ggml-backend.cpp 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend-impl.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-impl.h"
  12. #include <assert.h>
  13. #include <limits.h>
  14. #include <stdarg.h>
  15. #include <stdio.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <string>
  19. #include <vector>
  20. #ifdef __APPLE__
  21. #include <sys/types.h>
  22. #include <sys/sysctl.h>
  23. #endif
  24. // backend buffer type
  25. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  26. return buft->iface.get_name(buft);
  27. }
  28. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  29. if (size == 0) {
  30. // return a dummy buffer for zero-sized allocations
  31. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  32. }
  33. return buft->iface.alloc_buffer(buft, size);
  34. }
  35. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  36. return buft->iface.get_alignment(buft);
  37. }
  38. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  39. // get_max_size is optional, defaults to SIZE_MAX
  40. if (buft->iface.get_max_size) {
  41. return buft->iface.get_max_size(buft);
  42. }
  43. return SIZE_MAX;
  44. }
  45. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  46. // get_alloc_size is optional, defaults to ggml_nbytes
  47. if (buft->iface.get_alloc_size) {
  48. size_t size = buft->iface.get_alloc_size(buft, tensor);
  49. assert(size >= ggml_nbytes(tensor));
  50. return size;
  51. }
  52. return ggml_nbytes(tensor);
  53. }
  54. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  55. if (buft->iface.is_host) {
  56. return buft->iface.is_host(buft);
  57. }
  58. return false;
  59. }
  60. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  61. return buft->device;
  62. }
  63. // backend buffer
  64. ggml_backend_buffer_t ggml_backend_buffer_init(
  65. ggml_backend_buffer_type_t buft,
  66. struct ggml_backend_buffer_i iface,
  67. void * context,
  68. size_t size) {
  69. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  70. /* .interface = */ iface,
  71. /* .buft = */ buft,
  72. /* .context = */ context,
  73. /* .size = */ size,
  74. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  75. };
  76. return buffer;
  77. }
  78. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  79. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  80. }
  81. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  82. if (buffer == NULL) {
  83. return;
  84. }
  85. if (buffer->iface.free_buffer != NULL) {
  86. buffer->iface.free_buffer(buffer);
  87. }
  88. delete buffer;
  89. }
  90. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  91. return buffer->size;
  92. }
  93. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  94. // get_base is optional if the buffer is zero-sized
  95. if (buffer->size == 0) {
  96. return NULL;
  97. }
  98. void * base = buffer->iface.get_base(buffer);
  99. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  100. return base;
  101. }
  102. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  103. // init_tensor is optional
  104. if (buffer->iface.init_tensor) {
  105. buffer->iface.init_tensor(buffer, tensor);
  106. }
  107. }
  108. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  109. // clear is optional if the buffer is zero-sized
  110. if (buffer->size == 0) {
  111. return;
  112. }
  113. buffer->iface.clear(buffer, value);
  114. }
  115. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  116. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  117. }
  118. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  119. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  120. }
  121. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  122. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  123. }
  124. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  125. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  126. }
  127. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  128. buffer->usage = usage;
  129. // FIXME: add a generic callback to the buffer interface
  130. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  131. ggml_backend_multi_buffer_set_usage(buffer, usage);
  132. }
  133. }
  134. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  135. return buffer->usage;
  136. }
  137. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  138. return buffer->buft;
  139. }
  140. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  141. if (buffer->iface.reset) {
  142. buffer->iface.reset(buffer);
  143. }
  144. }
  145. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  146. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  147. if (dst_buf->iface.cpy_tensor) {
  148. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  149. }
  150. return false;
  151. }
  152. // backend
  153. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  154. if (backend == NULL) {
  155. return NULL;
  156. }
  157. return backend->guid;
  158. }
  159. const char * ggml_backend_name(ggml_backend_t backend) {
  160. if (backend == NULL) {
  161. return "NULL";
  162. }
  163. return backend->iface.get_name(backend);
  164. }
  165. void ggml_backend_free(ggml_backend_t backend) {
  166. if (backend == NULL) {
  167. return;
  168. }
  169. backend->iface.free(backend);
  170. }
  171. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  172. return ggml_backend_dev_buffer_type(backend->device);
  173. }
  174. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  175. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  176. }
  177. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  178. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  179. }
  180. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  181. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  182. }
  183. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  184. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  185. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  186. if (backend->iface.set_tensor_async == NULL) {
  187. ggml_backend_tensor_set(tensor, data, offset, size);
  188. } else {
  189. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  190. }
  191. }
  192. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  193. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  194. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  195. if (backend->iface.get_tensor_async == NULL) {
  196. ggml_backend_tensor_get(tensor, data, offset, size);
  197. } else {
  198. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  199. }
  200. }
  201. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  202. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  203. if (size == 0) {
  204. return;
  205. }
  206. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  207. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  208. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  209. buf->iface.set_tensor(buf, tensor, data, offset, size);
  210. }
  211. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  212. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  213. if (size == 0) {
  214. return;
  215. }
  216. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  217. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  218. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  219. buf->iface.get_tensor(buf, tensor, data, offset, size);
  220. }
  221. GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  222. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  223. if (size == 0) {
  224. return;
  225. }
  226. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  227. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  228. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  229. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  230. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  231. }
  232. void ggml_backend_synchronize(ggml_backend_t backend) {
  233. if (backend->iface.synchronize == NULL) {
  234. return;
  235. }
  236. backend->iface.synchronize(backend);
  237. }
  238. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  239. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  240. return backend->iface.graph_plan_create(backend, cgraph);
  241. }
  242. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  243. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  244. backend->iface.graph_plan_free(backend, plan);
  245. }
  246. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  247. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  248. return backend->iface.graph_plan_compute(backend, plan);
  249. }
  250. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  251. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  252. ggml_backend_synchronize(backend);
  253. return err;
  254. }
  255. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  256. return backend->iface.graph_compute(backend, cgraph);
  257. }
  258. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  259. return ggml_backend_dev_supports_op(backend->device, op);
  260. }
  261. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  262. return ggml_backend_dev_supports_buft(backend->device, buft);
  263. }
  264. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  265. return ggml_backend_dev_offload_op(backend->device, op);
  266. }
  267. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  268. return backend->device;
  269. }
  270. // backend copy
  271. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  272. if (a->type != b->type) {
  273. return false;
  274. }
  275. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  276. if (a->ne[i] != b->ne[i]) {
  277. return false;
  278. }
  279. if (a->nb[i] != b->nb[i]) {
  280. return false;
  281. }
  282. }
  283. return true;
  284. }
  285. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  286. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  287. if (src == dst) {
  288. return;
  289. }
  290. if (ggml_backend_buffer_is_host(src->buffer)) {
  291. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  292. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  293. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  294. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  295. #ifndef NDEBUG
  296. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  297. #endif
  298. size_t nbytes = ggml_nbytes(src);
  299. void * data = malloc(nbytes);
  300. ggml_backend_tensor_get(src, data, 0, nbytes);
  301. ggml_backend_tensor_set(dst, data, 0, nbytes);
  302. free(data);
  303. }
  304. }
  305. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  306. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  307. if (src == dst) {
  308. return;
  309. }
  310. if (backend_dst->iface.cpy_tensor_async != NULL) {
  311. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  312. return;
  313. }
  314. }
