ggml.c 418 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #elif defined(GGML_USE_OPENBLAS)
  118. #include <cblas.h>
  119. #elif defined(GGML_USE_CUBLAS)
  120. #include "ggml-cuda.h"
  121. #elif defined(GGML_USE_CLBLAST)
  122. #include "ggml-opencl.h"
  123. #endif
  124. #undef MIN
  125. #undef MAX
  126. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  127. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  128. // floating point type used to accumulate sums
  129. typedef double ggml_float;
  130. // 16-bit float
  131. // on Arm, we use __fp16
  132. // on x86, we use uint16_t
  133. #ifdef __ARM_NEON
  134. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  135. //
  136. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  137. //
  138. #include <arm_neon.h>
  139. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  140. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  141. #define GGML_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_FP32_TO_FP16(x) (x)
  143. #else
  144. #ifdef __wasm_simd128__
  145. #include <wasm_simd128.h>
  146. #else
  147. #ifdef __POWER9_VECTOR__
  148. #include <altivec.h>
  149. #undef bool
  150. #define bool _Bool
  151. #else
  152. #include <immintrin.h>
  153. #endif
  154. #endif
  155. #ifdef __F16C__
  156. #ifdef _MSC_VER
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  159. #else
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  162. #endif
  163. #elif defined(__POWER9_VECTOR__)
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  166. /* the inline asm below is about 12% faster than the lookup method */
  167. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  168. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  169. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  170. register float f;
  171. register double d;
  172. __asm__(
  173. "mtfprd %0,%2\n"
  174. "xscvhpdp %0,%0\n"
  175. "frsp %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=f"(f):
  178. /* in */ "r"(h));
  179. return f;
  180. }
  181. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  182. register double d;
  183. register ggml_fp16_t r;
  184. __asm__( /* xscvdphp can work on double or single precision */
  185. "xscvdphp %0,%2\n"
  186. "mffprd %1,%0\n" :
  187. /* temp */ "=d"(d),
  188. /* out */ "=r"(r):
  189. /* in */ "f"(f));
  190. return r;
  191. }
  192. #else
  193. // FP16 <-> FP32
  194. // ref: https://github.com/Maratyszcza/FP16
  195. static inline float fp32_from_bits(uint32_t w) {
  196. union {
  197. uint32_t as_bits;
  198. float as_value;
  199. } fp32;
  200. fp32.as_bits = w;
  201. return fp32.as_value;
  202. }
  203. static inline uint32_t fp32_to_bits(float f) {
  204. union {
  205. float as_value;
  206. uint32_t as_bits;
  207. } fp32;
  208. fp32.as_value = f;
  209. return fp32.as_bits;
  210. }
  211. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  212. const uint32_t w = (uint32_t) h << 16;
  213. const uint32_t sign = w & UINT32_C(0x80000000);
  214. const uint32_t two_w = w + w;
  215. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  216. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  217. const float exp_scale = 0x1.0p-112f;
  218. #else
  219. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  220. #endif
  221. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  222. const uint32_t magic_mask = UINT32_C(126) << 23;
  223. const float magic_bias = 0.5f;
  224. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  225. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  226. const uint32_t result = sign |
  227. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  228. return fp32_from_bits(result);
  229. }
  230. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  231. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  232. const float scale_to_inf = 0x1.0p+112f;
  233. const float scale_to_zero = 0x1.0p-110f;
  234. #else
  235. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  236. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  237. #endif
  238. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  239. const uint32_t w = fp32_to_bits(f);
  240. const uint32_t shl1_w = w + w;
  241. const uint32_t sign = w & UINT32_C(0x80000000);
  242. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  243. if (bias < UINT32_C(0x71000000)) {
  244. bias = UINT32_C(0x71000000);
  245. }
  246. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  247. const uint32_t bits = fp32_to_bits(base);
  248. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  249. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  250. const uint32_t nonsign = exp_bits + mantissa_bits;
  251. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  252. }
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  255. #endif // __F16C__
  256. #endif // __ARM_NEON
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t table_gelu_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB)
  267. static float table_f32_f16[1 << 16];
  268. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  269. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  270. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  271. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  272. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  273. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  274. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  275. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  276. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  277. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  278. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  279. #endif
  280. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  281. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  282. // This is also true for POWER9.
  283. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  284. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  285. uint16_t s;
  286. memcpy(&s, &f, sizeof(uint16_t));
  287. return table_f32_f16[s];
  288. }
  289. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  290. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  291. #endif
  292. // note: do not use these inside ggml.c
  293. // these are meant to be used via the ggml.h API
  294. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  295. return (float) GGML_FP16_TO_FP32(x);
  296. }
  297. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  298. return GGML_FP32_TO_FP16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  301. for (size_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  306. size_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. #if __AVX__ || __AVX2__ || __AVX512F__
  390. // Unpack 16 4-bit fields into 16 bytes
  391. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  392. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  393. {
  394. // Load 8 bytes from memory
  395. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  396. // Expand bytes into uint16_t values
  397. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  398. // Unpack values into individual bytes
  399. const __m128i lowMask = _mm_set1_epi8( 0xF );
  400. __m128i high = _mm_andnot_si128( lowMask, bytes );
  401. __m128i low = _mm_and_si128( lowMask, bytes );
  402. high = _mm_slli_epi16( high, 4 );
  403. bytes = _mm_or_si128( low, high );
  404. return bytes;
  405. }
  406. // horizontally add 8 floats
  407. static inline float hsum_float_8(const __m256 x) {
  408. __m128 res = _mm256_extractf128_ps(x, 1);
  409. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  410. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  411. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  412. return _mm_cvtss_f32(res);
  413. }
  414. // horizontally add 8 int32_t
  415. static inline int hsum_i32_8(const __m256i a) {
  416. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  417. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  418. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  419. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  420. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  421. }
  422. // horizontally add 4 int32_t
  423. static inline int hsum_i32_4(const __m128i a) {
  424. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  425. const __m128i sum64 = _mm_add_epi32(hi64, a);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. #if __AVX2__ || __AVX512F__
  430. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  431. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  432. uint32_t x32;
  433. memcpy(&x32, x, sizeof(uint32_t));
  434. const __m256i shuf_mask = _mm256_set_epi64x(
  435. 0x0303030303030303, 0x0202020202020202,
  436. 0x0101010101010101, 0x0000000000000000);
  437. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  438. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  439. bytes = _mm256_or_si256(bytes, bit_mask);
  440. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  441. }
  442. // Unpack 32 4-bit fields into 32 bytes
  443. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  444. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  445. {
  446. // Load 16 bytes from memory
  447. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  448. // Expand bytes into uint16_t values
  449. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  450. // Unpack values into individual bytes
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  453. __m256i low = _mm256_and_si256( lowMask, bytes );
  454. high = _mm256_slli_epi16( high, 4 );
  455. bytes = _mm256_or_si256( low, high );
  456. return bytes;
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. // multiply int8_t, add results pairwise twice and return as float vector
  465. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  466. // Get absolute values of x vectors
  467. const __m256i ax = _mm256_sign_epi8(x, x);
  468. // Sign the values of the y vectors
  469. const __m256i sy = _mm256_sign_epi8(y, x);
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. static inline __m128i packNibbles( __m256i bytes )
  481. {
  482. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  483. #if __AVX512F__
  484. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  485. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  486. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  487. #else
  488. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  489. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  490. __m256i low = _mm256_and_si256( lowByte, bytes );
  491. high = _mm256_srli_epi16( high, 4 );
  492. bytes = _mm256_or_si256( low, high );
  493. // Compress uint16_t lanes into bytes
  494. __m128i r0 = _mm256_castsi256_si128( bytes );
  495. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  496. return _mm_packus_epi16( r0, r1 );
  497. #endif
  498. }
  499. #else
  500. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  501. {
  502. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  503. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  504. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  505. __m128i low = _mm_and_si128( lowByte, bytes1 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes1 = _mm_or_si128( low, high );
  508. high = _mm_andnot_si128( lowByte, bytes2 );
  509. low = _mm_and_si128( lowByte, bytes2 );
  510. high = _mm_srli_epi16( high, 4 );
  511. bytes2 = _mm_or_si128( low, high );
  512. return _mm_packus_epi16( bytes1, bytes2);
  513. }
  514. #endif
  515. #endif // __AVX__ || __AVX2__ || __AVX512F__
  516. #if __ARM_NEON
  517. #if !defined(__aarch64__)
  518. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  519. return
  520. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  521. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  522. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  523. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  524. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  525. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  526. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  527. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  528. }
  529. inline static int16_t vaddvq_s8(int8x16_t v) {
  530. return
  531. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  532. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  533. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  534. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  535. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  536. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  537. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  538. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  539. }
  540. inline static int32_t vaddvq_s16(int16x8_t v) {
  541. return
  542. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  543. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  544. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  545. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  546. }
  547. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  548. return
  549. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  550. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  551. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  552. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  553. }
  554. inline static int32_t vaddvq_s32(int32x4_t v) {
  555. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  556. }
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. float vminvq_f32(float32x4_t v) {
  561. return
  562. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  563. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  564. }
  565. float vmaxvq_f32(float32x4_t v) {
  566. return
  567. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  568. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  569. }
  570. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  571. int8x8_t res;
  572. res[0] = a[0]; res[1] = b[0];
  573. res[2] = a[1]; res[3] = b[1];
  574. res[4] = a[2]; res[5] = b[2];
  575. res[6] = a[3]; res[7] = b[3];
  576. return res;
  577. }
  578. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  579. int8x8_t res;
  580. res[0] = a[4]; res[1] = b[4];
  581. res[2] = a[5]; res[3] = b[5];
  582. res[4] = a[6]; res[5] = b[6];
  583. res[6] = a[7]; res[7] = b[7];
  584. return res;
  585. }
  586. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  587. uint8x8_t res;
  588. res[0] = a[0]; res[1] = b[0];
  589. res[2] = a[1]; res[3] = b[1];
  590. res[4] = a[2]; res[5] = b[2];
  591. res[6] = a[3]; res[7] = b[3];
  592. return res;
  593. }
  594. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  595. uint8x8_t res;
  596. res[0] = a[4]; res[1] = b[4];
  597. res[2] = a[5]; res[3] = b[5];
  598. res[4] = a[6]; res[5] = b[6];
  599. res[6] = a[7]; res[7] = b[7];
  600. return res;
  601. }
  602. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  603. int8x16_t res;
  604. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  605. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  606. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  607. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  608. return res;
  609. }
  610. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  611. int8x16_t res;
  612. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  613. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  614. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  615. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  616. return res;
  617. }
  618. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  619. uint8x16_t res;
  620. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  621. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  622. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  623. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  624. return res;
  625. }
  626. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  627. uint8x16_t res;
  628. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  629. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  630. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  631. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  632. return res;
  633. }
  634. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  635. int32x4_t res;
  636. res[0] = roundf(vgetq_lane_f32(v, 0));
  637. res[1] = roundf(vgetq_lane_f32(v, 1));
  638. res[2] = roundf(vgetq_lane_f32(v, 2));
  639. res[3] = roundf(vgetq_lane_f32(v, 3));
  640. return res;
  641. }
  642. #endif
  643. #endif
  644. #define QK4_0 32
  645. typedef struct {
  646. float d; // delta
  647. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  648. } block_q4_0;
  649. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  650. #define QK4_1 32
  651. typedef struct {
  652. float d; // delta
  653. float m; // min
  654. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  655. } block_q4_1;
  656. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  657. #define QK4_2 16
  658. typedef struct {
  659. ggml_fp16_t d; // delta
  660. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  661. } block_q4_2;
  662. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  663. #define QK5_0 32
  664. typedef struct {
  665. ggml_fp16_t d; // delta
  666. uint8_t qh[4]; // 5-th bit of quants
  667. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  668. } block_q5_0;
  669. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  670. #define QK5_1 32
  671. typedef struct {
  672. ggml_fp16_t d; // delta
  673. ggml_fp16_t m; // min
  674. uint8_t qh[4]; // 5-th bit of quants
  675. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  676. } block_q5_1;
  677. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  678. #define QK8_0 32
  679. typedef struct {
  680. float d; // delta
  681. int8_t qs[QK8_0]; // quants
  682. } block_q8_0;
  683. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  684. #define QK8_1 32
  685. typedef struct {
  686. float d; // delta
  687. float s0; // d * sum(qs[i]) low
  688. float s1; // d * sum(qs[i]) high
  689. int8_t qs[QK8_1]; // quants
  690. } block_q8_1;
  691. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  692. // reference implementation for deterministic creation of model files
  693. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  694. assert(k % QK4_0 == 0);
  695. const int nb = k / QK4_0;
  696. uint8_t pp[QK4_0/2];
  697. for (int i = 0; i < nb; i++) {
  698. float amax = 0.0f; // absolute max
  699. float max = 0.0f;
  700. for (int l = 0; l < QK4_0; l++) {
  701. const float v = x[i*QK4_0 + l];
  702. if (amax < fabsf(v)) {
  703. amax = fabsf(v);
  704. max = v;
  705. }
  706. }
  707. const float d = max / -8;
  708. const float id = d ? 1.0f/d : 0.0f;
  709. y[i].d = d;
  710. for (int l = 0; l < QK4_0; l += 2) {
  711. const float v0 = x[i*QK4_0 + l + 0]*id;
  712. const float v1 = x[i*QK4_0 + l + 1]*id;
  713. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  714. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  715. assert(vi0 < 16);
  716. assert(vi1 < 16);
  717. pp[l/2] = vi0 | (vi1 << 4);
  718. }
  719. memcpy(y[i].qs, pp, sizeof(pp));
  720. }
  721. }
  722. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  723. assert(k % QK4_0 == 0);
  724. const int nb = k / QK4_0;
  725. block_q4_0 * restrict y = vy;
  726. #if defined(__POWER9_VECTOR__)
  727. const vector float v85 = vec_splats(8.5f);
  728. const vector signed int v15 = vec_splats(15);
  729. for (int i = 0; i < nb; i++) {
  730. float max = 0.0f;
  731. float min = 0.0f;
  732. vector float asrcv [8];
  733. vector float srcv [8];
  734. vector float maxv[8];
  735. vector float minv[8];
  736. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  737. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  738. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  739. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  740. maxv[0] = vec_max(maxv[0], maxv[2]);
  741. maxv[4] = vec_max(maxv[4], maxv[6]);
  742. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  743. maxv[0] = vec_max(maxv[0], maxv[4]);
  744. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  745. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  746. minv[0] = vec_min(minv[0], minv[2]);
  747. minv[4] = vec_min(minv[4], minv[6]);
  748. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  749. minv[0] = vec_min(minv[0], minv[4]);
  750. max = MAX(
  751. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  752. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  753. min = MIN(
  754. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  755. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  756. const float magnitude = max >= fabsf(min) ? max : min;
  757. const float d = magnitude / -8;
  758. const float id = d ? 1.0/d : 0.0;
  759. y[i].d = d;
  760. const vector float vid = vec_splats(id);
  761. uint8_t * restrict pb = y[i].qs;
  762. for (int l = 0; l < 8; l++) {
  763. const vector float vf = vec_madd(srcv[l], vid, v85);
  764. const vector signed int vi = vec_signed(vf);
  765. const vector signed int vc = vec_min(vi, v15);
  766. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  767. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  768. }
  769. }
  770. #elif __ARM_NEON
  771. for (int i = 0; i < nb; i++) {
  772. float32x4_t srcv [8];
  773. float32x4_t maxv[8];
  774. float32x4_t minv[8];
  775. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  776. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  777. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  778. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  779. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  780. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  781. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  782. const float max = vmaxvq_f32(maxv[0]);
  783. const float min = vminvq_f32(minv[0]);
  784. const float magnitude = max >= fabsf(min) ? max : min;
  785. const float d = magnitude / -8;
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].d = d;
  788. for (int l = 0; l < 8; l++) {
  789. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  790. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  791. const int32x4_t vi = vcvtq_s32_f32(vf);
  792. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  793. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  794. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  795. }
  796. }
  797. #elif defined(__AVX2__)
  798. for (int i = 0; i < nb; i++) {
  799. // Load elements into 4 AVX vectors
  800. __m256 v0 = _mm256_loadu_ps( x );
  801. __m256 v1 = _mm256_loadu_ps( x + 8 );
  802. __m256 v2 = _mm256_loadu_ps( x + 16 );
  803. __m256 v3 = _mm256_loadu_ps( x + 24 );
  804. x += 32;
  805. // Compute max for the block
  806. __m256 max = _mm256_max_ps( v0, v1 );
  807. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  808. max = _mm256_max_ps( max, maxTmp );
  809. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  810. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  811. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  812. const float maxScalar = _mm_cvtss_f32( max4 );
  813. // Compute min for the block
  814. __m256 min = _mm256_min_ps( v0, v1 );
  815. __m256 minTmp = _mm256_min_ps( v2, v3 );
  816. min = _mm256_min_ps( min, minTmp );
  817. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  818. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  819. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  820. const float minScalar = _mm_cvtss_f32( min4 );
  821. // Quantize these floats
  822. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  823. const float d = magnitude / -8.0f;
  824. y[i].d = d;
  825. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  826. const __m256 mul = _mm256_set1_ps( id );
  827. // Apply the multiplier
  828. v0 = _mm256_mul_ps( v0, mul );
  829. v1 = _mm256_mul_ps( v1, mul );
  830. v2 = _mm256_mul_ps( v2, mul );
  831. v3 = _mm256_mul_ps( v3, mul );
  832. // Round to nearest integer
  833. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  834. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  835. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  836. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  837. // Convert floats to integers
  838. __m256i i0 = _mm256_cvtps_epi32( v0 );
  839. __m256i i1 = _mm256_cvtps_epi32( v1 );
  840. __m256i i2 = _mm256_cvtps_epi32( v2 );
  841. __m256i i3 = _mm256_cvtps_epi32( v3 );
  842. // Convert int32 to int16
  843. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  844. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  845. // Convert int16 to int8
  846. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  847. // We got our precious signed bytes, but the order is now wrong
  848. // These AVX2 pack instructions process 16-byte pieces independently
  849. // The following instruction is fixing the order
  850. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  851. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  852. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  853. const __m256i off = _mm256_set1_epi8( 8 );
  854. i0 = _mm256_add_epi8( i0, off );
  855. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  856. i0 = _mm256_min_epi8( i0, maxNibble );
  857. // Compress the vector into 4 bit/value, and store
  858. __m128i res = packNibbles( i0 );
  859. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  860. }
  861. #elif defined(__AVX__)
  862. for (int i = 0; i < nb; i++) {
  863. // Load elements into 4 AVX vectors
  864. __m256 v0 = _mm256_loadu_ps( x );
  865. __m256 v1 = _mm256_loadu_ps( x + 8 );
  866. __m256 v2 = _mm256_loadu_ps( x + 16 );
  867. __m256 v3 = _mm256_loadu_ps( x + 24 );
  868. x += 32;
  869. // Compute max for the block
  870. __m256 max = _mm256_max_ps( v0, v1 );
  871. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  872. max = _mm256_max_ps( max, maxTmp );
  873. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  874. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  875. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  876. const float maxScalar = _mm_cvtss_f32( max4 );
  877. // Compute min for the block
  878. __m256 min = _mm256_min_ps( v0, v1 );
  879. __m256 minTmp = _mm256_min_ps( v2, v3 );
  880. min = _mm256_min_ps( min, minTmp );
  881. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  882. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  883. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  884. const float minScalar = _mm_cvtss_f32( min4 );
  885. // Quantize these floats
  886. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  887. const float d = magnitude / -8.0f;
  888. y[i].d = d;
  889. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  890. const __m256 mul = _mm256_set1_ps( id );
  891. // Apply the multiplier
  892. v0 = _mm256_mul_ps( v0, mul );
  893. v1 = _mm256_mul_ps( v1, mul );
  894. v2 = _mm256_mul_ps( v2, mul );
  895. v3 = _mm256_mul_ps( v3, mul );
  896. // Round to nearest integer
  897. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  898. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  899. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  900. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  901. // Convert floats to integers
  902. __m256i i0 = _mm256_cvtps_epi32( v0 );
  903. __m256i i1 = _mm256_cvtps_epi32( v1 );
  904. __m256i i2 = _mm256_cvtps_epi32( v2 );
  905. __m256i i3 = _mm256_cvtps_epi32( v3 );
  906. // Since we don't have in AVX some necessary functions,
  907. // we split the registers in half and call AVX2 analogs from SSE
  908. __m128i ni0 = _mm256_castsi256_si128( i0 );
  909. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  910. __m128i ni2 = _mm256_castsi256_si128( i1 );
  911. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  912. __m128i ni4 = _mm256_castsi256_si128( i2 );
  913. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  914. __m128i ni6 = _mm256_castsi256_si128( i3 );
  915. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  916. // Convert int32 to int16
  917. ni0 = _mm_packs_epi32( ni0, ni1 );
  918. ni2 = _mm_packs_epi32( ni2, ni3 );
  919. ni4 = _mm_packs_epi32( ni4, ni5 );
  920. ni6 = _mm_packs_epi32( ni6, ni7 );
  921. // Convert int16 to int8
  922. ni0 = _mm_packs_epi16( ni0, ni2 );
  923. ni4 = _mm_packs_epi16( ni4, ni6 );
  924. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  925. const __m128i off = _mm_set1_epi8( 8 );
  926. ni0 = _mm_add_epi8( ni0, off );
  927. ni4 = _mm_add_epi8( ni4, off );
  928. const __m128i maxNibble = _mm_set1_epi8( 15 );
  929. ni0 = _mm_min_epi8( ni0, maxNibble );
  930. ni4 = _mm_min_epi8( ni4, maxNibble );
  931. // Compress the vector into 4 bit/value, and store
  932. __m128i res = packNibbles( ni0, ni4 );
  933. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  934. }
  935. #elif defined(__wasm_simd128__)
  936. for (int i = 0; i < nb; i++) {
  937. float max = 0.0f;
  938. float min = 0.0f;
  939. v128_t srcv [8];
  940. v128_t maxv[8];
  941. v128_t minv[8];
  942. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  943. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  944. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  945. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  946. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  947. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  948. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  949. max = MAX(
  950. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  951. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  952. min = MIN(
  953. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  954. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  955. const float magnitude = max >= fabsf(min) ? max : min;
  956. const float d = magnitude / -8;
  957. const float id = d ? 1.0/d : 0.0;
  958. y[i].d = d;
  959. for (int l = 0; l < 8; l++) {
  960. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  961. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  962. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  963. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  964. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  965. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  966. }
  967. }
  968. #else
  969. // scalar
  970. quantize_row_q4_0_reference(x, y, k);
  971. #endif
  972. }
  973. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  974. assert(k % QK4_1 == 0);
  975. const int nb = k / QK4_1;
  976. block_q4_1 * restrict y = vy;
  977. uint8_t pp[QK4_1/2];
  978. for (int i = 0; i < nb; i++) {
  979. float min = FLT_MAX;
  980. float max = -FLT_MAX;
  981. for (int l = 0; l < QK4_1; l++) {
  982. const float v = x[i*QK4_1 + l];
  983. if (v < min) min = v;
  984. if (v > max) max = v;
  985. }
  986. const float d = (max - min) / ((1 << 4) - 1);
  987. const float id = d ? 1.0f/d : 0.0f;
  988. y[i].d = d;
  989. y[i].m = min;
  990. for (int l = 0; l < QK4_1; l += 2) {
  991. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  992. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  993. const uint8_t vi0 = roundf(v0);
  994. const uint8_t vi1 = roundf(v1);
  995. assert(vi0 < 16);
  996. assert(vi1 < 16);
  997. pp[l/2] = vi0 | (vi1 << 4);
  998. }
  999. memcpy(y[i].qs, pp, sizeof(pp));
  1000. }
  1001. }
  1002. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  1003. assert(k % QK4_1 == 0);
  1004. const int nb = k / QK4_1;
  1005. block_q4_1 * restrict y = vy;
  1006. #if defined(__AVX2__)
  1007. for (int i = 0; i < nb; i++) {
  1008. // Load elements into 4 AVX vectors
  1009. __m256 v0 = _mm256_loadu_ps( x );
  1010. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1011. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1012. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1013. x += 32;
  1014. // Compute max for the block
  1015. __m256 vmax;
  1016. vmax = _mm256_max_ps( v0, v1 );
  1017. vmax = _mm256_max_ps( vmax, v2 );
  1018. vmax = _mm256_max_ps( vmax, v3 );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Compute min for the block
  1024. __m256 vmin;
  1025. vmin = _mm256_min_ps( v0, v1 );
  1026. vmin = _mm256_min_ps( vmin, v2 );
  1027. vmin = _mm256_min_ps( vmin, v3 );
  1028. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  1029. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  1030. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  1031. const float minScalar = _mm_cvtss_f32( min4 );
  1032. // Quantize these floats
  1033. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  1034. const float id = d ? 1.0f/d : 0.0f;
  1035. y[i].m = minScalar;
  1036. y[i].d = d;
  1037. // x = (x-min)*id
  1038. const __m256 mul = _mm256_set1_ps( id );
  1039. const __m256 off = _mm256_set1_ps( minScalar );
  1040. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1041. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1042. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1043. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1044. // Round to nearest integer
  1045. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1046. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1047. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1048. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1049. // Convert floats to integers
  1050. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1051. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1052. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1053. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1054. // Convert int32 to int16
  1055. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1056. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1057. // Convert int16 to int8
  1058. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1059. // We got our precious signed bytes, but the order is now wrong
  1060. // These AVX2 pack instructions process 16-byte pieces independently
  1061. // The following instruction is fixing the order
  1062. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1063. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1064. // Compress the vector into 4 bit/value, and store
  1065. __m128i res = packNibbles( i0 );
  1066. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1067. }
  1068. #elif __ARM_NEON
  1069. for (int i = 0; i < nb; i++) {
  1070. float32x4_t srcv[8];
  1071. float32x4_t minv[8];
  1072. float32x4_t maxv[8];
  1073. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1074. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1075. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1076. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1077. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1078. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1079. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1080. const float min = vminvq_f32(minv[0]);
  1081. const float max = vmaxvq_f32(maxv[0]);
  1082. const float d = (max - min) / ((1 << 4) - 1);
  1083. const float id = d ? 1.0f/d : 0.0f;
  1084. y[i].d = d;
  1085. y[i].m = min;
  1086. const float32x4_t minv0 = vdupq_n_f32(min);
  1087. for (int l = 0; l < 8; l++) {
  1088. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1089. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1090. const int32x4_t vi = vcvtq_s32_f32(vf);
  1091. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1092. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1093. }
  1094. }
  1095. #else
  1096. // scalar
  1097. quantize_row_q4_1_reference(x, vy, k);
  1098. #endif
  1099. }
  1100. // reference implementation for deterministic creation of model files
  1101. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1102. assert(k % QK4_2 == 0);
  1103. const int nb = k / QK4_2;
  1104. for (int i = 0; i < nb; i++) {
  1105. float amax = 0.0f; // absolute max
  1106. float max = 0.0f;
  1107. for (int l = 0; l < QK4_2; l++) {
  1108. const float v = x[i*QK4_2 + l];
  1109. if (amax < fabsf(v)) {
  1110. amax = fabsf(v);
  1111. max = v;
  1112. }
  1113. }
  1114. const float d = max / -8;
  1115. const float id = d ? 1.0f/d : 0.0f;
  1116. y[i].d = GGML_FP32_TO_FP16(d);
  1117. for (int l = 0; l < QK4_2; l += 2) {
  1118. const float v0 = x[i*QK4_2 + l + 0]*id;
  1119. const float v1 = x[i*QK4_2 + l + 1]*id;
  1120. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1121. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1122. assert(vi0 < 16);
  1123. assert(vi1 < 16);
  1124. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1125. }
  1126. }
  1127. }
  1128. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1129. assert(k % QK4_2 == 0);
  1130. block_q4_2 * restrict y = vy;
  1131. quantize_row_q4_2_reference(x, y, k);
  1132. }
  1133. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1134. assert(k % QK5_0 == 0);
  1135. const int nb = k / QK5_0;
  1136. for (int i = 0; i < nb; i++) {
  1137. float amax = 0.0f; // absolute max
  1138. float max = 0.0f;
  1139. for (int l = 0; l < QK5_0; l++) {
  1140. const float v = x[i*QK5_0 + l];
  1141. if (amax < fabsf(v)) {
  1142. amax = fabsf(v);
  1143. max = v;
  1144. }
  1145. }
  1146. const float d = max / -16;
  1147. const float id = d ? 1.0f/d : 0.0f;
  1148. y[i].d = GGML_FP32_TO_FP16(d);
  1149. uint32_t qh = 0;
  1150. for (int l = 0; l < QK5_0; l += 2) {
  1151. const float v0 = x[i*QK5_0 + l + 0]*id;
  1152. const float v1 = x[i*QK5_0 + l + 1]*id;
  1153. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1154. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1155. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1156. // get the 5-th bit and store it in qh at the right position
  1157. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1158. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1159. }
  1160. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1161. }
  1162. }
  1163. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1164. assert(k % QK5_0 == 0);
  1165. block_q5_0 * restrict y = vy;
  1166. quantize_row_q5_0_reference(x, y, k);
  1167. }
  1168. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1169. assert(k % QK5_1 == 0);
  1170. const int nb = k / QK5_1;
  1171. for (int i = 0; i < nb; i++) {
  1172. float min = FLT_MAX;
  1173. float max = -FLT_MAX;
  1174. for (int l = 0; l < QK5_1; l++) {
  1175. const float v = x[i*QK5_1 + l];
  1176. if (v < min) min = v;
  1177. if (v > max) max = v;
  1178. }
  1179. const float d = (max - min) / ((1 << 5) - 1);
  1180. const float id = d ? 1.0f/d : 0.0f;
  1181. y[i].d = GGML_FP32_TO_FP16(d);
  1182. y[i].m = GGML_FP32_TO_FP16(min);
  1183. uint32_t qh = 0;
  1184. for (int l = 0; l < QK5_1; l += 2) {
  1185. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1186. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1187. const uint32_t vi0 = (int) (v0 + 0.5f);
  1188. const uint32_t vi1 = (int) (v1 + 0.5f);
  1189. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1190. // get the 5-th bit and store it in qh at the right position
  1191. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1192. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1193. }
  1194. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1195. }
  1196. }
  1197. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1198. assert(k % QK5_1 == 0);
  1199. block_q5_1 * restrict y = vy;
  1200. quantize_row_q5_1_reference(x, y, k);
  1201. }
  1202. // reference implementation for deterministic creation of model files
  1203. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1204. assert(k % QK8_0 == 0);
  1205. const int nb = k / QK8_0;
  1206. for (int i = 0; i < nb; i++) {
  1207. float amax = 0.0f; // absolute max
  1208. for (int l = 0; l < QK8_0; l++) {
  1209. const float v = x[i*QK8_0 + l];
  1210. amax = MAX(amax, fabsf(v));
  1211. }
  1212. const float d = amax / ((1 << 7) - 1);
  1213. const float id = d ? 1.0f/d : 0.0f;
  1214. y[i].d = d;
  1215. for (int l = 0; l < QK8_0; ++l) {
  1216. const float v0 = x[i*QK8_0 + l]*id;
  1217. y[i].qs[l] = roundf(v0);
  1218. }
  1219. }
  1220. }
  1221. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1222. assert(QK8_0 == 32);
  1223. assert(k % QK8_0 == 0);
  1224. const int nb = k / QK8_0;
  1225. block_q8_0 * restrict y = vy;
  1226. #if defined(__ARM_NEON)
  1227. for (int i = 0; i < nb; i++) {
  1228. float32x4_t srcv [8];
  1229. float32x4_t asrcv[8];
  1230. float32x4_t amaxv[8];
  1231. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1232. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1233. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1234. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1235. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1236. const float amax = vmaxvq_f32(amaxv[0]);
  1237. const float d = amax / ((1 << 7) - 1);
  1238. const float id = d ? 1.0f/d : 0.0f;
  1239. y[i].d = d;
  1240. for (int l = 0; l < 8; l++) {
  1241. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1242. const int32x4_t vi = vcvtnq_s32_f32(v);
  1243. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1244. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1245. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1246. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1247. }
  1248. }
  1249. #elif defined(__AVX2__) || defined(__AVX__)
  1250. for (int i = 0; i < nb; i++) {
  1251. // Load elements into 4 AVX vectors
  1252. __m256 v0 = _mm256_loadu_ps( x );
  1253. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1254. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1255. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1256. x += 32;
  1257. // Compute max(abs(e)) for the block
  1258. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1259. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1260. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1261. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1262. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1263. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1264. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1265. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1266. const float maxScalar = _mm_cvtss_f32( max4 );
  1267. // Quantize these floats
  1268. const float d = maxScalar / 127.f;
  1269. y[i].d = d;
  1270. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1271. const __m256 mul = _mm256_set1_ps( id );
  1272. // Apply the multiplier
  1273. v0 = _mm256_mul_ps( v0, mul );
  1274. v1 = _mm256_mul_ps( v1, mul );
  1275. v2 = _mm256_mul_ps( v2, mul );
  1276. v3 = _mm256_mul_ps( v3, mul );
  1277. // Round to nearest integer
  1278. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1279. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1280. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1281. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1282. // Convert floats to integers
  1283. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1284. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1285. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1286. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1287. #if defined(__AVX2__)
  1288. // Convert int32 to int16
  1289. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1290. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1291. // Convert int16 to int8
  1292. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1293. // We got our precious signed bytes, but the order is now wrong
  1294. // These AVX2 pack instructions process 16-byte pieces independently
  1295. // The following instruction is fixing the order
  1296. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1297. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1298. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1299. #else
  1300. // Since we don't have in AVX some necessary functions,
  1301. // we split the registers in half and call AVX2 analogs from SSE
  1302. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1303. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1304. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1305. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1306. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1307. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1308. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1309. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1310. // Convert int32 to int16
  1311. ni0 = _mm_packs_epi32( ni0, ni1 );
  1312. ni2 = _mm_packs_epi32( ni2, ni3 );
  1313. ni4 = _mm_packs_epi32( ni4, ni5 );
  1314. ni6 = _mm_packs_epi32( ni6, ni7 );
  1315. // Convert int16 to int8
  1316. ni0 = _mm_packs_epi16( ni0, ni2 );
  1317. ni4 = _mm_packs_epi16( ni4, ni6 );
  1318. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1319. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1320. #endif
  1321. }
  1322. #else
  1323. // scalar
  1324. quantize_row_q8_0_reference(x, y, k);
  1325. #endif
  1326. }
  1327. // reference implementation for deterministic creation of model files
  1328. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1329. assert(QK8_1 == 32);
  1330. assert(k % QK8_1 == 0);
  1331. const int nb = k / QK8_1;
  1332. for (int i = 0; i < nb; i++) {
  1333. float amax = 0.0f; // absolute max
  1334. for (int l = 0; l < QK8_1; l++) {
  1335. const float v = x[i*QK8_1 + l];
  1336. amax = MAX(amax, fabsf(v));
  1337. }
  1338. const float d = amax / ((1 << 7) - 1);
  1339. const float id = d ? 1.0f/d : 0.0f;
  1340. y[i].d = d;
  1341. int sum0 = 0;
  1342. int sum1 = 0;
  1343. for (int l = 0; l < QK8_1/2; ++l) {
  1344. const float v0 = x[i*QK8_1 + l]*id;
  1345. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1346. y[i].qs[ l] = roundf(v0);
  1347. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1348. sum0 += y[i].qs[ l];
  1349. sum1 += y[i].qs[QK8_1/2 + l];
  1350. }
  1351. y[i].s0 = d * sum0;
  1352. y[i].s1 = d * sum1;
  1353. }
  1354. }
  1355. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1356. assert(k % QK8_1 == 0);
  1357. const int nb = k / QK8_1;
  1358. block_q8_1 * restrict y = vy;
  1359. #if defined(__ARM_NEON)
  1360. for (int i = 0; i < nb; i++) {
  1361. float32x4_t srcv [8];
  1362. float32x4_t asrcv[8];
  1363. float32x4_t amaxv[8];
  1364. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1365. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1366. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1367. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1368. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1369. const float amax = vmaxvq_f32(amaxv[0]);
  1370. const float d = amax / ((1 << 7) - 1);
  1371. const float id = d ? 1.0f/d : 0.0f;
  1372. y[i].d = d;
  1373. int32x4_t accv0 = vdupq_n_s32(0);
  1374. int32x4_t accv1 = vdupq_n_s32(0);
  1375. // low half
  1376. for (int l = 0; l < 4; l++) {
  1377. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1378. const int32x4_t vi = vcvtnq_s32_f32(v);
  1379. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1380. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1381. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1382. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1383. accv0 = vaddq_s32(accv0, vi);
  1384. }
  1385. // high half
  1386. for (int l = 4; l < 8; l++) {
  1387. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1388. const int32x4_t vi = vcvtnq_s32_f32(v);
  1389. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1390. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1391. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1392. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1393. accv1 = vaddq_s32(accv1, vi);
  1394. }
  1395. const int32_t sum0 = vaddvq_s32(accv0);
  1396. const int32_t sum1 = vaddvq_s32(accv1);
  1397. y[i].s0 = d * sum0;
  1398. y[i].s1 = d * sum1;
  1399. }
  1400. #elif defined(__AVX2__) || defined(__AVX__)
  1401. for (int i = 0; i < nb; i++) {
  1402. // Load elements into 4 AVX vectors
  1403. __m256 v0 = _mm256_loadu_ps( x );
  1404. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1405. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1406. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1407. x += 32;
  1408. // Compute max(abs(e)) for the block
  1409. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1410. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1411. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1412. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1413. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1414. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1415. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1416. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1417. const float maxScalar = _mm_cvtss_f32( max4 );
  1418. // Quantize these floats
  1419. const float d = maxScalar / 127.f;
  1420. y[i].d = d;
  1421. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1422. const __m256 mul = _mm256_set1_ps( id );
  1423. // Apply the multiplier
  1424. v0 = _mm256_mul_ps( v0, mul );
  1425. v1 = _mm256_mul_ps( v1, mul );
  1426. v2 = _mm256_mul_ps( v2, mul );
  1427. v3 = _mm256_mul_ps( v3, mul );
  1428. // Round to nearest integer
  1429. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1430. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1431. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1432. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1433. // Convert floats to integers
  1434. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1435. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1436. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1437. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1438. #if defined(__AVX2__)
  1439. // Compute the sum of the quants and set y[i].s
  1440. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1441. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1442. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1443. // Convert int32 to int16
  1444. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1445. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1446. // Convert int16 to int8
  1447. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1448. // We got our precious signed bytes, but the order is now wrong
  1449. // These AVX2 pack instructions process 16-byte pieces independently
  1450. // The following instruction is fixing the order
  1451. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1452. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1453. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1454. #else
  1455. // Since we don't have in AVX some necessary functions,
  1456. // we split the registers in half and call AVX2 analogs from SSE
  1457. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1458. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1459. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1460. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1461. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1462. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1463. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1464. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1465. // Compute the sum of the quants and set y[i].s
  1466. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1467. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1468. y[i].s0 = d * hsum_i32_4(s0);
  1469. y[i].s1 = d * hsum_i32_4(s1);
  1470. // Convert int32 to int16
  1471. ni0 = _mm_packs_epi32( ni0, ni1 );
  1472. ni2 = _mm_packs_epi32( ni2, ni3 );
  1473. ni4 = _mm_packs_epi32( ni4, ni5 );
  1474. ni6 = _mm_packs_epi32( ni6, ni7 );
  1475. // Convert int16 to int8
  1476. ni0 = _mm_packs_epi16( ni0, ni2 );
  1477. ni4 = _mm_packs_epi16( ni4, ni6 );
  1478. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1479. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1480. #endif
  1481. }
  1482. #else
  1483. // scalar
  1484. quantize_row_q8_1_reference(x, y, k);
  1485. #endif
  1486. }
  1487. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1488. assert(k % QK4_0 == 0);
  1489. const int nb = k / QK4_0;
  1490. const block_q4_0 * restrict x = vx;
  1491. #if defined(__AVX2__)
  1492. for (int i = 0; i < nb; i++) {
  1493. // scale factor
  1494. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1495. const uint8_t * restrict pp = x[i].qs;
  1496. for (int l = 0; l < QK4_0; l += 32) {
  1497. // Load 32x4-bit integers into 32x8-bit integers
  1498. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1499. // Subtract 8 from the integers
  1500. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1501. // Convert to 16-bit int
  1502. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1503. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1504. // Convert to 32-bit int -> float 32
  1505. const __m256 vf[4] = {
  1506. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1507. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1508. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1509. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1510. };
  1511. // Scale and store
  1512. for (int j = 0; j < 4; j++) {
  1513. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1514. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1515. }
  1516. }
  1517. }
  1518. #elif defined(__ARM_NEON)
  1519. for (int i = 0; i < nb; i++) {
  1520. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1521. const uint8_t * restrict pp = x[i].qs;
  1522. for (int l = 0; l < QK4_0; l += 16) {
  1523. // Load 16x4-bit integers into 8x8-bit integers
  1524. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1525. // Expand 4-bit qs to 8-bit bytes
  1526. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1527. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1528. // Convert to signed 8-bit integers
  1529. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1530. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1531. // Subtract 8 from each byte
  1532. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1533. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1534. // Interleave and combine
  1535. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1536. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1537. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1538. // convert to 2x int16x8_t
  1539. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1540. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1541. // convert to 4x float32x4_t
  1542. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1543. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1544. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1545. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1546. // Multiply by d
  1547. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1548. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1549. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1550. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1551. // Store
  1552. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1553. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1554. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1555. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1556. }
  1557. }
  1558. #else
  1559. // scalar
  1560. for (int i = 0; i < nb; i++) {
  1561. const float d = x[i].d;
  1562. const uint8_t * restrict pp = x[i].qs;
  1563. for (int l = 0; l < QK4_0; l += 2) {
  1564. const uint8_t vi = pp[l/2];
  1565. const int8_t vi0 = vi & 0x0F;
  1566. const int8_t vi1 = vi >> 4;
  1567. const float v0 = (vi0 - 8)*d;
  1568. const float v1 = (vi1 - 8)*d;
  1569. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1570. y[i*QK4_0 + l + 0] = v0;
  1571. y[i*QK4_0 + l + 1] = v1;
  1572. assert(!isnan(y[i*QK4_0 + l + 0]));
  1573. assert(!isnan(y[i*QK4_0 + l + 1]));
  1574. }
  1575. }
  1576. #endif
  1577. }
  1578. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1579. assert(k % QK4_1 == 0);
  1580. const int nb = k / QK4_1;
  1581. const block_q4_1 * restrict x = vx;
  1582. #if defined(__AVX2__)
  1583. for (int i = 0; i < nb; i++) {
  1584. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1585. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1586. const uint8_t * restrict pp = x[i].qs;
  1587. for (int l = 0; l < QK4_1; l += 32) {
  1588. // Load 32x4-bit integers into 32x8-bit integers
  1589. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1590. // Convert to 16-bit int
  1591. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1592. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1593. // Convert to 32-bit int -> float 32
  1594. const __m256 vf[4] = {
  1595. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1596. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1597. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1598. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1599. };
  1600. // Scale, add m and store
  1601. for (int j = 0; j < 4; j++) {
  1602. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1603. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1604. }
  1605. }
  1606. }
  1607. #elif defined(__ARM_NEON)
  1608. for (int i = 0; i < nb; i++) {
  1609. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1610. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1611. const uint8_t * restrict pp = x[i].qs;
  1612. for (int l = 0; l < QK4_1; l += 16) {
  1613. // Load 16x4-bit integers into 8x8-bit integers
  1614. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1615. // Expand 4-bit qs to 8-bit bytes
  1616. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1617. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1618. // Interleave and combine
  1619. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1620. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1621. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1622. // convert to 2x uint16x8_t
  1623. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1624. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1625. // convert to 4x float32x4_t
  1626. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1627. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1628. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1629. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1630. // multiply by d and add m
  1631. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1632. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1633. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1634. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1635. // Store
  1636. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1637. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1638. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1639. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1640. }
  1641. }
  1642. #else
  1643. for (int i = 0; i < nb; i++) {
  1644. const float d = x[i].d;
  1645. const float m = x[i].m;
  1646. const uint8_t * restrict pp = x[i].qs;
  1647. for (int l = 0; l < QK4_1; l += 2) {
  1648. const uint8_t vi = pp[l/2];
  1649. const int8_t vi0 = vi & 0x0F;
  1650. const int8_t vi1 = vi >> 4;
  1651. const float v0 = vi0*d + m;
  1652. const float v1 = vi1*d + m;
  1653. y[i*QK4_1 + l + 0] = v0;
  1654. y[i*QK4_1 + l + 1] = v1;
  1655. assert(!isnan(y[i*QK4_1 + l + 0]));
  1656. assert(!isnan(y[i*QK4_1 + l + 1]));
  1657. }
  1658. }
  1659. #endif
  1660. }
  1661. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1662. assert(k % QK4_2 == 0);
  1663. const int nb = k / QK4_2;
  1664. const block_q4_2 * restrict x = vx;
  1665. for (int i = 0; i < nb; i++) {
  1666. const float d = GGML_FP16_TO_FP32(x[i].d);
  1667. const uint8_t * restrict pp = x[i].qs;
  1668. for (int l = 0; l < QK4_2; l += 2) {
  1669. const uint8_t vi = pp[l/2];
  1670. const int8_t vi0 = vi & 0x0F;
  1671. const int8_t vi1 = vi >> 4;
  1672. const float v0 = (vi0 - 8)*d;
  1673. const float v1 = (vi1 - 8)*d;
  1674. y[i*QK4_2 + l + 0] = v0;
  1675. y[i*QK4_2 + l + 1] = v1;
  1676. assert(!isnan(y[i*QK4_2 + l + 0]));
  1677. assert(!isnan(y[i*QK4_2 + l + 1]));
  1678. }
  1679. }
  1680. }
  1681. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1682. assert(k % QK5_0 == 0);
  1683. const int nb = k / QK5_0;
  1684. const block_q5_0 * restrict x = vx;
  1685. for (int i = 0; i < nb; i++) {
  1686. const float d = GGML_FP16_TO_FP32(x[i].d);
  1687. const uint8_t * restrict pp = x[i].qs;
  1688. uint32_t qh;
  1689. memcpy(&qh, x[i].qh, sizeof(qh));
  1690. for (int l = 0; l < QK5_0; l += 2) {
  1691. const uint8_t vi = pp[l/2];
  1692. // extract the 5-th bit from qh
  1693. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1694. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1695. const int8_t vi0 = (vi & 0x0F) | vh0;
  1696. const int8_t vi1 = (vi >> 4) | vh1;
  1697. const float v0 = (vi0 - 16)*d;
  1698. const float v1 = (vi1 - 16)*d;
  1699. y[i*QK5_0 + l + 0] = v0;
  1700. y[i*QK5_0 + l + 1] = v1;
  1701. assert(!isnan(y[i*QK5_0 + l + 0]));
  1702. assert(!isnan(y[i*QK5_0 + l + 1]));
  1703. }
  1704. }
  1705. }
  1706. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1707. assert(k % QK5_1 == 0);
  1708. const int nb = k / QK5_1;
  1709. const block_q5_1 * restrict x = vx;
  1710. for (int i = 0; i < nb; i++) {
  1711. const float d = GGML_FP16_TO_FP32(x[i].d);
  1712. const float m = GGML_FP16_TO_FP32(x[i].m);
  1713. const uint8_t * restrict pp = x[i].qs;
  1714. uint32_t qh;
  1715. memcpy(&qh, x[i].qh, sizeof(qh));
  1716. for (int l = 0; l < QK5_1; l += 2) {
  1717. const uint8_t vi = pp[l/2];
  1718. // extract the 5-th bit from qh
  1719. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1720. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1721. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1722. const uint8_t vi1 = (vi >> 4) | vh1;
  1723. const float v0 = vi0*d + m;
  1724. const float v1 = vi1*d + m;
  1725. y[i*QK5_1 + l + 0] = v0;
  1726. y[i*QK5_1 + l + 1] = v1;
  1727. assert(!isnan(y[i*QK5_1 + l + 0]));
  1728. assert(!isnan(y[i*QK5_1 + l + 1]));
  1729. }
  1730. }
  1731. }
  1732. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1733. assert(k % QK8_0 == 0);
  1734. const int nb = k / QK8_0;
  1735. const block_q8_0 * restrict x = vx;
  1736. for (int i = 0; i < nb; i++) {
  1737. const float d = x[i].d;
  1738. const int8_t * restrict pp = x[i].qs;
  1739. for (int l = 0; l < QK8_0; ++l) {
  1740. y[i*QK8_0 + l] = pp[l]*d;
  1741. }
  1742. }
  1743. }
  1744. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1745. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1746. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1747. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1748. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1749. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1750. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1751. [GGML_TYPE_Q4_0] = {
  1752. .dequantize_row_q = dequantize_row_q4_0,
  1753. .quantize_row_q = quantize_row_q4_0,
  1754. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1755. .quantize_row_q_dot = quantize_row_q8_0,
  1756. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1757. .vec_dot_type = GGML_TYPE_Q8_0,
  1758. },
  1759. [GGML_TYPE_Q4_1] = {
  1760. .dequantize_row_q = dequantize_row_q4_1,
  1761. .quantize_row_q = quantize_row_q4_1,
  1762. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1763. .quantize_row_q_dot = quantize_row_q8_1,
  1764. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1765. .vec_dot_type = GGML_TYPE_Q8_1,
  1766. },
  1767. [GGML_TYPE_Q4_2] = {
  1768. .dequantize_row_q = dequantize_row_q4_2,
  1769. .quantize_row_q = quantize_row_q4_2,
  1770. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1771. .quantize_row_q_dot = quantize_row_q8_0,
  1772. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1773. .vec_dot_type = GGML_TYPE_Q8_0,
  1774. },
  1775. [GGML_TYPE_Q5_0] = {
  1776. .dequantize_row_q = dequantize_row_q5_0,
  1777. .quantize_row_q = quantize_row_q5_0,
  1778. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1779. .quantize_row_q_dot = quantize_row_q8_0,
  1780. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1781. .vec_dot_type = GGML_TYPE_Q8_0,
  1782. },
  1783. [GGML_TYPE_Q5_1] = {
  1784. .dequantize_row_q = dequantize_row_q5_1,
  1785. .quantize_row_q = quantize_row_q5_1,
  1786. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1787. .quantize_row_q_dot = quantize_row_q8_1,
  1788. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1789. .vec_dot_type = GGML_TYPE_Q8_1,
  1790. },
  1791. [GGML_TYPE_Q8_0] = {
  1792. .dequantize_row_q = dequantize_row_q8_0,
  1793. .quantize_row_q = quantize_row_q8_0,
  1794. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1795. .quantize_row_q_dot = quantize_row_q8_0,
  1796. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1797. .vec_dot_type = GGML_TYPE_Q8_0,
  1798. },
  1799. [GGML_TYPE_Q8_1] = {
  1800. .dequantize_row_q = NULL, // TODO
  1801. .quantize_row_q = quantize_row_q8_1,
  1802. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1803. .quantize_row_q_dot = quantize_row_q8_1,
  1804. .vec_dot_q = NULL, // TODO
  1805. .vec_dot_type = GGML_TYPE_Q8_1,
  1806. },
  1807. };
  1808. // For internal test use
  1809. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1810. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1811. return quantize_fns[i];
  1812. }
  1813. //
  1814. // simd mappings
  1815. //
  1816. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1817. // we then implement the fundamental computation operations below using only these macros
  1818. // adding support for new architectures requires to define the corresponding SIMD macros
  1819. //
  1820. // GGML_F32_STEP / GGML_F16_STEP
  1821. // number of elements to process in a single step
  1822. //
  1823. // GGML_F32_EPR / GGML_F16_EPR
  1824. // number of elements to fit in a single register
  1825. //
  1826. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1827. #define GGML_SIMD
  1828. // F32 NEON
  1829. #define GGML_F32_STEP 16
  1830. #define GGML_F32_EPR 4
  1831. #define GGML_F32x4 float32x4_t
  1832. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1833. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1834. #define GGML_F32x4_LOAD vld1q_f32
  1835. #define GGML_F32x4_STORE vst1q_f32
  1836. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1837. #define GGML_F32x4_ADD vaddq_f32
  1838. #define GGML_F32x4_MUL vmulq_f32
  1839. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1840. #define GGML_F32x4_REDUCE(res, x) \
  1841. { \
  1842. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1843. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1844. } \
  1845. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1846. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1847. } \
  1848. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1849. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1850. } \
  1851. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1852. }
  1853. #define GGML_F32_VEC GGML_F32x4
  1854. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1855. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1856. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1857. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1858. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1859. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1860. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1861. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1862. // F16 NEON
  1863. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1864. #define GGML_F16_STEP 32
  1865. #define GGML_F16_EPR 8
  1866. #define GGML_F16x8 float16x8_t
  1867. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1868. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1869. #define GGML_F16x8_LOAD vld1q_f16
  1870. #define GGML_F16x8_STORE vst1q_f16
  1871. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1872. #define GGML_F16x8_ADD vaddq_f16
  1873. #define GGML_F16x8_MUL vmulq_f16
  1874. #define GGML_F16x8_REDUCE(res, x) \
  1875. { \
  1876. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1877. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1878. } \
  1879. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1880. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1881. } \
  1882. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1883. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1884. } \
  1885. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1886. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1887. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1888. }
  1889. #define GGML_F16_VEC GGML_F16x8
  1890. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1891. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1892. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1893. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1894. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1895. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1896. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1897. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1898. #else
  1899. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1900. // and take advantage of the vcvt_ functions to convert to/from FP16
  1901. #define GGML_F16_STEP 16
  1902. #define GGML_F16_EPR 4
  1903. #define GGML_F32Cx4 float32x4_t
  1904. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1905. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1906. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1907. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1908. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1909. #define GGML_F32Cx4_ADD vaddq_f32
  1910. #define GGML_F32Cx4_MUL vmulq_f32
  1911. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1912. #define GGML_F16_VEC GGML_F32Cx4
  1913. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1914. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1915. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1916. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1917. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1918. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1919. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1920. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1921. #endif
  1922. #elif defined(__AVX__)
  1923. #define GGML_SIMD
  1924. // F32 AVX
  1925. #define GGML_F32_STEP 32
  1926. #define GGML_F32_EPR 8
  1927. #define GGML_F32x8 __m256
  1928. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1929. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1930. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1931. #define GGML_F32x8_STORE _mm256_storeu_ps
  1932. #if defined(__FMA__)
  1933. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1934. #else
  1935. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1936. #endif
  1937. #define GGML_F32x8_ADD _mm256_add_ps
  1938. #define GGML_F32x8_MUL _mm256_mul_ps
  1939. #define GGML_F32x8_REDUCE(res, x) \
  1940. { \
  1941. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1942. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1943. } \
  1944. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1945. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1946. } \
  1947. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1948. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1949. } \
  1950. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1951. _mm256_extractf128_ps(x[0], 1)); \
  1952. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1953. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1954. }
  1955. // TODO: is this optimal ?
