }
  3484. // find non-used context in g_state
  3485. struct ggml_context * ctx = NULL;
  3486. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3487. if (!g_state.contexts[i].used) {
  3488. g_state.contexts[i].used = true;
  3489. ctx = &g_state.contexts[i].context;
  3490. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3491. break;
  3492. }
  3493. }
  3494. if (ctx == NULL) {
  3495. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3496. ggml_critical_section_end();
  3497. return NULL;
  3498. }
  3499. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3500. *ctx = (struct ggml_context) {
  3501. /*.mem_size =*/ mem_size,
  3502. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3503. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3504. /*.no_alloc =*/ params.no_alloc,
  3505. /*.n_objects =*/ 0,
  3506. /*.objects_begin =*/ NULL,
  3507. /*.objects_end =*/ NULL,
  3508. /*.scratch =*/ { 0, 0, NULL, },
  3509. /*.scratch_save =*/ { 0, 0, NULL, },
  3510. };
  3511. GGML_ASSERT(ctx->mem_buffer != NULL);
  3512. ggml_assert_aligned(ctx->mem_buffer);
  3513. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3514. ggml_critical_section_end();
  3515. return ctx;
  3516. }
  3517. void ggml_free(struct ggml_context * ctx) {
  3518. // make this function thread safe
  3519. ggml_critical_section_start();
  3520. bool found = false;
  3521. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3522. if (&g_state.contexts[i].context == ctx) {
  3523. g_state.contexts[i].used = false;
  3524. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3525. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3526. if (ctx->mem_buffer_owned) {
  3527. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3528. }
  3529. found = true;
  3530. break;
  3531. }
  3532. }
  3533. if (!found) {
  3534. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3535. }
  3536. ggml_critical_section_end();
  3537. }
  3538. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3539. return ctx->objects_end->offs + ctx->objects_end->size;
  3540. }
  3541. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3542. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3543. ctx->scratch = scratch;
  3544. return result;
  3545. }
  3546. ////////////////////////////////////////////////////////////////////////////////
  3547. struct ggml_tensor * ggml_new_tensor_impl(
  3548. struct ggml_context * ctx,
  3549. enum ggml_type type,
  3550. int n_dims,
  3551. const int64_t* ne,
  3552. void* data) {
  3553. // always insert objects at the end of the context's memory pool
  3554. struct ggml_object * obj_cur = ctx->objects_end;
  3555. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3556. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3557. const size_t cur_end = cur_offs + cur_size;
  3558. size_t size_needed = 0;
  3559. if (data == NULL && !ctx->no_alloc) {
  3560. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3561. for (int i = 1; i < n_dims; i++) {
  3562. size_needed *= ne[i];
  3563. }
  3564. // align to GGML_MEM_ALIGN
  3565. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3566. }
  3567. char * const mem_buffer = ctx->mem_buffer;
  3568. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3569. if (ctx->scratch.data == NULL || data != NULL) {
  3570. size_needed += sizeof(struct ggml_tensor);
  3571. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3572. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3573. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3574. assert(false);
  3575. return NULL;
  3576. }
  3577. *obj_new = (struct ggml_object) {
  3578. .offs = cur_end + GGML_OBJECT_SIZE,
  3579. .size = size_needed,
  3580. .next = NULL,
  3581. };
  3582. } else {
  3583. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3584. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3585. assert(false);
  3586. return NULL;
  3587. }
  3588. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3589. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3590. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3591. assert(false);
  3592. return NULL;
  3593. }
  3594. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3595. *obj_new = (struct ggml_object) {
  3596. .offs = cur_end + GGML_OBJECT_SIZE,
  3597. .size = sizeof(struct ggml_tensor),
  3598. .next = NULL,
  3599. };
  3600. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3601. ctx->scratch.offs += size_needed;
  3602. }
  3603. if (obj_cur != NULL) {
  3604. obj_cur->next = obj_new;
  3605. } else {
  3606. // this is the first object in this context
  3607. ctx->objects_begin = obj_new;
  3608. }
  3609. ctx->objects_end = obj_new;
  3610. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3611. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3612. ggml_assert_aligned(result);
  3613. *result = (struct ggml_tensor) {
  3614. /*.type =*/ type,
  3615. /*.n_dims =*/ n_dims,
  3616. /*.ne =*/ { 1, 1, 1, 1 },
  3617. /*.nb =*/ { 0, 0, 0, 0 },
  3618. /*.op =*/ GGML_OP_NONE,
  3619. /*.is_param =*/ false,
  3620. /*.grad =*/ NULL,
  3621. /*.src0 =*/ NULL,
  3622. /*.src1 =*/ NULL,
  3623. /*.opt =*/ { NULL },
  3624. /*.n_tasks =*/ 0,
  3625. /*.perf_runs =*/ 0,
  3626. /*.perf_cycles =*/ 0,
  3627. /*.perf_time_us =*/ 0,
  3628. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3629. /*.pad =*/ { 0 },
  3630. };
  3631. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3632. //ggml_assert_aligned(result->data);
  3633. for (int i = 0; i < n_dims; i++) {
  3634. result->ne[i] = ne[i];
  3635. }
  3636. result->nb[0] = GGML_TYPE_SIZE[type];
  3637. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3638. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3639. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3640. }
  3641. ctx->n_objects++;
  3642. return result;
  3643. }
  3644. struct ggml_tensor * ggml_new_tensor(
  3645. struct ggml_context * ctx,
  3646. enum ggml_type type,
  3647. int n_dims,
  3648. const int64_t * ne) {
  3649. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3650. }
  3651. struct ggml_tensor * ggml_new_tensor_1d(
  3652. struct ggml_context * ctx,
  3653. enum ggml_type type,
  3654. int64_t ne0) {
  3655. return ggml_new_tensor(ctx, type, 1, &ne0);
  3656. }
  3657. struct ggml_tensor * ggml_new_tensor_2d(
  3658. struct ggml_context * ctx,
  3659. enum ggml_type type,
  3660. int64_t ne0,
  3661. int64_t ne1) {
  3662. const int64_t ne[2] = { ne0, ne1 };
  3663. return ggml_new_tensor(ctx, type, 2, ne);
  3664. }
  3665. struct ggml_tensor * ggml_new_tensor_3d(
  3666. struct ggml_context * ctx,
  3667. enum ggml_type type,
  3668. int64_t ne0,
  3669. int64_t ne1,
  3670. int64_t ne2) {
  3671. const int64_t ne[3] = { ne0, ne1, ne2 };
  3672. return ggml_new_tensor(ctx, type, 3, ne);
  3673. }
  3674. struct ggml_tensor * ggml_new_tensor_4d(
  3675. struct ggml_context * ctx,
  3676. enum ggml_type type,
  3677. int64_t ne0,
  3678. int64_t ne1,
  3679. int64_t ne2,
  3680. int64_t ne3) {
  3681. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3682. return ggml_new_tensor(ctx, type, 4, ne);
  3683. }
  3684. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3685. ctx->scratch_save = ctx->scratch;
  3686. ctx->scratch.data = NULL;
  3687. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3688. ctx->scratch = ctx->scratch_save;
  3689. ggml_set_i32(result, value);
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3693. ctx->scratch_save = ctx->scratch;
  3694. ctx->scratch.data = NULL;
  3695. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3696. ctx->scratch = ctx->scratch_save;
  3697. ggml_set_f32(result, value);
  3698. return result;
  3699. }
  3700. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3701. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3702. }
  3703. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3704. memset(tensor->data, 0, ggml_nbytes(tensor));
  3705. return tensor;
  3706. }
  3707. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3708. const int n = ggml_nrows(tensor);
  3709. const int nc = tensor->ne[0];
  3710. const size_t n1 = tensor->nb[1];
  3711. char * const data = tensor->data;
  3712. switch (tensor->type) {
  3713. case GGML_TYPE_I8:
  3714. {
  3715. assert(tensor->nb[0] == sizeof(int8_t));
  3716. for (int i = 0; i < n; i++) {
  3717. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3718. }
  3719. } break;
  3720. case GGML_TYPE_I16:
  3721. {
  3722. assert(tensor->nb[0] == sizeof(int16_t));
  3723. for (int i = 0; i < n; i++) {
  3724. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3725. }
  3726. } break;
  3727. case GGML_TYPE_I32:
  3728. {
  3729. assert(tensor->nb[0] == sizeof(int32_t));
  3730. for (int i = 0; i < n; i++) {
  3731. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3732. }
  3733. } break;
  3734. case GGML_TYPE_F16:
  3735. {
  3736. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3737. for (int i = 0; i < n; i++) {
  3738. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3739. }
  3740. } break;
  3741. case GGML_TYPE_F32:
  3742. {
  3743. assert(tensor->nb[0] == sizeof(float));
  3744. for (int i = 0; i < n; i++) {
  3745. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3746. }
  3747. } break;
  3748. default:
  3749. {
  3750. GGML_ASSERT(false);
  3751. } break;
  3752. }
  3753. return tensor;
  3754. }
  3755. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3756. const int n = ggml_nrows(tensor);
  3757. const int nc = tensor->ne[0];
  3758. const size_t n1 = tensor->nb[1];
  3759. char * const data = tensor->data;
  3760. switch (tensor->type) {
  3761. case GGML_TYPE_I8:
  3762. {
  3763. assert(tensor->nb[0] == sizeof(int8_t));
  3764. for (int i = 0; i < n; i++) {
  3765. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3766. }
  3767. } break;
  3768. case GGML_TYPE_I16:
  3769. {
  3770. assert(tensor->nb[0] == sizeof(int16_t));
  3771. for (int i = 0; i < n; i++) {
  3772. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3773. }
  3774. } break;
  3775. case GGML_TYPE_I32:
  3776. {
  3777. assert(tensor->nb[0] == sizeof(int32_t));
  3778. for (int i = 0; i < n; i++) {
  3779. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3780. }
  3781. } break;
  3782. case GGML_TYPE_F16:
  3783. {
  3784. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3785. for (int i = 0; i < n; i++) {
  3786. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3787. }
  3788. } break;
  3789. case GGML_TYPE_F32:
  3790. {
  3791. assert(tensor->nb[0] == sizeof(float));
  3792. for (int i = 0; i < n; i++) {
  3793. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3794. }
  3795. } break;
  3796. default:
  3797. {
  3798. GGML_ASSERT(false);
  3799. } break;
  3800. }
  3801. return tensor;
  3802. }
  3803. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3804. switch (tensor->type) {
  3805. case GGML_TYPE_I8:
  3806. {
  3807. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3808. return ((int8_t *)(tensor->data))[i];
  3809. } break;
  3810. case GGML_TYPE_I16:
  3811. {
  3812. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3813. return ((int16_t *)(tensor->data))[i];
  3814. } break;
  3815. case GGML_TYPE_I32:
  3816. {
  3817. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3818. return ((int32_t *)(tensor->data))[i];
  3819. } break;
  3820. case GGML_TYPE_F16:
  3821. {
  3822. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3823. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3824. } break;
  3825. case GGML_TYPE_F32:
  3826. {
  3827. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3828. return ((float *)(tensor->data))[i];
  3829. } break;
  3830. default:
  3831. {
  3832. GGML_ASSERT(false);
  3833. } break;
  3834. }
  3835. return 0.0f;
  3836. }
  3837. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3838. switch (tensor->type) {
  3839. case GGML_TYPE_I8:
  3840. {
  3841. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3842. ((int8_t *)(tensor->data))[i] = value;
  3843. } break;
  3844. case GGML_TYPE_I16:
  3845. {
  3846. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3847. ((int16_t *)(tensor->data))[i] = value;
  3848. } break;
  3849. case GGML_TYPE_I32:
  3850. {
  3851. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3852. ((int32_t *)(tensor->data))[i] = value;
  3853. } break;
  3854. case GGML_TYPE_F16:
  3855. {
  3856. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3857. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3858. } break;
  3859. case GGML_TYPE_F32:
  3860. {
  3861. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3862. ((float *)(tensor->data))[i] = value;
  3863. } break;
  3864. default:
  3865. {
  3866. GGML_ASSERT(false);
  3867. } break;
  3868. }
  3869. }
  3870. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3871. switch (tensor->type) {
  3872. case GGML_TYPE_I8:
  3873. {
  3874. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3875. return ((int8_t *)(tensor->data))[i];
  3876. } break;
  3877. case GGML_TYPE_I16:
  3878. {
  3879. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3880. return ((int16_t *)(tensor->data))[i];
  3881. } break;
  3882. case GGML_TYPE_I32:
  3883. {
  3884. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3885. return ((int32_t *)(tensor->data))[i];
  3886. } break;
  3887. case GGML_TYPE_F16:
  3888. {
  3889. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3890. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3891. } break;
  3892. case GGML_TYPE_F32:
  3893. {
  3894. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3895. return ((float *)(tensor->data))[i];
  3896. } break;
  3897. default:
  3898. {
  3899. GGML_ASSERT(false);
  3900. } break;
  3901. }
  3902. return 0.0f;
  3903. }
  3904. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3905. switch (tensor->type) {
  3906. case GGML_TYPE_I8:
  3907. {
  3908. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3909. ((int8_t *)(tensor->data))[i] = value;
  3910. } break;
  3911. case GGML_TYPE_I16:
  3912. {
  3913. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3914. ((int16_t *)(tensor->data))[i] = value;
  3915. } break;
  3916. case GGML_TYPE_I32:
  3917. {
  3918. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3919. ((int32_t *)(tensor->data))[i] = value;
  3920. } break;
  3921. case GGML_TYPE_F16:
  3922. {
  3923. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3924. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3925. } break;
  3926. case GGML_TYPE_F32:
  3927. {
  3928. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3929. ((float *)(tensor->data))[i] = value;
  3930. } break;
  3931. default:
  3932. {
  3933. GGML_ASSERT(false);
  3934. } break;
  3935. }
  3936. }
  3937. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3938. return tensor->data;
  3939. }
  3940. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3941. assert(tensor->type == GGML_TYPE_F32);
  3942. return (float *)(tensor->data);
  3943. }
  3944. struct ggml_tensor * ggml_view_tensor(
  3945. struct ggml_context * ctx,
  3946. const struct ggml_tensor * src) {
  3947. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3948. result->nb[0] = src->nb[0];
  3949. result->nb[1] = src->nb[1];
  3950. result->nb[2] = src->nb[2];
  3951. result->nb[3] = src->nb[3];
  3952. return result;
  3953. }
  3954. ////////////////////////////////////////////////////////////////////////////////
  3955. // ggml_dup
  3956. struct ggml_tensor * ggml_dup_impl(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. bool inplace) {
  3960. bool is_node = false;
  3961. if (!inplace && (a->grad)) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. result->op = GGML_OP_DUP;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src0 = a;
  3968. result->src1 = NULL;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_dup(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a) {
  3974. return ggml_dup_impl(ctx, a, false);
  3975. }
  3976. struct ggml_tensor * ggml_dup_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_dup_impl(ctx, a, true);
  3980. }
  3981. // ggml_add
  3982. struct ggml_tensor * ggml_add_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. struct ggml_tensor * b,
  3986. bool inplace) {
  3987. GGML_ASSERT(ggml_are_same_shape(a, b));
  3988. bool is_node = false;
  3989. if (!inplace && (a->grad || b->grad)) {
  3990. is_node = true;
  3991. }
  3992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3993. result->op = GGML_OP_ADD;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src0 = a;
  3996. result->src1 = b;
  3997. return result;
  3998. }
  3999. struct ggml_tensor * ggml_add(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b) {
  4003. return ggml_add_impl(ctx, a, b, false);
  4004. }
  4005. struct ggml_tensor * ggml_add_inplace(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. struct ggml_tensor * b) {
  4009. return ggml_add_impl(ctx, a, b, true);
  4010. }
  4011. // ggml_sub
  4012. struct ggml_tensor * ggml_sub_impl(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. struct ggml_tensor * b,
  4016. bool inplace) {
  4017. GGML_ASSERT(ggml_are_same_shape(a, b));
  4018. bool is_node = false;
  4019. if (!inplace && (a->grad || b->grad)) {
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4023. result->op = GGML_OP_SUB;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = b;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_sub(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b) {
  4033. return ggml_sub_impl(ctx, a, b, false);
  4034. }
  4035. struct ggml_tensor * ggml_sub_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * b) {
  4039. return ggml_sub_impl(ctx, a, b, true);
  4040. }
  4041. // ggml_mul
  4042. struct ggml_tensor * ggml_mul_impl(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b,
  4046. bool inplace) {
  4047. GGML_ASSERT(ggml_are_same_shape(a, b));
  4048. bool is_node = false;
  4049. if (!inplace && (a->grad || b->grad)) {
  4050. is_node = true;
  4051. }
  4052. if (inplace) {
  4053. GGML_ASSERT(is_node == false);
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_MUL;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = b;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_mul(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. struct ggml_tensor * b) {
  4066. return ggml_mul_impl(ctx, a, b, false);
  4067. }
  4068. struct ggml_tensor * ggml_mul_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. return ggml_mul_impl(ctx, a, b, true);
  4073. }
  4074. // ggml_div
  4075. struct ggml_tensor * ggml_div_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. bool inplace) {
  4080. GGML_ASSERT(ggml_are_same_shape(a, b));
  4081. bool is_node = false;
  4082. if (!inplace && (a->grad || b->grad)) {
  4083. is_node = true;
  4084. }
  4085. if (inplace) {
  4086. GGML_ASSERT(is_node == false);
  4087. }
  4088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4089. result->op = GGML_OP_DIV;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src0 = a;
  4092. result->src1 = b;
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_div(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b) {
  4099. return ggml_div_impl(ctx, a, b, false);
  4100. }
  4101. struct ggml_tensor * ggml_div_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. return ggml_div_impl(ctx, a, b, true);
  4106. }
  4107. // ggml_sqr
  4108. struct ggml_tensor * ggml_sqr_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. bool inplace) {
  4112. bool is_node = false;
  4113. if (!inplace && (a->grad)) {
  4114. is_node = true;
  4115. }
  4116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4117. result->op = GGML_OP_SQR;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src0 = a;
  4120. result->src1 = NULL;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_sqr(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_sqr_impl(ctx, a, false);
  4127. }
  4128. struct ggml_tensor * ggml_sqr_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_sqr_impl(ctx, a, true);
  4132. }
  4133. // ggml_sqrt
  4134. struct ggml_tensor * ggml_sqrt_impl(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. bool inplace) {
  4138. bool is_node = false;
  4139. if (!inplace && (a->grad)) {
  4140. is_node = true;
  4141. }
  4142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4143. result->op = GGML_OP_SQRT;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src0 = a;
  4146. result->src1 = NULL;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_sqrt(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_sqrt_impl(ctx, a, false);
  4153. }
  4154. struct ggml_tensor * ggml_sqrt_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a) {
  4157. return ggml_sqrt_impl(ctx, a, true);
  4158. }
  4159. // ggml_sum
  4160. struct ggml_tensor * ggml_sum(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4168. result->op = GGML_OP_SUM;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src0 = a;
  4171. result->src1 = NULL;
  4172. return result;
  4173. }
  4174. // ggml_mean
  4175. struct ggml_tensor * ggml_mean(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. bool is_node = false;
  4179. if (a->grad) {
  4180. GGML_ASSERT(false); // TODO: implement
  4181. is_node = true;
  4182. }
  4183. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4184. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4185. result->op = GGML_OP_MEAN;
  4186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4187. result->src0 = a;
  4188. result->src1 = NULL;
  4189. return result;
  4190. }
  4191. // ggml_repeat
  4192. struct ggml_tensor * ggml_repeat(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b) {
  4196. GGML_ASSERT(ggml_can_repeat(a, b));
  4197. bool is_node = false;
  4198. if (a->grad) {
  4199. is_node = true;
  4200. }
  4201. if (ggml_are_same_shape(a, b) && !is_node) {
  4202. return a;
  4203. }
  4204. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4205. result->op = GGML_OP_REPEAT;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src0 = a;
  4208. result->src1 = b;
  4209. return result;
  4210. }
  4211. // ggml_abs
  4212. struct ggml_tensor * ggml_abs_impl(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. bool inplace) {
  4216. bool is_node = false;
  4217. if (!inplace && (a->grad)) {
  4218. is_node = true;
  4219. }
  4220. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4221. result->op = GGML_OP_ABS;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src0 = a;
  4224. result->src1 = NULL;
  4225. return result;
  4226. }
  4227. struct ggml_tensor * ggml_abs(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a) {
  4230. return ggml_abs_impl(ctx, a, false);
  4231. }
  4232. struct ggml_tensor * ggml_abs_inplace(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_abs_impl(ctx, a, true);
  4236. }
  4237. // ggml_sgn
  4238. struct ggml_tensor * ggml_sgn_impl(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. bool inplace) {
  4242. bool is_node = false;
  4243. if (!inplace && (a->grad)) {
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SGN;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src0 = a;
  4250. result->src1 = NULL;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_sgn(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a) {
  4256. return ggml_sgn_impl(ctx, a, false);
  4257. }
  4258. struct ggml_tensor * ggml_sgn_inplace(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a) {
  4261. return ggml_sgn_impl(ctx, a, true);
  4262. }
  4263. // ggml_neg
  4264. struct ggml_tensor * ggml_neg_impl(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. bool inplace) {
  4268. bool is_node = false;
  4269. if (!inplace && (a->grad)) {
  4270. is_node = true;
  4271. }
  4272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4273. result->op = GGML_OP_NEG;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src0 = a;
  4276. result->src1 = NULL;
  4277. return result;
  4278. }
  4279. struct ggml_tensor * ggml_neg(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_neg_impl(ctx, a, false);
  4283. }
  4284. struct ggml_tensor * ggml_neg_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_neg_impl(ctx, a, true);
  4288. }
  4289. // ggml_step
  4290. struct ggml_tensor * ggml_step_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. bool inplace) {
  4294. bool is_node = false;
  4295. if (!inplace && (a->grad)) {
  4296. is_node = true;
  4297. }
  4298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4299. result->op = GGML_OP_STEP;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src0 = a;
  4302. result->src1 = NULL;
  4303. return result;
  4304. }
  4305. struct ggml_tensor * ggml_step(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_step_impl(ctx, a, false);
  4309. }
  4310. struct ggml_tensor * ggml_step_inplace(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a) {
  4313. return ggml_step_impl(ctx, a, true);
  4314. }
  4315. // ggml_relu
  4316. struct ggml_tensor * ggml_relu_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. bool inplace) {
  4320. bool is_node = false;
  4321. if (!inplace && (a->grad)) {
  4322. is_node = true;
  4323. }
  4324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4325. result->op = GGML_OP_RELU;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src0 = a;
  4328. result->src1 = NULL;
  4329. return result;
  4330. }
  4331. struct ggml_tensor * ggml_relu(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a) {
  4334. return ggml_relu_impl(ctx, a, false);
  4335. }
  4336. struct ggml_tensor * ggml_relu_inplace(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a) {
  4339. return ggml_relu_impl(ctx, a, true);
  4340. }
  4341. // ggml_gelu
  4342. struct ggml_tensor * ggml_gelu_impl(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. bool inplace) {
  4346. bool is_node = false;
  4347. if (!inplace && (a->grad)) {
  4348. is_node = true;
  4349. }
  4350. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4351. result->op = GGML_OP_GELU;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src0 = a;
  4354. result->src1 = NULL;
  4355. return result;
  4356. }
  4357. struct ggml_tensor * ggml_gelu(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a) {
  4360. return ggml_gelu_impl(ctx, a, false);
  4361. }
  4362. struct ggml_tensor * ggml_gelu_inplace(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a) {
  4365. return ggml_gelu_impl(ctx, a, true);
  4366. }
  4367. // ggml_silu
  4368. struct ggml_tensor * ggml_silu_impl(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. bool inplace) {
  4372. bool is_node = false;
  4373. if (!inplace && (a->grad)) {
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4377. result->op = GGML_OP_SILU;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_silu(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_silu_impl(ctx, a, false);
  4387. }
  4388. struct ggml_tensor * ggml_silu_inplace(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_silu_impl(ctx, a, true);
  4392. }
  4393. // ggml_norm
  4394. struct ggml_tensor * ggml_norm_impl(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. bool inplace) {
  4398. bool is_node = false;
  4399. if (!inplace && (a->grad)) {
  4400. GGML_ASSERT(false); // TODO: implement backward
  4401. is_node = true;
  4402. }
  4403. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4404. result->op = GGML_OP_NORM;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src0 = a;
  4407. result->src1 = NULL; // TODO: maybe store epsilon here?
  4408. return result;
  4409. }
  4410. struct ggml_tensor * ggml_norm(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a) {
  4413. return ggml_norm_impl(ctx, a, false);
  4414. }
  4415. struct ggml_tensor * ggml_norm_inplace(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a) {
  4418. return ggml_norm_impl(ctx, a, true);
  4419. }
  4420. struct ggml_tensor * ggml_rms_norm_impl(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. bool inplace) {
  4424. bool is_node = false;
  4425. if (!inplace && (a->grad)) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4430. result->op = GGML_OP_RMS_NORM;
  4431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4432. result->src0 = a;
  4433. result->src1 = NULL; // TODO: maybe store epsilon here?
  4434. return result;
  4435. }
  4436. struct ggml_tensor * ggml_rms_norm(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. return ggml_rms_norm_impl(ctx, a, false);
  4440. }
  4441. struct ggml_tensor * ggml_rms_norm_inplace(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a) {
  4444. return ggml_rms_norm_impl(ctx, a, true);
  4445. }
  4446. // ggml_mul_mat
  4447. struct ggml_tensor * ggml_mul_mat(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b) {
  4451. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4452. GGML_ASSERT(!ggml_is_transposed(a));
  4453. bool is_node = false;
  4454. if (a->grad || b->grad) {
  4455. is_node = true;
  4456. }
  4457. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4458. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4459. result->op = GGML_OP_MUL_MAT;
  4460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4461. result->src0 = a;
  4462. result->src1 = b;
  4463. return result;
  4464. }
  4465. // ggml_scale
  4466. struct ggml_tensor * ggml_scale_impl(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b,
  4470. bool inplace) {
  4471. GGML_ASSERT(ggml_is_scalar(b));
  4472. GGML_ASSERT(ggml_is_padded_1d(a));
  4473. bool is_node = false;
  4474. if (!inplace && (a->grad || b->grad)) {
  4475. GGML_ASSERT(false); // TODO: implement backward
  4476. is_node = true;
  4477. }
  4478. // TODO: when implement backward, fix this:
  4479. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4480. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4481. result->op = GGML_OP_SCALE;
  4482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4483. result->src0 = a;
  4484. result->src1 = b;
  4485. return result;
  4486. }
  4487. struct ggml_tensor * ggml_scale(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. return ggml_scale_impl(ctx, a, b, false);
  4492. }
  4493. struct ggml_tensor * ggml_scale_inplace(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. return ggml_scale_impl(ctx, a, b, true);
  4498. }
  4499. // ggml_cpy
  4500. struct ggml_tensor * ggml_cpy_impl(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b,
  4504. bool inplace) {
  4505. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4506. bool is_node = false;
  4507. if (!inplace && (a->grad || b->grad)) {
  4508. GGML_ASSERT(false); // TODO: implement backward
  4509. is_node = true;
  4510. }
  4511. // make a view of the destination
  4512. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4513. result->op = GGML_OP_CPY;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src0 = a;
  4516. result->src1 = b;
  4517. return result;
  4518. }
  4519. struct ggml_tensor * ggml_cpy(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b) {
  4523. return ggml_cpy_impl(ctx, a, b, false);
  4524. }
  4525. struct ggml_tensor * ggml_cpy_inplace(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. struct ggml_tensor * b) {
  4529. return ggml_cpy_impl(ctx, a, b, true);
  4530. }
  4531. // ggml_cont
  4532. struct ggml_tensor * ggml_cont_impl(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. bool inplace) {
  4536. bool is_node = false;
  4537. if (!inplace && a->grad) {
  4538. GGML_ASSERT(false); // TODO: implement backward
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. result->op = GGML_OP_CONT;
  4543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4544. result->src0 = a;
  4545. result->src1 = NULL;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_cont(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a) {
  4551. return ggml_cont_impl(ctx, a, false);
  4552. }
  4553. struct ggml_tensor * ggml_cont_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_cont_impl(ctx, a, true);
  4557. }
  4558. // ggml_reshape
  4559. struct ggml_tensor * ggml_reshape(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. struct ggml_tensor * b) {
  4563. GGML_ASSERT(ggml_is_contiguous(a));
  4564. GGML_ASSERT(ggml_is_contiguous(b));
  4565. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4566. bool is_node = false;
  4567. if (a->grad || b->grad) {
  4568. GGML_ASSERT(false); // TODO: implement backward
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4572. result->op = GGML_OP_RESHAPE;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src0 = a;
  4575. result->src1 = NULL;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_reshape_2d(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. int64_t ne0,
  4582. int64_t ne1) {
  4583. GGML_ASSERT(ggml_is_contiguous(a));
  4584. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4585. bool is_node = false;
  4586. if (a->grad) {
  4587. GGML_ASSERT(false); // TODO: implement backward
  4588. is_node = true;
  4589. }
  4590. const int64_t ne[2] = { ne0, ne1 };
  4591. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4592. result->op = GGML_OP_RESHAPE;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src0 = a;
  4595. result->src1 = NULL;
  4596. return result;
  4597. }
  4598. struct ggml_tensor * ggml_reshape_3d(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. int64_t ne0,
  4602. int64_t ne1,
  4603. int64_t ne2) {
  4604. GGML_ASSERT(ggml_is_contiguous(a));
  4605. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4606. bool is_node = false;
  4607. if (a->grad) {
  4608. GGML_ASSERT(false); // TODO: implement backward
  4609. is_node = true;
  4610. }
  4611. const int64_t ne[3] = { ne0, ne1, ne2 };
  4612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4613. result->op = GGML_OP_RESHAPE;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src0 = a;
  4616. result->src1 = NULL;
  4617. return result;
  4618. }
  4619. // ggml_view_1d
  4620. struct ggml_tensor * ggml_view_1d(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int64_t ne0,
  4624. size_t offset) {
  4625. if (a->grad) {
  4626. GGML_ASSERT(false); // gradient propagation is not supported
  4627. }
  4628. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4629. result->op = GGML_OP_VIEW;
  4630. result->grad = NULL;
  4631. result->src0 = a;
  4632. result->src1 = NULL; // TODO: maybe store the offset here?
