test-backend-ops.cpp 162 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <algorithm>
  18. #include <array>
  19. #include <cfloat>
  20. #include <cstdint>
  21. #include <cstring>
  22. #include <cinttypes>
  23. #include <memory>
  24. #include <random>
  25. #include <stdio.h>
  26. #include <stdlib.h>
  27. #include <string>
  28. #include <thread>
  29. #include <future>
  30. #include <vector>
  31. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  32. size_t nels = ggml_nelements(tensor);
  33. std::vector<float> data(nels);
  34. {
  35. // parallel initialization
  36. static const size_t n_threads = std::thread::hardware_concurrency();
  37. // static RNG initialization (revisit if n_threads stops being constant)
  38. static std::vector<std::default_random_engine> generators = []() {
  39. std::random_device rd;
  40. std::vector<std::default_random_engine> vec;
  41. vec.reserve(n_threads);
  42. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  43. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  44. return vec;
  45. }();
  46. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  47. std::uniform_real_distribution<float> distribution(min, max);
  48. auto & gen = generators[ith];
  49. for (size_t i = start; i < end; i++) {
  50. data[i] = distribution(gen);
  51. }
  52. };
  53. std::vector<std::future<void>> tasks;
  54. tasks.reserve(n_threads);
  55. for (size_t i = 0; i < n_threads; i++) {
  56. size_t start = i*nels/n_threads;
  57. size_t end = (i+1)*nels/n_threads;
  58. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  59. }
  60. for (auto & t : tasks) {
  61. t.get();
  62. }
  63. }
  64. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  65. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  66. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  67. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  68. // dummy importance matrix
  69. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  70. const float * im = imatrix.data();
  71. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  72. // when the imatrix is optional, we want to test both quantization with and without imatrix
  73. // use one of the random numbers to decide
  74. if (data[0] > 0.5f*(min + max)) {
  75. im = nullptr;
  76. }
  77. }
  78. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  79. {
  80. // parallel quantization by block
  81. size_t blck_size = ggml_blck_size(tensor->type);
  82. size_t n_blocks = nels / blck_size;
  83. auto quantize_thread = [&](size_t start, size_t end) {
  84. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  85. start * blck_size, end - start, blck_size, im);
  86. };
  87. const size_t min_blocks_per_thread = 1;
  88. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  89. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  90. std::vector<std::future<void>> tasks;
  91. tasks.reserve(n_threads);
  92. for (size_t i = 0; i < n_threads; i++) {
  93. size_t start = i*n_blocks/n_threads;
  94. size_t end = (i+1)*n_blocks/n_threads;
  95. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  96. }
  97. for (auto & t : tasks) {
  98. t.get();
  99. }
  100. }
  101. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  102. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  103. // This is going to create some weird integers though.
  104. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  105. } else if (tensor->type == GGML_TYPE_I64) {
  106. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  107. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  108. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  109. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  110. } else {
  111. GGML_ABORT("fatal error");
  112. }
  113. }
  114. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  115. std::vector<float> tv;
  116. tv.reserve(ggml_nelements(t));
  117. std::vector<uint8_t> buf(ggml_nbytes(t));
  118. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  119. const auto * tt = ggml_get_type_traits(t->type);
  120. size_t bs = ggml_blck_size(t->type);
  121. std::vector<float> vq(ggml_blck_size(t->type));
  122. bool quantized = ggml_is_quantized(t->type);
  123. // access elements by index to avoid gaps in views
  124. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  125. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  126. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  127. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  128. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  129. if (t->type == GGML_TYPE_F16) {
  130. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  131. } else if (t->type == GGML_TYPE_BF16) {
  132. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_F32) {
  134. tv.push_back(*(float *) &buf[i]);
  135. } else if (t->type == GGML_TYPE_I64) {
  136. tv.push_back((float)*(int64_t *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I32) {
  138. tv.push_back((float)*(int32_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I16) {
  140. tv.push_back((float)*(int16_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I8) {
  142. tv.push_back((float)*(int8_t *) &buf[i]);
  143. } else if (quantized) {
  144. tt->to_float(&buf[i], vq.data(), bs);
  145. tv.insert(tv.end(), vq.begin(), vq.end());
  146. } else {
  147. GGML_ABORT("fatal error");
  148. }
  149. }
  150. }
  151. }
  152. }
  153. return tv;
  154. }
  155. // normalized mean squared error = mse(a, b) / mse(a, 0)
  156. static double nmse(const float * a, const float * b, size_t n) {
  157. double mse_a_b = 0.0;
  158. double mse_a_0 = 0.0;
  159. for (size_t i = 0; i < n; i++) {
  160. float a_i = a[i];
  161. float b_i = b[i];
  162. mse_a_b += (a_i - b_i) * (a_i - b_i);
  163. mse_a_0 += a_i * a_i;
  164. }
  165. return mse_a_b / mse_a_0;
  166. }
  167. // maximum absolute asymmetry between a and b
  168. // asymmetry: (a - b) / (a + b)
  169. // This is more stable than relative error if one of the values fluctuates towards zero.
  170. // n: number of values to compare.
  171. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  172. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  173. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  174. double sum = 0.0f;
  175. size_t nvalid = 0;
  176. for (size_t i = 0; i < n; i++) {
  177. if (!expected_vals.empty()) {
  178. bool matches_any = false;
  179. for (const float & ev : expected_vals) {
  180. if (fabsf(a[i] - ev) < 1e-3f) {
  181. matches_any = true;
  182. break;
  183. }
  184. }
  185. if (!matches_any) {
  186. continue;
  187. }
  188. }
  189. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  190. sum += fabsf(asymm);
  191. nvalid++;
  192. }
  193. return sum/nvalid;
  194. }
  195. // utils for printing the variables of the test cases
  196. template<typename T>
  197. static std::string var_to_str(const T & x) {
  198. return std::to_string(x);
  199. }
  200. template<typename T, size_t N>
  201. static std::string var_to_str(const T (&x)[N]) {
  202. std::string s = "[";
  203. for (size_t i = 0; i < N; i++) {
  204. if (i > 0) {
  205. s += ",";
  206. }
  207. s += var_to_str(x[i]);
  208. }
  209. s += "]";
  210. return s;
  211. }
  212. template<typename T, size_t N>
  213. static std::string var_to_str(const std::array<T, N> & x) {
  214. std::string s = "[";
  215. for (size_t i = 0; i < N; i++) {
  216. if (i > 0) {
  217. s += ",";
  218. }
  219. s += var_to_str(x[i]);
  220. }
  221. s += "]";
  222. return s;
  223. }
  224. static std::string var_to_str(ggml_type type) {
  225. return ggml_type_name(type);
  226. }
  227. static std::string var_to_str(ggml_op_pool pool) {
  228. switch (pool) {
  229. case GGML_OP_POOL_AVG: return "avg";
  230. case GGML_OP_POOL_MAX: return "max";
  231. default: return std::to_string(pool);
  232. }
  233. }
  234. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  235. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  236. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  237. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  238. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  239. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  240. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  241. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  242. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  243. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  244. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  245. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  246. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  247. #ifdef GGML_USE_SYCL
  248. static bool inline _isinf(float f) {
  249. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  250. }
  251. #else
  252. static bool inline _isinf(float f) { return std::isinf(f); }
  253. #endif
  254. // accept FLT_MAX as infinity
  255. static bool isinf_or_max(float f) {
  256. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  257. }
  258. static bool ggml_is_view_op(enum ggml_op op) {
  259. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  260. }
  261. enum test_mode {
  262. MODE_TEST,
  263. MODE_PERF,
  264. MODE_GRAD,
  265. };
  266. struct test_case {
  267. virtual ~test_case() {}
  268. virtual std::string op_desc(ggml_tensor * t) {
  269. return ggml_op_desc(t);
  270. }
  271. virtual std::string vars() {
  272. return "";
  273. }
  274. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  275. virtual double max_nmse_err() {
  276. return 1e-7;
  277. }
  278. virtual double max_maa_err() {
  279. return 1e-4;
  280. }
  281. virtual float grad_eps() {
  282. return 1e-1f;
  283. }
  284. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  285. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  286. virtual bool grad_precise() {
  287. return false;
  288. }
  289. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  290. virtual int64_t grad_nmax() {
  291. return 10000;
  292. }
  293. // No effect if empty.
  294. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  295. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  296. virtual std::vector<float> grad_expect() {
  297. return {};
  298. }
  299. virtual void initialize_tensors(ggml_context * ctx) {
  300. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  301. init_tensor_uniform(t);
  302. }
  303. }
  304. virtual size_t op_size(ggml_tensor * t) {
  305. size_t size = ggml_nbytes(t);
  306. // add source tensors
  307. for (int i = 0; i < GGML_MAX_SRC; i++) {
  308. if (t->src[i] != NULL) {
  309. size += ggml_nbytes(t->src[i]);
  310. }
  311. }
  312. return size;
  313. }
  314. virtual uint64_t op_flops(ggml_tensor * t) {
  315. GGML_UNUSED(t);
  316. return 0;
  317. }
  318. ggml_cgraph * gf = nullptr;
  319. ggml_cgraph * gb = nullptr;
  320. static const int sentinel_size = 1024;
  321. test_mode mode;
  322. std::vector<ggml_tensor *> sentinels;
  323. void add_sentinel(ggml_context * ctx) {
  324. if (mode == MODE_PERF || mode == MODE_GRAD) {
  325. return;
  326. }
  327. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  328. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  329. sentinels.push_back(sentinel);
  330. }
  331. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  332. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  333. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  334. add_sentinel(ctx);
  335. return t;
  336. }
  337. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  338. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  339. add_sentinel(ctx);
  340. return t;
  341. }
  342. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  343. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  344. add_sentinel(ctx);
  345. return t;
  346. }
  347. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  348. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  349. add_sentinel(ctx);
  350. return t;
  351. }
  352. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  353. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  354. add_sentinel(ctx);
  355. return t;
  356. }
  357. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  358. mode = MODE_TEST;
  359. ggml_init_params params = {
  360. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  361. /* .mem_base = */ NULL,
  362. /* .no_alloc = */ true,
  363. };
  364. ggml_context * ctx = ggml_init(params);
  365. GGML_ASSERT(ctx);
  366. gf = ggml_new_graph(ctx);
  367. // pre-graph sentinel
  368. add_sentinel(ctx);
  369. ggml_tensor * out = build_graph(ctx);
  370. if (op_name != nullptr && op_desc(out) != op_name) {
  371. //printf(" %s: skipping\n", op_desc(out).c_str());
  372. ggml_free(ctx);
  373. return true;
  374. }
  375. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  376. fflush(stdout);
  377. // check if the backends support the ops
  378. bool supported = true;
  379. for (ggml_backend_t backend : {backend1, backend2}) {
  380. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  381. if (!ggml_backend_supports_op(backend, t)) {
  382. printf("not supported [%s] ", ggml_backend_name(backend));
  383. supported = false;
  384. break;
  385. }
  386. }
  387. }
  388. if (!supported) {
  389. printf("\n");
  390. ggml_free(ctx);
  391. return true;
  392. }
  393. // post-graph sentinel
  394. add_sentinel(ctx);
  395. // allocate
  396. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  397. if (buf == NULL) {
  398. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  399. ggml_free(ctx);
  400. return false;
  401. }
  402. // build graph
  403. ggml_build_forward_expand(gf, out);
  404. // add sentinels as graph nodes so that they are checked in the callback
  405. for (ggml_tensor * sentinel : sentinels) {
  406. ggml_graph_add_node(gf, sentinel);
  407. }
  408. // randomize tensors
  409. initialize_tensors(ctx);
  410. // compare
  411. struct callback_userdata {
  412. bool ok;
  413. double max_err;
  414. ggml_backend_t backend1;
  415. ggml_backend_t backend2;
  416. };
  417. callback_userdata ud {
  418. true,
  419. max_nmse_err(),
  420. backend1,
  421. backend2
  422. };
  423. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  424. callback_userdata * ud = (callback_userdata *) user_data;
  425. const char * bn1 = ggml_backend_name(ud->backend1);
  426. const char * bn2 = ggml_backend_name(ud->backend2);
  427. if (t1->op == GGML_OP_NONE) {
  428. // sentinels must be unchanged