  1956. #define GGML_F32_VEC GGML_F32x8
  1957. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1958. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1959. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1960. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1961. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1962. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1963. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1964. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1965. // F16 AVX
  1966. #define GGML_F16_STEP 32
  1967. #define GGML_F16_EPR 8
  1968. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1969. #define GGML_F32Cx8 __m256
  1970. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1971. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1972. #if defined(__F16C__)
  1973. // the _mm256_cvt intrinsics require F16C
  1974. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1975. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1976. #else
  1977. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1978. float tmp[8];
  1979. for (int i = 0; i < 8; i++)
  1980. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1981. return _mm256_loadu_ps(tmp);
  1982. }
  1983. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1984. float arr[8];
  1985. _mm256_storeu_ps(arr, y);
  1986. for (int i = 0; i < 8; i++)
  1987. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1988. }
  1989. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1990. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1991. #endif
  1992. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1993. #define GGML_F32Cx8_ADD _mm256_add_ps
  1994. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1995. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1996. #define GGML_F16_VEC GGML_F32Cx8
  1997. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1998. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1999. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  2000. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  2001. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  2002. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  2003. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  2004. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  2005. #elif defined(__POWER9_VECTOR__)
  2006. #define GGML_SIMD
  2007. // F32 POWER9
  2008. #define GGML_F32_STEP 32
  2009. #define GGML_F32_EPR 4
  2010. #define GGML_F32x4 vector float
  2011. #define GGML_F32x4_ZERO 0.0f
  2012. #define GGML_F32x4_SET1 vec_splats
  2013. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  2014. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  2015. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  2016. #define GGML_F32x4_ADD vec_add
  2017. #define GGML_F32x4_MUL vec_mul
  2018. #define GGML_F32x4_REDUCE(res, x) \
  2019. { \
  2020. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2021. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  2022. } \
  2023. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2024. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  2025. } \
  2026. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2027. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  2028. } \
  2029. res = vec_extract(x[0], 0) + \
  2030. vec_extract(x[0], 1) + \
  2031. vec_extract(x[0], 2) + \
  2032. vec_extract(x[0], 3); \
  2033. }
  2034. #define GGML_F32_VEC GGML_F32x4
  2035. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2036. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2037. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2038. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2039. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2040. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2041. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2042. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2043. // F16 POWER9
  2044. #define GGML_F16_STEP GGML_F32_STEP
  2045. #define GGML_F16_EPR GGML_F32_EPR
  2046. #define GGML_F16_VEC GGML_F32x4
  2047. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  2048. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  2049. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  2050. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  2051. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  2052. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  2053. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  2054. vec_extract_fp32_from_shortl(vec_xl(0, p))
  2055. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  2056. #define GGML_F16_VEC_STORE(p, r, i) \
  2057. if (i & 0x1) \
  2058. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  2059. r[i - GGML_ENDIAN_BYTE(0)]), \
  2060. 0, p - GGML_F16_EPR)
  2061. #elif defined(__wasm_simd128__)
  2062. #define GGML_SIMD
  2063. // F32 WASM
  2064. #define GGML_F32_STEP 16
  2065. #define GGML_F32_EPR 4
  2066. #define GGML_F32x4 v128_t
  2067. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  2068. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  2069. #define GGML_F32x4_LOAD wasm_v128_load
  2070. #define GGML_F32x4_STORE wasm_v128_store
  2071. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  2072. #define GGML_F32x4_ADD wasm_f32x4_add
  2073. #define GGML_F32x4_MUL wasm_f32x4_mul
  2074. #define GGML_F32x4_REDUCE(res, x) \
  2075. { \
  2076. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2077. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2078. } \
  2079. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2080. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2081. } \
  2082. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2083. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2084. } \
  2085. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2086. wasm_f32x4_extract_lane(x[0], 1) + \
  2087. wasm_f32x4_extract_lane(x[0], 2) + \
  2088. wasm_f32x4_extract_lane(x[0], 3); \
  2089. }
  2090. #define GGML_F32_VEC GGML_F32x4
  2091. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2092. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2093. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2094. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2095. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2096. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2097. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2098. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2099. // F16 WASM
  2100. #define GGML_F16_STEP 16
  2101. #define GGML_F16_EPR 4
  2102. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  2103. float tmp[4];
  2104. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  2105. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  2106. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  2107. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  2108. return wasm_v128_load(tmp);
  2109. }
  2110. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  2111. float tmp[4];
  2112. wasm_v128_store(tmp, x);
  2113. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2114. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2115. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2116. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2117. }
  2118. #define GGML_F16x4 v128_t
  2119. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2120. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2121. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2122. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2123. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2124. #define GGML_F16x4_ADD wasm_f32x4_add
  2125. #define GGML_F16x4_MUL wasm_f32x4_mul
  2126. #define GGML_F16x4_REDUCE(res, x) \
  2127. { \
  2128. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2129. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2130. } \
  2131. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2132. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2133. } \
  2134. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2135. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2136. } \
  2137. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2138. wasm_f32x4_extract_lane(x[0], 1) + \
  2139. wasm_f32x4_extract_lane(x[0], 2) + \
  2140. wasm_f32x4_extract_lane(x[0], 3); \
  2141. }
  2142. #define GGML_F16_VEC GGML_F16x4
  2143. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2144. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2145. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2146. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2147. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2148. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2149. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2150. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2151. #elif defined(__SSE3__)
  2152. #define GGML_SIMD
  2153. // F32 SSE
  2154. #define GGML_F32_STEP 32
  2155. #define GGML_F32_EPR 4
  2156. #define GGML_F32x4 __m128
  2157. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2158. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2159. #define GGML_F32x4_LOAD _mm_loadu_ps
  2160. #define GGML_F32x4_STORE _mm_storeu_ps
  2161. #if defined(__FMA__)
  2162. // TODO: Does this work?
  2163. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2164. #else
  2165. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2166. #endif
  2167. #define GGML_F32x4_ADD _mm_add_ps
  2168. #define GGML_F32x4_MUL _mm_mul_ps
  2169. #define GGML_F32x4_REDUCE(res, x) \
  2170. { \
  2171. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2172. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2173. } \
  2174. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2175. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2176. } \
  2177. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2178. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2179. } \
  2180. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2181. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2182. }
  2183. // TODO: is this optimal ?
  2184. #define GGML_F32_VEC GGML_F32x4
  2185. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2186. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2187. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2188. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2189. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2190. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2191. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2192. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2193. // F16 SSE
  2194. #define GGML_F16_STEP 32
  2195. #define GGML_F16_EPR 4
  2196. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2197. float tmp[4];
  2198. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2199. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2200. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2201. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2202. return _mm_loadu_ps(tmp);
  2203. }
  2204. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2205. float arr[4];
  2206. _mm_storeu_ps(arr, y);
  2207. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2208. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2209. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2210. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2211. }
  2212. #define GGML_F32Cx4 __m128
  2213. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2214. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2215. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2216. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2217. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2218. #define GGML_F32Cx4_ADD _mm_add_ps
  2219. #define GGML_F32Cx4_MUL _mm_mul_ps
  2220. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2221. #define GGML_F16_VEC GGML_F32Cx4
  2222. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2223. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2224. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2225. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2226. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2227. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2228. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2229. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2230. #endif
  2231. // GGML_F32_ARR / GGML_F16_ARR
  2232. // number of registers to use per step
  2233. #ifdef GGML_SIMD
  2234. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2235. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2236. #endif
  2237. //
  2238. // fundamental operations
  2239. //
  2240. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2241. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2242. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2243. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2244. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2245. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2246. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2247. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2248. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2249. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2250. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2251. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2252. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2253. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2254. #ifdef GGML_SIMD
  2255. float sumf = 0.0f;
  2256. const int np = (n & ~(GGML_F32_STEP - 1));
  2257. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2258. GGML_F32_VEC ax[GGML_F32_ARR];
  2259. GGML_F32_VEC ay[GGML_F32_ARR];
  2260. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2261. for (int j = 0; j < GGML_F32_ARR; j++) {
  2262. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2263. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2264. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2265. }
  2266. }
  2267. // reduce sum0..sum3 to sum0
  2268. GGML_F32_VEC_REDUCE(sumf, sum);
  2269. // leftovers
  2270. for (int i = np; i < n; ++i) {
  2271. sumf += x[i]*y[i];
  2272. }
  2273. #else
  2274. // scalar
  2275. ggml_float sumf = 0.0;
  2276. for (int i = 0; i < n; ++i) {
  2277. sumf += (ggml_float)(x[i]*y[i]);
  2278. }
  2279. #endif
  2280. *s = sumf;
  2281. }
  2282. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2283. ggml_float sumf = 0.0;
  2284. #if defined(GGML_SIMD)
  2285. const int np = (n & ~(GGML_F16_STEP - 1));
  2286. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2287. GGML_F16_VEC ax[GGML_F16_ARR];
  2288. GGML_F16_VEC ay[GGML_F16_ARR];
  2289. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2290. for (int j = 0; j < GGML_F16_ARR; j++) {
  2291. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2292. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2293. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2294. }
  2295. }
  2296. // reduce sum0..sum3 to sum0
  2297. GGML_F16_VEC_REDUCE(sumf, sum);
  2298. // leftovers
  2299. for (int i = np; i < n; ++i) {
  2300. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2301. }
  2302. #else
  2303. for (int i = 0; i < n; ++i) {
  2304. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2305. }
  2306. #endif
  2307. *s = sumf;
  2308. }
  2309. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2310. const int nb = n / QK8_0;
  2311. assert(n % QK8_0 == 0);
  2312. assert(nb % 2 == 0);
  2313. const block_q4_0 * restrict x = vx;
  2314. const block_q8_0 * restrict y = vy;
  2315. #if defined(__ARM_NEON)
  2316. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2317. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2318. for (int i = 0; i < nb; i += 2) {
  2319. const block_q4_0 * restrict x0 = &x[i + 0];
  2320. const block_q4_0 * restrict x1 = &x[i + 1];
  2321. const block_q8_0 * restrict y0 = &y[i + 0];
  2322. const block_q8_0 * restrict y1 = &y[i + 1];
  2323. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2324. const int8x16_t s8b = vdupq_n_s8(0x8);
  2325. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2326. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2327. // 4-bit -> 8-bit
  2328. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2329. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2330. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2331. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2332. // sub 8
  2333. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2334. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2335. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2336. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2337. // interleave
  2338. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2339. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2340. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2341. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2342. // load y
  2343. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2344. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2345. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2346. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2347. #if defined(__ARM_FEATURE_DOTPROD)
  2348. // dot product into int32x4_t
  2349. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2350. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2353. #else
  2354. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2355. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2356. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2357. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2358. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2359. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2360. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2361. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2362. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2363. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2364. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2365. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2366. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2367. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2368. #endif
  2369. }
  2370. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2371. #elif defined(__AVX2__)
  2372. // Initialize accumulator with zeros
  2373. __m256 acc = _mm256_setzero_ps();
  2374. // Main loop
  2375. for (int i = 0; i < nb; ++i) {
  2376. /* Compute combined scale for the block */
  2377. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2378. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2379. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2380. const __m256i off = _mm256_set1_epi8( 8 );
  2381. bx = _mm256_sub_epi8( bx, off );
  2382. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2383. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2384. /* Multiply q with scale and accumulate */
  2385. acc = _mm256_fmadd_ps( d, q, acc );
  2386. }
  2387. *s = hsum_float_8(acc);
  2388. #elif defined(__AVX__)
  2389. // Initialize accumulator with zeros
  2390. __m256 acc = _mm256_setzero_ps();
  2391. // Main loop
  2392. for (int i = 0; i < nb; ++i) {
  2393. // Compute combined scale for the block
  2394. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2395. __m128i i32[2];
  2396. for (int j = 0; j < 2; ++j) {
  2397. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2398. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2399. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2400. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2401. const __m128i off = _mm_set1_epi8( 8 );
  2402. bx = _mm_sub_epi8( bx, off );
  2403. // Get absolute values of x vectors
  2404. const __m128i ax = _mm_sign_epi8(bx, bx);
  2405. // Sign the values of the y vectors
  2406. const __m128i sy = _mm_sign_epi8(by, bx);
  2407. // Perform multiplication and create 16-bit values
  2408. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2409. const __m128i ones = _mm_set1_epi16(1);
  2410. i32[j] = _mm_madd_epi16(ones, dot);
  2411. }
  2412. // Convert int32_t to float
  2413. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2414. // Apply the scale, and accumulate
  2415. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2416. }
  2417. *s = hsum_float_8(acc);
  2418. #else
  2419. // scalar
  2420. float sumf = 0.0;
  2421. for (int i = 0; i < nb; i++) {
  2422. const float d0 = x[i].d;
  2423. const float d1 = y[i].d;
  2424. const uint8_t * restrict p0 = x[i].qs;
  2425. const int8_t * restrict p1 = y[i].qs;
  2426. int sumi = 0;
  2427. for (int j = 0; j < QK8_0/2; j++) {
  2428. const uint8_t v0 = p0[j];
  2429. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2430. const int i1 = (int8_t) (v0 >> 4) - 8;
  2431. const int i2 = p1[2*j + 0];
  2432. const int i3 = p1[2*j + 1];
  2433. sumi += i0*i2 + i1*i3;
  2434. }
  2435. sumf += d0*d1*sumi;
  2436. }
  2437. *s = sumf;
  2438. #endif
  2439. }
  2440. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2441. const int nb = n / QK8_1;
  2442. assert(n % QK8_1 == 0);
  2443. assert(nb % 2 == 0);
  2444. const block_q4_1 * restrict x = vx;
  2445. const block_q8_1 * restrict y = vy;
  2446. // TODO: add AVX / WASM SIMD / etc
  2447. #if defined(__ARM_NEON)
  2448. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2449. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2450. float summs = 0;
  2451. for (int i = 0; i < nb; i += 2) {
  2452. const block_q4_1 * restrict x0 = &x[i + 0];
  2453. const block_q4_1 * restrict x1 = &x[i + 1];
  2454. const block_q8_1 * restrict y0 = &y[i + 0];
  2455. const block_q8_1 * restrict y1 = &y[i + 1];
  2456. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2457. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2458. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2459. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2460. // 4-bit -> 8-bit
  2461. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2462. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2463. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2464. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2465. // interleave
  2466. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2467. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2468. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2469. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2470. // load y
  2471. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2472. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2473. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2474. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2475. #if defined(__ARM_FEATURE_DOTPROD)
  2476. // dot product into int32x4_t
  2477. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2478. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2479. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2480. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2481. #else
  2482. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2483. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2484. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2485. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2486. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2487. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2488. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2489. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2490. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2491. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2492. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2493. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2494. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2495. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2496. #endif
  2497. }
  2498. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2499. #elif defined(__AVX2__)
  2500. // Initialize accumulator with zeros
  2501. __m256 acc = _mm256_setzero_ps();
  2502. float summs = 0;
  2503. // Main loop
  2504. for (int i = 0; i < nb; ++i) {
  2505. const float * d0 = &x[i].d;
  2506. const float * d1 = &y[i].d;
  2507. summs += x[i].m * (y[i].s0 + y[i].s1);
  2508. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2509. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2510. // Compute combined scales
  2511. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2512. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2513. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2514. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2515. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2516. // Accumulate d0*d1*x*y
  2517. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2518. }
  2519. *s = hsum_float_8(acc) + summs;
  2520. #else
  2521. // scalar
  2522. float sumf = 0.0;
  2523. for (int i = 0; i < nb; i++) {
  2524. const float d0 = x[i].d;
  2525. const float m0 = x[i].m;
  2526. const float d1 = y[i].d;
  2527. const uint8_t * restrict p0 = x[i].qs;
  2528. const int8_t * restrict p1 = y[i].qs;
  2529. // TODO: this is very slow ..
  2530. for (int j = 0; j < QK8_1/2; j++) {
  2531. const uint8_t v0 = p0[j];
  2532. const float f0 = d0*(v0 & 0x0F) + m0;
  2533. const float f1 = d0*(v0 >> 4) + m0;
  2534. const float f2 = d1*p1[2*j + 0];
  2535. const float f3 = d1*p1[2*j + 1];
  2536. sumf += f0*f2 + f1*f3;
  2537. }
  2538. }
  2539. *s = sumf;
  2540. #endif
  2541. }
  2542. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2543. const int nb = n / QK8_0;
  2544. assert(n % QK8_0 == 0);
  2545. assert(nb % 2 == 0);
  2546. assert(QK8_0 == 2*QK4_2);
  2547. const block_q4_2 * restrict x = vx;
  2548. const block_q8_0 * restrict y = vy;
  2549. #if defined(__ARM_NEON)
  2550. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2551. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2552. for (int i = 0; i < nb; i += 2) {
  2553. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2554. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2555. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2556. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2557. const block_q8_0 * restrict y0 = &y[i + 0];
  2558. const block_q8_0 * restrict y1 = &y[i + 1];
  2559. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2560. const int8x16_t s8b = vdupq_n_s8(0x8);
  2561. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2562. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2563. // 4-bit -> 8-bit
  2564. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2565. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2566. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2567. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2568. // sub 8
  2569. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2570. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2571. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2572. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2573. // interleave
  2574. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2575. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2576. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2577. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2578. // load y
  2579. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2580. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2581. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2582. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2583. #if defined(__ARM_FEATURE_DOTPROD)
  2584. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2585. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2586. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2587. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2588. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2589. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2590. #else
  2591. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2592. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2593. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2594. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2595. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2596. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2597. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2598. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2599. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2600. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2601. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2602. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2603. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2604. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2605. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2606. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2607. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2608. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2609. #endif
  2610. }
  2611. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2612. #elif defined(__AVX2__)
  2613. // Initialize accumulator with zeros
  2614. __m256 acc = _mm256_setzero_ps();
  2615. // Main loop
  2616. for (int i = 0; i < nb; i++) {
  2617. /* Compute combined scale for the block */
  2618. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2619. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2620. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2621. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2622. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2623. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2624. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2625. const __m256i off = _mm256_set1_epi8(8);
  2626. bx = _mm256_sub_epi8(bx, off);
  2627. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2628. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2629. /* Multiply q with scale and accumulate */
  2630. acc = _mm256_fmadd_ps(d, q, acc);
  2631. }
  2632. *s = hsum_float_8(acc);
  2633. #else
  2634. // scalar
  2635. float sumf = 0.0;
  2636. for (int i = 0; i < nb; i++) {
  2637. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2638. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2639. const int8_t * restrict y0 = y[i].qs;
  2640. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2641. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2642. int sumi_0 = 0;
  2643. int sumi_1 = 0;
  2644. for (int j = 0; j < QK8_0/4; j++) {
  2645. const uint8_t v0 = x0[j];
  2646. const uint8_t v1 = x1[j];
  2647. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2648. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2649. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2650. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2651. const int i2_0 = y0[2*j + 0];
  2652. const int i3_0 = y0[2*j + 1];
  2653. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2654. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2655. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2656. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2657. }
  2658. sumf += (d0 * y[i].d) * sumi_0;
  2659. sumf += (d1 * y[i].d) * sumi_1;
  2660. }
  2661. *s = sumf;
  2662. #endif
  2663. }
  2664. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2665. const int nb = n / QK8_0;
  2666. assert(n % QK8_0 == 0);
  2667. assert(nb % 2 == 0);
  2668. assert(QK8_0 == QK5_0);
  2669. const block_q5_0 * restrict x = vx;
  2670. const block_q8_0 * restrict y = vy;
  2671. #if defined(__ARM_NEON)
  2672. float32x4_t sumv = vdupq_n_f32(0.0f);
  2673. uint64_t tmp[4];
  2674. for (int i = 0; i < nb; ++i) {
  2675. const block_q5_0 * restrict x0 = &x[i];
  2676. const block_q8_0 * restrict y0 = &y[i];
  2677. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2678. const int8x16_t s16b = vdupq_n_s8(0x10);
  2679. // extract the 5th bit
  2680. uint32_t qh;
  2681. memcpy(&qh, x0->qh, sizeof(qh));
  2682. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2683. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2684. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2685. tmp[3] = table_b2b_u[(qh >> 24) ];
  2686. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2687. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2688. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2689. // 4-bit -> 8-bit
  2690. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2691. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2692. // interleave
  2693. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2694. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2695. // add high bit and sub 16
  2696. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2697. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2698. // load y
  2699. const int8x16_t v1l = vld1q_s8(y0->qs);
  2700. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2701. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2702. #if defined(__ARM_FEATURE_DOTPROD)
  2703. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2704. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2705. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2706. #else
  2707. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2708. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2709. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2710. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2711. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2712. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2713. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2714. #endif
  2715. }
  2716. *s = vaddvq_f32(sumv);
  2717. #elif defined(__wasm_simd128__)
  2718. v128_t sumv = wasm_f32x4_splat(0.0f);
  2719. uint64_t tmp[4];
  2720. for (int i = 0; i < nb; ++i) {
  2721. const block_q5_0 * restrict x0 = &x[i];
  2722. const block_q8_0 * restrict y0 = &y[i];
  2723. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2724. const v128_t s16b = wasm_i8x16_splat(0x10);
  2725. // extract the 5th bit
  2726. uint32_t qh;
  2727. memcpy(&qh, x0->qh, sizeof(qh));
  2728. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2729. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2730. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2731. tmp[3] = table_b2b_u[(qh >> 24) ];
  2732. const v128_t qhl = wasm_v128_load(tmp + 0);
  2733. const v128_t qhh = wasm_v128_load(tmp + 2);
  2734. const v128_t v0 = wasm_v128_load(x0->qs);
  2735. // 4-bit -> 8-bit
  2736. const v128_t v0l = wasm_v128_and (v0, m4b);
  2737. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2738. // interleave
  2739. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2740. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2741. // add high bit and sub 16
  2742. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2743. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2744. // load y
  2745. const v128_t v1l = wasm_v128_load(y0->qs);
  2746. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2747. // int8x16 -> int16x8
  2748. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2749. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2750. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2751. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2752. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2753. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2754. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2755. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2756. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2757. // dot product
  2758. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2759. wasm_i32x4_add(
  2760. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2761. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2762. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2763. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2764. }
  2765. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2766. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2767. #elif defined(__AVX2__)
  2768. // Initialize accumulator with zeros
  2769. __m256 acc = _mm256_setzero_ps();
  2770. // Main loop
  2771. for (int i = 0; i < nb; i++) {
  2772. /* Compute combined scale for the block */
  2773. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2774. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2775. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2776. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2777. bx = _mm256_or_si256(bx, bxhi);
  2778. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2779. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2780. /* Multiply q with scale and accumulate */
  2781. acc = _mm256_fmadd_ps(d, q, acc);
  2782. }
  2783. *s = hsum_float_8(acc);
  2784. #else
  2785. // scalar
  2786. float sumf = 0.0;
  2787. for (int i = 0; i < nb; i++) {
  2788. const uint8_t * restrict x0 = x[i].qs;
  2789. const int8_t * restrict y0 = y[i].qs;
  2790. uint32_t qh;
  2791. memcpy(&qh, x[i].qh, sizeof(qh));
  2792. const float d = GGML_FP16_TO_FP32(x[i].d);
  2793. int sxy = 0;
  2794. for (int j = 0; j < QK8_0/2; j++) {
  2795. const uint8_t v0 = x0[j];
  2796. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2797. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2798. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2799. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2800. const int y0_0 = y0[2*j + 0];
  2801. const int y1_0 = y0[2*j + 1];
  2802. sxy += x0_0*y0_0 + x1_0*y1_0;
  2803. }
  2804. sumf += (d*sxy)*y[i].d;
  2805. }
  2806. *s = sumf;
  2807. #endif
  2808. }
  2809. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2810. const int nb = n / QK8_1;
  2811. assert(n % QK8_1 == 0);
  2812. assert(nb % 2 == 0);
  2813. assert(QK8_1 == QK5_1);
  2814. const block_q5_1 * restrict x = vx;
  2815. const block_q8_1 * restrict y = vy;
  2816. #if defined(__ARM_NEON)
  2817. float32x4_t sumv = vdupq_n_f32(0.0f);
  2818. float summs = 0.0f;
  2819. uint64_t tmp[4];
  2820. for (int i = 0; i < nb; ++i) {
  2821. const block_q5_1 * restrict x0 = &x[i];
  2822. const block_q8_1 * restrict y0 = &y[i];
  2823. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2824. // extract the 5th bit
  2825. uint32_t qh;
  2826. memcpy(&qh, x0->qh, sizeof(qh));
  2827. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2828. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2829. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2830. tmp[3] = table_b2b_u[(qh >> 24) ];
  2831. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2832. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2833. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2834. // 4-bit -> 8-bit
  2835. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2836. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2837. // interleave
  2838. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2839. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2840. // add
  2841. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2842. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2843. // load y
  2844. const int8x16_t v1l = vld1q_s8(y0->qs);
  2845. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2846. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2847. #if defined(__ARM_FEATURE_DOTPROD)
  2848. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2849. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2850. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2851. #else
  2852. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2853. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2854. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2855. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2856. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2857. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2858. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2859. #endif
  2860. }
  2861. *s = vaddvq_f32(sumv) + summs;
  2862. #elif defined(__wasm_simd128__)
  2863. v128_t sumv = wasm_f32x4_splat(0.0f);
  2864. float summs = 0.0f;
  2865. uint64_t tmp[4];
  2866. for (int i = 0; i < nb; ++i) {
  2867. const block_q5_1 * restrict x0 = &x[i];
  2868. const block_q8_1 * restrict y0 = &y[i];
  2869. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2870. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2871. // extract the 5th bit
  2872. uint32_t qh;
  2873. memcpy(&qh, x0->qh, sizeof(qh));
  2874. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2875. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2876. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2877. tmp[3] = table_b2b_u[(qh >> 24) ];
  2878. const v128_t qhl = wasm_v128_load(tmp + 0);
  2879. const v128_t qhh = wasm_v128_load(tmp + 2);
  2880. const v128_t v0 = wasm_v128_load(x0->qs);
  2881. // 4-bit -> 8-bit
  2882. const v128_t v0l = wasm_v128_and (v0, m4b);
  2883. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2884. static bool x = true;
  2885. // interleave
  2886. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2887. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2888. // add high bit
  2889. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2890. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2891. // load y
  2892. const v128_t v1l = wasm_v128_load(y0->qs);
  2893. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2894. // int8x16 -> int16x8
  2895. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2896. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2897. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2898. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2899. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2900. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2901. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2902. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2903. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2904. // dot product
  2905. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2906. wasm_i32x4_add(
  2907. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2908. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2909. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2910. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2911. }
  2912. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2913. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2914. #elif defined(__AVX2__)
  2915. // Initialize accumulator with zeros
  2916. __m256 acc = _mm256_setzero_ps();
  2917. float summs = 0.0f;
  2918. // Main loop
  2919. for (int i = 0; i < nb; i++) {
  2920. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2921. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2922. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2923. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2924. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2925. bx = _mm256_or_si256(bx, bxhi);
  2926. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2927. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2928. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2929. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2930. }
  2931. *s = hsum_float_8(acc) + summs;
  2932. #else
  2933. float sumf = 0.0;
  2934. for (int i = 0; i < nb; i++) {
  2935. const uint8_t * restrict x0 = x[i].qs;
  2936. const int8_t * restrict y0 = y[i].qs;
  2937. uint32_t qh;
  2938. memcpy(&qh, x[i].qh, sizeof(qh));
  2939. const float d = GGML_FP16_TO_FP32(x[i].d);
  2940. const float m = GGML_FP16_TO_FP32(x[i].m);
  2941. int sxy = 0;
  2942. for (int j = 0; j < QK8_1/2; j++) {
  2943. const uint8_t v0 = x0[j];
  2944. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2945. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2946. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2947. const int x1_0 = (v0 >> 4) | x1_0h;
  2948. const int y0_0 = y0[2*j + 0];
  2949. const int y1_0 = y0[2*j + 1];
  2950. sxy += x0_0*y0_0 + x1_0*y1_0;
  2951. }
  2952. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2953. }
  2954. *s = sumf;
  2955. #endif
  2956. }
  2957. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2958. const int nb = n / QK8_0;
  2959. assert(n % QK8_0 == 0);
  2960. assert(nb % 2 == 0);
  2961. assert(QK8_0 == QK8_0);
  2962. const block_q8_0 * restrict x = vx;
  2963. const block_q8_0 * restrict y = vy;
  2964. #if defined(__ARM_NEON)
  2965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2967. for (int i = 0; i < nb; i += 2) {
  2968. const block_q8_0 * restrict x0 = &x[i + 0];
  2969. const block_q8_0 * restrict x1 = &x[i + 1];
  2970. const block_q8_0 * restrict y0 = &y[i + 0];
  2971. const block_q8_0 * restrict y1 = &y[i + 1];
  2972. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2973. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2974. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2975. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2976. // load y
  2977. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2978. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2979. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2980. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2981. #if defined(__ARM_FEATURE_DOTPROD)
  2982. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2983. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2984. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2985. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2986. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2987. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2988. #else
  2989. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2990. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2991. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2992. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2993. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2994. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2995. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2996. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2997. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2998. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2999. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  3000. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  3001. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  3002. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  3003. #endif
  3004. }
  3005. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3006. #elif defined(__AVX2__)
  3007. // Initialize accumulator with zeros
  3008. __m256 acc = _mm256_setzero_ps();
  3009. // Main loop
  3010. for (int i = 0; i < nb; ++i) {
  3011. // Compute combined scale for the block
  3012. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  3013. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  3014. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3015. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  3016. // Multiply q with scale and accumulate
  3017. acc = _mm256_fmadd_ps( d, q, acc );
  3018. }
  3019. *s = hsum_float_8(acc);
  3020. #else
  3021. // scalar
  3022. float sumf = 0.0;
  3023. for (int i = 0; i < nb; i++) {
  3024. const int8_t * restrict x0 = x[i].qs;
  3025. const int8_t * restrict y0 = y[i].qs;
  3026. int sumi = 0;
  3027. for (int j = 0; j < QK8_0; j++) {
  3028. const int v0 = x0[j];
  3029. const int v1 = y0[j];
  3030. sumi += v0*v1;
  3031. }
  3032. sumf += (x[i].d*y[i].d)*sumi;
  3033. }
  3034. *s = sumf;
  3035. #endif
  3036. }
  3037. // compute GGML_VEC_DOT_UNROLL dot products at once
  3038. // xs - x row stride in bytes
  3039. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  3040. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  3041. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  3042. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  3043. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  3044. }
  3045. #if defined(GGML_SIMD)
  3046. const int np = (n & ~(GGML_F16_STEP - 1));
  3047. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  3048. GGML_F16_VEC ax[GGML_F16_ARR];
  3049. GGML_F16_VEC ay[GGML_F16_ARR];
  3050. for (int i = 0; i < np; i += GGML_F16_STEP) {
  3051. for (int j = 0; j < GGML_F16_ARR; j++) {
  3052. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  3053. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  3054. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  3055. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  3056. }
  3057. }
  3058. }
  3059. // reduce sum0..sum3 to sum0
  3060. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  3061. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  3062. }
  3063. // leftovers
  3064. for (int i = np; i < n; ++i) {
  3065. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  3066. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  3067. }
  3068. }
  3069. #else
  3070. for (int i = 0; i < n; ++i) {
  3071. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  3072. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  3073. }
  3074. }
  3075. #endif
  3076. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  3077. s[i] = sumf[i];
  3078. }
  3079. }
  3080. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  3081. #if defined(GGML_SIMD)
  3082. const int np = (n & ~(GGML_F32_STEP - 1));
  3083. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3084. GGML_F32_VEC ax[GGML_F32_ARR];
  3085. GGML_F32_VEC ay[GGML_F32_ARR];
  3086. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3087. for (int j = 0; j < GGML_F32_ARR; j++) {
  3088. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  3089. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3090. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  3091. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3092. }
  3093. }
  3094. // leftovers
  3095. for (int i = np; i < n; ++i) {
  3096. y[i] += x[i]*v;
  3097. }
  3098. #else
  3099. // scalar
  3100. for (int i = 0; i < n; ++i) {
  3101. y[i] += x[i]*v;
  3102. }
  3103. #endif
  3104. }
  3105. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3106. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3107. #if defined(GGML_SIMD)
  3108. const int np = (n & ~(GGML_F32_STEP - 1));
  3109. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3110. GGML_F32_VEC ay[GGML_F32_ARR];
  3111. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3112. for (int j = 0; j < GGML_F32_ARR; j++) {
  3113. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3114. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3115. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3116. }
  3117. }
  3118. // leftovers
  3119. for (int i = np; i < n; ++i) {
  3120. y[i] *= v;
  3121. }
  3122. #else
  3123. // scalar
  3124. for (int i = 0; i < n; ++i) {
  3125. y[i] *= v;
  3126. }
  3127. #endif
  3128. }
  3129. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3130. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3131. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3132. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3133. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3134. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3135. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3136. static const float GELU_COEF_A = 0.044715f;
  3137. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3138. inline static float ggml_gelu_f32(float x) {
  3139. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3140. }
  3141. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3142. const uint16_t * i16 = (const uint16_t *) x;
  3143. for (int i = 0; i < n; ++i) {
  3144. y[i] = table_gelu_f16[i16[i]];
  3145. }
  3146. }
  3147. #ifdef GGML_GELU_FP16
  3148. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3149. uint16_t t;
  3150. for (int i = 0; i < n; ++i) {
  3151. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3152. memcpy(&t, &fp16, sizeof(uint16_t));
  3153. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3154. }
  3155. }
  3156. #else
  3157. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3158. for (int i = 0; i < n; ++i) {
  3159. y[i] = ggml_gelu_f32(x[i]);
  3160. }
  3161. }
  3162. #endif
  3163. // Sigmoid Linear Unit (SiLU) function
  3164. inline static float ggml_silu_f32(float x) {
  3165. return x/(1.0f + expf(-x));
  3166. }
  3167. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3168. const uint16_t * i16 = (const uint16_t *) x;
  3169. for (int i = 0; i < n; ++i) {
  3170. y[i] = table_silu_f16[i16[i]];
  3171. }
  3172. }
  3173. #ifdef GGML_SILU_FP16
  3174. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3175. uint16_t t;
  3176. for (int i = 0; i < n; ++i) {
  3177. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3178. memcpy(&t, &fp16, sizeof(uint16_t));
  3179. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3180. }
  3181. }
  3182. #else
  3183. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3184. for (int i = 0; i < n; ++i) {
  3185. y[i] = ggml_silu_f32(x[i]);
  3186. }
  3187. }
  3188. #endif
  3189. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3190. #ifndef GGML_USE_ACCELERATE
  3191. ggml_float sum = 0.0;
  3192. for (int i = 0; i < n; ++i) {
  3193. sum += (ggml_float)x[i];
  3194. }
  3195. *s = sum;
  3196. #else
  3197. vDSP_sve(x, 1, s, n);
  3198. #endif
  3199. }
  3200. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3201. ggml_float sum = 0.0;
  3202. for (int i = 0; i < n; ++i) {
  3203. sum += (ggml_float)x[i];
  3204. }
  3205. *s = sum;
  3206. }
  3207. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3208. #ifndef GGML_USE_ACCELERATE
  3209. float max = -INFINITY;
  3210. for (int i = 0; i < n; ++i) {
  3211. max = MAX(max, x[i]);
  3212. }
  3213. *s = max;
  3214. #else
  3215. vDSP_maxv(x, 1, s, n);
  3216. #endif
  3217. }
  3218. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3219. ggml_vec_norm_f32(n, s, x);
  3220. *s = 1.f/(*s);
  3221. }
  3222. //
  3223. // logging
  3224. //
  3225. #if (GGML_DEBUG >= 1)
  3226. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3227. #else
  3228. #define GGML_PRINT_DEBUG(...)