  4633. return result;
  4634. }
  4635. // ggml_view_2d
  4636. struct ggml_tensor * ggml_view_2d(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. int64_t ne0,
  4640. int64_t ne1,
  4641. size_t nb1,
  4642. size_t offset) {
  4643. if (a->grad) {
  4644. GGML_ASSERT(false); // gradient propagation is not supported
  4645. }
  4646. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4647. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4648. result->nb[1] = nb1;
  4649. result->nb[2] = result->nb[1]*ne1;
  4650. result->nb[3] = result->nb[2];
  4651. result->op = GGML_OP_VIEW;
  4652. result->grad = NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL; // TODO: maybe store the offset here?
  4655. return result;
  4656. }
  4657. // ggml_view_3d
  4658. struct ggml_tensor * ggml_view_3d(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int64_t ne0,
  4662. int64_t ne1,
  4663. int64_t ne2,
  4664. size_t nb1,
  4665. size_t nb2,
  4666. size_t offset) {
  4667. if (a->grad) {
  4668. GGML_ASSERT(false); // gradient propagation is not supported
  4669. }
  4670. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4671. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4672. result->nb[1] = nb1;
  4673. result->nb[2] = nb2;
  4674. result->nb[3] = result->nb[2]*ne2;
  4675. result->op = GGML_OP_VIEW;
  4676. result->grad = NULL;
  4677. result->src0 = a;
  4678. result->src1 = NULL; // TODO: maybe store the offset here?
  4679. return result;
  4680. }
  4681. // ggml_permute
  4682. struct ggml_tensor * ggml_permute(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int axis0,
  4686. int axis1,
  4687. int axis2,
  4688. int axis3) {
  4689. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4690. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4691. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4692. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4693. GGML_ASSERT(axis0 != axis1);
  4694. GGML_ASSERT(axis0 != axis2);
  4695. GGML_ASSERT(axis0 != axis3);
  4696. GGML_ASSERT(axis1 != axis2);
  4697. GGML_ASSERT(axis1 != axis3);
  4698. GGML_ASSERT(axis2 != axis3);
  4699. bool is_node = false;
  4700. if (a->grad) {
  4701. GGML_ASSERT(false); // TODO: implement backward
  4702. is_node = true;
  4703. }
  4704. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4705. int ne[GGML_MAX_DIMS];
  4706. int nb[GGML_MAX_DIMS];
  4707. ne[axis0] = a->ne[0];
  4708. ne[axis1] = a->ne[1];
  4709. ne[axis2] = a->ne[2];
  4710. ne[axis3] = a->ne[3];
  4711. nb[axis0] = a->nb[0];
  4712. nb[axis1] = a->nb[1];
  4713. nb[axis2] = a->nb[2];
  4714. nb[axis3] = a->nb[3];
  4715. result->ne[0] = ne[0];
  4716. result->ne[1] = ne[1];
  4717. result->ne[2] = ne[2];
  4718. result->ne[3] = ne[3];
  4719. result->nb[0] = nb[0];
  4720. result->nb[1] = nb[1];
  4721. result->nb[2] = nb[2];
  4722. result->nb[3] = nb[3];
  4723. result->op = GGML_OP_PERMUTE;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src0 = a;
  4726. result->src1 = NULL; // TODO: maybe store the permutation here?
  4727. return result;
  4728. }
  4729. // ggml_transpose
  4730. struct ggml_tensor * ggml_transpose(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a) {
  4733. bool is_node = false;
  4734. if (a->grad) {
  4735. GGML_ASSERT(false); // TODO: implement backward
  4736. is_node = true;
  4737. }
  4738. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4739. result->ne[0] = a->ne[1];
  4740. result->ne[1] = a->ne[0];
  4741. result->nb[0] = a->nb[1];
  4742. result->nb[1] = a->nb[0];
  4743. result->op = GGML_OP_TRANSPOSE;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src0 = a;
  4746. result->src1 = NULL;
  4747. return result;
  4748. }
  4749. // ggml_get_rows
  4750. struct ggml_tensor * ggml_get_rows(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b) {
  4754. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4755. bool is_node = false;
  4756. if (a->grad || b->grad) {
  4757. GGML_ASSERT(false); // TODO: implement backward
  4758. is_node = true;
  4759. }
  4760. // TODO: implement non F32 return
  4761. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4762. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4763. result->op = GGML_OP_GET_ROWS;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = b;
  4767. return result;
  4768. }
  4769. // ggml_diag_mask_inf
  4770. struct ggml_tensor * ggml_diag_mask_inf(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. int n_past) {
  4774. bool is_node = false;
  4775. if (a->grad) {
  4776. GGML_ASSERT(false); // TODO: implement backward
  4777. is_node = true;
  4778. }
  4779. // TODO: when implement backward, fix this:
  4780. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4781. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4782. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4783. result->op = GGML_OP_DIAG_MASK_INF;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src0 = a;
  4786. result->src1 = b;
  4787. return result;
  4788. }
  4789. // ggml_soft_max
  4790. struct ggml_tensor * ggml_soft_max(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a) {
  4793. bool is_node = false;
  4794. if (a->grad) {
  4795. GGML_ASSERT(false); // TODO: implement backward
  4796. is_node = true;
  4797. }
  4798. // TODO: when implement backward, fix this:
  4799. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4801. result->op = GGML_OP_SOFT_MAX;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src0 = a;
  4804. result->src1 = NULL;
  4805. return result;
  4806. }
  4807. // ggml_rope
  4808. struct ggml_tensor * ggml_rope(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int n_past,
  4812. int n_dims,
  4813. int mode) {
  4814. GGML_ASSERT(n_past >= 0);
  4815. bool is_node = false;
  4816. if (a->grad) {
  4817. GGML_ASSERT(false); // TODO: implement backward
  4818. is_node = true;
  4819. }
  4820. // TODO: when implement backward, fix this:
  4821. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4822. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4823. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4824. ((int32_t *) b->data)[0] = n_past;
  4825. ((int32_t *) b->data)[1] = n_dims;
  4826. ((int32_t *) b->data)[2] = mode;
  4827. result->op = GGML_OP_ROPE;
  4828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4829. result->src0 = a;
  4830. result->src1 = b;
  4831. return result;
  4832. }
  4833. // ggml_conv_1d_1s
  4834. struct ggml_tensor * ggml_conv_1d_1s(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. struct ggml_tensor * b) {
  4838. GGML_ASSERT(ggml_is_matrix(b));
  4839. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4840. GGML_ASSERT(a->ne[3] == 1);
  4841. bool is_node = false;
  4842. if (a->grad || b->grad) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4847. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4848. result->op = GGML_OP_CONV_1D_1S;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src0 = a;
  4851. result->src1 = b;
  4852. return result;
  4853. }
  4854. // ggml_conv_1d_2s
  4855. struct ggml_tensor * ggml_conv_1d_2s(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b) {
  4859. GGML_ASSERT(ggml_is_matrix(b));
  4860. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4861. GGML_ASSERT(a->ne[3] == 1);
  4862. bool is_node = false;
  4863. if (a->grad || b->grad) {
  4864. GGML_ASSERT(false); // TODO: implement backward
  4865. is_node = true;
  4866. }
  4867. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4868. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4869. result->op = GGML_OP_CONV_1D_2S;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src0 = a;
  4872. result->src1 = b;
  4873. return result;
  4874. }
  4875. // ggml_flash_attn
  4876. struct ggml_tensor * ggml_flash_attn(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * q,
  4879. struct ggml_tensor * k,
  4880. struct ggml_tensor * v,
  4881. bool masked) {
  4882. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4883. // TODO: check if vT can be multiplied by (k*qT)
  4884. bool is_node = false;
  4885. if (q->grad || k->grad || v->grad) {
  4886. GGML_ASSERT(false); // TODO: implement backward
  4887. is_node = true;
  4888. }
  4889. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4890. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4891. result->op = GGML_OP_FLASH_ATTN;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src0 = q;
  4894. result->src1 = k;
  4895. result->opt[0] = v;
  4896. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4897. return result;
  4898. }
  4899. // ggml_flash_ff
  4900. struct ggml_tensor * ggml_flash_ff(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. struct ggml_tensor * b0,
  4904. struct ggml_tensor * b1,
  4905. struct ggml_tensor * c0,
  4906. struct ggml_tensor * c1) {
  4907. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4908. // TODO: more checks
  4909. bool is_node = false;
  4910. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4911. GGML_ASSERT(false); // TODO: implement backward
  4912. is_node = true;
  4913. }
  4914. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4915. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4916. result->op = GGML_OP_FLASH_FF;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src0 = a;
  4919. result->src1 = b0;
  4920. result->opt[0] = b1;
  4921. result->opt[1] = c0;
  4922. result->opt[2] = c1;
  4923. return result;
  4924. }
  4925. // ggml_map_unary
  4926. struct ggml_tensor * ggml_map_unary_impl_f32(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. const ggml_unary_op_f32_t fun,
  4930. bool inplace) {
  4931. bool is_node = false;
  4932. if (!inplace && a->grad) {
  4933. is_node = true;
  4934. }
  4935. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4936. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4937. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4938. result->op = GGML_OP_MAP_UNARY;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src0 = a;
  4941. result->opt[0] = addr_tensor;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_map_unary_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. const ggml_unary_op_f32_t fun) {
  4948. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4949. }
  4950. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. const ggml_unary_op_f32_t fun) {
  4954. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4955. }
  4956. // ggml_map_binary
  4957. struct ggml_tensor * ggml_map_binary_impl_f32(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * b,
  4961. const ggml_binary_op_f32_t fun,
  4962. bool inplace) {
  4963. GGML_ASSERT(ggml_are_same_shape(a, b));
  4964. bool is_node = false;
  4965. if (!inplace && (a->grad || b->grad)) {
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4969. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4970. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4971. result->op = GGML_OP_MAP_BINARY;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src0 = a;
  4974. result->src1 = b;
  4975. result->opt[0] = addr_tensor;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_map_binary_f32(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. const ggml_binary_op_f32_t fun) {
  4983. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4984. }
  4985. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * b,
  4989. const ggml_binary_op_f32_t fun) {
  4990. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4991. }
  4992. ////////////////////////////////////////////////////////////////////////////////
  4993. void ggml_set_param(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * tensor) {
  4996. tensor->is_param = true;
  4997. GGML_ASSERT(tensor->grad == NULL);
  4998. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4999. }
  5000. // ggml_compute_forward_dup
  5001. static void ggml_compute_forward_dup_f16(
  5002. const struct ggml_compute_params * params,
  5003. const struct ggml_tensor * src0,
  5004. struct ggml_tensor * dst) {
  5005. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5007. return;
  5008. }
  5009. const int64_t ne00 = src0->ne[0];
  5010. const int64_t ne01 = src0->ne[1];
  5011. const int64_t ne02 = src0->ne[2];
  5012. const int64_t ne03 = src0->ne[3];
  5013. const int64_t ne0 = dst->ne[0];
  5014. const int64_t ne1 = dst->ne[1];
  5015. const int64_t ne2 = dst->ne[2];
  5016. const int64_t ne3 = dst->ne[3];
  5017. const size_t nb00 = src0->nb[0];
  5018. const size_t nb01 = src0->nb[1];
  5019. const size_t nb02 = src0->nb[2];
  5020. const size_t nb03 = src0->nb[3];
  5021. const size_t nb0 = dst->nb[0];
  5022. const size_t nb1 = dst->nb[1];
  5023. const size_t nb2 = dst->nb[2];
  5024. const size_t nb3 = dst->nb[3];
  5025. const int ith = params->ith; // thread index
  5026. const int nth = params->nth; // number of threads
  5027. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5028. // parallelize by elements
  5029. const int ne = ggml_nelements(dst);
  5030. const int dr = (ne + nth - 1) / nth;
  5031. const int ie0 = dr * ith;
  5032. const int ie1 = MIN(ie0 + dr, ne);
  5033. memcpy(
  5034. ((char *) dst->data + ie0*nb0),
  5035. ((char *) src0->data + ie0*nb00),
  5036. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5037. return;
  5038. }
  5039. // parallelize by rows
  5040. const int nr = ne01;
  5041. // number of rows per thread
  5042. const int dr = (nr + nth - 1) / nth;
  5043. // row range for this thread
  5044. const int ir0 = dr * ith;
  5045. const int ir1 = MIN(ir0 + dr, nr);
  5046. if (src0->type == dst->type &&
  5047. ne00 == ne0 &&
  5048. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5049. // copy by rows
  5050. const size_t rs = ne00*nb00;
  5051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5053. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5054. memcpy(
  5055. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5056. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5057. rs);
  5058. }
  5059. }
  5060. }
  5061. return;
  5062. }
  5063. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5064. if (ggml_is_contiguous(dst)) {
  5065. if (nb00 == sizeof(ggml_fp16_t)) {
  5066. if (dst->type == GGML_TYPE_F16) {
  5067. size_t id = 0;
  5068. const size_t rs = ne00 * nb00;
  5069. char * dst_ptr = (char *) dst->data;
  5070. for (int i03 = 0; i03 < ne03; i03++) {
  5071. for (int i02 = 0; i02 < ne02; i02++) {
  5072. id += rs * ir0;
  5073. for (int i01 = ir0; i01 < ir1; i01++) {
  5074. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5075. memcpy(dst_ptr + id, src0_ptr, rs);
  5076. id += rs;
  5077. }
  5078. id += rs * (ne01 - ir1);
  5079. }
  5080. }
  5081. } else if (dst->type == GGML_TYPE_F32) {
  5082. size_t id = 0;
  5083. float * dst_ptr = (float *) dst->data;
  5084. for (int i03 = 0; i03 < ne03; i03++) {
  5085. for (int i02 = 0; i02 < ne02; i02++) {
  5086. id += ne00 * ir0;
  5087. for (int i01 = ir0; i01 < ir1; i01++) {
  5088. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5089. for (int i00 = 0; i00 < ne00; i00++) {
  5090. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5091. id++;
  5092. }
  5093. }
  5094. id += ne00 * (ne01 - ir1);
  5095. }
  5096. }
  5097. } else if (ggml_is_quantized(dst->type)) {
  5098. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5099. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5100. size_t id = 0;
  5101. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5102. char * dst_ptr = (char *) dst->data;
  5103. for (int i03 = 0; i03 < ne03; i03++) {
  5104. for (int i02 = 0; i02 < ne02; i02++) {
  5105. id += rs * ir0;
  5106. for (int i01 = ir0; i01 < ir1; i01++) {
  5107. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5108. for (int i00 = 0; i00 < ne00; i00++) {
  5109. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5110. }
  5111. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5112. id += rs;
  5113. }
  5114. id += rs * (ne01 - ir1);
  5115. }
  5116. }
  5117. } else {
  5118. GGML_ASSERT(false); // TODO: implement
  5119. }
  5120. } else {
  5121. //printf("%s: this is not optimal - fix me\n", __func__);
  5122. if (dst->type == GGML_TYPE_F32) {
  5123. size_t id = 0;
  5124. float * dst_ptr = (float *) dst->data;
  5125. for (int i03 = 0; i03 < ne03; i03++) {
  5126. for (int i02 = 0; i02 < ne02; i02++) {
  5127. id += ne00 * ir0;
  5128. for (int i01 = ir0; i01 < ir1; i01++) {
  5129. for (int i00 = 0; i00 < ne00; i00++) {
  5130. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5131. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5132. id++;
  5133. }
  5134. }
  5135. id += ne00 * (ne01 - ir1);
  5136. }
  5137. }
  5138. } else if (dst->type == GGML_TYPE_F16) {
  5139. size_t id = 0;
  5140. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5141. for (int i03 = 0; i03 < ne03; i03++) {
  5142. for (int i02 = 0; i02 < ne02; i02++) {
  5143. id += ne00 * ir0;
  5144. for (int i01 = ir0; i01 < ir1; i01++) {
  5145. for (int i00 = 0; i00 < ne00; i00++) {
  5146. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5147. dst_ptr[id] = *src0_ptr;
  5148. id++;
  5149. }
  5150. }
  5151. id += ne00 * (ne01 - ir1);
  5152. }
  5153. }
  5154. } else {
  5155. GGML_ASSERT(false); // TODO: implement
  5156. }
  5157. }
  5158. return;
  5159. }
  5160. // dst counters
  5161. int64_t i10 = 0;
  5162. int64_t i11 = 0;
  5163. int64_t i12 = 0;
  5164. int64_t i13 = 0;
  5165. if (dst->type == GGML_TYPE_F16) {
  5166. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5168. i10 += ne00 * ir0;
  5169. while (i10 >= ne0) {
  5170. i10 -= ne0;
  5171. if (++i11 == ne1) {
  5172. i11 = 0;
  5173. if (++i12 == ne2) {
  5174. i12 = 0;
  5175. if (++i13 == ne3) {
  5176. i13 = 0;
  5177. }
  5178. }
  5179. }
  5180. }
  5181. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5182. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5183. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5184. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5185. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5186. if (++i10 == ne00) {
  5187. i10 = 0;
  5188. if (++i11 == ne01) {
  5189. i11 = 0;
  5190. if (++i12 == ne02) {
  5191. i12 = 0;
  5192. if (++i13 == ne03) {
  5193. i13 = 0;
  5194. }
  5195. }
  5196. }
  5197. }
  5198. }
  5199. }
  5200. i10 += ne00 * (ne01 - ir1);
  5201. while (i10 >= ne0) {
  5202. i10 -= ne0;
  5203. if (++i11 == ne1) {
  5204. i11 = 0;
  5205. if (++i12 == ne2) {
  5206. i12 = 0;
  5207. if (++i13 == ne3) {
  5208. i13 = 0;
  5209. }
  5210. }
  5211. }
  5212. }
  5213. }
  5214. }
  5215. } else if (dst->type == GGML_TYPE_F32) {
  5216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5218. i10 += ne00 * ir0;
  5219. while (i10 >= ne0) {
  5220. i10 -= ne0;
  5221. if (++i11 == ne1) {
  5222. i11 = 0;
  5223. if (++i12 == ne2) {
  5224. i12 = 0;
  5225. if (++i13 == ne3) {
  5226. i13 = 0;
  5227. }
  5228. }
  5229. }
  5230. }
  5231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5232. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5233. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5234. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5235. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5236. if (++i10 == ne0) {
  5237. i10 = 0;
  5238. if (++i11 == ne1) {
  5239. i11 = 0;
  5240. if (++i12 == ne2) {
  5241. i12 = 0;
  5242. if (++i13 == ne3) {
  5243. i13 = 0;
  5244. }
  5245. }
  5246. }
  5247. }
  5248. }
  5249. }
  5250. i10 += ne00 * (ne01 - ir1);
  5251. while (i10 >= ne0) {
  5252. i10 -= ne0;
  5253. if (++i11 == ne1) {
  5254. i11 = 0;
  5255. if (++i12 == ne2) {
  5256. i12 = 0;
  5257. if (++i13 == ne3) {
  5258. i13 = 0;
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. } else {
  5266. GGML_ASSERT(false); // TODO: implement
  5267. }
  5268. }
  5269. static void ggml_compute_forward_dup_f32(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. struct ggml_tensor * dst) {
  5273. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5275. return;
  5276. }
  5277. const int64_t ne00 = src0->ne[0];
  5278. const int64_t ne01 = src0->ne[1];
  5279. const int64_t ne02 = src0->ne[2];
  5280. const int64_t ne03 = src0->ne[3];
  5281. const int64_t ne0 = dst->ne[0];
  5282. const int64_t ne1 = dst->ne[1];
  5283. const int64_t ne2 = dst->ne[2];
  5284. const int64_t ne3 = dst->ne[3];
  5285. const size_t nb00 = src0->nb[0];
  5286. const size_t nb01 = src0->nb[1];
  5287. const size_t nb02 = src0->nb[2];
  5288. const size_t nb03 = src0->nb[3];
  5289. const size_t nb0 = dst->nb[0];
  5290. const size_t nb1 = dst->nb[1];
  5291. const size_t nb2 = dst->nb[2];
  5292. const size_t nb3 = dst->nb[3];
  5293. const int ith = params->ith; // thread index
  5294. const int nth = params->nth; // number of threads
  5295. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5296. // parallelize by elements
  5297. const int ne = ggml_nelements(dst);
  5298. const int dr = (ne + nth - 1) / nth;
  5299. const int ie0 = dr * ith;
  5300. const int ie1 = MIN(ie0 + dr, ne);
  5301. memcpy(
  5302. ((char *) dst->data + ie0*nb0),
  5303. ((char *) src0->data + ie0*nb00),
  5304. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5305. return;
  5306. }
  5307. // parallelize by rows
  5308. const int nr = ne01;
  5309. // number of rows per thread
  5310. const int dr = (nr + nth - 1) / nth;
  5311. // row range for this thread
  5312. const int ir0 = dr * ith;
  5313. const int ir1 = MIN(ir0 + dr, nr);
  5314. if (src0->type == dst->type &&
  5315. ne00 == ne0 &&
  5316. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5317. // copy by rows
  5318. const size_t rs = ne00*nb00;
  5319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5322. memcpy(
  5323. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5324. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5325. rs);
  5326. }
  5327. }
  5328. }
  5329. return;
  5330. }
  5331. if (ggml_is_contiguous(dst)) {
  5332. // TODO: simplify
  5333. if (nb00 == sizeof(float)) {
  5334. if (dst->type == GGML_TYPE_F32) {
  5335. size_t id = 0;
  5336. const size_t rs = ne00 * nb00;
  5337. char * dst_ptr = (char *) dst->data;
  5338. for (int i03 = 0; i03 < ne03; i03++) {
  5339. for (int i02 = 0; i02 < ne02; i02++) {
  5340. id += rs * ir0;
  5341. for (int i01 = ir0; i01 < ir1; i01++) {
  5342. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5343. memcpy(dst_ptr + id, src0_ptr, rs);
  5344. id += rs;
  5345. }
  5346. id += rs * (ne01 - ir1);
  5347. }
  5348. }
  5349. } else if (dst->type == GGML_TYPE_F16) {
  5350. size_t id = 0;
  5351. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5352. for (int i03 = 0; i03 < ne03; i03++) {
  5353. for (int i02 = 0; i02 < ne02; i02++) {
  5354. id += ne00 * ir0;
  5355. for (int i01 = ir0; i01 < ir1; i01++) {
  5356. for (int i00 = 0; i00 < ne00; i00++) {
  5357. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5358. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5359. id++;
  5360. }
  5361. }
  5362. id += ne00 * (ne01 - ir1);
  5363. }
  5364. }
  5365. } else if (ggml_is_quantized(dst->type)) {
  5366. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5367. size_t id = 0;
  5368. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5369. char * dst_ptr = (char *) dst->data;
  5370. for (int i03 = 0; i03 < ne03; i03++) {
  5371. for (int i02 = 0; i02 < ne02; i02++) {
  5372. id += rs * ir0;
  5373. for (int i01 = ir0; i01 < ir1; i01++) {
  5374. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5375. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5376. id += rs;
  5377. }
  5378. id += rs * (ne01 - ir1);
  5379. }
  5380. }
  5381. } else {
  5382. GGML_ASSERT(false); // TODO: implement
  5383. }
  5384. } else {
  5385. //printf("%s: this is not optimal - fix me\n", __func__);
  5386. if (dst->type == GGML_TYPE_F32) {
  5387. size_t id = 0;
  5388. float * dst_ptr = (float *) dst->data;
  5389. for (int i03 = 0; i03 < ne03; i03++) {
  5390. for (int i02 = 0; i02 < ne02; i02++) {
  5391. id += ne00 * ir0;
  5392. for (int i01 = ir0; i01 < ir1; i01++) {
  5393. for (int i00 = 0; i00 < ne00; i00++) {
  5394. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5395. dst_ptr[id] = *src0_ptr;
  5396. id++;
  5397. }
  5398. }
  5399. id += ne00 * (ne01 - ir1);
  5400. }
  5401. }
  5402. } else if (dst->type == GGML_TYPE_F16) {
  5403. size_t id = 0;
  5404. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5405. for (int i03 = 0; i03 < ne03; i03++) {
  5406. for (int i02 = 0; i02 < ne02; i02++) {
  5407. id += ne00 * ir0;
  5408. for (int i01 = ir0; i01 < ir1; i01++) {
  5409. for (int i00 = 0; i00 < ne00; i00++) {
  5410. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5411. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5412. id++;
  5413. }
  5414. }
  5415. id += ne00 * (ne01 - ir1);
  5416. }
  5417. }
  5418. } else {
  5419. GGML_ASSERT(false); // TODO: implement
  5420. }
  5421. }
  5422. return;
  5423. }
  5424. // dst counters
  5425. int64_t i10 = 0;
  5426. int64_t i11 = 0;
  5427. int64_t i12 = 0;
  5428. int64_t i13 = 0;
  5429. if (dst->type == GGML_TYPE_F32) {
  5430. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5431. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5432. i10 += ne00 * ir0;
  5433. while (i10 >= ne0) {
  5434. i10 -= ne0;
  5435. if (++i11 == ne1) {
  5436. i11 = 0;
  5437. if (++i12 == ne2) {
  5438. i12 = 0;
  5439. if (++i13 == ne3) {
  5440. i13 = 0;
  5441. }
  5442. }
  5443. }
  5444. }
  5445. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5446. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5447. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5448. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5449. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5450. if (++i10 == ne0) {
  5451. i10 = 0;
  5452. if (++i11 == ne1) {
  5453. i11 = 0;
  5454. if (++i12 == ne2) {
  5455. i12 = 0;
  5456. if (++i13 == ne3) {
  5457. i13 = 0;
  5458. }
  5459. }
  5460. }
  5461. }
  5462. }
  5463. }
  5464. i10 += ne00 * (ne01 - ir1);
  5465. while (i10 >= ne0) {
  5466. i10 -= ne0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. }
  5478. }
  5479. } else if (dst->type == GGML_TYPE_F16) {
  5480. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5481. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5482. i10 += ne00 * ir0;
  5483. while (i10 >= ne0) {
  5484. i10 -= ne0;
  5485. if (++i11 == ne1) {
  5486. i11 = 0;
  5487. if (++i12 == ne2) {
  5488. i12 = 0;
  5489. if (++i13 == ne3) {
  5490. i13 = 0;
  5491. }
  5492. }
  5493. }
  5494. }
  5495. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5496. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5497. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5498. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5499. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5500. if (++i10 == ne0) {
  5501. i10 = 0;
  5502. if (++i11 == ne1) {
  5503. i11 = 0;
  5504. if (++i12 == ne2) {
  5505. i12 = 0;
  5506. if (++i13 == ne3) {
  5507. i13 = 0;
  5508. }
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. i10 += ne00 * (ne01 - ir1);
  5515. while (i10 >= ne0) {
  5516. i10 -= ne0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. }
  5528. }
  5529. } else {
  5530. GGML_ASSERT(false); // TODO: implement
  5531. }
  5532. }
  5533. static void ggml_compute_forward_dup(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. struct ggml_tensor * dst) {
  5537. switch (src0->type) {
  5538. case GGML_TYPE_F16:
  5539. {
  5540. ggml_compute_forward_dup_f16(params, src0, dst);
  5541. } break;
  5542. case GGML_TYPE_F32:
  5543. {
  5544. ggml_compute_forward_dup_f32(params, src0, dst);
  5545. } break;
  5546. default:
  5547. {
  5548. GGML_ASSERT(false);
  5549. } break;
  5550. }
  5551. }
  5552. // ggml_compute_forward_add
  5553. static void ggml_compute_forward_add_f32(
  5554. const struct ggml_compute_params * params,
  5555. const struct ggml_tensor * src0,
  5556. const struct ggml_tensor * src1,
  5557. struct ggml_tensor * dst) {
  5558. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5559. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5560. return;
  5561. }
  5562. const int ith = params->ith;
  5563. const int nth = params->nth;
  5564. const int n = ggml_nrows(src0);
  5565. const int nc = src0->ne[0];
  5566. const size_t nb00 = src0->nb[0];
  5567. const size_t nb01 = src0->nb[1];
  5568. const size_t nb10 = src1->nb[0];
  5569. const size_t nb11 = src1->nb[1];
  5570. const size_t nb0 = dst->nb[0];
  5571. const size_t nb1 = dst->nb[1];
  5572. GGML_ASSERT( nb0 == sizeof(float));
  5573. GGML_ASSERT(nb00 == sizeof(float));
  5574. if (nb10 == sizeof(float)) {
  5575. for (int j = ith; j < n; j += nth) {
