clip.cpp 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "ggml.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #include "gguf.h"
  11. //#ifdef GGML_USE_CUDA
  12. //#include "ggml-cuda.h"
  13. //#endif
  14. //
  15. //#ifdef GGML_USE_SYCL
  16. //#include "ggml-sycl.h"
  17. //#endif
  18. //
  19. //#ifdef GGML_USE_METAL
  20. //#include "ggml-metal.h"
  21. //#endif
  22. //
  23. //#ifdef GGML_USE_CANN
  24. //#include "ggml-cann.h"
  25. //#endif
  26. //
  27. //#ifdef GGML_USE_VULKAN
  28. //#include "ggml-vulkan.h"
  29. //#endif
  30. #define STB_IMAGE_IMPLEMENTATION
  31. #include "stb_image.h"
  32. #include <cassert>
  33. #include <cmath>
  34. #include <cstdlib>
  35. #include <cstring>
  36. #include <fstream>
  37. #include <map>
  38. #include <regex>
  39. #include <stdexcept>
  40. #include <unordered_set>
  41. #include <vector>
  42. #include <sstream>
  43. #include <cinttypes>
  44. #include <limits>
  45. #if defined(LLAVA_LOG_OFF)
  46. # define LOG_INF(...)
  47. # define LOG_WRN(...)
  48. # define LOG_ERR(...)
  49. # define LOG_DBG(...)
  50. #else // defined(LLAVA_LOG_OFF)
  51. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  52. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  53. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  54. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  55. #endif // defined(LLAVA_LOG_OFF)
  56. //#define CLIP_DEBUG_FUNCTIONS
  57. // RGB uint8 image
  58. struct clip_image_u8 {
  59. int nx;
  60. int ny;
  61. std::vector<uint8_t> buf;
  62. };
  63. // RGB float32 image (NHWC)
  64. // Memory layout: RGBRGBRGB...
  65. struct clip_image_f32 {
  66. int nx;
  67. int ny;
  68. std::vector<float> buf;
  69. };
  70. static std::string format(const char * fmt, ...) {
  71. va_list ap;
  72. va_list ap2;
  73. va_start(ap, fmt);
  74. va_copy(ap2, ap);
  75. int size = vsnprintf(NULL, 0, fmt, ap);
  76. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  77. std::vector<char> buf(size + 1);
  78. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  79. GGML_ASSERT(size2 == size);
  80. va_end(ap2);
  81. va_end(ap);
  82. return std::string(buf.data(), buf.size());
  83. }
  84. //
  85. // key constants
  86. //
  87. #define KEY_FTYPE "general.file_type"
  88. #define KEY_NAME "general.name"
  89. #define KEY_DESCRIPTION "general.description"
  90. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  91. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  92. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  93. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  94. #define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
  95. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  96. #define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
  97. #define KEY_USE_GELU "clip.use_gelu"
  98. #define KEY_USE_SILU "clip.use_silu"
  99. #define KEY_N_EMBD "clip.%s.embedding_length"
  100. #define KEY_N_FF "clip.%s.feed_forward_length"
  101. #define KEY_N_BLOCK "clip.%s.block_count"
  102. #define KEY_N_HEAD "clip.%s.attention.head_count"
  103. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  104. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  105. #define KEY_TOKENS "tokenizer.ggml.tokens"
  106. #define KEY_N_POSITIONS "clip.text.context_length"
  107. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  108. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  109. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  110. #define KEY_IMAGE_STD "clip.vision.image_std"
  111. #define KEY_PROJ_TYPE "clip.projector_type"
  112. #define KEY_FEATURE_LAYER "clip.vision.feature_layer"
  113. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  114. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  115. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  116. //
  117. // tensor name constants
  118. //
  119. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  120. #define TN_POS_EMBD "%s.position_embd.weight"
  121. #define TN_CLASS_EMBD "v.class_embd"
  122. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  123. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  124. #define TN_PATCH_BIAS "v.patch_embd.bias"
  125. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  126. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  127. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  128. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  129. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  130. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  131. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  132. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  133. #define TN_LN_PRE "%s.pre_ln.%s"
  134. #define TN_LN_POST "%s.post_ln.%s"
  135. #define TN_TEXT_PROJ "text_projection.weight"
  136. #define TN_VIS_PROJ "visual_projection.weight"
  137. #define TN_LLAVA_PROJ "mm.%d.%s"
  138. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  139. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  140. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  141. #define TN_IMAGE_NEWLINE "model.image_newline"
  142. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  143. #define TN_MINICPMV_QUERY "resampler.query"
  144. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  145. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  146. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  147. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  148. #define TN_GLM_ADAPER_CONV "adapter.conv.%s"
  149. #define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
  150. #define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
  151. #define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
  152. #define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
  153. #define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
  154. #define TN_GLM_BOI_W "adapter.boi"
  155. #define TN_GLM_EOI_W "adapter.eoi"
  156. enum projector_type {
  157. PROJECTOR_TYPE_MLP,
  158. PROJECTOR_TYPE_MLP_NORM,
  159. PROJECTOR_TYPE_LDP,
  160. PROJECTOR_TYPE_LDPV2,
  161. PROJECTOR_TYPE_RESAMPLER,
  162. PROJECTOR_TYPE_GLM_EDGE,
  163. PROJECTOR_TYPE_MERGER,
  164. PROJECTOR_TYPE_UNKNOWN,
  165. };
  166. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  167. { PROJECTOR_TYPE_MLP, "mlp" },
  168. { PROJECTOR_TYPE_LDP, "ldp" },
  169. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  170. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  171. { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
  172. { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
  173. };
  174. //
  175. // utilities to get data from a gguf file
  176. //
  177. static int get_key_idx(const gguf_context * ctx, const char * key) {
  178. int i = gguf_find_key(ctx, key);
  179. if (i == -1) {
  180. LOG_ERR("key %s not found in file\n", key);
  181. throw std::runtime_error(format("Missing required key: %s", key));
  182. }
  183. return i;
  184. }
  185. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  186. const int i = get_key_idx(ctx, key.c_str());
  187. return gguf_get_val_u32(ctx, i);
  188. }
  189. static float get_f32(const gguf_context * ctx, const std::string & key) {
  190. const int i = get_key_idx(ctx, key.c_str());
  191. return gguf_get_val_f32(ctx, i);
  192. }
  193. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  194. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  195. if (!cur) {
  196. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  197. }
  198. return cur;
  199. }
  200. static std::string get_ftype(int ftype) {
  201. return ggml_type_name(static_cast<ggml_type>(ftype));
  202. }
  203. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  204. switch (type) {
  205. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  206. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  207. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  208. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  209. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  210. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  211. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  212. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  213. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  214. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  215. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  216. default: return format("unknown type %d", type);
  217. }
  218. }
  219. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  220. if (search.empty()) {
  221. return;
  222. }
  223. std::string builder;
  224. builder.reserve(s.length());
  225. size_t pos = 0;