  3229. #endif
  3230. #if (GGML_DEBUG >= 5)
  3231. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3232. #else
  3233. #define GGML_PRINT_DEBUG_5(...)
  3234. #endif
  3235. #if (GGML_DEBUG >= 10)
  3236. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3237. #else
  3238. #define GGML_PRINT_DEBUG_10(...)
  3239. #endif
  3240. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3241. //
  3242. // data types
  3243. //
  3244. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3245. [GGML_TYPE_F32] = 1,
  3246. [GGML_TYPE_F16] = 1,
  3247. [GGML_TYPE_Q4_0] = QK4_0,
  3248. [GGML_TYPE_Q4_1] = QK4_1,
  3249. [GGML_TYPE_Q4_2] = QK4_2,
  3250. [GGML_TYPE_Q5_0] = QK5_0,
  3251. [GGML_TYPE_Q5_1] = QK5_1,
  3252. [GGML_TYPE_Q8_0] = QK8_0,
  3253. [GGML_TYPE_Q8_1] = QK8_1,
  3254. [GGML_TYPE_I8] = 1,
  3255. [GGML_TYPE_I16] = 1,
  3256. [GGML_TYPE_I32] = 1,
  3257. };
  3258. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3259. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3260. [GGML_TYPE_F32] = sizeof(float),
  3261. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3262. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3263. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3264. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3265. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3266. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3267. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3268. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3269. [GGML_TYPE_I8] = sizeof(int8_t),
  3270. [GGML_TYPE_I16] = sizeof(int16_t),
  3271. [GGML_TYPE_I32] = sizeof(int32_t),
  3272. };
  3273. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3274. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3275. [GGML_TYPE_F32] = "f32",
  3276. [GGML_TYPE_F16] = "f16",
  3277. [GGML_TYPE_Q4_0] = "q4_0",
  3278. [GGML_TYPE_Q4_1] = "q4_1",
  3279. [GGML_TYPE_Q4_2] = "q4_2",
  3280. [GGML_TYPE_Q5_0] = "q5_0",
  3281. [GGML_TYPE_Q5_1] = "q5_1",
  3282. [GGML_TYPE_Q8_0] = "q8_0",
  3283. [GGML_TYPE_Q8_1] = "q8_1",
  3284. [GGML_TYPE_I8] = "i8",
  3285. [GGML_TYPE_I16] = "i16",
  3286. [GGML_TYPE_I32] = "i32",
  3287. };
  3288. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3289. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3290. [GGML_TYPE_F32] = false,
  3291. [GGML_TYPE_F16] = false,
  3292. [GGML_TYPE_Q4_0] = true,
  3293. [GGML_TYPE_Q4_1] = true,
  3294. [GGML_TYPE_Q4_2] = true,
  3295. [GGML_TYPE_Q5_0] = true,
  3296. [GGML_TYPE_Q5_1] = true,
  3297. [GGML_TYPE_Q8_0] = true,
  3298. [GGML_TYPE_Q8_1] = true,
  3299. [GGML_TYPE_I8] = false,
  3300. [GGML_TYPE_I16] = false,
  3301. [GGML_TYPE_I32] = false,
  3302. };
  3303. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3304. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3305. "NONE",
  3306. "DUP",
  3307. "ADD",
  3308. "SUB",
  3309. "MUL",
  3310. "DIV",
  3311. "SQR",
  3312. "SQRT",
  3313. "SUM",
  3314. "MEAN",
  3315. "REPEAT",
  3316. "ABS",
  3317. "SGN",
  3318. "NEG",
  3319. "STEP",
  3320. "RELU",
  3321. "GELU",
  3322. "SILU",
  3323. "NORM",
  3324. "RMS_NORM",
  3325. "MUL_MAT",
  3326. "SCALE",
  3327. "CPY",
  3328. "CONT",
  3329. "RESHAPE",
  3330. "VIEW",
  3331. "PERMUTE",
  3332. "TRANSPOSE",
  3333. "GET_ROWS",
  3334. "DIAG_MASK_INF",
  3335. "SOFT_MAX",
  3336. "ROPE",
  3337. "ALIBI",
  3338. "CONV_1D_1S",
  3339. "CONV_1D_2S",
  3340. "FLASH_ATTN",
  3341. "FLASH_FF",
  3342. "MAP_UNARY",
  3343. "MAP_BINARY",
  3344. };
  3345. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3346. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3347. "none",
  3348. "x",
  3349. "x+y",
  3350. "x-y",
  3351. "x*y",
  3352. "x/y",
  3353. "x^2",
  3354. "√x",
  3355. "Σx",
  3356. "Σx/n",
  3357. "repeat(x)",
  3358. "abs(x)",
  3359. "sgn(x)",
  3360. "-x",
  3361. "step(x)",
  3362. "relu(x)",
  3363. "gelu(x)",
  3364. "silu(x)",
  3365. "norm(x)",
  3366. "rms_norm(x)",
  3367. "X*Y",
  3368. "x*v",
  3369. "x-\\>y",
  3370. "cont(x)",
  3371. "reshape(x)",
  3372. "view(x)",
  3373. "permute(x)",
  3374. "transpose(x)",
  3375. "get_rows(x)",
  3376. "diag_mask_inf(x)",
  3377. "soft_max(x)",
  3378. "rope(x)",
  3379. "alibi(x)",
  3380. "conv_1d_1s(x)",
  3381. "conv_1d_2s(x)",
  3382. "flash_attn(x)",
  3383. "flash_ff(x)",
  3384. "f(x)",
  3385. "f(x,y)",
  3386. };
  3387. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3388. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3389. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3390. //
  3391. // ggml context
  3392. //
  3393. struct ggml_context {
  3394. size_t mem_size;
  3395. void * mem_buffer;
  3396. bool mem_buffer_owned;
  3397. bool no_alloc;
  3398. int n_objects;
  3399. struct ggml_object * objects_begin;
  3400. struct ggml_object * objects_end;
  3401. struct ggml_scratch scratch;
  3402. struct ggml_scratch scratch_save;
  3403. };
  3404. struct ggml_context_container {
  3405. bool used;
  3406. struct ggml_context context;
  3407. };
  3408. //
  3409. // compute types
  3410. //
  3411. enum ggml_task_type {
  3412. GGML_TASK_INIT = 0,
  3413. GGML_TASK_COMPUTE,
  3414. GGML_TASK_FINALIZE,
  3415. };
  3416. struct ggml_compute_params {
  3417. enum ggml_task_type type;
  3418. int ith, nth;
  3419. // work buffer for all threads
  3420. size_t wsize;
  3421. void * wdata;
  3422. };
  3423. //
  3424. // ggml state
  3425. //
  3426. struct ggml_state {
  3427. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3428. };
  3429. // global state
  3430. static struct ggml_state g_state;
  3431. static atomic_int g_state_barrier = 0;
  3432. // barrier via spin lock
  3433. inline static void ggml_critical_section_start(void) {
  3434. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3435. while (processing > 0) {
  3436. // wait for other threads to finish
  3437. atomic_fetch_sub(&g_state_barrier, 1);
  3438. sched_yield(); // TODO: reconsider this
  3439. processing = atomic_fetch_add(&g_state_barrier, 1);
  3440. }
  3441. }
  3442. // TODO: make this somehow automatically executed
  3443. // some sort of "sentry" mechanism
  3444. inline static void ggml_critical_section_end(void) {
  3445. atomic_fetch_sub(&g_state_barrier, 1);
  3446. }
  3447. ////////////////////////////////////////////////////////////////////////////////
  3448. void ggml_print_object(const struct ggml_object * obj) {
  3449. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3450. obj->offs, obj->size, (const void *) obj->next);
  3451. }
  3452. void ggml_print_objects(const struct ggml_context * ctx) {
  3453. struct ggml_object * obj = ctx->objects_begin;
  3454. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3455. while (obj != NULL) {
  3456. ggml_print_object(obj);
  3457. obj = obj->next;
  3458. }
  3459. GGML_PRINT("%s: --- end ---\n", __func__);
  3460. }
  3461. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3462. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3463. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3464. }
  3465. int ggml_nrows(const struct ggml_tensor * tensor) {
  3466. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3467. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3468. }
  3469. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3472. }
  3473. int ggml_blck_size(enum ggml_type type) {
  3474. return GGML_BLCK_SIZE[type];
  3475. }
  3476. size_t ggml_type_size(enum ggml_type type) {
  3477. return GGML_TYPE_SIZE[type];
  3478. }
  3479. float ggml_type_sizef(enum ggml_type type) {
  3480. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3481. }
  3482. const char * ggml_type_name(enum ggml_type type) {
  3483. return GGML_TYPE_NAME[type];
  3484. }
  3485. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3486. return GGML_TYPE_SIZE[tensor->type];
  3487. }
  3488. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3491. }
  3492. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3493. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3494. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3495. }
  3496. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3497. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3498. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3499. }
  3500. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3501. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3502. return
  3503. (t0->ne[0] == t1->ne[0]) &&
  3504. (t0->ne[2] == t1->ne[2]) &&
  3505. (t0->ne[3] == t1->ne[3]);
  3506. }
  3507. bool ggml_is_quantized(enum ggml_type type) {
  3508. return GGML_IS_QUANTIZED[type];
  3509. }
  3510. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3511. enum ggml_type wtype = GGML_TYPE_COUNT;
  3512. switch (ftype) {
  3513. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3514. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3515. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3516. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3517. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3518. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3519. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3520. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3521. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3522. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3523. }
  3524. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3525. return wtype;
  3526. }
  3527. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3528. return tensor->nb[0] > tensor->nb[1];
  3529. }
  3530. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3531. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3532. return
  3533. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3534. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3535. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3536. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3537. }
  3538. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3539. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3540. return
  3541. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3542. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3543. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3544. }
  3545. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3546. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3547. return
  3548. (t0->ne[0] == t1->ne[0] ) &&
  3549. (t0->ne[1] == t1->ne[1] ) &&
  3550. (t0->ne[2] == t1->ne[2] ) &&
  3551. (t0->ne[3] == t1->ne[3] );
  3552. }
  3553. // check if t1 can be represented as a repeatition of t0
  3554. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3555. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3556. return
  3557. (t1->ne[0]%t0->ne[0] == 0) &&
  3558. (t1->ne[1]%t0->ne[1] == 0) &&
  3559. (t1->ne[2]%t0->ne[2] == 0) &&
  3560. (t1->ne[3]%t0->ne[3] == 0);
  3561. }
  3562. static inline int ggml_up32(int n) {
  3563. return (n + 31) & ~31;
  3564. }
  3565. static inline int ggml_up64(int n) {
  3566. return (n + 63) & ~63;
  3567. }
  3568. static inline int ggml_up(int n, int m) {
  3569. // assert m is a power of 2
  3570. GGML_ASSERT((m & (m - 1)) == 0);
  3571. return (n + m - 1) & ~(m - 1);
  3572. }
  3573. // assert that pointer is aligned to GGML_MEM_ALIGN
  3574. #define ggml_assert_aligned(ptr) \
  3575. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3576. ////////////////////////////////////////////////////////////////////////////////
  3577. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3578. // make this function thread safe
  3579. ggml_critical_section_start();
  3580. static bool is_first_call = true;
  3581. if (is_first_call) {
  3582. // initialize time system (required on Windows)
  3583. ggml_time_init();
  3584. // initialize GELU, SILU and EXP F32 tables
  3585. {
  3586. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3587. ggml_fp16_t ii;
  3588. for (int i = 0; i < (1 << 16); ++i) {
  3589. uint16_t ui = i;
  3590. memcpy(&ii, &ui, sizeof(ii));
  3591. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3592. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3593. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3594. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3595. }
  3596. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3597. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3598. }
  3599. // initialize g_state
  3600. {
  3601. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3602. g_state = (struct ggml_state) {
  3603. /*.contexts =*/ { { 0 } },
  3604. };
  3605. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3606. g_state.contexts[i].used = false;
  3607. }
  3608. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3609. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3610. }
  3611. #if defined(GGML_USE_CUBLAS)
  3612. ggml_init_cublas();
  3613. #elif defined(GGML_USE_CLBLAST)
  3614. ggml_cl_init();
  3615. #endif
  3616. is_first_call = false;
  3617. }
  3618. // find non-used context in g_state
  3619. struct ggml_context * ctx = NULL;
  3620. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3621. if (!g_state.contexts[i].used) {
  3622. g_state.contexts[i].used = true;
  3623. ctx = &g_state.contexts[i].context;
  3624. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3625. break;
  3626. }
  3627. }
  3628. if (ctx == NULL) {
  3629. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3630. ggml_critical_section_end();
  3631. return NULL;
  3632. }
  3633. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3634. *ctx = (struct ggml_context) {
  3635. /*.mem_size =*/ mem_size,
  3636. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3637. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3638. /*.no_alloc =*/ params.no_alloc,
  3639. /*.n_objects =*/ 0,
  3640. /*.objects_begin =*/ NULL,
  3641. /*.objects_end =*/ NULL,
  3642. /*.scratch =*/ { 0, 0, NULL, },
  3643. /*.scratch_save =*/ { 0, 0, NULL, },
  3644. };
  3645. GGML_ASSERT(ctx->mem_buffer != NULL);
  3646. ggml_assert_aligned(ctx->mem_buffer);
  3647. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3648. ggml_critical_section_end();
  3649. return ctx;
  3650. }
  3651. void ggml_free(struct ggml_context * ctx) {
  3652. // make this function thread safe
  3653. ggml_critical_section_start();
  3654. bool found = false;
  3655. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3656. if (&g_state.contexts[i].context == ctx) {
  3657. g_state.contexts[i].used = false;
  3658. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3659. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3660. if (ctx->mem_buffer_owned) {
  3661. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3662. }
  3663. found = true;
  3664. break;
  3665. }
  3666. }
  3667. if (!found) {
  3668. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3669. }
  3670. ggml_critical_section_end();
  3671. }
  3672. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3673. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3674. }
  3675. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3676. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3677. ctx->scratch = scratch;
  3678. return result;
  3679. }
  3680. ////////////////////////////////////////////////////////////////////////////////
  3681. struct ggml_tensor * ggml_new_tensor_impl(
  3682. struct ggml_context * ctx,
  3683. enum ggml_type type,
  3684. int n_dims,
  3685. const int64_t* ne,
  3686. void* data) {
  3687. // always insert objects at the end of the context's memory pool
  3688. struct ggml_object * obj_cur = ctx->objects_end;
  3689. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3690. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3691. const size_t cur_end = cur_offs + cur_size;
  3692. size_t size_needed = 0;
  3693. if (data == NULL && !ctx->no_alloc) {
  3694. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3695. for (int i = 1; i < n_dims; i++) {
  3696. size_needed *= ne[i];
  3697. }
  3698. // align to GGML_MEM_ALIGN
  3699. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3700. }
  3701. char * const mem_buffer = ctx->mem_buffer;
  3702. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3703. if (ctx->scratch.data == NULL || data != NULL) {
  3704. size_needed += sizeof(struct ggml_tensor);
  3705. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3706. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3707. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3708. assert(false);
  3709. return NULL;
  3710. }
  3711. *obj_new = (struct ggml_object) {
  3712. .offs = cur_end + GGML_OBJECT_SIZE,
  3713. .size = size_needed,
  3714. .next = NULL,
  3715. };
  3716. } else {
  3717. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3718. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3719. assert(false);
  3720. return NULL;
  3721. }
  3722. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3723. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3724. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3725. assert(false);
  3726. return NULL;
  3727. }
  3728. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3729. *obj_new = (struct ggml_object) {
  3730. .offs = cur_end + GGML_OBJECT_SIZE,
  3731. .size = sizeof(struct ggml_tensor),
  3732. .next = NULL,
  3733. };
  3734. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3735. ctx->scratch.offs += size_needed;
  3736. }
  3737. if (obj_cur != NULL) {
  3738. obj_cur->next = obj_new;
  3739. } else {
  3740. // this is the first object in this context
  3741. ctx->objects_begin = obj_new;
  3742. }
  3743. ctx->objects_end = obj_new;
  3744. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3745. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3746. ggml_assert_aligned(result);
  3747. *result = (struct ggml_tensor) {
  3748. /*.type =*/ type,
  3749. /*.n_dims =*/ n_dims,
  3750. /*.ne =*/ { 1, 1, 1, 1 },
  3751. /*.nb =*/ { 0, 0, 0, 0 },
  3752. /*.op =*/ GGML_OP_NONE,
  3753. /*.is_param =*/ false,
  3754. /*.grad =*/ NULL,
  3755. /*.src0 =*/ NULL,
  3756. /*.src1 =*/ NULL,
  3757. /*.opt =*/ { NULL },
  3758. /*.n_tasks =*/ 0,
  3759. /*.perf_runs =*/ 0,
  3760. /*.perf_cycles =*/ 0,
  3761. /*.perf_time_us =*/ 0,
  3762. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3763. /*.name =*/ { 0 },
  3764. /*.pad =*/ { 0 },
  3765. };
  3766. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3767. //ggml_assert_aligned(result->data);
  3768. for (int i = 0; i < n_dims; i++) {
  3769. result->ne[i] = ne[i];
  3770. }
  3771. result->nb[0] = GGML_TYPE_SIZE[type];
  3772. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3773. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3774. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3775. }
  3776. ctx->n_objects++;
  3777. return result;
  3778. }
  3779. struct ggml_tensor * ggml_new_tensor(
  3780. struct ggml_context * ctx,
  3781. enum ggml_type type,
  3782. int n_dims,
  3783. const int64_t * ne) {
  3784. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3785. }
  3786. struct ggml_tensor * ggml_new_tensor_1d(
  3787. struct ggml_context * ctx,
  3788. enum ggml_type type,
  3789. int64_t ne0) {
  3790. return ggml_new_tensor(ctx, type, 1, &ne0);
  3791. }
  3792. struct ggml_tensor * ggml_new_tensor_2d(
  3793. struct ggml_context * ctx,
  3794. enum ggml_type type,
  3795. int64_t ne0,
  3796. int64_t ne1) {
  3797. const int64_t ne[2] = { ne0, ne1 };
  3798. return ggml_new_tensor(ctx, type, 2, ne);
  3799. }
  3800. struct ggml_tensor * ggml_new_tensor_3d(
  3801. struct ggml_context * ctx,
  3802. enum ggml_type type,
  3803. int64_t ne0,
  3804. int64_t ne1,
  3805. int64_t ne2) {
  3806. const int64_t ne[3] = { ne0, ne1, ne2 };
  3807. return ggml_new_tensor(ctx, type, 3, ne);
  3808. }
  3809. struct ggml_tensor * ggml_new_tensor_4d(
  3810. struct ggml_context * ctx,
  3811. enum ggml_type type,
  3812. int64_t ne0,
  3813. int64_t ne1,
  3814. int64_t ne2,
  3815. int64_t ne3) {
  3816. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3817. return ggml_new_tensor(ctx, type, 4, ne);
  3818. }
  3819. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3820. ctx->scratch_save = ctx->scratch;
  3821. ctx->scratch.data = NULL;
  3822. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3823. ctx->scratch = ctx->scratch_save;
  3824. ggml_set_i32(result, value);
  3825. return result;
  3826. }
  3827. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3828. ctx->scratch_save = ctx->scratch;
  3829. ctx->scratch.data = NULL;
  3830. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3831. ctx->scratch = ctx->scratch_save;
  3832. ggml_set_f32(result, value);
  3833. return result;
  3834. }
  3835. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3836. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3837. }
  3838. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3839. memset(tensor->data, 0, ggml_nbytes(tensor));
  3840. return tensor;
  3841. }
  3842. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3843. const int n = ggml_nrows(tensor);
  3844. const int nc = tensor->ne[0];
  3845. const size_t n1 = tensor->nb[1];
  3846. char * const data = tensor->data;
  3847. switch (tensor->type) {
  3848. case GGML_TYPE_I8:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(int8_t));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. case GGML_TYPE_I16:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(int16_t));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3860. }
  3861. } break;
  3862. case GGML_TYPE_I32:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(int32_t));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. case GGML_TYPE_F16:
  3870. {
  3871. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3872. for (int i = 0; i < n; i++) {
  3873. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3874. }
  3875. } break;
  3876. case GGML_TYPE_F32:
  3877. {
  3878. assert(tensor->nb[0] == sizeof(float));
  3879. for (int i = 0; i < n; i++) {
  3880. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3881. }
  3882. } break;
  3883. default:
  3884. {
  3885. GGML_ASSERT(false);
  3886. } break;
  3887. }
  3888. return tensor;
  3889. }
  3890. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3891. const int n = ggml_nrows(tensor);
  3892. const int nc = tensor->ne[0];
  3893. const size_t n1 = tensor->nb[1];
  3894. char * const data = tensor->data;
  3895. switch (tensor->type) {
  3896. case GGML_TYPE_I8:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(int8_t));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. case GGML_TYPE_I16:
  3904. {
  3905. assert(tensor->nb[0] == sizeof(int16_t));
  3906. for (int i = 0; i < n; i++) {
  3907. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3908. }
  3909. } break;
  3910. case GGML_TYPE_I32:
  3911. {
  3912. assert(tensor->nb[0] == sizeof(int32_t));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3915. }
  3916. } break;
  3917. case GGML_TYPE_F16:
  3918. {
  3919. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3920. for (int i = 0; i < n; i++) {
  3921. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3922. }
  3923. } break;
  3924. case GGML_TYPE_F32:
  3925. {
  3926. assert(tensor->nb[0] == sizeof(float));
  3927. for (int i = 0; i < n; i++) {
  3928. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3929. }
  3930. } break;
  3931. default:
  3932. {
  3933. GGML_ASSERT(false);
  3934. } break;
  3935. }
  3936. return tensor;
  3937. }
  3938. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3939. switch (tensor->type) {
  3940. case GGML_TYPE_I8:
  3941. {
  3942. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3943. return ((int8_t *)(tensor->data))[i];
  3944. } break;
  3945. case GGML_TYPE_I16:
  3946. {
  3947. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3948. return ((int16_t *)(tensor->data))[i];
  3949. } break;
  3950. case GGML_TYPE_I32:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3953. return ((int32_t *)(tensor->data))[i];
  3954. } break;
  3955. case GGML_TYPE_F16:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3958. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3959. } break;
  3960. case GGML_TYPE_F32:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3963. return ((float *)(tensor->data))[i];
  3964. } break;
  3965. default:
  3966. {
  3967. GGML_ASSERT(false);
  3968. } break;
  3969. }
  3970. return 0.0f;
  3971. }
  3972. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3973. switch (tensor->type) {
  3974. case GGML_TYPE_I8:
  3975. {
  3976. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3977. ((int8_t *)(tensor->data))[i] = value;
  3978. } break;
  3979. case GGML_TYPE_I16:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3982. ((int16_t *)(tensor->data))[i] = value;
  3983. } break;
  3984. case GGML_TYPE_I32:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3987. ((int32_t *)(tensor->data))[i] = value;
  3988. } break;
  3989. case GGML_TYPE_F16:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3992. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3993. } break;
  3994. case GGML_TYPE_F32:
  3995. {
  3996. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3997. ((float *)(tensor->data))[i] = value;
  3998. } break;
  3999. default:
  4000. {
  4001. GGML_ASSERT(false);
  4002. } break;
  4003. }
  4004. }
  4005. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4006. switch (tensor->type) {
  4007. case GGML_TYPE_I8:
  4008. {
  4009. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4010. return ((int8_t *)(tensor->data))[i];
  4011. } break;
  4012. case GGML_TYPE_I16:
  4013. {
  4014. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4015. return ((int16_t *)(tensor->data))[i];
  4016. } break;
  4017. case GGML_TYPE_I32:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4020. return ((int32_t *)(tensor->data))[i];
  4021. } break;
  4022. case GGML_TYPE_F16:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4025. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4026. } break;
  4027. case GGML_TYPE_F32:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4030. return ((float *)(tensor->data))[i];
  4031. } break;
  4032. default:
  4033. {
  4034. GGML_ASSERT(false);
  4035. } break;
  4036. }
  4037. return 0.0f;
  4038. }
  4039. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4040. switch (tensor->type) {
  4041. case GGML_TYPE_I8:
  4042. {
  4043. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4044. ((int8_t *)(tensor->data))[i] = value;
  4045. } break;
  4046. case GGML_TYPE_I16:
  4047. {
  4048. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4049. ((int16_t *)(tensor->data))[i] = value;
  4050. } break;
  4051. case GGML_TYPE_I32:
  4052. {
  4053. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4054. ((int32_t *)(tensor->data))[i] = value;
  4055. } break;
  4056. case GGML_TYPE_F16:
  4057. {
  4058. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4059. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4060. } break;
  4061. case GGML_TYPE_F32:
  4062. {
  4063. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4064. ((float *)(tensor->data))[i] = value;
  4065. } break;
  4066. default:
  4067. {
  4068. GGML_ASSERT(false);
  4069. } break;
  4070. }
  4071. }
  4072. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4073. return tensor->data;
  4074. }
  4075. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4076. assert(tensor->type == GGML_TYPE_F32);
  4077. return (float *)(tensor->data);
  4078. }
  4079. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4080. return tensor->name;
  4081. }
  4082. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4083. strncpy(tensor->name, name, sizeof(tensor->name));
  4084. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4085. }
  4086. struct ggml_tensor * ggml_view_tensor(
  4087. struct ggml_context * ctx,
  4088. const struct ggml_tensor * src) {
  4089. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4090. result->nb[0] = src->nb[0];
  4091. result->nb[1] = src->nb[1];
  4092. result->nb[2] = src->nb[2];
  4093. result->nb[3] = src->nb[3];
  4094. return result;
  4095. }
  4096. ////////////////////////////////////////////////////////////////////////////////
  4097. // ggml_dup
  4098. struct ggml_tensor * ggml_dup_impl(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a,
  4101. bool inplace) {
  4102. bool is_node = false;
  4103. if (!inplace && (a->grad)) {
  4104. is_node = true;
  4105. }
  4106. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4107. result->op = GGML_OP_DUP;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src0 = a;
  4110. result->src1 = NULL;
  4111. return result;
  4112. }
  4113. struct ggml_tensor * ggml_dup(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a) {
  4116. return ggml_dup_impl(ctx, a, false);
  4117. }
  4118. struct ggml_tensor * ggml_dup_inplace(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a) {
  4121. return ggml_dup_impl(ctx, a, true);
  4122. }
  4123. // ggml_add
  4124. struct ggml_tensor * ggml_add_impl(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b,
  4128. bool inplace) {
  4129. GGML_ASSERT(ggml_are_same_shape(a, b));
  4130. bool is_node = false;
  4131. if (!inplace && (a->grad || b->grad)) {
  4132. is_node = true;
  4133. }
  4134. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4135. result->op = GGML_OP_ADD;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src0 = a;
  4138. result->src1 = b;
  4139. return result;
  4140. }
  4141. struct ggml_tensor * ggml_add(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b) {
  4145. return ggml_add_impl(ctx, a, b, false);
  4146. }
  4147. struct ggml_tensor * ggml_add_inplace(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. struct ggml_tensor * b) {
  4151. return ggml_add_impl(ctx, a, b, true);
  4152. }
  4153. // ggml_sub
  4154. struct ggml_tensor * ggml_sub_impl(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b,
  4158. bool inplace) {
  4159. GGML_ASSERT(ggml_are_same_shape(a, b));
  4160. bool is_node = false;
  4161. if (!inplace && (a->grad || b->grad)) {
  4162. is_node = true;
  4163. }
  4164. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4165. result->op = GGML_OP_SUB;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src0 = a;
  4168. result->src1 = b;
  4169. return result;
  4170. }
  4171. struct ggml_tensor * ggml_sub(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b) {
  4175. return ggml_sub_impl(ctx, a, b, false);
  4176. }
  4177. struct ggml_tensor * ggml_sub_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b) {
  4181. return ggml_sub_impl(ctx, a, b, true);
  4182. }
  4183. // ggml_mul
  4184. struct ggml_tensor * ggml_mul_impl(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. bool inplace) {
  4189. GGML_ASSERT(ggml_are_same_shape(a, b));
  4190. bool is_node = false;
  4191. if (!inplace && (a->grad || b->grad)) {
  4192. is_node = true;
  4193. }
  4194. if (inplace) {
  4195. GGML_ASSERT(is_node == false);
  4196. }
  4197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4198. result->op = GGML_OP_MUL;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = b;
  4202. return result;
  4203. }
  4204. struct ggml_tensor * ggml_mul(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * b) {
  4208. return ggml_mul_impl(ctx, a, b, false);
  4209. }
  4210. struct ggml_tensor * ggml_mul_inplace(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. struct ggml_tensor * b) {
  4214. return ggml_mul_impl(ctx, a, b, true);
  4215. }
  4216. // ggml_div
  4217. struct ggml_tensor * ggml_div_impl(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. struct ggml_tensor * b,
  4221. bool inplace) {
  4222. GGML_ASSERT(ggml_are_same_shape(a, b));
  4223. bool is_node = false;
  4224. if (!inplace && (a->grad || b->grad)) {
  4225. is_node = true;
  4226. }
  4227. if (inplace) {
  4228. GGML_ASSERT(is_node == false);
  4229. }
  4230. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4231. result->op = GGML_OP_DIV;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src0 = a;
  4234. result->src1 = b;
  4235. return result;
  4236. }
  4237. struct ggml_tensor * ggml_div(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b) {
  4241. return ggml_div_impl(ctx, a, b, false);
  4242. }
  4243. struct ggml_tensor * ggml_div_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. struct ggml_tensor * b) {
  4247. return ggml_div_impl(ctx, a, b, true);
  4248. }
  4249. // ggml_sqr
  4250. struct ggml_tensor * ggml_sqr_impl(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. bool inplace) {
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_SQR;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = NULL;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_sqr(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_sqr_impl(ctx, a, false);
  4269. }
  4270. struct ggml_tensor * ggml_sqr_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_sqr_impl(ctx, a, true);
  4274. }
  4275. // ggml_sqrt
  4276. struct ggml_tensor * ggml_sqrt_impl(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. bool inplace) {
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad)) {
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_SQRT;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL;
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_sqrt(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_sqrt_impl(ctx, a, false);
  4295. }
  4296. struct ggml_tensor * ggml_sqrt_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_sqrt_impl(ctx, a, true);
  4300. }
  4301. // ggml_sum
  4302. struct ggml_tensor * ggml_sum(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. bool is_node = false;
  4306. if (a->grad) {
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4310. result->op = GGML_OP_SUM;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src0 = a;
  4313. result->src1 = NULL;
  4314. return result;
  4315. }
  4316. // ggml_mean
  4317. struct ggml_tensor * ggml_mean(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. bool is_node = false;
  4321. if (a->grad) {
  4322. GGML_ASSERT(false); // TODO: implement
  4323. is_node = true;
  4324. }
  4325. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4326. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4327. result->op = GGML_OP_MEAN;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src0 = a;
  4330. result->src1 = NULL;
  4331. return result;
  4332. }
  4333. // ggml_repeat
  4334. struct ggml_tensor * ggml_repeat(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b) {
  4338. GGML_ASSERT(ggml_can_repeat(a, b));
  4339. bool is_node = false;
  4340. if (a->grad) {
  4341. is_node = true;
  4342. }
  4343. if (ggml_are_same_shape(a, b) && !is_node) {
  4344. return a;
  4345. }
  4346. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4347. result->op = GGML_OP_REPEAT;
  4348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4349. result->src0 = a;
  4350. result->src1 = b;
  4351. return result;
  4352. }
  4353. // ggml_abs
  4354. struct ggml_tensor * ggml_abs_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. bool inplace) {
  4358. bool is_node = false;
  4359. if (!inplace && (a->grad)) {
  4360. is_node = true;
  4361. }
  4362. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4363. result->op = GGML_OP_ABS;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = NULL;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_abs(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a) {
  4372. return ggml_abs_impl(ctx, a, false);
  4373. }
  4374. struct ggml_tensor * ggml_abs_inplace(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a) {
  4377. return ggml_abs_impl(ctx, a, true);
  4378. }
  4379. // ggml_sgn
  4380. struct ggml_tensor * ggml_sgn_impl(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. bool inplace) {
  4384. bool is_node = false;
  4385. if (!inplace && (a->grad)) {
  4386. is_node = true;
  4387. }
  4388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4389. result->op = GGML_OP_SGN;
  4390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4391. result->src0 = a;
  4392. result->src1 = NULL;
  4393. return result;
  4394. }
  4395. struct ggml_tensor * ggml_sgn(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a) {
  4398. return ggml_sgn_impl(ctx, a, false);
  4399. }
  4400. struct ggml_tensor * ggml_sgn_inplace(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. return ggml_sgn_impl(ctx, a, true);
  4404. }
  4405. // ggml_neg
  4406. struct ggml_tensor * ggml_neg_impl(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. bool inplace) {
  4410. bool is_node = false;
  4411. if (!inplace && (a->grad)) {
  4412. is_node = true;
  4413. }
  4414. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4415. result->op = GGML_OP_NEG;
  4416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4417. result->src0 = a;
  4418. result->src1 = NULL;
  4419. return result;
  4420. }
  4421. struct ggml_tensor * ggml_neg(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a) {
  4424. return ggml_neg_impl(ctx, a, false);
  4425. }
  4426. struct ggml_tensor * ggml_neg_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a) {
  4429. return ggml_neg_impl(ctx, a, true);
  4430. }
  4431. // ggml_step
  4432. struct ggml_tensor * ggml_step_impl(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. bool inplace) {
  4436. bool is_node = false;
  4437. if (!inplace && (a->grad)) {
  4438. is_node = true;
  4439. }
  4440. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4441. result->op = GGML_OP_STEP;
  4442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4443. result->src0 = a;
  4444. result->src1 = NULL;
  4445. return result;
  4446. }
  4447. struct ggml_tensor * ggml_step(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a) {
  4450. return ggml_step_impl(ctx, a, false);
  4451. }
  4452. struct ggml_tensor * ggml_step_inplace(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a) {
  4455. return ggml_step_impl(ctx, a, true);
  4456. }
  4457. // ggml_relu
  4458. struct ggml_tensor * ggml_relu_impl(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a,
  4461. bool inplace) {
  4462. bool is_node = false;
  4463. if (!inplace && (a->grad)) {
  4464. is_node = true;
  4465. }
  4466. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4467. result->op = GGML_OP_RELU;
  4468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4469. result->src0 = a;
  4470. result->src1 = NULL;
  4471. return result;
  4472. }
  4473. struct ggml_tensor * ggml_relu(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a) {
  4476. return ggml_relu_impl(ctx, a, false);
  4477. }
  4478. struct ggml_tensor * ggml_relu_inplace(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. return ggml_relu_impl(ctx, a, true);
  4482. }
  4483. // ggml_gelu
  4484. struct ggml_tensor * ggml_gelu_impl(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a,
  4487. bool inplace) {
  4488. bool is_node = false;
  4489. if (!inplace && (a->grad)) {
  4490. is_node = true;
  4491. }
  4492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4493. result->op = GGML_OP_GELU;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src0 = a;
  4496. result->src1 = NULL;
  4497. return result;
  4498. }
  4499. struct ggml_tensor * ggml_gelu(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a) {
  4502. return ggml_gelu_impl(ctx, a, false);
  4503. }
  4504. struct ggml_tensor * ggml_gelu_inplace(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a) {
  4507. return ggml_gelu_impl(ctx, a, true);
  4508. }
  4509. // ggml_silu
  4510. struct ggml_tensor * ggml_silu_impl(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. bool inplace) {
  4514. bool is_node = false;
  4515. if (!inplace && (a->grad)) {
  4516. is_node = true;
  4517. }
  4518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4519. result->op = GGML_OP_SILU;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src0 = a;
  4522. result->src1 = NULL;
  4523. return result;
  4524. }
  4525. struct ggml_tensor * ggml_silu(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a) {
  4528. return ggml_silu_impl(ctx, a, false);
  4529. }
  4530. struct ggml_tensor * ggml_silu_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a) {
  4533. return ggml_silu_impl(ctx, a, true);
  4534. }
  4535. // ggml_norm
  4536. struct ggml_tensor * ggml_norm_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. bool inplace) {
  4540. bool is_node = false;
  4541. if (!inplace && (a->grad)) {
  4542. GGML_ASSERT(false); // TODO: implement backward
  4543. is_node = true;
  4544. }
  4545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4546. result->op = GGML_OP_NORM;
  4547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4548. result->src0 = a;
  4549. result->src1 = NULL; // TODO: maybe store epsilon here?