  315. // an async copy would normally happen after all the queued operations on both backends are completed
  316. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  317. ggml_backend_synchronize(backend_src);
  318. ggml_backend_synchronize(backend_dst);
  319. ggml_backend_tensor_copy(src, dst);
  320. }
  321. // events
  322. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  323. // null device is allowed for the transition period to the device interface
  324. if (device == NULL || device->iface.event_new == NULL) {
  325. return NULL;
  326. }
  327. return device->iface.event_new(device);
  328. }
  329. void ggml_backend_event_free(ggml_backend_event_t event) {
  330. if (event == NULL) {
  331. return;
  332. }
  333. event->device->iface.event_free(event->device, event);
  334. }
  335. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  336. GGML_ASSERT(backend->iface.event_record != NULL);
  337. backend->iface.event_record(backend, event);
  338. }
  339. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  340. GGML_ASSERT(event->device->iface.event_synchronize);
  341. event->device->iface.event_synchronize(event->device, event);
  342. }
  343. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  344. GGML_ASSERT(backend->iface.event_wait != NULL);
  345. backend->iface.event_wait(backend, event);
  346. }
  347. // Backend device
  348. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  349. return device->iface.get_name(device);
  350. }
  351. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  352. return device->iface.get_description(device);
  353. }
  354. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  355. device->iface.get_memory(device, free, total);
  356. }
  357. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  358. return device->iface.get_type(device);
  359. }
  360. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  361. memset(props, 0, sizeof(*props));
  362. device->iface.get_props(device, props);
  363. }
  364. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  365. return device->reg;
  366. }
  367. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  368. return device->iface.init_backend(device, params);
  369. }
  370. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  371. return device->iface.get_buffer_type(device);
  372. }
  373. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  374. if (device->iface.get_host_buffer_type == NULL) {
  375. return NULL;
  376. }
  377. return device->iface.get_host_buffer_type(device);
  378. }
  379. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  380. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  381. }
  382. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  383. return device->iface.supports_op(device, op);
  384. }
  385. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  386. return device->iface.supports_buft(device, buft);
  387. }
  388. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  389. if (device->iface.offload_op != NULL) {
  390. return device->iface.offload_op(device, op);
  391. }
  392. return false;
  393. }
  394. // Backend (reg)
  395. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  396. return reg->iface.get_name(reg);
  397. }
  398. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  399. return reg->iface.get_device_count(reg);
  400. }
  401. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  402. return reg->iface.get_device(reg, index);
  403. }
  404. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  405. if (!reg->iface.get_proc_address) {
  406. return NULL;
  407. }
  408. return reg->iface.get_proc_address(reg, name);
  409. }
  410. // Backend registry
  411. #ifdef GGML_USE_CUDA
  412. #include "ggml-cuda.h"
  413. #endif
  414. #ifdef GGML_USE_METAL
  415. #include "ggml-metal.h"
  416. #endif
  417. #ifdef GGML_USE_SYCL
  418. #include "ggml-sycl.h"
  419. #endif
  420. #ifdef GGML_USE_VULKAN
  421. #include "ggml-vulkan.h"
  422. #endif
  423. #ifdef GGML_USE_BLAS
  424. #include "ggml-blas.h"
  425. #endif
  426. #ifdef GGML_USE_RPC
  427. #include "ggml-rpc.h"
  428. #endif
  429. #ifndef __AMX_INT8__
  430. #undef GGML_USE_AMX
  431. #endif
  432. #ifdef GGML_USE_AMX
  433. # include "ggml-amx.h"
  434. #endif
  435. #ifdef GGML_USE_CANN
  436. #include "ggml-cann.h"
  437. #endif
  438. struct ggml_backend_registry {
  439. std::vector<ggml_backend_reg_t> backends;
  440. std::vector<ggml_backend_dev_t> devices;
  441. ggml_backend_registry() {
  442. #ifdef GGML_USE_CUDA
  443. register_backend(ggml_backend_cuda_reg());
  444. #endif
  445. #ifdef GGML_USE_METAL
  446. register_backend(ggml_backend_metal_reg());
  447. #endif
  448. #ifdef GGML_USE_SYCL
  449. register_backend(ggml_backend_sycl_reg());
  450. #endif
  451. #ifdef GGML_USE_VULKAN
  452. register_backend(ggml_backend_vk_reg());
  453. #endif
  454. #ifdef GGML_USE_CANN
  455. register_backend(ggml_backend_cann_reg());
  456. #endif
  457. #ifdef GGML_USE_BLAS
  458. register_backend(ggml_backend_blas_reg());
  459. #endif
  460. #ifdef GGML_USE_RPC
  461. register_backend(ggml_backend_rpc_reg());
  462. #endif
  463. #ifdef GGML_USE_AMX
  464. register_backend(ggml_backend_amx_reg());
  465. #endif
  466. // TODO: kompute
  467. register_backend(ggml_backend_cpu_reg());
  468. }
  469. void register_backend(ggml_backend_reg_t reg) {
  470. #ifndef NDEBUG
  471. GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
  472. __func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
  473. #endif
  474. backends.push_back(reg);
  475. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
  476. register_device(ggml_backend_reg_dev_get(reg, i));
  477. }
  478. }
  479. void register_device(ggml_backend_dev_t device) {
  480. #ifndef NDEBUG
  481. GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
  482. #endif
  483. devices.push_back(device);
  484. }
  485. };
  486. static ggml_backend_registry & get_reg() {
  487. static ggml_backend_registry reg;
  488. return reg;
  489. }
  490. // Internal API
  491. void ggml_backend_register(ggml_backend_reg_t reg) {
  492. get_reg().register_backend(reg);
  493. }
  494. void ggml_backend_device_register(ggml_backend_dev_t device) {
  495. get_reg().register_device(device);
  496. }
  497. // Backend (reg) enumeration
  498. size_t ggml_backend_reg_count() {
  499. return get_reg().backends.size();
  500. }
  501. ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
  502. GGML_ASSERT(index < ggml_backend_reg_count());
  503. return get_reg().backends[index];
  504. }
  505. ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
  506. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  507. ggml_backend_reg_t reg = ggml_backend_reg_get(i);
  508. if (strcmp(ggml_backend_reg_name(reg), name) == 0) {
  509. return reg;
  510. }
  511. }
  512. return NULL;
  513. }
  514. // Device enumeration
  515. size_t ggml_backend_dev_count() {
  516. return get_reg().devices.size();
  517. }
  518. ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
  519. GGML_ASSERT(index < ggml_backend_dev_count());
  520. return get_reg().devices[index];
  521. }
  522. ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
  523. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  524. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  525. if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
  526. return dev;
  527. }
  528. }
  529. return NULL;
  530. }
  531. ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
  532. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  533. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  534. if (ggml_backend_dev_type(dev) == type) {
  535. return dev;
  536. }
  537. }
  538. return NULL;
  539. }
  540. // Convenience functions
  541. ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
  542. ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
  543. if (!dev) {
  544. return NULL;
  545. }
  546. return ggml_backend_dev_init(dev, params);
  547. }
  548. ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
  549. ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
  550. if (!dev) {
  551. return NULL;
  552. }
  553. return ggml_backend_dev_init(dev, params);
  554. }
  555. ggml_backend_t ggml_backend_init_best(void) {
  556. ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
  557. if (!dev) {
  558. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  559. }
  560. if (!dev) {
  561. return NULL;
  562. }
  563. return ggml_backend_dev_init(dev, NULL);
  564. }
  565. // CPU backend - buffer
  566. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  567. uintptr_t data = (uintptr_t)buffer->context;
  568. // align the buffer
  569. if (data % TENSOR_ALIGNMENT != 0) {
  570. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  571. }
  572. return (void *)data;
  573. }
  574. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  575. ggml_aligned_free(buffer->context, buffer->size);
  576. }
  577. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  578. memset((char *)tensor->data + offset, value, size);
  579. GGML_UNUSED(buffer);
  580. }
  581. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  582. memcpy((char *)tensor->data + offset, data, size);
  583. GGML_UNUSED(buffer);
  584. }
  585. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  586. memcpy(data, (const char *)tensor->data + offset, size);
  587. GGML_UNUSED(buffer);
  588. }
  589. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  590. if (ggml_backend_buffer_is_host(src->buffer)) {
  591. memcpy(dst->data, src->data, ggml_nbytes(src));
  592. return true;
  593. }
  594. return false;
  595. GGML_UNUSED(buffer);
  596. }
  597. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  598. memset(buffer->context, value, buffer->size);
  599. }
  600. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  601. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  602. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  603. /* .init_tensor = */ NULL, // no initialization required
  604. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  605. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  606. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  607. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  608. /* .clear = */ ggml_backend_cpu_buffer_clear,
  609. /* .reset = */ NULL,
  610. };
  611. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  612. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  613. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  614. /* .init_tensor = */ NULL, // no initialization required
  615. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  616. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  617. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  618. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  619. /* .clear = */ ggml_backend_cpu_buffer_clear,
  620. /* .reset = */ NULL,
  621. };
  622. // CPU backend - buffer type