  226. size_t last_pos = 0;
  227. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  228. builder.append(s, last_pos, pos - last_pos);
  229. builder.append(replace);
  230. last_pos = pos + search.length();
  231. }
  232. builder.append(s, last_pos, std::string::npos);
  233. s = std::move(builder);
  234. }
  235. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  236. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  237. switch (type) {
  238. case GGUF_TYPE_STRING:
  239. return gguf_get_val_str(ctx_gguf, i);
  240. case GGUF_TYPE_ARRAY:
  241. {
  242. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  243. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  244. const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
  245. std::stringstream ss;
  246. ss << "[";
  247. for (int j = 0; j < arr_n; j++) {
  248. if (arr_type == GGUF_TYPE_STRING) {
  249. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  250. // escape quotes
  251. replace_all(val, "\\", "\\\\");
  252. replace_all(val, "\"", "\\\"");
  253. ss << '"' << val << '"';
  254. } else if (arr_type == GGUF_TYPE_ARRAY) {
  255. ss << "???";
  256. } else {
  257. ss << gguf_data_to_str(arr_type, data, j);
  258. }
  259. if (j < arr_n - 1) {
  260. ss << ", ";
  261. }
  262. }
  263. ss << "]";
  264. return ss.str();
  265. }
  266. default:
  267. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  268. }
  269. }
  270. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  271. size_t tensor_size = ggml_nbytes(tensor);
  272. LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  273. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  274. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  275. }
  276. static projector_type clip_projector_type_from_string(const std::string & name) {
  277. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  278. if (kv.second == name) {
  279. return kv.first;
  280. }
  281. }
  282. return PROJECTOR_TYPE_UNKNOWN;
  283. }
  284. #ifdef CLIP_DEBUG_FUNCTIONS
  285. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  286. std::ofstream file(filename, std::ios::binary);
  287. if (!file.is_open()) {
  288. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  289. return;
  290. }
  291. // PPM header: P6 format, width, height, and max color value
  292. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  293. // Write pixel data
  294. for (size_t i = 0; i < img.buf.size(); i += 3) {
  295. // PPM expects binary data in RGB format, which matches our image buffer
  296. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  297. }
  298. file.close();
  299. }
  300. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  301. std::ofstream file(filename, std::ios::binary);
  302. if (!file.is_open()) {
  303. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  304. return;
  305. }
  306. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  307. int bytesPerPixel = 3;
  308. int widthInBytes = img.nx * bytesPerPixel;
  309. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  310. int stride = widthInBytes + paddingAmount;
  311. // Bitmap file header
  312. unsigned char fileHeader[14] = {
  313. 'B','M', // Signature
  314. 0,0,0,0, // Image file size in bytes
  315. 0,0,0,0, // Reserved
  316. 54,0,0,0 // Start of pixel array
  317. };
  318. // Total file size
  319. fileSize = 54 + (stride * img.ny);
  320. fileHeader[2] = (unsigned char)(fileSize);
  321. fileHeader[3] = (unsigned char)(fileSize >> 8);
  322. fileHeader[4] = (unsigned char)(fileSize >> 16);
  323. fileHeader[5] = (unsigned char)(fileSize >> 24);
  324. // Bitmap information header (BITMAPINFOHEADER)
  325. unsigned char infoHeader[40] = {
  326. 40,0,0,0, // Size of this header (40 bytes)
  327. 0,0,0,0, // Image width
  328. 0,0,0,0, // Image height
  329. 1,0, // Number of color planes
  330. 24,0, // Bits per pixel
  331. 0,0,0,0, // No compression
  332. 0,0,0,0, // Image size (can be 0 for no compression)
  333. 0,0,0,0, // X pixels per meter (not specified)
  334. 0,0,0,0, // Y pixels per meter (not specified)
  335. 0,0,0,0, // Total colors (color table not used)
  336. 0,0,0,0 // Important colors (all are important)
  337. };
  338. // Width and height in the information header
  339. infoHeader[4] = (unsigned char)(img.nx);
  340. infoHeader[5] = (unsigned char)(img.nx >> 8);
  341. infoHeader[6] = (unsigned char)(img.nx >> 16);
  342. infoHeader[7] = (unsigned char)(img.nx >> 24);
  343. infoHeader[8] = (unsigned char)(img.ny);
  344. infoHeader[9] = (unsigned char)(img.ny >> 8);
  345. infoHeader[10] = (unsigned char)(img.ny >> 16);
  346. infoHeader[11] = (unsigned char)(img.ny >> 24);
  347. // Write file headers
  348. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  349. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  350. // Pixel data
  351. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  352. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  353. for (int x = 0; x < img.nx; ++x) {
  354. // Each pixel
  355. size_t pixelIndex = (y * img.nx + x) * 3;
  356. unsigned char pixel[3] = {
  357. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  358. img.buf[pixelIndex + 1],
  359. img.buf[pixelIndex]
  360. };
  361. file.write(reinterpret_cast<char*>(pixel), 3);
  362. }
  363. // Write padding for the row
  364. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  365. }
  366. file.close();
  367. }
  368. // debug function to convert f32 to u8
  369. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  370. dst.nx = src.nx;
  371. dst.ny = src.ny;
  372. dst.buf.resize(3 * src.nx * src.ny);
  373. for (size_t i = 0; i < src.buf.size(); ++i) {
  374. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  375. }
  376. }
  377. #endif
  378. //
  379. // clip layers
  380. //
  381. struct clip_hparams {
  382. int32_t image_size;
  383. int32_t patch_size;
  384. int32_t hidden_size;
  385. int32_t n_intermediate;
  386. int32_t projection_dim;
  387. int32_t n_head;
  388. int32_t n_layer;
  389. float eps;
  390. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  391. std::vector<int32_t> image_grid_pinpoints;
  392. int32_t image_crop_resolution;
  393. std::unordered_set<int32_t> vision_feature_layer;
  394. };
  395. struct clip_layer {
  396. // attention
  397. struct ggml_tensor * k_w;
  398. struct ggml_tensor * k_b;
  399. struct ggml_tensor * q_w;
  400. struct ggml_tensor * q_b;
  401. struct ggml_tensor * v_w;
  402. struct ggml_tensor * v_b;
  403. struct ggml_tensor * o_w;
  404. struct ggml_tensor * o_b;
  405. // layernorm 1
  406. struct ggml_tensor * ln_1_w;
  407. struct ggml_tensor * ln_1_b;
  408. // ff
  409. struct ggml_tensor * ff_i_w;
  410. struct ggml_tensor * ff_i_b;
  411. struct ggml_tensor * ff_o_w;
  412. struct ggml_tensor * ff_o_b;
  413. // layernorm 2
  414. struct ggml_tensor * ln_2_w;
  415. struct ggml_tensor * ln_2_b;
  416. };
  417. struct clip_vision_model {
  418. struct clip_hparams hparams;
  419. // embeddings
  420. struct ggml_tensor * class_embedding;
  421. struct ggml_tensor * patch_embeddings_0;
  422. struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  423. struct ggml_tensor * patch_bias;
  424. struct ggml_tensor * position_embeddings;
  425. struct ggml_tensor * pre_ln_w;
  426. struct ggml_tensor * pre_ln_b;
  427. std::vector<clip_layer> layers;
  428. struct ggml_tensor * post_ln_w;
  429. struct ggml_tensor * post_ln_b;
  430. struct ggml_tensor * projection;
  431. // LLaVA projection
  432. struct ggml_tensor * mm_0_w = NULL;
  433. struct ggml_tensor * mm_0_b = NULL;
  434. struct ggml_tensor * mm_2_w = NULL;
  435. struct ggml_tensor * mm_2_b = NULL;
  436. struct ggml_tensor * image_newline = NULL;
  437. // Yi type models with mlp+normalization projection
  438. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  439. struct ggml_tensor * mm_1_b = NULL;
  440. struct ggml_tensor * mm_3_w = NULL;
  441. struct ggml_tensor * mm_3_b = NULL;
  442. struct ggml_tensor * mm_4_w = NULL;
  443. struct ggml_tensor * mm_4_b = NULL;
  444. //GLMV-Edge projection
  445. struct ggml_tensor * mm_model_adapter_conv_w;
  446. struct ggml_tensor * mm_model_adapter_conv_b;
  447. struct ggml_tensor * boi_w;
  448. struct ggml_tensor * eoi_w;
  449. // MobileVLM projection
  450. struct ggml_tensor * mm_model_mlp_1_w;
  451. struct ggml_tensor * mm_model_mlp_1_b;
  452. struct ggml_tensor * mm_model_mlp_3_w;
  453. struct ggml_tensor * mm_model_mlp_3_b;