  429. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  430. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  431. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  432. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  433. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  434. printf("sentinel mismatch: %s ", t1->name);
  435. ud->ok = false;
  436. return true;
  437. }
  438. }
  439. std::vector<float> f1 = tensor_to_float(t1);
  440. std::vector<float> f2 = tensor_to_float(t2);
  441. for (size_t i = 0; i < f1.size(); i++) {
  442. // check for nans
  443. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  444. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  445. ud->ok = false;
  446. return true;
  447. }
  448. // check for infs: both must be inf of the same sign, or both must be finite
  449. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  450. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  451. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  452. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  453. ud->ok = false;
  454. return true;
  455. }
  456. } else {
  457. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. }
  462. }
  463. double err = nmse(f1.data(), f2.data(), f1.size());
  464. if (err > ud->max_err) {
  465. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  466. //for (int i = 0; i < (int) f1.size(); i++) {
  467. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  468. //}
  469. //printf("\n");
  470. //exit(1);
  471. ud->ok = false;
  472. }
  473. return true;
  474. GGML_UNUSED(index);
  475. };
  476. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  477. if (!cmp_ok) {
  478. printf("compare failed ");
  479. }
  480. ggml_backend_buffer_free(buf);
  481. ggml_free(ctx);
  482. if (ud.ok && cmp_ok) {
  483. printf("\033[1;32mOK\033[0m\n");
  484. return true;
  485. }
  486. printf("\033[1;31mFAIL\033[0m\n");
  487. return false;
  488. }
  489. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  490. mode = MODE_PERF;
  491. static const size_t graph_nodes = 8192;
  492. ggml_init_params params = {
  493. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  494. /* .mem_base = */ NULL,
  495. /* .no_alloc = */ true,
  496. };
  497. ggml_context * ctx = ggml_init(params);
  498. GGML_ASSERT(ctx);
  499. ggml_tensor * out = build_graph(ctx);
  500. if (op_name != nullptr && op_desc(out) != op_name) {
  501. //printf(" %s: skipping\n", op_desc(out).c_str());
  502. ggml_free(ctx);
  503. return true;
  504. }
  505. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  506. fflush(stdout);
  507. // check if backends support op
  508. if (!ggml_backend_supports_op(backend, out)) {
  509. printf("not supported\n");
  510. ggml_free(ctx);
  511. return true;
  512. }
  513. // align while also leaving some margin for variations in parameters
  514. int align = 8;
  515. int last = (len + align - 1) / align * align;
  516. if (last - len < 5) {
  517. last += align;
  518. }
  519. printf("%*s", last - len, "");
  520. // allocate
  521. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  522. if (buf == NULL) {
  523. printf("failed to allocate tensors\n");
  524. ggml_free(ctx);
  525. return false;
  526. }
  527. // randomize tensors
  528. initialize_tensors(ctx);
  529. // build graph
  530. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  531. ggml_build_forward_expand(gf, out);
  532. // warmup run
  533. ggml_backend_graph_compute(backend, gf);
  534. // determine number of runs
  535. int n_runs;
  536. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  537. if (op_flops(out) > 0) {
  538. // based on flops
  539. const uint64_t GFLOP = 1000 * 1000 * 1000;
  540. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  541. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  542. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  543. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  544. } else {
  545. // based on memory size
  546. const size_t GB = 1ULL << 30;
  547. const size_t target_size_cpu = 8 * GB;
  548. const size_t target_size_gpu = 32 * GB;
  549. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  550. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  551. }
  552. // duplicate the op
  553. for (int i = 1; i < n_runs; i++) {
  554. ggml_graph_add_node(gf, out);
  555. }
  556. // calculate memory
  557. size_t mem = n_runs * op_size(out);
  558. auto tensor_op_size = [](ggml_tensor * t) {
  559. size_t size = ggml_nbytes(t);
  560. // add source tensors
  561. for (int i = 0; i < GGML_MAX_SRC; i++) {
  562. if (t->src[i] != NULL) {
  563. size += ggml_nbytes(t->src[i]);
  564. }
  565. }
  566. return size;
  567. };
  568. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  569. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  570. continue;
  571. }
  572. mem += tensor_op_size(ggml_graph_node(gf, i));
  573. }
  574. // run
  575. int64_t total_time_us = 0;
  576. int64_t total_mem = 0;
  577. int total_runs = 0;
  578. do {
  579. int64_t start_time = ggml_time_us();
  580. ggml_backend_graph_compute(backend, gf);
  581. int64_t end_time = ggml_time_us();
  582. total_time_us += end_time - start_time;
  583. total_mem += mem;
  584. total_runs += n_runs;
  585. } while (total_time_us < 1000*1000); // run for at least 1 second
  586. printf(" %8d runs - %8.2f us/run - ",
  587. total_runs,
  588. (double)total_time_us / total_runs);
  589. if (op_flops(out) > 0) {
  590. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  591. auto format_flops = [](double flops) -> std::string {
  592. char buf[256];
  593. if (flops >= 1e12) {
  594. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  595. } else if (flops >= 1e9) {
  596. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  597. } else if (flops >= 1e6) {
  598. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  599. } else {
  600. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  601. }
  602. return buf;
  603. };
  604. printf("%s/run - \033[1;34m%sS\033[0m",
  605. format_flops(op_flops(out)).c_str(),
  606. format_flops(flops_per_sec).c_str());
  607. } else {
  608. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  609. op_size(out) / 1024,
  610. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  611. }
  612. printf("\n");
  613. ggml_backend_buffer_free(buf);
  614. ggml_free(ctx);
  615. return true;
  616. }
  617. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  618. mode = MODE_GRAD;
  619. const std::vector<float> expect = grad_expect();
  620. ggml_init_params params = {
  621. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  622. /* .mem_base = */ NULL,
  623. /* .no_alloc = */ true,
  624. };
  625. ggml_context * ctx = ggml_init(params);
  626. GGML_ASSERT(ctx);
  627. gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
  628. gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
  629. ggml_tensor * out = build_graph(ctx);
  630. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  631. //printf(" %s: skipping\n", op_desc(out).c_str());
  632. ggml_free(ctx);
  633. return true;
  634. }
  635. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  636. fflush(stdout);
  637. if (out->type != GGML_TYPE_F32) {
  638. ggml_free(ctx);
  639. printf("not supported [%s->type != FP32]\n", out->name);
  640. return true;
  641. }
  642. // check if the backend supports the ops
  643. bool supported = true;
  644. bool any_params = false;
  645. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  646. if (!ggml_backend_supports_op(backend, t)) {
  647. printf("not supported [%s] ", ggml_backend_name(backend));
  648. supported = false;
  649. break;
  650. }
  651. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  652. any_params = true;
  653. if (t->type != GGML_TYPE_F32) {
  654. printf("not supported [%s->type != FP32] ", t->name);
  655. supported = false;
  656. break;
  657. }
  658. }
  659. }
  660. if (!any_params) {
  661. printf("not supported [%s] \n", op_desc(out).c_str());
  662. supported = false;
  663. }
  664. if (!supported) {
  665. printf("\n");
  666. ggml_free(ctx);
  667. return true;
  668. }
  669. int64_t ngrads = 0;
  670. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  671. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  672. ngrads += ggml_nelements(t);
  673. }
  674. }
  675. if (ngrads > grad_nmax()) {
  676. printf("skipping large tensors for speed \n");
  677. ggml_free(ctx);
  678. return true;
  679. }
  680. if (!ggml_is_scalar(out)) {
  681. out = ggml_sum(ctx, out);
  682. ggml_set_name(out, "sum_of_out");
  683. }
  684. ggml_set_loss(out);
  685. ggml_build_forward_expand(gf, out);
  686. ggml_graph_cpy(gf, gb);
  687. ggml_build_backward_expand(ctx, ctx, gb, false);
  688. if (expect.size() != 1 || expect[0] != 0.0f) {
  689. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  690. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  691. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  692. }
  693. }
  694. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  695. if (!ggml_backend_supports_op(backend, t)) {
  696. printf("not supported [%s] ", ggml_backend_name(backend));
  697. supported = false;
  698. break;
  699. }
  700. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  701. printf("not supported [%s->type != FP32] ", t->name);
  702. supported = false;
  703. break;
  704. }
  705. }
  706. if (!supported) {
  707. printf("\n");
  708. ggml_free(ctx);
  709. return true;
  710. }
  711. // allocate
  712. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  713. if (buf == NULL) {
  714. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  715. ggml_free(ctx);
  716. return false;
  717. }
  718. initialize_tensors(ctx); // Randomizes all tensors (including gradients).
  719. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  720. ggml_backend_graph_compute(backend, gf);
  721. ggml_backend_graph_compute(backend, gb);
  722. bool ok = true;
  723. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  724. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  725. continue;
  726. }
  727. const char * bn = ggml_backend_name(backend);
  728. const int64_t ne = ggml_nelements(t);
  729. std::vector<float> ga;
  730. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  731. if (grad) {
  732. ga = tensor_to_float(grad);
  733. } else {
  734. ga.resize(ne); // default value is 0.0f
  735. }
  736. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  737. // check for nans
  738. if (!std::isfinite(ga[i])) {
  739. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  740. ok = false;
  741. break;
  742. }
  743. }
  744. if (!ok) {
  745. break;
  746. }
  747. std::vector<float> gn(ne); // gradient numeric
  748. GGML_ASSERT(ga.size() == gn.size());
  749. std::vector<float> x0 = tensor_to_float(t); // original t data
  750. GGML_ASSERT(ggml_is_scalar(out));
  751. GGML_ASSERT(out->type == GGML_TYPE_F32);
  752. const float eps = grad_eps();
  753. for (int64_t i = 0; i < ne; ++i) {
  754. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  755. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  756. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  757. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  758. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  759. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  760. ggml_backend_graph_compute(backend, gf);
  761. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  762. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  763. ggml_backend_graph_compute(backend, gf);
  764. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  765. if (grad_precise()) {
  766. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  767. ggml_backend_graph_compute(backend, gf);
  768. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  769. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  770. ggml_backend_graph_compute(backend, gf);
  771. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  772. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  773. } else {
  774. gn[i] = (fu - fd) / (2.0f*eps);
  775. }
  776. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  777. }
  778. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  779. if (err > max_maa_err()) {
  780. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  781. ok = false;
  782. break;
  783. }
  784. if (!ok) {
  785. break;
  786. }
  787. }
  788. if (!ok) {
  789. printf("compare failed ");
  790. }
  791. ggml_backend_buffer_free(buf);
  792. ggml_free(ctx);
  793. if (ok) {
  794. printf("\033[1;32mOK\033[0m\n");
  795. return true;
  796. }
  797. printf("\033[1;31mFAIL\033[0m\n");
  798. return false;
  799. }
  800. };
  801. // ###################################
  802. // ## Section 2: GGML Op Defintions ##
  803. // ###################################
  804. // The following is an example showing the bare minimum for creating a test for a GGML op.
  805. // GGML_OP_EXAMPLE
  806. struct test_example : public test_case {
  807. // Always define these 2 or variants thereof:
  808. const ggml_type type; // The type of the input tensors.
  809. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  810. // For some ops it's necessary to define multiple types or shapes for the inputs.
  811. // Or they may need additional parameters.
  812. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  813. // In most cases these are just the properties of the struct that you defined above.
  814. // This is needed for info prints.
  815. std::string vars() override {
  816. return VARS_TO_STR2(type, ne);
  817. }
  818. // Define a constructor for the struct.
  819. // In most cases it will be sufficient to have the same arguments as the struct has properties
  820. // and just use initializer lists.
  821. test_example(ggml_type type = GGML_TYPE_F32,
  822. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  823. : type(type), ne(ne) {}
  824. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  825. ggml_tensor * build_graph(ggml_context * ctx) override {
  826. // Step 1: create input tensors that don't depend on any other tensors:
  827. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  828. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  829. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  830. ggml_set_name(b, "b");
  831. // Step 2: use the op that you want to test in the GGML compute graph.
  832. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  833. ggml_set_name(out, "out");
  834. // Step 3: return the output tensor.
  835. return out;
  836. }
  837. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  838. // immediately after you create the tensors.