  623. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  624. return "CPU";
  625. GGML_UNUSED(buft);
  626. }
  627. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  628. void * data = ggml_aligned_malloc(size);
  629. if (data == NULL) {
  630. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  631. return NULL;
  632. }
  633. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  634. }
  635. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  636. return TENSOR_ALIGNMENT;
  637. GGML_UNUSED(buft);
  638. }
  639. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  640. return true;
  641. GGML_UNUSED(buft);
  642. }
  643. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  644. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  645. /* .iface = */ {
  646. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  647. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  648. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  649. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  650. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  651. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  652. },
  653. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  654. /* .context = */ NULL,
  655. };
  656. return &ggml_backend_cpu_buffer_type;
  657. }
  658. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  659. return "CPU_Mapped";
  660. GGML_UNUSED(buft);
  661. }
  662. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  663. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  664. /* .iface = */ {
  665. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  666. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  667. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  668. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  669. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  670. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  671. },
  672. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  673. /* .context = */ NULL,
  674. };
  675. return &ggml_backend_cpu_buffer_type;
  676. }
  677. #ifdef GGML_USE_CPU_HBM
  678. // buffer type HBM
  679. #include <hbwmalloc.h>
  680. static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  681. return "CPU_HBM";
  682. GGML_UNUSED(buft);
  683. }
  684. static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  685. hbw_free(buffer->context);
  686. }
  687. static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  688. void * ptr;
  689. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  690. if (result != 0) {
  691. GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
  692. return NULL;
  693. }
  694. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  695. buffer->buft = buft;
  696. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  697. return buffer;
  698. }
  699. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  700. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  701. /* .iface = */ {
  702. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  703. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  704. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  705. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  706. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  707. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  708. },
  709. /* .context = */ NULL,
  710. };
  711. return &ggml_backend_cpu_buffer_type_hbm;
  712. }
  713. #endif
  714. static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
  715. static ggml_backend_buffer_type_t bufts[] = {
  716. #ifdef GGML_USE_CPU_HBM
  717. ggml_backend_cpu_hbm_buffer_type(),
  718. #endif
  719. NULL
  720. };
  721. return bufts;
  722. GGML_UNUSED(device);
  723. }
  724. // CPU backend - backend (stream)
  725. struct ggml_backend_cpu_context {
  726. int n_threads;
  727. ggml_threadpool_t threadpool;
  728. uint8_t * work_data;
  729. size_t work_size;
  730. ggml_abort_callback abort_callback;
  731. void * abort_callback_data;
  732. };
  733. static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
  734. return "CPU";
  735. GGML_UNUSED(backend);
  736. }
  737. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  738. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  739. delete[] cpu_ctx->work_data;
  740. delete cpu_ctx;
  741. delete backend;
  742. }
  743. struct ggml_backend_plan_cpu {
  744. struct ggml_cplan cplan;
  745. struct ggml_cgraph cgraph;
  746. };
  747. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  748. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  749. struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
  750. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  751. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  752. if (cpu_plan->cplan.work_size > 0) {
  753. cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
  754. if (cpu_plan->cplan.work_data == NULL) {
  755. delete cpu_plan;
  756. return NULL;
  757. }
  758. }
  759. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  760. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  761. return cpu_plan;
  762. }
  763. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  764. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  765. delete[] cpu_plan->cplan.work_data;
  766. delete cpu_plan;
  767. GGML_UNUSED(backend);
  768. }
  769. static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  770. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  771. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  772. GGML_UNUSED(backend);
  773. }
  774. static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  775. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  776. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  777. if (cpu_ctx->work_size < cplan.work_size) {
  778. delete[] cpu_ctx->work_data;
  779. cpu_ctx->work_data = new uint8_t[cplan.work_size];
  780. if (cpu_ctx->work_data == NULL) {
  781. cpu_ctx->work_size = 0;
  782. return GGML_STATUS_ALLOC_FAILED;
  783. }
  784. cpu_ctx->work_size = cplan.work_size;
  785. }
  786. cplan.work_data = (uint8_t *)cpu_ctx->work_data;
  787. cplan.abort_callback = cpu_ctx->abort_callback;
  788. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  789. return ggml_graph_compute(cgraph, &cplan);
  790. }
  791. static const struct ggml_backend_i ggml_backend_cpu_i = {
  792. /* .get_name = */ ggml_backend_cpu_get_name,
  793. /* .free = */ ggml_backend_cpu_free,
  794. /* .set_tensor_async = */ NULL,
  795. /* .get_tensor_async = */ NULL,
  796. /* .cpy_tensor_async = */ NULL,
  797. /* .synchronize = */ NULL,
  798. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  799. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  800. /* .graph_plan_update = */ NULL,
  801. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  802. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  803. /* .event_record = */ NULL,
  804. /* .event_wait = */ NULL,
  805. };
  806. static ggml_guid_t ggml_backend_cpu_guid(void) {
  807. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  808. return &guid;
  809. }
  810. ggml_backend_t ggml_backend_cpu_init(void) {
  811. struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
  812. if (ctx == NULL) {
  813. return NULL;
  814. }
  815. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  816. ctx->threadpool = NULL;
  817. ctx->work_data = NULL;
  818. ctx->work_size = 0;
  819. ctx->abort_callback = NULL;
  820. ctx->abort_callback_data = NULL;
  821. ggml_backend_t cpu_backend = new ggml_backend {
  822. /* .guid = */ ggml_backend_cpu_guid(),
  823. /* .interface = */ ggml_backend_cpu_i,
  824. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  825. /* .context = */ ctx,
  826. };
  827. if (cpu_backend == NULL) {
  828. delete ctx;
  829. return NULL;
  830. }
  831. return cpu_backend;
  832. }
  833. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  834. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  835. }
  836. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  837. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  838. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  839. ctx->n_threads = n_threads;
  840. }
  841. void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
  842. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  843. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  844. if (ctx->threadpool && ctx->threadpool != threadpool) {
  845. // already had a different threadpool, pause/suspend it before switching
  846. ggml_threadpool_pause(ctx->threadpool);
  847. }
  848. ctx->threadpool = threadpool;
  849. }
  850. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  851. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  852. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  853. ctx->abort_callback = abort_callback;
  854. ctx->abort_callback_data = abort_callback_data;
  855. }
  856. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  857. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  858. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  859. }
  860. // CPU backend - device
  861. struct ggml_backend_cpu_device_context {
  862. std::string description = "CPU";
  863. ggml_backend_cpu_device_context() {
  864. #ifdef __APPLE__
  865. size_t len = 0;
  866. if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
  867. description.resize(len);
  868. sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
  869. }
  870. #elif defined(__linux__)
  871. FILE * f = fopen("/proc/cpuinfo", "r");
  872. if (f) {
  873. char buf[1024];
  874. while (fgets(buf, sizeof(buf), f)) {
  875. if (strncmp(buf, "model name", 10) == 0) {
  876. char * p = strchr(buf, ':');
  877. if (p) {
  878. p++;
  879. while (std::isspace(*p)) {
  880. p++;
  881. }
  882. while (std::isspace(p[strlen(p) - 1])) {
  883. p[strlen(p) - 1] = '\0';
  884. }
  885. description = p;
  886. break;
  887. }
  888. }
  889. }
  890. fclose(f);
  891. }
  892. #elif defined(_WIN32)
  893. HKEY hKey;
  894. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  895. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  896. 0,
  897. KEY_READ,
  898. &hKey) == ERROR_SUCCESS) {
  899. DWORD cpu_brand_size = 0;
  900. if (RegQueryValueExA(hKey,
  901. TEXT("ProcessorNameString"),
  902. NULL,
  903. NULL,
  904. NULL,
  905. &cpu_brand_size) == ERROR_SUCCESS) {
  906. description.resize(cpu_brand_size);
  907. if (RegQueryValueExA(hKey,
  908. TEXT("ProcessorNameString"),
  909. NULL,
  910. NULL,
  911. (LPBYTE)&description[0], // NOLINT
  912. &cpu_brand_size) == ERROR_SUCCESS) {
  913. if (description.find('\0') != std::string::npos) {
  914. description.resize(description.find('\0'));
  915. }
  916. }
  917. }
  918. RegCloseKey(hKey);
  919. }
  920. #endif
  921. }
  922. };
  923. static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
  924. return "CPU";
  925. GGML_UNUSED(dev);