  454. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  455. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  456. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  457. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  458. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  459. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  460. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  461. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  462. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  463. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  464. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  465. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  466. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  467. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  468. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  469. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  470. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  471. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  472. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  473. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  474. // MobileVLM_V2 projection
  475. struct ggml_tensor * mm_model_mlp_0_w;
  476. struct ggml_tensor * mm_model_mlp_0_b;
  477. struct ggml_tensor * mm_model_mlp_2_w;
  478. struct ggml_tensor * mm_model_mlp_2_b;
  479. struct ggml_tensor * mm_model_peg_0_w;
  480. struct ggml_tensor * mm_model_peg_0_b;
  481. // MINICPMV projection
  482. struct ggml_tensor * mm_model_pos_embed_k;
  483. struct ggml_tensor * mm_model_query;
  484. struct ggml_tensor * mm_model_proj;
  485. struct ggml_tensor * mm_model_kv_proj;
  486. struct ggml_tensor * mm_model_attn_q_w;
  487. struct ggml_tensor * mm_model_attn_q_b;
  488. struct ggml_tensor * mm_model_attn_k_w;
  489. struct ggml_tensor * mm_model_attn_k_b;
  490. struct ggml_tensor * mm_model_attn_v_w;
  491. struct ggml_tensor * mm_model_attn_v_b;
  492. struct ggml_tensor * mm_model_attn_o_w;
  493. struct ggml_tensor * mm_model_attn_o_b;
  494. struct ggml_tensor * mm_model_ln_q_w;
  495. struct ggml_tensor * mm_model_ln_q_b;
  496. struct ggml_tensor * mm_model_ln_kv_w;
  497. struct ggml_tensor * mm_model_ln_kv_b;
  498. struct ggml_tensor * mm_model_ln_post_w;
  499. struct ggml_tensor * mm_model_ln_post_b;
  500. };
  501. struct clip_ctx {
  502. bool has_text_encoder = false;
  503. bool has_vision_encoder = false;
  504. bool has_llava_projector = false;
  505. bool has_minicpmv_projector = false;
  506. bool has_glm_projector = false;
  507. bool has_qwen2vl_merger = false;
  508. int minicpmv_version = 2;
  509. struct clip_vision_model vision_model;
  510. projector_type proj_type = PROJECTOR_TYPE_MLP;
  511. int32_t max_feature_layer;
  512. float image_mean[3];
  513. float image_std[3];
  514. bool use_gelu = false;
  515. bool use_silu = false;
  516. int32_t ftype = 1;
  517. bool has_class_embedding = true;
  518. bool has_pre_norm = true;
  519. bool has_post_norm = false;
  520. bool has_patch_bias = false;
  521. struct gguf_context * ctx_gguf;
  522. struct ggml_context * ctx_data;
  523. std::vector<uint8_t> buf_compute_meta;
  524. // memory buffers to evaluate the model
  525. ggml_backend_buffer_t params_buffer = NULL;
  526. ggml_backend_t backend = NULL;
  527. ggml_gallocr_t compute_alloc = NULL;
  528. struct clip_image_size * load_image_size;
  529. };
  530. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  531. if (!ctx->has_vision_encoder) {
  532. LOG_ERR("This gguf file seems to have no vision encoder\n");
  533. return nullptr;
  534. }
  535. const auto & model = ctx->vision_model;
  536. const auto & hparams = model.hparams;
  537. const int image_size = hparams.image_size;
  538. int image_size_width = image_size;
  539. int image_size_height = image_size;
  540. if (ctx->has_minicpmv_projector) {
  541. if (load_image_size == nullptr) {
  542. load_image_size = clip_image_size_init();
  543. }
  544. LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  545. image_size_width = load_image_size->width;
  546. image_size_height = load_image_size->height;
  547. if (is_inf) {
  548. image_size_width = imgs->data->nx;
  549. image_size_height = imgs->data->ny;
  550. }
  551. }
  552. else if (ctx->has_qwen2vl_merger) {
  553. // use the image's native resolution when image is avaible
  554. if (is_inf) {
  555. // if (imgs->data->nx && imgs->data->ny) {
  556. image_size_width = imgs->data->nx;
  557. image_size_height = imgs->data->ny;
  558. }
  559. }
  560. const int patch_size = hparams.patch_size;
  561. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  562. const int patches_w = image_size_width / patch_size;
  563. const int patches_h = image_size_height / patch_size;
  564. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  565. const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
  566. const int hidden_size = hparams.hidden_size;
  567. const int n_head = hparams.n_head;
  568. const int d_head = hidden_size / n_head;
  569. const float eps = hparams.eps;
  570. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  571. const int batch_size = imgs->size;
  572. if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
  573. GGML_ASSERT(batch_size == 1);
  574. }
  575. struct ggml_init_params params = {
  576. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  577. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  578. /*.no_alloc =*/ true,
  579. };
  580. struct ggml_context * ctx0 = ggml_init(params);
  581. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  582. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  583. ggml_set_name(inp_raw, "inp_raw");
  584. ggml_set_input(inp_raw);
  585. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  586. if (ctx->has_qwen2vl_merger) {
  587. GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
  588. GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
  589. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  590. inp = ggml_add(ctx0, inp, inp_1);
  591. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  592. inp = ggml_reshape_4d(
  593. ctx0, inp,
  594. hidden_size * 2, patches_w / 2, patches_h, batch_size);
  595. inp = ggml_reshape_4d(
  596. ctx0, inp,
  597. hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
  598. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  599. inp = ggml_reshape_3d(
  600. ctx0, inp,
  601. hidden_size, patches_w * patches_h, batch_size);
  602. }
  603. else {
  604. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  605. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  606. }
  607. if (ctx->has_patch_bias) {
  608. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  609. inp = ggml_add(ctx0, inp, model.patch_bias);
  610. }
  611. struct ggml_tensor * embeddings = inp;
  612. struct ggml_tensor * pos_embed = nullptr;
  613. if (ctx->has_llava_projector) {
  614. // concat class_embeddings and patch_embeddings
  615. if (ctx->has_class_embedding) {
  616. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  617. ggml_set_name(embeddings, "embeddings");
  618. ggml_set_input(embeddings);
  619. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  620. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  621. embeddings = ggml_acc(ctx0, embeddings, inp,
  622. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  623. }
  624. }
  625. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  626. ggml_set_name(positions, "positions");
  627. ggml_set_input(positions);
  628. if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
  629. embeddings =
  630. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  631. }
  632. if (ctx->has_minicpmv_projector) {
  633. int pos_w = image_size_width/patch_size;
  634. int pos_h = image_size_height/patch_size;
  635. if (ctx->minicpmv_version == 2) {
  636. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  637. }
  638. else if (ctx->minicpmv_version == 3) {
  639. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  640. }
  641. else if (ctx->minicpmv_version == 4) {
  642. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  643. }
  644. ggml_set_name(pos_embed, "pos_embed");
  645. ggml_set_input(pos_embed);
  646. }
  647. // pre-layernorm
  648. if (ctx->has_pre_norm) {
  649. embeddings = ggml_norm(ctx0, embeddings, eps);
  650. ggml_set_name(embeddings, "pre_ln");
  651. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  652. }
  653. std::vector<struct ggml_tensor *> embedding_stack;
  654. const auto & vision_feature_layer = hparams.vision_feature_layer;
  655. // loop over layers
  656. for (int il = 0; il < ctx->max_feature_layer; il++) {
  657. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  658. // If this is an embedding feature layer, save the output.