  5576. #ifdef GGML_USE_ACCELERATE
  5577. vDSP_vadd(
  5578. (float *) ((char *) src0->data + j*nb01), 1,
  5579. (float *) ((char *) src1->data + j*nb11), 1,
  5580. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5581. #else
  5582. ggml_vec_add_f32(nc,
  5583. (float *) ((char *) dst->data + j*nb1),
  5584. (float *) ((char *) src0->data + j*nb01),
  5585. (float *) ((char *) src1->data + j*nb11));
  5586. #endif
  5587. }
  5588. } else {
  5589. // src1 is not contiguous
  5590. for (int j = ith; j < n; j += nth) {
  5591. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5592. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5593. for (int i = 0; i < nc; i++) {
  5594. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5595. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5596. }
  5597. }
  5598. }
  5599. }
  5600. static void ggml_compute_forward_add_f16_f32(
  5601. const struct ggml_compute_params * params,
  5602. const struct ggml_tensor * src0,
  5603. const struct ggml_tensor * src1,
  5604. struct ggml_tensor * dst) {
  5605. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5607. return;
  5608. }
  5609. const int ith = params->ith;
  5610. const int nth = params->nth;
  5611. const int n = ggml_nrows(src0);
  5612. const int nc = src0->ne[0];
  5613. const size_t nb00 = src0->nb[0];
  5614. const size_t nb01 = src0->nb[1];
  5615. const size_t nb10 = src1->nb[0];
  5616. const size_t nb11 = src1->nb[1];
  5617. const size_t nb0 = dst->nb[0];
  5618. const size_t nb1 = dst->nb[1];
  5619. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5620. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5621. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5622. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5623. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5624. if (nb10 == sizeof(float)) {
  5625. for (int j = ith; j < n; j += nth) {
  5626. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5627. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5628. for (int i = 0; i < nc; i++) {
  5629. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5630. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5631. }
  5632. }
  5633. }
  5634. else {
  5635. // src1 is not contiguous
  5636. GGML_ASSERT(false);
  5637. }
  5638. }
  5639. static void ggml_compute_forward_add_f16_f16(
  5640. const struct ggml_compute_params * params,
  5641. const struct ggml_tensor * src0,
  5642. const struct ggml_tensor * src1,
  5643. struct ggml_tensor * dst) {
  5644. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5646. return;
  5647. }
  5648. const int ith = params->ith;
  5649. const int nth = params->nth;
  5650. const int n = ggml_nrows(src0);
  5651. const int nc = src0->ne[0];
  5652. const size_t nb00 = src0->nb[0];
  5653. const size_t nb01 = src0->nb[1];
  5654. const size_t nb10 = src1->nb[0];
  5655. const size_t nb11 = src1->nb[1];
  5656. const size_t nb0 = dst->nb[0];
  5657. const size_t nb1 = dst->nb[1];
  5658. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5659. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5660. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5661. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5662. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5663. if (nb10 == sizeof(ggml_fp16_t)) {
  5664. for (int j = ith; j < n; j += nth) {
  5665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5666. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5667. for (int i = 0; i < nc; i++) {
  5668. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5669. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5670. }
  5671. }
  5672. }
  5673. else {
  5674. // src1 is not contiguous
  5675. GGML_ASSERT(false);
  5676. }
  5677. }
  5678. static void ggml_compute_forward_add_q_f32(
  5679. const struct ggml_compute_params * params,
  5680. const struct ggml_tensor * src0,
  5681. const struct ggml_tensor * src1,
  5682. struct ggml_tensor * dst) {
  5683. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5685. return;
  5686. }
  5687. const int64_t ne00 = src0->ne[0];
  5688. const int64_t ne01 = src0->ne[1];
  5689. const int64_t ne02 = src0->ne[2];
  5690. const int64_t ne03 = src0->ne[3];
  5691. //const int64_t ne10 = src1->ne[0];
  5692. //const int64_t ne11 = src1->ne[1];
  5693. const int64_t ne12 = src1->ne[2];
  5694. const int64_t ne13 = src1->ne[3];
  5695. //const int64_t ne0 = dst->ne[0];
  5696. //const int64_t ne1 = dst->ne[1];
  5697. const int64_t ne2 = dst->ne[2];
  5698. const int64_t ne3 = dst->ne[3];
  5699. const int nb00 = src0->nb[0];
  5700. const int nb01 = src0->nb[1];
  5701. const int nb02 = src0->nb[2];
  5702. const int nb03 = src0->nb[3];
  5703. const int nb10 = src1->nb[0];
  5704. const int nb11 = src1->nb[1];
  5705. const int nb12 = src1->nb[2];
  5706. const int nb13 = src1->nb[3];
  5707. const int nb0 = dst->nb[0];
  5708. const int nb1 = dst->nb[1];
  5709. const int nb2 = dst->nb[2];
  5710. const int nb3 = dst->nb[3];
  5711. const int ith = params->ith;
  5712. const int nth = params->nth;
  5713. GGML_ASSERT(ne02 == ne12);
  5714. GGML_ASSERT(ne03 == ne13);
  5715. GGML_ASSERT(ne2 == ne12);
  5716. GGML_ASSERT(ne3 == ne13);
  5717. const enum ggml_type type = src0->type;
  5718. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5719. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5720. // we don't support permuted src0 or src1
  5721. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5722. GGML_ASSERT(nb10 == sizeof(float));
  5723. // dst cannot be transposed or permuted
  5724. GGML_ASSERT(nb0 <= nb1);
  5725. GGML_ASSERT(nb1 <= nb2);
  5726. GGML_ASSERT(nb2 <= nb3);
  5727. GGML_ASSERT(ggml_is_quantized(src0->type));
  5728. GGML_ASSERT(dst->type == src0->type);
  5729. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5730. // total rows in src0
  5731. const int nr = ne01*ne02*ne03;
  5732. // rows per thread
  5733. const int dr = (nr + nth - 1)/nth;
  5734. // row range for this thread
  5735. const int ir0 = dr*ith;
  5736. const int ir1 = MIN(ir0 + dr, nr);
  5737. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5738. for (int ir = ir0; ir < ir1; ++ir) {
  5739. // src0 indices
  5740. const int i03 = ir/(ne02*ne01);
  5741. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5742. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5743. // src1 and dst are same shape as src0 => same indices
  5744. const int i13 = i03;
  5745. const int i12 = i02;
  5746. const int i11 = i01;
  5747. const int i3 = i03;
  5748. const int i2 = i02;
  5749. const int i1 = i01;
  5750. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5751. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5752. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5753. assert(ne00 % 32 == 0);
  5754. // unquantize row from src0 to temp buffer
  5755. dequantize_row_q(src0_row, wdata, ne00);
  5756. // add src1
  5757. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5758. // quantize row to dst
  5759. quantize_row_q(wdata, dst_row, ne00);
  5760. }
  5761. }
  5762. static void ggml_compute_forward_add(
  5763. const struct ggml_compute_params * params,
  5764. const struct ggml_tensor * src0,
  5765. const struct ggml_tensor * src1,
  5766. struct ggml_tensor * dst) {
  5767. switch (src0->type) {
  5768. case GGML_TYPE_F32:
  5769. {
  5770. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5771. } break;
  5772. case GGML_TYPE_F16:
  5773. {
  5774. if (src1->type == GGML_TYPE_F16) {
  5775. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5776. }
  5777. else if (src1->type == GGML_TYPE_F32) {
  5778. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5779. }
  5780. else {
  5781. GGML_ASSERT(false);
  5782. }
  5783. } break;
  5784. case GGML_TYPE_Q4_0:
  5785. case GGML_TYPE_Q4_1:
  5786. case GGML_TYPE_Q4_2:
  5787. case GGML_TYPE_Q4_3:
  5788. case GGML_TYPE_Q5_0:
  5789. case GGML_TYPE_Q5_1:
  5790. case GGML_TYPE_Q8_0:
  5791. {
  5792. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5793. } break;
  5794. default:
  5795. {
  5796. GGML_ASSERT(false);
  5797. } break;
  5798. }
  5799. }
  5800. // ggml_compute_forward_sub
  5801. static void ggml_compute_forward_sub_f32(
  5802. const struct ggml_compute_params * params,
  5803. const struct ggml_tensor * src0,
  5804. const struct ggml_tensor * src1,
  5805. struct ggml_tensor * dst) {
  5806. assert(params->ith == 0);
  5807. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5809. return;
  5810. }
  5811. const int n = ggml_nrows(src0);
  5812. const int nc = src0->ne[0];
  5813. assert( dst->nb[0] == sizeof(float));
  5814. assert(src0->nb[0] == sizeof(float));
  5815. assert(src1->nb[0] == sizeof(float));
  5816. for (int i = 0; i < n; i++) {
  5817. ggml_vec_sub_f32(nc,
  5818. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5819. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5820. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5821. }
  5822. }
  5823. static void ggml_compute_forward_sub(
  5824. const struct ggml_compute_params * params,
  5825. const struct ggml_tensor * src0,
  5826. const struct ggml_tensor * src1,
  5827. struct ggml_tensor * dst) {
  5828. switch (src0->type) {
  5829. case GGML_TYPE_F32:
  5830. {
  5831. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5832. } break;
  5833. default:
  5834. {
  5835. GGML_ASSERT(false);
  5836. } break;
  5837. }
  5838. }
  5839. // ggml_compute_forward_mul
  5840. static void ggml_compute_forward_mul_f32(
  5841. const struct ggml_compute_params * params,
  5842. const struct ggml_tensor * src0,
  5843. const struct ggml_tensor * src1,
  5844. struct ggml_tensor * dst) {
  5845. assert(params->ith == 0);
  5846. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5848. return;
  5849. }
  5850. const int n = ggml_nrows(src0);
  5851. const int nc = src0->ne[0];
  5852. assert( dst->nb[0] == sizeof(float));
  5853. assert(src0->nb[0] == sizeof(float));
  5854. assert(src1->nb[0] == sizeof(float));
  5855. for (int i = 0; i < n; i++) {
  5856. ggml_vec_mul_f32(nc,
  5857. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5858. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5859. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5860. }
  5861. }
  5862. static void ggml_compute_forward_mul(
  5863. const struct ggml_compute_params * params,
  5864. const struct ggml_tensor * src0,
  5865. const struct ggml_tensor * src1,
  5866. struct ggml_tensor * dst) {
  5867. switch (src0->type) {
  5868. case GGML_TYPE_F32:
  5869. {
  5870. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5871. } break;
  5872. default:
  5873. {
  5874. GGML_ASSERT(false);
  5875. } break;
  5876. }
  5877. }
  5878. // ggml_compute_forward_div
  5879. static void ggml_compute_forward_div_f32(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. const struct ggml_tensor * src1,
  5883. struct ggml_tensor * dst) {
  5884. assert(params->ith == 0);
  5885. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5887. return;
  5888. }
  5889. const int n = ggml_nrows(src0);
  5890. const int nc = src0->ne[0];
  5891. assert( dst->nb[0] == sizeof(float));
  5892. assert(src0->nb[0] == sizeof(float));
  5893. assert(src1->nb[0] == sizeof(float));
  5894. for (int i = 0; i < n; i++) {
  5895. ggml_vec_div_f32(nc,
  5896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5897. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5898. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5899. }
  5900. }
  5901. static void ggml_compute_forward_div(
  5902. const struct ggml_compute_params * params,
  5903. const struct ggml_tensor * src0,
  5904. const struct ggml_tensor * src1,
  5905. struct ggml_tensor * dst) {
  5906. switch (src0->type) {
  5907. case GGML_TYPE_F32:
  5908. {
  5909. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5910. } break;
  5911. default:
  5912. {
  5913. GGML_ASSERT(false);
  5914. } break;
  5915. }
  5916. }
  5917. // ggml_compute_forward_sqr
  5918. static void ggml_compute_forward_sqr_f32(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. struct ggml_tensor * dst) {
  5922. assert(params->ith == 0);
  5923. assert(ggml_are_same_shape(src0, dst));
  5924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5925. return;
  5926. }
  5927. const int n = ggml_nrows(src0);
  5928. const int nc = src0->ne[0];
  5929. assert( dst->nb[0] == sizeof(float));
  5930. assert(src0->nb[0] == sizeof(float));
  5931. for (int i = 0; i < n; i++) {
  5932. ggml_vec_sqr_f32(nc,
  5933. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5934. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5935. }
  5936. }
  5937. static void ggml_compute_forward_sqr(
  5938. const struct ggml_compute_params * params,
  5939. const struct ggml_tensor * src0,
  5940. struct ggml_tensor * dst) {
  5941. switch (src0->type) {
  5942. case GGML_TYPE_F32:
  5943. {
  5944. ggml_compute_forward_sqr_f32(params, src0, dst);
  5945. } break;
  5946. default:
  5947. {
  5948. GGML_ASSERT(false);
  5949. } break;
  5950. }
  5951. }
  5952. // ggml_compute_forward_sqrt
  5953. static void ggml_compute_forward_sqrt_f32(
  5954. const struct ggml_compute_params * params,
  5955. const struct ggml_tensor * src0,
  5956. struct ggml_tensor * dst) {
  5957. assert(params->ith == 0);
  5958. assert(ggml_are_same_shape(src0, dst));
  5959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5960. return;
  5961. }
  5962. const int n = ggml_nrows(src0);
  5963. const int nc = src0->ne[0];
  5964. assert( dst->nb[0] == sizeof(float));
  5965. assert(src0->nb[0] == sizeof(float));
  5966. for (int i = 0; i < n; i++) {
  5967. ggml_vec_sqrt_f32(nc,
  5968. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5969. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5970. }
  5971. }
  5972. static void ggml_compute_forward_sqrt(
  5973. const struct ggml_compute_params * params,
  5974. const struct ggml_tensor * src0,
  5975. struct ggml_tensor * dst) {
  5976. switch (src0->type) {
  5977. case GGML_TYPE_F32:
  5978. {
  5979. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5980. } break;
  5981. default:
  5982. {
  5983. GGML_ASSERT(false);
  5984. } break;
  5985. }
  5986. }
  5987. // ggml_compute_forward_sum
  5988. static void ggml_compute_forward_sum_f32(
  5989. const struct ggml_compute_params * params,
  5990. const struct ggml_tensor * src0,
  5991. struct ggml_tensor * dst) {
  5992. assert(params->ith == 0);
  5993. assert(ggml_is_scalar(dst));
  5994. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5995. return;
  5996. }
  5997. assert(ggml_is_scalar(dst));
  5998. assert(src0->nb[0] == sizeof(float));
  5999. const int64_t ne00 = src0->ne[0];
  6000. const int64_t ne01 = src0->ne[1];
  6001. const int64_t ne02 = src0->ne[2];
  6002. const int64_t ne03 = src0->ne[3];
  6003. const size_t nb01 = src0->nb[1];
  6004. const size_t nb02 = src0->nb[2];
  6005. const size_t nb03 = src0->nb[3];
  6006. ggml_float sum = 0;
  6007. ggml_float row_sum = 0;
  6008. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6009. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6010. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6011. ggml_vec_sum_ggf(ne00,
  6012. &row_sum,
  6013. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6014. sum += row_sum;
  6015. }
  6016. }
  6017. }
  6018. ((float *) dst->data)[0] = sum;
  6019. }
  6020. static void ggml_compute_forward_sum(
  6021. const struct ggml_compute_params * params,
  6022. const struct ggml_tensor * src0,
  6023. struct ggml_tensor * dst) {
  6024. switch (src0->type) {
  6025. case GGML_TYPE_F32:
  6026. {
  6027. ggml_compute_forward_sum_f32(params, src0, dst);
  6028. } break;
  6029. default:
  6030. {
  6031. GGML_ASSERT(false);
  6032. } break;
  6033. }
  6034. }
  6035. // ggml_compute_forward_mean
  6036. static void ggml_compute_forward_mean_f32(
  6037. const struct ggml_compute_params * params,
  6038. const struct ggml_tensor * src0,
  6039. struct ggml_tensor * dst) {
  6040. assert(params->ith == 0);
  6041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6042. return;
  6043. }
  6044. assert(src0->nb[0] == sizeof(float));
  6045. const int64_t ne00 = src0->ne[0];
  6046. const int64_t ne01 = src0->ne[1];
  6047. const int64_t ne02 = src0->ne[2];
  6048. const int64_t ne03 = src0->ne[3];
  6049. const size_t nb01 = src0->nb[1];
  6050. const size_t nb02 = src0->nb[2];
  6051. const size_t nb03 = src0->nb[3];
  6052. const int64_t ne0 = dst->ne[0];
  6053. const int64_t ne1 = dst->ne[1];
  6054. const int64_t ne2 = dst->ne[2];
  6055. const int64_t ne3 = dst->ne[3];
  6056. assert(ne0 == 1);
  6057. assert(ne1 == ne01);
  6058. assert(ne2 == ne02);
  6059. assert(ne3 == ne03);
  6060. UNUSED(ne0);
  6061. UNUSED(ne1);
  6062. UNUSED(ne2);
  6063. UNUSED(ne3);
  6064. const size_t nb1 = dst->nb[1];
  6065. const size_t nb2 = dst->nb[2];
  6066. const size_t nb3 = dst->nb[3];
  6067. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6068. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6069. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6070. ggml_vec_sum_f32(ne00,
  6071. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6072. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6073. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6074. }
  6075. }
  6076. }
  6077. }
  6078. static void ggml_compute_forward_mean(
  6079. const struct ggml_compute_params * params,
  6080. const struct ggml_tensor * src0,
  6081. struct ggml_tensor * dst) {
  6082. switch (src0->type) {
  6083. case GGML_TYPE_F32:
  6084. {
  6085. ggml_compute_forward_mean_f32(params, src0, dst);
  6086. } break;
  6087. default:
  6088. {
  6089. GGML_ASSERT(false);
  6090. } break;
  6091. }
  6092. }
  6093. // ggml_compute_forward_repeat
  6094. static void ggml_compute_forward_repeat_f32(
  6095. const struct ggml_compute_params * params,
  6096. const struct ggml_tensor * src0,
  6097. struct ggml_tensor * dst) {
  6098. assert(params->ith == 0);
  6099. assert(ggml_can_repeat(src0, dst));
  6100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6101. return;
  6102. }
  6103. // TODO: implement support for rank > 2 tensors
  6104. assert(src0->ne[2] == 1);
  6105. assert(src0->ne[3] == 1);
  6106. assert( dst->ne[2] == 1);
  6107. assert( dst->ne[3] == 1);
  6108. const int nc = dst->ne[0];
  6109. const int nr = dst->ne[1];
  6110. const int nc0 = src0->ne[0];
  6111. const int nr0 = src0->ne[1];
  6112. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6113. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6114. // TODO: support for transposed / permuted tensors
  6115. assert( dst->nb[0] == sizeof(float));
  6116. assert(src0->nb[0] == sizeof(float));
  6117. // TODO: maybe this is not optimal?
  6118. for (int i = 0; i < nrr; i++) {
  6119. for (int j = 0; j < ncr; j++) {
  6120. for (int k = 0; k < nr0; k++) {
  6121. ggml_vec_cpy_f32(nc0,
  6122. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6123. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6124. }
  6125. }
  6126. }
  6127. }
  6128. static void ggml_compute_forward_repeat(
  6129. const struct ggml_compute_params * params,
  6130. const struct ggml_tensor * src0,
  6131. struct ggml_tensor * dst) {
  6132. switch (src0->type) {
  6133. case GGML_TYPE_F32:
  6134. {
  6135. ggml_compute_forward_repeat_f32(params, src0, dst);
  6136. } break;
  6137. default:
  6138. {
  6139. GGML_ASSERT(false);
  6140. } break;
  6141. }
  6142. }
  6143. // ggml_compute_forward_abs
  6144. static void ggml_compute_forward_abs_f32(
  6145. const struct ggml_compute_params * params,
  6146. const struct ggml_tensor * src0,
  6147. struct ggml_tensor * dst) {
  6148. assert(params->ith == 0);
  6149. assert(ggml_are_same_shape(src0, dst));
  6150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6151. return;
  6152. }
  6153. const int n = ggml_nrows(src0);
  6154. const int nc = src0->ne[0];
  6155. assert(dst->nb[0] == sizeof(float));
  6156. assert(src0->nb[0] == sizeof(float));
  6157. for (int i = 0; i < n; i++) {
  6158. ggml_vec_abs_f32(nc,
  6159. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6160. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6161. }
  6162. }
  6163. static void ggml_compute_forward_abs(
  6164. const struct ggml_compute_params * params,
  6165. const struct ggml_tensor * src0,
  6166. struct ggml_tensor * dst) {
  6167. switch (src0->type) {
  6168. case GGML_TYPE_F32:
  6169. {
  6170. ggml_compute_forward_abs_f32(params, src0, dst);
  6171. } break;
  6172. default:
  6173. {
  6174. GGML_ASSERT(false);
  6175. } break;
  6176. }
  6177. }
  6178. // ggml_compute_forward_sgn
  6179. static void ggml_compute_forward_sgn_f32(
  6180. const struct ggml_compute_params * params,
  6181. const struct ggml_tensor * src0,
  6182. struct ggml_tensor * dst) {
  6183. assert(params->ith == 0);
  6184. assert(ggml_are_same_shape(src0, dst));
  6185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6186. return;
  6187. }
  6188. const int n = ggml_nrows(src0);
  6189. const int nc = src0->ne[0];
  6190. assert(dst->nb[0] == sizeof(float));
  6191. assert(src0->nb[0] == sizeof(float));
  6192. for (int i = 0; i < n; i++) {
  6193. ggml_vec_sgn_f32(nc,
  6194. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6195. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6196. }
  6197. }
  6198. static void ggml_compute_forward_sgn(
  6199. const struct ggml_compute_params * params,
  6200. const struct ggml_tensor * src0,
  6201. struct ggml_tensor * dst) {
  6202. switch (src0->type) {
  6203. case GGML_TYPE_F32:
  6204. {
  6205. ggml_compute_forward_sgn_f32(params, src0, dst);
  6206. } break;
  6207. default:
  6208. {
  6209. GGML_ASSERT(false);
  6210. } break;
  6211. }
  6212. }
  6213. // ggml_compute_forward_neg
  6214. static void ggml_compute_forward_neg_f32(
  6215. const struct ggml_compute_params * params,
  6216. const struct ggml_tensor * src0,
  6217. struct ggml_tensor * dst) {
  6218. assert(params->ith == 0);
  6219. assert(ggml_are_same_shape(src0, dst));
  6220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6221. return;
  6222. }
  6223. const int n = ggml_nrows(src0);
  6224. const int nc = src0->ne[0];
  6225. assert(dst->nb[0] == sizeof(float));
  6226. assert(src0->nb[0] == sizeof(float));
  6227. for (int i = 0; i < n; i++) {
  6228. ggml_vec_neg_f32(nc,
  6229. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6230. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6231. }
  6232. }
  6233. static void ggml_compute_forward_neg(
  6234. const struct ggml_compute_params * params,
  6235. const struct ggml_tensor * src0,
  6236. struct ggml_tensor * dst) {
  6237. switch (src0->type) {
  6238. case GGML_TYPE_F32:
  6239. {
  6240. ggml_compute_forward_neg_f32(params, src0, dst);
  6241. } break;
  6242. default:
  6243. {
  6244. GGML_ASSERT(false);
  6245. } break;
  6246. }
  6247. }
  6248. // ggml_compute_forward_step
  6249. static void ggml_compute_forward_step_f32(
  6250. const struct ggml_compute_params * params,
  6251. const struct ggml_tensor * src0,
  6252. struct ggml_tensor * dst) {
  6253. assert(params->ith == 0);
  6254. assert(ggml_are_same_shape(src0, dst));
  6255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6256. return;
  6257. }
  6258. const int n = ggml_nrows(src0);
  6259. const int nc = src0->ne[0];
  6260. assert(dst->nb[0] == sizeof(float));
  6261. assert(src0->nb[0] == sizeof(float));
  6262. for (int i = 0; i < n; i++) {
  6263. ggml_vec_step_f32(nc,
  6264. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6265. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6266. }
  6267. }
  6268. static void ggml_compute_forward_step(
  6269. const struct ggml_compute_params * params,
  6270. const struct ggml_tensor * src0,
  6271. struct ggml_tensor * dst) {
  6272. switch (src0->type) {
  6273. case GGML_TYPE_F32:
  6274. {
  6275. ggml_compute_forward_step_f32(params, src0, dst);
  6276. } break;
  6277. default:
  6278. {
  6279. GGML_ASSERT(false);
  6280. } break;
  6281. }
  6282. }
  6283. // ggml_compute_forward_relu
  6284. static void ggml_compute_forward_relu_f32(
  6285. const struct ggml_compute_params * params,
  6286. const struct ggml_tensor * src0,
  6287. struct ggml_tensor * dst) {
  6288. assert(params->ith == 0);
  6289. assert(ggml_are_same_shape(src0, dst));
  6290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6291. return;
  6292. }
  6293. const int n = ggml_nrows(src0);
  6294. const int nc = src0->ne[0];
  6295. assert(dst->nb[0] == sizeof(float));
  6296. assert(src0->nb[0] == sizeof(float));
  6297. for (int i = 0; i < n; i++) {
  6298. ggml_vec_relu_f32(nc,
  6299. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6300. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6301. }
  6302. }
  6303. static void ggml_compute_forward_relu(
  6304. const struct ggml_compute_params * params,
  6305. const struct ggml_tensor * src0,
  6306. struct ggml_tensor * dst) {
  6307. switch (src0->type) {
  6308. case GGML_TYPE_F32:
  6309. {
  6310. ggml_compute_forward_relu_f32(params, src0, dst);
  6311. } break;
  6312. default:
  6313. {
  6314. GGML_ASSERT(false);
  6315. } break;
  6316. }
  6317. }
  6318. // ggml_compute_forward_gelu
  6319. static void ggml_compute_forward_gelu_f32(
  6320. const struct ggml_compute_params * params,
  6321. const struct ggml_tensor * src0,
  6322. struct ggml_tensor * dst) {
  6323. GGML_ASSERT(ggml_is_contiguous(src0));
  6324. GGML_ASSERT(ggml_is_contiguous(dst));
  6325. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6327. return;
  6328. }
  6329. const int ith = params->ith;
  6330. const int nth = params->nth;
  6331. const int nc = src0->ne[0];
  6332. const int nr = ggml_nrows(src0);
  6333. // rows per thread
  6334. const int dr = (nr + nth - 1)/nth;
  6335. // row range for this thread
  6336. const int ir0 = dr*ith;
  6337. const int ir1 = MIN(ir0 + dr, nr);
  6338. for (int i1 = ir0; i1 < ir1; i1++) {
  6339. ggml_vec_gelu_f32(nc,
  6340. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6341. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6342. #ifndef NDEBUG
  6343. for (int k = 0; k < nc; k++) {
  6344. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6345. UNUSED(x);
  6346. assert(!isnan(x));
  6347. assert(!isinf(x));
  6348. }
  6349. #endif
  6350. }
  6351. }
  6352. static void ggml_compute_forward_gelu(
  6353. const struct ggml_compute_params * params,
  6354. const struct ggml_tensor * src0,
  6355. struct ggml_tensor * dst) {
  6356. switch (src0->type) {
  6357. case GGML_TYPE_F32:
  6358. {
  6359. ggml_compute_forward_gelu_f32(params, src0, dst);
  6360. } break;
  6361. default:
  6362. {
  6363. GGML_ASSERT(false);
  6364. } break;
  6365. }
  6366. //printf("XXXXXXXX gelu\n");
  6367. }
  6368. // ggml_compute_forward_silu
  6369. static void ggml_compute_forward_silu_f32(
  6370. const struct ggml_compute_params * params,
  6371. const struct ggml_tensor * src0,
  6372. struct ggml_tensor * dst) {
  6373. GGML_ASSERT(ggml_is_contiguous(src0));
  6374. GGML_ASSERT(ggml_is_contiguous(dst));
  6375. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6377. return;
  6378. }
  6379. const int ith = params->ith;
  6380. const int nth = params->nth;
  6381. const int nc = src0->ne[0];
  6382. const int nr = ggml_nrows(src0);
  6383. // rows per thread
  6384. const int dr = (nr + nth - 1)/nth;
  6385. // row range for this thread
  6386. const int ir0 = dr*ith;
  6387. const int ir1 = MIN(ir0 + dr, nr);
  6388. for (int i1 = ir0; i1 < ir1; i1++) {
  6389. ggml_vec_silu_f32(nc,
  6390. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6391. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6392. #ifndef NDEBUG
  6393. for (int k = 0; k < nc; k++) {
  6394. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6395. UNUSED(x);
  6396. assert(!isnan(x));
  6397. assert(!isinf(x));
  6398. }
  6399. #endif
  6400. }
  6401. }
  6402. static void ggml_compute_forward_silu(
  6403. const struct ggml_compute_params * params,
  6404. const struct ggml_tensor * src0,
  6405. struct ggml_tensor * dst) {
  6406. switch (src0->type) {
  6407. case GGML_TYPE_F32:
  6408. {
  6409. ggml_compute_forward_silu_f32(params, src0, dst);
  6410. } break;
  6411. default:
  6412. {
  6413. GGML_ASSERT(false);
  6414. } break;
  6415. }
  6416. }
  6417. // ggml_compute_forward_norm
  6418. static void ggml_compute_forward_norm_f32(
  6419. const struct ggml_compute_params * params,
  6420. const struct ggml_tensor * src0,
  6421. struct ggml_tensor * dst) {
  6422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6424. return;
  6425. }