  839. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  840. };
  841. // GGML_OP_UNARY
  842. struct test_unary : public test_case {
  843. const ggml_unary_op op;
  844. const ggml_type type;
  845. const std::array<int64_t, 4> ne_a;
  846. int v; // view (1 : non-contiguous a)
  847. std::string vars() override {
  848. return VARS_TO_STR3(type, ne_a, v);
  849. }
  850. test_unary(ggml_unary_op op,
  851. ggml_type type = GGML_TYPE_F32,
  852. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  853. int v = 0)
  854. : op(op), type(type), ne_a(ne_a), v(v) {}
  855. ggml_tensor * build_graph(ggml_context * ctx) override {
  856. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  857. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  858. ggml_tensor * a;
  859. if (v & 1) {
  860. auto ne = ne_a; ne[0] *= 3;
  861. a = ggml_new_tensor(ctx, type, 4, ne.data());
  862. if (grad_supported) {
  863. ggml_set_param(ctx, a);
  864. }
  865. ggml_set_name(a, "a");
  866. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  867. ggml_set_name(a, "view_of_a");
  868. } else {
  869. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  870. if (grad_supported) {
  871. ggml_set_param(ctx, a);
  872. }
  873. ggml_set_name(a, "a");
  874. }
  875. ggml_tensor * out = ggml_unary(ctx, a, op);
  876. ggml_set_name(out, "out");
  877. return out;
  878. }
  879. void initialize_tensors(ggml_context * ctx) override {
  880. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  881. // test extended range of values to check for NaNs in GELU
  882. init_tensor_uniform(t, -150.f, 150.f);
  883. }
  884. }
  885. float grad_eps() override {
  886. return 15.0f;
  887. }
  888. std::vector<float> grad_expect() override {
  889. if (op == GGML_UNARY_OP_ABS) {
  890. return {-1.0f, 1.0f};
  891. }
  892. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  893. return {0.0f};
  894. }
  895. if (op == GGML_UNARY_OP_RELU) {
  896. return {0.0f, 1.0f};
  897. }
  898. return {};
  899. }
  900. };
  901. // GGML_OP_GET_ROWS
  902. struct test_get_rows : public test_case {
  903. const ggml_type type;
  904. const int n; // cols
  905. const int m; // rows
  906. const int r; // rows to get
  907. const int b; // batch size
  908. const bool v; // view (non-contiguous src1)
  909. std::string vars() override {
  910. return VARS_TO_STR6(type, n, m, r, b, v);
  911. }
  912. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  913. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  914. ggml_tensor * build_graph(ggml_context * ctx) override {
  915. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  916. ggml_set_name(in, "in");
  917. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  918. ggml_set_name(rows, "rows");
  919. if (v) {
  920. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  921. ggml_set_name(rows, "view_of_rows");
  922. }
  923. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  924. if (grad_supported) {
  925. ggml_set_param(ctx, in);
  926. // rows is a constant input -> no gradients
  927. }
  928. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  929. ggml_set_name(out, "out");
  930. return out;
  931. }
  932. void initialize_tensors(ggml_context * ctx) override {
  933. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  934. if (t->type == GGML_TYPE_I32) {
  935. if (ggml_is_view_op(t->op)) { continue; }
  936. // rows
  937. std::vector<int> data(r*b);
  938. for (int i = 0; i < r*b; i++) {
  939. data[i] = rand() % m;
  940. }
  941. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  942. } else {
  943. init_tensor_uniform(t);
  944. }
  945. }
  946. }
  947. };
  948. // GGML_OP_GET_ROWS_BACK
  949. struct test_get_rows_back : public test_case {
  950. const ggml_type type;
  951. const int n; // cols
  952. const int m; // rows
  953. const int r; // rows to get
  954. const int b; // batch size
  955. const bool v; // view (non-contiguous src1)
  956. std::string vars() override {
  957. return VARS_TO_STR6(type, n, m, r, b, v);
  958. }
  959. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  960. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  961. ggml_tensor * build_graph(ggml_context * ctx) override {
  962. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  963. ggml_set_name(in_forward, "in_forward");
  964. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  965. ggml_set_name(rows, "rows");
  966. if (v) {
  967. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  968. ggml_set_name(rows, "view_of_rows");
  969. }
  970. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  971. ggml_set_name(grad, "grad");
  972. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  973. ggml_set_name(out, "out");
  974. return out;
  975. }
  976. void initialize_tensors(ggml_context * ctx) override {
  977. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  978. if (t->type == GGML_TYPE_I32) {
  979. if (ggml_is_view_op(t->op)) { continue; }
  980. // rows
  981. std::vector<int> data(r*b);
  982. for (int i = 0; i < r*b; i++) {
  983. data[i] = rand() % m;
  984. }
  985. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  986. } else {
  987. init_tensor_uniform(t);
  988. }
  989. }
  990. }
  991. };
  992. // GGML_OP_ARGMAX
  993. struct test_argmax : public test_case {
  994. const ggml_type type;
  995. const std::array<int64_t, 4> ne;
  996. std::string vars() override {
  997. return VARS_TO_STR2(type, ne);
  998. }
  999. test_argmax(ggml_type type = GGML_TYPE_F32,
  1000. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1001. : type(type), ne(ne) {}
  1002. ggml_tensor * build_graph(ggml_context * ctx) override {
  1003. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1004. ggml_set_name(a, "a");
  1005. ggml_tensor * out = ggml_argmax(ctx, a);
  1006. ggml_set_name(out, "out");
  1007. return out;
  1008. }
  1009. void initialize_tensors(ggml_context * ctx) override {
  1010. std::random_device rd;
  1011. std::default_random_engine rng(rd());
  1012. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1013. if (t->type == GGML_TYPE_F32) {
  1014. // initialize with unique values to avoid ties
  1015. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1016. std::vector<float> data(t->ne[0]);
  1017. for (int i = 0; i < t->ne[0]; i++) {
  1018. data[i] = i;
  1019. }
  1020. std::shuffle(data.begin(), data.end(), rng);
  1021. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1022. }
  1023. } else {
  1024. init_tensor_uniform(t);
  1025. }
  1026. }
  1027. }
  1028. double max_nmse_err() override {
  1029. return 0.0;
  1030. }
  1031. };
  1032. // GGML_OP_COUNT_EQUAL
  1033. struct test_count_equal : public test_case {
  1034. const ggml_type type;
  1035. const std::array<int64_t, 4> ne;
  1036. std::string vars() override {
  1037. return VARS_TO_STR2(type, ne);
  1038. }
  1039. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1040. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1041. : type(type), ne(ne) {}
  1042. ggml_tensor * build_graph(ggml_context * ctx) override {
  1043. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1044. ggml_set_name(a, "a");
  1045. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1046. ggml_set_name(a_argmax, "a_argmax");
  1047. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1048. ggml_set_name(b, "b");
  1049. ggml_tensor * b_argmax = ggml_argmax(ctx, a);
  1050. ggml_set_name(b_argmax, "b_argmax");
  1051. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1052. ggml_set_name(out, "out");
  1053. return out;
  1054. }
  1055. double max_nmse_err() override {
  1056. return 0.0;
  1057. }
  1058. };
  1059. // GGML_OP_REPEAT
  1060. struct test_repeat : public test_case {
  1061. const ggml_type type;
  1062. const std::array<int64_t, 4> ne;
  1063. const std::array<int, 4> nr;
  1064. std::string vars() override {
  1065. return VARS_TO_STR3(type, ne, nr);
  1066. }
  1067. size_t op_size(ggml_tensor * t) override {
  1068. return ggml_nbytes(t) * 2;
  1069. }
  1070. test_repeat(ggml_type type = GGML_TYPE_F32,
  1071. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1072. std::array<int, 4> nr = {2, 2, 2, 2})
  1073. : type(type), ne(ne), nr(nr) {}
  1074. ggml_tensor * build_graph(ggml_context * ctx) override {
  1075. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1076. ggml_set_name(target, "target");
  1077. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1078. ggml_set_param(ctx, src);
  1079. ggml_set_name(src, "src");
  1080. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1081. ggml_set_name(out, "out");
  1082. return out;
  1083. }
  1084. };
  1085. // GGML_OP_REPEAT_BACK
  1086. struct test_repeat_back : public test_case {
  1087. const ggml_type type;
  1088. const std::array<int64_t, 4> ne;
  1089. const std::array<int, 4> nr;
  1090. const bool v; // whether src is a noncontiguous view
  1091. std::string vars() override {
  1092. return VARS_TO_STR4(type, ne, nr, v);
  1093. }
  1094. size_t op_size(ggml_tensor * t) override {
  1095. return ggml_nbytes(t) * 2;
  1096. }
  1097. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1098. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1099. std::array<int, 4> nr = {2, 2, 2, 2},
  1100. bool v = false)
  1101. : type(type), ne(ne), nr(nr), v(v) {}
  1102. ggml_tensor * build_graph(ggml_context * ctx) override {
  1103. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1104. ggml_set_name(src, "src");
  1105. if (v) {
  1106. GGML_ASSERT(ne[0] % 2 == 0);
  1107. GGML_ASSERT(ne[1] % 2 == 0);
  1108. GGML_ASSERT(ne[2] % 2 == 0);
  1109. GGML_ASSERT(ne[3] % 2 == 0);
  1110. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1111. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1112. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1113. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1114. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1115. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1116. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1117. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1118. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1119. }
  1120. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1121. ggml_set_name(target, "target");
  1122. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1123. ggml_set_name(out, "out");
  1124. return out;
  1125. }
  1126. };
  1127. // GGML_OP_DUP
  1128. struct test_dup : public test_case {
  1129. const ggml_type type;
  1130. const std::array<int64_t, 4> ne;
  1131. const std::array<int64_t, 4> permute;
  1132. bool _use_permute;
  1133. std::string vars() override {
  1134. std::string v = VARS_TO_STR2(type, ne);
  1135. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1136. return v;
  1137. }
  1138. test_dup(ggml_type type = GGML_TYPE_F32,
  1139. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1140. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1141. : type(type), ne(ne), permute(permute),
  1142. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1143. ggml_tensor * build_graph(ggml_context * ctx) override {
  1144. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1145. ggml_set_param(ctx, src);
  1146. ggml_set_name(src, "src");
  1147. if (_use_permute) {
  1148. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1149. ggml_set_name(src, "src_permuted");
  1150. }
  1151. ggml_tensor * out = ggml_dup(ctx, src);
  1152. ggml_set_name(out, "out");
  1153. return out;
  1154. }
  1155. };
  1156. // GGML_OP_SET
  1157. struct test_set : public test_case {
  1158. const ggml_type type_src;
  1159. const ggml_type type_dst;
  1160. const std::array<int64_t, 4> ne;
  1161. const int dim;
  1162. std::string vars() override {
  1163. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1164. }
  1165. size_t op_size(ggml_tensor * t) override {
  1166. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1167. }
  1168. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1169. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1170. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1171. ggml_tensor * build_graph(ggml_context * ctx) override {
  1172. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1173. ggml_set_param(ctx, src);
  1174. ggml_set_name(src, "src");
  1175. auto ne_dst = ne;
  1176. for (int i = 0; i < dim; ++i) {
  1177. ne_dst[i] *= 2;
  1178. }
  1179. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1180. ggml_set_param(ctx, dst);
  1181. ggml_set_name(dst, "dst");
  1182. size_t offset = 0;
  1183. for (int i = 0; i < dim; ++i) {
  1184. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1185. }
  1186. ggml_tensor * out = ggml_set(ctx, dst, src,
  1187. // The backward pass requires setting a contiguous region:
  1188. src->nb[1], src->nb[2], src->nb[3], offset);
  1189. ggml_set_name(out, "out");
  1190. return out;
  1191. }
  1192. };
  1193. // GGML_OP_CPY
  1194. struct test_cpy : public test_case {
  1195. const ggml_type type_src;
  1196. const ggml_type type_dst;
  1197. const std::array<int64_t, 4> ne;
  1198. const std::array<int64_t, 4> permute;
  1199. bool _src_use_permute;
  1200. std::string vars() override {
  1201. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1202. }
  1203. double max_nmse_err() override {
  1204. return 1e-6;
  1205. }
  1206. size_t op_size(ggml_tensor * t) override {
  1207. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1208. }
  1209. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1210. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1211. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1212. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1213. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1214. ggml_tensor * build_graph(ggml_context * ctx) override {
  1215. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1216. ggml_set_param(ctx, src);
  1217. ggml_set_name(src, "src");
  1218. if (_src_use_permute) {
  1219. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1220. ggml_set_name(src, "src_permuted");
  1221. }
  1222. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1223. ggml_set_name(dst, "dst");
  1224. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1225. ggml_set_name(out, "out");
  1226. return out;
  1227. }
  1228. };
  1229. // GGML_OP_CONT
  1230. struct test_cont : public test_case {
  1231. const ggml_type type;
  1232. const std::array<int64_t, 4> ne;
  1233. std::string vars() override {
  1234. return VARS_TO_STR2(type, ne);
  1235. }
  1236. test_cont(ggml_type type = GGML_TYPE_F32,
  1237. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1238. : type(type), ne(ne) {}
  1239. ggml_tensor * build_graph(ggml_context * ctx) override {
  1240. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1241. ggml_set_param(ctx, src);
  1242. ggml_set_name(src, "src");
  1243. src = ggml_transpose(ctx, src);
  1244. ggml_set_name(src, "src_transposed");
  1245. ggml_tensor * out = ggml_cont(ctx, src);
  1246. ggml_set_name(out, "out");
  1247. return out;
  1248. }
  1249. };
  1250. // GGML_OP_ADD
  1251. // GGML_OP_MUL
  1252. // GGML_OP_DIV
  1253. struct test_bin_bcast : public test_case {
  1254. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1255. op_t op;
  1256. const ggml_type type;
  1257. const std::array<int64_t, 4> ne;
  1258. const std::array<int, 4> nr;
  1259. std::string vars() override {
  1260. return VARS_TO_STR3(type, ne, nr);
  1261. }
  1262. size_t op_size(ggml_tensor * t) override {
  1263. return ggml_nbytes(t) * 3;
  1264. }
  1265. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1266. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1267. std::array<int, 4> nr = {1, 2, 1, 1})
  1268. : op(op), type(type), ne(ne), nr(nr) {}
  1269. ggml_tensor * build_graph(ggml_context * ctx) override {
  1270. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1271. ggml_set_name(a, "a");
  1272. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1273. ggml_set_name(b, "b");
  1274. // The backward pass supports broadcasting only for GGML_ADD:
  1275. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1276. if (grad_supported) {
  1277. ggml_set_param(ctx, a);
  1278. ggml_set_param(ctx, b);
  1279. }
  1280. ggml_tensor * out = op(ctx, a, b);