  659. // NOTE: 0 index here refers to the input to the encoder.
  660. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  661. embedding_stack.push_back(embeddings);
  662. }
  663. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  664. // layernorm1
  665. {
  666. cur = ggml_norm(ctx0, cur, eps);
  667. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  668. model.layers[il].ln_1_b);
  669. }
  670. // self-attention
  671. {
  672. struct ggml_tensor * Q =
  673. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  674. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  675. if (ctx->has_qwen2vl_merger) {
  676. Q = ggml_rope_multi(
  677. ctx0, Q, positions, nullptr,
  678. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  679. }
  680. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  681. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  682. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  683. struct ggml_tensor * K =
  684. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  685. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  686. if (ctx->has_qwen2vl_merger) {
  687. K = ggml_rope_multi(
  688. ctx0, K, positions, nullptr,
  689. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  690. }
  691. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  692. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  693. struct ggml_tensor * V =
  694. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  695. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  696. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  697. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  698. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  699. KQ = ggml_soft_max_inplace(ctx0, KQ);
  700. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  701. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  702. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  703. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  704. }
  705. // attention output
  706. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  707. // re-add the layer input, e.g., residual
  708. cur = ggml_add(ctx0, cur, embeddings);
  709. embeddings = cur; // embeddings = residual, cur = hidden_states
  710. // layernorm2
  711. {
  712. cur = ggml_norm(ctx0, cur, eps);
  713. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  714. }
  715. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  716. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  717. if (ctx->use_gelu) {
  718. cur = ggml_gelu_inplace(ctx0, cur);
  719. } else if (ctx->use_silu) {
  720. cur = ggml_silu_inplace(ctx0, cur);
  721. } else {
  722. cur = ggml_gelu_quick_inplace(ctx0, cur);
  723. }
  724. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  725. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  726. // residual 2
  727. cur = ggml_add(ctx0, embeddings, cur);
  728. embeddings = cur;
  729. }
  730. // post-layernorm
  731. if (ctx->has_post_norm) {
  732. embeddings = ggml_norm(ctx0, embeddings, eps);
  733. ggml_set_name(embeddings, "post_ln");
  734. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  735. }
  736. // final layer is a vision feature layer
  737. if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
  738. embedding_stack.push_back(embeddings);
  739. }
  740. // If feature layers are explicitly set, stack them (if we have multiple)
  741. if (!embedding_stack.empty()) {
  742. embeddings = embedding_stack[0];
  743. for (size_t i = 1; i < embedding_stack.size(); i++) {
  744. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  745. }
  746. }
  747. // llava projector
  748. if (ctx->has_llava_projector) {
  749. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  750. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  751. ggml_set_name(patches, "patches");
  752. ggml_set_input(patches);
  753. // shape [1, 576, 1024]
  754. // ne is whcn, ne = [1024, 576, 1, 1]
  755. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  756. // print_tensor_info(embeddings, "embeddings");
  757. // llava projector
  758. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  759. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  760. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  761. embeddings = ggml_gelu(ctx0, embeddings);
  762. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  763. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  764. }
  765. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  766. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  767. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  768. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  769. // First LayerNorm
  770. embeddings = ggml_norm(ctx0, embeddings, eps);
  771. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  772. model.mm_1_b);
  773. // GELU activation
  774. embeddings = ggml_gelu(ctx0, embeddings);
  775. // Second linear layer
  776. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  777. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  778. // Second LayerNorm
  779. embeddings = ggml_norm(ctx0, embeddings, eps);
  780. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  781. model.mm_4_b);
  782. }
  783. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  784. // MobileVLM projector
  785. int n_patch = 24;
  786. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  787. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  788. mlp_1 = ggml_gelu(ctx0, mlp_1);
  789. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  790. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  791. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  792. // block 1
  793. struct ggml_tensor * block_1 = nullptr;
  794. {
  795. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  796. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  797. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  798. // stride = 1, padding = 1, bias is nullptr
  799. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  800. // layer norm
  801. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  802. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  803. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  804. block_1 = ggml_norm(ctx0, block_1, eps);
  805. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  806. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  807. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  808. // hardswish
  809. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  810. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  811. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  812. // pointwise conv
  813. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  814. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  815. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  816. block_1 = ggml_relu(ctx0, block_1);
  817. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  818. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  819. block_1 = ggml_hardsigmoid(ctx0, block_1);
  820. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  821. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  822. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  823. int w = block_1->ne[0], h = block_1->ne[1];
  824. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  825. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  826. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  827. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  828. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  829. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  830. block_1 = ggml_norm(ctx0, block_1, eps);
  831. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  832. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  833. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  834. // residual
  835. block_1 = ggml_add(ctx0, mlp_3, block_1);
  836. }
  837. // block_2
  838. {
  839. // stride = 2
  840. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  841. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  842. // layer norm
  843. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  844. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  845. block_1 = ggml_norm(ctx0, block_1, eps);
  846. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  847. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  848. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  849. // hardswish
  850. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  851. // not sure the parameters is right for globalAvgPooling
  852. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  853. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  854. // pointwise conv
  855. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  856. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  857. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  858. block_1 = ggml_relu(ctx0, block_1);
  859. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  860. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  861. block_1 = ggml_hardsigmoid(ctx0, block_1);
  862. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  863. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  864. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  865. int w = block_1->ne[0], h = block_1->ne[1];
  866. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  867. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  868. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  869. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  870. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  871. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  872. block_1 = ggml_norm(ctx0, block_1, eps);
  873. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  874. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  875. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  876. }
  877. embeddings = block_1;
  878. }
  879. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  880. {
  881. int n_patch = 24;
  882. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  883. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  884. mlp_0 = ggml_gelu(ctx0, mlp_0);
  885. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  886. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  887. // mlp_2 ne = [2048, 576, 1, 1]
  888. // // AVG Pool Layer 2*2, strides = 2
  889. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  890. // mlp_2 ne = [576, 2048, 1, 1]
  891. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  892. // mlp_2 ne [24, 24, 2048, 1]
  893. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  894. // weight ne = [3, 3, 2048, 1]
  895. struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  896. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  897. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  898. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  899. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  900. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  901. embeddings = peg_0;
