tensor_mapping.py 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm", # apertus
  146. "model.layers.{bid}.pre_attention_layernorm", # kormo
  147. ),
  148. # Attention norm 2
  149. MODEL_TENSOR.ATTN_NORM_2: (
  150. "transformer.h.{bid}.ln_attn", # falcon40b
  151. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  152. "rwkv.blocks.{bid}.ln2", # rwkv6
  153. "model.layers.{bid}.ln2", # rwkv7
  154. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  155. ),
  156. # Attention query-key-value
  157. MODEL_TENSOR.ATTN_QKV: (
  158. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  159. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  160. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  161. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  162. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  163. "h.{bid}.self_attention.query_key_value", # bloom
  164. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  165. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  166. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  167. "h.{bid}.attn.c_attn", # gpt2
  168. "transformer.h.{bid}.mixer.Wqkv", # phi2
  169. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  170. "encoder.layers.{bid}.mixer.Wqkv", # jina
  171. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  172. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  173. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  174. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  175. "transformer_encoder.{bid}.qkv", # neobert
  176. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  177. ),
  178. # Attention query
  179. MODEL_TENSOR.ATTN_Q: (
  180. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  181. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  182. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  183. "layers.{bid}.attention.wq", # llama-pth
  184. "encoder.layer.{bid}.attention.self.query", # bert
  185. "transformer.layer.{bid}.attention.q_lin", # distillbert
  186. "transformer.h.{bid}.attn.q_proj", # gpt-j
  187. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  188. "model.layers.{bid}.attention.wq", # internlm2
  189. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  190. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  191. "model.layers.{bid}.self_attn.q_proj", # llama4
  192. "model.transformer.blocks.{bid}.q_proj", # llada
  193. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  194. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  195. ),
  196. # Attention key
  197. MODEL_TENSOR.ATTN_K: (
  198. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  199. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  200. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  201. "layers.{bid}.attention.wk", # llama-pth
  202. "encoder.layer.{bid}.attention.self.key", # bert
  203. "transformer.layer.{bid}.attention.k_lin", # distillbert
  204. "transformer.h.{bid}.attn.k_proj", # gpt-j
  205. "transformer.h.{bid}.attn.k", # refact
  206. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  207. "model.layers.{bid}.attention.wk", # internlm2
  208. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  209. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  210. "model.layers.{bid}.self_attn.k_proj", # llama4
  211. "model.transformer.blocks.{bid}.k_proj", # llada
  212. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  213. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  214. ),
  215. # Attention value
  216. MODEL_TENSOR.ATTN_V: (
  217. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  218. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  219. "layers.{bid}.attention.wv", # llama-pth
  220. "encoder.layer.{bid}.attention.self.value", # bert
  221. "transformer.layer.{bid}.attention.v_lin", # distillbert
  222. "transformer.h.{bid}.attn.v_proj", # gpt-j
  223. "transformer.h.{bid}.attn.v", # refact
  224. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  225. "model.layers.{bid}.attention.wv", # internlm2
  226. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  227. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  228. "model.layers.{bid}.self_attn.v_proj", # llama4
  229. "model.transformer.blocks.{bid}.v_proj", # llada
  230. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  231. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  232. ),
  233. # Attention output
  234. MODEL_TENSOR.ATTN_OUT: (
  235. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  236. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  237. "transformer.blocks.{bid}.attn.out_proj", # mpt
  238. "transformer.h.{bid}.self_attention.dense", # falcon
  239. "h.{bid}.self_attention.dense", # bloom
  240. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  241. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  242. "model.layers.{bid}.self_attn.out_proj", # lfm2
  243. "model.layers.{bid}.self_attn.linear_attn", # deci
  244. "layers.{bid}.attention.wo", # llama-pth
  245. "encoder.layer.{bid}.attention.output.dense", # bert
  246. "transformer.layer.{bid}.attention.out_lin", # distillbert
  247. "transformer.h.{bid}.attn.out_proj", # gpt-j
  248. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  249. "model.layers.{bid}.self_attn.dense", # persimmon
  250. "model.layers.{bid}.attention.dense", # bailingmoe2
  251. "h.{bid}.attn.c_proj", # gpt2
  252. "transformer.h.{bid}.mixer.out_proj", # phi2
  253. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  254. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  255. "model.layers.{bid}.attention.wo", # internlm2
  256. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  257. "encoder.layers.{bid}.mixer.out_proj", # jina
  258. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  259. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  260. "encoder.layers.{bid}.self_attention.dense", # chatglm
  261. "transformer.layers.{bid}.attn.out_proj", # openelm
  262. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  263. "model.layers.{bid}.self_attn.o_proj", # llama4
  264. "transformer_encoder.{bid}.wo", # neobert
  265. "model.transformer.blocks.{bid}.attn_out", # llada
  266. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  267. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  268. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  269. ),
  270. # Attention output norm
  271. MODEL_TENSOR.ATTN_OUT_NORM: (
  272. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  273. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  274. "encoder.layers.{bid}.norm1", # nomic-bert
  275. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  276. "model.layers.{bid}.post_attn_norm", # grok-2
  277. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  278. ),
  279. MODEL_TENSOR.ATTN_POST_NORM: (
  280. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  281. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  282. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  283. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  284. ),
  285. # Rotary embeddings