  1281. ggml_set_name(out, "out");
  1282. return out;
  1283. }
  1284. void initialize_tensors(ggml_context * ctx) override {
  1285. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1286. if (op == ggml_mul || op == ggml_div) {
  1287. // MUL and DIV have numerical issues around zero:
  1288. init_tensor_uniform(t, 0.9f, 1.1f);
  1289. } else {
  1290. init_tensor_uniform(t);
  1291. }
  1292. }
  1293. }
  1294. float grad_eps() override {
  1295. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1296. }
  1297. bool grad_precise() override {
  1298. return op == ggml_div;
  1299. }
  1300. double max_maa_err() override {
  1301. return op == ggml_add ? 1e-4 : 1e-3;
  1302. }
  1303. };
  1304. // GGML_OP_ADD1
  1305. struct test_add1 : public test_case {
  1306. const ggml_type type;
  1307. const std::array<int64_t, 4> ne;
  1308. std::string vars() override {
  1309. return VARS_TO_STR2(type, ne);
  1310. }
  1311. test_add1(ggml_type type = GGML_TYPE_F32,
  1312. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1313. : type(type), ne(ne) {}
  1314. ggml_tensor * build_graph(ggml_context * ctx) override {
  1315. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1316. ggml_set_param(ctx, a);
  1317. ggml_set_name(a, "a");
  1318. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1319. // ggml_set_param(ctx, b); // TODO: implement
  1320. ggml_set_name(b, "b");
  1321. ggml_tensor * out = ggml_add1(ctx, a, b);
  1322. ggml_set_name(out, "out");
  1323. return out;
  1324. }
  1325. float grad_eps() override {
  1326. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1327. }
  1328. };
  1329. // GGML_OP_SCALE
  1330. struct test_scale : public test_case {
  1331. const ggml_type type;
  1332. const std::array<int64_t, 4> ne;
  1333. float scale;
  1334. std::string vars() override {
  1335. return VARS_TO_STR3(type, ne, scale);
  1336. }
  1337. test_scale(ggml_type type = GGML_TYPE_F32,
  1338. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1339. float scale = 2.0f)
  1340. : type(type), ne(ne), scale(scale) {}
  1341. ggml_tensor * build_graph(ggml_context * ctx) override {
  1342. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1343. ggml_set_param(ctx, a);
  1344. ggml_set_name(a, "a");
  1345. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1346. ggml_set_name(out, "out");
  1347. return out;
  1348. }
  1349. };
  1350. // GGML_OP_SILU_BACK
  1351. struct test_silu_back : public test_case {
  1352. const ggml_type type;
  1353. const std::array<int64_t, 4> ne;
  1354. float eps;
  1355. std::string vars() override {
  1356. return VARS_TO_STR3(type, ne, eps);
  1357. }
  1358. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1359. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1360. float eps = 1e-6f)
  1361. : type(type), ne(ne), eps(eps) {}
  1362. ggml_tensor * build_graph(ggml_context * ctx) override {
  1363. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1364. ggml_set_name(a, "a");
  1365. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1366. ggml_set_name(grad, "grad");
  1367. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1368. ggml_set_name(out, "out");
  1369. return out;
  1370. }
  1371. bool grad_precise() override {
  1372. return true;
  1373. }
  1374. };
  1375. // GGML_OP_NORM
  1376. struct test_norm : public test_case {
  1377. const ggml_type type;
  1378. const std::array<int64_t, 4> ne;
  1379. float eps;
  1380. std::string vars() override {
  1381. return VARS_TO_STR3(type, ne, eps);
  1382. }
  1383. test_norm(ggml_type type = GGML_TYPE_F32,
  1384. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1385. float eps = 1e-6f)
  1386. : type(type), ne(ne), eps(eps) {}
  1387. ggml_tensor * build_graph(ggml_context * ctx) override {
  1388. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1389. ggml_set_name(a, "a");
  1390. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1391. ggml_set_name(out, "out");
  1392. return out;
  1393. }
  1394. };
  1395. // GGML_OP_RMS_NORM
  1396. struct test_rms_norm : public test_case {
  1397. const ggml_type type;
  1398. const std::array<int64_t, 4> ne;
  1399. float eps;
  1400. std::string vars() override {
  1401. return VARS_TO_STR3(type, ne, eps);
  1402. }
  1403. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1404. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1405. float eps = 1e-6f)
  1406. : type(type), ne(ne), eps(eps) {}
  1407. ggml_tensor * build_graph(ggml_context * ctx) override {
  1408. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1409. ggml_set_param(ctx, a);
  1410. ggml_set_name(a, "a");
  1411. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1412. ggml_set_name(out, "out");
  1413. return out;
  1414. }
  1415. void initialize_tensors(ggml_context * ctx) override {
  1416. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1417. init_tensor_uniform(t, -10.f, 10.f);
  1418. }
  1419. }
  1420. float grad_eps() override {
  1421. return 1.0f;
  1422. }
  1423. bool grad_precise() override {
  1424. return true;
  1425. }
  1426. };
  1427. // GGML_OP_RMS_NORM_BACK
  1428. struct test_rms_norm_back : public test_case {
  1429. const ggml_type type;
  1430. const std::array<int64_t, 4> ne;
  1431. float eps;
  1432. std::string vars() override {
  1433. return VARS_TO_STR3(type, ne, eps);
  1434. }
  1435. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1436. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1437. float eps = 1e-6f)
  1438. : type(type), ne(ne), eps(eps) {}
  1439. ggml_tensor * build_graph(ggml_context * ctx) override {
  1440. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1441. ggml_set_name(a, "a");
  1442. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1443. ggml_set_name(b, "b");
  1444. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1445. ggml_set_name(out, "out");
  1446. return out;
  1447. }
  1448. void initialize_tensors(ggml_context * ctx) override {
  1449. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1450. init_tensor_uniform(t, -10.f, 10.f);
  1451. }
  1452. }
  1453. };
  1454. // GGML_OP_SSM_CONV
  1455. struct test_ssm_conv : public test_case {
  1456. const ggml_type type;
  1457. const std::array<int64_t, 4> ne_a;
  1458. const std::array<int64_t, 4> ne_b;
  1459. std::string vars() override {
  1460. return VARS_TO_STR3(type, ne_a, ne_b);
  1461. }
  1462. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1463. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1464. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1465. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1466. ggml_tensor * build_graph(ggml_context * ctx) override {
  1467. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1468. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1469. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1470. return out;
  1471. }
  1472. };
  1473. // GGML_OP_SSM_SCAN
  1474. struct test_ssm_scan : public test_case {
  1475. const ggml_type type;
  1476. const int64_t d_state;
  1477. const int64_t d_inner;
  1478. const int64_t n_seq_tokens;
  1479. const int64_t n_seqs;
  1480. std::string vars() override {
  1481. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1482. }
  1483. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1484. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1485. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1486. ggml_tensor * build_graph(ggml_context * ctx) override {
  1487. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1488. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1489. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1490. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1491. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1492. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1493. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1494. return out;
  1495. }
  1496. };
  1497. // GGML_OP_RWKV_WKV6
  1498. struct test_rwkv_wkv6 : public test_case {
  1499. const ggml_type type;
  1500. const int64_t head_count;
  1501. const int64_t head_size;
  1502. const int64_t n_seq_tokens;
  1503. const int64_t n_seqs;
  1504. std::string vars() override {
  1505. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1506. }
  1507. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1508. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1509. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1510. ggml_tensor * build_graph(ggml_context * ctx) override {
  1511. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1512. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1513. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1514. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1515. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1516. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1517. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1518. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1519. return out;
  1520. }
  1521. };
  1522. // GGML_OP_GATED_LINEAR_ATTN
  1523. struct test_gla : public test_case {
  1524. const ggml_type type;
  1525. const int64_t head_count;
  1526. const int64_t head_size;
  1527. const int64_t n_seq_tokens;
  1528. const int64_t n_seqs;
  1529. std::string vars() override {
  1530. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1531. }
  1532. test_gla(ggml_type type = GGML_TYPE_F32,
  1533. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1534. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1535. ggml_tensor * build_graph(ggml_context * ctx) override {
  1536. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1537. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1538. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1539. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1540. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1541. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1542. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1543. return out;
  1544. }
  1545. };
  1546. // GGML_OP_MUL_MAT
  1547. struct test_mul_mat : public test_case {
  1548. const ggml_type type_a;
  1549. const ggml_type type_b;
  1550. const int64_t m;
  1551. const int64_t n;
  1552. const int64_t k;
  1553. const std::array<int64_t, 2> bs; // dims 3 and 4
  1554. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1555. const std::array<int64_t, 4> per; // permutation of dimensions
  1556. std::string vars() override {
  1557. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
  1558. }
  1559. double max_nmse_err() override {
  1560. return 5e-4;
  1561. }
  1562. int64_t grad_nmax() override {
  1563. return 20000;
  1564. }
  1565. uint64_t op_flops(ggml_tensor * t) override {
  1566. GGML_UNUSED(t);
  1567. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1568. }
  1569. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1570. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1571. std::array<int64_t, 2> bs = {10, 10},
  1572. std::array<int64_t, 2> nr = {2, 2},
  1573. std::array<int64_t, 4> per = {0, 1, 2, 3})
  1574. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
  1575. ggml_tensor * build_graph(ggml_context * ctx) override {
  1576. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1577. ggml_tensor * a;
  1578. ggml_tensor * b;
  1579. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1580. if (npermuted > 0) {
  1581. GGML_ASSERT(npermuted == 2);
  1582. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1583. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1584. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1585. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1586. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1587. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1588. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1589. if (!ggml_is_quantized(type_a)) {
  1590. if (bs[1] == 1 && nr[1] == 1) {
  1591. ggml_set_param(ctx, a);
  1592. }
  1593. ggml_set_param(ctx, b);
  1594. }
  1595. ggml_set_name(a, "a");
  1596. ggml_set_name(b, "b");
  1597. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1598. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1599. ggml_set_name(a, "a_permuted");
  1600. ggml_set_name(b, "b_permuted");
  1601. } else {
  1602. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1603. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1604. if (!ggml_is_quantized(type_a)) {
  1605. if (bs[1] == 1 && nr[1] == 1) {
  1606. ggml_set_param(ctx, a);
  1607. }
  1608. ggml_set_param(ctx, b);
  1609. }
  1610. ggml_set_name(a, "a");
  1611. ggml_set_name(b, "b");
  1612. }
  1613. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1614. ggml_set_name(out, "out");
  1615. return out;
  1616. }
  1617. };
  1618. // GGML_OP_MUL_MAT_ID
  1619. struct test_mul_mat_id : public test_case {
  1620. const ggml_type type_a;
  1621. const ggml_type type_b;
  1622. const int n_mats;
  1623. const int n_used;
  1624. const bool b; // brodcast b matrix
  1625. const int64_t m;
  1626. const int64_t n;
  1627. const int64_t k;
  1628. std::string vars() override {
  1629. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1630. }
  1631. double max_nmse_err() override {
  1632. return 5e-4;
  1633. }
  1634. uint64_t op_flops(ggml_tensor * t) override {
  1635. GGML_UNUSED(t);
  1636. return 2 * m * k * n * n_used;
  1637. }
  1638. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1639. int n_mats = 8, int n_used = 2, bool b = false,
  1640. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1641. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1642. m(m), n(n), k(k) {
  1643. GGML_ASSERT(n_used <= n_mats);
  1644. }
  1645. ggml_tensor * build_graph(ggml_context * ctx) override {
  1646. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1647. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1648. ggml_set_name(as, "as");
  1649. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1650. ggml_set_name(ids, "ids");
  1651. if (n_used != n_mats) {
  1652. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1653. ggml_set_name(ids, "view_of_ids");
  1654. }
  1655. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1656. ggml_set_name(b, "b");
  1657. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1658. ggml_set_name(out, "out");
  1659. return out;
  1660. }
  1661. void initialize_tensors(ggml_context * ctx) override {
  1662. std::random_device rd;
  1663. std::default_random_engine rng(rd());
  1664. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1665. if (t->type == GGML_TYPE_I32) {
  1666. if (ggml_is_view_op(t->op)) { continue; }
  1667. // ids
  1668. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1669. std::vector<int32_t> data(t->ne[0]);
  1670. for (int i = 0; i < t->ne[0]; i++) {
  1671. data[i] = i % n_mats;
  1672. }
  1673. std::shuffle(data.begin(), data.end(), rng);
  1674. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1675. }
  1676. } else {
  1677. init_tensor_uniform(t);
  1678. }
  1679. }
  1680. }
  1681. };
  1682. // GGML_OP_OUT_PROD
  1683. struct test_out_prod : public test_case {
  1684. const ggml_type type_a;
  1685. const ggml_type type_b;
  1686. const int64_t m;
  1687. const int64_t n;
  1688. const int64_t k;
  1689. const std::array<int64_t, 2> bs; // dims 3 and 4
  1690. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1691. const bool trans_b;
  1692. std::string vars() override {
  1693. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1694. }
  1695. double max_nmse_err() override {
  1696. return 5e-4;
  1697. }
  1698. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1699. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1700. std::array<int64_t, 2> bs = {10, 10},
  1701. std::array<int64_t, 2> nr = {2, 2},
  1702. bool trans_b = false)
  1703. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1704. ggml_tensor * build_graph(ggml_context * ctx) override {
  1705. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1706. ggml_set_name(a, "a");
  1707. ggml_tensor * b;
  1708. if (trans_b) {
  1709. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1710. b = ggml_transpose(ctx, b);
  1711. } else {
  1712. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1713. }
  1714. ggml_set_name(b, "b");