  902. }
  903. else {
  904. GGML_ABORT("fatal error");
  905. }
  906. }
  907. // minicpmv projector
  908. else if (ctx->has_minicpmv_projector)
  909. {
  910. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  911. struct ggml_tensor * q = model.mm_model_query;
  912. { // layernorm
  913. q = ggml_norm(ctx0, q, eps);
  914. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  915. }
  916. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  917. { // layernorm
  918. v = ggml_norm(ctx0, v, eps);
  919. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  920. }
  921. struct ggml_tensor * k;
  922. { // position
  923. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  924. k = ggml_add(ctx0, v, pos_embed);
  925. }
  926. { // attention
  927. int hidden_size = 4096;
  928. const int d_head = 128;
  929. int n_head = hidden_size/d_head;
  930. int num_query = 96;
  931. if (ctx->minicpmv_version == 2) {
  932. hidden_size = 4096;
  933. n_head = hidden_size/d_head;
  934. num_query = 96;
  935. }
  936. else if (ctx->minicpmv_version == 3) {
  937. hidden_size = 3584;
  938. n_head = hidden_size/d_head;
  939. num_query = 64;
  940. }
  941. else if (ctx->minicpmv_version == 4) {
  942. hidden_size = 3584;
  943. n_head = hidden_size/d_head;
  944. num_query = 64;
  945. }
  946. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  947. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  948. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  949. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  950. // permute
  951. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  952. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  953. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  954. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  955. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  956. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  957. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  958. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  959. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  960. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  961. KQ = ggml_soft_max_inplace(ctx0, KQ);
  962. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  963. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  964. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  965. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  966. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  967. }
  968. { // layernorm
  969. embeddings = ggml_norm(ctx0, embeddings, eps);
  970. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  971. }
  972. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  973. }
  974. else {
  975. GGML_ASSERT(false);
  976. }
  977. }
  978. // glm projector
  979. else if (ctx->has_glm_projector) {
  980. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  981. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  982. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  983. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  984. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  985. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  986. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  987. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  988. //GLU
  989. {
  990. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  991. embeddings = ggml_norm(ctx0, embeddings, eps);
  992. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  993. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  994. struct ggml_tensor * x = embeddings;
  995. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  996. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  997. embeddings = ggml_silu_inplace(ctx0, embeddings);
  998. embeddings = ggml_mul(ctx0, embeddings,x);
  999. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1000. }
  1001. } else {
  1002. GGML_ABORT("fatel error");
  1003. }
  1004. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  1005. embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
  1006. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1007. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1008. // GELU activation
  1009. embeddings = ggml_gelu(ctx0, embeddings);
  1010. // Second linear layer
  1011. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  1012. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  1013. }
  1014. // build the graph
  1015. ggml_build_forward_expand(gf, embeddings);
  1016. ggml_free(ctx0);
  1017. return gf;
  1018. }
  1019. // read and create ggml_context containing the tensors and their data
  1020. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  1021. struct ggml_context * meta = NULL;
  1022. struct gguf_init_params params = {
  1023. /*.no_alloc = */ true,
  1024. /*.ctx = */ &meta,
  1025. };
  1026. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  1027. if (!ctx) {
  1028. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1029. }
  1030. if (verbosity >= 1) {
  1031. const int n_tensors = gguf_get_n_tensors(ctx);
  1032. const int n_kv = gguf_get_n_kv(ctx);
  1033. const int ftype = get_u32(ctx, KEY_FTYPE);
  1034. const std::string ftype_str = get_ftype(ftype);
  1035. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  1036. const std::string description = gguf_get_val_str(ctx, idx_desc);
  1037. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  1038. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  1039. const std::string name = gguf_get_val_str(ctx, idx_name);
  1040. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1041. }
  1042. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1043. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  1044. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  1045. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1046. LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
  1047. LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
  1048. LOG_INF("\n");
  1049. }
  1050. const int n_tensors = gguf_get_n_tensors(ctx);
  1051. // kv
  1052. const int n_kv = gguf_get_n_kv(ctx);
  1053. LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  1054. __func__, n_kv, n_tensors, fname);
  1055. {
  1056. std::map<enum ggml_type, uint32_t> n_type;
  1057. for (int i = 0; i < n_tensors; i++) {
  1058. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1059. n_type[type]++;
  1060. }
  1061. LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  1062. for (int i = 0; i < n_kv; i++) {
  1063. const char * name = gguf_get_key(ctx, i);
  1064. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  1065. const std::string type_name =
  1066. type == GGUF_TYPE_ARRAY
  1067. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  1068. : gguf_type_name(type);
  1069. std::string value = gguf_kv_to_str(ctx, i);
  1070. const size_t MAX_VALUE_LEN = 40;
  1071. if (value.size() > MAX_VALUE_LEN) {
  1072. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  1073. }
  1074. replace_all(value, "\n", "\\n");
  1075. LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  1076. }
  1077. // print type counts
  1078. for (auto & kv : n_type) {
  1079. if (kv.second == 0) {
  1080. continue;
  1081. }
  1082. LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1083. }
  1084. }
  1085. // data
  1086. size_t model_size = 0;
  1087. {
  1088. for (int i = 0; i < n_tensors; ++i) {
  1089. const char * name = gguf_get_tensor_name(ctx, i);
  1090. const size_t offset = gguf_get_tensor_offset(ctx, i);
  1091. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1092. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  1093. size_t tensor_size = ggml_nbytes(cur);
  1094. model_size += tensor_size;
  1095. if (verbosity >= 3) {
  1096. LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1097. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1098. }
  1099. }
  1100. }
  1101. clip_ctx * new_clip = new clip_ctx{};
  1102. // update projector type
  1103. {
  1104. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  1105. if (idx != -1) {
  1106. const std::string proj_type = gguf_get_val_str(ctx, idx);
  1107. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  1108. } else {
  1109. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  1110. }
  1111. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  1112. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  1113. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  1114. }
  1115. }
  1116. }
  1117. //#ifdef GGML_USE_CUDA
  1118. // new_clip->backend = ggml_backend_cuda_init(0);
  1119. // LOG_INF("%s: CLIP using CUDA backend\n", __func__);
  1120. //#endif
  1121. //
  1122. //#ifdef GGML_USE_METAL
  1123. // new_clip->backend = ggml_backend_metal_init();
  1124. // LOG_INF("%s: CLIP using Metal backend\n", __func__);
  1125. //#endif
  1126. //
  1127. //#ifdef GGML_USE_CANN
  1128. // new_clip->backend = ggml_backend_cann_init(0);
  1129. // LOG_INF("%s: CLIP using CANN backend\n", __func__);
  1130. //#endif
  1131. //
  1132. //#ifdef GGML_USE_VULKAN
  1133. // new_clip->backend = ggml_backend_vk_init(0);
  1134. // LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
  1135. //#endif
  1136. //
  1137. //#ifdef GGML_USE_SYCL
  1138. // new_clip->backend = ggml_backend_sycl_init(0);
  1139. // LOG_INF("%s: CLIP using SYCL backend\n", __func__);
  1140. //#endif
  1141. if (!new_clip->backend) {
  1142. new_clip->backend = ggml_backend_cpu_init();
  1143. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  1144. }
  1145. // model size and capabilities
  1146. {
  1147. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1148. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1149. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1150. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1151. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1152. if (idx != -1) {
  1153. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1154. }
  1155. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1156. if (idx != -1) {
  1157. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1158. }
  1159. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1160. if (idx != -1) {
  1161. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1162. }
  1163. idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
  1164. if (idx != -1) {
  1165. new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
  1166. }
  1167. idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
  1168. if (idx != -1) {
  1169. new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
  1170. }
  1171. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1172. GGML_ASSERT(new_clip->has_vision_encoder);
  1173. GGML_ASSERT(!new_clip->has_text_encoder);
  1174. idx = get_key_idx(ctx, KEY_USE_GELU);
  1175. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1176. try {
  1177. idx = get_key_idx(ctx, KEY_USE_SILU);
  1178. new_clip->use_silu = gguf_get_val_bool(ctx, idx);
  1179. } catch (std::runtime_error & /*e*/) {
  1180. new_clip->use_silu = false;
  1181. }