  926. }
  927. static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
  928. struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
  929. return ctx->description.c_str();
  930. }
  931. static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  932. // TODO
  933. *free = 0;
  934. *total = 0;
  935. GGML_UNUSED(dev);
  936. }
  937. static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
  938. return GGML_BACKEND_DEVICE_TYPE_CPU;
  939. GGML_UNUSED(dev);
  940. }
  941. static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  942. props->name = ggml_backend_cpu_device_get_name(dev);
  943. props->description = ggml_backend_cpu_device_get_description(dev);
  944. props->type = ggml_backend_cpu_device_get_type(dev);
  945. ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
  946. props->caps = {
  947. /* .async = */ false,
  948. /* .host_buffer = */ false,
  949. /* .buffer_from_host_ptr = */ true,
  950. /* .events = */ false,
  951. };
  952. }
  953. static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
  954. return ggml_backend_cpu_init();
  955. GGML_UNUSED(dev);
  956. GGML_UNUSED(params);
  957. }
  958. static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
  959. return ggml_backend_cpu_buffer_type();
  960. GGML_UNUSED(dev);
  961. }
  962. static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  963. return ggml_backend_cpu_buffer_from_ptr(ptr, size);
  964. GGML_UNUSED(dev);
  965. GGML_UNUSED(max_tensor_size);
  966. }
  967. static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  968. switch (op->op) {
  969. case GGML_OP_CPY:
  970. return
  971. op->type != GGML_TYPE_IQ2_XXS &&
  972. op->type != GGML_TYPE_IQ2_XS &&
  973. op->type != GGML_TYPE_IQ1_S &&
  974. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  975. case GGML_OP_MUL_MAT:
  976. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
  977. case GGML_OP_ROPE_BACK:
  978. return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
  979. case GGML_OP_IM2COL_BACK:
  980. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
  981. case GGML_OP_OUT_PROD:
  982. return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
  983. default:
  984. return true;
  985. }
  986. GGML_UNUSED(dev);
  987. }
  988. static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  989. return ggml_backend_buft_is_host(buft);
  990. GGML_UNUSED(dev);
  991. }
  992. static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
  993. /* .get_name = */ ggml_backend_cpu_device_get_name,
  994. /* .get_description = */ ggml_backend_cpu_device_get_description,
  995. /* .get_memory = */ ggml_backend_cpu_device_get_memory,
  996. /* .get_type = */ ggml_backend_cpu_device_get_type,
  997. /* .get_props = */ ggml_backend_cpu_device_get_props,
  998. /* .init_backend = */ ggml_backend_cpu_device_init_backend,
  999. /* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
  1000. /* .get_host_buffer_type = */ NULL,
  1001. /* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
  1002. /* .supports_op = */ ggml_backend_cpu_device_supports_op,
  1003. /* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
  1004. /* .offload_op = */ NULL,
  1005. /* .event_new = */ NULL,
  1006. /* .event_free = */ NULL,
  1007. /* .event_synchronize = */ NULL,
  1008. };
  1009. // CPU backend - backend (reg)
  1010. static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
  1011. return "CPU";
  1012. GGML_UNUSED(reg);
  1013. }
  1014. static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
  1015. return 1;
  1016. GGML_UNUSED(reg);
  1017. }
  1018. static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1019. GGML_ASSERT(index == 0);
  1020. static ggml_backend_cpu_device_context ctx;
  1021. static ggml_backend_device ggml_backend_cpu_device = {
  1022. /* .iface = */ ggml_backend_cpu_device_i,
  1023. /* .reg = */ reg,
  1024. /* .context = */ &ctx,
  1025. };
  1026. return &ggml_backend_cpu_device;
  1027. }
  1028. static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1029. if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
  1030. return (void *)ggml_backend_cpu_set_n_threads;
  1031. }
  1032. if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
  1033. return (void *)ggml_backend_cpu_get_extra_bufts;
  1034. }
  1035. return NULL;
  1036. GGML_UNUSED(reg);
  1037. }
  1038. static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
  1039. /* .get_name = */ ggml_backend_cpu_reg_get_name,
  1040. /* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
  1041. /* .get_device = */ ggml_backend_cpu_reg_get_device,
  1042. /* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
  1043. };
  1044. ggml_backend_reg_t ggml_backend_cpu_reg(void) {
  1045. static struct ggml_backend_reg ggml_backend_cpu_reg = {
  1046. /* .iface = */ ggml_backend_cpu_reg_i,
  1047. /* .context = */ NULL,
  1048. };
  1049. return &ggml_backend_cpu_reg;
  1050. }
  1051. // multi-buffer buffer
  1052. struct ggml_backend_multi_buffer_context {
  1053. ggml_backend_buffer_t * buffers;
  1054. size_t n_buffers;
  1055. };
  1056. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1057. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  1058. for (size_t i = 0; i < ctx->n_buffers; i++) {
  1059. ggml_backend_buffer_free(ctx->buffers[i]);
  1060. }
  1061. free(ctx->buffers);
  1062. free(ctx);
  1063. }
  1064. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1065. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  1066. for (size_t i = 0; i < ctx->n_buffers; i++) {
  1067. ggml_backend_buffer_clear(ctx->buffers[i], value);
  1068. }
  1069. }
  1070. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  1071. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  1072. /* .get_base = */ NULL,
  1073. /* .init_tensor = */ NULL,
  1074. /* .memset_tensor = */ NULL,
  1075. /* .set_tensor = */ NULL,
  1076. /* .get_tensor = */ NULL,
  1077. /* .cpy_tensor = */ NULL,
  1078. /* .clear = */ ggml_backend_multi_buffer_clear,
  1079. /* .reset = */ NULL,
  1080. };
  1081. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  1082. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  1083. ctx->n_buffers = n_buffers;
  1084. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  1085. GGML_ASSERT(ctx->buffers != NULL);
  1086. size_t total_size = 0;
  1087. for (size_t i = 0; i < n_buffers; i++) {
  1088. ctx->buffers[i] = buffers[i];
  1089. total_size += ggml_backend_buffer_get_size(buffers[i]);
  1090. }
  1091. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  1092. }
  1093. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  1094. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  1095. }
  1096. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  1097. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  1098. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  1099. for (size_t i = 0; i < ctx->n_buffers; i++) {
  1100. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  1101. }
  1102. }
  1103. // creates a copy of the tensor with the same memory layout
  1104. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  1105. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  1106. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  1107. dup->nb[i] = tensor->nb[i];
  1108. }
  1109. return dup;
  1110. }
  1111. static bool ggml_is_view_op(enum ggml_op op) {
  1112. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  1113. }
  1114. // scheduler
  1115. #ifndef GGML_SCHED_MAX_BACKENDS
  1116. #define GGML_SCHED_MAX_BACKENDS 16
  1117. #endif
  1118. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  1119. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  1120. #endif
  1121. #ifndef GGML_SCHED_MAX_COPIES
  1122. #define GGML_SCHED_MAX_COPIES 4
  1123. #endif
  1124. struct ggml_backend_sched_split {
  1125. int backend_id;
  1126. int i_start;
  1127. int i_end;
  1128. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  1129. int n_inputs;
  1130. // graph view of this split
  1131. struct ggml_cgraph graph;
  1132. };
  1133. struct ggml_backend_sched {
  1134. bool is_reset; // true if the scheduler has been reset since the last graph split
  1135. bool is_alloc;
  1136. int n_backends;
  1137. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  1138. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  1139. ggml_gallocr_t galloc;
  1140. // hash map of the nodes in the graph
  1141. struct ggml_hash_set hash_set;
  1142. int * hv_tensor_backend_ids; // [hash_set.size]
  1143. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  1144. int * node_backend_ids; // [graph_size]
  1145. int * leaf_backend_ids; // [graph_size]
  1146. int * prev_node_backend_ids; // [graph_size]
  1147. int * prev_leaf_backend_ids; // [graph_size]
  1148. // copy of the graph with modified inputs
  1149. struct ggml_cgraph graph;
  1150. // graph splits
  1151. struct ggml_backend_sched_split * splits;
  1152. int n_splits;
  1153. int splits_capacity;
  1154. // pipeline parallelism support
  1155. int n_copies;
  1156. int cur_copy;
  1157. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  1158. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  1159. int n_graph_inputs;
  1160. struct ggml_context * ctx;
  1161. ggml_backend_sched_eval_callback callback_eval;
  1162. void * callback_eval_user_data;
  1163. char * context_buffer;
  1164. size_t context_buffer_size;
  1165. int debug;
  1166. };
  1167. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  1168. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  1169. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  1170. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  1171. // returns the priority of the backend, lower id is higher priority
  1172. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1173. for (int i = 0; i < sched->n_backends; i++) {
  1174. if (sched->backends[i] == backend) {
  1175. return i;
  1176. }
  1177. }
  1178. return -1;
  1179. }
  1180. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  1181. ggml_backend_buffer_t buffer = tensor->buffer;
  1182. if (buffer == NULL) {
  1183. return -1;
  1184. }
  1185. // find highest prio backend that supports the buffer type and the op
  1186. for (int i = 0; i < sched->n_backends; i++) {
  1187. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  1188. ggml_backend_supports_op(sched->backends[i], op)) {
  1189. return i;
  1190. }
  1191. }
  1192. #ifndef NDEBUG
  1193. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  1194. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  1195. #endif
  1196. return -1;
  1197. }
  1198. #if 1
  1199. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  1200. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  1201. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  1202. #define GET_CAUSE(node) causes[hash_id(node)]
  1203. #else
  1204. #define SET_CAUSE(node, ...)