  286. MODEL_TENSOR.ATTN_ROT_EMBD: (
  287. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  288. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  289. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  290. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  291. ),
  292. MODEL_TENSOR.ATTN_SINKS: (
  293. "model.layers.{bid}.self_attn.sinks", # openai-moe
  294. ),
  295. MODEL_TENSOR.ATTN_GATE: (
  296. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  297. ),
  298. # Feed-forward norm
  299. MODEL_TENSOR.FFN_NORM: (
  300. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  301. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  302. "h.{bid}.post_attention_layernorm", # bloom
  303. "transformer.blocks.{bid}.norm_2", # mpt
  304. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  305. "layers.{bid}.ffn_norm", # llama-pth
  306. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  307. "model.layers.{bid}.ln2", # yi
  308. "h.{bid}.ln_2", # gpt2
  309. "model.layers.{bid}.ffn_norm", # internlm2
  310. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  311. "model.layers.{bid}.pre_moe_norm", # grok-2
  312. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  313. "transformer.layers.{bid}.ffn_norm", # openelm
  314. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  315. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  316. "model.layers.{bid}.post_attention_layernorm", # llama4
  317. "transformer_encoder.{bid}.ffn_norm", # neobert
  318. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  319. "model.transformer.blocks.{bid}.ff_norm", # llada
  320. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  321. "model.layers.{bid}.feedforward_layernorm", # apertus
  322. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  323. ),
  324. # Pre feed-forward norm
  325. MODEL_TENSOR.FFN_PRE_NORM: (
  326. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  327. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  328. "model.layers.{bid}.pre_ff_layernorm.weight",
  329. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  330. ),
  331. # Post feed-forward norm
  332. MODEL_TENSOR.FFN_POST_NORM: (
  333. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  334. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  335. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  336. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  337. "model.layers.{bid}.feed_forward.up_proj",
  338. "model.layers.{bid}.post_moe_norm", # grok-2
  339. ),
  340. MODEL_TENSOR.FFN_GATE_INP: (
  341. "layers.{bid}.feed_forward.gate", # mixtral
  342. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  343. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  344. "transformer.decoder_layer.{bid}.router", # Grok
  345. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  346. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  347. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  348. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  349. "model.layers.{bid}.mlp.router", # openai-moe
  350. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  351. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  352. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  353. "model.layers.{bid}.mlp.router.gate", # afmoe
  354. "layers.{bid}.gate", # mistral-large
  355. "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
  356. ),
  357. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  358. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  359. ),
  360. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  361. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  362. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  363. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  364. "model.layers.{bid}.mlp.expert_bias", # afmoe
  365. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  366. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  367. "backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
  368. ),
  369. # Feed-forward up
  370. MODEL_TENSOR.FFN_UP: (
  371. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  372. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  373. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  374. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  375. "h.{bid}.mlp.dense_h_to_4h", # bloom
  376. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  377. "layers.{bid}.mlp.up_proj", # embeddinggemma
  378. "layers.{bid}.feed_forward.w3", # llama-pth
  379. "encoder.layer.{bid}.intermediate.dense", # bert
  380. "transformer.layer.{bid}.ffn.lin1", # distillbert
  381. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  382. "transformer.h.{bid}.mlp.linear_3", # refact
  383. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  384. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  385. "transformer.h.{bid}.mlp.w1", # qwen
  386. "h.{bid}.mlp.c_fc", # gpt2
  387. "transformer.h.{bid}.mlp.fc1", # phi2
  388. "model.layers.{bid}.mlp.fc1", # phi2
  389. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  390. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  391. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  392. "model.layers.{bid}.feed_forward.w3", # internlm2
  393. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  394. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  395. "model.layers.{bid}.mlp.c_fc", # starcoder2
  396. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  397. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  398. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  399. "model.layers.{bid}.residual_mlp.w3", # arctic
  400. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  401. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  402. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  403. "transformer_encoder.{bid}.ffn.w12", # neobert
  404. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  405. "model.transformer.blocks.{bid}.up_proj", # llada
  406. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  407. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  408. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  409. ),
  410. MODEL_TENSOR.FFN_UP_EXP: (
  411. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  412. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  413. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  414. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
  415. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  416. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  417. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  418. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  419. ),
  420. MODEL_TENSOR.FFN_UP_SHEXP: (
  421. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  422. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  423. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  424. "model.layers.{bid}.feed_forward.down_proj",
  425. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  426. "layers.{bid}.shared_experts.w3", # mistral-large