  6426. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. const int64_t ne00 = src0->ne[0];
  6430. const int64_t ne01 = src0->ne[1];
  6431. const int64_t ne02 = src0->ne[2];
  6432. const int64_t ne03 = src0->ne[3];
  6433. const size_t nb01 = src0->nb[1];
  6434. const size_t nb02 = src0->nb[2];
  6435. const size_t nb03 = src0->nb[3];
  6436. const size_t nb1 = dst->nb[1];
  6437. const size_t nb2 = dst->nb[2];
  6438. const size_t nb3 = dst->nb[3];
  6439. const float eps = 1e-5f; // TODO: make this a parameter
  6440. // TODO: optimize
  6441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6443. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6444. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6445. ggml_float sum = 0.0;
  6446. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6447. sum += (ggml_float)x[i00];
  6448. }
  6449. float mean = sum/ne00;
  6450. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6451. ggml_float sum2 = 0.0;
  6452. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6453. float v = x[i00] - mean;
  6454. y[i00] = v;
  6455. sum2 += (ggml_float)(v*v);
  6456. }
  6457. float variance = sum2/ne00;
  6458. const float scale = 1.0f/sqrtf(variance + eps);
  6459. ggml_vec_scale_f32(ne00, y, scale);
  6460. }
  6461. }
  6462. }
  6463. }
  6464. static void ggml_compute_forward_norm(
  6465. const struct ggml_compute_params * params,
  6466. const struct ggml_tensor * src0,
  6467. struct ggml_tensor * dst) {
  6468. switch (src0->type) {
  6469. case GGML_TYPE_F32:
  6470. {
  6471. ggml_compute_forward_norm_f32(params, src0, dst);
  6472. } break;
  6473. default:
  6474. {
  6475. GGML_ASSERT(false);
  6476. } break;
  6477. }
  6478. }
  6479. static void ggml_compute_forward_rms_norm_f32(
  6480. const struct ggml_compute_params * params,
  6481. const struct ggml_tensor * src0,
  6482. struct ggml_tensor * dst) {
  6483. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6485. return;
  6486. }
  6487. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6488. const int ith = params->ith;
  6489. const int nth = params->nth;
  6490. const int64_t ne00 = src0->ne[0];
  6491. const int64_t ne01 = src0->ne[1];
  6492. const int64_t ne02 = src0->ne[2];
  6493. const int64_t ne03 = src0->ne[3];
  6494. const size_t nb01 = src0->nb[1];
  6495. const size_t nb02 = src0->nb[2];
  6496. const size_t nb03 = src0->nb[3];
  6497. const size_t nb1 = dst->nb[1];
  6498. const size_t nb2 = dst->nb[2];
  6499. const size_t nb3 = dst->nb[3];
  6500. const float eps = 1e-6f; // TODO: make this a parameter
  6501. // TODO: optimize
  6502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6504. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6505. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6506. ggml_float sum = 0.0;
  6507. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6508. sum += (ggml_float)(x[i00] * x[i00]);
  6509. }
  6510. float mean = sum/ne00;
  6511. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6512. memcpy(y, x, ne00 * sizeof(float));
  6513. // for (int i00 = 0; i00 < ne00; i00++) {
  6514. // y[i00] = x[i00];
  6515. // }
  6516. const float scale = 1.0f/sqrtf(mean + eps);
  6517. ggml_vec_scale_f32(ne00, y, scale);
  6518. }
  6519. }
  6520. }
  6521. }
  6522. static void ggml_compute_forward_rms_norm(
  6523. const struct ggml_compute_params * params,
  6524. const struct ggml_tensor * src0,
  6525. struct ggml_tensor * dst) {
  6526. switch (src0->type) {
  6527. case GGML_TYPE_F32:
  6528. {
  6529. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6530. } break;
  6531. default:
  6532. {
  6533. GGML_ASSERT(false);
  6534. } break;
  6535. }
  6536. }
  6537. // ggml_compute_forward_mul_mat
  6538. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6539. // helper function to determine if it is better to use BLAS or not
  6540. // for large matrices, BLAS is faster
  6541. static bool ggml_compute_forward_mul_mat_use_blas(
  6542. const struct ggml_tensor * src0,
  6543. const struct ggml_tensor * src1,
  6544. struct ggml_tensor * dst) {
  6545. //const int64_t ne00 = src0->ne[0];
  6546. //const int64_t ne01 = src0->ne[1];
  6547. const int64_t ne10 = src1->ne[0];
  6548. const int64_t ne0 = dst->ne[0];
  6549. const int64_t ne1 = dst->ne[1];
  6550. // TODO: find the optimal values for these
  6551. if (ggml_is_contiguous(src0) &&
  6552. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6553. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6554. return true;
  6555. }
  6556. return false;
  6557. }
  6558. #endif
  6559. static void ggml_compute_forward_mul_mat_f32(
  6560. const struct ggml_compute_params * params,
  6561. const struct ggml_tensor * src0,
  6562. const struct ggml_tensor * src1,
  6563. struct ggml_tensor * dst) {
  6564. int64_t t0 = ggml_perf_time_us();
  6565. UNUSED(t0);
  6566. const int64_t ne00 = src0->ne[0];
  6567. const int64_t ne01 = src0->ne[1];
  6568. const int64_t ne02 = src0->ne[2];
  6569. const int64_t ne03 = src0->ne[3];
  6570. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6571. const int64_t ne10 = src1->ne[0];
  6572. #endif
  6573. const int64_t ne11 = src1->ne[1];
  6574. #ifndef NDEBUG
  6575. const int64_t ne12 = src1->ne[2];
  6576. const int64_t ne13 = src1->ne[3];
  6577. const int64_t ne0 = dst->ne[0];
  6578. const int64_t ne1 = dst->ne[1];
  6579. const int64_t ne2 = dst->ne[2];
  6580. const int64_t ne3 = dst->ne[3];
  6581. const int nb00 = src0->nb[0];
  6582. #endif
  6583. const int nb01 = src0->nb[1];
  6584. const int nb02 = src0->nb[2];
  6585. const int nb03 = src0->nb[3];
  6586. #ifndef NDEBUG
  6587. const int nb10 = src1->nb[0];
  6588. #endif
  6589. const int nb11 = src1->nb[1];
  6590. const int nb12 = src1->nb[2];
  6591. const int nb13 = src1->nb[3];
  6592. const int nb0 = dst->nb[0];
  6593. const int nb1 = dst->nb[1];
  6594. const int nb2 = dst->nb[2];
  6595. const int nb3 = dst->nb[3];
  6596. const int ith = params->ith;
  6597. const int nth = params->nth;
  6598. assert(ne02 == ne12);
  6599. assert(ne03 == ne13);
  6600. assert(ne2 == ne12);
  6601. assert(ne3 == ne13);
  6602. // we don't support permuted src0 or src1
  6603. assert(nb00 == sizeof(float));
  6604. assert(nb10 == sizeof(float));
  6605. // dst cannot be transposed or permuted
  6606. assert(nb0 == sizeof(float));
  6607. assert(nb0 <= nb1);
  6608. assert(nb1 <= nb2);
  6609. assert(nb2 <= nb3);
  6610. assert(ne0 == ne01);
  6611. assert(ne1 == ne11);
  6612. assert(ne2 == ne02);
  6613. assert(ne3 == ne03);
  6614. // nb01 >= nb00 - src0 is not transposed
  6615. // compute by src0 rows
  6616. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6617. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6618. if (params->ith != 0) {
  6619. return;
  6620. }
  6621. if (params->type == GGML_TASK_INIT) {
  6622. return;
  6623. }
  6624. if (params->type == GGML_TASK_FINALIZE) {
  6625. return;
  6626. }
  6627. #if defined(GGML_USE_CUBLAS)
  6628. const float alpha = 1.0f;
  6629. const float beta = 0.0f;
  6630. const int x_ne = ne01 * ne10;
  6631. const int y_ne = ne11 * ne10;
  6632. const int d_ne = ne11 * ne01;
  6633. size_t x_size, y_size, d_size;
  6634. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6635. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6636. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6637. #endif
  6638. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6639. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6640. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6641. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6642. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6643. #if defined(GGML_USE_CUBLAS)
  6644. // copy data to device
  6645. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6646. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6647. // compute
  6648. CUBLAS_CHECK(
  6649. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6650. ne01, ne11, ne10,
  6651. &alpha, d_X, ne00,
  6652. d_Y, ne10,
  6653. &beta, d_D, ne01));
  6654. // copy data to host
  6655. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6656. #else
  6657. // zT = y * xT
  6658. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6659. ne11, ne01, ne10,
  6660. 1.0f, y, ne10,
  6661. x, ne00,
  6662. 0.0f, d, ne01);
  6663. #endif
  6664. }
  6665. }
  6666. #if defined(GGML_USE_CUBLAS)
  6667. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6668. ggml_cuda_pool_free(d_X, x_size);
  6669. ggml_cuda_pool_free(d_Y, y_size);
  6670. ggml_cuda_pool_free(d_D, d_size);
  6671. #endif
  6672. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6673. return;
  6674. }
  6675. #endif
  6676. if (params->type == GGML_TASK_INIT) {
  6677. return;
  6678. }
  6679. if (params->type == GGML_TASK_FINALIZE) {
  6680. return;
  6681. }
  6682. // parallelize by src0 rows using ggml_vec_dot_f32
  6683. // total rows in src0
  6684. const int nr = ne01*ne02*ne03;
  6685. // rows per thread
  6686. const int dr = (nr + nth - 1)/nth;
  6687. // row range for this thread
  6688. const int ir0 = dr*ith;
  6689. const int ir1 = MIN(ir0 + dr, nr);
  6690. for (int ir = ir0; ir < ir1; ++ir) {
  6691. // src0 indices
  6692. const int i03 = ir/(ne02*ne01);
  6693. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6694. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6695. for (int64_t ic = 0; ic < ne11; ++ic) {
  6696. // src1 indices
  6697. const int i13 = i03;
  6698. const int i12 = i02;
  6699. const int i11 = ic;
  6700. // dst indices
  6701. const int i0 = i01;
  6702. const int i1 = i11;
  6703. const int i2 = i02;
  6704. const int i3 = i03;
  6705. ggml_vec_dot_f32(ne00,
  6706. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6707. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6708. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6709. }
  6710. }
  6711. //int64_t t1 = ggml_perf_time_us();
  6712. //static int64_t acc = 0;
  6713. //acc += t1 - t0;
  6714. //if (t1 - t0 > 10) {
  6715. // printf("\n");
  6716. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6717. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6718. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6719. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6720. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6721. //}
  6722. }
  6723. static void ggml_compute_forward_mul_mat_f16_f32(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0,
  6726. const struct ggml_tensor * src1,
  6727. struct ggml_tensor * dst) {
  6728. int64_t t0 = ggml_perf_time_us();
  6729. UNUSED(t0);
  6730. const int64_t ne00 = src0->ne[0];
  6731. const int64_t ne01 = src0->ne[1];
  6732. const int64_t ne02 = src0->ne[2];
  6733. const int64_t ne03 = src0->ne[3];
  6734. const int64_t ne10 = src1->ne[0];
  6735. const int64_t ne11 = src1->ne[1];
  6736. const int64_t ne12 = src1->ne[2];
  6737. const int64_t ne13 = src1->ne[3];
  6738. const int64_t ne0 = dst->ne[0];
  6739. const int64_t ne1 = dst->ne[1];
  6740. const int64_t ne2 = dst->ne[2];
  6741. const int64_t ne3 = dst->ne[3];
  6742. //const int64_t ne = ne0*ne1*ne2*ne3;
  6743. const int nb00 = src0->nb[0];
  6744. const int nb01 = src0->nb[1];
  6745. const int nb02 = src0->nb[2];
  6746. const int nb03 = src0->nb[3];
  6747. const int nb10 = src1->nb[0];
  6748. const int nb11 = src1->nb[1];
  6749. const int nb12 = src1->nb[2];
  6750. const int nb13 = src1->nb[3];
  6751. const int nb0 = dst->nb[0];
  6752. const int nb1 = dst->nb[1];
  6753. const int nb2 = dst->nb[2];
  6754. const int nb3 = dst->nb[3];
  6755. const int ith = params->ith;
  6756. const int nth = params->nth;
  6757. GGML_ASSERT(ne02 == ne12);
  6758. GGML_ASSERT(ne03 == ne13);
  6759. GGML_ASSERT(ne2 == ne12);
  6760. GGML_ASSERT(ne3 == ne13);
  6761. // TODO: we don't support permuted src0
  6762. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6763. // dst cannot be transposed or permuted
  6764. GGML_ASSERT(nb0 == sizeof(float));
  6765. GGML_ASSERT(nb0 <= nb1);
  6766. GGML_ASSERT(nb1 <= nb2);
  6767. GGML_ASSERT(nb2 <= nb3);
  6768. GGML_ASSERT(ne0 == ne01);
  6769. GGML_ASSERT(ne1 == ne11);
  6770. GGML_ASSERT(ne2 == ne02);
  6771. GGML_ASSERT(ne3 == ne03);
  6772. // nb01 >= nb00 - src0 is not transposed
  6773. // compute by src0 rows
  6774. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6775. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6776. GGML_ASSERT(nb10 == sizeof(float));
  6777. if (params->ith != 0) {
  6778. return;
  6779. }
  6780. if (params->type == GGML_TASK_INIT) {
  6781. return;
  6782. }
  6783. if (params->type == GGML_TASK_FINALIZE) {
  6784. return;
  6785. }
  6786. #if defined(GGML_USE_CUBLAS)
  6787. ggml_fp16_t * const wdata = params->wdata;
  6788. const float alpha = 1.0f;
  6789. const float beta = 0.0f;
  6790. const int x_ne = ne01 * ne10;
  6791. const int y_ne = ne11 * ne10;
  6792. const int d_ne = ne11 * ne01;
  6793. size_t x_size, y_size, d_size;
  6794. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6795. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6796. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6797. #else
  6798. float * const wdata = params->wdata;
  6799. #endif
  6800. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6801. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6802. #if defined(GGML_USE_CUBLAS)
  6803. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6804. {
  6805. size_t id = 0;
  6806. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6807. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6808. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6809. }
  6810. }
  6811. }
  6812. #else
  6813. {
  6814. size_t id = 0;
  6815. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6816. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6817. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6818. }
  6819. }
  6820. }
  6821. #endif
  6822. #if defined(GGML_USE_CUBLAS)
  6823. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6824. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6825. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6826. // copy data to device
  6827. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6828. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6829. // compute
  6830. CUBLAS_CHECK(
  6831. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6832. ne01, ne11, ne10,
  6833. &alpha, d_X, CUDA_R_16F, ne00,
  6834. d_Y, CUDA_R_16F, ne10,
  6835. &beta, d_D, CUDA_R_32F, ne01,
  6836. CUBLAS_COMPUTE_32F,
  6837. CUBLAS_GEMM_DEFAULT));
  6838. // copy data to host
  6839. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6840. #else
  6841. const float * x = wdata;
  6842. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6843. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6844. // zT = y * xT
  6845. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6846. ne11, ne01, ne10,
  6847. 1.0f, y, ne10,
  6848. x, ne00,
  6849. 0.0f, d, ne01);
  6850. #endif
  6851. }
  6852. }
  6853. #if defined(GGML_USE_CUBLAS)
  6854. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6855. ggml_cuda_pool_free(d_X, x_size);
  6856. ggml_cuda_pool_free(d_Y, y_size);
  6857. ggml_cuda_pool_free(d_D, d_size);
  6858. #endif
  6859. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6860. return;
  6861. }
  6862. #endif
  6863. if (params->type == GGML_TASK_INIT) {
  6864. ggml_fp16_t * const wdata = params->wdata;
  6865. size_t id = 0;
  6866. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6867. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6868. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6869. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6870. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6871. }
  6872. }
  6873. }
  6874. }
  6875. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6876. return;
  6877. }
  6878. if (params->type == GGML_TASK_FINALIZE) {
  6879. return;
  6880. }
  6881. // fp16 -> half the size, so divide by 2
  6882. // TODO: do not support transposed src1
  6883. assert(nb10/2 == sizeof(ggml_fp16_t));
  6884. // parallelize by src0 rows using ggml_vec_dot_f16
  6885. // total rows in src0
  6886. const int nr = ne01*ne02*ne03;
  6887. // rows per thread
  6888. const int dr = (nr + nth - 1)/nth;
  6889. // row range for this thread
  6890. const int ir0 = dr*ith;
  6891. const int ir1 = MIN(ir0 + dr, nr);
  6892. ggml_fp16_t * wdata = params->wdata;
  6893. for (int ir = ir0; ir < ir1; ++ir) {
  6894. // src0 indices
  6895. const int i03 = ir/(ne02*ne01);
  6896. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6897. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6898. const int i13 = i03;
  6899. const int i12 = i02;
  6900. const int i0 = i01;
  6901. const int i2 = i02;
  6902. const int i3 = i03;
  6903. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6904. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6905. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6906. for (int64_t ic = 0; ic < ne11; ++ic) {
  6907. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6908. }
  6909. }
  6910. //int64_t t1 = ggml_time_us();
  6911. //static int64_t acc = 0;
  6912. //acc += t1 - t0;
  6913. //if (t1 - t0 > 10) {
  6914. // printf("\n");
  6915. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6916. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6917. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6918. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6919. //}
  6920. }
  6921. static void ggml_compute_forward_mul_mat_q_f32(
  6922. const struct ggml_compute_params * params,
  6923. const struct ggml_tensor * src0,
  6924. const struct ggml_tensor * src1,
  6925. struct ggml_tensor * dst) {
  6926. int64_t t0 = ggml_perf_time_us();
  6927. UNUSED(t0);
  6928. const int64_t ne00 = src0->ne[0];
  6929. const int64_t ne01 = src0->ne[1];
  6930. const int64_t ne02 = src0->ne[2];
  6931. const int64_t ne03 = src0->ne[3];
  6932. const int64_t ne10 = src1->ne[0];
  6933. const int64_t ne11 = src1->ne[1];
  6934. const int64_t ne12 = src1->ne[2];
  6935. const int64_t ne13 = src1->ne[3];
  6936. const int64_t ne0 = dst->ne[0];
  6937. const int64_t ne1 = dst->ne[1];
  6938. const int64_t ne2 = dst->ne[2];
  6939. const int64_t ne3 = dst->ne[3];
  6940. const int nb00 = src0->nb[0];
  6941. const int nb01 = src0->nb[1];
  6942. const int nb02 = src0->nb[2];
  6943. const int nb03 = src0->nb[3];
  6944. const int nb10 = src1->nb[0];
  6945. const int nb11 = src1->nb[1];
  6946. const int nb12 = src1->nb[2];
  6947. const int nb13 = src1->nb[3];
  6948. const int nb0 = dst->nb[0];
  6949. const int nb1 = dst->nb[1];
  6950. const int nb2 = dst->nb[2];
  6951. const int nb3 = dst->nb[3];
  6952. const int ith = params->ith;
  6953. const int nth = params->nth;
  6954. GGML_ASSERT(ne02 == ne12);
  6955. GGML_ASSERT(ne03 == ne13);
  6956. GGML_ASSERT(ne2 == ne12);
  6957. GGML_ASSERT(ne3 == ne13);
  6958. const enum ggml_type type = src0->type;
  6959. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6960. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6961. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6962. // we don't support permuted src0 or src1
  6963. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6964. GGML_ASSERT(nb10 == sizeof(float));
  6965. // dst cannot be transposed or permuted
  6966. GGML_ASSERT(nb0 == sizeof(float));
  6967. GGML_ASSERT(nb0 <= nb1);
  6968. GGML_ASSERT(nb1 <= nb2);
  6969. GGML_ASSERT(nb2 <= nb3);
  6970. GGML_ASSERT(ne0 == ne01);
  6971. GGML_ASSERT(ne1 == ne11);
  6972. GGML_ASSERT(ne2 == ne02);
  6973. GGML_ASSERT(ne3 == ne03);
  6974. // nb01 >= nb00 - src0 is not transposed
  6975. // compute by src0 rows
  6976. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6977. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6978. if (params->ith != 0) {
  6979. return;
  6980. }
  6981. if (params->type == GGML_TASK_INIT) {
  6982. return;
  6983. }
  6984. if (params->type == GGML_TASK_FINALIZE) {
  6985. return;
  6986. }
  6987. #if defined(GGML_USE_CUBLAS)
  6988. const float alpha = 1.0f;
  6989. const float beta = 0.0f;
  6990. const int x_ne = ne01 * ne10;
  6991. const int y_ne = ne11 * ne10;
  6992. const int d_ne = ne11 * ne01;
  6993. size_t x_size, y_size, d_size, q_size;
  6994. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6995. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6996. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6997. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6998. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6999. if (type == GGML_TYPE_Q4_0) {
  7000. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  7001. }
  7002. else if (type == GGML_TYPE_Q4_1) {
  7003. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  7004. }
  7005. else if (type == GGML_TYPE_Q4_2) {
  7006. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  7007. }
  7008. else if (type == GGML_TYPE_Q4_3) {
  7009. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  7010. }
  7011. else if (type == GGML_TYPE_Q5_0) {
  7012. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  7013. }
  7014. else if (type == GGML_TYPE_Q5_1) {
  7015. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  7016. }
  7017. else if (type == GGML_TYPE_Q8_0) {
  7018. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  7019. }
  7020. else {
  7021. GGML_ASSERT(false);
  7022. }
  7023. #else
  7024. float * const wdata = params->wdata;
  7025. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7026. #endif
  7027. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7028. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7029. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7030. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7031. #if defined(GGML_USE_CUBLAS)
  7032. // copy and dequantize on device
  7033. CUDA_CHECK(
  7034. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  7035. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  7036. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  7037. CUDA_CHECK(cudaGetLastError());
  7038. #else
  7039. {
  7040. size_t id = 0;
  7041. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7042. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7043. id += ne00;
  7044. }
  7045. }
  7046. const float * x = wdata;
  7047. #endif
  7048. #if defined(GGML_USE_CUBLAS)
  7049. // copy data to device
  7050. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  7051. // compute
  7052. CUBLAS_CHECK(
  7053. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7054. ne01, ne11, ne10,
  7055. &alpha, d_X, ne00,
  7056. d_Y, ne10,
  7057. &beta, d_D, ne01));
  7058. // copy data to host
  7059. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7060. #else
  7061. // zT = y * xT
  7062. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7063. ne11, ne01, ne10,
  7064. 1.0f, y, ne10,
  7065. x, ne00,
  7066. 0.0f, d, ne01);
  7067. #endif
  7068. }
  7069. }
  7070. #if defined(GGML_USE_CUBLAS)
  7071. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7072. ggml_cuda_pool_free(d_X, x_size);
  7073. ggml_cuda_pool_free(d_Y, y_size);
  7074. ggml_cuda_pool_free(d_D, d_size);
  7075. ggml_cuda_pool_free(d_Q, q_size);
  7076. #endif
  7077. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7078. return;
  7079. }
  7080. #endif
  7081. if (params->type == GGML_TASK_INIT) {
  7082. char * wdata = params->wdata;
  7083. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7084. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7085. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7086. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7087. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7088. wdata += row_size;
  7089. }
  7090. }
  7091. }
  7092. return;
  7093. }
  7094. if (params->type == GGML_TASK_FINALIZE) {
  7095. return;
  7096. }
  7097. // parallelize by src0 rows using ggml_vec_dot_q
  7098. // total rows in src0
  7099. const int nr = ne01*ne02*ne03;
  7100. // rows per thread
  7101. const int dr = (nr + nth - 1)/nth;
  7102. // row range for this thread
  7103. const int ir0 = dr*ith;
  7104. const int ir1 = MIN(ir0 + dr, nr);
  7105. void * wdata = params->wdata;
  7106. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7107. for (int ir = ir0; ir < ir1; ++ir) {
  7108. // src0 indices
  7109. const int i03 = ir/(ne02*ne01);
  7110. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7111. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7112. const int i13 = i03;
  7113. const int i12 = i02;
  7114. const int i0 = i01;
  7115. const int i2 = i02;
  7116. const int i3 = i03;
  7117. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7118. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7119. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7120. assert(ne00 % 32 == 0);
  7121. for (int64_t ic = 0; ic < ne11; ++ic) {
  7122. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7123. }
  7124. }
  7125. //int64_t t1 = ggml_time_us();
  7126. //static int64_t acc = 0;
  7127. //acc += t1 - t0;
  7128. //if (t1 - t0 > 10) {
  7129. // printf("\n");
  7130. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7131. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7132. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7133. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7134. //}
  7135. }
  7136. static void ggml_compute_forward_mul_mat(
  7137. const struct ggml_compute_params * params,
  7138. const struct ggml_tensor * src0,
  7139. const struct ggml_tensor * src1,
  7140. struct ggml_tensor * dst) {
  7141. switch (src0->type) {
  7142. case GGML_TYPE_Q4_0:
  7143. case GGML_TYPE_Q4_1:
  7144. case GGML_TYPE_Q4_2:
  7145. case GGML_TYPE_Q4_3:
  7146. case GGML_TYPE_Q5_0:
  7147. case GGML_TYPE_Q5_1:
  7148. case GGML_TYPE_Q8_0:
  7149. case GGML_TYPE_Q8_1:
  7150. {
  7151. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7152. } break;
  7153. case GGML_TYPE_F16:
  7154. {
  7155. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7156. } break;
  7157. case GGML_TYPE_F32:
  7158. {
  7159. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7160. } break;
  7161. default:
  7162. {
  7163. GGML_ASSERT(false);
  7164. } break;
  7165. }
  7166. }
  7167. // ggml_compute_forward_scale
  7168. static void ggml_compute_forward_scale_f32(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0,
  7171. const struct ggml_tensor * src1,
  7172. struct ggml_tensor * dst) {
  7173. GGML_ASSERT(ggml_is_contiguous(src0));
  7174. GGML_ASSERT(ggml_is_contiguous(dst));
  7175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7176. GGML_ASSERT(ggml_is_scalar(src1));
  7177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7178. return;
  7179. }
  7180. // scale factor
  7181. const float v = *(float *) src1->data;
  7182. const int ith = params->ith;
  7183. const int nth = params->nth;
  7184. const int nc = src0->ne[0];
  7185. const int nr = ggml_nrows(src0);
  7186. // rows per thread
  7187. const int dr = (nr + nth - 1)/nth;
  7188. // row range for this thread
  7189. const int ir0 = dr*ith;
  7190. const int ir1 = MIN(ir0 + dr, nr);
  7191. for (int i1 = ir0; i1 < ir1; i1++) {
  7192. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7193. }
  7194. }
  7195. static void ggml_compute_forward_scale(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. const struct ggml_tensor * src1,
  7199. struct ggml_tensor * dst) {
  7200. switch (src0->type) {
  7201. case GGML_TYPE_F32:
  7202. {
  7203. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7204. } break;
  7205. default:
  7206. {
  7207. GGML_ASSERT(false);
  7208. } break;
  7209. }
  7210. }
  7211. // ggml_compute_forward_cpy
  7212. static void ggml_compute_forward_cpy(
  7213. const struct ggml_compute_params * params,
  7214. const struct ggml_tensor * src0,
  7215. struct ggml_tensor * dst) {
  7216. ggml_compute_forward_dup(params, src0, dst);
  7217. }
  7218. // ggml_compute_forward_cont
  7219. static void ggml_compute_forward_cont(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0,
  7222. struct ggml_tensor * dst) {
  7223. ggml_compute_forward_dup(params, src0, dst);
  7224. }
  7225. // ggml_compute_forward_reshape
  7226. static void ggml_compute_forward_reshape(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. // NOP
  7231. UNUSED(params);
  7232. UNUSED(src0);
  7233. UNUSED(dst);
  7234. }
  7235. // ggml_compute_forward_view
  7236. static void ggml_compute_forward_view(
  7237. const struct ggml_compute_params * params,
  7238. const struct ggml_tensor * src0) {
  7239. // NOP
  7240. UNUSED(params);
  7241. UNUSED(src0);
  7242. }
  7243. // ggml_compute_forward_permute