  1205. #define GET_CAUSE(node) ""
  1206. #endif
  1207. // returns the backend that should be used for the node based on the current locations
  1208. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  1209. // TODO: use supports_op to check if the backend supports the op
  1210. // assign pre-allocated nodes to their backend
  1211. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  1212. if (cur_backend_id != -1) {
  1213. SET_CAUSE(tensor, "1.dst");
  1214. return cur_backend_id;
  1215. }
  1216. // view_src
  1217. if (tensor->view_src != NULL) {
  1218. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  1219. if (cur_backend_id != -1) {
  1220. SET_CAUSE(tensor, "1.vsrc");
  1221. return cur_backend_id;
  1222. }
  1223. }
  1224. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  1225. // since the tensor is pre-allocated, it cannot be moved to another backend
  1226. GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
  1227. }
  1228. // graph input
  1229. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  1230. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  1231. SET_CAUSE(tensor, "1.inp");
  1232. return cur_backend_id;
  1233. }
  1234. // operations with weights are preferably run on the same backend as the weights
  1235. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1236. const struct ggml_tensor * src = tensor->src[i];
  1237. if (src == NULL) {
  1238. continue;
  1239. }
  1240. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  1241. // not an ideal solution
  1242. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1243. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  1244. // check if a backend with higher prio wants to offload the op
  1245. if (src_backend_id == sched->n_backends - 1) {
  1246. for (int b = 0; b < src_backend_id; b++) {
  1247. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  1248. SET_CAUSE(tensor, "1.off");
  1249. return b;
  1250. }
  1251. }
  1252. }
  1253. SET_CAUSE(tensor, "1.wgt%d", i);
  1254. return src_backend_id;
  1255. }
  1256. }
  1257. return -1;
  1258. }
  1259. static char * fmt_size(size_t size) {
  1260. static char buffer[128];
  1261. if (size >= 1024*1024) {
  1262. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  1263. } else {
  1264. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  1265. }
  1266. return buffer;
  1267. }
  1268. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1269. int cur_split = 0;
  1270. for (int i = 0; i < graph->n_nodes; i++) {
  1271. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  1272. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  1273. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  1274. sched->splits[cur_split].n_inputs);
  1275. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  1276. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  1277. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  1278. }
  1279. GGML_LOG_DEBUG("\n");
  1280. cur_split++;
  1281. }
  1282. struct ggml_tensor * node = graph->nodes[i];
  1283. if (ggml_is_view_op(node->op)) {
  1284. continue;
  1285. }
  1286. if (sched->debug > 1) {
  1287. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  1288. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  1289. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  1290. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1291. struct ggml_tensor * src = node->src[j];
  1292. if (src == NULL) {
  1293. continue;
  1294. }
  1295. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  1296. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  1297. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  1298. }
  1299. GGML_LOG_DEBUG("\n");
  1300. }
  1301. }
  1302. }
  1303. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  1304. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  1305. ggml_backend_buffer_type_t buft = NULL;
  1306. if (buf) {
  1307. // the tensor is already allocated
  1308. buft = buf->buft;
  1309. } else {
  1310. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  1311. int tensor_backend_id = tensor_backend_id(t);
  1312. if (tensor_backend_id == -1 && t->view_src) {
  1313. tensor_backend_id = tensor_backend_id(t->view_src);
  1314. }
  1315. if (tensor_backend_id != -1) {
  1316. buft = sched->bufts[tensor_backend_id];
  1317. }
  1318. }
  1319. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  1320. }
  1321. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  1322. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  1323. *node_backend_id = cur_backend_id;
  1324. SET_CAUSE(node, "2.sup");
  1325. }
  1326. }
  1327. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1328. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1329. // reset splits
  1330. sched->n_splits = 0;
  1331. sched->n_graph_inputs = 0;
  1332. sched->is_reset = false;
  1333. struct ggml_init_params params = {
  1334. /* .mem_size = */ sched->context_buffer_size,
  1335. /* .mem_buffer = */ sched->context_buffer,
  1336. /* .no_alloc = */ true
  1337. };
  1338. ggml_free(sched->ctx);
  1339. sched->ctx = ggml_init(params);
  1340. if (sched->ctx == NULL) {
  1341. GGML_ABORT("%s: failed to initialize context\n", __func__);
  1342. }
  1343. // pass 1: assign backends to ops with pre-allocated inputs
  1344. for (int i = 0; i < graph->n_leafs; i++) {
  1345. struct ggml_tensor * leaf = graph->leafs[i];
  1346. int * leaf_backend_id = &tensor_backend_id(leaf);
  1347. // do not overwrite user assignments
  1348. if (*leaf_backend_id == -1) {
  1349. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1350. }
  1351. }
  1352. for (int i = 0; i < graph->n_nodes; i++) {
  1353. struct ggml_tensor * node = graph->nodes[i];
  1354. int * node_backend_id = &tensor_backend_id(node);
  1355. // do not overwrite user assignments
  1356. if (*node_backend_id == -1) {
  1357. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1358. #if 0
  1359. // src
  1360. if (node->op == GGML_OP_NONE) {
  1361. continue;
  1362. }
  1363. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1364. struct ggml_tensor * src = node->src[j];
  1365. if (src == NULL) {
  1366. continue;
  1367. }
  1368. int * src_backend_id = &tensor_backend_id(src);
  1369. if (*src_backend_id == -1) {
  1370. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1371. }
  1372. }
  1373. #endif
  1374. }
  1375. }
  1376. // pass 2: expand current backend assignments
  1377. // assign the same backend to adjacent nodes
  1378. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1379. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1380. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  1381. // expand gpu down
  1382. {
  1383. int cur_backend_id = -1;
  1384. for (int i = 0; i < graph->n_nodes; i++) {
  1385. struct ggml_tensor * node = graph->nodes[i];
  1386. if (ggml_is_view_op(node->op)) {
  1387. continue;
  1388. }
  1389. int * node_backend_id = &tensor_backend_id(node);
  1390. if (*node_backend_id != -1) {
  1391. if (*node_backend_id == sched->n_backends - 1) {
  1392. // skip cpu (lowest prio backend)
  1393. cur_backend_id = -1;
  1394. } else {
  1395. cur_backend_id = *node_backend_id;
  1396. }
  1397. } else if (cur_backend_id != -1) {
  1398. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1399. }
  1400. }
  1401. }
  1402. // expand gpu up
  1403. {
  1404. int cur_backend_id = -1;
  1405. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1406. struct ggml_tensor * node = graph->nodes[i];
  1407. if (ggml_is_view_op(node->op)) {
  1408. continue;
  1409. }
  1410. int * node_backend_id = &tensor_backend_id(node);
  1411. if (*node_backend_id != -1) {
  1412. if (*node_backend_id == sched->n_backends - 1) {
  1413. // skip cpu (lowest prio backend)
  1414. cur_backend_id = -1;
  1415. } else {
  1416. cur_backend_id = *node_backend_id;
  1417. }
  1418. } else if (cur_backend_id != -1) {
  1419. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1420. }
  1421. }
  1422. }
  1423. // expand rest down
  1424. {
  1425. int cur_backend_id = -1;
  1426. for (int i = 0; i < graph->n_nodes; i++) {
  1427. struct ggml_tensor * node = graph->nodes[i];
  1428. if (ggml_is_view_op(node->op)) {
  1429. continue;
  1430. }
  1431. int * node_backend_id = &tensor_backend_id(node);
  1432. if (*node_backend_id != -1) {
  1433. cur_backend_id = *node_backend_id;
  1434. } else if (cur_backend_id != -1) {
  1435. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1436. }
  1437. }
  1438. }
  1439. // expand rest up
  1440. {
  1441. int cur_backend_id = -1;
  1442. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1443. struct ggml_tensor * node = graph->nodes[i];
  1444. if (ggml_is_view_op(node->op)) {
  1445. continue;
  1446. }
  1447. int * node_backend_id = &tensor_backend_id(node);
  1448. if (*node_backend_id != -1) {
  1449. cur_backend_id = *node_backend_id;
  1450. } else if (cur_backend_id != -1) {
  1451. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1452. }
  1453. }
  1454. }
  1455. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  1456. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  1457. // however, we also need to verify that the sources are in compatible buffer types
  1458. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  1459. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  1460. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  1461. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  1462. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  1463. for (int i = 0; i < graph->n_nodes; i++) {