  427. "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
  428. ),
  429. MODEL_TENSOR.FFN_UP_CHEXP: (
  430. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  431. ),
  432. # AWQ-activation gate
  433. MODEL_TENSOR.FFN_ACT: (
  434. "transformer.blocks.{bid}.ffn.act", # mpt
  435. ),
  436. # Feed-forward gate
  437. MODEL_TENSOR.FFN_GATE: (
  438. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  439. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  440. "layers.{bid}.feed_forward.w1", # llama-pth
  441. "transformer.h.{bid}.mlp.w2", # qwen
  442. "transformer.h.{bid}.mlp.c_fc2", # jais
  443. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  444. "model.layers.{bid}.feed_forward.w1", # internlm2
  445. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  446. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  447. "transformer.h.{bid}.mlp.linear_1", # refact
  448. "model.layers.{bid}.residual_mlp.w1", # arctic
  449. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  450. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  451. "model.transformer.blocks.{bid}.ff_proj", # llada
  452. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  453. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  454. ),
  455. MODEL_TENSOR.FFN_GATE_EXP: (
  456. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  457. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  458. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  459. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  460. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  461. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  462. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  463. ),
  464. MODEL_TENSOR.FFN_GATE_SHEXP: (
  465. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  466. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  467. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  468. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  469. "layers.{bid}.shared_experts.w1", # mistral-large
  470. ),
  471. MODEL_TENSOR.FFN_GATE_CHEXP: (
  472. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  473. ),
  474. # Feed-forward down
  475. MODEL_TENSOR.FFN_DOWN: (
  476. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  477. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  478. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  479. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  480. "h.{bid}.mlp.dense_4h_to_h", # bloom
  481. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  482. "layers.{bid}.mlp.down_proj", # embeddinggemma
  483. "layers.{bid}.feed_forward.w2", # llama-pth
  484. "encoder.layer.{bid}.output.dense", # bert
  485. "transformer.layer.{bid}.ffn.lin2", # distillbert
  486. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  487. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  488. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  489. "h.{bid}.mlp.c_proj", # gpt2
  490. "transformer.h.{bid}.mlp.fc2", # phi2
  491. "model.layers.{bid}.mlp.fc2", # phi2
  492. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  493. "model.layers.{bid}.feed_forward.w2", # internlm2
  494. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  495. "model.layers.{bid}.mlp.c_proj", # starcoder2
  496. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  497. "transformer.layers.{bid}.ffn.proj_2", # openelm
  498. "model.layers.{bid}.residual_mlp.w2", # arctic
  499. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  500. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  501. "model.layers.h.{bid}.mlp.c_proj", # exaone
  502. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  503. "transformer_encoder.{bid}.ffn.w3", # neobert
  504. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  505. "model.transformer.blocks.{bid}.ff_out", # llada
  506. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  507. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  508. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  509. ),
  510. MODEL_TENSOR.FFN_DOWN_EXP: (
  511. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  512. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  513. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  514. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
  515. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  516. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  517. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  518. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  519. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  520. ),
  521. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  522. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  523. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  524. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  525. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  526. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  527. "layers.{bid}.shared_experts.w2", # mistral-large
  528. "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
  529. ),
  530. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  531. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  532. ),
  533. MODEL_TENSOR.ATTN_Q_NORM: (
  534. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  535. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  536. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  537. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  538. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  539. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  540. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  541. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  542. "transformer.layers.{bid}.attn.q_norm", # openelm
  543. "model.layers.layers.{bid}.mixer.q", # plamo2
  544. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  545. "model.layers.{bid}.attention.query_layernorm", # apertus
  546. ),
  547. MODEL_TENSOR.ATTN_K_NORM: (
  548. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  549. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  550. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  551. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  552. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  553. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  554. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  555. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  556. "transformer.layers.{bid}.attn.k_norm", # openelm
  557. "model.layers.layers.{bid}.mixer.k", # plamo2
  558. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  559. "model.layers.{bid}.attention.key_layernorm", # apertus
  560. ),
  561. MODEL_TENSOR.ROPE_FREQS: (
  562. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  563. ),
  564. MODEL_TENSOR.LAYER_OUT_NORM: (
  565. "encoder.layer.{bid}.output.LayerNorm", # bert
  566. "transformer.layer.{bid}.output_layer_norm", # distillbert
  567. "encoder.layers.{bid}.norm2", # nomic-bert