  1182. if (verbosity >= 1) {
  1183. LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1184. LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1185. LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1186. LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1187. LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
  1188. LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1189. LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1190. }
  1191. }
  1192. LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1193. // load tensors
  1194. {
  1195. std::vector<uint8_t> read_buf;
  1196. struct ggml_init_params params = {
  1197. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1198. /*.mem_buffer =*/ NULL,
  1199. /*.no_alloc =*/ true,
  1200. };
  1201. new_clip->ctx_data = ggml_init(params);
  1202. if (!new_clip->ctx_data) {
  1203. LOG_ERR("%s: ggml_init() failed\n", __func__);
  1204. clip_free(new_clip);
  1205. gguf_free(ctx);
  1206. return nullptr;
  1207. }
  1208. auto fin = std::ifstream(fname, std::ios::binary);
  1209. if (!fin) {
  1210. LOG_ERR("cannot open model file for loading tensors\n");
  1211. clip_free(new_clip);
  1212. gguf_free(ctx);
  1213. return nullptr;
  1214. }
  1215. // add tensors to context
  1216. for (int i = 0; i < n_tensors; ++i) {
  1217. const char * name = gguf_get_tensor_name(ctx, i);
  1218. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1219. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1220. ggml_set_name(cur, name);
  1221. }
  1222. // alloc memory and offload data
  1223. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1224. for (int i = 0; i < n_tensors; ++i) {
  1225. const char * name = gguf_get_tensor_name(ctx, i);
  1226. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1227. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1228. fin.seekg(offset, std::ios::beg);
  1229. if (!fin) {
  1230. LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
  1231. clip_free(new_clip);
  1232. gguf_free(ctx);
  1233. return nullptr;
  1234. }
  1235. int num_bytes = ggml_nbytes(cur);
  1236. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1237. // for the CPU and Metal backend, we can read directly into the tensor
  1238. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1239. } else {
  1240. // read into a temporary buffer first, then copy to device memory
  1241. read_buf.resize(num_bytes);
  1242. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1243. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1244. }
  1245. }
  1246. fin.close();
  1247. }
  1248. // vision model
  1249. if (new_clip->has_vision_encoder) {
  1250. // load vision model
  1251. auto & vision_model = new_clip->vision_model;
  1252. auto & hparams = vision_model.hparams;
  1253. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1254. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1255. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1256. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1257. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1258. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1259. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1260. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1261. try {
  1262. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1263. int n = gguf_get_arr_n(ctx, idx);
  1264. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1265. for (int i = 0; i < n; ++i) {
  1266. hparams.image_grid_pinpoints.push_back(pinpoints[i]);
  1267. }
  1268. } catch (std::runtime_error & /*e*/) { }
  1269. // Load the vision feature layer indices if they are explicitly provided;
  1270. // if multiple vision feature layers are present, the values will be concatenated
  1271. // to form the final visual features.
  1272. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1273. // be non-negative, since we use -1 to mark values as unset here.
  1274. try {
  1275. int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
  1276. int n = gguf_get_arr_n(ctx, idx);
  1277. const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1278. for (int i = 0; i < n; ++i) {
  1279. hparams.vision_feature_layer.insert(vision_feature_layer[i]);
  1280. }
  1281. } catch (std::runtime_error & /*e*/) { }
  1282. try {
  1283. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1284. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1285. } catch (std::runtime_error & /*e*/) {
  1286. strcpy(hparams.mm_patch_merge_type, "flat");
  1287. }
  1288. try {
  1289. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1290. } catch(const std::exception& /*e*/) {
  1291. hparams.image_crop_resolution = hparams.image_size;
  1292. }
  1293. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1294. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1295. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1296. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1297. for (int i = 0; i < 3; ++i) {
  1298. new_clip->image_mean[i] = mean_data[i];
  1299. new_clip->image_std[i] = std_data[i];
  1300. }
  1301. // Calculate the deepest feature layer based on hparams and projector type
  1302. new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
  1303. if (verbosity >= 2) {
  1304. LOG_INF("\n%s: vision model hparams\n", __func__);
  1305. LOG_INF("image_size %d\n", hparams.image_size);
  1306. LOG_INF("patch_size %d\n", hparams.patch_size);
  1307. LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
  1308. LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
  1309. LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
  1310. LOG_INF("v_n_head %d\n", hparams.n_head);
  1311. LOG_INF("v_n_layer %d\n", hparams.n_layer);
  1312. LOG_INF("v_eps %f\n", hparams.eps);
  1313. LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1314. LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1315. LOG_INF("v_image_grid_pinpoints: ");
  1316. for (const auto & pp : hparams.image_grid_pinpoints) {
  1317. LOG_INF("%d ", pp);
  1318. }
  1319. LOG_INF("\n");
  1320. LOG_INF("v_vision_feature_layer: ");
  1321. for (const auto & feature_layer: hparams.vision_feature_layer) {
  1322. LOG_INF("%d ", feature_layer);
  1323. }
  1324. LOG_INF("\n");
  1325. LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1326. }
  1327. try {
  1328. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1329. new_clip->has_class_embedding = true;
  1330. } catch (const std::exception& /*e*/) {
  1331. new_clip->has_class_embedding = false;
  1332. }
  1333. try {
  1334. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1335. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1336. new_clip->has_pre_norm = true;
  1337. } catch (std::exception & /*e*/) {
  1338. new_clip->has_pre_norm = false;
  1339. }
  1340. try {
  1341. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1342. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1343. new_clip->has_post_norm = true;
  1344. } catch (std::exception & /*e*/) {
  1345. new_clip->has_post_norm = false;
  1346. }
  1347. try {
  1348. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1349. new_clip->has_patch_bias = true;
  1350. } catch (std::exception & /*e*/) {
  1351. new_clip->has_patch_bias = false;
  1352. }
  1353. try {
  1354. vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1355. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1356. } catch(const std::exception& /*e*/) {
  1357. LOG_ERR("%s: failed to load vision model tensors\n", __func__);
  1358. }
  1359. try {
  1360. vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
  1361. } catch(const std::exception& /*e*/) {
  1362. new_clip->has_qwen2vl_merger = false;
  1363. }
  1364. // LLaVA projection
  1365. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1366. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1367. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1368. try {
  1369. // Yi-type llava
  1370. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1371. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1372. } catch (std::runtime_error & /*e*/) { }
  1373. try {
  1374. // missing in Yi-type llava
  1375. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1376. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1377. } catch (std::runtime_error & /*e*/) { }
  1378. try {
  1379. // Yi-type llava
  1380. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1381. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1382. } catch (std::runtime_error & /*e*/) { }
  1383. try {
  1384. // Yi-type llava
  1385. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1386. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1387. } catch (std::runtime_error & /*e*/) { }
  1388. try {
  1389. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1390. // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1391. } catch (std::runtime_error & /*e*/) { }
  1392. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1393. // MobileVLM projection
  1394. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1395. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1396. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1397. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1398. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1399. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1400. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1401. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1402. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1403. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1404. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1405. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1406. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1407. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1408. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1409. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1410. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1411. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1412. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1413. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1414. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1415. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1416. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1417. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1418. }
  1419. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1420. {
  1421. // MobilVLM_V2 projection
  1422. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1423. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1424. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1425. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1426. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1427. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1428. }