  1715. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1716. ggml_set_name(out, "out");
  1717. return out;
  1718. }
  1719. };
  1720. // GGML_OP_SQR
  1721. struct test_sqr : public test_case {
  1722. const ggml_type type;
  1723. const std::array<int64_t, 4> ne;
  1724. std::string vars() override {
  1725. return VARS_TO_STR2(type, ne);
  1726. }
  1727. test_sqr(ggml_type type = GGML_TYPE_F32,
  1728. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1729. : type(type), ne(ne) {}
  1730. ggml_tensor * build_graph(ggml_context * ctx) override {
  1731. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1732. ggml_set_param(ctx, a);
  1733. ggml_set_name(a, "a");
  1734. ggml_tensor * out = ggml_sqr(ctx, a);
  1735. ggml_set_name(out, "out");
  1736. return out;
  1737. }
  1738. float grad_eps() override {
  1739. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1740. }
  1741. };
  1742. // GGML_OP_SQRT
  1743. struct test_sqrt : public test_case {
  1744. const ggml_type type;
  1745. const std::array<int64_t, 4> ne;
  1746. std::string vars() override {
  1747. return VARS_TO_STR2(type, ne);
  1748. }
  1749. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1750. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1751. : type(type), ne(ne) {}
  1752. ggml_tensor * build_graph(ggml_context * ctx) override {
  1753. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1754. ggml_set_param(ctx, a);
  1755. ggml_set_name(a, "a");
  1756. ggml_tensor * out = ggml_sqrt(ctx, a);
  1757. ggml_set_name(out, "out");
  1758. return out;
  1759. }
  1760. void initialize_tensors(ggml_context * ctx) override {
  1761. // fill with positive values
  1762. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1763. init_tensor_uniform(t, 50.0f, 100.0f);
  1764. }
  1765. }
  1766. float grad_eps() override {
  1767. return 20.0f;
  1768. }
  1769. bool grad_precise() override {
  1770. return true;
  1771. }
  1772. };
  1773. // GGML_OP_LOG
  1774. struct test_log : public test_case {
  1775. const ggml_type type;
  1776. const std::array<int64_t, 4> ne;
  1777. std::string vars() override {
  1778. return VARS_TO_STR2(type, ne);
  1779. }
  1780. test_log(ggml_type type = GGML_TYPE_F32,
  1781. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1782. : type(type), ne(ne) {}
  1783. ggml_tensor * build_graph(ggml_context * ctx) override {
  1784. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1785. ggml_set_param(ctx, a);
  1786. ggml_set_name(a, "a");
  1787. ggml_tensor * out = ggml_log(ctx, a);
  1788. ggml_set_name(out, "out");
  1789. return out;
  1790. }
  1791. void initialize_tensors(ggml_context * ctx) override {
  1792. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1793. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1794. init_tensor_uniform(t, 0.9f, 1.1f);
  1795. }
  1796. }
  1797. bool grad_precise() override {
  1798. return true;
  1799. }
  1800. };
  1801. // GGML_OP_SIN
  1802. struct test_sin : public test_case {
  1803. const ggml_type type;
  1804. const std::array<int64_t, 4> ne;
  1805. std::string vars() override {
  1806. return VARS_TO_STR2(type, ne);
  1807. }
  1808. test_sin(ggml_type type = GGML_TYPE_F32,
  1809. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1810. : type(type), ne(ne) {}
  1811. ggml_tensor * build_graph(ggml_context * ctx) override {
  1812. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1813. ggml_set_param(ctx, a);
  1814. ggml_set_name(a, "a");
  1815. ggml_tensor * out = ggml_sin(ctx, a);
  1816. ggml_set_name(out, "out");
  1817. return out;
  1818. }
  1819. void initialize_tensors(ggml_context * ctx) override {
  1820. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1821. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1822. }
  1823. }
  1824. double max_maa_err() override {
  1825. return 1e-3;
  1826. }
  1827. float grad_eps() override {
  1828. return 0.2f;
  1829. }
  1830. bool grad_precise() override {
  1831. return true;
  1832. }
  1833. };
  1834. // GGML_OP_COS
  1835. struct test_cos : public test_case {
  1836. const ggml_type type;
  1837. const std::array<int64_t, 4> ne;
  1838. std::string vars() override {
  1839. return VARS_TO_STR2(type, ne);
  1840. }
  1841. test_cos(ggml_type type = GGML_TYPE_F32,
  1842. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1843. : type(type), ne(ne) {}
  1844. ggml_tensor * build_graph(ggml_context * ctx) override {
  1845. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1846. ggml_set_param(ctx, a);
  1847. ggml_set_name(a, "a");
  1848. ggml_tensor * out = ggml_cos(ctx, a);
  1849. ggml_set_name(out, "out");
  1850. return out;
  1851. }
  1852. void initialize_tensors(ggml_context * ctx) override {
  1853. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1854. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1855. }
  1856. }
  1857. double max_maa_err() override {
  1858. return 1e-3;
  1859. }
  1860. float grad_eps() override {
  1861. return 0.2f;
  1862. }
  1863. bool grad_precise() override {
  1864. return true;
  1865. }
  1866. };
  1867. // GGML_OP_CLAMP
  1868. struct test_clamp : public test_case {
  1869. const ggml_type type;
  1870. const std::array<int64_t, 4> ne;
  1871. float min;
  1872. float max;
  1873. std::string vars() override {
  1874. return VARS_TO_STR4(type, ne, min, max);
  1875. }
  1876. test_clamp(ggml_type type = GGML_TYPE_F32,
  1877. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1878. float min = -0.5f, float max = 0.5f)
  1879. : type(type), ne(ne), min(min), max(max) {}
  1880. ggml_tensor * build_graph(ggml_context * ctx) override {
  1881. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1882. ggml_set_name(a, "a");
  1883. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1884. ggml_set_name(out, "out");
  1885. return out;
  1886. }
  1887. float grad_eps() override {
  1888. return 1e-2f;
  1889. }
  1890. std::vector<float> grad_expect() override {
  1891. return {0.0f, 1.0f};
  1892. }
  1893. };
  1894. // GGML_OP_DIAG_MASK_INF
  1895. struct test_diag_mask_inf : public test_case {
  1896. const ggml_type type;
  1897. const std::array<int64_t, 4> ne;
  1898. const int n_past;
  1899. std::string vars() override {
  1900. return VARS_TO_STR3(type, ne, n_past);
  1901. }
  1902. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1903. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1904. int n_past = 5)
  1905. : type(type), ne(ne), n_past(n_past) {}
  1906. ggml_tensor * build_graph(ggml_context * ctx) override {
  1907. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1908. ggml_set_param(ctx, a);
  1909. ggml_set_name(a, "a");
  1910. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1911. ggml_set_name(out, "out");
  1912. return out;
  1913. }
  1914. };
  1915. // GGML_OP_SOFT_MAX
  1916. struct test_soft_max : public test_case {
  1917. const ggml_type type;
  1918. const std::array<int64_t, 4> ne;
  1919. const bool mask;
  1920. const ggml_type m_prec;
  1921. const float scale;
  1922. const float max_bias;
  1923. std::string vars() override {
  1924. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  1925. }
  1926. // the 1024 test with bias occasionally fails:
  1927. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  1928. virtual double max_nmse_err() override {
  1929. return 1e-6;
  1930. }
  1931. test_soft_max(ggml_type type = GGML_TYPE_F32,
  1932. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1933. bool mask = false,
  1934. ggml_type m_prec = GGML_TYPE_F32,
  1935. float scale = 1.0f,
  1936. float max_bias = 0.0f)
  1937. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  1938. ggml_tensor * build_graph(ggml_context * ctx) override {
  1939. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1940. ggml_set_param(ctx, a);
  1941. ggml_set_name(a, "a");
  1942. ggml_tensor * mask = nullptr;
  1943. if (this->mask) {
  1944. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  1945. ggml_set_name(mask, "mask");
  1946. }
  1947. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  1948. ggml_set_name(out, "out");
  1949. return out;
  1950. }
  1951. bool grad_precise() override {
  1952. return true;
  1953. }
  1954. };
  1955. // GGML_OP_SOFT_MAX_BACK
  1956. struct test_soft_max_back : public test_case {
  1957. const ggml_type type;
  1958. const std::array<int64_t, 4> ne;
  1959. const float scale;
  1960. const float max_bias;
  1961. std::string vars() override {
  1962. return VARS_TO_STR4(type, ne, scale, max_bias);
  1963. }
  1964. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  1965. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1966. float scale = 1.0f,
  1967. float max_bias = 0.0f)
  1968. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  1969. ggml_tensor * build_graph(ggml_context * ctx) override {
  1970. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1971. ggml_set_name(a, "a");
  1972. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1973. ggml_set_name(a, "a");
  1974. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  1975. ggml_set_name(out, "out");
  1976. return out;
  1977. }
  1978. };
  1979. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  1980. struct test_rope : public test_case {
  1981. const ggml_type type;
  1982. const std::array<int64_t, 4> ne_a;
  1983. int n_dims;
  1984. int mode;
  1985. int n_ctx; // used to generate positions
  1986. float fs; // freq_scale
  1987. float ef; // ext_factor
  1988. float af; // attn_factor
  1989. bool ff;
  1990. int v; // view (1 : non-contiguous a)
  1991. bool forward;
  1992. std::string vars() override {
  1993. // forward can be inferred from the op, does not need to be printed
  1994. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  1995. }
  1996. test_rope(ggml_type type = GGML_TYPE_F32,
  1997. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  1998. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  1999. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2000. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2001. ggml_tensor * build_graph(ggml_context * ctx) override {
  2002. ggml_tensor * a;
  2003. if (v & 1) {
  2004. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2005. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2006. if (forward) {
  2007. ggml_set_param(ctx, a);
  2008. }
  2009. ggml_set_name(a, "a");
  2010. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2011. ggml_set_name(a, "view_of_a");
  2012. } else {
  2013. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2014. if (forward) {
  2015. ggml_set_param(ctx, a);
  2016. }
  2017. ggml_set_name(a, "a");
  2018. }
  2019. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2020. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2021. ggml_tensor * pos;
  2022. if (is_mrope || is_vision) {
  2023. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2024. } else {
  2025. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2026. }
  2027. ggml_set_name(pos, "pos");
  2028. ggml_tensor * freq = nullptr;
  2029. if (ff) {
  2030. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2031. ggml_set_name(freq, "freq");
  2032. }
  2033. ggml_tensor * out;
  2034. if (is_mrope) {
  2035. if (is_vision) {
  2036. GGML_ASSERT(n_dims/4 > 0);
  2037. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2038. if (forward) {
  2039. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2040. } else {
  2041. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2042. }
  2043. } else {
  2044. GGML_ASSERT(n_dims/3 > 0);
  2045. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2046. if (forward) {
  2047. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2048. } else {
  2049. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2050. }
  2051. }
  2052. } else {
  2053. if (forward) {
  2054. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2055. } else {
  2056. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2057. }
  2058. }
  2059. ggml_set_name(out, "out");
  2060. return out;
  2061. }
  2062. void initialize_tensors(ggml_context * ctx) override {
  2063. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2064. if (t->type == GGML_TYPE_I32) {
  2065. // pos
  2066. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2067. std::vector<int> data(num_pos_ids);
  2068. for (int i = 0; i < num_pos_ids; i++) {
  2069. data[i] = rand() % n_ctx;
  2070. }
  2071. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2072. } else {
  2073. if (t->ne[0] == n_dims/2) {
  2074. // frequency factors in the range [0.9f, 1.1f]
  2075. init_tensor_uniform(t, 0.9f, 1.1f);
  2076. } else {
  2077. init_tensor_uniform(t);
  2078. }
  2079. }
  2080. }
  2081. }
  2082. double max_maa_err() override {
  2083. return 1e-3;
  2084. }
  2085. bool grad_precise() override {
  2086. return true;
  2087. }
  2088. };
  2089. // GGML_OP_POOL2D
  2090. struct test_pool2d : public test_case {
  2091. enum ggml_op_pool pool_type;
  2092. const ggml_type type_input;
  2093. const std::array<int64_t, 4> ne_input;
  2094. // kernel size
  2095. const int k0;
  2096. const int k1;
  2097. // stride
  2098. const int s0;
  2099. const int s1;
  2100. // padding
  2101. const int p0;
  2102. const int p1;
  2103. std::string vars() override {
  2104. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2105. }
  2106. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2107. ggml_type type_input = GGML_TYPE_F32,
  2108. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2109. int k0 = 3, int k1 = 3,
  2110. int s0 = 1, int s1 = 1,
  2111. int p0 = 1, int p1 = 1)
  2112. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2113. ggml_tensor * build_graph(ggml_context * ctx) override {
  2114. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2115. ggml_set_param(ctx, input);
  2116. ggml_set_name(input, "input");
  2117. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2118. ggml_set_name(out, "out");
  2119. return out;
  2120. }
  2121. };
  2122. // GGML_OP_CONV_TRANSPOSE_1D
  2123. struct test_conv_transpose_1d : public test_case {
  2124. const std::array<int64_t, 4> ne_input;
  2125. const std::array<int64_t, 4> ne_kernel;
  2126. const int s0; // stride
  2127. const int p0; // padding
  2128. const int d0; // dilation
  2129. std::string vars() override {
  2130. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2131. }
  2132. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2133. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2134. int s0 = 1, int p0 = 0, int d0 = 1)
  2135. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2136. ggml_tensor * build_graph(ggml_context * ctx) override {
  2137. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2138. ggml_set_name(input, "input");
  2139. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2140. ggml_set_name(kernel, "kernel");
  2141. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2142. ggml_set_name(out, "out");
  2143. return out;
  2144. }
  2145. };
  2146. // GGML_OP_IM2COL
  2147. struct test_im2col : public test_case {
  2148. const ggml_type type_input;
  2149. const ggml_type type_kernel;
  2150. const ggml_type dst_type;
  2151. const std::array<int64_t, 4> ne_input;
  2152. const std::array<int64_t, 4> ne_kernel;
  2153. // stride
  2154. const int s0;
  2155. const int s1;
  2156. // padding
  2157. const int p0;
  2158. const int p1;
  2159. // dilation
  2160. const int d0;
  2161. const int d1;
  2162. // mode
  2163. const bool is_2D;
  2164. std::string vars() override {
  2165. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2166. }
  2167. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2168. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2169. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2170. int s0 = 1, int s1 = 1,
  2171. int p0 = 1, int p1 = 1,
  2172. int d0 = 1, int d1 = 1,
  2173. bool is_2D = true)
  2174. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2175. ggml_tensor * build_graph(ggml_context * ctx) override {
  2176. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2177. ggml_set_param(ctx, input);
  2178. ggml_set_name(input, "input");
  2179. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2180. ggml_set_name(kernel, "kernel");