  568. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  569. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  570. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  571. "model.layers.{bid}.final_layernorm", # bailingmoe2
  572. ),
  573. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  574. "model.embed_tokens_per_layer", # gemma3n
  575. ),
  576. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  577. "model.per_layer_model_projection", # gemma3n
  578. ),
  579. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  580. "model.per_layer_projection_norm", # gemma3n
  581. ),
  582. MODEL_TENSOR.ALTUP_PROJ: (
  583. "model.altup_projections", # gemma3n
  584. ),
  585. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  586. "model.altup_unembed_projections", # gemma3n
  587. ),
  588. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  589. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  590. ),
  591. MODEL_TENSOR.PER_LAYER_PROJ: (
  592. "model.layers.{bid}.per_layer_projection", # gemma3n
  593. ),
  594. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  595. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  596. ),
  597. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  598. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  599. ),
  600. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  601. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  602. ),
  603. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  604. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  605. ),
  606. MODEL_TENSOR.ALTUP_ROUTER: (
  607. "model.layers.{bid}.altup.modality_router", # gemma3n
  608. ),
  609. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  610. "model.layers.{bid}.altup.router_norm", # gemma3n
  611. ),
  612. MODEL_TENSOR.LAUREL_L: (
  613. "model.layers.{bid}.laurel.linear_left", # gemma3n
  614. ),
  615. MODEL_TENSOR.LAUREL_R: (
  616. "model.layers.{bid}.laurel.linear_right", # gemma3n
  617. ),
  618. MODEL_TENSOR.LAUREL_POST_NORM: (
  619. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  620. ),
  621. MODEL_TENSOR.SSM_IN: (
  622. "model.layers.{bid}.in_proj", # mamba-hf
  623. "backbone.layers.{bid}.mixer.in_proj", # mamba
  624. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  625. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  626. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  627. ),
  628. MODEL_TENSOR.SSM_CONV1D: (
  629. "model.layers.{bid}.conv1d", # mamba-hf
  630. "backbone.layers.{bid}.mixer.conv1d", # mamba
  631. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  632. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  633. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  634. ),
  635. MODEL_TENSOR.SSM_X: (
  636. "model.layers.{bid}.x_proj", # mamba-hf
  637. "backbone.layers.{bid}.mixer.x_proj", # mamba
  638. "model.layers.{bid}.mamba.x_proj", # jamba
  639. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  640. ),
  641. MODEL_TENSOR.SSM_DT: (
  642. "model.layers.{bid}.dt_proj", # mamba-hf
  643. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  644. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  645. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  646. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  647. "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
  648. ),
  649. MODEL_TENSOR.SSM_DT_NORM: (
  650. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  651. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  652. ),
  653. MODEL_TENSOR.SSM_A: (
  654. "model.layers.{bid}.A_log", # mamba-hf
  655. "backbone.layers.{bid}.mixer.A_log", # mamba
  656. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  657. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  658. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  659. ),
  660. MODEL_TENSOR.SSM_B_NORM: (
  661. "model.layers.{bid}.mamba.b_layernorm", # jamba
  662. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  663. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  664. ),
  665. MODEL_TENSOR.SSM_C_NORM: (
  666. "model.layers.{bid}.mamba.c_layernorm", # jamba
  667. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  668. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  669. ),
  670. MODEL_TENSOR.SSM_D: (
  671. "model.layers.{bid}.D", # mamba-hf
  672. "backbone.layers.{bid}.mixer.D", # mamba
  673. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  674. "model.layers.layers.{bid}.mixer.D", # plamo2
  675. ),
  676. MODEL_TENSOR.SSM_NORM: (
  677. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  678. "model.layers.{bid}.linear_attn.norm", # qwen3next
  679. "backbone.layers.{bid}.mixer.norm", # mamba2
  680. ),
  681. MODEL_TENSOR.SSM_OUT: (
  682. "model.layers.{bid}.out_proj", # mamba-hf
  683. "backbone.layers.{bid}.mixer.out_proj", # mamba
  684. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  685. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  686. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  687. ),
  688. MODEL_TENSOR.SSM_BETA_ALPHA: (
  689. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  690. ),
  691. MODEL_TENSOR.TIME_MIX_W0: (
  692. "model.layers.{bid}.attention.w0", # rwkv7
  693. ),
  694. MODEL_TENSOR.TIME_MIX_W1: (
  695. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  696. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  697. "model.layers.{bid}.attention.w1", # rwkv7
  698. ),
  699. MODEL_TENSOR.TIME_MIX_W2: (
  700. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  701. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  702. "model.layers.{bid}.attention.w2", # rwkv7
  703. ),
  704. MODEL_TENSOR.TIME_MIX_A0: (
  705. "model.layers.{bid}.attention.a0", # rwkv7
  706. ),
  707. MODEL_TENSOR.TIME_MIX_A1: (
  708. "model.layers.{bid}.attention.a1", # rwkv7
  709. ),
  710. MODEL_TENSOR.TIME_MIX_A2: (
  711. "model.layers.{bid}.attention.a2", # rwkv7
  712. ),
  713. MODEL_TENSOR.TIME_MIX_V0: (
  714. "model.layers.{bid}.attention.v0", # rwkv7
  715. ),
  716. MODEL_TENSOR.TIME_MIX_V1: (
  717. "model.layers.{bid}.attention.v1", # rwkv7
  718. ),
  719. MODEL_TENSOR.TIME_MIX_V2: (
  720. "model.layers.{bid}.attention.v2", # rwkv7
  721. ),
  722. MODEL_TENSOR.TIME_MIX_G1: (
  723. "model.layers.{bid}.attention.g1", # rwkv7
  724. ),
  725. MODEL_TENSOR.TIME_MIX_G2: (
  726. "model.layers.{bid}.attention.g2", # rwkv7
  727. ),
  728. MODEL_TENSOR.TIME_MIX_K_K: (
  729. "model.layers.{bid}.attention.k_k", # rwkv7
  730. ),
  731. MODEL_TENSOR.TIME_MIX_K_A: (
  732. "model.layers.{bid}.attention.k_a", # rwkv7
  733. ),
  734. MODEL_TENSOR.TIME_MIX_R_K: (
  735. "model.layers.{bid}.attention.r_k", # rwkv7
  736. ),
  737. MODEL_TENSOR.TIME_MIX_LERP_X: (
  738. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  739. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  740. ),
  741. MODEL_TENSOR.TIME_MIX_LERP_K: (
  742. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  743. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  744. ),
  745. MODEL_TENSOR.TIME_MIX_LERP_V: (
  746. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  747. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  748. ),