  1464. struct ggml_tensor * node = graph->nodes[i];
  1465. if (ggml_is_view_op(node->op)) {
  1466. continue;
  1467. }
  1468. int * node_backend_id = &tensor_backend_id(node);
  1469. if (*node_backend_id == -1) {
  1470. // unassigned node: find the backend with the most supported inputs
  1471. int n_supported_best = -1;
  1472. for (int b = 0; b < sched->n_backends; b++) {
  1473. if (ggml_backend_supports_op(sched->backends[b], node)) {
  1474. int n_supported = 0;
  1475. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1476. struct ggml_tensor * src = node->src[j];
  1477. if (src == NULL) {
  1478. continue;
  1479. }
  1480. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1481. n_supported++;
  1482. }
  1483. }
  1484. if (n_supported > n_supported_best) {
  1485. n_supported_best = n_supported;
  1486. *node_backend_id = b;
  1487. SET_CAUSE(node, "3.best");
  1488. }
  1489. }
  1490. }
  1491. } else {
  1492. // assigned node: upgrade to higher prio backend if possible
  1493. for (int b = 0; b < *node_backend_id; b++) {
  1494. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1495. bool supported = true;
  1496. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1497. struct ggml_tensor * src = node->src[j];
  1498. if (src == NULL) {
  1499. continue;
  1500. }
  1501. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1502. supported = false;
  1503. break;
  1504. }
  1505. }
  1506. if (supported) {
  1507. *node_backend_id = b;
  1508. SET_CAUSE(node, "3.upg");
  1509. break;
  1510. }
  1511. }
  1512. }
  1513. }
  1514. }
  1515. // pass 4: assign backends to remaining src from dst and view_src
  1516. for (int i = 0; i < graph->n_nodes; i++) {
  1517. struct ggml_tensor * node = graph->nodes[i];
  1518. int * cur_backend_id = &tensor_backend_id(node);
  1519. if (node->view_src != NULL && *cur_backend_id == -1) {
  1520. *cur_backend_id = tensor_backend_id(node->view_src);
  1521. SET_CAUSE(node, "4.vsrc");
  1522. }
  1523. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1524. struct ggml_tensor * src = node->src[j];
  1525. if (src == NULL) {
  1526. continue;
  1527. }
  1528. int * src_backend_id = &tensor_backend_id(src);
  1529. if (*src_backend_id == -1) {
  1530. if (src->view_src != NULL) {
  1531. // views are always on the same backend as the source
  1532. *src_backend_id = tensor_backend_id(src->view_src);
  1533. SET_CAUSE(src, "4.vsrc");
  1534. } else {
  1535. *src_backend_id = *cur_backend_id;
  1536. SET_CAUSE(src, "4.cur");
  1537. }
  1538. }
  1539. }
  1540. }
  1541. // pass 5: split graph, find tensors that need to be copied
  1542. {
  1543. int i_split = 0;
  1544. struct ggml_backend_sched_split * split = &sched->splits[0];
  1545. // find the backend of the first split, skipping view ops
  1546. int i = 0;
  1547. for (; i < graph->n_nodes; i++) {
  1548. struct ggml_tensor * node = graph->nodes[i];
  1549. if (!ggml_is_view_op(node->op)) {
  1550. split->backend_id = tensor_backend_id(node);
  1551. break;
  1552. }
  1553. }
  1554. split->i_start = 0;
  1555. split->n_inputs = 0;
  1556. int cur_backend_id = split->backend_id;
  1557. for (; i < graph->n_nodes; i++) {
  1558. struct ggml_tensor * node = graph->nodes[i];
  1559. if (ggml_is_view_op(node->op)) {
  1560. continue;
  1561. }
  1562. const int node_backend_id = tensor_backend_id(node);
  1563. assert(node_backend_id != -1); // all nodes should be assigned by now
  1564. // check if we should start a new split based on the sources of the current node
  1565. bool need_new_split = false;
  1566. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1567. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1568. struct ggml_tensor * src = node->src[j];
  1569. if (src == NULL) {
  1570. continue;
  1571. }
  1572. // check if a weight is on a different and incompatible backend
  1573. // by starting a new split, the memory of the previously offloaded weights can be reused
  1574. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1575. int src_backend_id = tensor_backend_id(src);
  1576. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1577. need_new_split = true;
  1578. break;
  1579. }
  1580. }
  1581. // check if the split has too many inputs
  1582. // FIXME: count the number of inputs instead of only checking when full
  1583. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1584. const size_t id = hash_id(src);
  1585. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1586. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1587. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1588. need_new_split = true;
  1589. break;
  1590. }
  1591. }
  1592. }
  1593. }
  1594. if (node_backend_id != cur_backend_id || need_new_split) {
  1595. split->i_end = i;
  1596. i_split++;
  1597. if (i_split >= sched->splits_capacity) {
  1598. sched->splits_capacity *= 2;
  1599. sched->splits = (ggml_backend_sched_split *)
  1600. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1601. GGML_ASSERT(sched->splits != NULL);
  1602. }
  1603. split = &sched->splits[i_split];
  1604. split->backend_id = node_backend_id;
  1605. split->i_start = i;
  1606. split->n_inputs = 0;
  1607. cur_backend_id = node_backend_id;
  1608. }
  1609. // find inputs that are not on the same backend
  1610. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1611. struct ggml_tensor * src = node->src[j];
  1612. if (src == NULL) {
  1613. continue;
  1614. }
  1615. size_t src_id = hash_id(src);
  1616. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1617. assert(src_backend_id != -1); // all inputs should be assigned by now
  1618. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1619. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1620. ggml_backend_t backend = sched->backends[src_backend_id];
  1621. for (int c = 0; c < sched->n_copies; c++) {
  1622. struct ggml_tensor * tensor_copy;
  1623. if (c == sched->cur_copy) {
  1624. tensor_copy = src; // use the original tensor as the current copy
  1625. } else {
  1626. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1627. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1628. }
  1629. if (sched->n_copies > 1) {
  1630. ggml_set_input(tensor_copy);
  1631. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1632. }
  1633. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1634. SET_CAUSE(tensor_copy, "4.cpy");
  1635. }
  1636. int n_graph_inputs = sched->n_graph_inputs++;
  1637. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1638. sched->graph_inputs[n_graph_inputs] = src;
  1639. }
  1640. }
  1641. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1642. // create a copy of the input in the split's backend
  1643. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1644. ggml_backend_t backend = sched->backends[cur_backend_id];
  1645. for (int c = 0; c < sched->n_copies; c++) {
  1646. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1647. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1648. if (sched->n_copies > 1) {
  1649. ggml_set_input(tensor_copy);
  1650. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1651. }
  1652. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1653. SET_CAUSE(tensor_copy, "4.cpy");
  1654. }
  1655. int n_inputs = split->n_inputs++;
  1656. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1657. split->inputs[n_inputs] = src;
  1658. }
  1659. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1660. }
  1661. }
  1662. }
  1663. split->i_end = graph->n_nodes;
  1664. sched->n_splits = i_split + 1;
  1665. }
  1666. if (sched->debug) {
  1667. ggml_backend_sched_print_assignments(sched, graph);
  1668. }
  1669. // swap node_backend_ids and leaf _backend_ids with prevs
  1670. {
  1671. int * tmp = sched->node_backend_ids;
  1672. sched->node_backend_ids = sched->prev_node_backend_ids;
  1673. sched->prev_node_backend_ids = tmp;
  1674. tmp = sched->leaf_backend_ids;
  1675. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1676. sched->prev_leaf_backend_ids = tmp;
  1677. }
  1678. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1679. if (sched->graph.size < graph_size) {
  1680. sched->graph.size = graph_size;
  1681. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1682. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1683. GGML_ASSERT(sched->graph.nodes != NULL);
  1684. GGML_ASSERT(sched->graph.leafs != NULL);
  1685. }
  1686. sched->graph.n_nodes = 0;
  1687. sched->graph.n_leafs = 0;
  1688. struct ggml_cgraph * graph_copy = &sched->graph;
  1689. for (int i = 0; i < sched->n_splits; i++) {
  1690. struct ggml_backend_sched_split * split = &sched->splits[i];
  1691. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1692. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1693. for (int j = 0; j < split->n_inputs; j++) {
  1694. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1695. struct ggml_tensor * input = split->inputs[j];
  1696. const size_t input_id = hash_id(input);
  1697. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1698. // add a dependency to the input source so that it is not freed before the copy is done
  1699. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1700. input_dep->src[0] = input;
  1701. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1702. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1703. // add a dependency to the input copy so that it is allocated at the start of the split