  2181. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2182. ggml_set_name(out, "out");
  2183. return out;
  2184. }
  2185. };
  2186. // GGML_OP_CONCAT
  2187. struct test_concat : public test_case {
  2188. const ggml_type type;
  2189. const std::array<int64_t, 4> ne_a;
  2190. const int64_t ne_b_d;
  2191. const int dim;
  2192. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2193. std::string vars() override {
  2194. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2195. }
  2196. test_concat(ggml_type type = GGML_TYPE_F32,
  2197. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2198. int64_t ne_b_d = 5,
  2199. int dim = 2, int v = 0)
  2200. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2201. ggml_tensor * build_graph(ggml_context * ctx) override {
  2202. auto ne_b = ne_a;
  2203. ne_b[dim] = ne_b_d;
  2204. ggml_tensor * a;
  2205. if (v & 1) {
  2206. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2207. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2208. ggml_set_name(a, "a");
  2209. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2210. ggml_set_name(a, "view_of_a");
  2211. } else {
  2212. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2213. ggml_set_name(a, "a");
  2214. }
  2215. ggml_tensor * b;
  2216. if (v & 2) {
  2217. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2218. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2219. ggml_set_name(b, "b");
  2220. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2221. ggml_set_name(b, "view_of_b");
  2222. } else {
  2223. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2224. ggml_set_name(b, "b");
  2225. }
  2226. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2227. ggml_set_name(out, "out");
  2228. return out;
  2229. }
  2230. };
  2231. // GGML_OP_ARGSORT
  2232. struct test_argsort : public test_case {
  2233. const ggml_type type;
  2234. const std::array<int64_t, 4> ne;
  2235. ggml_sort_order order;
  2236. std::string vars() override {
  2237. return VARS_TO_STR3(type, ne, order);
  2238. }
  2239. test_argsort(ggml_type type = GGML_TYPE_F32,
  2240. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2241. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2242. : type(type), ne(ne), order(order) {}
  2243. ggml_tensor * build_graph(ggml_context * ctx) override {
  2244. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2245. ggml_set_name(a, "a");
  2246. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2247. ggml_set_name(out, "out");
  2248. return out;
  2249. }
  2250. void initialize_tensors(ggml_context * ctx) override {
  2251. std::random_device rd;
  2252. std::default_random_engine rng(rd());
  2253. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2254. if (t->type == GGML_TYPE_I32) {
  2255. // indices
  2256. std::vector<int> data(ggml_nelements(t));
  2257. for (int i = 0; i < ggml_nelements(t); i++) {
  2258. data[i] = rand();
  2259. }
  2260. std::shuffle(data.begin(), data.end(), rng);
  2261. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2262. } else if (t->type == GGML_TYPE_F32) {
  2263. // initialize with unique values to avoid ties
  2264. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2265. std::vector<float> data(t->ne[0]);
  2266. for (int i = 0; i < t->ne[0]; i++) {
  2267. data[i] = i;
  2268. }
  2269. std::shuffle(data.begin(), data.end(), rng);
  2270. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2271. }
  2272. } else {
  2273. GGML_ABORT("fatal error");
  2274. }
  2275. }
  2276. }
  2277. };
  2278. // GGML_OP_SUM
  2279. struct test_sum : public test_case {
  2280. const ggml_type type;
  2281. const std::array<int64_t, 4> ne;
  2282. std::string vars() override {
  2283. return VARS_TO_STR2(type, ne);
  2284. }
  2285. test_sum(ggml_type type = GGML_TYPE_F32,
  2286. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2287. : type(type), ne(ne) {}
  2288. ggml_tensor * build_graph(ggml_context * ctx) override {
  2289. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2290. ggml_set_param(ctx, a);
  2291. ggml_set_name(a, "a");
  2292. ggml_tensor * out = ggml_sum(ctx, a);
  2293. ggml_set_name(out, "out");
  2294. return out;
  2295. }
  2296. float grad_eps() override {
  2297. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2298. }
  2299. };
  2300. // GGML_OP_SUM_ROWS
  2301. struct test_sum_rows : public test_case {
  2302. const ggml_type type;
  2303. const std::array<int64_t, 4> ne;
  2304. std::string vars() override {
  2305. return VARS_TO_STR2(type, ne);
  2306. }
  2307. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2308. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2309. : type(type), ne(ne) {}
  2310. ggml_tensor * build_graph(ggml_context * ctx) override {
  2311. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2312. ggml_set_param(ctx, a);
  2313. ggml_set_name(a, "a");
  2314. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2315. ggml_set_name(out, "out");
  2316. return out;
  2317. }
  2318. };
  2319. // GGML_OP_MEAN
  2320. struct test_mean : public test_case {
  2321. const ggml_type type;
  2322. const std::array<int64_t, 4> ne;
  2323. std::string vars() override {
  2324. return VARS_TO_STR2(type, ne);
  2325. }
  2326. test_mean(ggml_type type = GGML_TYPE_F32,
  2327. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2328. : type(type), ne(ne) {}
  2329. ggml_tensor * build_graph(ggml_context * ctx) override {
  2330. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2331. ggml_set_param(ctx, a);
  2332. ggml_set_name(a, "a");
  2333. ggml_tensor * out = ggml_mean(ctx, a);
  2334. ggml_set_name(out, "out");
  2335. return out;
  2336. }
  2337. float grad_eps() override {
  2338. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2339. }
  2340. };
  2341. // GGML_OP_UPSCALE
  2342. struct test_upscale : public test_case {
  2343. const ggml_type type;
  2344. const std::array<int64_t, 4> ne;
  2345. const int32_t scale_factor;
  2346. const bool transpose;
  2347. std::string vars() override {
  2348. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2349. }
  2350. test_upscale(ggml_type type = GGML_TYPE_F32,
  2351. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2352. int32_t scale_factor = 2, bool transpose = false)
  2353. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2354. ggml_tensor * build_graph(ggml_context * ctx) override {
  2355. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2356. ggml_set_name(a, "a");
  2357. if (transpose) {
  2358. a = ggml_transpose(ctx, a);
  2359. ggml_set_name(a, "a_transposed");
  2360. }
  2361. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2362. ggml_set_name(out, "out");
  2363. return out;
  2364. }
  2365. };
  2366. // GGML_OP_UPSCALE (ext)
  2367. struct test_upscale_ext : public test_case {
  2368. const ggml_type type;
  2369. const std::array<int64_t, 4> ne;
  2370. const std::array<int64_t, 4> ne_tgt;
  2371. std::string vars() override {
  2372. return VARS_TO_STR3(type, ne, ne_tgt);
  2373. }
  2374. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2375. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2376. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2377. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2378. ggml_tensor * build_graph(ggml_context * ctx) override {
  2379. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2380. ggml_set_name(a, "a");
  2381. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2382. ggml_set_name(out, "out");
  2383. return out;
  2384. }
  2385. };
  2386. // GGML_OP_GROUP_NORM
  2387. struct test_group_norm : public test_case {
  2388. const ggml_type type;
  2389. const std::array<int64_t, 4> ne;
  2390. const int32_t num_groups;
  2391. const float eps;
  2392. std::string vars() override {
  2393. return VARS_TO_STR3(type, ne, num_groups);
  2394. }
  2395. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2396. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2397. int32_t num_groups = 32,
  2398. float eps = 1e-6f)
  2399. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2400. ggml_tensor * build_graph(ggml_context * ctx) override {
  2401. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2402. ggml_set_name(a, "a");
  2403. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2404. ggml_set_name(out, "out");
  2405. return out;
  2406. }
  2407. };
  2408. // GGML_OP_ACC
  2409. struct test_acc : public test_case {
  2410. const ggml_type type;
  2411. const std::array<int64_t, 4> ne_a;
  2412. const std::array<int64_t, 4> ne_b;
  2413. std::string vars() override {
  2414. return VARS_TO_STR3(type, ne_a, ne_b);
  2415. }
  2416. test_acc(ggml_type type = GGML_TYPE_F32,
  2417. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2418. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2419. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2420. ggml_tensor * build_graph(ggml_context * ctx) override {
  2421. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2422. ggml_set_param(ctx, a);
  2423. ggml_set_name(a, "a");
  2424. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2425. ggml_set_param(ctx, b);
  2426. ggml_set_name(b, "b");
  2427. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2428. ggml_set_name(out, "out");
  2429. return out;
  2430. }
  2431. };
  2432. // GGML_OP_PAD
  2433. struct test_pad : public test_case {
  2434. const ggml_type type;
  2435. const std::array<int64_t, 4> ne_a;
  2436. const int pad_0;
  2437. const int pad_1;
  2438. std::string vars() override {
  2439. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2440. }
  2441. test_pad(ggml_type type = GGML_TYPE_F32,
  2442. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2443. int pad_0 = 1, int pad_1 = 1)
  2444. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2445. ggml_tensor * build_graph(ggml_context * ctx) override {
  2446. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2447. ggml_set_name(a, "a");
  2448. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2449. ggml_set_name(out, "out");
  2450. return out;
  2451. }
  2452. };
  2453. // GGML_OP_PAD_REFLECT_1D
  2454. struct test_pad_reflect_1d : public test_case {
  2455. const ggml_type type;
  2456. const std::array<int64_t, 4> ne_a;
  2457. const int pad_0;
  2458. const int pad_1;
  2459. std::string vars() override {
  2460. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2461. }
  2462. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2463. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2464. int pad_0 = 10, int pad_1 = 9)
  2465. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2466. ggml_tensor * build_graph(ggml_context * ctx) override {
  2467. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2468. ggml_set_name(a, "a");
  2469. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2470. ggml_set_name(out, "out");
  2471. return out;
  2472. }
  2473. };
  2474. // GGML_OP_ARANGE
  2475. struct test_arange : public test_case {
  2476. const ggml_type type;
  2477. const float start;
  2478. const float stop;
  2479. const float step;
  2480. std::string vars() override {
  2481. return VARS_TO_STR4(type, start, stop, step);
  2482. }
  2483. test_arange(ggml_type type = GGML_TYPE_F32,
  2484. float start = 0.f, float stop = 10.f, float step = 1.f)
  2485. : type(type), start(start), stop(stop), step(step) {}
  2486. ggml_tensor * build_graph(ggml_context * ctx) override {
  2487. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2488. ggml_set_name(out, "out");
  2489. return out;
  2490. }
  2491. };
  2492. // GGML_OP_TIMESTEP_EMBEDDING
  2493. struct test_timestep_embedding : public test_case {
  2494. const ggml_type type;
  2495. const std::array<int64_t, 4> ne_a;
  2496. const int dim;
  2497. const int max_period;
  2498. std::string vars() override {
  2499. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2500. }
  2501. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2502. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2503. int dim = 320, int max_period=10000)
  2504. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2505. ggml_tensor * build_graph(ggml_context * ctx) override {
  2506. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2507. ggml_set_name(a, "a");
  2508. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2509. ggml_set_name(out, "out");
  2510. return out;
  2511. }
  2512. };
  2513. // GGML_OP_LEAKY_RELU
  2514. struct test_leaky_relu : public test_case {
  2515. const ggml_type type;
  2516. const std::array<int64_t, 4> ne_a;
  2517. const float negative_slope;
  2518. std::string vars() override {
  2519. return VARS_TO_STR3(type, ne_a, negative_slope);
  2520. }
  2521. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2522. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2523. float negative_slope = 0.1f)
  2524. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2525. ggml_tensor * build_graph(ggml_context * ctx) override {
  2526. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2527. ggml_set_name(a, "a");
  2528. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2529. ggml_set_name(out, "out");
  2530. return out;
  2531. }
  2532. };
  2533. // GGML_OP_FLASH_ATTN_EXT
  2534. struct test_flash_attn_ext : public test_case {
  2535. const int64_t hs; // head size
  2536. const int64_t nh; // num heads
  2537. const int64_t kv; // kv size
  2538. const int64_t nb; // batch size
  2539. const bool mask; // use mask
  2540. const float max_bias; // ALiBi
  2541. const float logit_softcap; // Gemma 2
  2542. const ggml_type type_KV;
  2543. std::array<int32_t, 4> permute;
  2544. std::string vars() override {
  2545. return VARS_TO_STR9(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV, permute);
  2546. }
  2547. double max_nmse_err() override {
  2548. return 5e-4;
  2549. }
  2550. uint64_t op_flops(ggml_tensor * t) override {
  2551. GGML_UNUSED(t);
  2552. // Just counting matmul costs:
  2553. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2554. return 2 * 2 * nh * nb * hs * kv;
  2555. }
  2556. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
  2557. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16,
  2558. std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2559. : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV), permute(permute) {}
  2560. ggml_tensor * build_graph(ggml_context * ctx) override {
  2561. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2562. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2563. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2564. int64_t ne_perm[4];
  2565. for (int i = 0; i < 4; ++i) {
  2566. ne_perm[permute[i]] = ne[i];
  2567. }
  2568. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2569. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2570. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2571. }
  2572. return t;
  2573. };
  2574. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh, 1);
  2575. ggml_set_name(q, "q");
  2576. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2577. ggml_set_name(k, "k");
  2578. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2579. ggml_set_name(v, "v");
  2580. ggml_tensor * m = nullptr;
  2581. if (mask) {
  2582. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2583. ggml_set_name(m, "m");
  2584. }
  2585. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2586. ggml_set_name(out, "out");
  2587. return out;
  2588. }
  2589. bool grad_precise() override {
  2590. return true;
  2591. }
  2592. };
  2593. // GGML_OP_CROSS_ENTROPY_LOSS
  2594. struct test_cross_entropy_loss : public test_case {
  2595. const ggml_type type;
  2596. const std::array<int64_t, 4> ne;
  2597. std::string vars() override {
  2598. return VARS_TO_STR2(type, ne);
  2599. }
  2600. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2601. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2602. : type(type), ne(ne) {}
  2603. ggml_tensor * build_graph(ggml_context * ctx) override {
  2604. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2605. ggml_set_param(ctx, logits);
  2606. ggml_set_name(logits, "logits");
  2607. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2608. // The labels are assumed to be constant -> no gradients.