  749. MODEL_TENSOR.TIME_MIX_LERP_R: (
  750. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  751. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  752. ),
  753. MODEL_TENSOR.TIME_MIX_LERP_G: (
  754. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  755. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  756. ),
  757. MODEL_TENSOR.TIME_MIX_LERP_W: (
  758. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  759. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  760. ),
  761. MODEL_TENSOR.TIME_MIX_FIRST: (
  762. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  763. ),
  764. MODEL_TENSOR.TIME_MIX_DECAY: (
  765. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  766. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  767. ),
  768. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  769. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  770. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  771. ),
  772. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  773. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  774. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  775. ),
  776. MODEL_TENSOR.TIME_MIX_KEY: (
  777. "rwkv.blocks.{bid}.attention.key", # rwkv6
  778. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  779. "model.layers.{bid}.attention.key", # rwkv7
  780. "model.layers.{bid}.attention.k_proj", # rwkv7
  781. ),
  782. MODEL_TENSOR.TIME_MIX_VALUE: (
  783. "rwkv.blocks.{bid}.attention.value", # rwkv6
  784. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  785. "model.layers.{bid}.attention.value", # rwkv7
  786. "model.layers.{bid}.attention.v_proj", # rwkv7
  787. ),
  788. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  789. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  790. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  791. "model.layers.{bid}.attention.receptance", # rwkv7
  792. "model.layers.{bid}.attention.r_proj", # rwkv7
  793. ),
  794. MODEL_TENSOR.TIME_MIX_GATE: (
  795. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  796. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  797. ),
  798. MODEL_TENSOR.TIME_MIX_LN: (
  799. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  800. "model.layers.{bid}.attention.ln_x" # rwkv7
  801. ),
  802. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  803. "rwkv.blocks.{bid}.attention.output", # rwkv6
  804. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  805. "model.layers.{bid}.attention.output", # rwkv7
  806. "model.layers.{bid}.attention.o_proj", # rwkv7
  807. ),
  808. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  809. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  810. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  811. ),
  812. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  813. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  814. ),
  815. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  816. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  817. "model.layers.{bid}.feed_forward.key", # rwkv7
  818. ),
  819. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  820. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  821. ),
  822. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  823. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  824. "model.layers.{bid}.feed_forward.value", # rwkv7
  825. ),
  826. MODEL_TENSOR.ATTN_Q_A: (
  827. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  828. "layers.{bid}.attention.wq_a", # mistral-large
  829. ),
  830. MODEL_TENSOR.ATTN_Q_B: (
  831. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  832. "layers.{bid}.attention.wq_b", # mistral-large
  833. ),
  834. MODEL_TENSOR.ATTN_KV_A_MQA: (
  835. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  836. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  837. ),
  838. MODEL_TENSOR.ATTN_KV_B: (
  839. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  840. ),
  841. MODEL_TENSOR.ATTN_K_B: (
  842. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  843. "layers.{bid}.attention.k_b_proj", # mistral-large
  844. ),
  845. MODEL_TENSOR.ATTN_V_B: (
  846. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  847. "layers.{bid}.attention.v_b_proj", # mistral-large
  848. ),
  849. MODEL_TENSOR.ATTN_Q_A_NORM: (
  850. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  851. "layers.{bid}.attention.q_a_norm", # mistral-large
  852. ),
  853. MODEL_TENSOR.ATTN_KV_A_NORM: (
  854. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  855. "layers.{bid}.attention.kv_a_norm", # mistral-large
  856. ),
  857. MODEL_TENSOR.ATTN_SUB_NORM: (
  858. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  859. ),
  860. MODEL_TENSOR.FFN_SUB_NORM: (
  861. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  862. ),
  863. MODEL_TENSOR.DEC_ATTN_NORM: (
  864. "decoder.block.{bid}.layer.0.layer_norm", # t5
  865. ),
  866. MODEL_TENSOR.DEC_ATTN_Q: (
  867. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  868. ),
  869. MODEL_TENSOR.DEC_ATTN_K: (
  870. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  871. ),
  872. MODEL_TENSOR.DEC_ATTN_V: (
  873. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  874. ),
  875. MODEL_TENSOR.DEC_ATTN_OUT: (
  876. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  877. ),
  878. MODEL_TENSOR.DEC_ATTN_REL_B: (
  879. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  880. ),
  881. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  882. "decoder.block.{bid}.layer.1.layer_norm", # t5
  883. ),
  884. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  885. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  886. ),
  887. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  888. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  889. ),
  890. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  891. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  892. ),
  893. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  894. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  895. ),
  896. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  897. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  898. ),
  899. MODEL_TENSOR.DEC_FFN_NORM: (
  900. "decoder.block.{bid}.layer.2.layer_norm", # t5
  901. ),
  902. MODEL_TENSOR.DEC_FFN_GATE: (
  903. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  904. ),
  905. MODEL_TENSOR.DEC_FFN_UP: (
  906. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  907. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  908. ),
  909. MODEL_TENSOR.DEC_FFN_DOWN: (
  910. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  911. ),
  912. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  913. "decoder.final_layer_norm", # t5
  914. ),
  915. MODEL_TENSOR.ENC_ATTN_NORM: (
  916. "encoder.block.{bid}.layer.0.layer_norm", # t5
  917. ),
  918. MODEL_TENSOR.ENC_ATTN_Q: (
  919. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  920. ),
  921. MODEL_TENSOR.ENC_ATTN_K: (
  922. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  923. ),