  4550. return result;
  4551. }
  4552. struct ggml_tensor * ggml_norm(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_norm_impl(ctx, a, false);
  4556. }
  4557. struct ggml_tensor * ggml_norm_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_norm_impl(ctx, a, true);
  4561. }
  4562. struct ggml_tensor * ggml_rms_norm_impl(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. bool inplace) {
  4566. bool is_node = false;
  4567. if (!inplace && (a->grad)) {
  4568. GGML_ASSERT(false); // TODO: implement backward
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4572. result->op = GGML_OP_RMS_NORM;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src0 = a;
  4575. result->src1 = NULL; // TODO: maybe store epsilon here?
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_rms_norm(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a) {
  4581. return ggml_rms_norm_impl(ctx, a, false);
  4582. }
  4583. struct ggml_tensor * ggml_rms_norm_inplace(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_rms_norm_impl(ctx, a, true);
  4587. }
  4588. // ggml_mul_mat
  4589. struct ggml_tensor * ggml_mul_mat(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b) {
  4593. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4594. GGML_ASSERT(!ggml_is_transposed(a));
  4595. bool is_node = false;
  4596. if (a->grad || b->grad) {
  4597. is_node = true;
  4598. }
  4599. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4600. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4601. result->op = GGML_OP_MUL_MAT;
  4602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4603. result->src0 = a;
  4604. result->src1 = b;
  4605. return result;
  4606. }
  4607. // ggml_scale
  4608. struct ggml_tensor * ggml_scale_impl(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a,
  4611. struct ggml_tensor * b,
  4612. bool inplace) {
  4613. GGML_ASSERT(ggml_is_scalar(b));
  4614. GGML_ASSERT(ggml_is_padded_1d(a));
  4615. bool is_node = false;
  4616. if (!inplace && (a->grad || b->grad)) {
  4617. GGML_ASSERT(false); // TODO: implement backward
  4618. is_node = true;
  4619. }
  4620. // TODO: when implement backward, fix this:
  4621. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4622. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4623. result->op = GGML_OP_SCALE;
  4624. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4625. result->src0 = a;
  4626. result->src1 = b;
  4627. return result;
  4628. }
  4629. struct ggml_tensor * ggml_scale(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b) {
  4633. return ggml_scale_impl(ctx, a, b, false);
  4634. }
  4635. struct ggml_tensor * ggml_scale_inplace(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. struct ggml_tensor * b) {
  4639. return ggml_scale_impl(ctx, a, b, true);
  4640. }
  4641. // ggml_cpy
  4642. struct ggml_tensor * ggml_cpy_impl(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b,
  4646. bool inplace) {
  4647. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4648. bool is_node = false;
  4649. if (!inplace && (a->grad || b->grad)) {
  4650. GGML_ASSERT(false); // TODO: implement backward
  4651. is_node = true;
  4652. }
  4653. // make a view of the destination
  4654. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4655. result->op = GGML_OP_CPY;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src0 = a;
  4658. result->src1 = b;
  4659. return result;
  4660. }
  4661. struct ggml_tensor * ggml_cpy(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. struct ggml_tensor * b) {
  4665. return ggml_cpy_impl(ctx, a, b, false);
  4666. }
  4667. struct ggml_tensor * ggml_cpy_inplace(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. struct ggml_tensor * b) {
  4671. return ggml_cpy_impl(ctx, a, b, true);
  4672. }
  4673. // ggml_cont
  4674. struct ggml_tensor * ggml_cont_impl(
  4675. struct ggml_context * ctx,
  4676. struct ggml_tensor * a,
  4677. bool inplace) {
  4678. bool is_node = false;
  4679. if (!inplace && a->grad) {
  4680. GGML_ASSERT(false); // TODO: implement backward
  4681. is_node = true;
  4682. }
  4683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4684. result->op = GGML_OP_CONT;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src0 = a;
  4687. result->src1 = NULL;
  4688. return result;
  4689. }
  4690. struct ggml_tensor * ggml_cont(
  4691. struct ggml_context * ctx,
  4692. struct ggml_tensor * a) {
  4693. return ggml_cont_impl(ctx, a, false);
  4694. }
  4695. struct ggml_tensor * ggml_cont_inplace(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a) {
  4698. return ggml_cont_impl(ctx, a, true);
  4699. }
  4700. // ggml_reshape
  4701. struct ggml_tensor * ggml_reshape(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. struct ggml_tensor * b) {
  4705. GGML_ASSERT(ggml_is_contiguous(a));
  4706. GGML_ASSERT(ggml_is_contiguous(b));
  4707. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4708. bool is_node = false;
  4709. if (a->grad || b->grad) {
  4710. GGML_ASSERT(false); // TODO: implement backward
  4711. is_node = true;
  4712. }
  4713. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4714. result->op = GGML_OP_RESHAPE;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src0 = a;
  4717. result->src1 = NULL;
  4718. return result;
  4719. }
  4720. struct ggml_tensor * ggml_reshape_2d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. int64_t ne0,
  4724. int64_t ne1) {
  4725. GGML_ASSERT(ggml_is_contiguous(a));
  4726. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. GGML_ASSERT(false); // TODO: implement backward
  4730. is_node = true;
  4731. }
  4732. const int64_t ne[2] = { ne0, ne1 };
  4733. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4734. result->op = GGML_OP_RESHAPE;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src0 = a;
  4737. result->src1 = NULL;
  4738. return result;
  4739. }
  4740. struct ggml_tensor * ggml_reshape_3d(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. int64_t ne0,
  4744. int64_t ne1,
  4745. int64_t ne2) {
  4746. GGML_ASSERT(ggml_is_contiguous(a));
  4747. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4748. bool is_node = false;
  4749. if (a->grad) {
  4750. GGML_ASSERT(false); // TODO: implement backward
  4751. is_node = true;
  4752. }
  4753. const int64_t ne[3] = { ne0, ne1, ne2 };
  4754. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4755. result->op = GGML_OP_RESHAPE;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src0 = a;
  4758. result->src1 = NULL;
  4759. return result;
  4760. }
  4761. // ggml_view_1d
  4762. struct ggml_tensor * ggml_view_1d(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. int64_t ne0,
  4766. size_t offset) {
  4767. if (a->grad) {
  4768. GGML_ASSERT(false); // gradient propagation is not supported
  4769. }
  4770. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4771. result->op = GGML_OP_VIEW;
  4772. result->grad = NULL;
  4773. result->src0 = a;
  4774. result->src1 = NULL; // TODO: maybe store the offset here?
  4775. return result;
  4776. }
  4777. // ggml_view_2d
  4778. struct ggml_tensor * ggml_view_2d(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. int64_t ne0,
  4782. int64_t ne1,
  4783. size_t nb1,
  4784. size_t offset) {
  4785. if (a->grad) {
  4786. GGML_ASSERT(false); // gradient propagation is not supported
  4787. }
  4788. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4789. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4790. result->nb[1] = nb1;
  4791. result->nb[2] = result->nb[1]*ne1;
  4792. result->nb[3] = result->nb[2];
  4793. result->op = GGML_OP_VIEW;
  4794. result->grad = NULL;
  4795. result->src0 = a;
  4796. result->src1 = NULL; // TODO: maybe store the offset here?
  4797. return result;
  4798. }
  4799. // ggml_view_3d
  4800. struct ggml_tensor * ggml_view_3d(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. int64_t ne0,
  4804. int64_t ne1,
  4805. int64_t ne2,
  4806. size_t nb1,
  4807. size_t nb2,
  4808. size_t offset) {
  4809. if (a->grad) {
  4810. GGML_ASSERT(false); // gradient propagation is not supported
  4811. }
  4812. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4813. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4814. result->nb[1] = nb1;
  4815. result->nb[2] = nb2;
  4816. result->nb[3] = result->nb[2]*ne2;
  4817. result->op = GGML_OP_VIEW;
  4818. result->grad = NULL;
  4819. result->src0 = a;
  4820. result->src1 = NULL; // TODO: maybe store the offset here?
  4821. return result;
  4822. }
  4823. // ggml_permute
  4824. struct ggml_tensor * ggml_permute(
  4825. struct ggml_context * ctx,
  4826. struct ggml_tensor * a,
  4827. int axis0,
  4828. int axis1,
  4829. int axis2,
  4830. int axis3) {
  4831. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4832. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4833. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4834. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4835. GGML_ASSERT(axis0 != axis1);
  4836. GGML_ASSERT(axis0 != axis2);
  4837. GGML_ASSERT(axis0 != axis3);
  4838. GGML_ASSERT(axis1 != axis2);
  4839. GGML_ASSERT(axis1 != axis3);
  4840. GGML_ASSERT(axis2 != axis3);
  4841. bool is_node = false;
  4842. if (a->grad) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4847. int ne[GGML_MAX_DIMS];
  4848. int nb[GGML_MAX_DIMS];
  4849. ne[axis0] = a->ne[0];
  4850. ne[axis1] = a->ne[1];
  4851. ne[axis2] = a->ne[2];
  4852. ne[axis3] = a->ne[3];
  4853. nb[axis0] = a->nb[0];
  4854. nb[axis1] = a->nb[1];
  4855. nb[axis2] = a->nb[2];
  4856. nb[axis3] = a->nb[3];
  4857. result->ne[0] = ne[0];
  4858. result->ne[1] = ne[1];
  4859. result->ne[2] = ne[2];
  4860. result->ne[3] = ne[3];
  4861. result->nb[0] = nb[0];
  4862. result->nb[1] = nb[1];
  4863. result->nb[2] = nb[2];
  4864. result->nb[3] = nb[3];
  4865. result->op = GGML_OP_PERMUTE;
  4866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4867. result->src0 = a;
  4868. result->src1 = NULL; // TODO: maybe store the permutation here?
  4869. return result;
  4870. }
  4871. // ggml_transpose
  4872. struct ggml_tensor * ggml_transpose(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a) {
  4875. bool is_node = false;
  4876. if (a->grad) {
  4877. GGML_ASSERT(false); // TODO: implement backward
  4878. is_node = true;
  4879. }
  4880. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4881. result->ne[0] = a->ne[1];
  4882. result->ne[1] = a->ne[0];
  4883. result->nb[0] = a->nb[1];
  4884. result->nb[1] = a->nb[0];
  4885. result->op = GGML_OP_TRANSPOSE;
  4886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4887. result->src0 = a;
  4888. result->src1 = NULL;
  4889. return result;
  4890. }
  4891. // ggml_get_rows
  4892. struct ggml_tensor * ggml_get_rows(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. struct ggml_tensor * b) {
  4896. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4897. bool is_node = false;
  4898. if (a->grad || b->grad) {
  4899. GGML_ASSERT(false); // TODO: implement backward
  4900. is_node = true;
  4901. }
  4902. // TODO: implement non F32 return
  4903. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4904. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4905. result->op = GGML_OP_GET_ROWS;
  4906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4907. result->src0 = a;
  4908. result->src1 = b;
  4909. return result;
  4910. }
  4911. // ggml_diag_mask_inf
  4912. struct ggml_tensor * ggml_diag_mask_inf(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. int n_past) {
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. GGML_ASSERT(false); // TODO: implement backward
  4919. is_node = true;
  4920. }
  4921. // TODO: when implement backward, fix this:
  4922. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4923. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4924. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4925. ggml_set_name(b, "n_past");
  4926. result->op = GGML_OP_DIAG_MASK_INF;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src0 = a;
  4929. result->src1 = b;
  4930. return result;
  4931. }
  4932. // ggml_soft_max
  4933. struct ggml_tensor * ggml_soft_max(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a) {
  4936. bool is_node = false;
  4937. if (a->grad) {
  4938. GGML_ASSERT(false); // TODO: implement backward
  4939. is_node = true;
  4940. }
  4941. // TODO: when implement backward, fix this:
  4942. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4943. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4944. result->op = GGML_OP_SOFT_MAX;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src0 = a;
  4947. result->src1 = NULL;
  4948. return result;
  4949. }
  4950. // ggml_rope
  4951. struct ggml_tensor * ggml_rope(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. int n_past,
  4955. int n_dims,
  4956. int mode) {
  4957. GGML_ASSERT(n_past >= 0);
  4958. bool is_node = false;
  4959. if (a->grad) {
  4960. GGML_ASSERT(false); // TODO: implement backward
  4961. is_node = true;
  4962. }
  4963. // TODO: when implement backward, fix this:
  4964. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4965. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4966. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4967. ((int32_t *) b->data)[0] = n_past;
  4968. ((int32_t *) b->data)[1] = n_dims;
  4969. ((int32_t *) b->data)[2] = mode;
  4970. ggml_set_name(b, "n_past, n_dims, mode");
  4971. result->op = GGML_OP_ROPE;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src0 = a;
  4974. result->src1 = b;
  4975. return result;
  4976. }
  4977. // ggml_alibi
  4978. struct ggml_tensor * ggml_alibi(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int n_past,
  4982. int n_head) {
  4983. GGML_ASSERT(n_past >= 0);
  4984. bool is_node = false;
  4985. if (a->grad) {
  4986. GGML_ASSERT(false); // TODO: implement backward
  4987. is_node = true;
  4988. }
  4989. // TODO: when implement backward, fix this:
  4990. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4991. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4992. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4993. ((int32_t *) b->data)[0] = n_past;
  4994. ((int32_t *) b->data)[1] = n_head;
  4995. result->op = GGML_OP_ALIBI;
  4996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4997. result->src0 = a;
  4998. result->src1 = b;
  4999. return result;
  5000. }
  5001. // ggml_conv_1d_1s
  5002. struct ggml_tensor * ggml_conv_1d_1s(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. struct ggml_tensor * b) {
  5006. GGML_ASSERT(ggml_is_matrix(b));
  5007. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5008. GGML_ASSERT(a->ne[3] == 1);
  5009. bool is_node = false;
  5010. if (a->grad || b->grad) {
  5011. GGML_ASSERT(false); // TODO: implement backward
  5012. is_node = true;
  5013. }
  5014. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5015. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5016. result->op = GGML_OP_CONV_1D_1S;
  5017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5018. result->src0 = a;
  5019. result->src1 = b;
  5020. return result;
  5021. }
  5022. // ggml_conv_1d_2s
  5023. struct ggml_tensor * ggml_conv_1d_2s(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b) {
  5027. GGML_ASSERT(ggml_is_matrix(b));
  5028. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5029. GGML_ASSERT(a->ne[3] == 1);
  5030. bool is_node = false;
  5031. if (a->grad || b->grad) {
  5032. GGML_ASSERT(false); // TODO: implement backward
  5033. is_node = true;
  5034. }
  5035. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5036. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5037. result->op = GGML_OP_CONV_1D_2S;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src0 = a;
  5040. result->src1 = b;
  5041. return result;
  5042. }
  5043. // ggml_flash_attn
  5044. struct ggml_tensor * ggml_flash_attn(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * q,
  5047. struct ggml_tensor * k,
  5048. struct ggml_tensor * v,
  5049. bool masked) {
  5050. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5051. // TODO: check if vT can be multiplied by (k*qT)
  5052. bool is_node = false;
  5053. if (q->grad || k->grad || v->grad) {
  5054. GGML_ASSERT(false); // TODO: implement backward
  5055. is_node = true;
  5056. }
  5057. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5058. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5059. result->op = GGML_OP_FLASH_ATTN;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src0 = q;
  5062. result->src1 = k;
  5063. result->opt[0] = v;
  5064. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5065. return result;
  5066. }
  5067. // ggml_flash_ff
  5068. struct ggml_tensor * ggml_flash_ff(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. struct ggml_tensor * b0,
  5072. struct ggml_tensor * b1,
  5073. struct ggml_tensor * c0,
  5074. struct ggml_tensor * c1) {
  5075. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5076. // TODO: more checks
  5077. bool is_node = false;
  5078. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5079. GGML_ASSERT(false); // TODO: implement backward
  5080. is_node = true;
  5081. }
  5082. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5083. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5084. result->op = GGML_OP_FLASH_FF;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src0 = a;
  5087. result->src1 = b0;
  5088. result->opt[0] = b1;
  5089. result->opt[1] = c0;
  5090. result->opt[2] = c1;
  5091. return result;
  5092. }
  5093. // ggml_map_unary
  5094. struct ggml_tensor * ggml_map_unary_impl_f32(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. const ggml_unary_op_f32_t fun,
  5098. bool inplace) {
  5099. bool is_node = false;
  5100. if (!inplace && a->grad) {
  5101. is_node = true;
  5102. }
  5103. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5104. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5105. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5106. result->op = GGML_OP_MAP_UNARY;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src0 = a;
  5109. result->opt[0] = addr_tensor;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_map_unary_f32(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. const ggml_unary_op_f32_t fun) {
  5116. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5117. }
  5118. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. const ggml_unary_op_f32_t fun) {
  5122. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5123. }
  5124. // ggml_map_binary
  5125. struct ggml_tensor * ggml_map_binary_impl_f32(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. const ggml_binary_op_f32_t fun,
  5130. bool inplace) {
  5131. GGML_ASSERT(ggml_are_same_shape(a, b));
  5132. bool is_node = false;
  5133. if (!inplace && (a->grad || b->grad)) {
  5134. is_node = true;
  5135. }
  5136. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5137. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5138. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5139. result->op = GGML_OP_MAP_BINARY;
  5140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5141. result->src0 = a;
  5142. result->src1 = b;
  5143. result->opt[0] = addr_tensor;
  5144. return result;
  5145. }
  5146. struct ggml_tensor * ggml_map_binary_f32(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. struct ggml_tensor * b,
  5150. const ggml_binary_op_f32_t fun) {
  5151. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5152. }
  5153. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b,
  5157. const ggml_binary_op_f32_t fun) {
  5158. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5159. }
  5160. ////////////////////////////////////////////////////////////////////////////////
  5161. void ggml_set_param(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * tensor) {
  5164. tensor->is_param = true;
  5165. GGML_ASSERT(tensor->grad == NULL);
  5166. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5167. }
  5168. // ggml_compute_forward_dup
  5169. static void ggml_compute_forward_dup_f16(
  5170. const struct ggml_compute_params * params,
  5171. const struct ggml_tensor * src0,
  5172. struct ggml_tensor * dst) {
  5173. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5175. return;
  5176. }
  5177. const int64_t ne00 = src0->ne[0];
  5178. const int64_t ne01 = src0->ne[1];
  5179. const int64_t ne02 = src0->ne[2];
  5180. const int64_t ne03 = src0->ne[3];
  5181. const int64_t ne0 = dst->ne[0];
  5182. const int64_t ne1 = dst->ne[1];
  5183. const int64_t ne2 = dst->ne[2];
  5184. const int64_t ne3 = dst->ne[3];
  5185. const size_t nb00 = src0->nb[0];
  5186. const size_t nb01 = src0->nb[1];
  5187. const size_t nb02 = src0->nb[2];
  5188. const size_t nb03 = src0->nb[3];
  5189. const size_t nb0 = dst->nb[0];
  5190. const size_t nb1 = dst->nb[1];
  5191. const size_t nb2 = dst->nb[2];
  5192. const size_t nb3 = dst->nb[3];
  5193. const int ith = params->ith; // thread index
  5194. const int nth = params->nth; // number of threads
  5195. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5196. // parallelize by elements
  5197. const int ne = ggml_nelements(dst);
  5198. const int dr = (ne + nth - 1) / nth;
  5199. const int ie0 = dr * ith;
  5200. const int ie1 = MIN(ie0 + dr, ne);
  5201. memcpy(
  5202. ((char *) dst->data + ie0*nb0),
  5203. ((char *) src0->data + ie0*nb00),
  5204. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5205. return;
  5206. }
  5207. // parallelize by rows
  5208. const int nr = ne01;
  5209. // number of rows per thread
  5210. const int dr = (nr + nth - 1) / nth;
  5211. // row range for this thread
  5212. const int ir0 = dr * ith;
  5213. const int ir1 = MIN(ir0 + dr, nr);
  5214. if (src0->type == dst->type &&
  5215. ne00 == ne0 &&
  5216. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5217. // copy by rows
  5218. const size_t rs = ne00*nb00;
  5219. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5220. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5221. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5222. memcpy(
  5223. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5224. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5225. rs);
  5226. }
  5227. }
  5228. }
  5229. return;
  5230. }
  5231. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5232. if (ggml_is_contiguous(dst)) {
  5233. if (nb00 == sizeof(ggml_fp16_t)) {
  5234. if (dst->type == GGML_TYPE_F16) {
  5235. size_t id = 0;
  5236. const size_t rs = ne00 * nb00;
  5237. char * dst_ptr = (char *) dst->data;
  5238. for (int i03 = 0; i03 < ne03; i03++) {
  5239. for (int i02 = 0; i02 < ne02; i02++) {
  5240. id += rs * ir0;
  5241. for (int i01 = ir0; i01 < ir1; i01++) {
  5242. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5243. memcpy(dst_ptr + id, src0_ptr, rs);
  5244. id += rs;
  5245. }
  5246. id += rs * (ne01 - ir1);
  5247. }
  5248. }
  5249. } else if (dst->type == GGML_TYPE_F32) {
  5250. size_t id = 0;
  5251. float * dst_ptr = (float *) dst->data;
  5252. for (int i03 = 0; i03 < ne03; i03++) {
  5253. for (int i02 = 0; i02 < ne02; i02++) {
  5254. id += ne00 * ir0;
  5255. for (int i01 = ir0; i01 < ir1; i01++) {
  5256. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5257. for (int i00 = 0; i00 < ne00; i00++) {
  5258. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5259. id++;
  5260. }
  5261. }
  5262. id += ne00 * (ne01 - ir1);
  5263. }
  5264. }
  5265. } else if (ggml_is_quantized(dst->type)) {
  5266. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5267. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5268. size_t id = 0;
  5269. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5270. char * dst_ptr = (char *) dst->data;
  5271. for (int i03 = 0; i03 < ne03; i03++) {
  5272. for (int i02 = 0; i02 < ne02; i02++) {
  5273. id += rs * ir0;
  5274. for (int i01 = ir0; i01 < ir1; i01++) {
  5275. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5276. for (int i00 = 0; i00 < ne00; i00++) {
  5277. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5278. }
  5279. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5280. id += rs;
  5281. }
  5282. id += rs * (ne01 - ir1);
  5283. }
  5284. }
  5285. } else {
  5286. GGML_ASSERT(false); // TODO: implement
  5287. }
  5288. } else {
  5289. //printf("%s: this is not optimal - fix me\n", __func__);
  5290. if (dst->type == GGML_TYPE_F32) {
  5291. size_t id = 0;
  5292. float * dst_ptr = (float *) dst->data;
  5293. for (int i03 = 0; i03 < ne03; i03++) {
  5294. for (int i02 = 0; i02 < ne02; i02++) {
  5295. id += ne00 * ir0;
  5296. for (int i01 = ir0; i01 < ir1; i01++) {
  5297. for (int i00 = 0; i00 < ne00; i00++) {
  5298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5299. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5300. id++;
  5301. }
  5302. }
  5303. id += ne00 * (ne01 - ir1);
  5304. }
  5305. }
  5306. } else if (dst->type == GGML_TYPE_F16) {
  5307. size_t id = 0;
  5308. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5309. for (int i03 = 0; i03 < ne03; i03++) {
  5310. for (int i02 = 0; i02 < ne02; i02++) {
  5311. id += ne00 * ir0;
  5312. for (int i01 = ir0; i01 < ir1; i01++) {
  5313. for (int i00 = 0; i00 < ne00; i00++) {
  5314. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5315. dst_ptr[id] = *src0_ptr;
  5316. id++;
  5317. }
  5318. }
  5319. id += ne00 * (ne01 - ir1);
  5320. }
  5321. }
  5322. } else {
  5323. GGML_ASSERT(false); // TODO: implement
  5324. }
  5325. }
  5326. return;
  5327. }
  5328. // dst counters
  5329. int64_t i10 = 0;
  5330. int64_t i11 = 0;
  5331. int64_t i12 = 0;
  5332. int64_t i13 = 0;
  5333. if (dst->type == GGML_TYPE_F16) {
  5334. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5336. i10 += ne00 * ir0;
  5337. while (i10 >= ne0) {
  5338. i10 -= ne0;
  5339. if (++i11 == ne1) {
  5340. i11 = 0;
  5341. if (++i12 == ne2) {
  5342. i12 = 0;
  5343. if (++i13 == ne3) {
  5344. i13 = 0;
  5345. }
  5346. }
  5347. }
  5348. }
  5349. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5350. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5351. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5352. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5353. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5354. if (++i10 == ne00) {
  5355. i10 = 0;
  5356. if (++i11 == ne01) {
  5357. i11 = 0;
  5358. if (++i12 == ne02) {
  5359. i12 = 0;
  5360. if (++i13 == ne03) {
  5361. i13 = 0;
  5362. }
  5363. }
  5364. }
  5365. }
  5366. }
  5367. }
  5368. i10 += ne00 * (ne01 - ir1);
  5369. while (i10 >= ne0) {
  5370. i10 -= ne0;
  5371. if (++i11 == ne1) {
  5372. i11 = 0;
  5373. if (++i12 == ne2) {
  5374. i12 = 0;
  5375. if (++i13 == ne3) {
  5376. i13 = 0;
  5377. }
  5378. }
  5379. }
  5380. }
  5381. }
  5382. }
  5383. } else if (dst->type == GGML_TYPE_F32) {
  5384. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5385. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5386. i10 += ne00 * ir0;
  5387. while (i10 >= ne0) {
  5388. i10 -= ne0;
  5389. if (++i11 == ne1) {
  5390. i11 = 0;
  5391. if (++i12 == ne2) {
  5392. i12 = 0;
  5393. if (++i13 == ne3) {
  5394. i13 = 0;
  5395. }
  5396. }
  5397. }
  5398. }
  5399. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5400. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5401. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5402. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5403. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5404. if (++i10 == ne0) {
  5405. i10 = 0;
  5406. if (++i11 == ne1) {
  5407. i11 = 0;
  5408. if (++i12 == ne2) {
  5409. i12 = 0;
  5410. if (++i13 == ne3) {
  5411. i13 = 0;
  5412. }
  5413. }
  5414. }
  5415. }
  5416. }
  5417. }
  5418. i10 += ne00 * (ne01 - ir1);
  5419. while (i10 >= ne0) {
  5420. i10 -= ne0;
  5421. if (++i11 == ne1) {
  5422. i11 = 0;
  5423. if (++i12 == ne2) {
  5424. i12 = 0;
  5425. if (++i13 == ne3) {
  5426. i13 = 0;
  5427. }
  5428. }
  5429. }
  5430. }
  5431. }
  5432. }
  5433. } else {
  5434. GGML_ASSERT(false); // TODO: implement
  5435. }
  5436. }
  5437. static void ggml_compute_forward_dup_f32(
  5438. const struct ggml_compute_params * params,
  5439. const struct ggml_tensor * src0,
  5440. struct ggml_tensor * dst) {
  5441. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5443. return;
  5444. }
  5445. const int64_t ne00 = src0->ne[0];
  5446. const int64_t ne01 = src0->ne[1];
  5447. const int64_t ne02 = src0->ne[2];
  5448. const int64_t ne03 = src0->ne[3];
  5449. const int64_t ne0 = dst->ne[0];
  5450. const int64_t ne1 = dst->ne[1];
  5451. const int64_t ne2 = dst->ne[2];
  5452. const int64_t ne3 = dst->ne[3];
  5453. const size_t nb00 = src0->nb[0];
  5454. const size_t nb01 = src0->nb[1];
  5455. const size_t nb02 = src0->nb[2];
  5456. const size_t nb03 = src0->nb[3];
  5457. const size_t nb0 = dst->nb[0];
  5458. const size_t nb1 = dst->nb[1];
  5459. const size_t nb2 = dst->nb[2];
  5460. const size_t nb3 = dst->nb[3];
  5461. const int ith = params->ith; // thread index
  5462. const int nth = params->nth; // number of threads
  5463. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5464. // parallelize by elements
  5465. const int ne = ggml_nelements(dst);
  5466. const int dr = (ne + nth - 1) / nth;
  5467. const int ie0 = dr * ith;
  5468. const int ie1 = MIN(ie0 + dr, ne);
  5469. memcpy(
  5470. ((char *) dst->data + ie0*nb0),
  5471. ((char *) src0->data + ie0*nb00),
  5472. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5473. return;
  5474. }
  5475. // parallelize by rows
  5476. const int nr = ne01;
  5477. // number of rows per thread
  5478. const int dr = (nr + nth - 1) / nth;
  5479. // row range for this thread
  5480. const int ir0 = dr * ith;
  5481. const int ir1 = MIN(ir0 + dr, nr);
  5482. if (src0->type == dst->type &&
  5483. ne00 == ne0 &&
  5484. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5485. // copy by rows
  5486. const size_t rs = ne00*nb00;
  5487. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5488. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5489. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5490. memcpy(
  5491. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5492. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5493. rs);
  5494. }
  5495. }
  5496. }
  5497. return;
  5498. }
  5499. if (ggml_is_contiguous(dst)) {
  5500. // TODO: simplify
  5501. if (nb00 == sizeof(float)) {
  5502. if (dst->type == GGML_TYPE_F32) {
  5503. size_t id = 0;
  5504. const size_t rs = ne00 * nb00;
  5505. char * dst_ptr = (char *) dst->data;
  5506. for (int i03 = 0; i03 < ne03; i03++) {
  5507. for (int i02 = 0; i02 < ne02; i02++) {
  5508. id += rs * ir0;
  5509. for (int i01 = ir0; i01 < ir1; i01++) {
  5510. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5511. memcpy(dst_ptr + id, src0_ptr, rs);
  5512. id += rs;
  5513. }
  5514. id += rs * (ne01 - ir1);
  5515. }
  5516. }
  5517. } else if (dst->type == GGML_TYPE_F16) {
  5518. size_t id = 0;
  5519. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5520. for (int i03 = 0; i03 < ne03; i03++) {
  5521. for (int i02 = 0; i02 < ne02; i02++) {
  5522. id += ne00 * ir0;
  5523. for (int i01 = ir0; i01 < ir1; i01++) {
  5524. for (int i00 = 0; i00 < ne00; i00++) {
  5525. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5526. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5527. id++;
  5528. }
  5529. }
  5530. id += ne00 * (ne01 - ir1);
  5531. }
  5532. }
  5533. } else if (ggml_is_quantized(dst->type)) {
  5534. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5535. size_t id = 0;
  5536. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5537. char * dst_ptr = (char *) dst->data;
  5538. for (int i03 = 0; i03 < ne03; i03++) {
  5539. for (int i02 = 0; i02 < ne02; i02++) {
  5540. id += rs * ir0;
  5541. for (int i01 = ir0; i01 < ir1; i01++) {
  5542. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5543. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5544. id += rs;
  5545. }
  5546. id += rs * (ne01 - ir1);
  5547. }
  5548. }
  5549. } else {
  5550. GGML_ASSERT(false); // TODO: implement
  5551. }
  5552. } else {
  5553. //printf("%s: this is not optimal - fix me\n", __func__);
  5554. if (dst->type == GGML_TYPE_F32) {
  5555. size_t id = 0;
  5556. float * dst_ptr = (float *) dst->data;
  5557. for (int i03 = 0; i03 < ne03; i03++) {
  5558. for (int i02 = 0; i02 < ne02; i02++) {
  5559. id += ne00 * ir0;
  5560. for (int i01 = ir0; i01 < ir1; i01++) {
  5561. for (int i00 = 0; i00 < ne00; i00++) {
  5562. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5563. dst_ptr[id] = *src0_ptr;
  5564. id++;
  5565. }
  5566. }
  5567. id += ne00 * (ne01 - ir1);
  5568. }
  5569. }
  5570. } else if (dst->type == GGML_TYPE_F16) {
  5571. size_t id = 0;
  5572. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5573. for (int i03 = 0; i03 < ne03; i03++) {
  5574. for (int i02 = 0; i02 < ne02; i02++) {
  5575. id += ne00 * ir0;
  5576. for (int i01 = ir0; i01 < ir1; i01++) {
  5577. for (int i00 = 0; i00 < ne00; i00++) {
  5578. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5579. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5580. id++;
  5581. }
  5582. }
  5583. id += ne00 * (ne01 - ir1);
  5584. }
  5585. }
  5586. } else {
  5587. GGML_ASSERT(false); // TODO: implement
  5588. }
  5589. }
  5590. return;
  5591. }
  5592. // dst counters
  5593. int64_t i10 = 0;
  5594. int64_t i11 = 0;
  5595. int64_t i12 = 0;
  5596. int64_t i13 = 0;
  5597. if (dst->type == GGML_TYPE_F32) {
  5598. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5600. i10 += ne00 * ir0;
  5601. while (i10 >= ne0) {
  5602. i10 -= ne0;
  5603. if (++i11 == ne1) {
  5604. i11 = 0;
  5605. if (++i12 == ne2) {
  5606. i12 = 0;
  5607. if (++i13 == ne3) {
  5608. i13 = 0;
  5609. }
  5610. }
  5611. }
  5612. }
  5613. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5614. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5615. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5616. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5617. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5618. if (++i10 == ne0) {
  5619. i10 = 0;
  5620. if (++i11 == ne1) {
  5621. i11 = 0;
  5622. if (++i12 == ne2) {
  5623. i12 = 0;
  5624. if (++i13 == ne3) {
  5625. i13 = 0;
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. }
  5632. i10 += ne00 * (ne01 - ir1);
  5633. while (i10 >= ne0) {
  5634. i10 -= ne0;
  5635. if (++i11 == ne1) {
  5636. i11 = 0;
  5637. if (++i12 == ne2) {
  5638. i12 = 0;
  5639. if (++i13 == ne3) {
  5640. i13 = 0;
  5641. }
  5642. }
  5643. }
  5644. }
  5645. }
  5646. }
  5647. } else if (dst->type == GGML_TYPE_F16) {
  5648. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5649. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5650. i10 += ne00 * ir0;
  5651. while (i10 >= ne0) {
  5652. i10 -= ne0;
  5653. if (++i11 == ne1) {
  5654. i11 = 0;
  5655. if (++i12 == ne2) {
  5656. i12 = 0;
  5657. if (++i13 == ne3) {
  5658. i13 = 0;
  5659. }
  5660. }
  5661. }
  5662. }
  5663. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5664. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5665. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5666. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5667. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5668. if (++i10 == ne0) {
  5669. i10 = 0;
  5670. if (++i11 == ne1) {
  5671. i11 = 0;
  5672. if (++i12 == ne2) {
  5673. i12 = 0;
  5674. if (++i13 == ne3) {
  5675. i13 = 0;
  5676. }
  5677. }
  5678. }
  5679. }
  5680. }
  5681. }
  5682. i10 += ne00 * (ne01 - ir1);
  5683. while (i10 >= ne0) {
  5684. i10 -= ne0;
  5685. if (++i11 == ne1) {
  5686. i11 = 0;
  5687. if (++i12 == ne2) {
  5688. i12 = 0;
  5689. if (++i13 == ne3) {
  5690. i13 = 0;
  5691. }
  5692. }
  5693. }
  5694. }
  5695. }
  5696. }
  5697. } else {
  5698. GGML_ASSERT(false); // TODO: implement
  5699. }
  5700. }
  5701. static void ggml_compute_forward_dup(
  5702. const struct ggml_compute_params * params,
  5703. const struct ggml_tensor * src0,
  5704. struct ggml_tensor * dst) {
  5705. switch (src0->type) {
  5706. case GGML_TYPE_F16:
  5707. {
  5708. ggml_compute_forward_dup_f16(params, src0, dst);
  5709. } break;
  5710. case GGML_TYPE_F32:
  5711. {
  5712. ggml_compute_forward_dup_f32(params, src0, dst);
  5713. } break;
  5714. default:
  5715. {
  5716. GGML_ASSERT(false);
  5717. } break;
  5718. }
  5719. }
  5720. // ggml_compute_forward_add
  5721. static void ggml_compute_forward_add_f32(
  5722. const struct ggml_compute_params * params,
  5723. const struct ggml_tensor * src0,
  5724. const struct ggml_tensor * src1,
  5725. struct ggml_tensor * dst) {
  5726. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5728. return;
  5729. }
  5730. const int ith = params->ith;
  5731. const int nth = params->nth;
  5732. const int n = ggml_nrows(src0);
  5733. const int nc = src0->ne[0];
  5734. const size_t nb00 = src0->nb[0];
  5735. const size_t nb01 = src0->nb[1];
  5736. const size_t nb10 = src1->nb[0];
  5737. const size_t nb11 = src1->nb[1];
  5738. const size_t nb0 = dst->nb[0];
  5739. const size_t nb1 = dst->nb[1];
  5740. GGML_ASSERT( nb0 == sizeof(float));
  5741. GGML_ASSERT(nb00 == sizeof(float));
  5742. if (nb10 == sizeof(float)) {
  5743. for (int j = ith; j < n; j += nth) {
  5744. #ifdef GGML_USE_ACCELERATE
  5745. vDSP_vadd(
  5746. (float *) ((char *) src0->data + j*nb01), 1,
  5747. (float *) ((char *) src1->data + j*nb11), 1,
  5748. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5749. #else
  5750. ggml_vec_add_f32(nc,
  5751. (float *) ((char *) dst->data + j*nb1),
  5752. (float *) ((char *) src0->data + j*nb01),
  5753. (float *) ((char *) src1->data + j*nb11));
  5754. #endif
  5755. }
  5756. } else {
  5757. // src1 is not contiguous
  5758. for (int j = ith; j < n; j += nth) {
  5759. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5760. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5761. for (int i = 0; i < nc; i++) {
  5762. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5763. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5764. }
  5765. }
  5766. }
  5767. }
  5768. static void ggml_compute_forward_add_f16_f32(
  5769. const struct ggml_compute_params * params,
  5770. const struct ggml_tensor * src0,
  5771. const struct ggml_tensor * src1,
  5772. struct ggml_tensor * dst) {
  5773. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5775. return;
  5776. }
  5777. const int ith = params->ith;
  5778. const int nth = params->nth;
  5779. const int n = ggml_nrows(src0);
  5780. const int nc = src0->ne[0];
  5781. const size_t nb00 = src0->nb[0];
  5782. const size_t nb01 = src0->nb[1];
  5783. const size_t nb10 = src1->nb[0];
  5784. const size_t nb11 = src1->nb[1];
  5785. const size_t nb0 = dst->nb[0];
  5786. const size_t nb1 = dst->nb[1];
  5787. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5788. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5789. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5790. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5791. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5792. if (nb10 == sizeof(float)) {
  5793. for (int j = ith; j < n; j += nth) {
  5794. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5795. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5796. for (int i = 0; i < nc; i++) {
  5797. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5798. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5799. }
  5800. }
  5801. }
  5802. else {
  5803. // src1 is not contiguous
  5804. GGML_ASSERT(false);
  5805. }
  5806. }
  5807. static void ggml_compute_forward_add_f16_f16(
  5808. const struct ggml_compute_params * params,
  5809. const struct ggml_tensor * src0,
  5810. const struct ggml_tensor * src1,
  5811. struct ggml_tensor * dst) {
  5812. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5814. return;
  5815. }
  5816. const int ith = params->ith;
  5817. const int nth = params->nth;
  5818. const int n = ggml_nrows(src0);
  5819. const int nc = src0->ne[0];
  5820. const size_t nb00 = src0->nb[0];
  5821. const size_t nb01 = src0->nb[1];
  5822. const size_t nb10 = src1->nb[0];
  5823. const size_t nb11 = src1->nb[1];
  5824. const size_t nb0 = dst->nb[0];
  5825. const size_t nb1 = dst->nb[1];
  5826. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5827. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5828. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5829. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5830. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5831. if (nb10 == sizeof(ggml_fp16_t)) {
  5832. for (int j = ith; j < n; j += nth) {
  5833. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5834. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5835. for (int i = 0; i < nc; i++) {
  5836. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5837. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5838. }
  5839. }
  5840. }
  5841. else {
  5842. // src1 is not contiguous
  5843. GGML_ASSERT(false);
  5844. }
  5845. }
  5846. static void ggml_compute_forward_add_q_f32(
  5847. const struct ggml_compute_params * params,
  5848. const struct ggml_tensor * src0,
  5849. const struct ggml_tensor * src1,
  5850. struct ggml_tensor * dst) {
  5851. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5853. return;
  5854. }
  5855. const int64_t ne00 = src0->ne[0];
  5856. const int64_t ne01 = src0->ne[1];
  5857. const int64_t ne02 = src0->ne[2];
  5858. const int64_t ne03 = src0->ne[3];
  5859. //const int64_t ne10 = src1->ne[0];
  5860. //const int64_t ne11 = src1->ne[1];
  5861. const int64_t ne12 = src1->ne[2];
  5862. const int64_t ne13 = src1->ne[3];
  5863. //const int64_t ne0 = dst->ne[0];
  5864. //const int64_t ne1 = dst->ne[1];
  5865. const int64_t ne2 = dst->ne[2];
  5866. const int64_t ne3 = dst->ne[3];
  5867. const int nb00 = src0->nb[0];
  5868. const int nb01 = src0->nb[1];
  5869. const int nb02 = src0->nb[2];
  5870. const int nb03 = src0->nb[3];
  5871. const int nb10 = src1->nb[0];
  5872. const int nb11 = src1->nb[1];
  5873. const int nb12 = src1->nb[2];