  7244. static void ggml_compute_forward_permute(
  7245. const struct ggml_compute_params * params,
  7246. const struct ggml_tensor * src0) {
  7247. // NOP
  7248. UNUSED(params);
  7249. UNUSED(src0);
  7250. }
  7251. // ggml_compute_forward_transpose
  7252. static void ggml_compute_forward_transpose(
  7253. const struct ggml_compute_params * params,
  7254. const struct ggml_tensor * src0) {
  7255. // NOP
  7256. UNUSED(params);
  7257. UNUSED(src0);
  7258. }
  7259. // ggml_compute_forward_get_rows
  7260. static void ggml_compute_forward_get_rows_q(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. const struct ggml_tensor * src1,
  7264. struct ggml_tensor * dst) {
  7265. assert(params->ith == 0);
  7266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7267. return;
  7268. }
  7269. const int nc = src0->ne[0];
  7270. const int nr = ggml_nelements(src1);
  7271. const enum ggml_type type = src0->type;
  7272. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7273. assert( dst->ne[0] == nc);
  7274. assert( dst->ne[1] == nr);
  7275. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7276. for (int i = 0; i < nr; ++i) {
  7277. const int r = ((int32_t *) src1->data)[i];
  7278. dequantize_row_q(
  7279. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7280. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7281. }
  7282. }
  7283. static void ggml_compute_forward_get_rows_f16(
  7284. const struct ggml_compute_params * params,
  7285. const struct ggml_tensor * src0,
  7286. const struct ggml_tensor * src1,
  7287. struct ggml_tensor * dst) {
  7288. assert(params->ith == 0);
  7289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7290. return;
  7291. }
  7292. const int nc = src0->ne[0];
  7293. const int nr = ggml_nelements(src1);
  7294. assert( dst->ne[0] == nc);
  7295. assert( dst->ne[1] == nr);
  7296. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7297. for (int i = 0; i < nr; ++i) {
  7298. const int r = ((int32_t *) src1->data)[i];
  7299. for (int j = 0; j < nc; ++j) {
  7300. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7301. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7302. }
  7303. }
  7304. }
  7305. static void ggml_compute_forward_get_rows_f32(
  7306. const struct ggml_compute_params * params,
  7307. const struct ggml_tensor * src0,
  7308. const struct ggml_tensor * src1,
  7309. struct ggml_tensor * dst) {
  7310. assert(params->ith == 0);
  7311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7312. return;
  7313. }
  7314. const int nc = src0->ne[0];
  7315. const int nr = ggml_nelements(src1);
  7316. assert( dst->ne[0] == nc);
  7317. assert( dst->ne[1] == nr);
  7318. assert(src0->nb[0] == sizeof(float));
  7319. for (int i = 0; i < nr; ++i) {
  7320. const int r = ((int32_t *) src1->data)[i];
  7321. ggml_vec_cpy_f32(nc,
  7322. (float *) ((char *) dst->data + i*dst->nb[1]),
  7323. (float *) ((char *) src0->data + r*src0->nb[1]));
  7324. }
  7325. }
  7326. static void ggml_compute_forward_get_rows(
  7327. const struct ggml_compute_params * params,
  7328. const struct ggml_tensor * src0,
  7329. const struct ggml_tensor * src1,
  7330. struct ggml_tensor * dst) {
  7331. switch (src0->type) {
  7332. case GGML_TYPE_Q4_0:
  7333. case GGML_TYPE_Q4_1:
  7334. case GGML_TYPE_Q4_2:
  7335. case GGML_TYPE_Q4_3:
  7336. case GGML_TYPE_Q5_0:
  7337. case GGML_TYPE_Q5_1:
  7338. case GGML_TYPE_Q8_0:
  7339. case GGML_TYPE_Q8_1:
  7340. {
  7341. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7342. } break;
  7343. case GGML_TYPE_F16:
  7344. {
  7345. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7346. } break;
  7347. case GGML_TYPE_F32:
  7348. {
  7349. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7350. } break;
  7351. default:
  7352. {
  7353. GGML_ASSERT(false);
  7354. } break;
  7355. }
  7356. //static bool first = true;
  7357. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7358. //if (first) {
  7359. // first = false;
  7360. //} else {
  7361. // for (int k = 0; k < dst->ne[1]; ++k) {
  7362. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7363. // for (int i = 0; i < 16; ++i) {
  7364. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7365. // }
  7366. // printf("\n");
  7367. // }
  7368. // printf("\n");
  7369. // }
  7370. // printf("\n");
  7371. // exit(0);
  7372. //}
  7373. }
  7374. // ggml_compute_forward_diag_mask_inf
  7375. static void ggml_compute_forward_diag_mask_inf_f32(
  7376. const struct ggml_compute_params * params,
  7377. const struct ggml_tensor * src0,
  7378. const struct ggml_tensor * src1,
  7379. struct ggml_tensor * dst) {
  7380. assert(params->ith == 0);
  7381. assert(src1->type == GGML_TYPE_I32);
  7382. assert(ggml_nelements(src1) == 1);
  7383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7384. return;
  7385. }
  7386. const int n_past = ((int32_t *) src1->data)[0];
  7387. // TODO: handle transposed/permuted matrices
  7388. const int n = ggml_nrows(src0);
  7389. const int nc = src0->ne[0];
  7390. const int nr = src0->ne[1];
  7391. const int nz = n/nr;
  7392. assert( dst->nb[0] == sizeof(float));
  7393. assert(src0->nb[0] == sizeof(float));
  7394. for (int k = 0; k < nz; k++) {
  7395. for (int j = 0; j < nr; j++) {
  7396. for (int i = n_past; i < nc; i++) {
  7397. if (i > n_past + j) {
  7398. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7399. }
  7400. }
  7401. }
  7402. }
  7403. }
  7404. static void ggml_compute_forward_diag_mask_inf(
  7405. const struct ggml_compute_params * params,
  7406. const struct ggml_tensor * src0,
  7407. const struct ggml_tensor * src1,
  7408. struct ggml_tensor * dst) {
  7409. switch (src0->type) {
  7410. case GGML_TYPE_F32:
  7411. {
  7412. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7413. } break;
  7414. default:
  7415. {
  7416. GGML_ASSERT(false);
  7417. } break;
  7418. }
  7419. }
  7420. // ggml_compute_forward_soft_max
  7421. static void ggml_compute_forward_soft_max_f32(
  7422. const struct ggml_compute_params * params,
  7423. const struct ggml_tensor * src0,
  7424. struct ggml_tensor * dst) {
  7425. GGML_ASSERT(ggml_is_contiguous(src0));
  7426. GGML_ASSERT(ggml_is_contiguous(dst));
  7427. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7429. return;
  7430. }
  7431. // TODO: handle transposed/permuted matrices
  7432. const int ith = params->ith;
  7433. const int nth = params->nth;
  7434. const int nc = src0->ne[0];
  7435. const int nr = ggml_nrows(src0);
  7436. // rows per thread
  7437. const int dr = (nr + nth - 1)/nth;
  7438. // row range for this thread
  7439. const int ir0 = dr*ith;
  7440. const int ir1 = MIN(ir0 + dr, nr);
  7441. for (int i1 = ir0; i1 < ir1; i1++) {
  7442. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7443. #ifndef NDEBUG
  7444. for (int i = 0; i < nc; ++i) {
  7445. //printf("p[%d] = %f\n", i, p[i]);
  7446. assert(!isnan(p[i]));
  7447. }
  7448. #endif
  7449. float max = -INFINITY;
  7450. ggml_vec_max_f32(nc, &max, p);
  7451. ggml_float sum = 0.0;
  7452. uint16_t scvt;
  7453. for (int i = 0; i < nc; i++) {
  7454. if (p[i] == -INFINITY) {
  7455. p[i] = 0.0f;
  7456. } else {
  7457. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7458. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7459. memcpy(&scvt, &s, sizeof(scvt));
  7460. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7461. sum += (ggml_float)val;
  7462. p[i] = val;
  7463. }
  7464. }
  7465. assert(sum > 0.0);
  7466. sum = 1.0/sum;
  7467. ggml_vec_scale_f32(nc, p, sum);
  7468. #ifndef NDEBUG
  7469. for (int i = 0; i < nc; ++i) {
  7470. assert(!isnan(p[i]));
  7471. assert(!isinf(p[i]));
  7472. }
  7473. #endif
  7474. }
  7475. }
  7476. static void ggml_compute_forward_soft_max(
  7477. const struct ggml_compute_params * params,
  7478. const struct ggml_tensor * src0,
  7479. struct ggml_tensor * dst) {
  7480. switch (src0->type) {
  7481. case GGML_TYPE_F32:
  7482. {
  7483. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7484. } break;
  7485. default:
  7486. {
  7487. GGML_ASSERT(false);
  7488. } break;
  7489. }
  7490. }
  7491. // ggml_compute_forward_rope
  7492. static void ggml_compute_forward_rope_f32(
  7493. const struct ggml_compute_params * params,
  7494. const struct ggml_tensor * src0,
  7495. const struct ggml_tensor * src1,
  7496. struct ggml_tensor * dst) {
  7497. assert(src1->type == GGML_TYPE_I32);
  7498. assert(ggml_nelements(src1) == 3);
  7499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7500. return;
  7501. }
  7502. const int n_past = ((int32_t *) src1->data)[0];
  7503. const int n_dims = ((int32_t *) src1->data)[1];
  7504. const int mode = ((int32_t *) src1->data)[2];
  7505. //const int64_t ne0 = src0->ne[0];
  7506. const int64_t ne1 = src0->ne[1];
  7507. const int64_t ne2 = src0->ne[2];
  7508. const int64_t ne3 = src0->ne[3];
  7509. const int nb0 = src0->nb[0];
  7510. const int nb1 = src0->nb[1];
  7511. const int nb2 = src0->nb[2];
  7512. const int nb3 = src0->nb[3];
  7513. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7514. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7515. assert(nb0 == sizeof(float));
  7516. const int ith = params->ith;
  7517. const int nth = params->nth;
  7518. const int nr = ggml_nrows(src0);
  7519. // rows per thread
  7520. const int dr = (nr + nth - 1)/nth;
  7521. // row range for this thread
  7522. const int ir0 = dr*ith;
  7523. const int ir1 = MIN(ir0 + dr, nr);
  7524. // row index used to determine which thread to use
  7525. int ir = 0;
  7526. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7527. const bool is_neox = mode & 2;
  7528. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7529. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7530. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7531. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7532. if (ir++ < ir0) continue;
  7533. if (ir > ir1) break;
  7534. float theta = (float)p;
  7535. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7536. const float cos_theta = cosf(theta);
  7537. const float sin_theta = sinf(theta);
  7538. theta *= theta_scale;
  7539. if (!is_neox) {
  7540. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7541. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7542. const float x0 = src[0];
  7543. const float x1 = src[1];
  7544. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7545. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7546. } else {
  7547. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7548. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7549. const float x0 = src[0];
  7550. const float x1 = src[n_dims/2];
  7551. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7552. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7553. }
  7554. }
  7555. }
  7556. }
  7557. }
  7558. }
  7559. static void ggml_compute_forward_rope_f16(
  7560. const struct ggml_compute_params * params,
  7561. const struct ggml_tensor * src0,
  7562. const struct ggml_tensor * src1,
  7563. struct ggml_tensor * dst) {
  7564. assert(src1->type == GGML_TYPE_I32);
  7565. assert(ggml_nelements(src1) == 3);
  7566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7567. return;
  7568. }
  7569. const int n_past = ((int32_t *) src1->data)[0];
  7570. const int n_dims = ((int32_t *) src1->data)[1];
  7571. const int mode = ((int32_t *) src1->data)[2];
  7572. //const int64_t ne0 = src0->ne[0];
  7573. const int64_t ne1 = src0->ne[1];
  7574. const int64_t ne2 = src0->ne[2];
  7575. const int64_t ne3 = src0->ne[3];
  7576. const int nb0 = src0->nb[0];
  7577. const int nb1 = src0->nb[1];
  7578. const int nb2 = src0->nb[2];
  7579. const int nb3 = src0->nb[3];
  7580. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7581. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7582. assert(nb0 == sizeof(ggml_fp16_t));
  7583. const int ith = params->ith;
  7584. const int nth = params->nth;
  7585. const int nr = ggml_nrows(src0);
  7586. // rows per thread
  7587. const int dr = (nr + nth - 1)/nth;
  7588. // row range for this thread
  7589. const int ir0 = dr*ith;
  7590. const int ir1 = MIN(ir0 + dr, nr);
  7591. // row index used to determine which thread to use
  7592. int ir = 0;
  7593. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7594. const bool is_neox = mode & 2;
  7595. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7596. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7597. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7598. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7599. if (ir++ < ir0) continue;
  7600. if (ir > ir1) break;
  7601. float theta = (float)p;
  7602. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7603. const float cos_theta = cosf(theta);
  7604. const float sin_theta = sinf(theta);
  7605. theta *= theta_scale;
  7606. if (!is_neox) {
  7607. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7608. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7609. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7610. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7611. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7612. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7613. } else {
  7614. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7615. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7616. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7617. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7618. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7619. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7620. }
  7621. }
  7622. }
  7623. }
  7624. }
  7625. }
  7626. static void ggml_compute_forward_rope(
  7627. const struct ggml_compute_params * params,
  7628. const struct ggml_tensor * src0,
  7629. const struct ggml_tensor * src1,
  7630. struct ggml_tensor * dst) {
  7631. switch (src0->type) {
  7632. case GGML_TYPE_F16:
  7633. {
  7634. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7635. } break;
  7636. case GGML_TYPE_F32:
  7637. {
  7638. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7639. } break;
  7640. default:
  7641. {
  7642. GGML_ASSERT(false);
  7643. } break;
  7644. }
  7645. }
  7646. // ggml_compute_forward_conv_1d_1s
  7647. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7648. const struct ggml_compute_params * params,
  7649. const struct ggml_tensor * src0,
  7650. const struct ggml_tensor * src1,
  7651. struct ggml_tensor * dst) {
  7652. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7653. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7654. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7655. int64_t t0 = ggml_perf_time_us();
  7656. UNUSED(t0);
  7657. const int64_t ne00 = src0->ne[0];
  7658. const int64_t ne01 = src0->ne[1];
  7659. const int64_t ne02 = src0->ne[2];
  7660. //const int64_t ne03 = src0->ne[3];
  7661. const int64_t ne10 = src1->ne[0];
  7662. const int64_t ne11 = src1->ne[1];
  7663. //const int64_t ne12 = src1->ne[2];
  7664. //const int64_t ne13 = src1->ne[3];
  7665. //const int64_t ne0 = dst->ne[0];
  7666. //const int64_t ne1 = dst->ne[1];
  7667. //const int64_t ne2 = dst->ne[2];
  7668. //const int64_t ne3 = dst->ne[3];
  7669. //const int64_t ne = ne0*ne1*ne2*ne3;
  7670. const int nb00 = src0->nb[0];
  7671. const int nb01 = src0->nb[1];
  7672. const int nb02 = src0->nb[2];
  7673. //const int nb03 = src0->nb[3];
  7674. const int nb10 = src1->nb[0];
  7675. const int nb11 = src1->nb[1];
  7676. //const int nb12 = src1->nb[2];
  7677. //const int nb13 = src1->nb[3];
  7678. //const int nb0 = dst->nb[0];
  7679. const int nb1 = dst->nb[1];
  7680. //const int nb2 = dst->nb[2];
  7681. //const int nb3 = dst->nb[3];
  7682. const int ith = params->ith;
  7683. const int nth = params->nth;
  7684. const int nk = ne00;
  7685. const int nh = nk/2;
  7686. const int ew0 = ggml_up32(ne01);
  7687. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7688. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7689. GGML_ASSERT(nb10 == sizeof(float));
  7690. if (params->type == GGML_TASK_INIT) {
  7691. // TODO: fix this memset (wsize is overestimated)
  7692. memset(params->wdata, 0, params->wsize);
  7693. // prepare kernel data (src0)
  7694. {
  7695. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7696. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7697. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7698. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7699. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7700. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7701. dst_data[i00*ew0 + i01] = src[i00];
  7702. }
  7703. }
  7704. }
  7705. }
  7706. // prepare source data (src1)
  7707. {
  7708. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7709. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7710. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7711. ggml_fp16_t * dst_data = wdata;
  7712. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7713. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7714. }
  7715. }
  7716. }
  7717. return;
  7718. }
  7719. if (params->type == GGML_TASK_FINALIZE) {
  7720. return;
  7721. }
  7722. // total rows in dst
  7723. const int nr = ne02;
  7724. // rows per thread
  7725. const int dr = (nr + nth - 1)/nth;
  7726. // row range for this thread
  7727. const int ir0 = dr*ith;
  7728. const int ir1 = MIN(ir0 + dr, nr);
  7729. for (int i1 = ir0; i1 < ir1; i1++) {
  7730. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7731. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7732. dst_data[i0] = 0;
  7733. for (int k = -nh; k <= nh; k++) {
  7734. float v = 0.0f;
  7735. ggml_vec_dot_f16(ew0, &v,
  7736. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7737. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7738. dst_data[i0] += v;
  7739. }
  7740. }
  7741. }
  7742. }
  7743. static void ggml_compute_forward_conv_1d_1s_f32(
  7744. const struct ggml_compute_params * params,
  7745. const struct ggml_tensor * src0,
  7746. const struct ggml_tensor * src1,
  7747. struct ggml_tensor * dst) {
  7748. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7749. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7750. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7751. int64_t t0 = ggml_perf_time_us();
  7752. UNUSED(t0);
  7753. const int64_t ne00 = src0->ne[0];
  7754. const int64_t ne01 = src0->ne[1];
  7755. const int64_t ne02 = src0->ne[2];
  7756. //const int64_t ne03 = src0->ne[3];
  7757. const int64_t ne10 = src1->ne[0];
  7758. const int64_t ne11 = src1->ne[1];
  7759. //const int64_t ne12 = src1->ne[2];
  7760. //const int64_t ne13 = src1->ne[3];
  7761. //const int64_t ne0 = dst->ne[0];
  7762. //const int64_t ne1 = dst->ne[1];
  7763. //const int64_t ne2 = dst->ne[2];
  7764. //const int64_t ne3 = dst->ne[3];
  7765. //const int64_t ne = ne0*ne1*ne2*ne3;
  7766. const int nb00 = src0->nb[0];
  7767. const int nb01 = src0->nb[1];
  7768. const int nb02 = src0->nb[2];
  7769. //const int nb03 = src0->nb[3];
  7770. const int nb10 = src1->nb[0];
  7771. const int nb11 = src1->nb[1];
  7772. //const int nb12 = src1->nb[2];
  7773. //const int nb13 = src1->nb[3];
  7774. //const int nb0 = dst->nb[0];
  7775. const int nb1 = dst->nb[1];
  7776. //const int nb2 = dst->nb[2];
  7777. //const int nb3 = dst->nb[3];
  7778. const int ith = params->ith;
  7779. const int nth = params->nth;
  7780. const int nk = ne00;
  7781. const int nh = nk/2;
  7782. const int ew0 = ggml_up32(ne01);
  7783. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7784. GGML_ASSERT(nb00 == sizeof(float));
  7785. GGML_ASSERT(nb10 == sizeof(float));
  7786. if (params->type == GGML_TASK_INIT) {
  7787. // TODO: fix this memset (wsize is overestimated)
  7788. memset(params->wdata, 0, params->wsize);
  7789. // prepare kernel data (src0)
  7790. {
  7791. float * const wdata = (float *) params->wdata + 0;
  7792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7793. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7794. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7795. float * dst_data = wdata + i02*ew0*ne00;
  7796. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7797. dst_data[i00*ew0 + i01] = src[i00];
  7798. }
  7799. }
  7800. }
  7801. }
  7802. // prepare source data (src1)
  7803. {
  7804. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7805. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7806. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7807. float * dst_data = wdata;
  7808. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7809. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7810. }
  7811. }
  7812. }
  7813. return;
  7814. }
  7815. if (params->type == GGML_TASK_FINALIZE) {
  7816. return;
  7817. }
  7818. // total rows in dst
  7819. const int nr = ne02;
  7820. // rows per thread
  7821. const int dr = (nr + nth - 1)/nth;
  7822. // row range for this thread
  7823. const int ir0 = dr*ith;
  7824. const int ir1 = MIN(ir0 + dr, nr);
  7825. for (int i1 = ir0; i1 < ir1; i1++) {
  7826. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7827. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7828. dst_data[i0] = 0;
  7829. for (int k = -nh; k <= nh; k++) {
  7830. float v = 0.0f;
  7831. ggml_vec_dot_f32(ew0, &v,
  7832. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7833. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7834. dst_data[i0] += v;
  7835. }
  7836. }
  7837. }
  7838. }
  7839. static void ggml_compute_forward_conv_1d_1s(
  7840. const struct ggml_compute_params * params,
  7841. const struct ggml_tensor * src0,
  7842. const struct ggml_tensor * src1,
  7843. struct ggml_tensor * dst) {
  7844. switch (src0->type) {
  7845. case GGML_TYPE_F16:
  7846. {
  7847. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7848. } break;
  7849. case GGML_TYPE_F32:
  7850. {
  7851. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7852. } break;
  7853. default:
  7854. {
  7855. GGML_ASSERT(false);
  7856. } break;
  7857. }
  7858. }
  7859. // ggml_compute_forward_conv_1d_2s
  7860. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7861. const struct ggml_compute_params * params,
  7862. const struct ggml_tensor * src0,
  7863. const struct ggml_tensor * src1,
  7864. struct ggml_tensor * dst) {
  7865. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7866. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7867. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7868. int64_t t0 = ggml_perf_time_us();
  7869. UNUSED(t0);
  7870. const int64_t ne00 = src0->ne[0];
  7871. const int64_t ne01 = src0->ne[1];
  7872. const int64_t ne02 = src0->ne[2];
  7873. //const int64_t ne03 = src0->ne[3];
  7874. const int64_t ne10 = src1->ne[0];
  7875. const int64_t ne11 = src1->ne[1];
  7876. //const int64_t ne12 = src1->ne[2];
  7877. //const int64_t ne13 = src1->ne[3];
  7878. //const int64_t ne0 = dst->ne[0];
  7879. //const int64_t ne1 = dst->ne[1];
  7880. //const int64_t ne2 = dst->ne[2];
  7881. //const int64_t ne3 = dst->ne[3];
  7882. //const int64_t ne = ne0*ne1*ne2*ne3;
  7883. const int nb00 = src0->nb[0];
  7884. const int nb01 = src0->nb[1];
  7885. const int nb02 = src0->nb[2];
  7886. //const int nb03 = src0->nb[3];
  7887. const int nb10 = src1->nb[0];
  7888. const int nb11 = src1->nb[1];
  7889. //const int nb12 = src1->nb[2];
  7890. //const int nb13 = src1->nb[3];
  7891. //const int nb0 = dst->nb[0];
  7892. const int nb1 = dst->nb[1];
  7893. //const int nb2 = dst->nb[2];
  7894. //const int nb3 = dst->nb[3];
  7895. const int ith = params->ith;
  7896. const int nth = params->nth;
  7897. const int nk = ne00;
  7898. const int nh = nk/2;
  7899. const int ew0 = ggml_up32(ne01);
  7900. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7901. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7902. GGML_ASSERT(nb10 == sizeof(float));
  7903. if (params->type == GGML_TASK_INIT) {
  7904. // TODO: fix this memset (wsize is overestimated)
  7905. memset(params->wdata, 0, params->wsize);
  7906. // prepare kernel data (src0)
  7907. {
  7908. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7909. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7910. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7911. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7912. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7913. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7914. dst_data[i00*ew0 + i01] = src[i00];
  7915. }
  7916. }
  7917. }
  7918. }
  7919. // prepare source data (src1)
  7920. {
  7921. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7922. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7923. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7924. ggml_fp16_t * dst_data = wdata;
  7925. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7926. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7927. }
  7928. }
  7929. }
  7930. return;
  7931. }
  7932. if (params->type == GGML_TASK_FINALIZE) {
  7933. return;
  7934. }
  7935. // total rows in dst
  7936. const int nr = ne02;
  7937. // rows per thread
  7938. const int dr = (nr + nth - 1)/nth;
  7939. // row range for this thread
  7940. const int ir0 = dr*ith;
  7941. const int ir1 = MIN(ir0 + dr, nr);
  7942. for (int i1 = ir0; i1 < ir1; i1++) {
  7943. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7944. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7945. dst_data[i0/2] = 0;
  7946. for (int k = -nh; k <= nh; k++) {
  7947. float v = 0.0f;
  7948. ggml_vec_dot_f16(ew0, &v,
  7949. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7950. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7951. dst_data[i0/2] += v;
  7952. }
  7953. }
  7954. }
  7955. }
  7956. static void ggml_compute_forward_conv_1d_2s_f32(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * src0,
  7959. const struct ggml_tensor * src1,
  7960. struct ggml_tensor * dst) {
  7961. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7962. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7963. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7964. int64_t t0 = ggml_perf_time_us();
  7965. UNUSED(t0);
  7966. const int64_t ne00 = src0->ne[0];
  7967. const int64_t ne01 = src0->ne[1];
  7968. const int64_t ne02 = src0->ne[2];
  7969. //const int64_t ne03 = src0->ne[3];
  7970. const int64_t ne10 = src1->ne[0];
  7971. const int64_t ne11 = src1->ne[1];
  7972. //const int64_t ne12 = src1->ne[2];
  7973. //const int64_t ne13 = src1->ne[3];
  7974. //const int64_t ne0 = dst->ne[0];
  7975. //const int64_t ne1 = dst->ne[1];
  7976. //const int64_t ne2 = dst->ne[2];
  7977. //const int64_t ne3 = dst->ne[3];
  7978. //const int64_t ne = ne0*ne1*ne2*ne3;
  7979. const int nb00 = src0->nb[0];
  7980. const int nb01 = src0->nb[1];
  7981. const int nb02 = src0->nb[2];
  7982. //const int nb03 = src0->nb[3];
  7983. const int nb10 = src1->nb[0];
  7984. const int nb11 = src1->nb[1];
  7985. //const int nb12 = src1->nb[2];
  7986. //const int nb13 = src1->nb[3];
  7987. //const int nb0 = dst->nb[0];
  7988. const int nb1 = dst->nb[1];
  7989. //const int nb2 = dst->nb[2];
  7990. //const int nb3 = dst->nb[3];
  7991. const int ith = params->ith;
  7992. const int nth = params->nth;
  7993. const int nk = ne00;
  7994. const int nh = nk/2;
  7995. const int ew0 = ggml_up32(ne01);
  7996. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7997. GGML_ASSERT(nb00 == sizeof(float));
  7998. GGML_ASSERT(nb10 == sizeof(float));
  7999. if (params->type == GGML_TASK_INIT) {
  8000. // TODO: fix this memset (wsize is overestimated)
  8001. memset(params->wdata, 0, params->wsize);
  8002. // prepare kernel data (src0)
  8003. {
  8004. float * const wdata = (float *) params->wdata + 0;
  8005. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8006. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8007. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8008. float * dst_data = wdata + i02*ew0*ne00;
  8009. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8010. dst_data[i00*ew0 + i01] = src[i00];
  8011. }
  8012. }
  8013. }
  8014. }
  8015. // prepare source data (src1)
  8016. {
  8017. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8018. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8019. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8020. float * dst_data = wdata;
  8021. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8022. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8023. }
  8024. }
  8025. }
  8026. return;
  8027. }
  8028. if (params->type == GGML_TASK_FINALIZE) {
  8029. return;
  8030. }
  8031. // total rows in dst
  8032. const int nr = ne02;
  8033. // rows per thread
  8034. const int dr = (nr + nth - 1)/nth;