  924. MODEL_TENSOR.ENC_ATTN_V: (
  925. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  926. ),
  927. MODEL_TENSOR.ENC_ATTN_OUT: (
  928. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  929. ),
  930. MODEL_TENSOR.ENC_ATTN_REL_B: (
  931. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  932. ),
  933. MODEL_TENSOR.ENC_FFN_NORM: (
  934. "encoder.block.{bid}.layer.1.layer_norm", # t5
  935. ),
  936. MODEL_TENSOR.ENC_FFN_GATE: (
  937. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  938. ),
  939. MODEL_TENSOR.ENC_FFN_UP: (
  940. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  941. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  942. ),
  943. MODEL_TENSOR.ENC_FFN_DOWN: (
  944. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  945. ),
  946. MODEL_TENSOR.VISEXP_UP: (
  947. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  948. ),
  949. MODEL_TENSOR.VISEXP_GATE: (
  950. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  951. ),
  952. MODEL_TENSOR.VISEXP_DOWN: (
  953. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  954. ),
  955. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  956. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  957. ),
  958. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  959. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  960. ),
  961. ############################################################################
  962. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  963. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  964. "encoder.final_layer_norm", # t5
  965. "layer_norm", # neobert
  966. ),
  967. MODEL_TENSOR.CLS: (
  968. "classifier", # jina
  969. "classifier.dense", # roberta
  970. "pre_classifier", # distillbert
  971. "dense", # neobert
  972. ),
  973. MODEL_TENSOR.CLS_OUT: (
  974. "classifier.out_proj", # roberta
  975. ),
  976. #############################################################################
  977. MODEL_TENSOR.CONVNEXT_DW: (
  978. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  979. ),
  980. MODEL_TENSOR.CONVNEXT_NORM: (
  981. "backbone.convnext.{bid}.norm", # wavtokenizer
  982. ),
  983. MODEL_TENSOR.CONVNEXT_PW1: (
  984. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  985. ),
  986. MODEL_TENSOR.CONVNEXT_PW2: (
  987. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  988. ),
  989. MODEL_TENSOR.CONVNEXT_GAMMA: (
  990. "backbone.convnext.{bid}.gamma", # wavtokenizer
  991. ),
  992. MODEL_TENSOR.POSNET_CONV1: (
  993. "backbone.posnet.{bid}.conv1", # wavtokenizer
  994. ),
  995. MODEL_TENSOR.POSNET_CONV2: (
  996. "backbone.posnet.{bid}.conv2", # wavtokenizer
  997. ),
  998. MODEL_TENSOR.POSNET_NORM: (
  999. "backbone.posnet.{bid}.norm", # wavtokenizer
  1000. ),
  1001. MODEL_TENSOR.POSNET_NORM1: (
  1002. "backbone.posnet.{bid}.norm1", # wavtokenizer
  1003. ),
  1004. MODEL_TENSOR.POSNET_NORM2: (
  1005. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1006. ),
  1007. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1008. "backbone.posnet.{bid}.norm", # wavtokenizer
  1009. ),
  1010. MODEL_TENSOR.POSNET_ATTN_Q: (
  1011. "backbone.posnet.{bid}.q", # wavtokenizer
  1012. ),
  1013. MODEL_TENSOR.POSNET_ATTN_K: (
  1014. "backbone.posnet.{bid}.k", # wavtokenizer
  1015. ),
  1016. MODEL_TENSOR.POSNET_ATTN_V: (
  1017. "backbone.posnet.{bid}.v", # wavtokenizer
  1018. ),
  1019. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1020. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1021. ),
  1022. MODEL_TENSOR.SHORTCONV_CONV: (
  1023. "model.layers.{bid}.conv.conv",
  1024. ),
  1025. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1026. "model.layers.{bid}.conv.in_proj",
  1027. ),
  1028. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1029. "model.layers.{bid}.conv.out_proj",
  1030. ),
  1031. #############################################################################
  1032. ## Vision encoder
  1033. MODEL_TENSOR.V_MMPROJ: (
  1034. "multi_modal_projector.linear_{bid}",
  1035. "visual.merger.mlp.{bid}", # qwen2vl
  1036. ),
  1037. MODEL_TENSOR.V_MMPROJ_FC: (
  1038. "model.connector.modality_projection.proj", # SmolVLM
  1039. "model.vision.linear_proj.linear_proj", # cogvlm
  1040. "visual.merger.proj", # glm4v
  1041. ),
  1042. MODEL_TENSOR.V_MMPROJ_MLP: (
  1043. "model.mm_projector.mlp.mlp.{bid}",
  1044. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1045. "mlp1.{bid}", # InternVL
  1046. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1047. ),
  1048. MODEL_TENSOR.V_MMPROJ_PEG: (
  1049. "model.mm_projector.peg.peg.{bid}",
  1050. ),
  1051. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1052. "vision_tower.vision_model.embeddings.class_embedding",
  1053. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1054. "vision_model.class_embedding", # llama 4
  1055. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1056. ),
  1057. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1058. "vision_tower.vision_model.embeddings.patch_embedding",
  1059. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1060. "vpm.embeddings.patch_embedding",
  1061. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1062. "vision_tower.patch_conv", # pixtral-hf
  1063. "vision_encoder.patch_conv", # pixtral
  1064. "vision_model.patch_embedding.linear", # llama 4
  1065. "visual.patch_embed.proj", # qwen2vl
  1066. "vision_tower.patch_embed.proj", # kimi-vl
  1067. "model.vision.patch_embedding.proj", # cogvlm
  1068. ),
  1069. MODEL_TENSOR.V_ENC_EMBD_NORM: (
  1070. "visual.post_conv_layernorm", # glm4v
  1071. ),
  1072. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1073. "vision_tower.vision_model.embeddings.position_embedding",
  1074. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1075. "vpm.embeddings.position_embedding",
  1076. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1077. "vision_model.positional_embedding_vlm", # llama 4
  1078. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1079. "visual.pos_embed", # qwen3vl
  1080. "model.vision.patch_embedding.position_embedding", # cogvlm
  1081. "visual.embeddings.position_embedding", # glm4v
  1082. ),
  1083. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1084. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1085. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1086. ),
  1087. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1088. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1089. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1090. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1091. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1092. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1093. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1094. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1095. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1096. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1097. ),
  1098. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1099. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1100. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1101. ),