  5874. const int nb13 = src1->nb[3];
  5875. const int nb0 = dst->nb[0];
  5876. const int nb1 = dst->nb[1];
  5877. const int nb2 = dst->nb[2];
  5878. const int nb3 = dst->nb[3];
  5879. const int ith = params->ith;
  5880. const int nth = params->nth;
  5881. GGML_ASSERT(ne02 == ne12);
  5882. GGML_ASSERT(ne03 == ne13);
  5883. GGML_ASSERT(ne2 == ne12);
  5884. GGML_ASSERT(ne3 == ne13);
  5885. const enum ggml_type type = src0->type;
  5886. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5887. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5888. // we don't support permuted src0 or src1
  5889. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5890. GGML_ASSERT(nb10 == sizeof(float));
  5891. // dst cannot be transposed or permuted
  5892. GGML_ASSERT(nb0 <= nb1);
  5893. GGML_ASSERT(nb1 <= nb2);
  5894. GGML_ASSERT(nb2 <= nb3);
  5895. GGML_ASSERT(ggml_is_quantized(src0->type));
  5896. GGML_ASSERT(dst->type == src0->type);
  5897. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5898. // total rows in src0
  5899. const int nr = ne01*ne02*ne03;
  5900. // rows per thread
  5901. const int dr = (nr + nth - 1)/nth;
  5902. // row range for this thread
  5903. const int ir0 = dr*ith;
  5904. const int ir1 = MIN(ir0 + dr, nr);
  5905. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5906. for (int ir = ir0; ir < ir1; ++ir) {
  5907. // src0 indices
  5908. const int i03 = ir/(ne02*ne01);
  5909. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5910. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5911. // src1 and dst are same shape as src0 => same indices
  5912. const int i13 = i03;
  5913. const int i12 = i02;
  5914. const int i11 = i01;
  5915. const int i3 = i03;
  5916. const int i2 = i02;
  5917. const int i1 = i01;
  5918. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5919. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5920. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5921. assert(ne00 % 32 == 0);
  5922. // unquantize row from src0 to temp buffer
  5923. dequantize_row_q(src0_row, wdata, ne00);
  5924. // add src1
  5925. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5926. // quantize row to dst
  5927. quantize_row_q(wdata, dst_row, ne00);
  5928. }
  5929. }
  5930. static void ggml_compute_forward_add(
  5931. const struct ggml_compute_params * params,
  5932. const struct ggml_tensor * src0,
  5933. const struct ggml_tensor * src1,
  5934. struct ggml_tensor * dst) {
  5935. switch (src0->type) {
  5936. case GGML_TYPE_F32:
  5937. {
  5938. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5939. } break;
  5940. case GGML_TYPE_F16:
  5941. {
  5942. if (src1->type == GGML_TYPE_F16) {
  5943. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5944. }
  5945. else if (src1->type == GGML_TYPE_F32) {
  5946. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5947. }
  5948. else {
  5949. GGML_ASSERT(false);
  5950. }
  5951. } break;
  5952. case GGML_TYPE_Q4_0:
  5953. case GGML_TYPE_Q4_1:
  5954. case GGML_TYPE_Q4_2:
  5955. case GGML_TYPE_Q5_0:
  5956. case GGML_TYPE_Q5_1:
  5957. case GGML_TYPE_Q8_0:
  5958. {
  5959. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5960. } break;
  5961. default:
  5962. {
  5963. GGML_ASSERT(false);
  5964. } break;
  5965. }
  5966. }
  5967. // ggml_compute_forward_sub
  5968. static void ggml_compute_forward_sub_f32(
  5969. const struct ggml_compute_params * params,
  5970. const struct ggml_tensor * src0,
  5971. const struct ggml_tensor * src1,
  5972. struct ggml_tensor * dst) {
  5973. assert(params->ith == 0);
  5974. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5976. return;
  5977. }
  5978. const int n = ggml_nrows(src0);
  5979. const int nc = src0->ne[0];
  5980. assert( dst->nb[0] == sizeof(float));
  5981. assert(src0->nb[0] == sizeof(float));
  5982. assert(src1->nb[0] == sizeof(float));
  5983. for (int i = 0; i < n; i++) {
  5984. ggml_vec_sub_f32(nc,
  5985. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5986. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5987. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5988. }
  5989. }
  5990. static void ggml_compute_forward_sub(
  5991. const struct ggml_compute_params * params,
  5992. const struct ggml_tensor * src0,
  5993. const struct ggml_tensor * src1,
  5994. struct ggml_tensor * dst) {
  5995. switch (src0->type) {
  5996. case GGML_TYPE_F32:
  5997. {
  5998. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5999. } break;
  6000. default:
  6001. {
  6002. GGML_ASSERT(false);
  6003. } break;
  6004. }
  6005. }
  6006. // ggml_compute_forward_mul
  6007. static void ggml_compute_forward_mul_f32(
  6008. const struct ggml_compute_params * params,
  6009. const struct ggml_tensor * src0,
  6010. const struct ggml_tensor * src1,
  6011. struct ggml_tensor * dst) {
  6012. assert(params->ith == 0);
  6013. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6015. return;
  6016. }
  6017. const int n = ggml_nrows(src0);
  6018. const int nc = src0->ne[0];
  6019. assert( dst->nb[0] == sizeof(float));
  6020. assert(src0->nb[0] == sizeof(float));
  6021. assert(src1->nb[0] == sizeof(float));
  6022. for (int i = 0; i < n; i++) {
  6023. ggml_vec_mul_f32(nc,
  6024. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6025. (float *) ((char *) src0->data + i*(src0->nb[1])),
  6026. (float *) ((char *) src1->data + i*(src1->nb[1])));
  6027. }
  6028. }
  6029. static void ggml_compute_forward_mul(
  6030. const struct ggml_compute_params * params,
  6031. const struct ggml_tensor * src0,
  6032. const struct ggml_tensor * src1,
  6033. struct ggml_tensor * dst) {
  6034. switch (src0->type) {
  6035. case GGML_TYPE_F32:
  6036. {
  6037. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6038. } break;
  6039. default:
  6040. {
  6041. GGML_ASSERT(false);
  6042. } break;
  6043. }
  6044. }
  6045. // ggml_compute_forward_div
  6046. static void ggml_compute_forward_div_f32(
  6047. const struct ggml_compute_params * params,
  6048. const struct ggml_tensor * src0,
  6049. const struct ggml_tensor * src1,
  6050. struct ggml_tensor * dst) {
  6051. assert(params->ith == 0);
  6052. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6054. return;
  6055. }
  6056. const int n = ggml_nrows(src0);
  6057. const int nc = src0->ne[0];
  6058. assert( dst->nb[0] == sizeof(float));
  6059. assert(src0->nb[0] == sizeof(float));
  6060. assert(src1->nb[0] == sizeof(float));
  6061. for (int i = 0; i < n; i++) {
  6062. ggml_vec_div_f32(nc,
  6063. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6064. (float *) ((char *) src0->data + i*(src0->nb[1])),
  6065. (float *) ((char *) src1->data + i*(src1->nb[1])));
  6066. }
  6067. }
  6068. static void ggml_compute_forward_div(
  6069. const struct ggml_compute_params * params,
  6070. const struct ggml_tensor * src0,
  6071. const struct ggml_tensor * src1,
  6072. struct ggml_tensor * dst) {
  6073. switch (src0->type) {
  6074. case GGML_TYPE_F32:
  6075. {
  6076. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6077. } break;
  6078. default:
  6079. {
  6080. GGML_ASSERT(false);
  6081. } break;
  6082. }
  6083. }
  6084. // ggml_compute_forward_sqr
  6085. static void ggml_compute_forward_sqr_f32(
  6086. const struct ggml_compute_params * params,
  6087. const struct ggml_tensor * src0,
  6088. struct ggml_tensor * dst) {
  6089. assert(params->ith == 0);
  6090. assert(ggml_are_same_shape(src0, dst));
  6091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6092. return;
  6093. }
  6094. const int n = ggml_nrows(src0);
  6095. const int nc = src0->ne[0];
  6096. assert( dst->nb[0] == sizeof(float));
  6097. assert(src0->nb[0] == sizeof(float));
  6098. for (int i = 0; i < n; i++) {
  6099. ggml_vec_sqr_f32(nc,
  6100. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6101. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6102. }
  6103. }
  6104. static void ggml_compute_forward_sqr(
  6105. const struct ggml_compute_params * params,
  6106. const struct ggml_tensor * src0,
  6107. struct ggml_tensor * dst) {
  6108. switch (src0->type) {
  6109. case GGML_TYPE_F32:
  6110. {
  6111. ggml_compute_forward_sqr_f32(params, src0, dst);
  6112. } break;
  6113. default:
  6114. {
  6115. GGML_ASSERT(false);
  6116. } break;
  6117. }
  6118. }
  6119. // ggml_compute_forward_sqrt
  6120. static void ggml_compute_forward_sqrt_f32(
  6121. const struct ggml_compute_params * params,
  6122. const struct ggml_tensor * src0,
  6123. struct ggml_tensor * dst) {
  6124. assert(params->ith == 0);
  6125. assert(ggml_are_same_shape(src0, dst));
  6126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6127. return;
  6128. }
  6129. const int n = ggml_nrows(src0);
  6130. const int nc = src0->ne[0];
  6131. assert( dst->nb[0] == sizeof(float));
  6132. assert(src0->nb[0] == sizeof(float));
  6133. for (int i = 0; i < n; i++) {
  6134. ggml_vec_sqrt_f32(nc,
  6135. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6136. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6137. }
  6138. }
  6139. static void ggml_compute_forward_sqrt(
  6140. const struct ggml_compute_params * params,
  6141. const struct ggml_tensor * src0,
  6142. struct ggml_tensor * dst) {
  6143. switch (src0->type) {
  6144. case GGML_TYPE_F32:
  6145. {
  6146. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6147. } break;
  6148. default:
  6149. {
  6150. GGML_ASSERT(false);
  6151. } break;
  6152. }
  6153. }
  6154. // ggml_compute_forward_sum
  6155. static void ggml_compute_forward_sum_f32(
  6156. const struct ggml_compute_params * params,
  6157. const struct ggml_tensor * src0,
  6158. struct ggml_tensor * dst) {
  6159. assert(params->ith == 0);
  6160. assert(ggml_is_scalar(dst));
  6161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6162. return;
  6163. }
  6164. assert(ggml_is_scalar(dst));
  6165. assert(src0->nb[0] == sizeof(float));
  6166. const int64_t ne00 = src0->ne[0];
  6167. const int64_t ne01 = src0->ne[1];
  6168. const int64_t ne02 = src0->ne[2];
  6169. const int64_t ne03 = src0->ne[3];
  6170. const size_t nb01 = src0->nb[1];
  6171. const size_t nb02 = src0->nb[2];
  6172. const size_t nb03 = src0->nb[3];
  6173. ggml_float sum = 0;
  6174. ggml_float row_sum = 0;
  6175. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6176. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6177. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6178. ggml_vec_sum_ggf(ne00,
  6179. &row_sum,
  6180. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6181. sum += row_sum;
  6182. }
  6183. }
  6184. }
  6185. ((float *) dst->data)[0] = sum;
  6186. }
  6187. static void ggml_compute_forward_sum(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. struct ggml_tensor * dst) {
  6191. switch (src0->type) {
  6192. case GGML_TYPE_F32:
  6193. {
  6194. ggml_compute_forward_sum_f32(params, src0, dst);
  6195. } break;
  6196. default:
  6197. {
  6198. GGML_ASSERT(false);
  6199. } break;
  6200. }
  6201. }
  6202. // ggml_compute_forward_mean
  6203. static void ggml_compute_forward_mean_f32(
  6204. const struct ggml_compute_params * params,
  6205. const struct ggml_tensor * src0,
  6206. struct ggml_tensor * dst) {
  6207. assert(params->ith == 0);
  6208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6209. return;
  6210. }
  6211. assert(src0->nb[0] == sizeof(float));
  6212. const int64_t ne00 = src0->ne[0];
  6213. const int64_t ne01 = src0->ne[1];
  6214. const int64_t ne02 = src0->ne[2];
  6215. const int64_t ne03 = src0->ne[3];
  6216. const size_t nb01 = src0->nb[1];
  6217. const size_t nb02 = src0->nb[2];
  6218. const size_t nb03 = src0->nb[3];
  6219. const int64_t ne0 = dst->ne[0];
  6220. const int64_t ne1 = dst->ne[1];
  6221. const int64_t ne2 = dst->ne[2];
  6222. const int64_t ne3 = dst->ne[3];
  6223. assert(ne0 == 1);
  6224. assert(ne1 == ne01);
  6225. assert(ne2 == ne02);
  6226. assert(ne3 == ne03);
  6227. UNUSED(ne0);
  6228. UNUSED(ne1);
  6229. UNUSED(ne2);
  6230. UNUSED(ne3);
  6231. const size_t nb1 = dst->nb[1];
  6232. const size_t nb2 = dst->nb[2];
  6233. const size_t nb3 = dst->nb[3];
  6234. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6235. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6236. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6237. ggml_vec_sum_f32(ne00,
  6238. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6239. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6240. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. static void ggml_compute_forward_mean(
  6246. const struct ggml_compute_params * params,
  6247. const struct ggml_tensor * src0,
  6248. struct ggml_tensor * dst) {
  6249. switch (src0->type) {
  6250. case GGML_TYPE_F32:
  6251. {
  6252. ggml_compute_forward_mean_f32(params, src0, dst);
  6253. } break;
  6254. default:
  6255. {
  6256. GGML_ASSERT(false);
  6257. } break;
  6258. }
  6259. }
  6260. // ggml_compute_forward_repeat
  6261. static void ggml_compute_forward_repeat_f32(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. struct ggml_tensor * dst) {
  6265. assert(params->ith == 0);
  6266. assert(ggml_can_repeat(src0, dst));
  6267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6268. return;
  6269. }
  6270. // TODO: implement support for rank > 2 tensors
  6271. assert(src0->ne[2] == 1);
  6272. assert(src0->ne[3] == 1);
  6273. assert( dst->ne[2] == 1);
  6274. assert( dst->ne[3] == 1);
  6275. const int nc = dst->ne[0];
  6276. const int nr = dst->ne[1];
  6277. const int nc0 = src0->ne[0];
  6278. const int nr0 = src0->ne[1];
  6279. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6280. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6281. // TODO: support for transposed / permuted tensors
  6282. assert( dst->nb[0] == sizeof(float));
  6283. assert(src0->nb[0] == sizeof(float));
  6284. // TODO: maybe this is not optimal?
  6285. for (int i = 0; i < nrr; i++) {
  6286. for (int j = 0; j < ncr; j++) {
  6287. for (int k = 0; k < nr0; k++) {
  6288. ggml_vec_cpy_f32(nc0,
  6289. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6290. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6291. }
  6292. }
  6293. }
  6294. }
  6295. static void ggml_compute_forward_repeat(
  6296. const struct ggml_compute_params * params,
  6297. const struct ggml_tensor * src0,
  6298. struct ggml_tensor * dst) {
  6299. switch (src0->type) {
  6300. case GGML_TYPE_F32:
  6301. {
  6302. ggml_compute_forward_repeat_f32(params, src0, dst);
  6303. } break;
  6304. default:
  6305. {
  6306. GGML_ASSERT(false);
  6307. } break;
  6308. }
  6309. }
  6310. // ggml_compute_forward_abs
  6311. static void ggml_compute_forward_abs_f32(
  6312. const struct ggml_compute_params * params,
  6313. const struct ggml_tensor * src0,
  6314. struct ggml_tensor * dst) {
  6315. assert(params->ith == 0);
  6316. assert(ggml_are_same_shape(src0, dst));
  6317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6318. return;
  6319. }
  6320. const int n = ggml_nrows(src0);
  6321. const int nc = src0->ne[0];
  6322. assert(dst->nb[0] == sizeof(float));
  6323. assert(src0->nb[0] == sizeof(float));
  6324. for (int i = 0; i < n; i++) {
  6325. ggml_vec_abs_f32(nc,
  6326. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6327. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6328. }
  6329. }
  6330. static void ggml_compute_forward_abs(
  6331. const struct ggml_compute_params * params,
  6332. const struct ggml_tensor * src0,
  6333. struct ggml_tensor * dst) {
  6334. switch (src0->type) {
  6335. case GGML_TYPE_F32:
  6336. {
  6337. ggml_compute_forward_abs_f32(params, src0, dst);
  6338. } break;
  6339. default:
  6340. {
  6341. GGML_ASSERT(false);
  6342. } break;
  6343. }
  6344. }
  6345. // ggml_compute_forward_sgn
  6346. static void ggml_compute_forward_sgn_f32(
  6347. const struct ggml_compute_params * params,
  6348. const struct ggml_tensor * src0,
  6349. struct ggml_tensor * dst) {
  6350. assert(params->ith == 0);
  6351. assert(ggml_are_same_shape(src0, dst));
  6352. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6353. return;
  6354. }
  6355. const int n = ggml_nrows(src0);
  6356. const int nc = src0->ne[0];
  6357. assert(dst->nb[0] == sizeof(float));
  6358. assert(src0->nb[0] == sizeof(float));
  6359. for (int i = 0; i < n; i++) {
  6360. ggml_vec_sgn_f32(nc,
  6361. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6362. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6363. }
  6364. }
  6365. static void ggml_compute_forward_sgn(
  6366. const struct ggml_compute_params * params,
  6367. const struct ggml_tensor * src0,
  6368. struct ggml_tensor * dst) {
  6369. switch (src0->type) {
  6370. case GGML_TYPE_F32:
  6371. {
  6372. ggml_compute_forward_sgn_f32(params, src0, dst);
  6373. } break;
  6374. default:
  6375. {
  6376. GGML_ASSERT(false);
  6377. } break;
  6378. }
  6379. }
  6380. // ggml_compute_forward_neg
  6381. static void ggml_compute_forward_neg_f32(
  6382. const struct ggml_compute_params * params,
  6383. const struct ggml_tensor * src0,
  6384. struct ggml_tensor * dst) {
  6385. assert(params->ith == 0);
  6386. assert(ggml_are_same_shape(src0, dst));
  6387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6388. return;
  6389. }
  6390. const int n = ggml_nrows(src0);
  6391. const int nc = src0->ne[0];
  6392. assert(dst->nb[0] == sizeof(float));
  6393. assert(src0->nb[0] == sizeof(float));
  6394. for (int i = 0; i < n; i++) {
  6395. ggml_vec_neg_f32(nc,
  6396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6397. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6398. }
  6399. }
  6400. static void ggml_compute_forward_neg(
  6401. const struct ggml_compute_params * params,
  6402. const struct ggml_tensor * src0,
  6403. struct ggml_tensor * dst) {
  6404. switch (src0->type) {
  6405. case GGML_TYPE_F32:
  6406. {
  6407. ggml_compute_forward_neg_f32(params, src0, dst);
  6408. } break;
  6409. default:
  6410. {
  6411. GGML_ASSERT(false);
  6412. } break;
  6413. }
  6414. }
  6415. // ggml_compute_forward_step
  6416. static void ggml_compute_forward_step_f32(
  6417. const struct ggml_compute_params * params,
  6418. const struct ggml_tensor * src0,
  6419. struct ggml_tensor * dst) {
  6420. assert(params->ith == 0);
  6421. assert(ggml_are_same_shape(src0, dst));
  6422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6423. return;
  6424. }
  6425. const int n = ggml_nrows(src0);
  6426. const int nc = src0->ne[0];
  6427. assert(dst->nb[0] == sizeof(float));
  6428. assert(src0->nb[0] == sizeof(float));
  6429. for (int i = 0; i < n; i++) {
  6430. ggml_vec_step_f32(nc,
  6431. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6432. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6433. }
  6434. }
  6435. static void ggml_compute_forward_step(
  6436. const struct ggml_compute_params * params,
  6437. const struct ggml_tensor * src0,
  6438. struct ggml_tensor * dst) {
  6439. switch (src0->type) {
  6440. case GGML_TYPE_F32:
  6441. {
  6442. ggml_compute_forward_step_f32(params, src0, dst);
  6443. } break;
  6444. default:
  6445. {
  6446. GGML_ASSERT(false);
  6447. } break;
  6448. }
  6449. }
  6450. // ggml_compute_forward_relu
  6451. static void ggml_compute_forward_relu_f32(
  6452. const struct ggml_compute_params * params,
  6453. const struct ggml_tensor * src0,
  6454. struct ggml_tensor * dst) {
  6455. assert(params->ith == 0);
  6456. assert(ggml_are_same_shape(src0, dst));
  6457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6458. return;
  6459. }
  6460. const int n = ggml_nrows(src0);
  6461. const int nc = src0->ne[0];
  6462. assert(dst->nb[0] == sizeof(float));
  6463. assert(src0->nb[0] == sizeof(float));
  6464. for (int i = 0; i < n; i++) {
  6465. ggml_vec_relu_f32(nc,
  6466. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6467. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6468. }
  6469. }
  6470. static void ggml_compute_forward_relu(
  6471. const struct ggml_compute_params * params,
  6472. const struct ggml_tensor * src0,
  6473. struct ggml_tensor * dst) {
  6474. switch (src0->type) {
  6475. case GGML_TYPE_F32:
  6476. {
  6477. ggml_compute_forward_relu_f32(params, src0, dst);
  6478. } break;
  6479. default:
  6480. {
  6481. GGML_ASSERT(false);
  6482. } break;
  6483. }
  6484. }
  6485. // ggml_compute_forward_gelu
  6486. static void ggml_compute_forward_gelu_f32(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. struct ggml_tensor * dst) {
  6490. GGML_ASSERT(ggml_is_contiguous(src0));
  6491. GGML_ASSERT(ggml_is_contiguous(dst));
  6492. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6494. return;
  6495. }
  6496. const int ith = params->ith;
  6497. const int nth = params->nth;
  6498. const int nc = src0->ne[0];
  6499. const int nr = ggml_nrows(src0);
  6500. // rows per thread
  6501. const int dr = (nr + nth - 1)/nth;
  6502. // row range for this thread
  6503. const int ir0 = dr*ith;
  6504. const int ir1 = MIN(ir0 + dr, nr);
  6505. for (int i1 = ir0; i1 < ir1; i1++) {
  6506. ggml_vec_gelu_f32(nc,
  6507. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6508. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6509. #ifndef NDEBUG
  6510. for (int k = 0; k < nc; k++) {
  6511. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6512. UNUSED(x);
  6513. assert(!isnan(x));
  6514. assert(!isinf(x));
  6515. }
  6516. #endif
  6517. }
  6518. }
  6519. static void ggml_compute_forward_gelu(
  6520. const struct ggml_compute_params * params,
  6521. const struct ggml_tensor * src0,
  6522. struct ggml_tensor * dst) {
  6523. switch (src0->type) {
  6524. case GGML_TYPE_F32:
  6525. {
  6526. ggml_compute_forward_gelu_f32(params, src0, dst);
  6527. } break;
  6528. default:
  6529. {
  6530. GGML_ASSERT(false);
  6531. } break;
  6532. }
  6533. //printf("XXXXXXXX gelu\n");
  6534. }
  6535. // ggml_compute_forward_silu
  6536. static void ggml_compute_forward_silu_f32(
  6537. const struct ggml_compute_params * params,
  6538. const struct ggml_tensor * src0,
  6539. struct ggml_tensor * dst) {
  6540. GGML_ASSERT(ggml_is_contiguous(src0));
  6541. GGML_ASSERT(ggml_is_contiguous(dst));
  6542. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6544. return;
  6545. }
  6546. const int ith = params->ith;
  6547. const int nth = params->nth;
  6548. const int nc = src0->ne[0];
  6549. const int nr = ggml_nrows(src0);
  6550. // rows per thread
  6551. const int dr = (nr + nth - 1)/nth;
  6552. // row range for this thread
  6553. const int ir0 = dr*ith;
  6554. const int ir1 = MIN(ir0 + dr, nr);
  6555. for (int i1 = ir0; i1 < ir1; i1++) {
  6556. ggml_vec_silu_f32(nc,
  6557. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6558. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6559. #ifndef NDEBUG
  6560. for (int k = 0; k < nc; k++) {
  6561. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6562. UNUSED(x);
  6563. assert(!isnan(x));
  6564. assert(!isinf(x));
  6565. }
  6566. #endif
  6567. }
  6568. }
  6569. static void ggml_compute_forward_silu(
  6570. const struct ggml_compute_params * params,
  6571. const struct ggml_tensor * src0,
  6572. struct ggml_tensor * dst) {
  6573. switch (src0->type) {
  6574. case GGML_TYPE_F32:
  6575. {
  6576. ggml_compute_forward_silu_f32(params, src0, dst);
  6577. } break;
  6578. default:
  6579. {
  6580. GGML_ASSERT(false);
  6581. } break;
  6582. }
  6583. }
  6584. // ggml_compute_forward_norm
  6585. static void ggml_compute_forward_norm_f32(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0,
  6588. struct ggml_tensor * dst) {
  6589. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6591. return;
  6592. }
  6593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6594. const int ith = params->ith;
  6595. const int nth = params->nth;
  6596. const int64_t ne00 = src0->ne[0];
  6597. const int64_t ne01 = src0->ne[1];
  6598. const int64_t ne02 = src0->ne[2];
  6599. const int64_t ne03 = src0->ne[3];
  6600. const size_t nb01 = src0->nb[1];
  6601. const size_t nb02 = src0->nb[2];
  6602. const size_t nb03 = src0->nb[3];
  6603. const size_t nb1 = dst->nb[1];
  6604. const size_t nb2 = dst->nb[2];
  6605. const size_t nb3 = dst->nb[3];
  6606. const float eps = 1e-5f; // TODO: make this a parameter
  6607. // TODO: optimize
  6608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6610. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6611. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6612. ggml_float sum = 0.0;
  6613. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6614. sum += (ggml_float)x[i00];
  6615. }
  6616. float mean = sum/ne00;
  6617. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6618. ggml_float sum2 = 0.0;
  6619. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6620. float v = x[i00] - mean;
  6621. y[i00] = v;
  6622. sum2 += (ggml_float)(v*v);
  6623. }
  6624. float variance = sum2/ne00;
  6625. const float scale = 1.0f/sqrtf(variance + eps);
  6626. ggml_vec_scale_f32(ne00, y, scale);
  6627. }
  6628. }
  6629. }
  6630. }
  6631. static void ggml_compute_forward_norm(
  6632. const struct ggml_compute_params * params,
  6633. const struct ggml_tensor * src0,
  6634. struct ggml_tensor * dst) {
  6635. switch (src0->type) {
  6636. case GGML_TYPE_F32:
  6637. {
  6638. ggml_compute_forward_norm_f32(params, src0, dst);
  6639. } break;
  6640. default:
  6641. {
  6642. GGML_ASSERT(false);
  6643. } break;
  6644. }
  6645. }
  6646. static void ggml_compute_forward_rms_norm_f32(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. struct ggml_tensor * dst) {
  6650. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6652. return;
  6653. }
  6654. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6655. const int ith = params->ith;
  6656. const int nth = params->nth;
  6657. const int64_t ne00 = src0->ne[0];
  6658. const int64_t ne01 = src0->ne[1];
  6659. const int64_t ne02 = src0->ne[2];
  6660. const int64_t ne03 = src0->ne[3];
  6661. const size_t nb01 = src0->nb[1];
  6662. const size_t nb02 = src0->nb[2];
  6663. const size_t nb03 = src0->nb[3];
  6664. const size_t nb1 = dst->nb[1];
  6665. const size_t nb2 = dst->nb[2];
  6666. const size_t nb3 = dst->nb[3];
  6667. const float eps = 1e-6f; // TODO: make this a parameter
  6668. // TODO: optimize
  6669. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6670. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6671. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6672. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6673. ggml_float sum = 0.0;
  6674. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6675. sum += (ggml_float)(x[i00] * x[i00]);
  6676. }
  6677. float mean = sum/ne00;
  6678. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6679. memcpy(y, x, ne00 * sizeof(float));
  6680. // for (int i00 = 0; i00 < ne00; i00++) {
  6681. // y[i00] = x[i00];
  6682. // }
  6683. const float scale = 1.0f/sqrtf(mean + eps);
  6684. ggml_vec_scale_f32(ne00, y, scale);
  6685. }
  6686. }
  6687. }
  6688. }
  6689. static void ggml_compute_forward_rms_norm(
  6690. const struct ggml_compute_params * params,
  6691. const struct ggml_tensor * src0,
  6692. struct ggml_tensor * dst) {
  6693. switch (src0->type) {
  6694. case GGML_TYPE_F32:
  6695. {
  6696. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6697. } break;
  6698. default:
  6699. {
  6700. GGML_ASSERT(false);
  6701. } break;
  6702. }
  6703. }
  6704. // ggml_compute_forward_mul_mat
  6705. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6706. // helper function to determine if it is better to use BLAS or not
  6707. // for large matrices, BLAS is faster
  6708. static bool ggml_compute_forward_mul_mat_use_blas(
  6709. const struct ggml_tensor * src0,
  6710. const struct ggml_tensor * src1,
  6711. struct ggml_tensor * dst) {
  6712. //const int64_t ne00 = src0->ne[0];
  6713. //const int64_t ne01 = src0->ne[1];
  6714. const int64_t ne10 = src1->ne[0];
  6715. const int64_t ne0 = dst->ne[0];
  6716. const int64_t ne1 = dst->ne[1];
  6717. // TODO: find the optimal values for these
  6718. if (ggml_is_contiguous(src0) &&
  6719. ggml_is_contiguous(src1) &&
  6720. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6721. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6722. return true;
  6723. }
  6724. return false;
  6725. }
  6726. #endif
  6727. static void ggml_compute_forward_mul_mat_f32(
  6728. const struct ggml_compute_params * params,
  6729. const struct ggml_tensor * src0,
  6730. const struct ggml_tensor * src1,
  6731. struct ggml_tensor * dst) {
  6732. int64_t t0 = ggml_perf_time_us();
  6733. UNUSED(t0);
  6734. const int64_t ne00 = src0->ne[0];
  6735. const int64_t ne01 = src0->ne[1];
  6736. const int64_t ne02 = src0->ne[2];
  6737. const int64_t ne03 = src0->ne[3];
  6738. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6739. const int64_t ne10 = src1->ne[0];
  6740. #endif
  6741. const int64_t ne11 = src1->ne[1];
  6742. #ifndef NDEBUG
  6743. const int64_t ne12 = src1->ne[2];
  6744. const int64_t ne13 = src1->ne[3];
  6745. const int64_t ne0 = dst->ne[0];
  6746. const int64_t ne1 = dst->ne[1];
  6747. const int64_t ne2 = dst->ne[2];
  6748. const int64_t ne3 = dst->ne[3];
  6749. const int nb00 = src0->nb[0];
  6750. #endif
  6751. const int nb01 = src0->nb[1];
  6752. const int nb02 = src0->nb[2];
  6753. const int nb03 = src0->nb[3];
  6754. #ifndef NDEBUG
  6755. const int nb10 = src1->nb[0];
  6756. #endif
  6757. const int nb11 = src1->nb[1];
  6758. const int nb12 = src1->nb[2];
  6759. const int nb13 = src1->nb[3];
  6760. const int nb0 = dst->nb[0];
  6761. const int nb1 = dst->nb[1];
  6762. const int nb2 = dst->nb[2];
  6763. const int nb3 = dst->nb[3];
  6764. const int ith = params->ith;
  6765. const int nth = params->nth;
  6766. assert(ne02 == ne12);
  6767. assert(ne03 == ne13);
  6768. assert(ne2 == ne12);
  6769. assert(ne3 == ne13);
  6770. // we don't support permuted src0 or src1
  6771. assert(nb00 == sizeof(float));
  6772. assert(nb10 == sizeof(float));
  6773. // dst cannot be transposed or permuted
  6774. assert(nb0 == sizeof(float));
  6775. assert(nb0 <= nb1);
  6776. assert(nb1 <= nb2);
  6777. assert(nb2 <= nb3);
  6778. assert(ne0 == ne01);
  6779. assert(ne1 == ne11);
  6780. assert(ne2 == ne02);
  6781. assert(ne3 == ne03);
  6782. // nb01 >= nb00 - src0 is not transposed
  6783. // compute by src0 rows
  6784. #if defined(GGML_USE_CUBLAS)
  6785. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6786. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6787. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6788. }
  6789. return;
  6790. }
  6791. #endif
  6792. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6793. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6794. if (params->ith != 0) {
  6795. return;
  6796. }
  6797. if (params->type == GGML_TASK_INIT) {
  6798. return;
  6799. }
  6800. if (params->type == GGML_TASK_FINALIZE) {
  6801. return;
  6802. }
  6803. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6805. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6806. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6807. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6808. #if defined(GGML_USE_CLBLAST)
  6809. // zT = y * xT
  6810. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6811. ne11, ne01, ne10,
  6812. 1.0f, y, ne10,
  6813. x, ne10,
  6814. 0.0f, d, ne01,
  6815. GGML_TYPE_F32);
  6816. #else
  6817. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6818. ne11, ne01, ne10,
  6819. 1.0f, y, ne10,
  6820. x, ne00,
  6821. 0.0f, d, ne01);
  6822. #endif
  6823. }
  6824. }
  6825. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6826. return;
  6827. }
  6828. #endif
  6829. if (params->type == GGML_TASK_INIT) {
  6830. return;
  6831. }
  6832. if (params->type == GGML_TASK_FINALIZE) {
  6833. return;
  6834. }
  6835. // parallelize by src0 rows using ggml_vec_dot_f32
  6836. // total rows in src0
  6837. const int nr = ne01*ne02*ne03;
  6838. // rows per thread
  6839. const int dr = (nr + nth - 1)/nth;
  6840. // row range for this thread
  6841. const int ir0 = dr*ith;
  6842. const int ir1 = MIN(ir0 + dr, nr);
  6843. for (int ir = ir0; ir < ir1; ++ir) {
  6844. // src0 indices
  6845. const int i03 = ir/(ne02*ne01);
  6846. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6847. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6848. for (int64_t ic = 0; ic < ne11; ++ic) {
  6849. // src1 indices
  6850. const int i13 = i03;
  6851. const int i12 = i02;
  6852. const int i11 = ic;
  6853. // dst indices
  6854. const int i0 = i01;
  6855. const int i1 = i11;
  6856. const int i2 = i02;
  6857. const int i3 = i03;
  6858. ggml_vec_dot_f32(ne00,
  6859. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6860. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6861. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6862. }
  6863. }
  6864. //int64_t t1 = ggml_perf_time_us();
  6865. //static int64_t acc = 0;
  6866. //acc += t1 - t0;
  6867. //if (t1 - t0 > 10) {
  6868. // printf("\n");
  6869. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6870. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6871. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6872. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6873. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6874. //}
  6875. }
  6876. static void ggml_compute_forward_mul_mat_f16_f32(
  6877. const struct ggml_compute_params * params,
  6878. const struct ggml_tensor * src0,
  6879. const struct ggml_tensor * src1,
  6880. struct ggml_tensor * dst) {
  6881. int64_t t0 = ggml_perf_time_us();
  6882. UNUSED(t0);
  6883. const int64_t ne00 = src0->ne[0];
  6884. const int64_t ne01 = src0->ne[1];
  6885. const int64_t ne02 = src0->ne[2];
  6886. const int64_t ne03 = src0->ne[3];
  6887. const int64_t ne10 = src1->ne[0];
  6888. const int64_t ne11 = src1->ne[1];
  6889. const int64_t ne12 = src1->ne[2];
  6890. const int64_t ne13 = src1->ne[3];
  6891. const int64_t ne0 = dst->ne[0];
  6892. const int64_t ne1 = dst->ne[1];
  6893. const int64_t ne2 = dst->ne[2];
  6894. const int64_t ne3 = dst->ne[3];
  6895. //const int64_t ne = ne0*ne1*ne2*ne3;
  6896. const int nb00 = src0->nb[0];
  6897. const int nb01 = src0->nb[1];
  6898. const int nb02 = src0->nb[2];
  6899. const int nb03 = src0->nb[3];
  6900. const int nb10 = src1->nb[0];
  6901. const int nb11 = src1->nb[1];
  6902. const int nb12 = src1->nb[2];
  6903. const int nb13 = src1->nb[3];
  6904. const int nb0 = dst->nb[0];
  6905. const int nb1 = dst->nb[1];
  6906. const int nb2 = dst->nb[2];
  6907. const int nb3 = dst->nb[3];
  6908. const int ith = params->ith;
  6909. const int nth = params->nth;
  6910. GGML_ASSERT(ne02 == ne12);
  6911. GGML_ASSERT(ne03 == ne13);
  6912. GGML_ASSERT(ne2 == ne12);
  6913. GGML_ASSERT(ne3 == ne13);
  6914. // TODO: we don't support permuted src0
  6915. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6916. // dst cannot be transposed or permuted
  6917. GGML_ASSERT(nb0 == sizeof(float));
  6918. GGML_ASSERT(nb0 <= nb1);
  6919. GGML_ASSERT(nb1 <= nb2);
  6920. GGML_ASSERT(nb2 <= nb3);
  6921. GGML_ASSERT(ne0 == ne01);
  6922. GGML_ASSERT(ne1 == ne11);
  6923. GGML_ASSERT(ne2 == ne02);
  6924. GGML_ASSERT(ne3 == ne03);
  6925. // nb01 >= nb00 - src0 is not transposed
  6926. // compute by src0 rows
  6927. #if defined(GGML_USE_CUBLAS)
  6928. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6929. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6930. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6931. }
  6932. return;
  6933. }
  6934. #endif
  6935. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6936. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6937. GGML_ASSERT(nb10 == sizeof(float));
  6938. if (params->ith != 0) {
  6939. return;
  6940. }
  6941. if (params->type == GGML_TASK_INIT) {
  6942. return;
  6943. }
  6944. if (params->type == GGML_TASK_FINALIZE) {
  6945. return;
  6946. }
  6947. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6948. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6949. float * const wdata = params->wdata;
  6950. {
  6951. size_t id = 0;
  6952. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6953. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6954. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6955. }
  6956. }
  6957. assert(id*sizeof(float) <= params->wsize);
  6958. }
  6959. #if defined(GGML_USE_CLBLAST)
  6960. const float * x = wdata;
  6961. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6962. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6963. // zT = y * xT
  6964. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6965. ne11, ne01, ne10,
  6966. 1.0f, y, ne10,
  6967. x, ne10,
  6968. 0.0f, d, ne01,
  6969. GGML_TYPE_F32);
  6970. #else
  6971. const float * x = wdata;
  6972. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6973. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6974. // zT = y * xT
  6975. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6976. ne11, ne01, ne10,
  6977. 1.0f, y, ne10,
  6978. x, ne00,
  6979. 0.0f, d, ne01);
  6980. #endif
  6981. }
  6982. }
  6983. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6984. return;
  6985. }
  6986. #endif
  6987. if (params->type == GGML_TASK_INIT) {
  6988. ggml_fp16_t * const wdata = params->wdata;
  6989. size_t id = 0;
  6990. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6991. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6992. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6993. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6994. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6995. }
  6996. }
  6997. }
  6998. }
  6999. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7000. return;
  7001. }
  7002. if (params->type == GGML_TASK_FINALIZE) {
  7003. return;
  7004. }
  7005. // fp16 -> half the size, so divide by 2
  7006. // TODO: do not support transposed src1
  7007. assert(nb10/2 == sizeof(ggml_fp16_t));
  7008. // parallelize by src0 rows using ggml_vec_dot_f16
  7009. // total rows in src0
  7010. const int nr = ne01*ne02*ne03;
  7011. // rows per thread
  7012. const int dr = (nr + nth - 1)/nth;
  7013. // row range for this thread
  7014. const int ir0 = dr*ith;
  7015. const int ir1 = MIN(ir0 + dr, nr);
  7016. ggml_fp16_t * wdata = params->wdata;
  7017. for (int ir = ir0; ir < ir1; ++ir) {
  7018. // src0 indices
  7019. const int i03 = ir/(ne02*ne01);
  7020. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7021. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7022. const int i13 = i03;
  7023. const int i12 = i02;
  7024. const int i0 = i01;
  7025. const int i2 = i02;
  7026. const int i3 = i03;
  7027. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7028. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7029. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7030. for (int64_t ic = 0; ic < ne11; ++ic) {
  7031. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7032. }
  7033. }
  7034. //int64_t t1 = ggml_time_us();
  7035. //static int64_t acc = 0;
  7036. //acc += t1 - t0;
  7037. //if (t1 - t0 > 10) {
  7038. // printf("\n");
  7039. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7040. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7041. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7042. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7043. //}
  7044. }
  7045. static void ggml_compute_forward_mul_mat_q_f32(
  7046. const struct ggml_compute_params * params,
  7047. const struct ggml_tensor * src0,
  7048. const struct ggml_tensor * src1,
  7049. struct ggml_tensor * dst) {
  7050. int64_t t0 = ggml_perf_time_us();
  7051. UNUSED(t0);
  7052. const int64_t ne00 = src0->ne[0];
  7053. const int64_t ne01 = src0->ne[1];
  7054. const int64_t ne02 = src0->ne[2];
  7055. const int64_t ne03 = src0->ne[3];
  7056. const int64_t ne10 = src1->ne[0];
  7057. const int64_t ne11 = src1->ne[1];
  7058. const int64_t ne12 = src1->ne[2];
  7059. const int64_t ne13 = src1->ne[3];
  7060. const int64_t ne0 = dst->ne[0];
  7061. const int64_t ne1 = dst->ne[1];
  7062. const int64_t ne2 = dst->ne[2];
  7063. const int64_t ne3 = dst->ne[3];
  7064. const int nb00 = src0->nb[0];
  7065. const int nb01 = src0->nb[1];
  7066. const int nb02 = src0->nb[2];
  7067. const int nb03 = src0->nb[3];
  7068. const int nb10 = src1->nb[0];
  7069. const int nb11 = src1->nb[1];
  7070. const int nb12 = src1->nb[2];
  7071. const int nb13 = src1->nb[3];
  7072. const int nb0 = dst->nb[0];
  7073. const int nb1 = dst->nb[1];
  7074. const int nb2 = dst->nb[2];
  7075. const int nb3 = dst->nb[3];
  7076. const int ith = params->ith;
  7077. const int nth = params->nth;
  7078. GGML_ASSERT(ne02 == ne12);
  7079. GGML_ASSERT(ne03 == ne13);
  7080. GGML_ASSERT(ne2 == ne12);
  7081. GGML_ASSERT(ne3 == ne13);
  7082. const enum ggml_type type = src0->type;
  7083. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7084. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7085. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7086. // we don't support permuted src0 or src1
  7087. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7088. GGML_ASSERT(nb10 == sizeof(float));
  7089. // dst cannot be transposed or permuted
  7090. GGML_ASSERT(nb0 == sizeof(float));
  7091. GGML_ASSERT(nb0 <= nb1);
  7092. GGML_ASSERT(nb1 <= nb2);
  7093. GGML_ASSERT(nb2 <= nb3);
  7094. GGML_ASSERT(ne0 == ne01);
  7095. GGML_ASSERT(ne1 == ne11);
  7096. GGML_ASSERT(ne2 == ne02);
  7097. GGML_ASSERT(ne3 == ne03);
  7098. // nb01 >= nb00 - src0 is not transposed
  7099. // compute by src0 rows
  7100. #if defined(GGML_USE_CUBLAS)
  7101. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7102. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7103. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7104. }
  7105. return;
  7106. }
  7107. #endif
  7108. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7109. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7110. if (params->ith != 0) {
  7111. return;
  7112. }
  7113. if (params->type == GGML_TASK_INIT) {
  7114. return;
  7115. }