  8035. // row range for this thread
  8036. const int ir0 = dr*ith;
  8037. const int ir1 = MIN(ir0 + dr, nr);
  8038. for (int i1 = ir0; i1 < ir1; i1++) {
  8039. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8040. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8041. dst_data[i0/2] = 0;
  8042. for (int k = -nh; k <= nh; k++) {
  8043. float v = 0.0f;
  8044. ggml_vec_dot_f32(ew0, &v,
  8045. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8046. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8047. dst_data[i0/2] += v;
  8048. }
  8049. }
  8050. }
  8051. }
  8052. static void ggml_compute_forward_conv_1d_2s(
  8053. const struct ggml_compute_params * params,
  8054. const struct ggml_tensor * src0,
  8055. const struct ggml_tensor * src1,
  8056. struct ggml_tensor * dst) {
  8057. switch (src0->type) {
  8058. case GGML_TYPE_F16:
  8059. {
  8060. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8061. } break;
  8062. case GGML_TYPE_F32:
  8063. {
  8064. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8065. } break;
  8066. default:
  8067. {
  8068. GGML_ASSERT(false);
  8069. } break;
  8070. }
  8071. }
  8072. // ggml_compute_forward_flash_attn
  8073. static void ggml_compute_forward_flash_attn_f32(
  8074. const struct ggml_compute_params * params,
  8075. const struct ggml_tensor * q,
  8076. const struct ggml_tensor * k,
  8077. const struct ggml_tensor * v,
  8078. const bool masked,
  8079. struct ggml_tensor * dst) {
  8080. int64_t t0 = ggml_perf_time_us();
  8081. UNUSED(t0);
  8082. const int64_t neq0 = q->ne[0];
  8083. const int64_t neq1 = q->ne[1];
  8084. const int64_t neq2 = q->ne[2];
  8085. const int64_t neq3 = q->ne[3];
  8086. const int64_t nek0 = k->ne[0];
  8087. const int64_t nek1 = k->ne[1];
  8088. //const int64_t nek2 = k->ne[2];
  8089. //const int64_t nek3 = k->ne[3];
  8090. //const int64_t nev0 = v->ne[0];
  8091. const int64_t nev1 = v->ne[1];
  8092. //const int64_t nev2 = v->ne[2];
  8093. //const int64_t nev3 = v->ne[3];
  8094. const int64_t ne0 = dst->ne[0];
  8095. const int64_t ne1 = dst->ne[1];
  8096. //const int64_t ne2 = dst->ne[2];
  8097. //const int64_t ne3 = dst->ne[3];
  8098. const int nbk0 = k->nb[0];
  8099. const int nbk1 = k->nb[1];
  8100. const int nbk2 = k->nb[2];
  8101. const int nbk3 = k->nb[3];
  8102. const int nbq0 = q->nb[0];
  8103. const int nbq1 = q->nb[1];
  8104. const int nbq2 = q->nb[2];
  8105. const int nbq3 = q->nb[3];
  8106. const int nbv0 = v->nb[0];
  8107. const int nbv1 = v->nb[1];
  8108. const int nbv2 = v->nb[2];
  8109. const int nbv3 = v->nb[3];
  8110. const int nb0 = dst->nb[0];
  8111. const int nb1 = dst->nb[1];
  8112. const int nb2 = dst->nb[2];
  8113. const int nb3 = dst->nb[3];
  8114. const int ith = params->ith;
  8115. const int nth = params->nth;
  8116. const int64_t D = neq0;
  8117. const int64_t N = neq1;
  8118. const int64_t P = nek1 - N;
  8119. const int64_t M = P + N;
  8120. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8121. GGML_ASSERT(ne0 == D);
  8122. GGML_ASSERT(ne1 == N);
  8123. GGML_ASSERT(P >= 0);
  8124. GGML_ASSERT(nbq0 == sizeof(float));
  8125. GGML_ASSERT(nbk0 == sizeof(float));
  8126. GGML_ASSERT(nbv0 == sizeof(float));
  8127. GGML_ASSERT(neq0 == D);
  8128. GGML_ASSERT(nek0 == D);
  8129. GGML_ASSERT(nev1 == D);
  8130. GGML_ASSERT(neq1 == N);
  8131. GGML_ASSERT(nek1 == N + P);
  8132. GGML_ASSERT(nev1 == D);
  8133. // dst cannot be transposed or permuted
  8134. GGML_ASSERT(nb0 == sizeof(float));
  8135. GGML_ASSERT(nb0 <= nb1);
  8136. GGML_ASSERT(nb1 <= nb2);
  8137. GGML_ASSERT(nb2 <= nb3);
  8138. if (params->type == GGML_TASK_INIT) {
  8139. return;
  8140. }
  8141. if (params->type == GGML_TASK_FINALIZE) {
  8142. return;
  8143. }
  8144. // parallelize by q rows using ggml_vec_dot_f32
  8145. // total rows in q
  8146. const int nr = neq1*neq2*neq3;
  8147. // rows per thread
  8148. const int dr = (nr + nth - 1)/nth;
  8149. // row range for this thread
  8150. const int ir0 = dr*ith;
  8151. const int ir1 = MIN(ir0 + dr, nr);
  8152. const float scale = 1.0f/sqrtf(D);
  8153. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8154. for (int ir = ir0; ir < ir1; ++ir) {
  8155. // q indices
  8156. const int iq3 = ir/(neq2*neq1);
  8157. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8158. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8159. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8160. for (int i = M; i < Mup; ++i) {
  8161. S[i] = -INFINITY;
  8162. }
  8163. for (int64_t ic = 0; ic < nek1; ++ic) {
  8164. // k indices
  8165. const int ik3 = iq3;
  8166. const int ik2 = iq2;
  8167. const int ik1 = ic;
  8168. // S indices
  8169. const int i1 = ik1;
  8170. ggml_vec_dot_f32(neq0,
  8171. S + i1,
  8172. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8173. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8174. }
  8175. // scale
  8176. ggml_vec_scale_f32(nek1, S, scale);
  8177. if (masked) {
  8178. for (int64_t i = P; i < M; i++) {
  8179. if (i > P + iq1) {
  8180. S[i] = -INFINITY;
  8181. }
  8182. }
  8183. }
  8184. // softmax
  8185. {
  8186. float max = -INFINITY;
  8187. ggml_vec_max_f32(M, &max, S);
  8188. ggml_float sum = 0.0;
  8189. {
  8190. #ifdef GGML_SOFT_MAX_ACCELERATE
  8191. max = -max;
  8192. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8193. vvexpf(S, S, &Mup);
  8194. ggml_vec_sum_f32(Mup, &sum, S);
  8195. #else
  8196. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8197. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8198. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8199. float * SS = S + i;
  8200. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8201. if (SS[j] == -INFINITY) {
  8202. SS[j] = 0.0f;
  8203. } else {
  8204. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8205. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8206. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8207. sump[j] += (ggml_float)val;
  8208. SS[j] = val;
  8209. }
  8210. }
  8211. }
  8212. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8213. sum += sump[i];
  8214. }
  8215. #endif
  8216. }
  8217. assert(sum > 0.0);
  8218. sum = 1.0/sum;
  8219. ggml_vec_scale_f32(M, S, sum);
  8220. #ifndef NDEBUG
  8221. for (int i = 0; i < M; ++i) {
  8222. assert(!isnan(S[i]));
  8223. assert(!isinf(S[i]));
  8224. }
  8225. #endif
  8226. }
  8227. for (int64_t ic = 0; ic < nev1; ++ic) {
  8228. // dst indices
  8229. const int i1 = iq1;
  8230. const int i2 = iq2;
  8231. const int i3 = iq3;
  8232. ggml_vec_dot_f32(nek1,
  8233. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8234. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8235. S);
  8236. }
  8237. }
  8238. }
  8239. static void ggml_compute_forward_flash_attn_f16(
  8240. const struct ggml_compute_params * params,
  8241. const struct ggml_tensor * q,
  8242. const struct ggml_tensor * k,
  8243. const struct ggml_tensor * v,
  8244. const bool masked,
  8245. struct ggml_tensor * dst) {
  8246. int64_t t0 = ggml_perf_time_us();
  8247. UNUSED(t0);
  8248. const int64_t neq0 = q->ne[0];
  8249. const int64_t neq1 = q->ne[1];
  8250. const int64_t neq2 = q->ne[2];
  8251. const int64_t neq3 = q->ne[3];
  8252. const int64_t nek0 = k->ne[0];
  8253. const int64_t nek1 = k->ne[1];
  8254. //const int64_t nek2 = k->ne[2];
  8255. //const int64_t nek3 = k->ne[3];
  8256. //const int64_t nev0 = v->ne[0];
  8257. const int64_t nev1 = v->ne[1];
  8258. //const int64_t nev2 = v->ne[2];
  8259. //const int64_t nev3 = v->ne[3];
  8260. const int64_t ne0 = dst->ne[0];
  8261. const int64_t ne1 = dst->ne[1];
  8262. //const int64_t ne2 = dst->ne[2];
  8263. //const int64_t ne3 = dst->ne[3];
  8264. const int nbk0 = k->nb[0];
  8265. const int nbk1 = k->nb[1];
  8266. const int nbk2 = k->nb[2];
  8267. const int nbk3 = k->nb[3];
  8268. const int nbq0 = q->nb[0];
  8269. const int nbq1 = q->nb[1];
  8270. const int nbq2 = q->nb[2];
  8271. const int nbq3 = q->nb[3];
  8272. const int nbv0 = v->nb[0];
  8273. const int nbv1 = v->nb[1];
  8274. const int nbv2 = v->nb[2];
  8275. const int nbv3 = v->nb[3];
  8276. const int nb0 = dst->nb[0];
  8277. const int nb1 = dst->nb[1];
  8278. const int nb2 = dst->nb[2];
  8279. const int nb3 = dst->nb[3];
  8280. const int ith = params->ith;
  8281. const int nth = params->nth;
  8282. const int64_t D = neq0;
  8283. const int64_t N = neq1;
  8284. const int64_t P = nek1 - N;
  8285. const int64_t M = P + N;
  8286. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8287. GGML_ASSERT(ne0 == D);
  8288. GGML_ASSERT(ne1 == N);
  8289. GGML_ASSERT(P >= 0);
  8290. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8291. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8292. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8293. GGML_ASSERT(neq0 == D);
  8294. GGML_ASSERT(nek0 == D);
  8295. GGML_ASSERT(nev1 == D);
  8296. GGML_ASSERT(neq1 == N);
  8297. GGML_ASSERT(nek1 == N + P);
  8298. GGML_ASSERT(nev1 == D);
  8299. // dst cannot be transposed or permuted
  8300. GGML_ASSERT(nb0 == sizeof(float));
  8301. GGML_ASSERT(nb0 <= nb1);
  8302. GGML_ASSERT(nb1 <= nb2);
  8303. GGML_ASSERT(nb2 <= nb3);
  8304. if (params->type == GGML_TASK_INIT) {
  8305. return;
  8306. }
  8307. if (params->type == GGML_TASK_FINALIZE) {
  8308. return;
  8309. }
  8310. // parallelize by q rows using ggml_vec_dot_f32
  8311. // total rows in q
  8312. const int nr = neq1*neq2*neq3;
  8313. // rows per thread
  8314. const int dr = (nr + nth - 1)/nth;
  8315. // row range for this thread
  8316. const int ir0 = dr*ith;
  8317. const int ir1 = MIN(ir0 + dr, nr);
  8318. const float scale = 1.0f/sqrtf(D);
  8319. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8320. for (int ir = ir0; ir < ir1; ++ir) {
  8321. // q indices
  8322. const int iq3 = ir/(neq2*neq1);
  8323. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8324. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8325. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8326. for (int i = M; i < Mup; ++i) {
  8327. S[i] = -INFINITY;
  8328. }
  8329. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8330. for (int64_t ic = 0; ic < nek1; ++ic) {
  8331. // k indices
  8332. const int ik3 = iq3;
  8333. const int ik2 = iq2;
  8334. const int ik1 = ic;
  8335. // S indices
  8336. const int i1 = ik1;
  8337. ggml_vec_dot_f16(neq0,
  8338. S + i1,
  8339. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8340. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8341. }
  8342. } else {
  8343. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8344. // k indices
  8345. const int ik3 = iq3;
  8346. const int ik2 = iq2;
  8347. const int ik1 = ic;
  8348. // S indices
  8349. const int i1 = ik1;
  8350. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8351. S + i1,
  8352. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8353. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8354. }
  8355. }
  8356. // scale
  8357. ggml_vec_scale_f32(nek1, S, scale);
  8358. if (masked) {
  8359. for (int64_t i = P; i < M; i++) {
  8360. if (i > P + iq1) {
  8361. S[i] = -INFINITY;
  8362. }
  8363. }
  8364. }
  8365. // softmax
  8366. {
  8367. float max = -INFINITY;
  8368. ggml_vec_max_f32(M, &max, S);
  8369. ggml_float sum = 0.0;
  8370. {
  8371. #ifdef GGML_SOFT_MAX_ACCELERATE
  8372. max = -max;
  8373. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8374. vvexpf(S, S, &Mup);
  8375. ggml_vec_sum_f32(Mup, &sum, S);
  8376. #else
  8377. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8378. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8379. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8380. float * SS = S + i;
  8381. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8382. if (SS[j] == -INFINITY) {
  8383. SS[j] = 0.0f;
  8384. } else {
  8385. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8386. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8387. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8388. sump[j] += (ggml_float)val;
  8389. SS[j] = val;
  8390. }
  8391. }
  8392. }
  8393. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8394. sum += sump[i];
  8395. }
  8396. #endif
  8397. }
  8398. assert(sum > 0.0);
  8399. sum = 1.0/sum;
  8400. ggml_vec_scale_f32(M, S, sum);
  8401. #ifndef NDEBUG
  8402. for (int i = 0; i < M; ++i) {
  8403. assert(!isnan(S[i]));
  8404. assert(!isinf(S[i]));
  8405. }
  8406. #endif
  8407. }
  8408. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8409. for (int64_t i = 0; i < M; i++) {
  8410. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8411. }
  8412. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8413. for (int64_t ic = 0; ic < nev1; ++ic) {
  8414. // dst indices
  8415. const int i1 = iq1;
  8416. const int i2 = iq2;
  8417. const int i3 = iq3;
  8418. ggml_vec_dot_f16(nek1,
  8419. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8420. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8421. S16);
  8422. }
  8423. } else {
  8424. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8425. // dst indices
  8426. const int i1 = iq1;
  8427. const int i2 = iq2;
  8428. const int i3 = iq3;
  8429. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8430. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8431. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8432. S16);
  8433. }
  8434. }
  8435. }
  8436. }
  8437. static void ggml_compute_forward_flash_attn(
  8438. const struct ggml_compute_params * params,
  8439. const struct ggml_tensor * q,
  8440. const struct ggml_tensor * k,
  8441. const struct ggml_tensor * v,
  8442. const bool masked,
  8443. struct ggml_tensor * dst) {
  8444. switch (q->type) {
  8445. case GGML_TYPE_F16:
  8446. {
  8447. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8448. } break;
  8449. case GGML_TYPE_F32:
  8450. {
  8451. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8452. } break;
  8453. default:
  8454. {
  8455. GGML_ASSERT(false);
  8456. } break;
  8457. }
  8458. }
  8459. // ggml_compute_forward_flash_ff
  8460. static void ggml_compute_forward_flash_ff_f16(
  8461. const struct ggml_compute_params * params,
  8462. const struct ggml_tensor * a, // F16
  8463. const struct ggml_tensor * b0, // F16 fc_w
  8464. const struct ggml_tensor * b1, // F32 fc_b
  8465. const struct ggml_tensor * c0, // F16 proj_w
  8466. const struct ggml_tensor * c1, // F32 proj_b
  8467. struct ggml_tensor * dst) {
  8468. int64_t t0 = ggml_perf_time_us();
  8469. UNUSED(t0);
  8470. const int64_t nea0 = a->ne[0];
  8471. const int64_t nea1 = a->ne[1];
  8472. const int64_t nea2 = a->ne[2];
  8473. const int64_t nea3 = a->ne[3];
  8474. const int64_t neb00 = b0->ne[0];
  8475. const int64_t neb01 = b0->ne[1];
  8476. //const int64_t neb02 = b0->ne[2];
  8477. //const int64_t neb03 = b0->ne[3];
  8478. const int64_t neb10 = b1->ne[0];
  8479. const int64_t neb11 = b1->ne[1];
  8480. //const int64_t neb12 = b1->ne[2];
  8481. //const int64_t neb13 = b1->ne[3];
  8482. const int64_t nec00 = c0->ne[0];
  8483. const int64_t nec01 = c0->ne[1];
  8484. //const int64_t nec02 = c0->ne[2];
  8485. //const int64_t nec03 = c0->ne[3];
  8486. const int64_t nec10 = c1->ne[0];
  8487. const int64_t nec11 = c1->ne[1];
  8488. //const int64_t nec12 = c1->ne[2];
  8489. //const int64_t nec13 = c1->ne[3];
  8490. const int64_t ne0 = dst->ne[0];
  8491. const int64_t ne1 = dst->ne[1];
  8492. const int64_t ne2 = dst->ne[2];
  8493. //const int64_t ne3 = dst->ne[3];
  8494. const int nba0 = a->nb[0];
  8495. const int nba1 = a->nb[1];
  8496. const int nba2 = a->nb[2];
  8497. const int nba3 = a->nb[3];
  8498. const int nbb00 = b0->nb[0];
  8499. const int nbb01 = b0->nb[1];
  8500. const int nbb02 = b0->nb[2];
  8501. const int nbb03 = b0->nb[3];
  8502. const int nbb10 = b1->nb[0];
  8503. //const int nbb11 = b1->nb[1];
  8504. //const int nbb12 = b1->nb[2];
  8505. //const int nbb13 = b1->nb[3];
  8506. const int nbc00 = c0->nb[0];
  8507. const int nbc01 = c0->nb[1];
  8508. const int nbc02 = c0->nb[2];
  8509. const int nbc03 = c0->nb[3];
  8510. const int nbc10 = c1->nb[0];
  8511. //const int nbc11 = c1->nb[1];
  8512. //const int nbc12 = c1->nb[2];
  8513. //const int nbc13 = c1->nb[3];
  8514. const int nb0 = dst->nb[0];
  8515. const int nb1 = dst->nb[1];
  8516. const int nb2 = dst->nb[2];
  8517. const int nb3 = dst->nb[3];
  8518. const int ith = params->ith;
  8519. const int nth = params->nth;
  8520. const int64_t D = nea0;
  8521. //const int64_t N = nea1;
  8522. const int64_t M = neb01;
  8523. GGML_ASSERT(ne0 == nea0);
  8524. GGML_ASSERT(ne1 == nea1);
  8525. GGML_ASSERT(ne2 == nea2);
  8526. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8527. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8528. GGML_ASSERT(nbb10 == sizeof(float));
  8529. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8530. GGML_ASSERT(nbc10 == sizeof(float));
  8531. GGML_ASSERT(neb00 == D);
  8532. GGML_ASSERT(neb01 == M);
  8533. GGML_ASSERT(neb10 == M);
  8534. GGML_ASSERT(neb11 == 1);
  8535. GGML_ASSERT(nec00 == M);
  8536. GGML_ASSERT(nec01 == D);
  8537. GGML_ASSERT(nec10 == D);
  8538. GGML_ASSERT(nec11 == 1);
  8539. // dst cannot be transposed or permuted
  8540. GGML_ASSERT(nb0 == sizeof(float));
  8541. GGML_ASSERT(nb0 <= nb1);
  8542. GGML_ASSERT(nb1 <= nb2);
  8543. GGML_ASSERT(nb2 <= nb3);
  8544. if (params->type == GGML_TASK_INIT) {
  8545. return;
  8546. }
  8547. if (params->type == GGML_TASK_FINALIZE) {
  8548. return;
  8549. }
  8550. // parallelize by a rows using ggml_vec_dot_f32
  8551. // total rows in a
  8552. const int nr = nea1*nea2*nea3;
  8553. // rows per thread
  8554. const int dr = (nr + nth - 1)/nth;
  8555. // row range for this thread
  8556. const int ir0 = dr*ith;
  8557. const int ir1 = MIN(ir0 + dr, nr);
  8558. for (int ir = ir0; ir < ir1; ++ir) {
  8559. // a indices
  8560. const int ia3 = ir/(nea2*nea1);
  8561. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8562. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8563. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8564. for (int64_t ic = 0; ic < neb01; ++ic) {
  8565. // b0 indices
  8566. const int ib03 = ia3;
  8567. const int ib02 = ia2;
  8568. const int ib01 = ic;
  8569. // S indices
  8570. const int i1 = ib01;
  8571. ggml_vec_dot_f16(nea0,
  8572. S + i1,
  8573. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8574. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8575. }
  8576. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8577. //ggml_vec_gelu_f32(neb01, S, S);
  8578. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8579. for (int64_t i = 0; i < M; i++) {
  8580. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8581. }
  8582. ggml_vec_gelu_f16(neb01, S16, S16);
  8583. {
  8584. // dst indices
  8585. const int i1 = ia1;
  8586. const int i2 = ia2;
  8587. const int i3 = ia3;
  8588. for (int64_t ic = 0; ic < nec01; ++ic) {
  8589. ggml_vec_dot_f16(neb01,
  8590. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8591. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8592. S16);
  8593. }
  8594. ggml_vec_add_f32(nec01,
  8595. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8596. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8597. (float *) c1->data);
  8598. }
  8599. }
  8600. }
  8601. static void ggml_compute_forward_flash_ff(
  8602. const struct ggml_compute_params * params,
  8603. const struct ggml_tensor * a,
  8604. const struct ggml_tensor * b0,
  8605. const struct ggml_tensor * b1,
  8606. const struct ggml_tensor * c0,
  8607. const struct ggml_tensor * c1,
  8608. struct ggml_tensor * dst) {
  8609. switch (b0->type) {
  8610. case GGML_TYPE_F16:
  8611. {
  8612. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8613. } break;
  8614. case GGML_TYPE_F32:
  8615. {
  8616. GGML_ASSERT(false); // TODO
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_map_unary
  8625. static void ggml_compute_forward_map_unary_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst,
  8629. const ggml_unary_op_f32_t fun) {
  8630. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8632. return;
  8633. }
  8634. const int n = ggml_nrows(src0);
  8635. const int nc = src0->ne[0];
  8636. assert( dst->nb[0] == sizeof(float));
  8637. assert(src0->nb[0] == sizeof(float));
  8638. for (int i = 0; i < n; i++) {
  8639. fun(nc,
  8640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8642. }
  8643. }
  8644. static void ggml_compute_forward_map_unary(
  8645. const struct ggml_compute_params * params,
  8646. const struct ggml_tensor * src0,
  8647. struct ggml_tensor * dst,
  8648. const ggml_unary_op_f32_t fun) {
  8649. switch (src0->type) {
  8650. case GGML_TYPE_F32:
  8651. {
  8652. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8653. } break;
  8654. default:
  8655. {
  8656. GGML_ASSERT(false);
  8657. } break;
  8658. }
  8659. }
  8660. // ggml_compute_forward_map_binary
  8661. static void ggml_compute_forward_map_binary_f32(
  8662. const struct ggml_compute_params * params,
  8663. const struct ggml_tensor * src0,
  8664. const struct ggml_tensor * src1,
  8665. struct ggml_tensor * dst,
  8666. const ggml_binary_op_f32_t fun) {
  8667. assert(params->ith == 0);
  8668. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8670. return;
  8671. }
  8672. const int n = ggml_nrows(src0);
  8673. const int nc = src0->ne[0];
  8674. assert( dst->nb[0] == sizeof(float));
  8675. assert(src0->nb[0] == sizeof(float));
  8676. assert(src1->nb[0] == sizeof(float));
  8677. for (int i = 0; i < n; i++) {
  8678. fun(nc,
  8679. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8680. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8681. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8682. }
  8683. }
  8684. static void ggml_compute_forward_map_binary(
  8685. const struct ggml_compute_params * params,
  8686. const struct ggml_tensor * src0,
  8687. const struct ggml_tensor * src1,
  8688. struct ggml_tensor * dst,
  8689. const ggml_binary_op_f32_t fun) {
  8690. switch (src0->type) {
  8691. case GGML_TYPE_F32:
  8692. {
  8693. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8694. } break;
  8695. default:
  8696. {
  8697. GGML_ASSERT(false);
  8698. } break;
  8699. }
  8700. }
  8701. /////////////////////////////////
  8702. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8703. GGML_ASSERT(params);
  8704. switch (tensor->op) {
  8705. case GGML_OP_DUP:
  8706. {
  8707. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8708. } break;
  8709. case GGML_OP_ADD:
  8710. {
  8711. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8712. } break;
  8713. case GGML_OP_SUB:
  8714. {
  8715. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8716. } break;
  8717. case GGML_OP_MUL:
  8718. {
  8719. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8720. } break;
  8721. case GGML_OP_DIV:
  8722. {
  8723. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8724. } break;
  8725. case GGML_OP_SQR:
  8726. {
  8727. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8728. } break;
  8729. case GGML_OP_SQRT:
  8730. {
  8731. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8732. } break;
  8733. case GGML_OP_SUM:
  8734. {
  8735. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8736. } break;
  8737. case GGML_OP_MEAN:
  8738. {
  8739. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8740. } break;
  8741. case GGML_OP_REPEAT:
  8742. {
  8743. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8744. } break;
  8745. case GGML_OP_ABS:
  8746. {
  8747. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8748. } break;
  8749. case GGML_OP_SGN:
  8750. {
  8751. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8752. } break;
  8753. case GGML_OP_NEG:
  8754. {
  8755. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8756. } break;
  8757. case GGML_OP_STEP:
  8758. {
  8759. ggml_compute_forward_step(params, tensor->src0, tensor);
  8760. } break;
  8761. case GGML_OP_RELU:
  8762. {
  8763. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8764. } break;
  8765. case GGML_OP_GELU:
  8766. {
  8767. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8768. } break;
  8769. case GGML_OP_SILU:
  8770. {
  8771. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8772. } break;
  8773. case GGML_OP_NORM:
  8774. {
  8775. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8776. } break;
  8777. case GGML_OP_RMS_NORM:
  8778. {
  8779. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8780. } break;
  8781. case GGML_OP_MUL_MAT:
  8782. {
  8783. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8784. } break;
  8785. case GGML_OP_SCALE:
  8786. {
  8787. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8788. } break;
  8789. case GGML_OP_CPY:
  8790. {
  8791. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8792. } break;
  8793. case GGML_OP_CONT:
  8794. {
  8795. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8796. } break;
  8797. case GGML_OP_RESHAPE:
  8798. {
  8799. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8800. } break;
  8801. case GGML_OP_VIEW:
  8802. {
  8803. ggml_compute_forward_view(params, tensor->src0);
  8804. } break;
  8805. case GGML_OP_PERMUTE:
  8806. {
  8807. ggml_compute_forward_permute(params, tensor->src0);
  8808. } break;
  8809. case GGML_OP_TRANSPOSE:
  8810. {
  8811. ggml_compute_forward_transpose(params, tensor->src0);
  8812. } break;
  8813. case GGML_OP_GET_ROWS:
  8814. {
  8815. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8816. } break;
  8817. case GGML_OP_DIAG_MASK_INF:
  8818. {
  8819. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8820. } break;
  8821. case GGML_OP_SOFT_MAX:
  8822. {
  8823. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8824. } break;
  8825. case GGML_OP_ROPE:
  8826. {
  8827. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8828. } break;
  8829. case GGML_OP_CONV_1D_1S:
  8830. {
  8831. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8832. } break;
  8833. case GGML_OP_CONV_1D_2S:
  8834. {
  8835. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8836. } break;
  8837. case GGML_OP_FLASH_ATTN:
  8838. {
  8839. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8840. GGML_ASSERT(t == 0 || t == 1);
  8841. bool masked = t != 0;
  8842. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8843. } break;
  8844. case GGML_OP_FLASH_FF:
  8845. {
  8846. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8847. } break;
  8848. case GGML_OP_MAP_UNARY:
  8849. {
  8850. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8851. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8852. }
  8853. break;
  8854. case GGML_OP_MAP_BINARY:
  8855. {
  8856. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8857. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8858. }
  8859. break;
  8860. case GGML_OP_NONE:
  8861. {
  8862. // nop
  8863. } break;
  8864. case GGML_OP_COUNT:
  8865. {
  8866. GGML_ASSERT(false);
  8867. } break;
  8868. }
  8869. }
  8870. ////////////////////////////////////////////////////////////////////////////////
  8871. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8872. struct ggml_tensor * src0 = tensor->src0;
  8873. struct ggml_tensor * src1 = tensor->src1;
  8874. switch (tensor->op) {
  8875. case GGML_OP_DUP:
  8876. {
  8877. if (src0->grad) {
  8878. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8879. }
  8880. } break;
  8881. case GGML_OP_ADD:
  8882. {
  8883. if (src0->grad) {
  8884. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8885. }
  8886. if (src1->grad) {
  8887. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8888. }
  8889. } break;
  8890. case GGML_OP_SUB:
  8891. {
  8892. if (src0->grad) {
  8893. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8894. }
  8895. if (src1->grad) {
  8896. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8897. }
  8898. } break;
  8899. case GGML_OP_MUL:
  8900. {
  8901. if (src0->grad) {
  8902. src0->grad =
  8903. ggml_add_impl(ctx,
  8904. src0->grad,
  8905. ggml_mul(ctx, src1, tensor->grad),
  8906. inplace);
  8907. }
  8908. if (src1->grad) {
  8909. src1->grad =
  8910. ggml_add_impl(ctx,
  8911. src1->grad,
  8912. ggml_mul(ctx, src0, tensor->grad),
  8913. inplace);
  8914. }
  8915. } break;
  8916. case GGML_OP_DIV:
  8917. {
  8918. if (src0->grad) {
  8919. src0->grad =
  8920. ggml_add_impl(ctx,
  8921. src0->grad,
  8922. ggml_div(ctx, tensor->grad, src1),
  8923. inplace);
  8924. }
  8925. if (src1->grad) {
  8926. src1->grad =
  8927. ggml_sub_impl(ctx,
  8928. src1->grad,
  8929. ggml_mul(ctx,
  8930. tensor->grad,
  8931. ggml_div(ctx, tensor, src1)),