  2609. ggml_set_name(labels, "labels");
  2610. // Ensure labels add up to 1:
  2611. labels = ggml_soft_max(ctx, labels);
  2612. ggml_set_name(labels, "labels_normalized");
  2613. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2614. ggml_set_name(out, "out");
  2615. return out;
  2616. }
  2617. void initialize_tensors(ggml_context * ctx) override {
  2618. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2619. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2620. init_tensor_uniform(t, -100.0f, 100.0f);
  2621. }
  2622. }
  2623. float grad_eps() override {
  2624. return 1.0f;
  2625. }
  2626. bool grad_precise() override {
  2627. return true;
  2628. }
  2629. };
  2630. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2631. struct test_cross_entropy_loss_back : public test_case {
  2632. const ggml_type type;
  2633. const std::array<int64_t, 4> ne;
  2634. std::string vars() override {
  2635. return VARS_TO_STR2(type, ne);
  2636. }
  2637. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2638. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2639. : type(type), ne(ne) {}
  2640. ggml_tensor * build_graph(ggml_context * ctx) override {
  2641. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2642. ggml_set_name(grad, "grad");
  2643. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2644. ggml_set_name(logits, "logits");
  2645. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2646. ggml_set_name(labels, "labels");
  2647. // Ensure labels add up to 1:
  2648. labels = ggml_soft_max(ctx, labels);
  2649. ggml_set_name(labels, "labels_normalized");
  2650. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2651. ggml_set_name(out, "out");
  2652. return out;
  2653. }
  2654. };
  2655. // GGML_OP_OPT_STEP_ADAMW
  2656. struct test_opt_step_adamw : public test_case {
  2657. const ggml_type type;
  2658. const std::array<int64_t, 4> ne;
  2659. std::string vars() override {
  2660. return VARS_TO_STR2(type, ne);
  2661. }
  2662. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2663. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2664. : type(type), ne(ne) {}
  2665. ggml_tensor * build_graph(ggml_context * ctx) override {
  2666. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2667. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2668. ggml_set_name(a, "a");
  2669. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2670. ggml_set_name(grad, "grad");
  2671. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2672. ggml_set_name(grad_m, "grad_m");
  2673. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2674. ggml_set_name(grad_v, "grad_v");
  2675. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2676. ggml_set_name(adamw_params, "adamw_params");
  2677. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2678. ggml_set_name(out, "out");
  2679. return out;
  2680. }
  2681. void initialize_tensors(ggml_context * ctx) override {
  2682. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2683. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2684. }
  2685. }
  2686. bool grad_precise() override {
  2687. return true;
  2688. }
  2689. };
  2690. enum llm_norm_type {
  2691. LLM_NORM,
  2692. LLM_NORM_RMS,
  2693. };
  2694. struct llama_hparams {
  2695. uint32_t n_vocab;
  2696. uint32_t n_embd;
  2697. uint32_t n_head;
  2698. uint32_t n_head_kv;
  2699. static constexpr uint32_t n_layer = 1;
  2700. uint32_t n_rot;
  2701. uint32_t n_embd_head; // dimension of values (d_v)
  2702. uint32_t n_ff;
  2703. float f_norm_eps;
  2704. float f_norm_rms_eps;
  2705. // cparams
  2706. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2707. static constexpr uint32_t n_ctx_orig = n_ctx;
  2708. // batch
  2709. int32_t n_tokens;
  2710. // llm_build_context
  2711. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2712. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2713. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2714. return n_embd_head * n_head_kv;
  2715. }
  2716. };
  2717. // LLM base class
  2718. struct test_llm : public test_case {
  2719. llama_hparams hp;
  2720. protected:
  2721. test_llm(llama_hparams hp)
  2722. : hp(std::move(hp)) {
  2723. }
  2724. public:
  2725. struct ggml_tensor * llm_build_norm(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * cur,
  2728. struct ggml_tensor * mw,
  2729. struct ggml_tensor * mb,
  2730. llm_norm_type type) {
  2731. switch (type) {
  2732. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2733. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2734. }
  2735. cur = ggml_mul(ctx, cur, mw);
  2736. if (mb) {
  2737. cur = ggml_add(ctx, cur, mb);
  2738. }
  2739. return cur;
  2740. }
  2741. void llm_build_kv_store(
  2742. struct ggml_context * ctx,
  2743. struct ggml_tensor * k_l,
  2744. struct ggml_tensor * v_l,
  2745. struct ggml_tensor * k_cur,
  2746. struct ggml_tensor * v_cur) {
  2747. // compute the transposed [n_tokens, n_embd] V matrix
  2748. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2749. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2750. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2751. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2752. ( hp.n_ctx)*ggml_element_size(v_l),
  2753. (hp.kv_head)*ggml_element_size(v_l));
  2754. // important: storing RoPE-ed version of K in the KV cache!
  2755. ggml_cpy(ctx, k_cur, k_cache_view);
  2756. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2757. }
  2758. struct ggml_tensor * llm_build_kqv(
  2759. struct ggml_context * ctx,
  2760. struct ggml_tensor * k_l,
  2761. struct ggml_tensor * v_l,
  2762. struct ggml_tensor * q_cur,
  2763. struct ggml_tensor * kq_mask,
  2764. float kq_scale) {
  2765. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2766. struct ggml_tensor * k =
  2767. ggml_view_3d(ctx, k_l,
  2768. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2769. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2770. ggml_row_size(k_l->type, hp.n_embd_head),
  2771. 0);
  2772. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2773. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2774. // split cached v into n_head heads
  2775. struct ggml_tensor * v =
  2776. ggml_view_3d(ctx, v_l,
  2777. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2778. ggml_element_size(v_l)*hp.n_ctx,
  2779. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2780. 0);
  2781. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2782. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2783. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2784. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2785. cur = ggml_mul_mat(ctx, wo, cur);
  2786. return cur;
  2787. }
  2788. void initialize_tensors(ggml_context * ctx) override {
  2789. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2790. if (t->type == GGML_TYPE_I32) {
  2791. // pos
  2792. std::vector<int> data(hp.n_tokens);
  2793. for (int i = 0; i < hp.n_tokens; i++) {
  2794. data[i] = rand() % hp.n_ctx;
  2795. }
  2796. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2797. } else {
  2798. init_tensor_uniform(t);
  2799. }
  2800. }
  2801. }
  2802. };
  2803. // Llama
  2804. struct test_llama : public test_llm {
  2805. static constexpr float freq_base = 10000.0f;
  2806. static constexpr float freq_scale = 1.0f;
  2807. static constexpr float ext_factor = 0.0f;
  2808. static constexpr float attn_factor = 1.0f;
  2809. static constexpr float beta_fast = 32.0f;
  2810. static constexpr float beta_slow = 1.0f;
  2811. std::string op_desc(ggml_tensor * t) override {
  2812. GGML_UNUSED(t);
  2813. return "LLAMA";
  2814. }
  2815. std::string vars() override {
  2816. auto n_tokens = hp.n_tokens;
  2817. return VARS_TO_STR1(n_tokens);
  2818. }
  2819. double max_nmse_err() override {
  2820. return 2e-3;
  2821. }
  2822. test_llama(int n_tokens = 1)
  2823. : test_llm({
  2824. /*n_vocab =*/ 32000,
  2825. /*n_embd =*/ 3200,
  2826. /*n_head =*/ 32,
  2827. /*n_head_kv =*/ 32,
  2828. /*n_rot =*/ 100,
  2829. /*n_embd_head =*/ 100,
  2830. /*n_ff =*/ 8640,
  2831. /*f_norm_eps =*/ 0.f,
  2832. /*f_norm_rms_eps =*/ 1e-5f,
  2833. /*n_tokens =*/ n_tokens,
  2834. }) {
  2835. }
  2836. ggml_tensor * build_graph(ggml_context * ctx) override {
  2837. struct ggml_tensor * cur;
  2838. struct ggml_tensor * inpL;
  2839. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2840. // inp_pos - contains the positions
  2841. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2842. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2843. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2844. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2845. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2846. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2847. struct ggml_tensor * inpSA = inpL;
  2848. // norm
  2849. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2850. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2851. // self-attention
  2852. {
  2853. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2854. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2855. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2856. // compute Q and K and RoPE them
  2857. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2858. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2859. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2860. Qcur = ggml_rope_ext(
  2861. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2862. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2863. ext_factor, attn_factor, beta_fast, beta_slow
  2864. );
  2865. Kcur = ggml_rope_ext(
  2866. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2867. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2868. ext_factor, attn_factor, beta_fast, beta_slow
  2869. );
  2870. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2871. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2872. }
  2873. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2874. // feed-forward network
  2875. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2876. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2877. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2878. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2879. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2880. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2881. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2882. cur = ggml_silu(ctx, cur);
  2883. cur = ggml_mul(ctx, cur, tmp);
  2884. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2885. cur = ggml_add(ctx, cur, ffn_inp);
  2886. // input for next layer
  2887. inpL = cur;
  2888. }
  2889. cur = inpL;
  2890. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2891. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2892. // lm_head
  2893. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2894. cur = ggml_mul_mat(ctx, output, cur);
  2895. return cur;
  2896. }
  2897. };
  2898. // Falcon
  2899. struct test_falcon : public test_llm {
  2900. static constexpr float freq_base = 10000.0f;
  2901. static constexpr float freq_scale = 1.0f;
  2902. static constexpr float ext_factor = 0.0f;
  2903. static constexpr float attn_factor = 1.0f;
  2904. static constexpr float beta_fast = 32.0f;
  2905. static constexpr float beta_slow = 1.0f;
  2906. std::string op_desc(ggml_tensor * t) override {
  2907. GGML_UNUSED(t);
  2908. return "FALCON";
  2909. }
  2910. std::string vars() override {
  2911. auto n_tokens = hp.n_tokens;
  2912. return VARS_TO_STR1(n_tokens);
  2913. }
  2914. double max_nmse_err() override {
  2915. return 2e-3;
  2916. }
  2917. test_falcon(int n_tokens = 1)
  2918. : test_llm({
  2919. /*n_vocab =*/ 32000,
  2920. /*n_embd =*/ 3200,
  2921. /*n_head =*/ 50,
  2922. /*n_head_kv =*/ 1,
  2923. /*n_rot =*/ 64,
  2924. /*n_embd_head =*/ 64,
  2925. /*n_ff =*/ 8640,
  2926. /*f_norm_eps =*/ 1e-5f,
  2927. /*f_norm_rms_eps =*/ 0.f,
  2928. /*n_tokens =*/ n_tokens,
  2929. }) {
  2930. }
  2931. ggml_tensor * build_graph(ggml_context * ctx) override {
  2932. struct ggml_tensor * cur;
  2933. struct ggml_tensor * inpL;
  2934. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2935. // inp_pos - contains the positions
  2936. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2937. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2938. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2939. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2940. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2941. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2942. // norm
  2943. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2944. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2945. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  2946. // self-attention
  2947. {
  2948. cur = attn_norm;
  2949. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  2950. cur = ggml_mul_mat(ctx, wqkv, cur);
  2951. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  2952. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  2953. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  2954. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  2955. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  2956. // using mode = 2 for neox mode
  2957. Qcur = ggml_rope_ext(
  2958. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2959. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2960. );
  2961. Kcur = ggml_rope_ext(
  2962. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2963. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2964. );
  2965. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2966. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2967. }
  2968. struct ggml_tensor * ffn_inp = cur;
  2969. // feed forward
  2970. {
  2971. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2972. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2973. cur = attn_norm;
  2974. cur = ggml_mul_mat(ctx, ffn_up, cur);
  2975. cur = ggml_gelu(ctx, cur);
  2976. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2977. }
  2978. cur = ggml_add(ctx, cur, ffn_inp);
  2979. cur = ggml_add(ctx, cur, inpL);
  2980. // input for next layer
  2981. inpL = cur;
  2982. }
  2983. cur = inpL;
  2984. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2985. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2986. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  2987. // lm_head
  2988. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  2989. cur = ggml_mul_mat(ctx, output, cur);
  2990. return cur;
  2991. }
  2992. };
  2993. // ###########################################
  2994. // ## Section 3: GGML Op Test Instantiation ##
  2995. // ###########################################
  2996. static const ggml_type all_types[] = {
  2997. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  2998. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  2999. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3000. GGML_TYPE_Q8_0,
  3001. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3002. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3003. GGML_TYPE_Q6_K,
  3004. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3005. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3006. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3007. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3008. };
  3009. static const ggml_type base_types[] = {
  3010. GGML_TYPE_F32, GGML_TYPE_F16,
  3011. GGML_TYPE_Q8_0, // for I8MM tests
  3012. GGML_TYPE_Q4_0,
  3013. GGML_TYPE_Q4_1, // for I8MM tests
  3014. GGML_TYPE_Q4_K,
  3015. GGML_TYPE_IQ2_XXS
  3016. };
  3017. static const ggml_type other_types[] = {
  3018. GGML_TYPE_Q4_1,
  3019. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3020. GGML_TYPE_Q8_0,
  3021. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3022. GGML_TYPE_Q5_K,
  3023. GGML_TYPE_Q6_K,
  3024. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3025. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3026. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3027. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3028. GGML_TYPE_BF16,
  3029. };
  3030. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3031. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3032. std::vector<std::unique_ptr<test_case>> test_cases;
  3033. std::default_random_engine rng(0);
  3034. // unary ops
  3035. for (int v : {0, 1}) {
  3036. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3037. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v));
  3038. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v));
  3039. }
  3040. }
  3041. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3042. for (ggml_type type : all_types) {
  3043. for (int b : {1, 7}) {
  3044. for (bool v : {false, true}) {
  3045. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3046. }
  3047. }
  3048. }
  3049. for (int b : {1, 7}) {
  3050. for (bool v : {false, true}) {
  3051. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3052. }
  3053. }
  3054. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3055. for (ggml_type type : all_types) {
  3056. for (bool v : {false, true}) {
  3057. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3058. }
  3059. }
  3060. for (bool v : {false, true}) {
  3061. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3062. }
  3063. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3064. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3065. for (int k0 : {1, 3}) {
  3066. for (int k1 : {1, 3}) {
  3067. for (int s0 : {1, 2}) {
  3068. for (int s1 : {1, 2}) {
  3069. for (int p0 : {0, 1}) {
  3070. for (int p1 : {0, 1}) {
  3071. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3072. }
  3073. }
  3074. }
  3075. }
  3076. }
  3077. }
  3078. }
  3079. }
  3080. // im2col 1D
  3081. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3082. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3083. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3084. for (int s0 : {1, 3}) {
  3085. for (int p0 : {0, 3}) {
  3086. for (int d0 : {1, 3}) {
  3087. test_cases.emplace_back(new test_im2col(
  3088. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3089. s0, 0, p0, 0, d0, 0, false));
  3090. }
  3091. }
  3092. }
  3093. // im2col 2D
  3094. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3095. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3096. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3097. for (int s0 : {1, 3}) {
  3098. for (int s1 : {1, 3}) {
  3099. for (int p0 : {0, 3}) {
  3100. for (int p1 : {0, 3}) {
  3101. for (int d0 : {1, 3}) {
  3102. for (int d1 : {1, 3}) {
  3103. test_cases.emplace_back(new test_im2col(
  3104. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3105. s0, s1, p0, p1, d0, d1, true));
  3106. }
  3107. }
  3108. }
  3109. }
  3110. }
  3111. }
  3112. // extra tests for im2col 2D
  3113. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3114. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3115. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3116. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3117. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3118. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3119. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3120. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3121. // sycl backend will limit task global_range < MAX_INT
  3122. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3123. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3124. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3125. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3126. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3127. test_cases.emplace_back(new test_conv_transpose_1d());
  3128. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3129. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3130. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3131. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3132. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3133. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3134. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3135. test_cases.emplace_back(new test_count_equal());
  3136. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3137. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3138. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3139. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3140. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3141. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3142. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3143. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3144. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3145. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3146. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3147. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3148. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3149. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3150. }
  3151. for (bool view : {false, true}) {
  3152. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3153. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3154. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3155. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3156. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3157. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_I32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3158. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_I16, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3159. }