  1102. MODEL_TENSOR.V_ENC_ATTN_K: (
  1103. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1104. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1105. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1106. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1107. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1108. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1109. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1110. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1111. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1112. ),
  1113. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1114. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1115. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1116. ),
  1117. MODEL_TENSOR.V_ENC_ATTN_V: (
  1118. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1119. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1120. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1121. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1122. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1123. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1124. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1125. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1126. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1127. ),
  1128. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1129. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1130. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1131. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1132. "vpm.encoder.layers.{bid}.layer_norm1",
  1133. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1134. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1135. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1136. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1137. "visual.blocks.{bid}.norm1", # qwen2vl
  1138. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1139. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1140. ),
  1141. MODEL_TENSOR.V_ENC_ATTN_O: (
  1142. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1143. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1144. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1145. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1146. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1147. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1148. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1149. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1150. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1151. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1152. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1153. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1154. ),
  1155. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1156. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1157. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1158. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1159. "vpm.encoder.layers.{bid}.layer_norm2",
  1160. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1161. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1162. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1163. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1164. "visual.blocks.{bid}.norm2", # qwen2vl
  1165. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1166. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1167. ),
  1168. MODEL_TENSOR.V_ENC_FFN_UP: (
  1169. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1170. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1171. "vpm.encoder.layers.{bid}.mlp.fc1",
  1172. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1173. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1174. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1175. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1176. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1177. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1178. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1179. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1180. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1181. ),
  1182. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1183. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1184. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1185. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1186. ),
  1187. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1188. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1189. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1190. "vpm.encoder.layers.{bid}.mlp.fc2",
  1191. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1192. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1193. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1194. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1195. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1196. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1197. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1198. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1199. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1200. ),
  1201. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1202. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1203. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1204. ),
  1205. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1206. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1207. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1208. ),
  1209. MODEL_TENSOR.V_PRE_NORM: (
  1210. "vision_tower.vision_model.pre_layrnorm",
  1211. "vision_tower.ln_pre", # pixtral-hf
  1212. "vision_encoder.ln_pre", # pixtral
  1213. "vision_model.layernorm_pre", # llama4
  1214. ),
  1215. MODEL_TENSOR.V_POST_NORM: (
  1216. "vision_tower.vision_model.post_layernorm",
  1217. "model.vision_model.post_layernorm", # SmolVLM
  1218. "vision_model.layernorm_post", # llama4
  1219. "visual.merger.ln_q", # qwen2vl
  1220. "vision_tower.encoder.final_layernorm", # kimi-vl
  1221. "visual.post_layernorm", # glm4v
  1222. ),
  1223. MODEL_TENSOR.V_MM_POST_NORM: (
  1224. "visual.merger.post_projection_norm", # glm4v
  1225. ),
  1226. MODEL_TENSOR.V_MM_INP_PROJ: (
  1227. "multi_modal_projector.mm_input_projection",
  1228. ),
  1229. MODEL_TENSOR.V_MM_INP_NORM: (
  1230. "multi_modal_projector.norm",
  1231. "multi_modal_projector.layer_norm",
  1232. "multi_modal_projector.pre_norm",
  1233. "pre_mm_projector_norm",
  1234. "model.vision.linear_proj.norm1", # cogvlm
  1235. ),
  1236. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1237. "multi_modal_projector.mm_soft_emb_norm",
  1238. ),
  1239. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1240. "resampler.pos_embed_k",
  1241. ),
  1242. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1243. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1244. ),
  1245. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1246. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1247. ),