  7116. if (params->type == GGML_TASK_FINALIZE) {
  7117. return;
  7118. }
  7119. float * const wdata = params->wdata;
  7120. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7121. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7122. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7123. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7124. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7125. #if defined(GGML_USE_CLBLAST)
  7126. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7127. #else
  7128. {
  7129. size_t id = 0;
  7130. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7131. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7132. id += ne00;
  7133. }
  7134. assert(id*sizeof(float) <= params->wsize);
  7135. }
  7136. const float * x = wdata;
  7137. #endif
  7138. #if defined(GGML_USE_CLBLAST)
  7139. // zT = y * xT
  7140. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7141. ne11, ne01, ne10,
  7142. 1.0f, y, ne10,
  7143. x, ne10,
  7144. 0.0f, d, ne01,
  7145. type);
  7146. #else
  7147. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7148. ne11, ne01, ne10,
  7149. 1.0f, y, ne10,
  7150. x, ne00,
  7151. 0.0f, d, ne01);
  7152. #endif
  7153. }
  7154. }
  7155. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7156. return;
  7157. }
  7158. #endif
  7159. if (params->type == GGML_TASK_INIT) {
  7160. char * wdata = params->wdata;
  7161. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7162. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7163. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7164. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7165. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7166. wdata += row_size;
  7167. }
  7168. }
  7169. }
  7170. return;
  7171. }
  7172. if (params->type == GGML_TASK_FINALIZE) {
  7173. return;
  7174. }
  7175. // parallelize by src0 rows using ggml_vec_dot_q
  7176. // total rows in src0
  7177. const int nr = ne01*ne02*ne03;
  7178. // rows per thread
  7179. const int dr = (nr + nth - 1)/nth;
  7180. // row range for this thread
  7181. const int ir0 = dr*ith;
  7182. const int ir1 = MIN(ir0 + dr, nr);
  7183. void * wdata = params->wdata;
  7184. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7185. for (int ir = ir0; ir < ir1; ++ir) {
  7186. // src0 indices
  7187. const int i03 = ir/(ne02*ne01);
  7188. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7189. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7190. const int i13 = i03;
  7191. const int i12 = i02;
  7192. const int i0 = i01;
  7193. const int i2 = i02;
  7194. const int i3 = i03;
  7195. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7196. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7197. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7198. assert(ne00 % 32 == 0);
  7199. for (int64_t ic = 0; ic < ne11; ++ic) {
  7200. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7201. }
  7202. }
  7203. //int64_t t1 = ggml_time_us();
  7204. //static int64_t acc = 0;
  7205. //acc += t1 - t0;
  7206. //if (t1 - t0 > 10) {
  7207. // printf("\n");
  7208. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7209. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7210. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7211. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7212. //}
  7213. }
  7214. static void ggml_compute_forward_mul_mat(
  7215. const struct ggml_compute_params * params,
  7216. const struct ggml_tensor * src0,
  7217. const struct ggml_tensor * src1,
  7218. struct ggml_tensor * dst) {
  7219. switch (src0->type) {
  7220. case GGML_TYPE_Q4_0:
  7221. case GGML_TYPE_Q4_1:
  7222. case GGML_TYPE_Q4_2:
  7223. case GGML_TYPE_Q5_0:
  7224. case GGML_TYPE_Q5_1:
  7225. case GGML_TYPE_Q8_0:
  7226. case GGML_TYPE_Q8_1:
  7227. {
  7228. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7229. } break;
  7230. case GGML_TYPE_F16:
  7231. {
  7232. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7233. } break;
  7234. case GGML_TYPE_F32:
  7235. {
  7236. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7237. } break;
  7238. default:
  7239. {
  7240. GGML_ASSERT(false);
  7241. } break;
  7242. }
  7243. }
  7244. // ggml_compute_forward_scale
  7245. static void ggml_compute_forward_scale_f32(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. const struct ggml_tensor * src1,
  7249. struct ggml_tensor * dst) {
  7250. GGML_ASSERT(ggml_is_contiguous(src0));
  7251. GGML_ASSERT(ggml_is_contiguous(dst));
  7252. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7253. GGML_ASSERT(ggml_is_scalar(src1));
  7254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7255. return;
  7256. }
  7257. // scale factor
  7258. const float v = *(float *) src1->data;
  7259. const int ith = params->ith;
  7260. const int nth = params->nth;
  7261. const int nc = src0->ne[0];
  7262. const int nr = ggml_nrows(src0);
  7263. // rows per thread
  7264. const int dr = (nr + nth - 1)/nth;
  7265. // row range for this thread
  7266. const int ir0 = dr*ith;
  7267. const int ir1 = MIN(ir0 + dr, nr);
  7268. for (int i1 = ir0; i1 < ir1; i1++) {
  7269. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7270. }
  7271. }
  7272. static void ggml_compute_forward_scale(
  7273. const struct ggml_compute_params * params,
  7274. const struct ggml_tensor * src0,
  7275. const struct ggml_tensor * src1,
  7276. struct ggml_tensor * dst) {
  7277. switch (src0->type) {
  7278. case GGML_TYPE_F32:
  7279. {
  7280. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7281. } break;
  7282. default:
  7283. {
  7284. GGML_ASSERT(false);
  7285. } break;
  7286. }
  7287. }
  7288. // ggml_compute_forward_cpy
  7289. static void ggml_compute_forward_cpy(
  7290. const struct ggml_compute_params * params,
  7291. const struct ggml_tensor * src0,
  7292. struct ggml_tensor * dst) {
  7293. ggml_compute_forward_dup(params, src0, dst);
  7294. }
  7295. // ggml_compute_forward_cont
  7296. static void ggml_compute_forward_cont(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. ggml_compute_forward_dup(params, src0, dst);
  7301. }
  7302. // ggml_compute_forward_reshape
  7303. static void ggml_compute_forward_reshape(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. // NOP
  7308. UNUSED(params);
  7309. UNUSED(src0);
  7310. UNUSED(dst);
  7311. }
  7312. // ggml_compute_forward_view
  7313. static void ggml_compute_forward_view(
  7314. const struct ggml_compute_params * params,
  7315. const struct ggml_tensor * src0) {
  7316. // NOP
  7317. UNUSED(params);
  7318. UNUSED(src0);
  7319. }
  7320. // ggml_compute_forward_permute
  7321. static void ggml_compute_forward_permute(
  7322. const struct ggml_compute_params * params,
  7323. const struct ggml_tensor * src0) {
  7324. // NOP
  7325. UNUSED(params);
  7326. UNUSED(src0);
  7327. }
  7328. // ggml_compute_forward_transpose
  7329. static void ggml_compute_forward_transpose(
  7330. const struct ggml_compute_params * params,
  7331. const struct ggml_tensor * src0) {
  7332. // NOP
  7333. UNUSED(params);
  7334. UNUSED(src0);
  7335. }
  7336. // ggml_compute_forward_get_rows
  7337. static void ggml_compute_forward_get_rows_q(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * src1,
  7341. struct ggml_tensor * dst) {
  7342. assert(params->ith == 0);
  7343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7344. return;
  7345. }
  7346. const int nc = src0->ne[0];
  7347. const int nr = ggml_nelements(src1);
  7348. const enum ggml_type type = src0->type;
  7349. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7350. assert( dst->ne[0] == nc);
  7351. assert( dst->ne[1] == nr);
  7352. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7353. for (int i = 0; i < nr; ++i) {
  7354. const int r = ((int32_t *) src1->data)[i];
  7355. dequantize_row_q(
  7356. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7357. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7358. }
  7359. }
  7360. static void ggml_compute_forward_get_rows_f16(
  7361. const struct ggml_compute_params * params,
  7362. const struct ggml_tensor * src0,
  7363. const struct ggml_tensor * src1,
  7364. struct ggml_tensor * dst) {
  7365. assert(params->ith == 0);
  7366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7367. return;
  7368. }
  7369. const int nc = src0->ne[0];
  7370. const int nr = ggml_nelements(src1);
  7371. assert( dst->ne[0] == nc);
  7372. assert( dst->ne[1] == nr);
  7373. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7374. for (int i = 0; i < nr; ++i) {
  7375. const int r = ((int32_t *) src1->data)[i];
  7376. for (int j = 0; j < nc; ++j) {
  7377. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7378. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7379. }
  7380. }
  7381. }
  7382. static void ggml_compute_forward_get_rows_f32(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. const struct ggml_tensor * src1,
  7386. struct ggml_tensor * dst) {
  7387. assert(params->ith == 0);
  7388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7389. return;
  7390. }
  7391. const int nc = src0->ne[0];
  7392. const int nr = ggml_nelements(src1);
  7393. assert( dst->ne[0] == nc);
  7394. assert( dst->ne[1] == nr);
  7395. assert(src0->nb[0] == sizeof(float));
  7396. for (int i = 0; i < nr; ++i) {
  7397. const int r = ((int32_t *) src1->data)[i];
  7398. ggml_vec_cpy_f32(nc,
  7399. (float *) ((char *) dst->data + i*dst->nb[1]),
  7400. (float *) ((char *) src0->data + r*src0->nb[1]));
  7401. }
  7402. }
  7403. static void ggml_compute_forward_get_rows(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. const struct ggml_tensor * src1,
  7407. struct ggml_tensor * dst) {
  7408. switch (src0->type) {
  7409. case GGML_TYPE_Q4_0:
  7410. case GGML_TYPE_Q4_1:
  7411. case GGML_TYPE_Q4_2:
  7412. case GGML_TYPE_Q5_0:
  7413. case GGML_TYPE_Q5_1:
  7414. case GGML_TYPE_Q8_0:
  7415. case GGML_TYPE_Q8_1:
  7416. {
  7417. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7418. } break;
  7419. case GGML_TYPE_F16:
  7420. {
  7421. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7422. } break;
  7423. case GGML_TYPE_F32:
  7424. {
  7425. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7426. } break;
  7427. default:
  7428. {
  7429. GGML_ASSERT(false);
  7430. } break;
  7431. }
  7432. //static bool first = true;
  7433. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7434. //if (first) {
  7435. // first = false;
  7436. //} else {
  7437. // for (int k = 0; k < dst->ne[1]; ++k) {
  7438. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7439. // for (int i = 0; i < 16; ++i) {
  7440. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7441. // }
  7442. // printf("\n");
  7443. // }
  7444. // printf("\n");
  7445. // }
  7446. // printf("\n");
  7447. // exit(0);
  7448. //}
  7449. }
  7450. // ggml_compute_forward_diag_mask_inf
  7451. static void ggml_compute_forward_diag_mask_inf_f32(
  7452. const struct ggml_compute_params * params,
  7453. const struct ggml_tensor * src0,
  7454. const struct ggml_tensor * src1,
  7455. struct ggml_tensor * dst) {
  7456. assert(params->ith == 0);
  7457. assert(src1->type == GGML_TYPE_I32);
  7458. assert(ggml_nelements(src1) == 1);
  7459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7460. return;
  7461. }
  7462. const int n_past = ((int32_t *) src1->data)[0];
  7463. // TODO: handle transposed/permuted matrices
  7464. const int n = ggml_nrows(src0);
  7465. const int nc = src0->ne[0];
  7466. const int nr = src0->ne[1];
  7467. const int nz = n/nr;
  7468. assert( dst->nb[0] == sizeof(float));
  7469. assert(src0->nb[0] == sizeof(float));
  7470. for (int k = 0; k < nz; k++) {
  7471. for (int j = 0; j < nr; j++) {
  7472. for (int i = n_past; i < nc; i++) {
  7473. if (i > n_past + j) {
  7474. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7475. }
  7476. }
  7477. }
  7478. }
  7479. }
  7480. static void ggml_compute_forward_diag_mask_inf(
  7481. const struct ggml_compute_params * params,
  7482. const struct ggml_tensor * src0,
  7483. const struct ggml_tensor * src1,
  7484. struct ggml_tensor * dst) {
  7485. switch (src0->type) {
  7486. case GGML_TYPE_F32:
  7487. {
  7488. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7489. } break;
  7490. default:
  7491. {
  7492. GGML_ASSERT(false);
  7493. } break;
  7494. }
  7495. }
  7496. // ggml_compute_forward_soft_max
  7497. static void ggml_compute_forward_soft_max_f32(
  7498. const struct ggml_compute_params * params,
  7499. const struct ggml_tensor * src0,
  7500. struct ggml_tensor * dst) {
  7501. GGML_ASSERT(ggml_is_contiguous(src0));
  7502. GGML_ASSERT(ggml_is_contiguous(dst));
  7503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7505. return;
  7506. }
  7507. // TODO: handle transposed/permuted matrices
  7508. const int ith = params->ith;
  7509. const int nth = params->nth;
  7510. const int nc = src0->ne[0];
  7511. const int nr = ggml_nrows(src0);
  7512. // rows per thread
  7513. const int dr = (nr + nth - 1)/nth;
  7514. // row range for this thread
  7515. const int ir0 = dr*ith;
  7516. const int ir1 = MIN(ir0 + dr, nr);
  7517. for (int i1 = ir0; i1 < ir1; i1++) {
  7518. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7519. #ifndef NDEBUG
  7520. for (int i = 0; i < nc; ++i) {
  7521. //printf("p[%d] = %f\n", i, p[i]);
  7522. assert(!isnan(p[i]));
  7523. }
  7524. #endif
  7525. float max = -INFINITY;
  7526. ggml_vec_max_f32(nc, &max, p);
  7527. ggml_float sum = 0.0;
  7528. uint16_t scvt;
  7529. for (int i = 0; i < nc; i++) {
  7530. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7531. if (p[i] == -INFINITY) {
  7532. p[i] = 0.0f;
  7533. } else {
  7534. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7535. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7536. memcpy(&scvt, &s, sizeof(scvt));
  7537. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7538. sum += (ggml_float)val;
  7539. p[i] = val;
  7540. }
  7541. }
  7542. assert(sum > 0.0);
  7543. sum = 1.0/sum;
  7544. ggml_vec_scale_f32(nc, p, sum);
  7545. #ifndef NDEBUG
  7546. for (int i = 0; i < nc; ++i) {
  7547. assert(!isnan(p[i]));
  7548. assert(!isinf(p[i]));
  7549. }
  7550. #endif
  7551. }
  7552. }
  7553. static void ggml_compute_forward_soft_max(
  7554. const struct ggml_compute_params * params,
  7555. const struct ggml_tensor * src0,
  7556. struct ggml_tensor * dst) {
  7557. switch (src0->type) {
  7558. case GGML_TYPE_F32:
  7559. {
  7560. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7561. } break;
  7562. default:
  7563. {
  7564. GGML_ASSERT(false);
  7565. } break;
  7566. }
  7567. }
  7568. // ggml_compute_forward_alibi
  7569. static void ggml_compute_forward_alibi_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. const struct ggml_tensor * src1,
  7573. struct ggml_tensor * dst) {
  7574. assert(params->ith == 0);
  7575. assert(src1->type == GGML_TYPE_I32);
  7576. assert(ggml_nelements(src1) == 2);
  7577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7578. return;
  7579. }
  7580. const int n_past = ((int32_t *) src1->data)[0];
  7581. const int n_head = ((int32_t *) src1->data)[1];
  7582. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7583. const int ne1 = src0->ne[1]; // seq_len_without_past
  7584. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7585. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7586. const int n = ggml_nrows(src0);
  7587. const int ne2_ne3 = n/ne1; // ne2*ne3
  7588. const int nb0 = src0->nb[0];
  7589. const int nb1 = src0->nb[1];
  7590. const int nb2 = src0->nb[2];
  7591. //const int nb3 = src0->nb[3];
  7592. assert(nb0 == sizeof(float));
  7593. assert(ne1 + n_past == ne0); (void) n_past;
  7594. // add alibi to src0 (KQ_scaled)
  7595. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7596. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7597. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7598. for (int i = 0; i < ne0; i++) {
  7599. for (int j = 0; j < ne1; j++) {
  7600. for (int k = 0; k < ne2_ne3; k++) {
  7601. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7602. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7603. // TODO: k*nb2 or k*nb3
  7604. float m_k;
  7605. if (k < n_heads_log2_floor) {
  7606. m_k = powf(m0, k + 1);
  7607. } else {
  7608. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7609. }
  7610. pdst[0] = (j+1) * m_k + src[0];
  7611. }
  7612. }
  7613. }
  7614. }
  7615. static void ggml_compute_forward_alibi_f16(
  7616. const struct ggml_compute_params * params,
  7617. const struct ggml_tensor * src0,
  7618. const struct ggml_tensor * src1,
  7619. struct ggml_tensor * dst) {
  7620. assert(params->ith == 0);
  7621. assert(src1->type == GGML_TYPE_I32);
  7622. assert(ggml_nelements(src1) == 2);
  7623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7624. return;
  7625. }
  7626. const int n_past = ((int32_t *) src1->data)[0];
  7627. const int n_head = ((int32_t *) src1->data)[1];
  7628. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7629. const int ne1 = src0->ne[1]; // seq_len_without_past
  7630. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7631. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7632. const int n = ggml_nrows(src0);
  7633. const int ne2_ne3 = n/ne1; // ne2*ne3
  7634. const int nb0 = src0->nb[0];
  7635. const int nb1 = src0->nb[1];
  7636. const int nb2 = src0->nb[2];
  7637. //const int nb3 = src0->nb[3];
  7638. assert(nb0 == sizeof(ggml_fp16_t));
  7639. assert(ne1 + n_past == ne0); (void) n_past;
  7640. // add alibi to src0 (KQ_scaled)
  7641. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7642. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7643. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7644. for (int i = 0; i < ne0; i++) {
  7645. for (int j = 0; j < ne1; j++) {
  7646. for (int k = 0; k < ne2_ne3; k++) {
  7647. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7648. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7649. // TODO: k*nb2 or k*nb3
  7650. float m_k;
  7651. if (k < n_heads_log2_floor) {
  7652. m_k = powf(m0, k + 1);
  7653. } else {
  7654. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7655. }
  7656. // we return F32
  7657. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7658. }
  7659. }
  7660. }
  7661. }
  7662. static void ggml_compute_forward_alibi(
  7663. const struct ggml_compute_params * params,
  7664. const struct ggml_tensor * src0,
  7665. const struct ggml_tensor * src1,
  7666. struct ggml_tensor * dst) {
  7667. switch (src0->type) {
  7668. case GGML_TYPE_F16:
  7669. {
  7670. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7671. } break;
  7672. case GGML_TYPE_F32:
  7673. {
  7674. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7675. } break;
  7676. case GGML_TYPE_Q4_0:
  7677. case GGML_TYPE_Q4_1:
  7678. case GGML_TYPE_Q4_2:
  7679. case GGML_TYPE_Q5_0:
  7680. case GGML_TYPE_Q5_1:
  7681. case GGML_TYPE_Q8_0:
  7682. case GGML_TYPE_Q8_1:
  7683. case GGML_TYPE_I8:
  7684. case GGML_TYPE_I16:
  7685. case GGML_TYPE_I32:
  7686. case GGML_TYPE_COUNT:
  7687. {
  7688. GGML_ASSERT(false);
  7689. } break;
  7690. }
  7691. }
  7692. // ggml_compute_forward_rope
  7693. static void ggml_compute_forward_rope_f32(
  7694. const struct ggml_compute_params * params,
  7695. const struct ggml_tensor * src0,
  7696. const struct ggml_tensor * src1,
  7697. struct ggml_tensor * dst) {
  7698. assert(src1->type == GGML_TYPE_I32);
  7699. assert(ggml_nelements(src1) == 3);
  7700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7701. return;
  7702. }
  7703. const int n_past = ((int32_t *) src1->data)[0];
  7704. const int n_dims = ((int32_t *) src1->data)[1];
  7705. const int mode = ((int32_t *) src1->data)[2];
  7706. //const int64_t ne0 = src0->ne[0];
  7707. const int64_t ne1 = src0->ne[1];
  7708. const int64_t ne2 = src0->ne[2];
  7709. const int64_t ne3 = src0->ne[3];
  7710. const int nb0 = src0->nb[0];
  7711. const int nb1 = src0->nb[1];
  7712. const int nb2 = src0->nb[2];
  7713. const int nb3 = src0->nb[3];
  7714. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7715. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7716. assert(nb0 == sizeof(float));
  7717. const int ith = params->ith;
  7718. const int nth = params->nth;
  7719. const int nr = ggml_nrows(src0);
  7720. // rows per thread
  7721. const int dr = (nr + nth - 1)/nth;
  7722. // row range for this thread
  7723. const int ir0 = dr*ith;
  7724. const int ir1 = MIN(ir0 + dr, nr);
  7725. // row index used to determine which thread to use
  7726. int ir = 0;
  7727. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7728. const bool is_neox = mode & 2;
  7729. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7730. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7731. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7732. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7733. if (ir++ < ir0) continue;
  7734. if (ir > ir1) break;
  7735. float theta = (float)p;
  7736. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7737. const float cos_theta = cosf(theta);
  7738. const float sin_theta = sinf(theta);
  7739. theta *= theta_scale;
  7740. if (!is_neox) {
  7741. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7742. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7743. const float x0 = src[0];
  7744. const float x1 = src[1];
  7745. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7746. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7747. } else {
  7748. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7749. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7750. const float x0 = src[0];
  7751. const float x1 = src[n_dims/2];
  7752. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7753. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7754. }
  7755. }
  7756. }
  7757. }
  7758. }
  7759. }
  7760. static void ggml_compute_forward_rope_f16(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. const struct ggml_tensor * src1,
  7764. struct ggml_tensor * dst) {
  7765. assert(src1->type == GGML_TYPE_I32);
  7766. assert(ggml_nelements(src1) == 3);
  7767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7768. return;
  7769. }
  7770. const int n_past = ((int32_t *) src1->data)[0];
  7771. const int n_dims = ((int32_t *) src1->data)[1];
  7772. const int mode = ((int32_t *) src1->data)[2];
  7773. //const int64_t ne0 = src0->ne[0];
  7774. const int64_t ne1 = src0->ne[1];
  7775. const int64_t ne2 = src0->ne[2];
  7776. const int64_t ne3 = src0->ne[3];
  7777. const int nb0 = src0->nb[0];
  7778. const int nb1 = src0->nb[1];
  7779. const int nb2 = src0->nb[2];
  7780. const int nb3 = src0->nb[3];
  7781. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7782. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7783. assert(nb0 == sizeof(ggml_fp16_t));
  7784. const int ith = params->ith;
  7785. const int nth = params->nth;
  7786. const int nr = ggml_nrows(src0);
  7787. // rows per thread
  7788. const int dr = (nr + nth - 1)/nth;
  7789. // row range for this thread
  7790. const int ir0 = dr*ith;
  7791. const int ir1 = MIN(ir0 + dr, nr);
  7792. // row index used to determine which thread to use
  7793. int ir = 0;
  7794. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7795. const bool is_neox = mode & 2;
  7796. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7797. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7798. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7799. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7800. if (ir++ < ir0) continue;
  7801. if (ir > ir1) break;
  7802. float theta = (float)p;
  7803. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7804. const float cos_theta = cosf(theta);
  7805. const float sin_theta = sinf(theta);
  7806. theta *= theta_scale;
  7807. if (!is_neox) {
  7808. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7809. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7810. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7811. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7812. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7813. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7814. } else {
  7815. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7816. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7817. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7818. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7819. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7820. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7821. }
  7822. }
  7823. }
  7824. }
  7825. }
  7826. }
  7827. static void ggml_compute_forward_rope(
  7828. const struct ggml_compute_params * params,
  7829. const struct ggml_tensor * src0,
  7830. const struct ggml_tensor * src1,
  7831. struct ggml_tensor * dst) {
  7832. switch (src0->type) {
  7833. case GGML_TYPE_F16:
  7834. {
  7835. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7836. } break;
  7837. case GGML_TYPE_F32:
  7838. {
  7839. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7840. } break;
  7841. default:
  7842. {
  7843. GGML_ASSERT(false);
  7844. } break;
  7845. }
  7846. }
  7847. // ggml_compute_forward_conv_1d_1s
  7848. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7849. const struct ggml_compute_params * params,
  7850. const struct ggml_tensor * src0,
  7851. const struct ggml_tensor * src1,
  7852. struct ggml_tensor * dst) {
  7853. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7854. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7855. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7856. int64_t t0 = ggml_perf_time_us();
  7857. UNUSED(t0);
  7858. const int64_t ne00 = src0->ne[0];
  7859. const int64_t ne01 = src0->ne[1];
  7860. const int64_t ne02 = src0->ne[2];
  7861. //const int64_t ne03 = src0->ne[3];
  7862. const int64_t ne10 = src1->ne[0];
  7863. const int64_t ne11 = src1->ne[1];
  7864. //const int64_t ne12 = src1->ne[2];
  7865. //const int64_t ne13 = src1->ne[3];
  7866. //const int64_t ne0 = dst->ne[0];
  7867. //const int64_t ne1 = dst->ne[1];
  7868. //const int64_t ne2 = dst->ne[2];
  7869. //const int64_t ne3 = dst->ne[3];
  7870. //const int64_t ne = ne0*ne1*ne2*ne3;
  7871. const int nb00 = src0->nb[0];
  7872. const int nb01 = src0->nb[1];
  7873. const int nb02 = src0->nb[2];
  7874. //const int nb03 = src0->nb[3];
  7875. const int nb10 = src1->nb[0];
  7876. const int nb11 = src1->nb[1];
  7877. //const int nb12 = src1->nb[2];
  7878. //const int nb13 = src1->nb[3];
  7879. //const int nb0 = dst->nb[0];
  7880. const int nb1 = dst->nb[1];
  7881. //const int nb2 = dst->nb[2];
  7882. //const int nb3 = dst->nb[3];
  7883. const int ith = params->ith;
  7884. const int nth = params->nth;
  7885. const int nk = ne00;
  7886. const int nh = nk/2;
  7887. const int ew0 = ggml_up32(ne01);
  7888. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7889. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7890. GGML_ASSERT(nb10 == sizeof(float));
  7891. if (params->type == GGML_TASK_INIT) {
  7892. // TODO: fix this memset (wsize is overestimated)
  7893. memset(params->wdata, 0, params->wsize);
  7894. // prepare kernel data (src0)
  7895. {
  7896. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7898. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7899. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7900. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7901. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7902. dst_data[i00*ew0 + i01] = src[i00];
  7903. }
  7904. }
  7905. }
  7906. }
  7907. // prepare source data (src1)
  7908. {
  7909. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7910. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7911. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7912. ggml_fp16_t * dst_data = wdata;
  7913. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7914. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7915. }
  7916. }
  7917. }
  7918. return;
  7919. }
  7920. if (params->type == GGML_TASK_FINALIZE) {
  7921. return;
  7922. }
  7923. // total rows in dst
  7924. const int nr = ne02;
  7925. // rows per thread
  7926. const int dr = (nr + nth - 1)/nth;
  7927. // row range for this thread
  7928. const int ir0 = dr*ith;
  7929. const int ir1 = MIN(ir0 + dr, nr);
  7930. for (int i1 = ir0; i1 < ir1; i1++) {
  7931. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7932. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7933. dst_data[i0] = 0;
  7934. for (int k = -nh; k <= nh; k++) {
  7935. float v = 0.0f;
  7936. ggml_vec_dot_f16(ew0, &v,
  7937. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7938. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7939. dst_data[i0] += v;
  7940. }
  7941. }
  7942. }
  7943. }
  7944. static void ggml_compute_forward_conv_1d_1s_f32(
  7945. const struct ggml_compute_params * params,
  7946. const struct ggml_tensor * src0,
  7947. const struct ggml_tensor * src1,
  7948. struct ggml_tensor * dst) {
  7949. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7950. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7951. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7952. int64_t t0 = ggml_perf_time_us();
  7953. UNUSED(t0);
  7954. const int64_t ne00 = src0->ne[0];
  7955. const int64_t ne01 = src0->ne[1];
  7956. const int64_t ne02 = src0->ne[2];
  7957. //const int64_t ne03 = src0->ne[3];
  7958. const int64_t ne10 = src1->ne[0];
  7959. const int64_t ne11 = src1->ne[1];
  7960. //const int64_t ne12 = src1->ne[2];
  7961. //const int64_t ne13 = src1->ne[3];
  7962. //const int64_t ne0 = dst->ne[0];
  7963. //const int64_t ne1 = dst->ne[1];
  7964. //const int64_t ne2 = dst->ne[2];
  7965. //const int64_t ne3 = dst->ne[3];
  7966. //const int64_t ne = ne0*ne1*ne2*ne3;
  7967. const int nb00 = src0->nb[0];
  7968. const int nb01 = src0->nb[1];
  7969. const int nb02 = src0->nb[2];
  7970. //const int nb03 = src0->nb[3];
  7971. const int nb10 = src1->nb[0];
  7972. const int nb11 = src1->nb[1];
  7973. //const int nb12 = src1->nb[2];
  7974. //const int nb13 = src1->nb[3];
  7975. //const int nb0 = dst->nb[0];
  7976. const int nb1 = dst->nb[1];
  7977. //const int nb2 = dst->nb[2];
  7978. //const int nb3 = dst->nb[3];
  7979. const int ith = params->ith;
  7980. const int nth = params->nth;
  7981. const int nk = ne00;
  7982. const int nh = nk/2;
  7983. const int ew0 = ggml_up32(ne01);
  7984. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7985. GGML_ASSERT(nb00 == sizeof(float));
  7986. GGML_ASSERT(nb10 == sizeof(float));
  7987. if (params->type == GGML_TASK_INIT) {
  7988. // TODO: fix this memset (wsize is overestimated)
  7989. memset(params->wdata, 0, params->wsize);
  7990. // prepare kernel data (src0)
  7991. {
  7992. float * const wdata = (float *) params->wdata + 0;
  7993. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7994. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7995. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7996. float * dst_data = wdata + i02*ew0*ne00;
  7997. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7998. dst_data[i00*ew0 + i01] = src[i00];
  7999. }
  8000. }
  8001. }
  8002. }
  8003. // prepare source data (src1)
  8004. {
  8005. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8006. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8007. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8008. float * dst_data = wdata;
  8009. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8010. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8011. }
  8012. }
  8013. }
  8014. return;
  8015. }
  8016. if (params->type == GGML_TASK_FINALIZE) {
  8017. return;
  8018. }
  8019. // total rows in dst
  8020. const int nr = ne02;
  8021. // rows per thread
  8022. const int dr = (nr + nth - 1)/nth;
  8023. // row range for this thread
  8024. const int ir0 = dr*ith;
  8025. const int ir1 = MIN(ir0 + dr, nr);
  8026. for (int i1 = ir0; i1 < ir1; i1++) {
  8027. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8028. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  8029. dst_data[i0] = 0;
  8030. for (int k = -nh; k <= nh; k++) {
  8031. float v = 0.0f;
  8032. ggml_vec_dot_f32(ew0, &v,
  8033. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8034. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8035. dst_data[i0] += v;
  8036. }
  8037. }
  8038. }
  8039. }
  8040. static void ggml_compute_forward_conv_1d_1s(
  8041. const struct ggml_compute_params * params,
  8042. const struct ggml_tensor * src0,
  8043. const struct ggml_tensor * src1,
  8044. struct ggml_tensor * dst) {
  8045. switch (src0->type) {
  8046. case GGML_TYPE_F16:
  8047. {
  8048. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  8049. } break;
  8050. case GGML_TYPE_F32:
  8051. {
  8052. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  8053. } break;
  8054. default:
  8055. {
  8056. GGML_ASSERT(false);
  8057. } break;
  8058. }
  8059. }
  8060. // ggml_compute_forward_conv_1d_2s
  8061. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  8062. const struct ggml_compute_params * params,
  8063. const struct ggml_tensor * src0,
  8064. const struct ggml_tensor * src1,
  8065. struct ggml_tensor * dst) {
  8066. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8067. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8068. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8069. int64_t t0 = ggml_perf_time_us();
  8070. UNUSED(t0);
  8071. const int64_t ne00 = src0->ne[0];
  8072. const int64_t ne01 = src0->ne[1];
  8073. const int64_t ne02 = src0->ne[2];
  8074. //const int64_t ne03 = src0->ne[3];
  8075. const int64_t ne10 = src1->ne[0];
  8076. const int64_t ne11 = src1->ne[1];
  8077. //const int64_t ne12 = src1->ne[2];
  8078. //const int64_t ne13 = src1->ne[3];
  8079. //const int64_t ne0 = dst->ne[0];
  8080. //const int64_t ne1 = dst->ne[1];
  8081. //const int64_t ne2 = dst->ne[2];
  8082. //const int64_t ne3 = dst->ne[3];
  8083. //const int64_t ne = ne0*ne1*ne2*ne3;
  8084. const int nb00 = src0->nb[0];
  8085. const int nb01 = src0->nb[1];
  8086. const int nb02 = src0->nb[2];
  8087. //const int nb03 = src0->nb[3];
  8088. const int nb10 = src1->nb[0];
  8089. const int nb11 = src1->nb[1];
  8090. //const int nb12 = src1->nb[2];
  8091. //const int nb13 = src1->nb[3];
  8092. //const int nb0 = dst->nb[0];
  8093. const int nb1 = dst->nb[1];
  8094. //const int nb2 = dst->nb[2];
  8095. //const int nb3 = dst->nb[3];
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const int nk = ne00;
  8099. const int nh = nk/2;
  8100. const int ew0 = ggml_up32(ne01);
  8101. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8102. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8103. GGML_ASSERT(nb10 == sizeof(float));
  8104. if (params->type == GGML_TASK_INIT) {
  8105. // TODO: fix this memset (wsize is overestimated)
  8106. memset(params->wdata, 0, params->wsize);
  8107. // prepare kernel data (src0)
  8108. {
  8109. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8110. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8112. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  8113. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  8114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8115. dst_data[i00*ew0 + i01] = src[i00];
  8116. }
  8117. }
  8118. }
  8119. }
  8120. // prepare source data (src1)
  8121. {
  8122. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  8123. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8124. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8125. ggml_fp16_t * dst_data = wdata;
  8126. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8127. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  8128. }
  8129. }
  8130. }
  8131. return;
  8132. }
  8133. if (params->type == GGML_TASK_FINALIZE) {
  8134. return;
  8135. }
  8136. // total rows in dst
  8137. const int nr = ne02;
  8138. // rows per thread
  8139. const int dr = (nr + nth - 1)/nth;
  8140. // row range for this thread
  8141. const int ir0 = dr*ith;
  8142. const int ir1 = MIN(ir0 + dr, nr);
  8143. for (int i1 = ir0; i1 < ir1; i1++) {
  8144. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8145. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8146. dst_data[i0/2] = 0;
  8147. for (int k = -nh; k <= nh; k++) {
  8148. float v = 0.0f;
  8149. ggml_vec_dot_f16(ew0, &v,
  8150. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8151. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8152. dst_data[i0/2] += v;
  8153. }
  8154. }
  8155. }
  8156. }
  8157. static void ggml_compute_forward_conv_1d_2s_f32(
  8158. const struct ggml_compute_params * params,
  8159. const struct ggml_tensor * src0,
  8160. const struct ggml_tensor * src1,
  8161. struct ggml_tensor * dst) {
  8162. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8163. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8164. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8165. int64_t t0 = ggml_perf_time_us();
  8166. UNUSED(t0);
  8167. const int64_t ne00 = src0->ne[0];
  8168. const int64_t ne01 = src0->ne[1];
  8169. const int64_t ne02 = src0->ne[2];
  8170. //const int64_t ne03 = src0->ne[3];
  8171. const int64_t ne10 = src1->ne[0];
  8172. const int64_t ne11 = src1->ne[1];
  8173. //const int64_t ne12 = src1->ne[2];
  8174. //const int64_t ne13 = src1->ne[3];
  8175. //const int64_t ne0 = dst->ne[0];
  8176. //const int64_t ne1 = dst->ne[1];
  8177. //const int64_t ne2 = dst->ne[2];
  8178. //const int64_t ne3 = dst->ne[3];
  8179. //const int64_t ne = ne0*ne1*ne2*ne3;
  8180. const int nb00 = src0->nb[0];
  8181. const int nb01 = src0->nb[1];
  8182. const int nb02 = src0->nb[2];
  8183. //const int nb03 = src0->nb[3];
  8184. const int nb10 = src1->nb[0];
  8185. const int nb11 = src1->nb[1];
  8186. //const int nb12 = src1->nb[2];
  8187. //const int nb13 = src1->nb[3];
  8188. //const int nb0 = dst->nb[0];
  8189. const int nb1 = dst->nb[1];
  8190. //const int nb2 = dst->nb[2];
  8191. //const int nb3 = dst->nb[3];
  8192. const int ith = params->ith;
  8193. const int nth = params->nth;
  8194. const int nk = ne00;
  8195. const int nh = nk/2;
  8196. const int ew0 = ggml_up32(ne01);
  8197. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8198. GGML_ASSERT(nb00 == sizeof(float));
  8199. GGML_ASSERT(nb10 == sizeof(float));
  8200. if (params->type == GGML_TASK_INIT) {
  8201. // TODO: fix this memset (wsize is overestimated)
  8202. memset(params->wdata, 0, params->wsize);
  8203. // prepare kernel data (src0)
  8204. {
  8205. float * const wdata = (float *) params->wdata + 0;
  8206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8207. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8208. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8209. float * dst_data = wdata + i02*ew0*ne00;
  8210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8211. dst_data[i00*ew0 + i01] = src[i00];
  8212. }
  8213. }
  8214. }
  8215. }
  8216. // prepare source data (src1)
  8217. {
  8218. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8219. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8220. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8221. float * dst_data = wdata;
  8222. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8223. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8224. }
  8225. }
  8226. }
  8227. return;
  8228. }
  8229. if (params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. // total rows in dst
  8233. const int nr = ne02;
  8234. // rows per thread
  8235. const int dr = (nr + nth - 1)/nth;
  8236. // row range for this thread
  8237. const int ir0 = dr*ith;
  8238. const int ir1 = MIN(ir0 + dr, nr);
  8239. for (int i1 = ir0; i1 < ir1; i1++) {
  8240. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8241. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8242. dst_data[i0/2] = 0;
  8243. for (int k = -nh; k <= nh; k++) {
  8244. float v = 0.0f;
  8245. ggml_vec_dot_f32(ew0, &v,
  8246. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8247. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8248. dst_data[i0/2] += v;
  8249. }
  8250. }
  8251. }
  8252. }
  8253. static void ggml_compute_forward_conv_1d_2s(
  8254. const struct ggml_compute_params * params,
  8255. const struct ggml_tensor * src0,
  8256. const struct ggml_tensor * src1,
  8257. struct ggml_tensor * dst) {
  8258. switch (src0->type) {
  8259. case GGML_TYPE_F16:
  8260. {
  8261. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8262. } break;
  8263. case GGML_TYPE_F32:
  8264. {
  8265. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8266. } break;
  8267. default:
  8268. {
  8269. GGML_ASSERT(false);
  8270. } break;
  8271. }
  8272. }
  8273. // ggml_compute_forward_flash_attn
  8274. static void ggml_compute_forward_flash_attn_f32(
  8275. const struct ggml_compute_params * params,
  8276. const struct ggml_tensor * q,
  8277. const struct ggml_tensor * k,
  8278. const struct ggml_tensor * v,
  8279. const bool masked,
  8280. struct ggml_tensor * dst) {
  8281. int64_t t0 = ggml_perf_time_us();
  8282. UNUSED(t0);
  8283. const int64_t neq0 = q->ne[0];
  8284. const int64_t neq1 = q->ne[1];
  8285. const int64_t neq2 = q->ne[2];
  8286. const int64_t neq3 = q->ne[3];
  8287. const int64_t nek0 = k->ne[0];
  8288. const int64_t nek1 = k->ne[1];
  8289. //const int64_t nek2 = k->ne[2];
  8290. //const int64_t nek3 = k->ne[3];
  8291. //const int64_t nev0 = v->ne[0];
  8292. const int64_t nev1 = v->ne[1];
  8293. //const int64_t nev2 = v->ne[2];
  8294. //const int64_t nev3 = v->ne[3];
  8295. const int64_t ne0 = dst->ne[0];
  8296. const int64_t ne1 = dst->ne[1];
  8297. //const int64_t ne2 = dst->ne[2];
  8298. //const int64_t ne3 = dst->ne[3];
  8299. const int nbk0 = k->nb[0];
  8300. const int nbk1 = k->nb[1];
  8301. const int nbk2 = k->nb[2];
  8302. const int nbk3 = k->nb[3];
  8303. const int nbq0 = q->nb[0];
  8304. const int nbq1 = q->nb[1];
  8305. const int nbq2 = q->nb[2];
  8306. const int nbq3 = q->nb[3];
  8307. const int nbv0 = v->nb[0];
  8308. const int nbv1 = v->nb[1];
  8309. const int nbv2 = v->nb[2];