  8932. inplace);
  8933. }
  8934. } break;
  8935. case GGML_OP_SQR:
  8936. {
  8937. if (src0->grad) {
  8938. src0->grad =
  8939. ggml_add_impl(ctx,
  8940. src0->grad,
  8941. ggml_mul(ctx,
  8942. ggml_mul(ctx, src0, tensor->grad),
  8943. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8944. inplace);
  8945. }
  8946. } break;
  8947. case GGML_OP_SQRT:
  8948. {
  8949. if (src0->grad) {
  8950. src0->grad =
  8951. ggml_add_impl(ctx,
  8952. src0->grad,
  8953. ggml_div(ctx,
  8954. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8955. tensor),
  8956. inplace);
  8957. }
  8958. } break;
  8959. case GGML_OP_SUM:
  8960. {
  8961. if (src0->grad) {
  8962. src0->grad =
  8963. ggml_add_impl(ctx,
  8964. src0->grad,
  8965. ggml_repeat(ctx, tensor->grad, src0->grad),
  8966. inplace);
  8967. }
  8968. } break;
  8969. case GGML_OP_MEAN:
  8970. {
  8971. GGML_ASSERT(false); // TODO: implement
  8972. } break;
  8973. case GGML_OP_REPEAT:
  8974. {
  8975. if (src0->grad) {
  8976. src0->grad =
  8977. ggml_add_impl(ctx,
  8978. src0->grad,
  8979. ggml_sum(ctx, tensor->grad),
  8980. inplace);
  8981. }
  8982. } break;
  8983. case GGML_OP_ABS:
  8984. {
  8985. if (src0->grad) {
  8986. src0->grad =
  8987. ggml_add_impl(ctx,
  8988. src0->grad,
  8989. ggml_mul(ctx,
  8990. ggml_sgn(ctx, src0),
  8991. tensor->grad),
  8992. inplace);
  8993. }
  8994. } break;
  8995. case GGML_OP_SGN:
  8996. {
  8997. if (src0->grad) {
  8998. // noop
  8999. }
  9000. } break;
  9001. case GGML_OP_NEG:
  9002. {
  9003. if (src0->grad) {
  9004. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9005. }
  9006. } break;
  9007. case GGML_OP_STEP:
  9008. {
  9009. if (src0->grad) {
  9010. // noop
  9011. }
  9012. } break;
  9013. case GGML_OP_RELU:
  9014. {
  9015. if (src0->grad) {
  9016. src0->grad = ggml_sub_impl(ctx,
  9017. src0->grad,
  9018. ggml_mul(ctx,
  9019. ggml_step(ctx, src0),
  9020. tensor->grad),
  9021. inplace);
  9022. }
  9023. } break;
  9024. case GGML_OP_GELU:
  9025. {
  9026. GGML_ASSERT(false); // TODO: not implemented
  9027. } break;
  9028. case GGML_OP_SILU:
  9029. {
  9030. GGML_ASSERT(false); // TODO: not implemented
  9031. } break;
  9032. case GGML_OP_NORM:
  9033. {
  9034. GGML_ASSERT(false); // TODO: not implemented
  9035. } break;
  9036. case GGML_OP_RMS_NORM:
  9037. {
  9038. GGML_ASSERT(false); // TODO: not implemented
  9039. } break;
  9040. case GGML_OP_MUL_MAT:
  9041. {
  9042. if (src0->grad) {
  9043. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9044. GGML_ASSERT(false);
  9045. }
  9046. if (src1->grad) {
  9047. src1->grad =
  9048. ggml_add_impl(ctx,
  9049. src1->grad,
  9050. ggml_mul_mat(ctx,
  9051. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9052. tensor->grad),
  9053. inplace);
  9054. }
  9055. } break;
  9056. case GGML_OP_SCALE:
  9057. {
  9058. GGML_ASSERT(false); // TODO: not implemented
  9059. } break;
  9060. case GGML_OP_CPY:
  9061. {
  9062. GGML_ASSERT(false); // TODO: not implemented
  9063. } break;
  9064. case GGML_OP_CONT:
  9065. {
  9066. GGML_ASSERT(false); // TODO: not implemented
  9067. } break;
  9068. case GGML_OP_RESHAPE:
  9069. {
  9070. GGML_ASSERT(false); // TODO: not implemented
  9071. } break;
  9072. case GGML_OP_VIEW:
  9073. {
  9074. GGML_ASSERT(false); // not supported
  9075. } break;
  9076. case GGML_OP_PERMUTE:
  9077. {
  9078. GGML_ASSERT(false); // TODO: not implemented
  9079. } break;
  9080. case GGML_OP_TRANSPOSE:
  9081. {
  9082. GGML_ASSERT(false); // TODO: not implemented
  9083. } break;
  9084. case GGML_OP_GET_ROWS:
  9085. {
  9086. GGML_ASSERT(false); // TODO: not implemented
  9087. } break;
  9088. case GGML_OP_DIAG_MASK_INF:
  9089. {
  9090. GGML_ASSERT(false); // TODO: not implemented
  9091. } break;
  9092. case GGML_OP_SOFT_MAX:
  9093. {
  9094. GGML_ASSERT(false); // TODO: not implemented
  9095. } break;
  9096. case GGML_OP_ROPE:
  9097. {
  9098. GGML_ASSERT(false); // TODO: not implemented
  9099. } break;
  9100. case GGML_OP_CONV_1D_1S:
  9101. {
  9102. GGML_ASSERT(false); // TODO: not implemented
  9103. } break;
  9104. case GGML_OP_CONV_1D_2S:
  9105. {
  9106. GGML_ASSERT(false); // TODO: not implemented
  9107. } break;
  9108. case GGML_OP_FLASH_ATTN:
  9109. {
  9110. GGML_ASSERT(false); // not supported
  9111. } break;
  9112. case GGML_OP_FLASH_FF:
  9113. {
  9114. GGML_ASSERT(false); // not supported
  9115. } break;
  9116. case GGML_OP_MAP_UNARY:
  9117. case GGML_OP_MAP_BINARY:
  9118. {
  9119. GGML_ASSERT(false); // not supported
  9120. } break;
  9121. case GGML_OP_NONE:
  9122. {
  9123. // nop
  9124. } break;
  9125. case GGML_OP_COUNT:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. }
  9131. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9132. if (node->grad == NULL) {
  9133. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9134. // it can also happen during forward pass, if the user performs computations with constants
  9135. if (node->op != GGML_OP_NONE) {
  9136. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9137. }
  9138. }
  9139. // check if already visited
  9140. for (int i = 0; i < cgraph->n_nodes; i++) {
  9141. if (cgraph->nodes[i] == node) {
  9142. return;
  9143. }
  9144. }
  9145. for (int i = 0; i < cgraph->n_leafs; i++) {
  9146. if (cgraph->leafs[i] == node) {
  9147. return;
  9148. }
  9149. }
  9150. if (node->src0) {
  9151. ggml_visit_parents(cgraph, node->src0);
  9152. }
  9153. if (node->src1) {
  9154. ggml_visit_parents(cgraph, node->src1);
  9155. }
  9156. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9157. if (node->opt[i]) {
  9158. ggml_visit_parents(cgraph, node->opt[i]);
  9159. }
  9160. }
  9161. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9162. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9163. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9164. cgraph->leafs[cgraph->n_leafs] = node;
  9165. cgraph->n_leafs++;
  9166. } else {
  9167. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9168. cgraph->nodes[cgraph->n_nodes] = node;
  9169. cgraph->grads[cgraph->n_nodes] = node->grad;
  9170. cgraph->n_nodes++;
  9171. }
  9172. }
  9173. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9174. if (!expand) {
  9175. cgraph->n_nodes = 0;
  9176. cgraph->n_leafs = 0;
  9177. }
  9178. const int n0 = cgraph->n_nodes;
  9179. UNUSED(n0);
  9180. ggml_visit_parents(cgraph, tensor);
  9181. const int n_new = cgraph->n_nodes - n0;
  9182. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9183. if (n_new > 0) {
  9184. // the last added node should always be starting point
  9185. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9186. }
  9187. }
  9188. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9189. ggml_build_forward_impl(cgraph, tensor, true);
  9190. }
  9191. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9192. struct ggml_cgraph result = {
  9193. /*.n_nodes =*/ 0,
  9194. /*.n_leafs =*/ 0,
  9195. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9196. /*.work_size =*/ 0,
  9197. /*.work =*/ NULL,
  9198. /*.nodes =*/ { NULL },
  9199. /*.grads =*/ { NULL },
  9200. /*.leafs =*/ { NULL },
  9201. /*.perf_runs =*/ 0,
  9202. /*.perf_cycles =*/ 0,
  9203. /*.perf_time_us =*/ 0,
  9204. };
  9205. ggml_build_forward_impl(&result, tensor, false);
  9206. return result;
  9207. }
  9208. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9209. struct ggml_cgraph result = *gf;
  9210. GGML_ASSERT(gf->n_nodes > 0);
  9211. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9212. if (keep) {
  9213. for (int i = 0; i < gf->n_nodes; i++) {
  9214. struct ggml_tensor * node = gf->nodes[i];
  9215. if (node->grad) {
  9216. node->grad = ggml_dup_tensor(ctx, node);
  9217. gf->grads[i] = node->grad;
  9218. }
  9219. }
  9220. }
  9221. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9222. struct ggml_tensor * node = gf->nodes[i];
  9223. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9224. if (node->grad) {
  9225. ggml_compute_backward(ctx, node, keep);
  9226. }
  9227. }
  9228. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9229. struct ggml_tensor * node = gf->nodes[i];
  9230. if (node->is_param) {
  9231. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9232. ggml_build_forward_impl(&result, node->grad, true);
  9233. }
  9234. }
  9235. return result;
  9236. }
  9237. //
  9238. // thread data
  9239. //
  9240. // synchronization is done via busy loops
  9241. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9242. //
  9243. #ifdef __APPLE__
  9244. //#include <os/lock.h>
  9245. //
  9246. //typedef os_unfair_lock ggml_lock_t;
  9247. //
  9248. //#define ggml_lock_init(x) UNUSED(x)
  9249. //#define ggml_lock_destroy(x) UNUSED(x)
  9250. //#define ggml_lock_lock os_unfair_lock_lock
  9251. //#define ggml_lock_unlock os_unfair_lock_unlock
  9252. //
  9253. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9254. typedef int ggml_lock_t;
  9255. #define ggml_lock_init(x) UNUSED(x)
  9256. #define ggml_lock_destroy(x) UNUSED(x)
  9257. #define ggml_lock_lock(x) UNUSED(x)
  9258. #define ggml_lock_unlock(x) UNUSED(x)
  9259. #define GGML_LOCK_INITIALIZER 0
  9260. typedef pthread_t ggml_thread_t;
  9261. #define ggml_thread_create pthread_create
  9262. #define ggml_thread_join pthread_join
  9263. #else
  9264. //typedef pthread_spinlock_t ggml_lock_t;
  9265. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9266. //#define ggml_lock_destroy pthread_spin_destroy
  9267. //#define ggml_lock_lock pthread_spin_lock
  9268. //#define ggml_lock_unlock pthread_spin_unlock
  9269. typedef int ggml_lock_t;
  9270. #define ggml_lock_init(x) UNUSED(x)
  9271. #define ggml_lock_destroy(x) UNUSED(x)
  9272. #define ggml_lock_lock(x) UNUSED(x)
  9273. #define ggml_lock_unlock(x) UNUSED(x)
  9274. #define GGML_LOCK_INITIALIZER 0
  9275. typedef pthread_t ggml_thread_t;
  9276. #define ggml_thread_create pthread_create
  9277. #define ggml_thread_join pthread_join
  9278. #endif
  9279. struct ggml_compute_state_shared {
  9280. ggml_lock_t spin;
  9281. int n_threads;
  9282. // synchronization primitives
  9283. atomic_int n_ready;
  9284. atomic_bool has_work;
  9285. atomic_bool stop; // stop all threads
  9286. };
  9287. struct ggml_compute_state {
  9288. ggml_thread_t thrd;
  9289. struct ggml_compute_params params;
  9290. struct ggml_tensor * node;
  9291. struct ggml_compute_state_shared * shared;
  9292. };
  9293. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9294. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9295. const int n_threads = state->shared->n_threads;
  9296. while (true) {
  9297. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9298. atomic_store(&state->shared->has_work, false);
  9299. } else {
  9300. while (atomic_load(&state->shared->has_work)) {
  9301. if (atomic_load(&state->shared->stop)) {
  9302. return 0;
  9303. }
  9304. ggml_lock_lock (&state->shared->spin);
  9305. ggml_lock_unlock(&state->shared->spin);
  9306. }
  9307. }
  9308. atomic_fetch_sub(&state->shared->n_ready, 1);
  9309. // wait for work
  9310. while (!atomic_load(&state->shared->has_work)) {
  9311. if (atomic_load(&state->shared->stop)) {
  9312. return 0;
  9313. }
  9314. ggml_lock_lock (&state->shared->spin);
  9315. ggml_lock_unlock(&state->shared->spin);
  9316. }
  9317. // check if we should stop
  9318. if (atomic_load(&state->shared->stop)) {
  9319. break;
  9320. }
  9321. if (state->node) {
  9322. if (state->params.ith < state->params.nth) {
  9323. ggml_compute_forward(&state->params, state->node);
  9324. }
  9325. state->node = NULL;
  9326. } else {
  9327. break;
  9328. }
  9329. }
  9330. return 0;
  9331. }
  9332. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9333. const int n_threads = cgraph->n_threads;
  9334. struct ggml_compute_state_shared state_shared = {
  9335. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9336. /*.n_threads =*/ n_threads,
  9337. /*.n_ready =*/ 0,
  9338. /*.has_work =*/ false,
  9339. /*.stop =*/ false,
  9340. };
  9341. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9342. // create thread pool
  9343. if (n_threads > 1) {
  9344. ggml_lock_init(&state_shared.spin);
  9345. atomic_store(&state_shared.has_work, true);
  9346. for (int j = 0; j < n_threads - 1; j++) {
  9347. workers[j] = (struct ggml_compute_state) {
  9348. .thrd = 0,
  9349. .params = {
  9350. .type = GGML_TASK_COMPUTE,
  9351. .ith = j + 1,
  9352. .nth = n_threads,
  9353. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9354. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9355. },
  9356. .node = NULL,
  9357. .shared = &state_shared,
  9358. };
  9359. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9360. GGML_ASSERT(rc == 0);
  9361. UNUSED(rc);
  9362. }
  9363. }
  9364. // initialize tasks + work buffer
  9365. {
  9366. size_t work_size = 0;
  9367. // thread scheduling for the different operations
  9368. for (int i = 0; i < cgraph->n_nodes; i++) {
  9369. struct ggml_tensor * node = cgraph->nodes[i];
  9370. switch (node->op) {
  9371. case GGML_OP_CPY:
  9372. case GGML_OP_DUP:
  9373. {
  9374. node->n_tasks = n_threads;
  9375. size_t cur = 0;
  9376. if (ggml_is_quantized(node->type)) {
  9377. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9378. }
  9379. work_size = MAX(work_size, cur);
  9380. } break;
  9381. case GGML_OP_ADD:
  9382. {
  9383. node->n_tasks = n_threads;
  9384. size_t cur = 0;
  9385. if (ggml_is_quantized(node->src0->type)) {
  9386. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9387. }
  9388. work_size = MAX(work_size, cur);
  9389. } break;
  9390. case GGML_OP_SUB:
  9391. case GGML_OP_MUL:
  9392. case GGML_OP_DIV:
  9393. case GGML_OP_SQR:
  9394. case GGML_OP_SQRT:
  9395. case GGML_OP_SUM:
  9396. case GGML_OP_MEAN:
  9397. case GGML_OP_REPEAT:
  9398. case GGML_OP_ABS:
  9399. case GGML_OP_SGN:
  9400. case GGML_OP_NEG:
  9401. case GGML_OP_STEP:
  9402. case GGML_OP_RELU:
  9403. {
  9404. node->n_tasks = 1;
  9405. } break;
  9406. case GGML_OP_GELU:
  9407. {
  9408. node->n_tasks = n_threads;
  9409. } break;
  9410. case GGML_OP_SILU:
  9411. {
  9412. node->n_tasks = n_threads;
  9413. } break;
  9414. case GGML_OP_NORM:
  9415. case GGML_OP_RMS_NORM:
  9416. {
  9417. node->n_tasks = n_threads;
  9418. } break;
  9419. case GGML_OP_MUL_MAT:
  9420. {
  9421. node->n_tasks = n_threads;
  9422. // TODO: use different scheduling for different matrix sizes
  9423. //const int nr0 = ggml_nrows(node->src0);
  9424. //const int nr1 = ggml_nrows(node->src1);
  9425. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9426. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9427. size_t cur = 0;
  9428. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9429. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9430. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9431. node->n_tasks = 1; // TODO: this actually is doing nothing
  9432. // the threads are still spinning
  9433. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9434. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9435. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9436. //printf("cur = %zu\n", cur);
  9437. } else {
  9438. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9439. }
  9440. #else
  9441. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9442. #endif
  9443. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9444. cur = 0;
  9445. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9446. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9447. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9448. node->n_tasks = 1;
  9449. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9450. } else
  9451. #endif
  9452. {
  9453. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9454. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9455. }
  9456. } else {
  9457. GGML_ASSERT(false);
  9458. }
  9459. work_size = MAX(work_size, cur);
  9460. } break;
  9461. case GGML_OP_SCALE:
  9462. {
  9463. node->n_tasks = n_threads;
  9464. } break;
  9465. case GGML_OP_CONT:
  9466. case GGML_OP_RESHAPE:
  9467. case GGML_OP_VIEW:
  9468. case GGML_OP_PERMUTE:
  9469. case GGML_OP_TRANSPOSE:
  9470. case GGML_OP_GET_ROWS:
  9471. case GGML_OP_DIAG_MASK_INF:
  9472. {
  9473. node->n_tasks = 1;
  9474. } break;
  9475. case GGML_OP_SOFT_MAX:
  9476. {
  9477. node->n_tasks = n_threads;
  9478. } break;
  9479. case GGML_OP_ROPE:
  9480. {
  9481. node->n_tasks = n_threads;
  9482. } break;
  9483. case GGML_OP_CONV_1D_1S:
  9484. case GGML_OP_CONV_1D_2S:
  9485. {
  9486. node->n_tasks = n_threads;
  9487. GGML_ASSERT(node->src0->ne[3] == 1);
  9488. GGML_ASSERT(node->src1->ne[2] == 1);
  9489. GGML_ASSERT(node->src1->ne[3] == 1);
  9490. size_t cur = 0;
  9491. const int nk = node->src0->ne[0];
  9492. if (node->src0->type == GGML_TYPE_F16 &&
  9493. node->src1->type == GGML_TYPE_F32) {
  9494. cur = sizeof(ggml_fp16_t)*(
  9495. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9496. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9497. );
  9498. } else if (node->src0->type == GGML_TYPE_F32 &&
  9499. node->src1->type == GGML_TYPE_F32) {
  9500. cur = sizeof(float)*(
  9501. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9502. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9503. );
  9504. } else {
  9505. GGML_ASSERT(false);
  9506. }
  9507. work_size = MAX(work_size, cur);
  9508. } break;
  9509. case GGML_OP_FLASH_ATTN:
  9510. {
  9511. node->n_tasks = n_threads;
  9512. size_t cur = 0;
  9513. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9514. if (node->src1->type == GGML_TYPE_F32) {
  9515. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9516. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9517. }
  9518. if (node->src1->type == GGML_TYPE_F16) {
  9519. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9520. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9521. }
  9522. work_size = MAX(work_size, cur);
  9523. } break;
  9524. case GGML_OP_FLASH_FF:
  9525. {
  9526. node->n_tasks = n_threads;
  9527. size_t cur = 0;
  9528. if (node->src1->type == GGML_TYPE_F32) {
  9529. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9530. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9531. }
  9532. if (node->src1->type == GGML_TYPE_F16) {
  9533. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9534. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9535. }
  9536. work_size = MAX(work_size, cur);
  9537. } break;
  9538. case GGML_OP_MAP_UNARY:
  9539. case GGML_OP_MAP_BINARY:
  9540. {
  9541. node->n_tasks = 1;
  9542. } break;
  9543. case GGML_OP_NONE:
  9544. {
  9545. node->n_tasks = 1;
  9546. } break;
  9547. case GGML_OP_COUNT:
  9548. {
  9549. GGML_ASSERT(false);
  9550. } break;
  9551. }
  9552. }
  9553. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9554. GGML_ASSERT(false); // TODO: better handling
  9555. }
  9556. if (work_size > 0 && cgraph->work == NULL) {
  9557. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9558. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9559. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9560. }
  9561. }
  9562. const int64_t perf_start_cycles = ggml_perf_cycles();
  9563. const int64_t perf_start_time_us = ggml_perf_time_us();
  9564. for (int i = 0; i < cgraph->n_nodes; i++) {
  9565. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9566. struct ggml_tensor * node = cgraph->nodes[i];
  9567. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9568. //if (node->grad == NULL && node->perf_runs > 0) {
  9569. // continue;
  9570. //}
  9571. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9572. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9573. // INIT
  9574. struct ggml_compute_params params = {
  9575. /*.type =*/ GGML_TASK_INIT,
  9576. /*.ith =*/ 0,
  9577. /*.nth =*/ node->n_tasks,
  9578. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9579. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9580. };
  9581. ggml_compute_forward(&params, node);
  9582. // COMPUTE
  9583. if (node->n_tasks > 1) {
  9584. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9585. atomic_store(&state_shared.has_work, false);
  9586. }
  9587. while (atomic_load(&state_shared.has_work)) {
  9588. ggml_lock_lock (&state_shared.spin);
  9589. ggml_lock_unlock(&state_shared.spin);
  9590. }
  9591. // launch thread pool
  9592. for (int j = 0; j < n_threads - 1; j++) {
  9593. workers[j].params = (struct ggml_compute_params) {
  9594. .type = GGML_TASK_COMPUTE,
  9595. .ith = j + 1,
  9596. .nth = node->n_tasks,
  9597. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9598. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9599. };
  9600. workers[j].node = node;
  9601. }
  9602. atomic_fetch_sub(&state_shared.n_ready, 1);
  9603. while (atomic_load(&state_shared.n_ready) > 0) {
  9604. ggml_lock_lock (&state_shared.spin);
  9605. ggml_lock_unlock(&state_shared.spin);
  9606. }
  9607. atomic_store(&state_shared.has_work, true);
  9608. }
  9609. params.type = GGML_TASK_COMPUTE;
  9610. ggml_compute_forward(&params, node);
  9611. // wait for thread pool
  9612. if (node->n_tasks > 1) {
  9613. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9614. atomic_store(&state_shared.has_work, false);
  9615. }
  9616. while (atomic_load(&state_shared.has_work)) {
  9617. ggml_lock_lock (&state_shared.spin);
  9618. ggml_lock_unlock(&state_shared.spin);
  9619. }
  9620. atomic_fetch_sub(&state_shared.n_ready, 1);
  9621. while (atomic_load(&state_shared.n_ready) != 0) {
  9622. ggml_lock_lock (&state_shared.spin);
  9623. ggml_lock_unlock(&state_shared.spin);
  9624. }
  9625. }
  9626. // FINALIZE
  9627. if (node->n_tasks > 1) {
  9628. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9629. atomic_store(&state_shared.has_work, false);
  9630. }
  9631. while (atomic_load(&state_shared.has_work)) {
  9632. ggml_lock_lock (&state_shared.spin);
  9633. ggml_lock_unlock(&state_shared.spin);
  9634. }
  9635. // launch thread pool
  9636. for (int j = 0; j < n_threads - 1; j++) {
  9637. workers[j].params = (struct ggml_compute_params) {
  9638. .type = GGML_TASK_FINALIZE,
  9639. .ith = j + 1,
  9640. .nth = node->n_tasks,
  9641. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9642. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9643. };
  9644. workers[j].node = node;
  9645. }
  9646. atomic_fetch_sub(&state_shared.n_ready, 1);
  9647. while (atomic_load(&state_shared.n_ready) > 0) {
  9648. ggml_lock_lock (&state_shared.spin);
  9649. ggml_lock_unlock(&state_shared.spin);
  9650. }
  9651. atomic_store(&state_shared.has_work, true);
  9652. }
  9653. params.type = GGML_TASK_FINALIZE;
  9654. ggml_compute_forward(&params, node);
  9655. // wait for thread pool
  9656. if (node->n_tasks > 1) {
  9657. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9658. atomic_store(&state_shared.has_work, false);
  9659. }
  9660. while (atomic_load(&state_shared.has_work)) {
  9661. ggml_lock_lock (&state_shared.spin);
  9662. ggml_lock_unlock(&state_shared.spin);
  9663. }
  9664. atomic_fetch_sub(&state_shared.n_ready, 1);
  9665. while (atomic_load(&state_shared.n_ready) != 0) {
  9666. ggml_lock_lock (&state_shared.spin);
  9667. ggml_lock_unlock(&state_shared.spin);
  9668. }
  9669. }
  9670. // performance stats (node)
  9671. {
  9672. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9673. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9674. node->perf_runs++;
  9675. node->perf_cycles += perf_cycles_cur;
  9676. node->perf_time_us += perf_time_us_cur;
  9677. }
  9678. }
  9679. // join thread pool
  9680. if (n_threads > 1) {
  9681. atomic_store(&state_shared.stop, true);
  9682. atomic_store(&state_shared.has_work, true);
  9683. for (int j = 0; j < n_threads - 1; j++) {
  9684. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9685. GGML_ASSERT(rc == 0);
  9686. UNUSED(rc);
  9687. }
  9688. ggml_lock_destroy(&state_shared.spin);
  9689. }
  9690. // performance stats (graph)
  9691. {
  9692. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9693. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9694. cgraph->perf_runs++;
  9695. cgraph->perf_cycles += perf_cycles_cur;
  9696. cgraph->perf_time_us += perf_time_us_cur;
  9697. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9698. __func__, cgraph->perf_runs,
  9699. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9700. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9701. (double) perf_time_us_cur / 1000.0,
  9702. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9703. }
  9704. }
  9705. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9706. for (int i = 0; i < cgraph->n_nodes; i++) {
  9707. struct ggml_tensor * grad = cgraph->grads[i];
  9708. if (grad) {
  9709. ggml_set_zero(grad);
  9710. }
  9711. }
  9712. }
  9713. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9714. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9715. GGML_PRINT("=== GRAPH ===\n");
  9716. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9717. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9718. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9719. for (int i = 0; i < cgraph->n_nodes; i++) {
  9720. struct ggml_tensor * node = cgraph->nodes[i];
  9721. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9722. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9723. i,
  9724. node->ne[0], node->ne[1], node->ne[2],
  9725. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9726. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9727. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9728. (double) node->perf_time_us / 1000.0,
  9729. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9730. }
  9731. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9732. for (int i = 0; i < cgraph->n_leafs; i++) {
  9733. struct ggml_tensor * node = cgraph->leafs[i];
  9734. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9735. i,
  9736. node->ne[0], node->ne[1],
  9737. GGML_OP_LABEL[node->op]);
  9738. }
  9739. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9740. if (perf_total_per_op_us[i] == 0) {
  9741. continue;
  9742. }
  9743. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9744. }
  9745. GGML_PRINT("========================================\n");
  9746. }
  9747. // check if node is part of the graph
  9748. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9749. if (cgraph == NULL) {
  9750. return true;
  9751. }
  9752. for (int i = 0; i < cgraph->n_nodes; i++) {
  9753. if (cgraph->nodes[i] == node) {
  9754. return true;
  9755. }
  9756. }
  9757. return false;
  9758. }
  9759. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9760. for (int i = 0; i < cgraph->n_nodes; i++) {
  9761. struct ggml_tensor * parent = cgraph->nodes[i];
  9762. if (parent->grad == node) {
  9763. return parent;
  9764. }
  9765. }
  9766. return NULL;
  9767. }
  9768. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9769. char color[16];
  9770. FILE * fp = fopen(filename, "w");
  9771. GGML_ASSERT(fp);
  9772. fprintf(fp, "digraph G {\n");
  9773. fprintf(fp, " newrank = true;\n");
  9774. fprintf(fp, " rankdir = LR;\n");
  9775. for (int i = 0; i < gb->n_nodes; i++) {
  9776. struct ggml_tensor * node = gb->nodes[i];
  9777. if (ggml_graph_get_parent(gb, node) != NULL) {
  9778. continue;
  9779. }
  9780. if (node->is_param) {
  9781. snprintf(color, sizeof(color), "yellow");
  9782. } else if (node->grad) {
  9783. if (ggml_graph_find(gf, node)) {
  9784. snprintf(color, sizeof(color), "green");
  9785. } else {
  9786. snprintf(color, sizeof(color), "lightblue");
  9787. }
  9788. } else {
  9789. snprintf(color, sizeof(color), "white");
  9790. }
  9791. fprintf(fp, " \"%p\" [ \
  9792. style = filled; fillcolor = %s; shape = record; \
  9793. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9794. (void *) node, color,
  9795. i, node->ne[0], node->ne[1],
  9796. GGML_OP_SYMBOL[node->op]);
  9797. if (node->grad) {
  9798. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9799. } else {
  9800. fprintf(fp, "\"; ]\n");
  9801. }
  9802. }
  9803. for (int i = 0; i < gb->n_leafs; i++) {
  9804. struct ggml_tensor * node = gb->leafs[i];
  9805. snprintf(color, sizeof(color), "pink");
  9806. if (ggml_nelements(node) == 1) {
  9807. fprintf(fp, " \"%p\" [ \
  9808. style = filled; fillcolor = %s; shape = record; \
  9809. label=\"<x>%.1e\"; ]\n",
  9810. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9811. } else {
  9812. fprintf(fp, " \"%p\" [ \
  9813. style = filled; fillcolor = %s; shape = record; \
  9814. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9815. (void *) node, color,