  1248. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1249. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1250. ),
  1251. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1252. "resampler.attn.out_proj",
  1253. ),
  1254. MODEL_TENSOR.V_RESMPL_KV: (
  1255. "resampler.kv_proj",
  1256. ),
  1257. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1258. "resampler.ln_post",
  1259. ),
  1260. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1261. "resampler.ln_kv",
  1262. ),
  1263. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1264. "resampler.ln_q",
  1265. ),
  1266. MODEL_TENSOR.V_RESMPL_PROJ: (
  1267. "resampler.proj",
  1268. ),
  1269. MODEL_TENSOR.V_RESMPL_QUERY: (
  1270. "resampler.query",
  1271. ),
  1272. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1273. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1274. ),
  1275. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1276. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1277. "patch_merger.merging_layer", # mistral
  1278. "visual.downsample", # glm4v
  1279. ),
  1280. MODEL_TENSOR.V_DS_NORM: (
  1281. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1282. ),
  1283. MODEL_TENSOR.V_DS_FC1: (
  1284. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1285. ),
  1286. MODEL_TENSOR.V_DS_FC2: (
  1287. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1288. ),
  1289. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1290. "model.vision.linear_proj.norm1", # cogvlm
  1291. ),
  1292. MODEL_TENSOR.V_MM_UP: (
  1293. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1294. "visual.merger.up_proj", # glm4v
  1295. ),
  1296. MODEL_TENSOR.V_MM_DOWN: (
  1297. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1298. "visual.merger.down_proj", # glm4v
  1299. ),
  1300. MODEL_TENSOR.V_MM_GATE: (
  1301. "model.vision.linear_proj.gate_proj", # cogvlm
  1302. "visual.merger.gate_proj", # glm4v
  1303. ),
  1304. MODEL_TENSOR.V_TOK_BOI: (
  1305. "model.vision.boi", # cogvlm
  1306. ),
  1307. MODEL_TENSOR.V_TOK_EOI: (
  1308. "model.vision.eoi", # cogvlm
  1309. ),
  1310. # audio (mtmd)
  1311. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1312. "audio_tower.embed_positions", # ultravox
  1313. ),
  1314. MODEL_TENSOR.A_ENC_CONV1D: (
  1315. "audio_tower.conv{bid}", # ultravox
  1316. ),
  1317. MODEL_TENSOR.A_PRE_NORM: (),
  1318. MODEL_TENSOR.A_POST_NORM: (
  1319. "audio_tower.layer_norm", # ultravox
  1320. "audio_tower.ln_post", # qwen2omni
  1321. ),
  1322. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1323. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1324. ),
  1325. MODEL_TENSOR.A_ENC_ATTN_K: (
  1326. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1327. ),
  1328. MODEL_TENSOR.A_ENC_ATTN_V: (
  1329. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1330. ),
  1331. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1332. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1333. ),
  1334. MODEL_TENSOR.A_ENC_OUTPUT: (
  1335. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1336. ),
  1337. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1338. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1339. ),
  1340. MODEL_TENSOR.A_ENC_FFN_UP: (
  1341. "audio_tower.layers.{bid}.fc1", # ultravox
  1342. ),
  1343. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1344. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1345. "audio_tower.layers.{bid}.fc2", # ultravox
  1346. ),
  1347. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1348. # this prefix is added in the conversion code in modify_tensors()
  1349. MODEL_TENSOR.A_MMPROJ: (
  1350. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1351. ),
  1352. MODEL_TENSOR.A_MMPROJ_FC: (
  1353. "audio.multi_modal_projector.linear", # qwen2audio
  1354. "audio_tower.proj", # qwen2omni
  1355. ),
  1356. MODEL_TENSOR.A_MM_NORM_PRE: (
  1357. "audio.multi_modal_projector.ln_pre", # ultravox
  1358. ),
  1359. MODEL_TENSOR.A_MM_NORM_MID: (
  1360. "audio.multi_modal_projector.ln_mid", # ultravox
  1361. ),
  1362. # NextN/MTP tensors for GLM4_MOE
  1363. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1364. "model.layers.{bid}.eh_proj",
  1365. ),
  1366. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1367. "model.layers.{bid}.embed_tokens",
  1368. ),
  1369. MODEL_TENSOR.NEXTN_ENORM: (
  1370. "model.layers.{bid}.enorm",
  1371. ),
  1372. MODEL_TENSOR.NEXTN_HNORM: (
  1373. "model.layers.{bid}.hnorm",
  1374. ),
  1375. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1376. "model.layers.{bid}.shared_head.head",
  1377. ),
  1378. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1379. "model.layers.{bid}.shared_head.norm",
  1380. ),
  1381. }
  1382. # architecture-specific block mappings
  1383. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1384. MODEL_ARCH.ARCTIC: {
  1385. MODEL_TENSOR.FFN_NORM: (
  1386. "model.layers.{bid}.residual_layernorm",
  1387. ),
  1388. MODEL_TENSOR.FFN_NORM_EXP: (
  1389. "model.layers.{bid}.post_attention_layernorm",
  1390. ),
  1391. },
  1392. }
  1393. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1394. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1395. self.mapping = {}
  1396. for tensor, keys in self.mappings_cfg.items():
  1397. if tensor not in MODEL_TENSORS[arch]:
  1398. continue
  1399. tensor_name = TENSOR_NAMES[tensor]
  1400. self.mapping[tensor_name] = (tensor, tensor_name)
  1401. for key in keys:
  1402. self.mapping[key] = (tensor, tensor_name)
  1403. if arch in self.arch_block_mappings_cfg:
  1404. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1405. for bid in range(n_blocks):
  1406. for tensor, keys in self.block_mappings_cfg.items():
  1407. if tensor not in MODEL_TENSORS[arch]:
  1408. continue
  1409. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1410. self.mapping[tensor_name] = (tensor, tensor_name)
  1411. for key in keys:
  1412. key = key.format(bid = bid)
  1413. self.mapping[key] = (tensor, tensor_name)
  1414. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1415. result = self.mapping.get(key)
  1416. if result is not None:
  1417. return result
  1418. for suffix in try_suffixes:
  1419. if key.endswith(suffix):
  1420. result = self.mapping.get(key[:-len(suffix)])
  1421. if result is not None:
  1422. return result[0], result[1] + suffix
  1423. return None
  1424. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1425. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1426. if result is None:
  1427. return None
  1428. return result[1]
  1429. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1430. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1431. if result is None:
  1432. return None
  1433. return result[0]
  1434. def __getitem__(self, key: str) -> str:
  1435. try:
  1436. return self.mapping[key][1]
  1437. except KeyError:
  1438. raise KeyError(key)
  1439. def __contains__(self, key: str) -> bool:
  1440. return key in self.mapping
  1441. def __repr__(self) -> str:
  1442. return repr(self.mapping)
  1443. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1444. return TensorNameMap(arch, n_blocks)