  1704. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1705. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1706. }
  1707. for (int j = split->i_start; j < split->i_end; j++) {
  1708. assert(graph_copy->size > graph_copy->n_nodes);
  1709. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1710. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1711. }
  1712. }
  1713. if (sched->n_copies > 1) {
  1714. // add input copies as leafs so that they are allocated first
  1715. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1716. struct ggml_tensor * input = sched->graph_inputs[i];
  1717. size_t id = hash_id(input);
  1718. int backend_id = tensor_backend_id(input);
  1719. for (int c = 0; c < sched->n_copies; c++) {
  1720. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1721. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1722. assert(graph_copy->size > graph_copy->n_leafs);
  1723. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1724. }
  1725. }
  1726. for (int i = 0; i < sched->n_splits; i++) {
  1727. struct ggml_backend_sched_split * split = &sched->splits[i];
  1728. int backend_id = split->backend_id;
  1729. for (int j = 0; j < split->n_inputs; j++) {
  1730. struct ggml_tensor * input = split->inputs[j];
  1731. size_t id = hash_id(input);
  1732. for (int c = 0; c < sched->n_copies; c++) {
  1733. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1734. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1735. assert(graph_copy->size > graph_copy->n_leafs);
  1736. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1737. }
  1738. }
  1739. }
  1740. }
  1741. // add leafs from the original graph
  1742. for (int i = 0; i < graph->n_leafs; i++) {
  1743. struct ggml_tensor * leaf = graph->leafs[i];
  1744. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1745. assert(graph_copy->size > graph_copy->n_leafs);
  1746. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1747. }
  1748. }
  1749. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1750. bool backend_ids_changed = false;
  1751. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1752. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1753. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1754. backend_ids_changed = true;
  1755. break;
  1756. }
  1757. }
  1758. if (!backend_ids_changed) {
  1759. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1760. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1761. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1762. backend_ids_changed = true;
  1763. break;
  1764. }
  1765. }
  1766. }
  1767. // allocate graph
  1768. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1769. // the re-allocation may cause the split inputs to be moved to a different address
  1770. ggml_backend_sched_synchronize(sched);
  1771. #ifndef NDEBUG
  1772. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1773. #endif
  1774. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1775. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1776. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1777. return false;
  1778. }
  1779. }
  1780. return true;
  1781. }
  1782. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1783. struct ggml_backend_sched_split * splits = sched->splits;
  1784. for (int i = 0; i < sched->n_splits; i++) {
  1785. struct ggml_backend_sched_split * split = &splits[i];
  1786. int split_backend_id = split->backend_id;
  1787. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1788. // copy the input tensors to the split backend
  1789. for (int j = 0; j < split->n_inputs; j++) {
  1790. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1791. struct ggml_tensor * input = split->inputs[j];
  1792. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1793. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1794. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1795. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1796. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1797. } else {
  1798. ggml_backend_synchronize(split_backend);
  1799. }
  1800. ggml_backend_tensor_copy(input, input_cpy);
  1801. } else {
  1802. // wait for the split backend to finish using the input before overwriting it
  1803. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1804. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1805. } else {
  1806. ggml_backend_synchronize(split_backend);
  1807. }
  1808. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1809. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1810. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1811. ggml_backend_synchronize(input_backend);
  1812. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1813. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1814. } else {
  1815. ggml_backend_synchronize(split_backend);
  1816. }
  1817. ggml_backend_tensor_copy(input, input_cpy);
  1818. }
  1819. }
  1820. }
  1821. if (!sched->callback_eval) {
  1822. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1823. if (ec != GGML_STATUS_SUCCESS) {
  1824. return ec;
  1825. }
  1826. } else {
  1827. // similar to ggml_backend_compare_graph_backend
  1828. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1829. struct ggml_tensor * t = split->graph.nodes[j0];
  1830. // check if the user needs data from this node
  1831. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1832. int j1 = j0;
  1833. // determine the range [j0, j1] of nodes that can be computed together
  1834. while (!need && j1 < split->graph.n_nodes - 1) {
  1835. t = split->graph.nodes[++j1];
  1836. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1837. }
  1838. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1839. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1840. if (ec != GGML_STATUS_SUCCESS) {
  1841. return ec;
  1842. }
  1843. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1844. ggml_backend_synchronize(split_backend);
  1845. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1846. break;
  1847. }
  1848. j0 = j1;
  1849. }
  1850. }
  1851. // record the event of this copy
  1852. if (split->n_inputs > 0) {
  1853. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1854. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1855. }
  1856. }
  1857. }
  1858. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1859. return GGML_STATUS_SUCCESS;
  1860. }
  1861. ggml_backend_sched_t ggml_backend_sched_new(
  1862. ggml_backend_t * backends,
  1863. ggml_backend_buffer_type_t * bufts,
  1864. int n_backends,
  1865. size_t graph_size,
  1866. bool parallel) {
  1867. GGML_ASSERT(n_backends > 0);
  1868. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1869. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1870. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1871. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1872. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1873. sched->n_backends = n_backends;
  1874. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1875. // initialize hash table
  1876. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1877. sched->hash_set = ggml_hash_set_new(graph_size);
  1878. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1879. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1880. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1881. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1882. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1883. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1884. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1885. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1886. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1887. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1888. const int initial_splits_capacity = 16;
  1889. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1890. sched->splits_capacity = initial_splits_capacity;
  1891. for (int b = 0; b < n_backends; b++) {
  1892. sched->backends[b] = backends[b];
  1893. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1894. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1895. if (sched->n_copies > 1) {
  1896. for (int c = 0; c < sched->n_copies; c++) {
  1897. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1898. }
  1899. }
  1900. }
  1901. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1902. ggml_backend_sched_reset(sched);
  1903. return sched;
  1904. }
  1905. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1906. if (sched == NULL) {
  1907. return;
  1908. }
  1909. for (int b = 0; b < sched->n_backends; b++) {
  1910. for (int c = 0; c < sched->n_copies; c++) {
  1911. ggml_backend_event_free(sched->events[b][c]);
  1912. }
  1913. }
  1914. ggml_gallocr_free(sched->galloc);
  1915. ggml_free(sched->ctx);
  1916. ggml_hash_set_free(&sched->hash_set);
  1917. free(sched->splits);
  1918. free(sched->hv_tensor_backend_ids);
  1919. free(sched->hv_tensor_copies);
  1920. free(sched->node_backend_ids);
  1921. free(sched->leaf_backend_ids);
  1922. free(sched->prev_node_backend_ids);
  1923. free(sched->prev_leaf_backend_ids);
  1924. free(sched->context_buffer);
  1925. free(sched->graph.nodes);
  1926. free(sched->graph.leafs);
  1927. free(sched);
  1928. }
  1929. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1930. // reset state for the next run
  1931. if (!sched->is_reset) {
  1932. ggml_hash_set_reset(&sched->hash_set);
  1933. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1934. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1935. sched->is_reset = true;