  9816. i, node->ne[0], node->ne[1]);
  9817. }
  9818. }
  9819. for (int i = 0; i < gb->n_nodes; i++) {
  9820. struct ggml_tensor * node = gb->nodes[i];
  9821. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9822. if (node->src0) {
  9823. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9824. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9825. parent0 ? (void *) parent0 : (void *) node->src0,
  9826. parent0 ? "g" : "x",
  9827. parent ? (void *) parent : (void *) node,
  9828. parent ? "g" : "x",
  9829. parent ? "empty" : "vee",
  9830. parent ? "dashed" : "solid");
  9831. }
  9832. if (node->src1) {
  9833. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9834. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9835. parent1 ? (void *) parent1 : (void *) node->src1,
  9836. parent1 ? "g" : "x",
  9837. parent ? (void *) parent : (void *) node,
  9838. parent ? "g" : "x",
  9839. parent ? "empty" : "vee",
  9840. parent ? "dashed" : "solid");
  9841. }
  9842. }
  9843. for (int i = 0; i < gb->n_leafs; i++) {
  9844. struct ggml_tensor * node = gb->leafs[i];
  9845. if (node->src0) {
  9846. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9847. (void *) node->src0, "x",
  9848. (void *) node, "x");
  9849. }
  9850. if (node->src1) {
  9851. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9852. (void *) node->src1, "x",
  9853. (void *) node, "x");
  9854. }
  9855. }
  9856. fprintf(fp, "}\n");
  9857. fclose(fp);
  9858. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9859. }
  9860. ////////////////////////////////////////////////////////////////////////////////
  9861. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9862. int i = 0;
  9863. for (int p = 0; p < np; ++p) {
  9864. const int64_t ne = ggml_nelements(ps[p]) ;
  9865. // TODO: add function to set tensor from array
  9866. for (int64_t j = 0; j < ne; ++j) {
  9867. ggml_set_f32_1d(ps[p], j, x[i++]);
  9868. }
  9869. }
  9870. }
  9871. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9872. int i = 0;
  9873. for (int p = 0; p < np; ++p) {
  9874. const int64_t ne = ggml_nelements(ps[p]) ;
  9875. // TODO: add function to get all elements at once
  9876. for (int64_t j = 0; j < ne; ++j) {
  9877. x[i++] = ggml_get_f32_1d(ps[p], j);
  9878. }
  9879. }
  9880. }
  9881. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9882. int i = 0;
  9883. for (int p = 0; p < np; ++p) {
  9884. const int64_t ne = ggml_nelements(ps[p]) ;
  9885. // TODO: add function to get all elements at once
  9886. for (int64_t j = 0; j < ne; ++j) {
  9887. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9888. }
  9889. }
  9890. }
  9891. //
  9892. // ADAM
  9893. //
  9894. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9895. //
  9896. static enum ggml_opt_result ggml_opt_adam(
  9897. struct ggml_context * ctx,
  9898. struct ggml_opt_params params,
  9899. struct ggml_tensor * f,
  9900. struct ggml_cgraph * gf,
  9901. struct ggml_cgraph * gb) {
  9902. GGML_ASSERT(ggml_is_scalar(f));
  9903. gf->n_threads = params.n_threads;
  9904. gb->n_threads = params.n_threads;
  9905. // these will store the parameters we want to optimize
  9906. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9907. int np = 0;
  9908. int nx = 0;
  9909. for (int i = 0; i < gf->n_nodes; ++i) {
  9910. if (gf->nodes[i]->is_param) {
  9911. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9912. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9913. ps[np++] = gf->nodes[i];
  9914. nx += ggml_nelements(gf->nodes[i]);
  9915. }
  9916. }
  9917. // constants
  9918. const float alpha = params.adam.alpha;
  9919. const float beta1 = params.adam.beta1;
  9920. const float beta2 = params.adam.beta2;
  9921. const float eps = params.adam.eps;
  9922. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9923. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9924. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9925. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9926. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9927. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9928. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9929. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9930. // initialize
  9931. ggml_vec_set_f32(nx, m, 0.0f);
  9932. ggml_vec_set_f32(nx, v, 0.0f);
  9933. // update view
  9934. ggml_opt_get_params(np, ps, x);
  9935. // compute the function value
  9936. ggml_graph_reset (gf);
  9937. ggml_set_f32 (f->grad, 1.0f);
  9938. ggml_graph_compute(ctx, gb);
  9939. float fx_prev = ggml_get_f32_1d(f, 0);
  9940. if (pf) {
  9941. pf[0] = fx_prev;
  9942. }
  9943. int n_no_improvement = 0;
  9944. float fx_best = fx_prev;
  9945. // run the optimizer
  9946. for (int t = 0; t < params.adam.n_iter; ++t) {
  9947. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9948. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9949. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9950. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9951. for (int i = 0; i < np; ++i) {
  9952. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9953. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9954. }
  9955. const int64_t t_start_wall = ggml_time_us();
  9956. const int64_t t_start_cpu = ggml_cycles();
  9957. UNUSED(t_start_wall);
  9958. UNUSED(t_start_cpu);
  9959. {
  9960. // update the gradient
  9961. ggml_opt_get_grad(np, ps, g1);
  9962. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9963. ggml_vec_scale_f32(nx, m, beta1);
  9964. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9965. // g2 = g1^2
  9966. ggml_vec_sqr_f32 (nx, g2, g1);
  9967. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9968. ggml_vec_scale_f32(nx, v, beta2);
  9969. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9970. // m^hat = m_t / (1 - beta1^t)
  9971. // v^hat = v_t / (1 - beta2^t)
  9972. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9973. ggml_vec_cpy_f32 (nx, mh, m);
  9974. ggml_vec_cpy_f32 (nx, vh, v);
  9975. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9976. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9977. ggml_vec_sqrt_f32 (nx, vh, vh);
  9978. ggml_vec_acc1_f32 (nx, vh, eps);
  9979. ggml_vec_div_f32 (nx, mh, mh, vh);
  9980. ggml_vec_sub_f32 (nx, x, x, mh);
  9981. // update the parameters
  9982. ggml_opt_set_params(np, ps, x);
  9983. }
  9984. ggml_graph_reset (gf);
  9985. ggml_set_f32 (f->grad, 1.0f);
  9986. ggml_graph_compute(ctx, gb);
  9987. const float fx = ggml_get_f32_1d(f, 0);
  9988. // check convergence
  9989. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9990. GGML_PRINT_DEBUG("converged\n");
  9991. return GGML_OPT_OK;
  9992. }
  9993. // delta-based convergence test
  9994. if (pf != NULL) {
  9995. // need at least params.past iterations to start checking for convergence
  9996. if (params.past <= t) {
  9997. const float rate = (pf[t%params.past] - fx)/fx;
  9998. if (fabsf(rate) < params.delta) {
  9999. return GGML_OPT_OK;
  10000. }
  10001. }
  10002. pf[t%params.past] = fx;
  10003. }
  10004. // check for improvement
  10005. if (params.max_no_improvement > 0) {
  10006. if (fx_best > fx) {
  10007. fx_best = fx;
  10008. n_no_improvement = 0;
  10009. } else {
  10010. ++n_no_improvement;
  10011. if (n_no_improvement >= params.max_no_improvement) {
  10012. return GGML_OPT_OK;
  10013. }
  10014. }
  10015. }
  10016. fx_prev = fx;
  10017. {
  10018. const int64_t t_end_cpu = ggml_cycles();
  10019. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10020. UNUSED(t_end_cpu);
  10021. const int64_t t_end_wall = ggml_time_us();
  10022. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10023. UNUSED(t_end_wall);
  10024. }
  10025. }
  10026. return GGML_OPT_DID_NOT_CONVERGE;
  10027. }
  10028. //
  10029. // L-BFGS
  10030. //
  10031. // the L-BFGS implementation below is based on the following implementation:
  10032. //
  10033. // https://github.com/chokkan/liblbfgs
  10034. //
  10035. struct ggml_lbfgs_iteration_data {
  10036. float alpha;
  10037. float ys;
  10038. float * s;
  10039. float * y;
  10040. };
  10041. static enum ggml_opt_result linesearch_backtracking(
  10042. struct ggml_context * ctx,
  10043. const struct ggml_opt_params * params,
  10044. int nx,
  10045. float * x,
  10046. float * fx,
  10047. float * g,
  10048. float * d,
  10049. float * step,
  10050. const float * xp,
  10051. struct ggml_tensor * f,
  10052. struct ggml_cgraph * gf,
  10053. struct ggml_cgraph * gb,
  10054. const int np,
  10055. struct ggml_tensor * ps[]) {
  10056. int count = 0;
  10057. float width = 0.0f;
  10058. float dg = 0.0f;
  10059. float finit = 0.0f;
  10060. float dginit = 0.0f;
  10061. float dgtest = 0.0f;
  10062. const float dec = 0.5f;
  10063. const float inc = 2.1f;
  10064. if (*step <= 0.f) {
  10065. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10066. }
  10067. // compute the initial gradient in the search direction
  10068. ggml_vec_dot_f32(nx, &dginit, g, d);
  10069. // make sure that d points to a descent direction
  10070. if (0 < dginit) {
  10071. return GGML_LINESEARCH_FAIL;
  10072. }
  10073. // initialize local variables
  10074. finit = *fx;
  10075. dgtest = params->lbfgs.ftol*dginit;
  10076. while (true) {
  10077. ggml_vec_cpy_f32(nx, x, xp);
  10078. ggml_vec_mad_f32(nx, x, d, *step);
  10079. // evaluate the function and gradient values
  10080. {
  10081. ggml_opt_set_params(np, ps, x);
  10082. ggml_graph_reset (gf);
  10083. ggml_set_f32 (f->grad, 1.0f);
  10084. ggml_graph_compute(ctx, gb);
  10085. ggml_opt_get_grad(np, ps, g);
  10086. *fx = ggml_get_f32_1d(f, 0);
  10087. }
  10088. ++count;
  10089. if (*fx > finit + (*step)*dgtest) {
  10090. width = dec;
  10091. } else {
  10092. // Armijo condition is satisfied
  10093. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10094. return count;
  10095. }
  10096. ggml_vec_dot_f32(nx, &dg, g, d);
  10097. // check the Wolfe condition
  10098. if (dg < params->lbfgs.wolfe * dginit) {
  10099. width = inc;
  10100. } else {
  10101. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10102. // regular Wolfe conditions
  10103. return count;
  10104. }
  10105. if(dg > -params->lbfgs.wolfe*dginit) {
  10106. width = dec;
  10107. } else {
  10108. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10109. return count;
  10110. }
  10111. return count;
  10112. }
  10113. }
  10114. if (*step < params->lbfgs.min_step) {
  10115. return GGML_LINESEARCH_MINIMUM_STEP;
  10116. }
  10117. if (*step > params->lbfgs.max_step) {
  10118. return GGML_LINESEARCH_MAXIMUM_STEP;
  10119. }
  10120. if (params->lbfgs.max_linesearch <= count) {
  10121. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10122. }
  10123. (*step) *= width;
  10124. }
  10125. return GGML_LINESEARCH_FAIL;
  10126. }
  10127. static enum ggml_opt_result ggml_opt_lbfgs(
  10128. struct ggml_context * ctx,
  10129. struct ggml_opt_params params,
  10130. struct ggml_tensor * f,
  10131. struct ggml_cgraph * gf,
  10132. struct ggml_cgraph * gb) {
  10133. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10134. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10135. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10136. return GGML_OPT_INVALID_WOLFE;
  10137. }
  10138. }
  10139. gf->n_threads = params.n_threads;
  10140. gb->n_threads = params.n_threads;
  10141. const int m = params.lbfgs.m;
  10142. // these will store the parameters we want to optimize
  10143. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10144. int np = 0;
  10145. int nx = 0;
  10146. for (int i = 0; i < gf->n_nodes; ++i) {
  10147. if (gf->nodes[i]->is_param) {
  10148. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10149. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10150. ps[np++] = gf->nodes[i];
  10151. nx += ggml_nelements(gf->nodes[i]);
  10152. }
  10153. }
  10154. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10155. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10156. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10157. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10158. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10159. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10160. float fx = 0.0f; // cost function value
  10161. float xnorm = 0.0f; // ||x||
  10162. float gnorm = 0.0f; // ||g||
  10163. float step = 0.0f;
  10164. // initialize x from the graph nodes
  10165. ggml_opt_get_params(np, ps, x);
  10166. // the L-BFGS memory
  10167. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10168. for (int i = 0; i < m; ++i) {
  10169. lm[i].alpha = 0.0f;
  10170. lm[i].ys = 0.0f;
  10171. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10172. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10173. }
  10174. // evaluate the function value and its gradient
  10175. {
  10176. ggml_opt_set_params(np, ps, x);
  10177. ggml_graph_reset (gf);
  10178. ggml_set_f32 (f->grad, 1.0f);
  10179. ggml_graph_compute(ctx, gb);
  10180. ggml_opt_get_grad(np, ps, g);
  10181. fx = ggml_get_f32_1d(f, 0);
  10182. }
  10183. if (pf) {
  10184. pf[0] = fx;
  10185. }
  10186. float fx_best = fx;
  10187. // search direction = -gradient
  10188. ggml_vec_neg_f32(nx, d, g);
  10189. // ||x||, ||g||
  10190. ggml_vec_norm_f32(nx, &xnorm, x);
  10191. ggml_vec_norm_f32(nx, &gnorm, g);
  10192. if (xnorm < 1.0f) {
  10193. xnorm = 1.0f;
  10194. }
  10195. // already optimized
  10196. if (gnorm/xnorm <= params.lbfgs.eps) {
  10197. return GGML_OPT_OK;
  10198. }
  10199. // initial step
  10200. ggml_vec_norm_inv_f32(nx, &step, d);
  10201. int j = 0;
  10202. int k = 1;
  10203. int ls = 0;
  10204. int end = 0;
  10205. int bound = 0;
  10206. int n_no_improvement = 0;
  10207. float ys = 0.0f;
  10208. float yy = 0.0f;
  10209. float beta = 0.0f;
  10210. while (true) {
  10211. // store the current position and gradient vectors
  10212. ggml_vec_cpy_f32(nx, xp, x);
  10213. ggml_vec_cpy_f32(nx, gp, g);
  10214. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10215. if (ls < 0) {
  10216. // linesearch failed - go back to the previous point and return
  10217. ggml_vec_cpy_f32(nx, x, xp);
  10218. ggml_vec_cpy_f32(nx, g, gp);
  10219. return ls;
  10220. }
  10221. ggml_vec_norm_f32(nx, &xnorm, x);
  10222. ggml_vec_norm_f32(nx, &gnorm, g);
  10223. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10224. if (xnorm < 1.0f) {
  10225. xnorm = 1.0f;
  10226. }
  10227. if (gnorm/xnorm <= params.lbfgs.eps) {
  10228. // converged
  10229. return GGML_OPT_OK;
  10230. }
  10231. // delta-based convergence test
  10232. if (pf != NULL) {
  10233. // need at least params.past iterations to start checking for convergence
  10234. if (params.past <= k) {
  10235. const float rate = (pf[k%params.past] - fx)/fx;
  10236. if (fabsf(rate) < params.delta) {
  10237. return GGML_OPT_OK;
  10238. }
  10239. }
  10240. pf[k%params.past] = fx;
  10241. }
  10242. // check for improvement
  10243. if (params.max_no_improvement > 0) {
  10244. if (fx < fx_best) {
  10245. fx_best = fx;
  10246. n_no_improvement = 0;
  10247. } else {
  10248. n_no_improvement++;
  10249. if (n_no_improvement >= params.max_no_improvement) {
  10250. return GGML_OPT_OK;
  10251. }
  10252. }
  10253. }
  10254. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10255. // reached the maximum number of iterations
  10256. return GGML_OPT_DID_NOT_CONVERGE;
  10257. }
  10258. // update vectors s and y:
  10259. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10260. // y_{k+1} = g_{k+1} - g_{k}.
  10261. //
  10262. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10263. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10264. // compute scalars ys and yy:
  10265. // ys = y^t \cdot s -> 1 / \rho.
  10266. // yy = y^t \cdot y.
  10267. //
  10268. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10269. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10270. lm[end].ys = ys;
  10271. // find new search direction
  10272. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10273. bound = (m <= k) ? m : k;
  10274. k++;
  10275. end = (end + 1)%m;
  10276. // initialize search direction with -g
  10277. ggml_vec_neg_f32(nx, d, g);
  10278. j = end;
  10279. for (int i = 0; i < bound; ++i) {
  10280. j = (j + m - 1) % m;
  10281. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10282. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10283. lm[j].alpha /= lm[j].ys;
  10284. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10285. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10286. }
  10287. ggml_vec_scale_f32(nx, d, ys/yy);
  10288. for (int i = 0; i < bound; ++i) {
  10289. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10290. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10291. beta /= lm[j].ys;
  10292. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10293. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10294. j = (j + 1)%m;
  10295. }
  10296. step = 1.0;
  10297. }
  10298. return GGML_OPT_DID_NOT_CONVERGE;
  10299. }
  10300. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10301. struct ggml_opt_params result;
  10302. switch (type) {
  10303. case GGML_OPT_ADAM:
  10304. {
  10305. result = (struct ggml_opt_params) {
  10306. .type = GGML_OPT_ADAM,
  10307. .n_threads = 1,
  10308. .past = 0,
  10309. .delta = 1e-5f,
  10310. .max_no_improvement = 100,
  10311. .print_forward_graph = true,
  10312. .print_backward_graph = true,
  10313. .adam = {
  10314. .n_iter = 10000,
  10315. .alpha = 0.001f,
  10316. .beta1 = 0.9f,
  10317. .beta2 = 0.999f,
  10318. .eps = 1e-8f,
  10319. .eps_f = 1e-5f,
  10320. .eps_g = 1e-3f,
  10321. },
  10322. };
  10323. } break;
  10324. case GGML_OPT_LBFGS:
  10325. {
  10326. result = (struct ggml_opt_params) {
  10327. .type = GGML_OPT_LBFGS,
  10328. .n_threads = 1,
  10329. .past = 0,
  10330. .delta = 1e-5f,
  10331. .max_no_improvement = 0,
  10332. .print_forward_graph = true,
  10333. .print_backward_graph = true,
  10334. .lbfgs = {
  10335. .m = 6,
  10336. .n_iter = 100,
  10337. .max_linesearch = 20,
  10338. .eps = 1e-5f,
  10339. .ftol = 1e-4f,
  10340. .wolfe = 0.9f,
  10341. .min_step = 1e-20f,
  10342. .max_step = 1e+20f,
  10343. .linesearch = GGML_LINESEARCH_DEFAULT,
  10344. },
  10345. };
  10346. } break;
  10347. }
  10348. return result;
  10349. }
  10350. enum ggml_opt_result ggml_opt(
  10351. struct ggml_context * ctx,
  10352. struct ggml_opt_params params,
  10353. struct ggml_tensor * f) {
  10354. bool free_ctx = false;
  10355. if (ctx == NULL) {
  10356. struct ggml_init_params params_ctx = {
  10357. .mem_size = 16*1024*1024,
  10358. .mem_buffer = NULL,
  10359. .no_alloc = false,
  10360. };
  10361. ctx = ggml_init(params_ctx);
  10362. if (ctx == NULL) {
  10363. return GGML_OPT_NO_CONTEXT;
  10364. }
  10365. free_ctx = true;
  10366. }
  10367. enum ggml_opt_result result = GGML_OPT_OK;
  10368. // build forward + backward compute graphs
  10369. struct ggml_cgraph gf = ggml_build_forward (f);
  10370. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10371. switch (params.type) {
  10372. case GGML_OPT_ADAM:
  10373. {
  10374. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10375. } break;
  10376. case GGML_OPT_LBFGS:
  10377. {
  10378. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10379. } break;
  10380. }
  10381. if (params.print_forward_graph) {
  10382. ggml_graph_print (&gf);
  10383. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10384. }
  10385. if (params.print_backward_graph) {
  10386. ggml_graph_print (&gb);
  10387. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10388. }
  10389. if (free_ctx) {
  10390. ggml_free(ctx);
  10391. }
  10392. return result;
  10393. }
  10394. ////////////////////////////////////////////////////////////////////////////////
  10395. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10396. assert(k % QK4_0 == 0);
  10397. const int nb = k / QK4_0;
  10398. for (int j = 0; j < n; j += k) {
  10399. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10400. quantize_row_q4_0_reference(src + j, y, k);
  10401. for (int i = 0; i < nb; i++) {
  10402. for (int l = 0; l < QK4_0; l += 2) {
  10403. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10404. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10405. hist[vi0]++;
  10406. hist[vi1]++;
  10407. }
  10408. }
  10409. }
  10410. return (n/QK4_0*sizeof(block_q4_0));
  10411. }
  10412. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10413. assert(k % QK4_1 == 0);
  10414. const int nb = k / QK4_1;
  10415. for (int j = 0; j < n; j += k) {
  10416. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10417. quantize_row_q4_1_reference(src + j, y, k);
  10418. for (int i = 0; i < nb; i++) {
  10419. for (int l = 0; l < QK4_1; l += 2) {
  10420. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10421. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10422. hist[vi0]++;
  10423. hist[vi1]++;
  10424. }
  10425. }
  10426. }
  10427. return (n/QK4_1*sizeof(block_q4_1));
  10428. }
  10429. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10430. assert(k % QK4_2 == 0);
  10431. const int nb = k / QK4_2;
  10432. for (int j = 0; j < n; j += k) {
  10433. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10434. quantize_row_q4_2_reference(src + j, y, k);
  10435. for (int i = 0; i < nb; i++) {
  10436. for (int l = 0; l < QK4_2; l += 2) {
  10437. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10438. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10439. hist[vi0]++;
  10440. hist[vi1]++;
  10441. }
  10442. }
  10443. }
  10444. return (n/QK4_2*sizeof(block_q4_2));
  10445. }
  10446. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10447. assert(k % QK4_3 == 0);
  10448. const int nb = k / QK4_3;
  10449. for (int j = 0; j < n; j += k) {
  10450. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10451. quantize_row_q4_3_reference(src + j, y, k);
  10452. for (int i = 0; i < nb; i++) {
  10453. for (int l = 0; l < QK4_3; l += 2) {
  10454. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10455. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10456. hist[vi0]++;
  10457. hist[vi1]++;
  10458. }
  10459. }
  10460. }
  10461. return (n/QK4_3*sizeof(block_q4_3));
  10462. }
  10463. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10464. assert(k % QK5_0 == 0);
  10465. const int nb = k / QK5_0;
  10466. for (int j = 0; j < n; j += k) {
  10467. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10468. quantize_row_q5_0_reference(src + j, y, k);
  10469. for (int i = 0; i < nb; i++) {
  10470. uint32_t qh;
  10471. memcpy(&qh, &y[i].qh, sizeof(qh));
  10472. for (int l = 0; l < QK5_0; l += 2) {
  10473. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10474. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10475. // cast to 16 bins
  10476. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10477. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10478. hist[vi0]++;
  10479. hist[vi1]++;
  10480. }
  10481. }
  10482. }
  10483. return (n/QK5_0*sizeof(block_q5_0));
  10484. }
  10485. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10486. assert(k % QK5_1 == 0);
  10487. const int nb = k / QK5_1;
  10488. for (int j = 0; j < n; j += k) {
  10489. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10490. quantize_row_q5_1_reference(src + j, y, k);
  10491. for (int i = 0; i < nb; i++) {
  10492. uint32_t qh;
  10493. memcpy(&qh, &y[i].qh, sizeof(qh));
  10494. for (int l = 0; l < QK5_1; l += 2) {
  10495. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10496. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10497. // cast to 16 bins
  10498. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10499. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10500. hist[vi0]++;
  10501. hist[vi1]++;
  10502. }
  10503. }
  10504. }
  10505. return (n/QK5_1*sizeof(block_q5_1));
  10506. }
  10507. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10508. assert(k % QK8_0 == 0);
  10509. const int nb = k / QK8_0;
  10510. for (int j = 0; j < n; j += k) {
  10511. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10512. quantize_row_q8_0_reference(src + j, y, k);
  10513. for (int i = 0; i < nb; i++) {
  10514. for (int l = 0; l < QK8_0; ++l) {
  10515. const int8_t vi = y[i].qs[l];
  10516. hist[vi/16 + 8]++;
  10517. }
  10518. }
  10519. }
  10520. return (n/QK8_0*sizeof(block_q8_0));
  10521. }
  10522. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10523. size_t result = 0;
  10524. switch (type) {
  10525. case GGML_TYPE_Q4_0:
  10526. {
  10527. GGML_ASSERT(start % QK4_0 == 0);
  10528. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10529. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10530. } break;
  10531. case GGML_TYPE_Q4_1:
  10532. {
  10533. GGML_ASSERT(start % QK4_1 == 0);
  10534. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10535. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10536. } break;
  10537. case GGML_TYPE_Q4_2:
  10538. {
  10539. GGML_ASSERT(start % QK4_2 == 0);
  10540. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10541. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10542. } break;
  10543. case GGML_TYPE_Q4_3:
  10544. {
  10545. GGML_ASSERT(start % QK4_3 == 0);
  10546. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10547. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10548. } break;
  10549. case GGML_TYPE_Q5_0:
  10550. {
  10551. GGML_ASSERT(start % QK5_0 == 0);
  10552. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10553. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10554. } break;
  10555. case GGML_TYPE_Q5_1:
  10556. {
  10557. GGML_ASSERT(start % QK5_1 == 0);
  10558. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10559. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10560. } break;
  10561. case GGML_TYPE_Q8_0:
  10562. {
  10563. GGML_ASSERT(start % QK8_0 == 0);
  10564. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10565. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10566. } break;
  10567. default:
  10568. assert(false);
  10569. }
  10570. return result;
  10571. }
  10572. ////////////////////////////////////////////////////////////////////////////////
  10573. int ggml_cpu_has_avx(void) {
  10574. #if defined(__AVX__)
  10575. return 1;
  10576. #else
  10577. return 0;
  10578. #endif
  10579. }
  10580. int ggml_cpu_has_avx2(void) {
  10581. #if defined(__AVX2__)
  10582. return 1;
  10583. #else
  10584. return 0;
  10585. #endif
  10586. }
  10587. int ggml_cpu_has_avx512(void) {
  10588. #if defined(__AVX512F__)
  10589. return 1;
  10590. #else
  10591. return 0;
  10592. #endif
  10593. }
  10594. int ggml_cpu_has_avx512_vbmi(void) {
  10595. #if defined(__AVX512VBMI__)
  10596. return 1;
  10597. #else
  10598. return 0;
  10599. #endif
  10600. }
  10601. int ggml_cpu_has_avx512_vnni(void) {
  10602. #if defined(__AVX512VNNI__)
  10603. return 1;
  10604. #else
  10605. return 0;
  10606. #endif
  10607. }
  10608. int ggml_cpu_has_fma(void) {
  10609. #if defined(__FMA__)
  10610. return 1;
  10611. #else
  10612. return 0;
  10613. #endif
  10614. }
  10615. int ggml_cpu_has_neon(void) {
  10616. #if defined(__ARM_NEON)
  10617. return 1;
  10618. #else
  10619. return 0;
  10620. #endif
  10621. }
  10622. int ggml_cpu_has_arm_fma(void) {
  10623. #if defined(__ARM_FEATURE_FMA)
  10624. return 1;
  10625. #else
  10626. return 0;
  10627. #endif
  10628. }
  10629. int ggml_cpu_has_f16c(void) {
  10630. #if defined(__F16C__)
  10631. return 1;
  10632. #else
  10633. return 0;
  10634. #endif
  10635. }
  10636. int ggml_cpu_has_fp16_va(void) {
  10637. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10638. return 1;
  10639. #else
  10640. return 0;
  10641. #endif
  10642. }
  10643. int ggml_cpu_has_wasm_simd(void) {
  10644. #if defined(__wasm_simd128__)
  10645. return 1;
  10646. #else
  10647. return 0;
  10648. #endif
  10649. }
  10650. int ggml_cpu_has_blas(void) {
  10651. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10652. return 1;
  10653. #else
  10654. return 0;
  10655. #endif
  10656. }
  10657. int ggml_cpu_has_cublas(void) {
  10658. #if defined(GGML_USE_CUBLAS)
  10659. return 1;
  10660. #else
  10661. return 0;
  10662. #endif
  10663. }
  10664. int ggml_cpu_has_sse3(void) {
  10665. #if defined(__SSE3__)
  10666. return 1;
  10667. #else
  10668. return 0;
  10669. #endif
  10670. }
  10671. int ggml_cpu_has_vsx(void) {
  10672. #if defined(__POWER9_VECTOR__)
  10673. return 1;
  10674. #else
  10675. return 0;
  10676. #endif
  10677. }
  10678. ////////////////////////////////////////////////////////////////////////////////