  8310. const int nbv3 = v->nb[3];
  8311. const int nb0 = dst->nb[0];
  8312. const int nb1 = dst->nb[1];
  8313. const int nb2 = dst->nb[2];
  8314. const int nb3 = dst->nb[3];
  8315. const int ith = params->ith;
  8316. const int nth = params->nth;
  8317. const int64_t D = neq0;
  8318. const int64_t N = neq1;
  8319. const int64_t P = nek1 - N;
  8320. const int64_t M = P + N;
  8321. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8322. GGML_ASSERT(ne0 == D);
  8323. GGML_ASSERT(ne1 == N);
  8324. GGML_ASSERT(P >= 0);
  8325. GGML_ASSERT(nbq0 == sizeof(float));
  8326. GGML_ASSERT(nbk0 == sizeof(float));
  8327. GGML_ASSERT(nbv0 == sizeof(float));
  8328. GGML_ASSERT(neq0 == D);
  8329. GGML_ASSERT(nek0 == D);
  8330. GGML_ASSERT(nev1 == D);
  8331. GGML_ASSERT(neq1 == N);
  8332. GGML_ASSERT(nek1 == N + P);
  8333. GGML_ASSERT(nev1 == D);
  8334. // dst cannot be transposed or permuted
  8335. GGML_ASSERT(nb0 == sizeof(float));
  8336. GGML_ASSERT(nb0 <= nb1);
  8337. GGML_ASSERT(nb1 <= nb2);
  8338. GGML_ASSERT(nb2 <= nb3);
  8339. if (params->type == GGML_TASK_INIT) {
  8340. return;
  8341. }
  8342. if (params->type == GGML_TASK_FINALIZE) {
  8343. return;
  8344. }
  8345. // parallelize by q rows using ggml_vec_dot_f32
  8346. // total rows in q
  8347. const int nr = neq1*neq2*neq3;
  8348. // rows per thread
  8349. const int dr = (nr + nth - 1)/nth;
  8350. // row range for this thread
  8351. const int ir0 = dr*ith;
  8352. const int ir1 = MIN(ir0 + dr, nr);
  8353. const float scale = 1.0f/sqrtf(D);
  8354. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8355. for (int ir = ir0; ir < ir1; ++ir) {
  8356. // q indices
  8357. const int iq3 = ir/(neq2*neq1);
  8358. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8359. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8360. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8361. for (int i = M; i < Mup; ++i) {
  8362. S[i] = -INFINITY;
  8363. }
  8364. for (int64_t ic = 0; ic < nek1; ++ic) {
  8365. // k indices
  8366. const int ik3 = iq3;
  8367. const int ik2 = iq2;
  8368. const int ik1 = ic;
  8369. // S indices
  8370. const int i1 = ik1;
  8371. ggml_vec_dot_f32(neq0,
  8372. S + i1,
  8373. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8374. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8375. }
  8376. // scale
  8377. ggml_vec_scale_f32(nek1, S, scale);
  8378. if (masked) {
  8379. for (int64_t i = P; i < M; i++) {
  8380. if (i > P + iq1) {
  8381. S[i] = -INFINITY;
  8382. }
  8383. }
  8384. }
  8385. // softmax
  8386. {
  8387. float max = -INFINITY;
  8388. ggml_vec_max_f32(M, &max, S);
  8389. ggml_float sum = 0.0;
  8390. {
  8391. #ifdef GGML_SOFT_MAX_ACCELERATE
  8392. max = -max;
  8393. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8394. vvexpf(S, S, &Mup);
  8395. ggml_vec_sum_f32(Mup, &sum, S);
  8396. #else
  8397. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8398. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8399. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8400. float * SS = S + i;
  8401. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8402. if (SS[j] == -INFINITY) {
  8403. SS[j] = 0.0f;
  8404. } else {
  8405. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8406. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8407. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8408. sump[j] += (ggml_float)val;
  8409. SS[j] = val;
  8410. }
  8411. }
  8412. }
  8413. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8414. sum += sump[i];
  8415. }
  8416. #endif
  8417. }
  8418. assert(sum > 0.0);
  8419. sum = 1.0/sum;
  8420. ggml_vec_scale_f32(M, S, sum);
  8421. #ifndef NDEBUG
  8422. for (int i = 0; i < M; ++i) {
  8423. assert(!isnan(S[i]));
  8424. assert(!isinf(S[i]));
  8425. }
  8426. #endif
  8427. }
  8428. for (int64_t ic = 0; ic < nev1; ++ic) {
  8429. // dst indices
  8430. const int i1 = iq1;
  8431. const int i2 = iq2;
  8432. const int i3 = iq3;
  8433. ggml_vec_dot_f32(nek1,
  8434. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8435. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8436. S);
  8437. }
  8438. }
  8439. }
  8440. static void ggml_compute_forward_flash_attn_f16(
  8441. const struct ggml_compute_params * params,
  8442. const struct ggml_tensor * q,
  8443. const struct ggml_tensor * k,
  8444. const struct ggml_tensor * v,
  8445. const bool masked,
  8446. struct ggml_tensor * dst) {
  8447. int64_t t0 = ggml_perf_time_us();
  8448. UNUSED(t0);
  8449. const int64_t neq0 = q->ne[0];
  8450. const int64_t neq1 = q->ne[1];
  8451. const int64_t neq2 = q->ne[2];
  8452. const int64_t neq3 = q->ne[3];
  8453. const int64_t nek0 = k->ne[0];
  8454. const int64_t nek1 = k->ne[1];
  8455. //const int64_t nek2 = k->ne[2];
  8456. //const int64_t nek3 = k->ne[3];
  8457. //const int64_t nev0 = v->ne[0];
  8458. const int64_t nev1 = v->ne[1];
  8459. //const int64_t nev2 = v->ne[2];
  8460. //const int64_t nev3 = v->ne[3];
  8461. const int64_t ne0 = dst->ne[0];
  8462. const int64_t ne1 = dst->ne[1];
  8463. //const int64_t ne2 = dst->ne[2];
  8464. //const int64_t ne3 = dst->ne[3];
  8465. const int nbk0 = k->nb[0];
  8466. const int nbk1 = k->nb[1];
  8467. const int nbk2 = k->nb[2];
  8468. const int nbk3 = k->nb[3];
  8469. const int nbq0 = q->nb[0];
  8470. const int nbq1 = q->nb[1];
  8471. const int nbq2 = q->nb[2];
  8472. const int nbq3 = q->nb[3];
  8473. const int nbv0 = v->nb[0];
  8474. const int nbv1 = v->nb[1];
  8475. const int nbv2 = v->nb[2];
  8476. const int nbv3 = v->nb[3];
  8477. const int nb0 = dst->nb[0];
  8478. const int nb1 = dst->nb[1];
  8479. const int nb2 = dst->nb[2];
  8480. const int nb3 = dst->nb[3];
  8481. const int ith = params->ith;
  8482. const int nth = params->nth;
  8483. const int64_t D = neq0;
  8484. const int64_t N = neq1;
  8485. const int64_t P = nek1 - N;
  8486. const int64_t M = P + N;
  8487. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8488. GGML_ASSERT(ne0 == D);
  8489. GGML_ASSERT(ne1 == N);
  8490. GGML_ASSERT(P >= 0);
  8491. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8492. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8493. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8494. GGML_ASSERT(neq0 == D);
  8495. GGML_ASSERT(nek0 == D);
  8496. GGML_ASSERT(nev1 == D);
  8497. GGML_ASSERT(neq1 == N);
  8498. GGML_ASSERT(nek1 == N + P);
  8499. GGML_ASSERT(nev1 == D);
  8500. // dst cannot be transposed or permuted
  8501. GGML_ASSERT(nb0 == sizeof(float));
  8502. GGML_ASSERT(nb0 <= nb1);
  8503. GGML_ASSERT(nb1 <= nb2);
  8504. GGML_ASSERT(nb2 <= nb3);
  8505. if (params->type == GGML_TASK_INIT) {
  8506. return;
  8507. }
  8508. if (params->type == GGML_TASK_FINALIZE) {
  8509. return;
  8510. }
  8511. // parallelize by q rows using ggml_vec_dot_f32
  8512. // total rows in q
  8513. const int nr = neq1*neq2*neq3;
  8514. // rows per thread
  8515. const int dr = (nr + nth - 1)/nth;
  8516. // row range for this thread
  8517. const int ir0 = dr*ith;
  8518. const int ir1 = MIN(ir0 + dr, nr);
  8519. const float scale = 1.0f/sqrtf(D);
  8520. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8521. for (int ir = ir0; ir < ir1; ++ir) {
  8522. // q indices
  8523. const int iq3 = ir/(neq2*neq1);
  8524. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8525. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8526. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8527. for (int i = M; i < Mup; ++i) {
  8528. S[i] = -INFINITY;
  8529. }
  8530. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8531. for (int64_t ic = 0; ic < nek1; ++ic) {
  8532. // k indices
  8533. const int ik3 = iq3;
  8534. const int ik2 = iq2;
  8535. const int ik1 = ic;
  8536. // S indices
  8537. const int i1 = ik1;
  8538. ggml_vec_dot_f16(neq0,
  8539. S + i1,
  8540. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8541. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8542. }
  8543. } else {
  8544. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8545. // k indices
  8546. const int ik3 = iq3;
  8547. const int ik2 = iq2;
  8548. const int ik1 = ic;
  8549. // S indices
  8550. const int i1 = ik1;
  8551. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8552. S + i1,
  8553. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8554. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8555. }
  8556. }
  8557. // scale
  8558. ggml_vec_scale_f32(nek1, S, scale);
  8559. if (masked) {
  8560. for (int64_t i = P; i < M; i++) {
  8561. if (i > P + iq1) {
  8562. S[i] = -INFINITY;
  8563. }
  8564. }
  8565. }
  8566. // softmax
  8567. {
  8568. float max = -INFINITY;
  8569. ggml_vec_max_f32(M, &max, S);
  8570. ggml_float sum = 0.0;
  8571. {
  8572. #ifdef GGML_SOFT_MAX_ACCELERATE
  8573. max = -max;
  8574. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8575. vvexpf(S, S, &Mup);
  8576. ggml_vec_sum_f32(Mup, &sum, S);
  8577. #else
  8578. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8579. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8580. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8581. float * SS = S + i;
  8582. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8583. if (SS[j] == -INFINITY) {
  8584. SS[j] = 0.0f;
  8585. } else {
  8586. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8587. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8588. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8589. sump[j] += (ggml_float)val;
  8590. SS[j] = val;
  8591. }
  8592. }
  8593. }
  8594. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8595. sum += sump[i];
  8596. }
  8597. #endif
  8598. }
  8599. assert(sum > 0.0);
  8600. sum = 1.0/sum;
  8601. ggml_vec_scale_f32(M, S, sum);
  8602. #ifndef NDEBUG
  8603. for (int i = 0; i < M; ++i) {
  8604. assert(!isnan(S[i]));
  8605. assert(!isinf(S[i]));
  8606. }
  8607. #endif
  8608. }
  8609. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8610. for (int64_t i = 0; i < M; i++) {
  8611. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8612. }
  8613. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8614. for (int64_t ic = 0; ic < nev1; ++ic) {
  8615. // dst indices
  8616. const int i1 = iq1;
  8617. const int i2 = iq2;
  8618. const int i3 = iq3;
  8619. ggml_vec_dot_f16(nek1,
  8620. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8621. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8622. S16);
  8623. }
  8624. } else {
  8625. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8626. // dst indices
  8627. const int i1 = iq1;
  8628. const int i2 = iq2;
  8629. const int i3 = iq3;
  8630. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8631. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8632. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8633. S16);
  8634. }
  8635. }
  8636. }
  8637. }
  8638. static void ggml_compute_forward_flash_attn(
  8639. const struct ggml_compute_params * params,
  8640. const struct ggml_tensor * q,
  8641. const struct ggml_tensor * k,
  8642. const struct ggml_tensor * v,
  8643. const bool masked,
  8644. struct ggml_tensor * dst) {
  8645. switch (q->type) {
  8646. case GGML_TYPE_F16:
  8647. {
  8648. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8649. } break;
  8650. case GGML_TYPE_F32:
  8651. {
  8652. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8653. } break;
  8654. default:
  8655. {
  8656. GGML_ASSERT(false);
  8657. } break;
  8658. }
  8659. }
  8660. // ggml_compute_forward_flash_ff
  8661. static void ggml_compute_forward_flash_ff_f16(
  8662. const struct ggml_compute_params * params,
  8663. const struct ggml_tensor * a, // F16
  8664. const struct ggml_tensor * b0, // F16 fc_w
  8665. const struct ggml_tensor * b1, // F32 fc_b
  8666. const struct ggml_tensor * c0, // F16 proj_w
  8667. const struct ggml_tensor * c1, // F32 proj_b
  8668. struct ggml_tensor * dst) {
  8669. int64_t t0 = ggml_perf_time_us();
  8670. UNUSED(t0);
  8671. const int64_t nea0 = a->ne[0];
  8672. const int64_t nea1 = a->ne[1];
  8673. const int64_t nea2 = a->ne[2];
  8674. const int64_t nea3 = a->ne[3];
  8675. const int64_t neb00 = b0->ne[0];
  8676. const int64_t neb01 = b0->ne[1];
  8677. //const int64_t neb02 = b0->ne[2];
  8678. //const int64_t neb03 = b0->ne[3];
  8679. const int64_t neb10 = b1->ne[0];
  8680. const int64_t neb11 = b1->ne[1];
  8681. //const int64_t neb12 = b1->ne[2];
  8682. //const int64_t neb13 = b1->ne[3];
  8683. const int64_t nec00 = c0->ne[0];
  8684. const int64_t nec01 = c0->ne[1];
  8685. //const int64_t nec02 = c0->ne[2];
  8686. //const int64_t nec03 = c0->ne[3];
  8687. const int64_t nec10 = c1->ne[0];
  8688. const int64_t nec11 = c1->ne[1];
  8689. //const int64_t nec12 = c1->ne[2];
  8690. //const int64_t nec13 = c1->ne[3];
  8691. const int64_t ne0 = dst->ne[0];
  8692. const int64_t ne1 = dst->ne[1];
  8693. const int64_t ne2 = dst->ne[2];
  8694. //const int64_t ne3 = dst->ne[3];
  8695. const int nba0 = a->nb[0];
  8696. const int nba1 = a->nb[1];
  8697. const int nba2 = a->nb[2];
  8698. const int nba3 = a->nb[3];
  8699. const int nbb00 = b0->nb[0];
  8700. const int nbb01 = b0->nb[1];
  8701. const int nbb02 = b0->nb[2];
  8702. const int nbb03 = b0->nb[3];
  8703. const int nbb10 = b1->nb[0];
  8704. //const int nbb11 = b1->nb[1];
  8705. //const int nbb12 = b1->nb[2];
  8706. //const int nbb13 = b1->nb[3];
  8707. const int nbc00 = c0->nb[0];
  8708. const int nbc01 = c0->nb[1];
  8709. const int nbc02 = c0->nb[2];
  8710. const int nbc03 = c0->nb[3];
  8711. const int nbc10 = c1->nb[0];
  8712. //const int nbc11 = c1->nb[1];
  8713. //const int nbc12 = c1->nb[2];
  8714. //const int nbc13 = c1->nb[3];
  8715. const int nb0 = dst->nb[0];
  8716. const int nb1 = dst->nb[1];
  8717. const int nb2 = dst->nb[2];
  8718. const int nb3 = dst->nb[3];
  8719. const int ith = params->ith;
  8720. const int nth = params->nth;
  8721. const int64_t D = nea0;
  8722. //const int64_t N = nea1;
  8723. const int64_t M = neb01;
  8724. GGML_ASSERT(ne0 == nea0);
  8725. GGML_ASSERT(ne1 == nea1);
  8726. GGML_ASSERT(ne2 == nea2);
  8727. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8728. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8729. GGML_ASSERT(nbb10 == sizeof(float));
  8730. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8731. GGML_ASSERT(nbc10 == sizeof(float));
  8732. GGML_ASSERT(neb00 == D);
  8733. GGML_ASSERT(neb01 == M);
  8734. GGML_ASSERT(neb10 == M);
  8735. GGML_ASSERT(neb11 == 1);
  8736. GGML_ASSERT(nec00 == M);
  8737. GGML_ASSERT(nec01 == D);
  8738. GGML_ASSERT(nec10 == D);
  8739. GGML_ASSERT(nec11 == 1);
  8740. // dst cannot be transposed or permuted
  8741. GGML_ASSERT(nb0 == sizeof(float));
  8742. GGML_ASSERT(nb0 <= nb1);
  8743. GGML_ASSERT(nb1 <= nb2);
  8744. GGML_ASSERT(nb2 <= nb3);
  8745. if (params->type == GGML_TASK_INIT) {
  8746. return;
  8747. }
  8748. if (params->type == GGML_TASK_FINALIZE) {
  8749. return;
  8750. }
  8751. // parallelize by a rows using ggml_vec_dot_f32
  8752. // total rows in a
  8753. const int nr = nea1*nea2*nea3;
  8754. // rows per thread
  8755. const int dr = (nr + nth - 1)/nth;
  8756. // row range for this thread
  8757. const int ir0 = dr*ith;
  8758. const int ir1 = MIN(ir0 + dr, nr);
  8759. for (int ir = ir0; ir < ir1; ++ir) {
  8760. // a indices
  8761. const int ia3 = ir/(nea2*nea1);
  8762. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8763. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8764. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8765. for (int64_t ic = 0; ic < neb01; ++ic) {
  8766. // b0 indices
  8767. const int ib03 = ia3;
  8768. const int ib02 = ia2;
  8769. const int ib01 = ic;
  8770. // S indices
  8771. const int i1 = ib01;
  8772. ggml_vec_dot_f16(nea0,
  8773. S + i1,
  8774. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8775. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8776. }
  8777. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8778. //ggml_vec_gelu_f32(neb01, S, S);
  8779. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8780. for (int64_t i = 0; i < M; i++) {
  8781. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8782. }
  8783. ggml_vec_gelu_f16(neb01, S16, S16);
  8784. {
  8785. // dst indices
  8786. const int i1 = ia1;
  8787. const int i2 = ia2;
  8788. const int i3 = ia3;
  8789. for (int64_t ic = 0; ic < nec01; ++ic) {
  8790. ggml_vec_dot_f16(neb01,
  8791. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8792. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8793. S16);
  8794. }
  8795. ggml_vec_add_f32(nec01,
  8796. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8797. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8798. (float *) c1->data);
  8799. }
  8800. }
  8801. }
  8802. static void ggml_compute_forward_flash_ff(
  8803. const struct ggml_compute_params * params,
  8804. const struct ggml_tensor * a,
  8805. const struct ggml_tensor * b0,
  8806. const struct ggml_tensor * b1,
  8807. const struct ggml_tensor * c0,
  8808. const struct ggml_tensor * c1,
  8809. struct ggml_tensor * dst) {
  8810. switch (b0->type) {
  8811. case GGML_TYPE_F16:
  8812. {
  8813. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8814. } break;
  8815. case GGML_TYPE_F32:
  8816. {
  8817. GGML_ASSERT(false); // TODO
  8818. } break;
  8819. default:
  8820. {
  8821. GGML_ASSERT(false);
  8822. } break;
  8823. }
  8824. }
  8825. // ggml_compute_forward_map_unary
  8826. static void ggml_compute_forward_map_unary_f32(
  8827. const struct ggml_compute_params * params,
  8828. const struct ggml_tensor * src0,
  8829. struct ggml_tensor * dst,
  8830. const ggml_unary_op_f32_t fun) {
  8831. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8833. return;
  8834. }
  8835. const int n = ggml_nrows(src0);
  8836. const int nc = src0->ne[0];
  8837. assert( dst->nb[0] == sizeof(float));
  8838. assert(src0->nb[0] == sizeof(float));
  8839. for (int i = 0; i < n; i++) {
  8840. fun(nc,
  8841. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8842. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8843. }
  8844. }
  8845. static void ggml_compute_forward_map_unary(
  8846. const struct ggml_compute_params * params,
  8847. const struct ggml_tensor * src0,
  8848. struct ggml_tensor * dst,
  8849. const ggml_unary_op_f32_t fun) {
  8850. switch (src0->type) {
  8851. case GGML_TYPE_F32:
  8852. {
  8853. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8854. } break;
  8855. default:
  8856. {
  8857. GGML_ASSERT(false);
  8858. } break;
  8859. }
  8860. }
  8861. // ggml_compute_forward_map_binary
  8862. static void ggml_compute_forward_map_binary_f32(
  8863. const struct ggml_compute_params * params,
  8864. const struct ggml_tensor * src0,
  8865. const struct ggml_tensor * src1,
  8866. struct ggml_tensor * dst,
  8867. const ggml_binary_op_f32_t fun) {
  8868. assert(params->ith == 0);
  8869. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8871. return;
  8872. }
  8873. const int n = ggml_nrows(src0);
  8874. const int nc = src0->ne[0];
  8875. assert( dst->nb[0] == sizeof(float));
  8876. assert(src0->nb[0] == sizeof(float));
  8877. assert(src1->nb[0] == sizeof(float));
  8878. for (int i = 0; i < n; i++) {
  8879. fun(nc,
  8880. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8881. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8882. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8883. }
  8884. }
  8885. static void ggml_compute_forward_map_binary(
  8886. const struct ggml_compute_params * params,
  8887. const struct ggml_tensor * src0,
  8888. const struct ggml_tensor * src1,
  8889. struct ggml_tensor * dst,
  8890. const ggml_binary_op_f32_t fun) {
  8891. switch (src0->type) {
  8892. case GGML_TYPE_F32:
  8893. {
  8894. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8895. } break;
  8896. default:
  8897. {
  8898. GGML_ASSERT(false);
  8899. } break;
  8900. }
  8901. }
  8902. /////////////////////////////////
  8903. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8904. GGML_ASSERT(params);
  8905. switch (tensor->op) {
  8906. case GGML_OP_DUP:
  8907. {
  8908. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8909. } break;
  8910. case GGML_OP_ADD:
  8911. {
  8912. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8913. } break;
  8914. case GGML_OP_SUB:
  8915. {
  8916. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8917. } break;
  8918. case GGML_OP_MUL:
  8919. {
  8920. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8921. } break;
  8922. case GGML_OP_DIV:
  8923. {
  8924. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8925. } break;
  8926. case GGML_OP_SQR:
  8927. {
  8928. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8929. } break;
  8930. case GGML_OP_SQRT:
  8931. {
  8932. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8933. } break;
  8934. case GGML_OP_SUM:
  8935. {
  8936. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8937. } break;
  8938. case GGML_OP_MEAN:
  8939. {
  8940. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8941. } break;
  8942. case GGML_OP_REPEAT:
  8943. {
  8944. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8945. } break;
  8946. case GGML_OP_ABS:
  8947. {
  8948. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8949. } break;
  8950. case GGML_OP_SGN:
  8951. {
  8952. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8953. } break;
  8954. case GGML_OP_NEG:
  8955. {
  8956. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8957. } break;
  8958. case GGML_OP_STEP:
  8959. {
  8960. ggml_compute_forward_step(params, tensor->src0, tensor);
  8961. } break;
  8962. case GGML_OP_RELU:
  8963. {
  8964. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8965. } break;
  8966. case GGML_OP_GELU:
  8967. {
  8968. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8969. } break;
  8970. case GGML_OP_SILU:
  8971. {
  8972. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8973. } break;
  8974. case GGML_OP_NORM:
  8975. {
  8976. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8977. } break;
  8978. case GGML_OP_RMS_NORM:
  8979. {
  8980. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8981. } break;
  8982. case GGML_OP_MUL_MAT:
  8983. {
  8984. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8985. } break;
  8986. case GGML_OP_SCALE:
  8987. {
  8988. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8989. } break;
  8990. case GGML_OP_CPY:
  8991. {
  8992. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8993. } break;
  8994. case GGML_OP_CONT:
  8995. {
  8996. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8997. } break;
  8998. case GGML_OP_RESHAPE:
  8999. {
  9000. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  9001. } break;
  9002. case GGML_OP_VIEW:
  9003. {
  9004. ggml_compute_forward_view(params, tensor->src0);
  9005. } break;
  9006. case GGML_OP_PERMUTE:
  9007. {
  9008. ggml_compute_forward_permute(params, tensor->src0);
  9009. } break;
  9010. case GGML_OP_TRANSPOSE:
  9011. {
  9012. ggml_compute_forward_transpose(params, tensor->src0);
  9013. } break;
  9014. case GGML_OP_GET_ROWS:
  9015. {
  9016. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  9017. } break;
  9018. case GGML_OP_DIAG_MASK_INF:
  9019. {
  9020. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  9021. } break;
  9022. case GGML_OP_SOFT_MAX:
  9023. {
  9024. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  9025. } break;
  9026. case GGML_OP_ROPE:
  9027. {
  9028. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  9029. } break;
  9030. case GGML_OP_ALIBI:
  9031. {
  9032. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  9033. } break;
  9034. case GGML_OP_CONV_1D_1S:
  9035. {
  9036. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  9037. } break;
  9038. case GGML_OP_CONV_1D_2S:
  9039. {
  9040. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  9041. } break;
  9042. case GGML_OP_FLASH_ATTN:
  9043. {
  9044. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  9045. GGML_ASSERT(t == 0 || t == 1);
  9046. bool masked = t != 0;
  9047. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  9048. } break;
  9049. case GGML_OP_FLASH_FF:
  9050. {
  9051. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  9052. } break;
  9053. case GGML_OP_MAP_UNARY:
  9054. {
  9055. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  9056. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  9057. }
  9058. break;
  9059. case GGML_OP_MAP_BINARY:
  9060. {
  9061. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  9062. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  9063. }
  9064. break;
  9065. case GGML_OP_NONE:
  9066. {
  9067. // nop
  9068. } break;
  9069. case GGML_OP_COUNT:
  9070. {
  9071. GGML_ASSERT(false);
  9072. } break;
  9073. }
  9074. }
  9075. ////////////////////////////////////////////////////////////////////////////////
  9076. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  9077. struct ggml_tensor * src0 = tensor->src0;
  9078. struct ggml_tensor * src1 = tensor->src1;
  9079. switch (tensor->op) {
  9080. case GGML_OP_DUP:
  9081. {
  9082. if (src0->grad) {
  9083. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9084. }
  9085. } break;
  9086. case GGML_OP_ADD:
  9087. {
  9088. if (src0->grad) {
  9089. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9090. }
  9091. if (src1->grad) {
  9092. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  9093. }
  9094. } break;
  9095. case GGML_OP_SUB:
  9096. {
  9097. if (src0->grad) {
  9098. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9099. }
  9100. if (src1->grad) {
  9101. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  9102. }
  9103. } break;
  9104. case GGML_OP_MUL:
  9105. {
  9106. if (src0->grad) {
  9107. src0->grad =
  9108. ggml_add_impl(ctx,
  9109. src0->grad,
  9110. ggml_mul(ctx, src1, tensor->grad),
  9111. inplace);
  9112. }
  9113. if (src1->grad) {
  9114. src1->grad =
  9115. ggml_add_impl(ctx,
  9116. src1->grad,
  9117. ggml_mul(ctx, src0, tensor->grad),
  9118. inplace);
  9119. }
  9120. } break;
  9121. case GGML_OP_DIV:
  9122. {
  9123. if (src0->grad) {
  9124. src0->grad =
  9125. ggml_add_impl(ctx,
  9126. src0->grad,
  9127. ggml_div(ctx, tensor->grad, src1),
  9128. inplace);
  9129. }
  9130. if (src1->grad) {
  9131. src1->grad =
  9132. ggml_sub_impl(ctx,
  9133. src1->grad,
  9134. ggml_mul(ctx,
  9135. tensor->grad,
  9136. ggml_div(ctx, tensor, src1)),
  9137. inplace);
  9138. }
  9139. } break;
  9140. case GGML_OP_SQR:
  9141. {
  9142. if (src0->grad) {
  9143. src0->grad =
  9144. ggml_add_impl(ctx,
  9145. src0->grad,
  9146. ggml_mul(ctx,
  9147. ggml_mul(ctx, src0, tensor->grad),
  9148. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9149. inplace);
  9150. }
  9151. } break;
  9152. case GGML_OP_SQRT:
  9153. {
  9154. if (src0->grad) {
  9155. src0->grad =
  9156. ggml_add_impl(ctx,
  9157. src0->grad,
  9158. ggml_div(ctx,
  9159. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9160. tensor),
  9161. inplace);
  9162. }
  9163. } break;
  9164. case GGML_OP_SUM:
  9165. {
  9166. if (src0->grad) {
  9167. src0->grad =
  9168. ggml_add_impl(ctx,
  9169. src0->grad,
  9170. ggml_repeat(ctx, tensor->grad, src0->grad),
  9171. inplace);
  9172. }
  9173. } break;
  9174. case GGML_OP_MEAN:
  9175. {
  9176. GGML_ASSERT(false); // TODO: implement
  9177. } break;
  9178. case GGML_OP_REPEAT:
  9179. {
  9180. if (src0->grad) {
  9181. src0->grad =
  9182. ggml_add_impl(ctx,
  9183. src0->grad,
  9184. ggml_sum(ctx, tensor->grad),
  9185. inplace);
  9186. }
  9187. } break;
  9188. case GGML_OP_ABS:
  9189. {
  9190. if (src0->grad) {
  9191. src0->grad =
  9192. ggml_add_impl(ctx,
  9193. src0->grad,
  9194. ggml_mul(ctx,
  9195. ggml_sgn(ctx, src0),
  9196. tensor->grad),
  9197. inplace);
  9198. }
  9199. } break;
  9200. case GGML_OP_SGN:
  9201. {
  9202. if (src0->grad) {
  9203. // noop
  9204. }
  9205. } break;
  9206. case GGML_OP_NEG:
  9207. {
  9208. if (src0->grad) {
  9209. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9210. }
  9211. } break;
  9212. case GGML_OP_STEP:
  9213. {
  9214. if (src0->grad) {
  9215. // noop
  9216. }
  9217. } break;
  9218. case GGML_OP_RELU:
  9219. {
  9220. if (src0->grad) {
  9221. src0->grad = ggml_sub_impl(ctx,
  9222. src0->grad,
  9223. ggml_mul(ctx,
  9224. ggml_step(ctx, src0),
  9225. tensor->grad),
  9226. inplace);
  9227. }
  9228. } break;
  9229. case GGML_OP_GELU:
  9230. {
  9231. GGML_ASSERT(false); // TODO: not implemented
  9232. } break;
  9233. case GGML_OP_ALIBI:
  9234. {
  9235. GGML_ASSERT(false); // TODO: not implemented
  9236. } break;
  9237. case GGML_OP_SILU:
  9238. {
  9239. GGML_ASSERT(false); // TODO: not implemented
  9240. } break;
  9241. case GGML_OP_NORM:
  9242. {
  9243. GGML_ASSERT(false); // TODO: not implemented
  9244. } break;
  9245. case GGML_OP_RMS_NORM:
  9246. {
  9247. GGML_ASSERT(false); // TODO: not implemented
  9248. } break;
  9249. case GGML_OP_MUL_MAT:
  9250. {
  9251. if (src0->grad) {
  9252. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9253. GGML_ASSERT(false);
  9254. }
  9255. if (src1->grad) {
  9256. src1->grad =
  9257. ggml_add_impl(ctx,
  9258. src1->grad,
  9259. ggml_mul_mat(ctx,
  9260. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9261. tensor->grad),
  9262. inplace);
  9263. }
  9264. } break;
  9265. case GGML_OP_SCALE:
  9266. {
  9267. GGML_ASSERT(false); // TODO: not implemented
  9268. } break;
  9269. case GGML_OP_CPY:
  9270. {
  9271. GGML_ASSERT(false); // TODO: not implemented
  9272. } break;
  9273. case GGML_OP_CONT:
  9274. {
  9275. GGML_ASSERT(false); // TODO: not implemented
  9276. } break;
  9277. case GGML_OP_RESHAPE:
  9278. {
  9279. GGML_ASSERT(false); // TODO: not implemented
  9280. } break;
  9281. case GGML_OP_VIEW:
  9282. {
  9283. GGML_ASSERT(false); // not supported
  9284. } break;
  9285. case GGML_OP_PERMUTE:
  9286. {
  9287. GGML_ASSERT(false); // TODO: not implemented
  9288. } break;
  9289. case GGML_OP_TRANSPOSE:
  9290. {
  9291. GGML_ASSERT(false); // TODO: not implemented
  9292. } break;
  9293. case GGML_OP_GET_ROWS:
  9294. {
  9295. GGML_ASSERT(false); // TODO: not implemented
  9296. } break;
  9297. case GGML_OP_DIAG_MASK_INF:
  9298. {
  9299. GGML_ASSERT(false); // TODO: not implemented
  9300. } break;
  9301. case GGML_OP_SOFT_MAX:
  9302. {
  9303. GGML_ASSERT(false); // TODO: not implemented
  9304. } break;
  9305. case GGML_OP_ROPE:
  9306. {
  9307. GGML_ASSERT(false); // TODO: not implemented
  9308. } break;
  9309. case GGML_OP_CONV_1D_1S:
  9310. {
  9311. GGML_ASSERT(false); // TODO: not implemented
  9312. } break;
  9313. case GGML_OP_CONV_1D_2S:
  9314. {
  9315. GGML_ASSERT(false); // TODO: not implemented
  9316. } break;
  9317. case GGML_OP_FLASH_ATTN:
  9318. {
  9319. GGML_ASSERT(false); // not supported
  9320. } break;
  9321. case GGML_OP_FLASH_FF:
  9322. {
  9323. GGML_ASSERT(false); // not supported
  9324. } break;
  9325. case GGML_OP_MAP_UNARY:
  9326. case GGML_OP_MAP_BINARY:
  9327. {
  9328. GGML_ASSERT(false); // not supported
  9329. } break;
  9330. case GGML_OP_NONE:
  9331. {
  9332. // nop
  9333. } break;
  9334. case GGML_OP_COUNT:
  9335. {
  9336. GGML_ASSERT(false);
  9337. } break;
  9338. }
  9339. }
  9340. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9341. if (node->grad == NULL) {
  9342. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9343. // it can also happen during forward pass, if the user performs computations with constants
  9344. if (node->op != GGML_OP_NONE) {
  9345. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9346. }
  9347. }
  9348. // check if already visited
  9349. for (int i = 0; i < cgraph->n_nodes; i++) {
  9350. if (cgraph->nodes[i] == node) {
  9351. return;
  9352. }
  9353. }
  9354. for (int i = 0; i < cgraph->n_leafs; i++) {
  9355. if (cgraph->leafs[i] == node) {
  9356. return;
  9357. }
  9358. }
  9359. if (node->src0) {
  9360. ggml_visit_parents(cgraph, node->src0);
  9361. }
  9362. if (node->src1) {
  9363. ggml_visit_parents(cgraph, node->src1);
  9364. }
  9365. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9366. if (node->opt[i]) {
  9367. ggml_visit_parents(cgraph, node->opt[i]);
  9368. }
  9369. }
  9370. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9371. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9372. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9373. cgraph->leafs[cgraph->n_leafs] = node;
  9374. cgraph->n_leafs++;
  9375. } else {
  9376. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9377. cgraph->nodes[cgraph->n_nodes] = node;
  9378. cgraph->grads[cgraph->n_nodes] = node->grad;
  9379. cgraph->n_nodes++;
  9380. }
  9381. }
  9382. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9383. if (!expand) {
  9384. cgraph->n_nodes = 0;
  9385. cgraph->n_leafs = 0;
  9386. }
  9387. const int n0 = cgraph->n_nodes;
  9388. UNUSED(n0);
  9389. ggml_visit_parents(cgraph, tensor);
  9390. const int n_new = cgraph->n_nodes - n0;
  9391. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9392. if (n_new > 0) {
  9393. // the last added node should always be starting point
  9394. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9395. }
  9396. }
  9397. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9398. ggml_build_forward_impl(cgraph, tensor, true);
  9399. }
  9400. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9401. struct ggml_cgraph result = {
  9402. /*.n_nodes =*/ 0,
  9403. /*.n_leafs =*/ 0,
  9404. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9405. /*.work_size =*/ 0,
  9406. /*.work =*/ NULL,
  9407. /*.nodes =*/ { NULL },
  9408. /*.grads =*/ { NULL },
  9409. /*.leafs =*/ { NULL },
  9410. /*.perf_runs =*/ 0,
  9411. /*.perf_cycles =*/ 0,
  9412. /*.perf_time_us =*/ 0,
  9413. };
  9414. ggml_build_forward_impl(&result, tensor, false);
  9415. return result;
  9416. }
  9417. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9418. struct ggml_cgraph result = *gf;
  9419. GGML_ASSERT(gf->n_nodes > 0);
  9420. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9421. if (keep) {
  9422. for (int i = 0; i < gf->n_nodes; i++) {
  9423. struct ggml_tensor * node = gf->nodes[i];
  9424. if (node->grad) {
  9425. node->grad = ggml_dup_tensor(ctx, node);
  9426. gf->grads[i] = node->grad;
  9427. }
  9428. }
  9429. }
  9430. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9431. struct ggml_tensor * node = gf->nodes[i];
  9432. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9433. if (node->grad) {
  9434. ggml_compute_backward(ctx, node, keep);
  9435. }
  9436. }
  9437. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9438. struct ggml_tensor * node = gf->nodes[i];
  9439. if (node->is_param) {
  9440. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9441. ggml_build_forward_impl(&result, node->grad, true);
  9442. }
  9443. }
  9444. return result;
  9445. }
  9446. //
  9447. // thread data
  9448. //
  9449. // synchronization is done via busy loops
  9450. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9451. //
  9452. #ifdef __APPLE__
  9453. //#include <os/lock.h>
  9454. //
  9455. //typedef os_unfair_lock ggml_lock_t;
  9456. //
  9457. //#define ggml_lock_init(x) UNUSED(x)
  9458. //#define ggml_lock_destroy(x) UNUSED(x)
  9459. //#define ggml_lock_lock os_unfair_lock_lock
  9460. //#define ggml_lock_unlock os_unfair_lock_unlock
  9461. //
  9462. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9463. typedef int ggml_lock_t;
  9464. #define ggml_lock_init(x) UNUSED(x)
  9465. #define ggml_lock_destroy(x) UNUSED(x)
  9466. #define ggml_lock_lock(x) UNUSED(x)
  9467. #define ggml_lock_unlock(x) UNUSED(x)
  9468. #define GGML_LOCK_INITIALIZER 0
  9469. typedef pthread_t ggml_thread_t;
  9470. #define ggml_thread_create pthread_create
  9471. #define ggml_thread_join pthread_join
  9472. #else
  9473. //typedef pthread_spinlock_t ggml_lock_t;
  9474. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9475. //#define ggml_lock_destroy pthread_spin_destroy
  9476. //#define ggml_lock_lock pthread_spin_lock
  9477. //#define ggml_lock_unlock pthread_spin_unlock
  9478. typedef int ggml_lock_t;
  9479. #define ggml_lock_init(x) UNUSED(x)
  9480. #define ggml_lock_destroy(x) UNUSED(x)
  9481. #define ggml_lock_lock(x) UNUSED(x)
  9482. #define ggml_lock_unlock(x) UNUSED(x)
  9483. #define GGML_LOCK_INITIALIZER 0
  9484. typedef pthread_t ggml_thread_t;
  9485. #define ggml_thread_create pthread_create
  9486. #define ggml_thread_join pthread_join
  9487. #endif
  9488. struct ggml_compute_state_shared {
  9489. ggml_lock_t spin;
  9490. int n_threads;
  9491. // synchronization primitives
  9492. atomic_int n_ready;
  9493. atomic_bool has_work;
  9494. atomic_bool stop; // stop all threads
  9495. };
  9496. struct ggml_compute_state {
  9497. ggml_thread_t thrd;
  9498. struct ggml_compute_params params;
  9499. struct ggml_tensor * node;
  9500. struct ggml_compute_state_shared * shared;
  9501. };
  9502. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9503. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9504. const int n_threads = state->shared->n_threads;
  9505. while (true) {
  9506. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9507. atomic_store(&state->shared->has_work, false);
  9508. } else {
  9509. while (atomic_load(&state->shared->has_work)) {
  9510. if (atomic_load(&state->shared->stop)) {
  9511. return 0;
  9512. }
  9513. ggml_lock_lock (&state->shared->spin);
  9514. ggml_lock_unlock(&state->shared->spin);
  9515. }
  9516. }
  9517. atomic_fetch_sub(&state->shared->n_ready, 1);
  9518. // wait for work
  9519. while (!atomic_load(&state->shared->has_work)) {
  9520. if (atomic_load(&state->shared->stop)) {
  9521. return 0;
  9522. }
  9523. ggml_lock_lock (&state->shared->spin);
  9524. ggml_lock_unlock(&state->shared->spin);
  9525. }
  9526. // check if we should stop
  9527. if (atomic_load(&state->shared->stop)) {
  9528. break;
  9529. }
  9530. if (state->node) {
  9531. if (state->params.ith < state->params.nth) {
  9532. ggml_compute_forward(&state->params, state->node);
  9533. }
  9534. state->node = NULL;
  9535. } else {
  9536. break;
  9537. }
  9538. }
  9539. return 0;
  9540. }
  9541. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9542. const int n_threads = cgraph->n_threads;
  9543. struct ggml_compute_state_shared state_shared = {
  9544. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9545. /*.n_threads =*/ n_threads,
  9546. /*.n_ready =*/ 0,
  9547. /*.has_work =*/ false,
  9548. /*.stop =*/ false,
  9549. };
  9550. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9551. // create thread pool
  9552. if (n_threads > 1) {
  9553. ggml_lock_init(&state_shared.spin);
  9554. atomic_store(&state_shared.has_work, true);
  9555. for (int j = 0; j < n_threads - 1; j++) {
  9556. workers[j] = (struct ggml_compute_state) {
  9557. .thrd = 0,
  9558. .params = {
  9559. .type = GGML_TASK_COMPUTE,
  9560. .ith = j + 1,
  9561. .nth = n_threads,
  9562. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9563. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9564. },
  9565. .node = NULL,
  9566. .shared = &state_shared,
  9567. };
  9568. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9569. GGML_ASSERT(rc == 0);
  9570. UNUSED(rc);
  9571. }
  9572. }
  9573. // initialize tasks + work buffer
  9574. {
  9575. size_t work_size = 0;
  9576. // thread scheduling for the different operations
  9577. for (int i = 0; i < cgraph->n_nodes; i++) {
  9578. struct ggml_tensor * node = cgraph->nodes[i];
  9579. switch (node->op) {
  9580. case GGML_OP_CPY:
  9581. case GGML_OP_DUP:
  9582. {
  9583. node->n_tasks = n_threads;
  9584. size_t cur = 0;
  9585. if (ggml_is_quantized(node->type)) {
  9586. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9587. }
  9588. work_size = MAX(work_size, cur);
  9589. } break;
  9590. case GGML_OP_ADD:
  9591. {
  9592. node->n_tasks = n_threads;
  9593. size_t cur = 0;
  9594. if (ggml_is_quantized(node->src0->type)) {
  9595. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9596. }
  9597. work_size = MAX(work_size, cur);
  9598. } break;
  9599. case GGML_OP_SUB:
  9600. case GGML_OP_MUL:
  9601. case GGML_OP_DIV:
  9602. case GGML_OP_SQR:
  9603. case GGML_OP_SQRT:
  9604. case GGML_OP_SUM:
  9605. case GGML_OP_MEAN:
  9606. case GGML_OP_REPEAT:
  9607. case GGML_OP_ABS:
  9608. case GGML_OP_SGN:
  9609. case GGML_OP_NEG:
  9610. case GGML_OP_STEP:
  9611. case GGML_OP_RELU:
  9612. {
  9613. node->n_tasks = 1;
  9614. } break;
  9615. case GGML_OP_GELU:
  9616. {
  9617. node->n_tasks = n_threads;
  9618. } break;
  9619. case GGML_OP_SILU:
  9620. {
  9621. node->n_tasks = n_threads;
  9622. } break;
  9623. case GGML_OP_NORM:
  9624. case GGML_OP_RMS_NORM:
  9625. {
  9626. node->n_tasks = n_threads;
  9627. } break;
  9628. case GGML_OP_MUL_MAT:
  9629. {
  9630. node->n_tasks = n_threads;
  9631. // TODO: use different scheduling for different matrix sizes
  9632. //const int nr0 = ggml_nrows(node->src0);
  9633. //const int nr1 = ggml_nrows(node->src1);
  9634. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9635. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9636. size_t cur = 0;
  9637. #if defined(GGML_USE_CUBLAS)
  9638. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9639. node->n_tasks = 1; // TODO: this actually is doing nothing
  9640. // the threads are still spinning
  9641. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9642. }
  9643. else
  9644. #endif
  9645. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9646. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9647. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9648. node->n_tasks = 1; // TODO: this actually is doing nothing
  9649. // the threads are still spinning
  9650. // here we need memory just for single 2D matrix from src0
  9651. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9652. } else {
  9653. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9654. }
  9655. #else
  9656. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9657. #endif