  3160. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3161. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3162. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3163. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3164. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3165. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3166. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3167. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3168. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3169. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3170. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3171. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3172. }
  3173. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3174. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3175. }
  3176. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3177. for (ggml_type type_dst : all_types) {
  3178. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3179. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3180. }
  3181. }
  3182. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3183. for (ggml_type type_src : all_types) {
  3184. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3185. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3186. }
  3187. }
  3188. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3189. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3190. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3191. }
  3192. }
  3193. test_cases.emplace_back(new test_cont());
  3194. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3195. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3196. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3197. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3198. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3199. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3200. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3201. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3202. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3203. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3204. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  3205. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3206. }
  3207. };
  3208. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  3209. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  3210. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  3211. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1});
  3212. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1});
  3213. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1});
  3214. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1});
  3215. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1});
  3216. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1});
  3217. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2});
  3218. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2});
  3219. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2});
  3220. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2});
  3221. // stable diffusion
  3222. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3223. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3224. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3225. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3226. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3227. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3228. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3229. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3230. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3231. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3232. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  3233. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3234. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  3235. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3236. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3237. test_cases.emplace_back(new test_add1());
  3238. test_cases.emplace_back(new test_scale());
  3239. test_cases.emplace_back(new test_silu_back());
  3240. for (float eps : {0.0f, 1e-7f, 1e-4f, 1e-1f}) {
  3241. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3242. test_cases.emplace_back(new test_rms_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3243. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3244. }
  3245. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3246. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3247. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3248. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3249. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3250. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3251. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3252. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3253. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3254. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3255. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3256. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3257. for (ggml_type type_a : all_types) {
  3258. for (int i = 1; i < 10; ++i) {
  3259. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3260. }
  3261. }
  3262. #if 1
  3263. for (ggml_type type_a : base_types) {
  3264. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3265. // test cases without permutation
  3266. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3267. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3268. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3269. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3270. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3271. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3272. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3273. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3274. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3275. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3276. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3277. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3278. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3279. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3280. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3281. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3282. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3283. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3284. // test cases with permutation
  3285. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3286. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3287. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3288. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3289. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3290. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3291. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3292. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3293. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3294. }
  3295. }
  3296. for (ggml_type type_a : other_types) {
  3297. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3298. if (ggml_blck_size(type_a) != 256) {
  3299. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3300. }
  3301. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3302. }
  3303. }
  3304. #else
  3305. // m = a rows
  3306. // n = b rows
  3307. // k = cols
  3308. std::uniform_int_distribution<> dist_m(1, 128);
  3309. std::uniform_int_distribution<> dist_n(16, 128);
  3310. std::uniform_int_distribution<> dist_k(1, 16);
  3311. for (int i = 0; i < 1000; i++) {
  3312. for (ggml_type type_a : all_types) {
  3313. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3314. int m = dist_m(rng);
  3315. int n = dist_n(rng);
  3316. int k = dist_k(rng) * ggml_blck_size(type_a);
  3317. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3318. }
  3319. }
  3320. }
  3321. #endif
  3322. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3323. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3324. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3325. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3326. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3327. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3328. // sycl backend will limit task global_range < MAX_INT
  3329. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3330. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3331. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3332. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3333. for (ggml_type type_a : base_types) {
  3334. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3335. for (int n_mats : {4, 8}) {
  3336. for (int n_used : {1, 2, 4}) {
  3337. for (bool b : {false, true}) {
  3338. for (int n : {1, 32}) {
  3339. int m = 512;
  3340. int k = 256;
  3341. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3342. }
  3343. }
  3344. }
  3345. }
  3346. }
  3347. }
  3348. for (ggml_type type_a : other_types) {
  3349. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3350. for (int n_mats : {4}) {
  3351. for (int n_used : {2}) {
  3352. for (bool b : {false}) {
  3353. for (int n : {1, 32}) {
  3354. int m = 512;
  3355. int k = 256;
  3356. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3357. }
  3358. }
  3359. }
  3360. }
  3361. }
  3362. }
  3363. for (ggml_type type_a : base_types) {
  3364. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3365. for (int n : {1, 16}) {
  3366. for (int k : {1, 16}) {
  3367. for (int bs2 : {1, 3}) {
  3368. for (int bs3 : {1, 3}) {
  3369. for (int nr2 : {1, 2}) {
  3370. for (int nr3 : {1, 2}) {
  3371. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3372. }
  3373. }
  3374. }
  3375. }
  3376. }
  3377. }
  3378. }
  3379. }
  3380. test_cases.emplace_back(new test_sqr());
  3381. test_cases.emplace_back(new test_sqrt());
  3382. test_cases.emplace_back(new test_log());
  3383. test_cases.emplace_back(new test_sin());
  3384. test_cases.emplace_back(new test_cos());
  3385. test_cases.emplace_back(new test_clamp());
  3386. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3387. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3388. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3389. #if 0
  3390. std::uniform_int_distribution<> dist_ne1(1, 50);
  3391. int exponent = 1;
  3392. while (exponent < (1 << 17)) {
  3393. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3394. for (int n = 0; n < 10; ++n) {
  3395. int64_t ne0 = dist_ne0(rng);
  3396. int64_t ne1 = dist_ne1(rng);
  3397. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3398. }
  3399. exponent <<= 1;
  3400. }
  3401. #endif
  3402. for (bool mask : {false, true}) {
  3403. for (float max_bias : {0.0f, 8.0f}) {
  3404. if (!mask && max_bias > 0.0f) continue;
  3405. for (float scale : {1.0f, 0.1f}) {
  3406. for (int64_t ne0 : {16, 1024}) {
  3407. for (int64_t ne1 : {16, 1024}) {
  3408. if (mask) {
  3409. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3410. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3411. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3412. }
  3413. } else {
  3414. /* The precision of mask here doesn't matter as boolean mask is false */
  3415. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3416. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3417. }
  3418. }
  3419. }
  3420. }
  3421. }
  3422. }
  3423. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3424. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3425. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3426. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3427. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3428. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3429. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3430. for (float max_bias : {0.0f, 8.0f}) {
  3431. for (float scale : {1.0f, 0.1f}) {
  3432. for (int64_t ne0 : {16, 1024}) {
  3433. for (int64_t ne1 : {16, 1024}) {
  3434. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3435. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3436. }
  3437. }
  3438. }
  3439. }
  3440. for (bool fw : {true, false}) { // fw == forward
  3441. bool all = true;
  3442. for (float v : { 0, 1 }) {
  3443. for (float fs : { 1.0f, 1.4245f }) {
  3444. for (float ef : { 0.0f, 0.7465f }) {
  3445. for (float af : { 1.0f, 1.4245f }) {
  3446. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3447. for (bool ff : {false, true}) { // freq_factors
  3448. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3449. if (all) {
  3450. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3451. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3452. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3453. }
  3454. if (all) {
  3455. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3456. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3457. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3458. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3459. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3460. }
  3461. if (all) {
  3462. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3463. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3464. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3465. }
  3466. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3467. }
  3468. }
  3469. all = false;
  3470. }
  3471. }
  3472. }
  3473. }
  3474. }
  3475. for (int v : { 0, 1, 2, 3 }) {
  3476. for (int dim : { 0, 1, 2, 3, }) {
  3477. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3478. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3479. }
  3480. }
  3481. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3482. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3483. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3484. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3485. }
  3486. test_cases.emplace_back(new test_sum());
  3487. test_cases.emplace_back(new test_sum_rows());
  3488. test_cases.emplace_back(new test_mean());
  3489. test_cases.emplace_back(new test_upscale());
  3490. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3491. test_cases.emplace_back(new test_upscale_ext());
  3492. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3493. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3494. test_cases.emplace_back(new test_acc());
  3495. test_cases.emplace_back(new test_pad());
  3496. test_cases.emplace_back(new test_pad_reflect_1d());
  3497. test_cases.emplace_back(new test_arange());
  3498. test_cases.emplace_back(new test_timestep_embedding());
  3499. test_cases.emplace_back(new test_leaky_relu());
  3500. for (int hs : { 64, 80, 128, 256, }) {
  3501. for (bool mask : { true, false } ) {
  3502. for (float max_bias : { 0.0f, 8.0f }) {
  3503. if (!mask && max_bias > 0.0f) continue;
  3504. for (float logit_softcap : {0.0f, 10.0f}) {
  3505. if (hs != 128 && logit_softcap != 0.0f) continue;
  3506. for (int nh : { 32, }) {
  3507. for (int kv : { 512, 1024, }) {
  3508. for (int nb : { 1, 3, 32, 35, }) {
  3509. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3510. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
  3511. // run fewer test cases permuted
  3512. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3513. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV, {0, 2, 1, 3}));
  3514. }
  3515. }
  3516. }
  3517. }
  3518. }
  3519. }
  3520. }
  3521. }
  3522. }
  3523. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3524. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3525. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3526. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3527. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3528. // these tests are disabled to save execution time, but they can be handy for debugging
  3529. #if 0
  3530. test_cases.emplace_back(new test_llama(1));
  3531. test_cases.emplace_back(new test_llama(2));
  3532. test_cases.emplace_back(new test_falcon(1));
  3533. test_cases.emplace_back(new test_falcon(2));
  3534. #endif
  3535. return test_cases;
  3536. }
  3537. // Test cases for performance evaluation: should be representative of real-world use cases
  3538. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3539. std::vector<std::unique_ptr<test_case>> test_cases;
  3540. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3541. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3542. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3543. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3544. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3545. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3546. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3547. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3548. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3549. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3550. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3551. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3552. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3553. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3554. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3555. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3556. for (ggml_type type_a : all_types) {
  3557. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3558. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3559. }
  3560. }
  3561. }
  3562. for (int K : {3, 5}) {
  3563. for (int IC : {256, 2560}) {
  3564. for (int IW_IH : {32, 64, 256}) {
  3565. if (IC == 2560 && IW_IH == 256) {
  3566. // too big
  3567. continue;
  3568. }
  3569. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3570. }
  3571. }
  3572. }
  3573. return test_cases;
  3574. }
  3575. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  3576. if (mode == MODE_TEST) {
  3577. auto test_cases = make_test_cases_eval();
  3578. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3579. if (backend_cpu == NULL) {
  3580. printf(" Failed to initialize CPU backend\n");
  3581. return false;
  3582. }
  3583. size_t n_ok = 0;
  3584. for (auto & test : test_cases) {
  3585. if (test->eval(backend, backend_cpu, op_name)) {
  3586. n_ok++;
  3587. }
  3588. }
  3589. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3590. ggml_backend_free(backend_cpu);
  3591. return n_ok == test_cases.size();
  3592. }
  3593. if (mode == MODE_GRAD) {
  3594. auto test_cases = make_test_cases_eval();
  3595. size_t n_ok = 0;
  3596. for (auto & test : test_cases) {
  3597. if (test->eval_grad(backend, op_name)) {
  3598. n_ok++;
  3599. }
  3600. }
  3601. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3602. return n_ok == test_cases.size();
  3603. }
  3604. if (mode == MODE_PERF) {
  3605. auto test_cases = make_test_cases_perf();
  3606. for (auto & test : test_cases) {
  3607. test->eval_perf(backend, op_name);
  3608. }
  3609. return true;
  3610. }
  3611. GGML_ABORT("fatal error");
  3612. }
  3613. static void usage(char ** argv) {
  3614. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  3615. printf(" valid modes:\n");
  3616. printf(" - test (default, compare with CPU backend for correctness)\n");
  3617. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3618. printf(" - perf (performance evaluation)\n");
  3619. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3620. }
  3621. int main(int argc, char ** argv) {
  3622. test_mode mode = MODE_TEST;
  3623. const char * op_name_filter = NULL;
  3624. const char * backend_filter = NULL;
  3625. for (int i = 1; i < argc; i++) {
  3626. if (strcmp(argv[i], "test") == 0) {
  3627. mode = MODE_TEST;
  3628. } else if (strcmp(argv[i], "perf") == 0) {
  3629. mode = MODE_PERF;
  3630. } else if (strcmp(argv[i], "grad") == 0) {
  3631. mode = MODE_GRAD;
  3632. } else if (strcmp(argv[i], "-o") == 0) {
  3633. if (i + 1 < argc) {
  3634. op_name_filter = argv[++i];
  3635. } else {
  3636. usage(argv);
  3637. return 1;
  3638. }
  3639. } else if (strcmp(argv[i], "-b") == 0) {
  3640. if (i + 1 < argc) {
  3641. backend_filter = argv[++i];
  3642. } else {
  3643. usage(argv);
  3644. return 1;
  3645. }
  3646. } else {
  3647. usage(argv);
  3648. return 1;
  3649. }
  3650. }
  3651. // load and enumerate backends
  3652. ggml_backend_load_all();
  3653. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3654. size_t n_ok = 0;
  3655. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3656. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3657. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3658. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3659. printf(" Skipping\n");
  3660. n_ok++;
  3661. continue;
  3662. }
  3663. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3664. printf(" Skipping CPU backend\n");
  3665. n_ok++;
  3666. continue;
  3667. }
  3668. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3669. GGML_ASSERT(backend != NULL);
  3670. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3671. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3672. if (ggml_backend_set_n_threads_fn) {
  3673. // TODO: better value for n_threads
  3674. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3675. }
  3676. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3677. size_t free, total; // NOLINT
  3678. ggml_backend_dev_memory(dev, &free, &total);
  3679. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3680. printf("\n");
  3681. bool ok = test_backend(backend, mode, op_name_filter);
  3682. printf(" Backend %s: ", ggml_backend_name(backend));
  3683. if (ok) {
  3684. printf("\033[1;32mOK\033[0m\n");
  3685. n_ok++;
  3686. } else {
  3687. printf("\033[1;31mFAIL\033[0m\n");
  3688. }
  3689. printf("\n");
  3690. ggml_backend_free(backend);
  3691. }
  3692. ggml_quantize_free();
  3693. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3694. if (n_ok != ggml_backend_dev_count()) {
  3695. printf("\033[1;31mFAIL\033[0m\n");
  3696. return 1;
  3697. }
  3698. printf("\033[1;32mOK\033[0m\n");
  3699. return 0;
  3700. }