  1429. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1430. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1431. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1432. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1433. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1434. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1435. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1436. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1437. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1438. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1439. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1440. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1441. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1442. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1443. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1444. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1445. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1446. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1447. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1448. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1449. }
  1450. else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  1451. vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
  1452. vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
  1453. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
  1454. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
  1455. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
  1456. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
  1457. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
  1458. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
  1459. vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
  1460. vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
  1461. }
  1462. else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
  1463. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1464. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1465. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1466. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1467. }
  1468. else {
  1469. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1470. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1471. }
  1472. vision_model.layers.resize(hparams.n_layer);
  1473. for (int il = 0; il < hparams.n_layer; ++il) {
  1474. auto & layer = vision_model.layers[il];
  1475. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1476. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1477. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1478. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1479. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1480. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1481. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1482. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1483. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1484. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1485. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1486. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1487. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1488. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1489. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1490. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1491. }
  1492. }
  1493. ggml_free(meta);
  1494. new_clip->ctx_gguf = ctx;
  1495. // measure mem requirement and allocate
  1496. {
  1497. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1498. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1499. clip_image_f32_batch batch;
  1500. batch.size = 1;
  1501. batch.data = nullptr;
  1502. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1503. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1504. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1505. LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1506. }
  1507. return new_clip;
  1508. }
  1509. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1510. ctx_clip->load_image_size = load_image_size;
  1511. }
  1512. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1513. return ctx_clip->load_image_size;
  1514. }
  1515. struct clip_image_size * clip_image_size_init() {
  1516. struct clip_image_size * load_image_size = new struct clip_image_size();
  1517. load_image_size->width = 448;
  1518. load_image_size->height = 448;
  1519. return load_image_size;
  1520. }
  1521. struct clip_image_u8 * clip_image_u8_init() {
  1522. return new clip_image_u8();
  1523. }
  1524. struct clip_image_f32 * clip_image_f32_init() {
  1525. return new clip_image_f32();
  1526. }
  1527. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1528. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1529. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1530. if (batch->size > 0) {
  1531. delete[] batch->data;
  1532. batch->size = 0;
  1533. }
  1534. }
  1535. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1536. if (batch->size > 0) {
  1537. delete[] batch->data;
  1538. batch->size = 0;
  1539. }
  1540. }
  1541. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  1542. img->nx = nx;
  1543. img->ny = ny;
  1544. img->buf.resize(3 * nx * ny);
  1545. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  1546. }
  1547. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1548. int nx, ny, nc;
  1549. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1550. if (!data) {
  1551. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1552. return false;
  1553. }
  1554. clip_build_img_from_pixels(data, nx, ny, img);
  1555. stbi_image_free(data);
  1556. return true;
  1557. }
  1558. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1559. int nx, ny, nc;
  1560. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1561. if (!data) {
  1562. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1563. return false;
  1564. }
  1565. clip_build_img_from_pixels(data, nx, ny, img);
  1566. stbi_image_free(data);
  1567. return true;
  1568. }
  1569. // Linear interpolation between two points
  1570. inline float clip_lerp(float s, float e, float t) {
  1571. return s + (e - s) * t;
  1572. }
  1573. // Bilinear resize function
  1574. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1575. dst.nx = target_width;
  1576. dst.ny = target_height;
  1577. dst.buf.resize(3 * target_width * target_height);
  1578. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1579. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1580. for (int y = 0; y < target_height; y++) {
  1581. for (int x = 0; x < target_width; x++) {
  1582. float px = x_ratio * x;
  1583. float py = y_ratio * y;
  1584. int x_floor = static_cast<int>(px);
  1585. int y_floor = static_cast<int>(py);
  1586. float x_lerp = px - x_floor;
  1587. float y_lerp = py - y_floor;
  1588. for (int c = 0; c < 3; c++) {
  1589. float top = clip_lerp(
  1590. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1591. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1592. x_lerp
  1593. );
  1594. float bottom = clip_lerp(
  1595. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1596. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1597. x_lerp
  1598. );
  1599. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1600. }
  1601. }
  1602. }
  1603. }
  1604. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1605. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1606. dst->nx = src->nx;
  1607. dst->ny = src->ny;
  1608. dst->buf.resize(src->buf.size());
  1609. for (size_t i = 0; i < src->buf.size(); ++i) {
  1610. int c = i % 3; // rgb
  1611. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1612. }
  1613. }
  1614. inline int clip(int x, int lower, int upper) {
  1615. return std::max(lower, std::min(x, upper));
  1616. }
  1617. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1618. const int nx = img.nx;
  1619. const int ny = img.ny;
  1620. dst.nx = target_width;
  1621. dst.ny = target_height;
  1622. dst.buf.resize(3 * target_width * target_height);
  1623. float Cc;
  1624. float C[5];
  1625. float d0, d2, d3, a0, a1, a2, a3;
  1626. int i, j, k, jj;
  1627. int x, y;
  1628. float dx, dy;
  1629. float tx, ty;
  1630. tx = (float)nx / (float)target_width;
  1631. ty = (float)ny / (float)target_height;
  1632. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1633. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1634. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1635. for (i = 0; i < target_height; i++) {
  1636. for (j = 0; j < target_width; j++) {
  1637. x = (int)(tx * j);
  1638. y = (int)(ty * i);
  1639. dx = tx * j - x;
  1640. dy = ty * i - y;
  1641. for (k = 0; k < 3; k++) {
  1642. for (jj = 0; jj <= 3; jj++) {
  1643. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1644. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1645. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1646. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1647. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1648. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1649. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1650. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1651. d0 = C[0] - C[1];
  1652. d2 = C[2] - C[1];
  1653. d3 = C[3] - C[1];
  1654. a0 = C[1];
  1655. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1656. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1657. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1658. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1659. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1660. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1661. }
  1662. }
  1663. }
  1664. }
  1665. return true;
  1666. }
  1667. // llava-1.6 type of resize_and_pad (black)
  1668. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1669. int target_width = target_resolution.first;
  1670. int target_height = target_resolution.second;
  1671. float scale_w = static_cast<float>(target_width) / image.nx;
  1672. float scale_h = static_cast<float>(target_height) / image.ny;
  1673. int new_width, new_height;
  1674. if (scale_w < scale_h) {
  1675. new_width = target_width;
  1676. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1677. } else {
  1678. new_height = target_height;
  1679. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1680. }
  1681. clip_image_u8 resized_image;
  1682. // bilinear_resize(image, resized_image, new_width, new_height);
  1683. bicubic_resize(image, resized_image, new_width, new_height);
  1684. clip_image_u8 padded_image;
  1685. padded_image.nx = target_width;
  1686. padded_image.ny = target_height;
  1687. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1688. // Calculate padding offsets
  1689. int pad_x = (target_width - new_width) / 2;
  1690. int pad_y = (target_height - new_height) / 2;
  1691. // Copy the resized image into the center of the padded buffer
  1692. for (int y = 0; y < new_height; ++y) {
  1693. for (int x = 0; x < new_width; ++x) {
  1694. for (int c = 0; c < 3; ++c) {
  1695. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1696. }
  1697. }
  1698. }
  1699. image_output = std::move(padded_image);
  1700. }
  1701. /**
  1702. * Selects the best resolution from a list of possible resolutions based on the original size.