  9658. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9659. cur = 0;
  9660. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9661. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9662. node->n_tasks = 1;
  9663. }
  9664. #endif
  9665. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9666. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9667. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9668. node->n_tasks = 1;
  9669. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9670. } else
  9671. #endif
  9672. {
  9673. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9674. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9675. }
  9676. } else {
  9677. GGML_ASSERT(false);
  9678. }
  9679. work_size = MAX(work_size, cur);
  9680. } break;
  9681. case GGML_OP_SCALE:
  9682. {
  9683. node->n_tasks = n_threads;
  9684. } break;
  9685. case GGML_OP_CONT:
  9686. case GGML_OP_RESHAPE:
  9687. case GGML_OP_VIEW:
  9688. case GGML_OP_PERMUTE:
  9689. case GGML_OP_TRANSPOSE:
  9690. case GGML_OP_GET_ROWS:
  9691. case GGML_OP_DIAG_MASK_INF:
  9692. {
  9693. node->n_tasks = 1;
  9694. } break;
  9695. case GGML_OP_SOFT_MAX:
  9696. {
  9697. node->n_tasks = n_threads;
  9698. } break;
  9699. case GGML_OP_ROPE:
  9700. {
  9701. node->n_tasks = n_threads;
  9702. } break;
  9703. case GGML_OP_ALIBI:
  9704. {
  9705. node->n_tasks = 1; //TODO
  9706. } break;
  9707. case GGML_OP_CONV_1D_1S:
  9708. case GGML_OP_CONV_1D_2S:
  9709. {
  9710. node->n_tasks = n_threads;
  9711. GGML_ASSERT(node->src0->ne[3] == 1);
  9712. GGML_ASSERT(node->src1->ne[2] == 1);
  9713. GGML_ASSERT(node->src1->ne[3] == 1);
  9714. size_t cur = 0;
  9715. const int nk = node->src0->ne[0];
  9716. if (node->src0->type == GGML_TYPE_F16 &&
  9717. node->src1->type == GGML_TYPE_F32) {
  9718. cur = sizeof(ggml_fp16_t)*(
  9719. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9720. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9721. );
  9722. } else if (node->src0->type == GGML_TYPE_F32 &&
  9723. node->src1->type == GGML_TYPE_F32) {
  9724. cur = sizeof(float)*(
  9725. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9726. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9727. );
  9728. } else {
  9729. GGML_ASSERT(false);
  9730. }
  9731. work_size = MAX(work_size, cur);
  9732. } break;
  9733. case GGML_OP_FLASH_ATTN:
  9734. {
  9735. node->n_tasks = n_threads;
  9736. size_t cur = 0;
  9737. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9738. if (node->src1->type == GGML_TYPE_F32) {
  9739. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9740. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9741. }
  9742. if (node->src1->type == GGML_TYPE_F16) {
  9743. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9744. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9745. }
  9746. work_size = MAX(work_size, cur);
  9747. } break;
  9748. case GGML_OP_FLASH_FF:
  9749. {
  9750. node->n_tasks = n_threads;
  9751. size_t cur = 0;
  9752. if (node->src1->type == GGML_TYPE_F32) {
  9753. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9754. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9755. }
  9756. if (node->src1->type == GGML_TYPE_F16) {
  9757. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9758. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9759. }
  9760. work_size = MAX(work_size, cur);
  9761. } break;
  9762. case GGML_OP_MAP_UNARY:
  9763. case GGML_OP_MAP_BINARY:
  9764. {
  9765. node->n_tasks = 1;
  9766. } break;
  9767. case GGML_OP_NONE:
  9768. {
  9769. node->n_tasks = 1;
  9770. } break;
  9771. case GGML_OP_COUNT:
  9772. {
  9773. GGML_ASSERT(false);
  9774. } break;
  9775. }
  9776. }
  9777. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9778. GGML_ASSERT(false); // TODO: better handling
  9779. }
  9780. if (work_size > 0 && cgraph->work == NULL) {
  9781. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9782. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9783. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9784. }
  9785. }
  9786. const int64_t perf_start_cycles = ggml_perf_cycles();
  9787. const int64_t perf_start_time_us = ggml_perf_time_us();
  9788. for (int i = 0; i < cgraph->n_nodes; i++) {
  9789. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9790. struct ggml_tensor * node = cgraph->nodes[i];
  9791. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9792. //if (node->grad == NULL && node->perf_runs > 0) {
  9793. // continue;
  9794. //}
  9795. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9796. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9797. // INIT
  9798. struct ggml_compute_params params = {
  9799. /*.type =*/ GGML_TASK_INIT,
  9800. /*.ith =*/ 0,
  9801. /*.nth =*/ node->n_tasks,
  9802. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9803. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9804. };
  9805. ggml_compute_forward(&params, node);
  9806. // COMPUTE
  9807. if (node->n_tasks > 1) {
  9808. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9809. atomic_store(&state_shared.has_work, false);
  9810. }
  9811. while (atomic_load(&state_shared.has_work)) {
  9812. ggml_lock_lock (&state_shared.spin);
  9813. ggml_lock_unlock(&state_shared.spin);
  9814. }
  9815. // launch thread pool
  9816. for (int j = 0; j < n_threads - 1; j++) {
  9817. workers[j].params = (struct ggml_compute_params) {
  9818. .type = GGML_TASK_COMPUTE,
  9819. .ith = j + 1,
  9820. .nth = node->n_tasks,
  9821. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9822. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9823. };
  9824. workers[j].node = node;
  9825. }
  9826. atomic_fetch_sub(&state_shared.n_ready, 1);
  9827. while (atomic_load(&state_shared.n_ready) > 0) {
  9828. ggml_lock_lock (&state_shared.spin);
  9829. ggml_lock_unlock(&state_shared.spin);
  9830. }
  9831. atomic_store(&state_shared.has_work, true);
  9832. }
  9833. params.type = GGML_TASK_COMPUTE;
  9834. ggml_compute_forward(&params, node);
  9835. // wait for thread pool
  9836. if (node->n_tasks > 1) {
  9837. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9838. atomic_store(&state_shared.has_work, false);
  9839. }
  9840. while (atomic_load(&state_shared.has_work)) {
  9841. ggml_lock_lock (&state_shared.spin);
  9842. ggml_lock_unlock(&state_shared.spin);
  9843. }
  9844. atomic_fetch_sub(&state_shared.n_ready, 1);
  9845. while (atomic_load(&state_shared.n_ready) != 0) {
  9846. ggml_lock_lock (&state_shared.spin);
  9847. ggml_lock_unlock(&state_shared.spin);
  9848. }
  9849. }
  9850. // FINALIZE
  9851. if (node->n_tasks > 1) {
  9852. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9853. atomic_store(&state_shared.has_work, false);
  9854. }
  9855. while (atomic_load(&state_shared.has_work)) {
  9856. ggml_lock_lock (&state_shared.spin);
  9857. ggml_lock_unlock(&state_shared.spin);
  9858. }
  9859. // launch thread pool
  9860. for (int j = 0; j < n_threads - 1; j++) {
  9861. workers[j].params = (struct ggml_compute_params) {
  9862. .type = GGML_TASK_FINALIZE,
  9863. .ith = j + 1,
  9864. .nth = node->n_tasks,
  9865. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9866. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9867. };
  9868. workers[j].node = node;
  9869. }
  9870. atomic_fetch_sub(&state_shared.n_ready, 1);
  9871. while (atomic_load(&state_shared.n_ready) > 0) {
  9872. ggml_lock_lock (&state_shared.spin);
  9873. ggml_lock_unlock(&state_shared.spin);
  9874. }
  9875. atomic_store(&state_shared.has_work, true);
  9876. }
  9877. params.type = GGML_TASK_FINALIZE;
  9878. ggml_compute_forward(&params, node);
  9879. // wait for thread pool
  9880. if (node->n_tasks > 1) {
  9881. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9882. atomic_store(&state_shared.has_work, false);
  9883. }
  9884. while (atomic_load(&state_shared.has_work)) {
  9885. ggml_lock_lock (&state_shared.spin);
  9886. ggml_lock_unlock(&state_shared.spin);
  9887. }
  9888. atomic_fetch_sub(&state_shared.n_ready, 1);
  9889. while (atomic_load(&state_shared.n_ready) != 0) {
  9890. ggml_lock_lock (&state_shared.spin);
  9891. ggml_lock_unlock(&state_shared.spin);
  9892. }
  9893. }
  9894. // performance stats (node)
  9895. {
  9896. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9897. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9898. node->perf_runs++;
  9899. node->perf_cycles += perf_cycles_cur;
  9900. node->perf_time_us += perf_time_us_cur;
  9901. }
  9902. }
  9903. // join thread pool
  9904. if (n_threads > 1) {
  9905. atomic_store(&state_shared.stop, true);
  9906. atomic_store(&state_shared.has_work, true);
  9907. for (int j = 0; j < n_threads - 1; j++) {
  9908. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9909. GGML_ASSERT(rc == 0);
  9910. UNUSED(rc);
  9911. }
  9912. ggml_lock_destroy(&state_shared.spin);
  9913. }
  9914. // performance stats (graph)
  9915. {
  9916. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9917. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9918. cgraph->perf_runs++;
  9919. cgraph->perf_cycles += perf_cycles_cur;
  9920. cgraph->perf_time_us += perf_time_us_cur;
  9921. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9922. __func__, cgraph->perf_runs,
  9923. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9924. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9925. (double) perf_time_us_cur / 1000.0,
  9926. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9927. }
  9928. }
  9929. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9930. for (int i = 0; i < cgraph->n_nodes; i++) {
  9931. struct ggml_tensor * grad = cgraph->grads[i];
  9932. if (grad) {
  9933. ggml_set_zero(grad);
  9934. }
  9935. }
  9936. }
  9937. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9938. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9939. GGML_PRINT("=== GRAPH ===\n");
  9940. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9941. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9942. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9943. for (int i = 0; i < cgraph->n_nodes; i++) {
  9944. struct ggml_tensor * node = cgraph->nodes[i];
  9945. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9946. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9947. i,
  9948. node->ne[0], node->ne[1], node->ne[2],
  9949. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9950. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9951. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9952. (double) node->perf_time_us / 1000.0,
  9953. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9954. }
  9955. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9956. for (int i = 0; i < cgraph->n_leafs; i++) {
  9957. struct ggml_tensor * node = cgraph->leafs[i];
  9958. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9959. i,
  9960. node->ne[0], node->ne[1],
  9961. GGML_OP_LABEL[node->op]);
  9962. }
  9963. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9964. if (perf_total_per_op_us[i] == 0) {
  9965. continue;
  9966. }
  9967. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9968. }
  9969. GGML_PRINT("========================================\n");
  9970. }
  9971. // check if node is part of the graph
  9972. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9973. if (cgraph == NULL) {
  9974. return true;
  9975. }
  9976. for (int i = 0; i < cgraph->n_nodes; i++) {
  9977. if (cgraph->nodes[i] == node) {
  9978. return true;
  9979. }
  9980. }
  9981. return false;
  9982. }
  9983. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9984. for (int i = 0; i < cgraph->n_nodes; i++) {
  9985. struct ggml_tensor * parent = cgraph->nodes[i];
  9986. if (parent->grad == node) {
  9987. return parent;
  9988. }
  9989. }
  9990. return NULL;
  9991. }
  9992. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9993. char color[16];
  9994. FILE * fp = fopen(filename, "w");
  9995. GGML_ASSERT(fp);
  9996. fprintf(fp, "digraph G {\n");
  9997. fprintf(fp, " newrank = true;\n");
  9998. fprintf(fp, " rankdir = LR;\n");
  9999. for (int i = 0; i < gb->n_nodes; i++) {
  10000. struct ggml_tensor * node = gb->nodes[i];
  10001. if (ggml_graph_get_parent(gb, node) != NULL) {
  10002. continue;
  10003. }
  10004. if (node->is_param) {
  10005. snprintf(color, sizeof(color), "yellow");
  10006. } else if (node->grad) {
  10007. if (ggml_graph_find(gf, node)) {
  10008. snprintf(color, sizeof(color), "green");
  10009. } else {
  10010. snprintf(color, sizeof(color), "lightblue");
  10011. }
  10012. } else {
  10013. snprintf(color, sizeof(color), "white");
  10014. }
  10015. fprintf(fp, " \"%p\" [ "
  10016. "style = filled; fillcolor = %s; shape = record; "
  10017. "label=\"",
  10018. (void *) node, color);
  10019. if (strlen(node->name) > 0) {
  10020. fprintf(fp, "%s |", node->name);
  10021. }
  10022. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  10023. i, node->ne[0], node->ne[1],
  10024. GGML_OP_SYMBOL[node->op]);
  10025. if (node->grad) {
  10026. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  10027. } else {
  10028. fprintf(fp, "\"; ]\n");
  10029. }
  10030. }
  10031. for (int i = 0; i < gb->n_leafs; i++) {
  10032. struct ggml_tensor * node = gb->leafs[i];
  10033. snprintf(color, sizeof(color), "pink");
  10034. fprintf(fp, " \"%p\" [ "
  10035. "style = filled; fillcolor = %s; shape = record; "
  10036. "label=\"<x>",
  10037. (void *) node, color);
  10038. if (strlen(node->name) > 0) {
  10039. fprintf(fp, "%s | ", node->name);
  10040. }
  10041. if (ggml_nelements(node) == 1) {
  10042. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  10043. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  10044. }
  10045. else {
  10046. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  10047. }
  10048. }
  10049. else {
  10050. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  10051. }
  10052. fprintf(fp, "\"; ]\n");
  10053. }
  10054. for (int i = 0; i < gb->n_nodes; i++) {
  10055. struct ggml_tensor * node = gb->nodes[i];
  10056. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  10057. if (node->src0) {
  10058. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  10059. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  10060. parent0 ? (void *) parent0 : (void *) node->src0,
  10061. parent0 ? "g" : "x",
  10062. parent ? (void *) parent : (void *) node,
  10063. parent ? "g" : "x",
  10064. parent ? "empty" : "vee",
  10065. parent ? "dashed" : "solid");
  10066. }
  10067. if (node->src1) {
  10068. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  10069. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  10070. parent1 ? (void *) parent1 : (void *) node->src1,
  10071. parent1 ? "g" : "x",
  10072. parent ? (void *) parent : (void *) node,
  10073. parent ? "g" : "x",
  10074. parent ? "empty" : "vee",
  10075. parent ? "dashed" : "solid");
  10076. }
  10077. }
  10078. for (int i = 0; i < gb->n_leafs; i++) {
  10079. struct ggml_tensor * node = gb->leafs[i];
  10080. if (node->src0) {
  10081. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  10082. (void *) node->src0, "x",
  10083. (void *) node, "x");
  10084. }
  10085. if (node->src1) {
  10086. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  10087. (void *) node->src1, "x",
  10088. (void *) node, "x");
  10089. }
  10090. }
  10091. fprintf(fp, "}\n");
  10092. fclose(fp);
  10093. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  10094. }
  10095. ////////////////////////////////////////////////////////////////////////////////
  10096. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  10097. int i = 0;
  10098. for (int p = 0; p < np; ++p) {
  10099. const int64_t ne = ggml_nelements(ps[p]) ;
  10100. // TODO: add function to set tensor from array
  10101. for (int64_t j = 0; j < ne; ++j) {
  10102. ggml_set_f32_1d(ps[p], j, x[i++]);
  10103. }
  10104. }
  10105. }
  10106. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  10107. int i = 0;
  10108. for (int p = 0; p < np; ++p) {
  10109. const int64_t ne = ggml_nelements(ps[p]) ;
  10110. // TODO: add function to get all elements at once
  10111. for (int64_t j = 0; j < ne; ++j) {
  10112. x[i++] = ggml_get_f32_1d(ps[p], j);
  10113. }
  10114. }
  10115. }
  10116. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  10117. int i = 0;
  10118. for (int p = 0; p < np; ++p) {
  10119. const int64_t ne = ggml_nelements(ps[p]) ;
  10120. // TODO: add function to get all elements at once
  10121. for (int64_t j = 0; j < ne; ++j) {
  10122. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  10123. }
  10124. }
  10125. }
  10126. //
  10127. // ADAM
  10128. //
  10129. // ref: https://arxiv.org/pdf/1412.6980.pdf
  10130. //
  10131. static enum ggml_opt_result ggml_opt_adam(
  10132. struct ggml_context * ctx,
  10133. struct ggml_opt_params params,
  10134. struct ggml_tensor * f,
  10135. struct ggml_cgraph * gf,
  10136. struct ggml_cgraph * gb) {
  10137. GGML_ASSERT(ggml_is_scalar(f));
  10138. gf->n_threads = params.n_threads;
  10139. gb->n_threads = params.n_threads;
  10140. // these will store the parameters we want to optimize
  10141. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10142. int np = 0;
  10143. int nx = 0;
  10144. for (int i = 0; i < gf->n_nodes; ++i) {
  10145. if (gf->nodes[i]->is_param) {
  10146. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10147. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10148. ps[np++] = gf->nodes[i];
  10149. nx += ggml_nelements(gf->nodes[i]);
  10150. }
  10151. }
  10152. // constants
  10153. const float alpha = params.adam.alpha;
  10154. const float beta1 = params.adam.beta1;
  10155. const float beta2 = params.adam.beta2;
  10156. const float eps = params.adam.eps;
  10157. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10158. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10159. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10160. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10161. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10162. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10163. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10164. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10165. // initialize
  10166. ggml_vec_set_f32(nx, m, 0.0f);
  10167. ggml_vec_set_f32(nx, v, 0.0f);
  10168. // update view
  10169. ggml_opt_get_params(np, ps, x);
  10170. // compute the function value
  10171. ggml_graph_reset (gf);
  10172. ggml_set_f32 (f->grad, 1.0f);
  10173. ggml_graph_compute(ctx, gb);
  10174. float fx_prev = ggml_get_f32_1d(f, 0);
  10175. if (pf) {
  10176. pf[0] = fx_prev;
  10177. }
  10178. int n_no_improvement = 0;
  10179. float fx_best = fx_prev;
  10180. // run the optimizer
  10181. for (int t = 0; t < params.adam.n_iter; ++t) {
  10182. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10183. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10184. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10185. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10186. for (int i = 0; i < np; ++i) {
  10187. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10188. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10189. }
  10190. const int64_t t_start_wall = ggml_time_us();
  10191. const int64_t t_start_cpu = ggml_cycles();
  10192. UNUSED(t_start_wall);
  10193. UNUSED(t_start_cpu);
  10194. {
  10195. // update the gradient
  10196. ggml_opt_get_grad(np, ps, g1);
  10197. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10198. ggml_vec_scale_f32(nx, m, beta1);
  10199. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10200. // g2 = g1^2
  10201. ggml_vec_sqr_f32 (nx, g2, g1);
  10202. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10203. ggml_vec_scale_f32(nx, v, beta2);
  10204. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10205. // m^hat = m_t / (1 - beta1^t)
  10206. // v^hat = v_t / (1 - beta2^t)
  10207. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10208. ggml_vec_cpy_f32 (nx, mh, m);
  10209. ggml_vec_cpy_f32 (nx, vh, v);
  10210. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10211. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10212. ggml_vec_sqrt_f32 (nx, vh, vh);
  10213. ggml_vec_acc1_f32 (nx, vh, eps);
  10214. ggml_vec_div_f32 (nx, mh, mh, vh);
  10215. ggml_vec_sub_f32 (nx, x, x, mh);
  10216. // update the parameters
  10217. ggml_opt_set_params(np, ps, x);
  10218. }
  10219. ggml_graph_reset (gf);
  10220. ggml_set_f32 (f->grad, 1.0f);
  10221. ggml_graph_compute(ctx, gb);
  10222. const float fx = ggml_get_f32_1d(f, 0);
  10223. // check convergence
  10224. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10225. GGML_PRINT_DEBUG("converged\n");
  10226. return GGML_OPT_OK;
  10227. }
  10228. // delta-based convergence test
  10229. if (pf != NULL) {
  10230. // need at least params.past iterations to start checking for convergence
  10231. if (params.past <= t) {
  10232. const float rate = (pf[t%params.past] - fx)/fx;
  10233. if (fabsf(rate) < params.delta) {
  10234. return GGML_OPT_OK;
  10235. }
  10236. }
  10237. pf[t%params.past] = fx;
  10238. }
  10239. // check for improvement
  10240. if (params.max_no_improvement > 0) {
  10241. if (fx_best > fx) {
  10242. fx_best = fx;
  10243. n_no_improvement = 0;
  10244. } else {
  10245. ++n_no_improvement;
  10246. if (n_no_improvement >= params.max_no_improvement) {
  10247. return GGML_OPT_OK;
  10248. }
  10249. }
  10250. }
  10251. fx_prev = fx;
  10252. {
  10253. const int64_t t_end_cpu = ggml_cycles();
  10254. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10255. UNUSED(t_end_cpu);
  10256. const int64_t t_end_wall = ggml_time_us();
  10257. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10258. UNUSED(t_end_wall);
  10259. }
  10260. }
  10261. return GGML_OPT_DID_NOT_CONVERGE;
  10262. }
  10263. //
  10264. // L-BFGS
  10265. //
  10266. // the L-BFGS implementation below is based on the following implementation:
  10267. //
  10268. // https://github.com/chokkan/liblbfgs
  10269. //
  10270. struct ggml_lbfgs_iteration_data {
  10271. float alpha;
  10272. float ys;
  10273. float * s;
  10274. float * y;
  10275. };
  10276. static enum ggml_opt_result linesearch_backtracking(
  10277. struct ggml_context * ctx,
  10278. const struct ggml_opt_params * params,
  10279. int nx,
  10280. float * x,
  10281. float * fx,
  10282. float * g,
  10283. float * d,
  10284. float * step,
  10285. const float * xp,
  10286. struct ggml_tensor * f,
  10287. struct ggml_cgraph * gf,
  10288. struct ggml_cgraph * gb,
  10289. const int np,
  10290. struct ggml_tensor * ps[]) {
  10291. int count = 0;
  10292. float width = 0.0f;
  10293. float dg = 0.0f;
  10294. float finit = 0.0f;
  10295. float dginit = 0.0f;
  10296. float dgtest = 0.0f;
  10297. const float dec = 0.5f;
  10298. const float inc = 2.1f;
  10299. if (*step <= 0.f) {
  10300. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10301. }
  10302. // compute the initial gradient in the search direction
  10303. ggml_vec_dot_f32(nx, &dginit, g, d);
  10304. // make sure that d points to a descent direction
  10305. if (0 < dginit) {
  10306. return GGML_LINESEARCH_FAIL;
  10307. }
  10308. // initialize local variables
  10309. finit = *fx;
  10310. dgtest = params->lbfgs.ftol*dginit;
  10311. while (true) {
  10312. ggml_vec_cpy_f32(nx, x, xp);
  10313. ggml_vec_mad_f32(nx, x, d, *step);
  10314. // evaluate the function and gradient values
  10315. {
  10316. ggml_opt_set_params(np, ps, x);
  10317. ggml_graph_reset (gf);
  10318. ggml_set_f32 (f->grad, 1.0f);
  10319. ggml_graph_compute(ctx, gb);
  10320. ggml_opt_get_grad(np, ps, g);
  10321. *fx = ggml_get_f32_1d(f, 0);
  10322. }
  10323. ++count;
  10324. if (*fx > finit + (*step)*dgtest) {
  10325. width = dec;
  10326. } else {
  10327. // Armijo condition is satisfied
  10328. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10329. return count;
  10330. }
  10331. ggml_vec_dot_f32(nx, &dg, g, d);
  10332. // check the Wolfe condition
  10333. if (dg < params->lbfgs.wolfe * dginit) {
  10334. width = inc;
  10335. } else {
  10336. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10337. // regular Wolfe conditions
  10338. return count;
  10339. }
  10340. if(dg > -params->lbfgs.wolfe*dginit) {
  10341. width = dec;
  10342. } else {
  10343. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10344. return count;
  10345. }
  10346. return count;
  10347. }
  10348. }
  10349. if (*step < params->lbfgs.min_step) {
  10350. return GGML_LINESEARCH_MINIMUM_STEP;
  10351. }
  10352. if (*step > params->lbfgs.max_step) {
  10353. return GGML_LINESEARCH_MAXIMUM_STEP;
  10354. }
  10355. if (params->lbfgs.max_linesearch <= count) {
  10356. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10357. }
  10358. (*step) *= width;
  10359. }
  10360. return GGML_LINESEARCH_FAIL;
  10361. }
  10362. static enum ggml_opt_result ggml_opt_lbfgs(
  10363. struct ggml_context * ctx,
  10364. struct ggml_opt_params params,
  10365. struct ggml_tensor * f,
  10366. struct ggml_cgraph * gf,
  10367. struct ggml_cgraph * gb) {
  10368. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10369. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10370. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10371. return GGML_OPT_INVALID_WOLFE;
  10372. }
  10373. }
  10374. gf->n_threads = params.n_threads;
  10375. gb->n_threads = params.n_threads;
  10376. const int m = params.lbfgs.m;
  10377. // these will store the parameters we want to optimize
  10378. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10379. int np = 0;
  10380. int nx = 0;
  10381. for (int i = 0; i < gf->n_nodes; ++i) {
  10382. if (gf->nodes[i]->is_param) {
  10383. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10384. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10385. ps[np++] = gf->nodes[i];
  10386. nx += ggml_nelements(gf->nodes[i]);
  10387. }
  10388. }
  10389. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10390. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10391. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10392. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10393. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10394. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10395. float fx = 0.0f; // cost function value
  10396. float xnorm = 0.0f; // ||x||
  10397. float gnorm = 0.0f; // ||g||
  10398. float step = 0.0f;
  10399. // initialize x from the graph nodes
  10400. ggml_opt_get_params(np, ps, x);
  10401. // the L-BFGS memory
  10402. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10403. for (int i = 0; i < m; ++i) {
  10404. lm[i].alpha = 0.0f;
  10405. lm[i].ys = 0.0f;
  10406. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10407. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10408. }
  10409. // evaluate the function value and its gradient
  10410. {
  10411. ggml_opt_set_params(np, ps, x);
  10412. ggml_graph_reset (gf);
  10413. ggml_set_f32 (f->grad, 1.0f);
  10414. ggml_graph_compute(ctx, gb);
  10415. ggml_opt_get_grad(np, ps, g);
  10416. fx = ggml_get_f32_1d(f, 0);
  10417. }
  10418. if (pf) {
  10419. pf[0] = fx;
  10420. }
  10421. float fx_best = fx;
  10422. // search direction = -gradient
  10423. ggml_vec_neg_f32(nx, d, g);
  10424. // ||x||, ||g||
  10425. ggml_vec_norm_f32(nx, &xnorm, x);
  10426. ggml_vec_norm_f32(nx, &gnorm, g);
  10427. if (xnorm < 1.0f) {
  10428. xnorm = 1.0f;
  10429. }
  10430. // already optimized
  10431. if (gnorm/xnorm <= params.lbfgs.eps) {
  10432. return GGML_OPT_OK;
  10433. }
  10434. // initial step
  10435. ggml_vec_norm_inv_f32(nx, &step, d);
  10436. int j = 0;
  10437. int k = 1;
  10438. int ls = 0;
  10439. int end = 0;
  10440. int bound = 0;
  10441. int n_no_improvement = 0;
  10442. float ys = 0.0f;
  10443. float yy = 0.0f;
  10444. float beta = 0.0f;
  10445. while (true) {
  10446. // store the current position and gradient vectors
  10447. ggml_vec_cpy_f32(nx, xp, x);
  10448. ggml_vec_cpy_f32(nx, gp, g);
  10449. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10450. if (ls < 0) {
  10451. // linesearch failed - go back to the previous point and return
  10452. ggml_vec_cpy_f32(nx, x, xp);
  10453. ggml_vec_cpy_f32(nx, g, gp);
  10454. return ls;
  10455. }
  10456. ggml_vec_norm_f32(nx, &xnorm, x);
  10457. ggml_vec_norm_f32(nx, &gnorm, g);
  10458. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10459. if (xnorm < 1.0f) {
  10460. xnorm = 1.0f;
  10461. }
  10462. if (gnorm/xnorm <= params.lbfgs.eps) {
  10463. // converged
  10464. return GGML_OPT_OK;
  10465. }
  10466. // delta-based convergence test
  10467. if (pf != NULL) {
  10468. // need at least params.past iterations to start checking for convergence
  10469. if (params.past <= k) {
  10470. const float rate = (pf[k%params.past] - fx)/fx;
  10471. if (fabsf(rate) < params.delta) {
  10472. return GGML_OPT_OK;
  10473. }
  10474. }
  10475. pf[k%params.past] = fx;
  10476. }
  10477. // check for improvement
  10478. if (params.max_no_improvement > 0) {
  10479. if (fx < fx_best) {
  10480. fx_best = fx;
  10481. n_no_improvement = 0;
  10482. } else {
  10483. n_no_improvement++;
  10484. if (n_no_improvement >= params.max_no_improvement) {
  10485. return GGML_OPT_OK;
  10486. }
  10487. }
  10488. }
  10489. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10490. // reached the maximum number of iterations
  10491. return GGML_OPT_DID_NOT_CONVERGE;
  10492. }
  10493. // update vectors s and y:
  10494. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10495. // y_{k+1} = g_{k+1} - g_{k}.
  10496. //
  10497. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10498. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10499. // compute scalars ys and yy:
  10500. // ys = y^t \cdot s -> 1 / \rho.
  10501. // yy = y^t \cdot y.
  10502. //
  10503. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10504. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10505. lm[end].ys = ys;
  10506. // find new search direction
  10507. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10508. bound = (m <= k) ? m : k;
  10509. k++;
  10510. end = (end + 1)%m;
  10511. // initialize search direction with -g
  10512. ggml_vec_neg_f32(nx, d, g);
  10513. j = end;
  10514. for (int i = 0; i < bound; ++i) {
  10515. j = (j + m - 1) % m;
  10516. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10517. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10518. lm[j].alpha /= lm[j].ys;
  10519. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10520. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10521. }
  10522. ggml_vec_scale_f32(nx, d, ys/yy);
  10523. for (int i = 0; i < bound; ++i) {
  10524. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10525. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10526. beta /= lm[j].ys;
  10527. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10528. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10529. j = (j + 1)%m;
  10530. }
  10531. step = 1.0;
  10532. }
  10533. return GGML_OPT_DID_NOT_CONVERGE;
  10534. }
  10535. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10536. struct ggml_opt_params result;
  10537. switch (type) {
  10538. case GGML_OPT_ADAM:
  10539. {
  10540. result = (struct ggml_opt_params) {
  10541. .type = GGML_OPT_ADAM,
  10542. .n_threads = 1,
  10543. .past = 0,
  10544. .delta = 1e-5f,
  10545. .max_no_improvement = 100,
  10546. .print_forward_graph = true,
  10547. .print_backward_graph = true,
  10548. .adam = {
  10549. .n_iter = 10000,
  10550. .alpha = 0.001f,
  10551. .beta1 = 0.9f,
  10552. .beta2 = 0.999f,
  10553. .eps = 1e-8f,
  10554. .eps_f = 1e-5f,
  10555. .eps_g = 1e-3f,
  10556. },
  10557. };
  10558. } break;
  10559. case GGML_OPT_LBFGS:
  10560. {
  10561. result = (struct ggml_opt_params) {
  10562. .type = GGML_OPT_LBFGS,
  10563. .n_threads = 1,
  10564. .past = 0,
  10565. .delta = 1e-5f,
  10566. .max_no_improvement = 0,
  10567. .print_forward_graph = true,
  10568. .print_backward_graph = true,
  10569. .lbfgs = {
  10570. .m = 6,
  10571. .n_iter = 100,
  10572. .max_linesearch = 20,
  10573. .eps = 1e-5f,
  10574. .ftol = 1e-4f,
  10575. .wolfe = 0.9f,
  10576. .min_step = 1e-20f,
  10577. .max_step = 1e+20f,
  10578. .linesearch = GGML_LINESEARCH_DEFAULT,
  10579. },
  10580. };
  10581. } break;
  10582. }
  10583. return result;
  10584. }
  10585. enum ggml_opt_result ggml_opt(
  10586. struct ggml_context * ctx,
  10587. struct ggml_opt_params params,
  10588. struct ggml_tensor * f) {
  10589. bool free_ctx = false;
  10590. if (ctx == NULL) {
  10591. struct ggml_init_params params_ctx = {
  10592. .mem_size = 16*1024*1024,
  10593. .mem_buffer = NULL,
  10594. .no_alloc = false,
  10595. };
  10596. ctx = ggml_init(params_ctx);
  10597. if (ctx == NULL) {
  10598. return GGML_OPT_NO_CONTEXT;
  10599. }
  10600. free_ctx = true;
  10601. }
  10602. enum ggml_opt_result result = GGML_OPT_OK;
  10603. // build forward + backward compute graphs
  10604. struct ggml_cgraph gf = ggml_build_forward (f);
  10605. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10606. switch (params.type) {
  10607. case GGML_OPT_ADAM:
  10608. {
  10609. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10610. } break;
  10611. case GGML_OPT_LBFGS:
  10612. {
  10613. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10614. } break;
  10615. }
  10616. if (params.print_forward_graph) {
  10617. ggml_graph_print (&gf);
  10618. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10619. }
  10620. if (params.print_backward_graph) {
  10621. ggml_graph_print (&gb);
  10622. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10623. }
  10624. if (free_ctx) {
  10625. ggml_free(ctx);
  10626. }
  10627. return result;
  10628. }
  10629. ////////////////////////////////////////////////////////////////////////////////
  10630. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10631. assert(k % QK4_0 == 0);
  10632. const int nb = k / QK4_0;
  10633. for (int j = 0; j < n; j += k) {
  10634. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10635. quantize_row_q4_0_reference(src + j, y, k);
  10636. for (int i = 0; i < nb; i++) {
  10637. for (int l = 0; l < QK4_0; l += 2) {
  10638. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10639. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10640. hist[vi0]++;
  10641. hist[vi1]++;
  10642. }
  10643. }
  10644. }
  10645. return (n/QK4_0*sizeof(block_q4_0));
  10646. }
  10647. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10648. assert(k % QK4_1 == 0);
  10649. const int nb = k / QK4_1;
  10650. for (int j = 0; j < n; j += k) {
  10651. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10652. quantize_row_q4_1_reference(src + j, y, k);
  10653. for (int i = 0; i < nb; i++) {
  10654. for (int l = 0; l < QK4_1; l += 2) {
  10655. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10656. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10657. hist[vi0]++;
  10658. hist[vi1]++;
  10659. }
  10660. }
  10661. }
  10662. return (n/QK4_1*sizeof(block_q4_1));
  10663. }
  10664. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10665. assert(k % QK4_2 == 0);
  10666. const int nb = k / QK4_2;
  10667. for (int j = 0; j < n; j += k) {
  10668. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10669. quantize_row_q4_2_reference(src + j, y, k);
  10670. for (int i = 0; i < nb; i++) {
  10671. for (int l = 0; l < QK4_2; l += 2) {
  10672. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10673. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10674. hist[vi0]++;
  10675. hist[vi1]++;
  10676. }
  10677. }
  10678. }
  10679. return (n/QK4_2*sizeof(block_q4_2));
  10680. }
  10681. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10682. assert(k % QK5_0 == 0);
  10683. const int nb = k / QK5_0;
  10684. for (int j = 0; j < n; j += k) {
  10685. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10686. quantize_row_q5_0_reference(src + j, y, k);
  10687. for (int i = 0; i < nb; i++) {
  10688. uint32_t qh;
  10689. memcpy(&qh, &y[i].qh, sizeof(qh));
  10690. for (int l = 0; l < QK5_0; l += 2) {
  10691. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10692. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10693. // cast to 16 bins
  10694. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10695. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10696. hist[vi0]++;
  10697. hist[vi1]++;
  10698. }
  10699. }
  10700. }
  10701. return (n/QK5_0*sizeof(block_q5_0));
  10702. }
  10703. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10704. assert(k % QK5_1 == 0);
  10705. const int nb = k / QK5_1;
  10706. for (int j = 0; j < n; j += k) {
  10707. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10708. quantize_row_q5_1_reference(src + j, y, k);
  10709. for (int i = 0; i < nb; i++) {
  10710. uint32_t qh;
  10711. memcpy(&qh, &y[i].qh, sizeof(qh));
  10712. for (int l = 0; l < QK5_1; l += 2) {
  10713. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10714. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10715. // cast to 16 bins
  10716. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10717. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10718. hist[vi0]++;
  10719. hist[vi1]++;
  10720. }
  10721. }
  10722. }
  10723. return (n/QK5_1*sizeof(block_q5_1));
  10724. }
  10725. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10726. assert(k % QK8_0 == 0);
  10727. const int nb = k / QK8_0;
  10728. for (int j = 0; j < n; j += k) {
  10729. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10730. quantize_row_q8_0_reference(src + j, y, k);
  10731. for (int i = 0; i < nb; i++) {
  10732. for (int l = 0; l < QK8_0; ++l) {
  10733. const int8_t vi = y[i].qs[l];
  10734. hist[vi/16 + 8]++;
  10735. }
  10736. }
  10737. }
  10738. return (n/QK8_0*sizeof(block_q8_0));
  10739. }
  10740. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10741. size_t result = 0;
  10742. switch (type) {
  10743. case GGML_TYPE_Q4_0:
  10744. {
  10745. GGML_ASSERT(start % QK4_0 == 0);
  10746. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10747. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10748. } break;
  10749. case GGML_TYPE_Q4_1:
  10750. {
  10751. GGML_ASSERT(start % QK4_1 == 0);
  10752. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10753. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10754. } break;
  10755. case GGML_TYPE_Q4_2:
  10756. {
  10757. GGML_ASSERT(start % QK4_2 == 0);
  10758. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10759. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10760. } break;
  10761. case GGML_TYPE_Q5_0:
  10762. {
  10763. GGML_ASSERT(start % QK5_0 == 0);
  10764. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10765. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10766. } break;
  10767. case GGML_TYPE_Q5_1:
  10768. {
  10769. GGML_ASSERT(start % QK5_1 == 0);
  10770. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10771. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10772. } break;
  10773. case GGML_TYPE_Q8_0:
  10774. {
  10775. GGML_ASSERT(start % QK8_0 == 0);
  10776. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10777. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10778. } break;
  10779. default:
  10780. assert(false);
  10781. }
  10782. return result;
  10783. }
  10784. ////////////////////////////////////////////////////////////////////////////////
  10785. int ggml_cpu_has_avx(void) {
  10786. #if defined(__AVX__)
  10787. return 1;
  10788. #else
  10789. return 0;
  10790. #endif
  10791. }
  10792. int ggml_cpu_has_avx2(void) {
  10793. #if defined(__AVX2__)
  10794. return 1;
  10795. #else
  10796. return 0;
  10797. #endif
  10798. }
  10799. int ggml_cpu_has_avx512(void) {
  10800. #if defined(__AVX512F__)
  10801. return 1;
  10802. #else
  10803. return 0;
  10804. #endif
  10805. }
  10806. int ggml_cpu_has_avx512_vbmi(void) {
  10807. #if defined(__AVX512VBMI__)
  10808. return 1;
  10809. #else
  10810. return 0;
  10811. #endif
  10812. }
  10813. int ggml_cpu_has_avx512_vnni(void) {
  10814. #if defined(__AVX512VNNI__)
  10815. return 1;
  10816. #else
  10817. return 0;
  10818. #endif
  10819. }
  10820. int ggml_cpu_has_fma(void) {
  10821. #if defined(__FMA__)
  10822. return 1;
  10823. #else
  10824. return 0;
  10825. #endif
  10826. }
  10827. int ggml_cpu_has_neon(void) {
  10828. #if defined(__ARM_NEON)
  10829. return 1;
  10830. #else
  10831. return 0;
  10832. #endif
  10833. }
  10834. int ggml_cpu_has_arm_fma(void) {
  10835. #if defined(__ARM_FEATURE_FMA)
  10836. return 1;
  10837. #else
  10838. return 0;
  10839. #endif
  10840. }
  10841. int ggml_cpu_has_f16c(void) {
  10842. #if defined(__F16C__)
  10843. return 1;
  10844. #else
  10845. return 0;
  10846. #endif
  10847. }
  10848. int ggml_cpu_has_fp16_va(void) {
  10849. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10850. return 1;
  10851. #else
  10852. return 0;
  10853. #endif
  10854. }
  10855. int ggml_cpu_has_wasm_simd(void) {
  10856. #if defined(__wasm_simd128__)
  10857. return 1;
  10858. #else
  10859. return 0;
  10860. #endif
  10861. }
  10862. int ggml_cpu_has_blas(void) {
  10863. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10864. return 1;
  10865. #else
  10866. return 0;
  10867. #endif
  10868. }
  10869. int ggml_cpu_has_cublas(void) {
  10870. #if defined(GGML_USE_CUBLAS)
  10871. return 1;
  10872. #else
  10873. return 0;
  10874. #endif
  10875. }
  10876. int ggml_cpu_has_clblast(void) {
  10877. #if defined(GGML_USE_CLBLAST)
  10878. return 1;
  10879. #else
  10880. return 0;
  10881. #endif
  10882. }
  10883. int ggml_cpu_has_gpublas(void) {
  10884. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10885. }
  10886. int ggml_cpu_has_sse3(void) {
  10887. #if defined(__SSE3__)
  10888. return 1;
  10889. #else
  10890. return 0;
  10891. #endif
  10892. }
  10893. int ggml_cpu_has_vsx(void) {
  10894. #if defined(__POWER9_VECTOR__)
  10895. return 1;
  10896. #else
  10897. return 0;
  10898. #endif
  10899. }
  10900. ////////////////////////////////////////////////////////////////////////////////