  1936. }
  1937. sched->is_alloc = false;
  1938. }
  1939. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1940. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1941. ggml_backend_sched_split_graph(sched, measure_graph);
  1942. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1943. return false;
  1944. }
  1945. ggml_backend_sched_reset(sched);
  1946. ggml_backend_sched_synchronize(sched);
  1947. return true;
  1948. }
  1949. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1950. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1951. ggml_backend_sched_split_graph(sched, graph);
  1952. if (!ggml_backend_sched_alloc_splits(sched)) {
  1953. return false;
  1954. }
  1955. sched->is_alloc = true;
  1956. return true;
  1957. }
  1958. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1959. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1960. ggml_backend_sched_synchronize(sched);
  1961. return err;
  1962. }
  1963. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1964. if (!sched->is_reset && !sched->is_alloc) {
  1965. ggml_backend_sched_reset(sched);
  1966. }
  1967. if (!sched->is_alloc) {
  1968. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1969. return GGML_STATUS_ALLOC_FAILED;
  1970. }
  1971. }
  1972. return ggml_backend_sched_compute_splits(sched);
  1973. }
  1974. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1975. for (int i = 0; i < sched->n_backends; i++) {
  1976. ggml_backend_synchronize(sched->backends[i]);
  1977. }
  1978. }
  1979. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1980. sched->callback_eval = callback;
  1981. sched->callback_eval_user_data = user_data;
  1982. }
  1983. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1984. return sched->n_splits;
  1985. }
  1986. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1987. return sched->n_copies;
  1988. }
  1989. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1990. return sched->n_backends;
  1991. }
  1992. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1993. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1994. return sched->backends[i];
  1995. }
  1996. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1997. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1998. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1999. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  2000. }
  2001. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  2002. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  2003. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  2004. tensor_backend_id(node) = backend_index;
  2005. SET_CAUSE(node, "usr");
  2006. sched->is_reset = false;
  2007. }
  2008. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  2009. int backend_index = tensor_backend_id(node);
  2010. if (backend_index == -1) {
  2011. return NULL;
  2012. }
  2013. return sched->backends[backend_index];
  2014. }
  2015. // utils
  2016. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  2017. GGML_ASSERT(tensor->buffer == NULL);
  2018. GGML_ASSERT(tensor->view_src != NULL);
  2019. GGML_ASSERT(tensor->view_src->buffer != NULL);
  2020. GGML_ASSERT(tensor->view_src->data != NULL);
  2021. tensor->buffer = tensor->view_src->buffer;
  2022. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  2023. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  2024. }
  2025. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  2026. GGML_ASSERT(tensor->buffer == NULL);
  2027. GGML_ASSERT(tensor->data == NULL);
  2028. GGML_ASSERT(tensor->view_src == NULL);
  2029. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  2030. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  2031. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  2032. tensor->buffer = buffer;
  2033. tensor->data = addr;
  2034. ggml_backend_buffer_init_tensor(buffer, tensor);
  2035. }
  2036. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  2037. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  2038. GGML_ASSERT(src != NULL);
  2039. GGML_ASSERT(src->data && "graph must be allocated");
  2040. size_t id = ggml_hash_insert(&hash_set, src);
  2041. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  2042. return node_copies[ggml_hash_find(&hash_set, src)];
  2043. }
  2044. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  2045. if (src->view_src != NULL) {
  2046. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  2047. dst->view_offs = src->view_offs;
  2048. }
  2049. dst->op = src->op;
  2050. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  2051. ggml_set_name(dst, src->name);
  2052. // copy src
  2053. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2054. struct ggml_tensor * s = src->src[i];
  2055. if (s == NULL) {
  2056. continue;
  2057. }
  2058. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  2059. }
  2060. node_copies[id] = dst;
  2061. return dst;
  2062. }
  2063. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  2064. size_t id = ggml_hash_find(hash_set, src);
  2065. if (node_init[id]) {
  2066. return;
  2067. }
  2068. node_init[id] = true;
  2069. struct ggml_tensor * dst = node_copies[id];
  2070. if (dst->view_src != NULL) {
  2071. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  2072. ggml_backend_view_init(dst);
  2073. }
  2074. else {
  2075. ggml_backend_tensor_copy(src, dst);
  2076. }
  2077. // init src
  2078. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2079. struct ggml_tensor * s = src->src[i];
  2080. if (s == NULL) {
  2081. continue;
  2082. }
  2083. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  2084. }
  2085. }
  2086. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  2087. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  2088. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  2089. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  2090. struct ggml_init_params params = {
  2091. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  2092. /* .mem_buffer = */ NULL,
  2093. /* .no_alloc = */ true
  2094. };
  2095. struct ggml_context * ctx_allocated = ggml_init(params);
  2096. struct ggml_context * ctx_unallocated = ggml_init(params);
  2097. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  2098. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  2099. ggml_hash_set_free(&hash_set);
  2100. free(node_copies);
  2101. free(node_init);
  2102. ggml_free(ctx_allocated);
  2103. ggml_free(ctx_unallocated);
  2104. return {
  2105. /* .buffer = */ NULL,
  2106. /* .ctx_allocated = */ NULL,
  2107. /* .ctx_unallocated = */ NULL,
  2108. /* .graph = */ NULL,
  2109. };
  2110. }
  2111. // dup nodes
  2112. for (int i = 0; i < graph->n_nodes; i++) {
  2113. struct ggml_tensor * node = graph->nodes[i];
  2114. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  2115. }
  2116. // allocate nodes
  2117. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  2118. if (buffer == NULL) {
  2119. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  2120. ggml_hash_set_free(&hash_set);
  2121. free(node_copies);
  2122. free(node_init);
  2123. ggml_free(ctx_allocated);
  2124. ggml_free(ctx_unallocated);
  2125. return {
  2126. /* .buffer = */ NULL,
  2127. /* .ctx_allocated = */ NULL,
  2128. /* .ctx_unallocated = */ NULL,
  2129. /* .graph = */ NULL,
  2130. };
  2131. }
  2132. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  2133. // copy data and init views
  2134. for (int i = 0; i < graph->n_nodes; i++) {
  2135. struct ggml_tensor * node = graph->nodes[i];
  2136. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  2137. }
  2138. // build graph copy
  2139. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  2140. for (int i = 0; i < graph->n_nodes; i++) {
  2141. struct ggml_tensor * node = graph->nodes[i];
  2142. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  2143. graph_copy->nodes[i] = node_copy;
  2144. }
  2145. graph_copy->n_nodes = graph->n_nodes;
  2146. ggml_hash_set_free(&hash_set);
  2147. free(node_copies);
  2148. free(node_init);
  2149. return {
  2150. /* .buffer = */ buffer,
  2151. /* .ctx_allocated = */ ctx_allocated,
  2152. /* .ctx_unallocated = */ ctx_unallocated,
  2153. /* .graph = */ graph_copy,
  2154. };
  2155. }
  2156. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  2157. ggml_backend_buffer_free(copy.buffer);
  2158. ggml_free(copy.ctx_allocated);
  2159. ggml_free(copy.ctx_unallocated);
  2160. }
  2161. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  2162. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  2163. if (copy.buffer == NULL) {
  2164. return false;
  2165. }
  2166. struct ggml_cgraph * g1 = graph;
  2167. struct ggml_cgraph * g2 = copy.graph;
  2168. assert(g1->n_nodes == g2->n_nodes);
  2169. for (int i = 0; i < g1->n_nodes; i++) {
  2170. //printf("eval %d/%d\n", i, g1->n_nodes);
  2171. struct ggml_tensor * t1 = g1->nodes[i];
  2172. struct ggml_tensor * t2 = g2->nodes[i];
  2173. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  2174. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  2175. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  2176. ggml_backend_graph_compute(backend1, &g1v);
  2177. ggml_backend_graph_compute(backend2, &g2v);
  2178. if (ggml_is_view_op(t1->op)) {
  2179. continue;
  2180. }
  2181. // compare results, calculate rms etc
  2182. if (!callback(i, t1, t2, user_data)) {
  2183. break;
  2184. }
  2185. }
  2186. ggml_backend_graph_copy_free(copy);
  2187. return true;
  2188. }