  1703. *
  1704. * @param original_size The original size of the image in the format (width, height).
  1705. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1706. * @return The best fit resolution in the format (width, height).
  1707. */
  1708. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1709. int original_width = original_size.first;
  1710. int original_height = original_size.second;
  1711. std::pair<int, int> best_fit;
  1712. int max_effective_resolution = 0;
  1713. int min_wasted_resolution = std::numeric_limits<int>::max();
  1714. for (const auto& resolution : possible_resolutions) {
  1715. int width = resolution.first;
  1716. int height = resolution.second;
  1717. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1718. int downscaled_width = static_cast<int>(original_width * scale);
  1719. int downscaled_height = static_cast<int>(original_height * scale);
  1720. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1721. int wasted_resolution = (width * height) - effective_resolution;
  1722. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1723. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1724. max_effective_resolution = effective_resolution;
  1725. min_wasted_resolution = wasted_resolution;
  1726. best_fit = resolution;
  1727. }
  1728. }
  1729. return best_fit;
  1730. }
  1731. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1732. std::vector<clip_image_u8*> patches;
  1733. int width = image.nx;
  1734. int height = image.ny;
  1735. for (int i = 0; i < height; i += patch_size) {
  1736. for (int j = 0; j < width; j += patch_size) {
  1737. clip_image_u8 *patch = clip_image_u8_init();
  1738. patch->nx = std::min(patch_size, width - j);
  1739. patch->ny = std::min(patch_size, height - i);
  1740. patch->buf.resize(3 * patch->nx * patch->ny);
  1741. for (int y = 0; y < patch->ny; ++y) {
  1742. for (int x = 0; x < patch->nx; ++x) {
  1743. for (int c = 0; c < 3; ++c) {
  1744. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1745. }
  1746. }
  1747. }
  1748. patches.push_back(patch);
  1749. }
  1750. }
  1751. return patches;
  1752. }
  1753. static int ensure_divide(int length, int patch_size) {
  1754. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1755. }
  1756. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1757. int width = original_size.first;
  1758. int height = original_size.second;
  1759. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1760. float r = static_cast<float>(width) / height;
  1761. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1762. width = static_cast<int>(height * r);
  1763. }
  1764. int best_width = ensure_divide(width, patch_size);
  1765. int best_height = ensure_divide(height, patch_size);
  1766. return std::make_pair(best_width, best_height);
  1767. }
  1768. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1769. int width, height;
  1770. std::tie(width, height) = original_size;
  1771. int grid_x, grid_y;
  1772. std::tie(grid_x, grid_y) = grid;
  1773. int refine_width = ensure_divide(width, grid_x);
  1774. int refine_height = ensure_divide(height, grid_y);
  1775. int grid_width = refine_width / grid_x;
  1776. int grid_height = refine_height / grid_y;
  1777. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1778. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1779. int best_grid_width, best_grid_height;
  1780. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1781. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1782. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1783. return refine_size;
  1784. }
  1785. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1786. std::vector<int> candidate_split_grids_nums;
  1787. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1788. if (i == 1 || i > max_slice_nums) {
  1789. continue;
  1790. }
  1791. candidate_split_grids_nums.push_back(i);
  1792. }
  1793. std::vector<std::pair<int, int>> candidate_grids;
  1794. for (int split_grids_nums : candidate_split_grids_nums) {
  1795. int m = 1;
  1796. while (m <= split_grids_nums) {
  1797. if (split_grids_nums % m == 0) {
  1798. candidate_grids.emplace_back(m, split_grids_nums / m);
  1799. }
  1800. ++m;
  1801. }
  1802. }
  1803. std::pair<int, int> best_grid{1, 1};
  1804. float min_error = std::numeric_limits<float>::infinity();
  1805. for (const auto& grid : candidate_grids) {
  1806. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1807. if (error < min_error) {
  1808. best_grid = grid;
  1809. min_error = error;
  1810. }
  1811. }
  1812. return best_grid;
  1813. }
  1814. // inspired from LLaVA-UHD:
  1815. // -> https://arxiv.org/pdf/2403.11703
  1816. // -> https://github.com/thunlp/LLaVA-UHD
  1817. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1818. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1819. const std::pair<int, int> original_size={img->nx,img->ny};
  1820. const int original_width = img->nx;
  1821. const int original_height = img->ny;
  1822. const float log_ratio = log(1.0*original_width/original_height);
  1823. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1824. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1825. std::vector<std::vector<clip_image_u8 *>> images;
  1826. LOG_INF("%s: multiple %d\n", __func__, multiple);
  1827. images.push_back(std::vector<clip_image_u8 *>());
  1828. if (multiple <= 1) {
  1829. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1830. clip_image_u8 * source_image = clip_image_u8_init();
  1831. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1832. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1833. images[images.size()-1].push_back(source_image);
  1834. }
  1835. else if (multiple > 1) {
  1836. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1837. clip_image_u8 * source_image = clip_image_u8_init();
  1838. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1839. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1840. LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1841. images[images.size()-1].push_back(source_image);
  1842. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1843. LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1844. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1845. clip_image_u8 * refine_image = clip_image_u8_init();
  1846. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1847. LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1848. // split_to_patches
  1849. int width = refine_image->nx;
  1850. int height = refine_image->ny;
  1851. int grid_x = int(width / best_grid.first);
  1852. int grid_y = int(height / best_grid.second);
  1853. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1854. images.push_back(std::vector<clip_image_u8 *>());
  1855. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1856. clip_image_u8 * patch = clip_image_u8_init();
  1857. patch->nx = grid_x;
  1858. patch->ny = grid_y;
  1859. patch->buf.resize(3 * patch->nx * patch->ny);
  1860. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1861. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1862. const int i = 3 * (y * refine_image->nx + x);
  1863. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1864. patch->buf[j] = refine_image->buf[i];
  1865. patch->buf[j+1] = refine_image->buf[i+1];
  1866. patch->buf[j+2] = refine_image->buf[i+2];
  1867. }
  1868. }
  1869. images[images.size()-1].push_back(patch);
  1870. }
  1871. }
  1872. clip_image_u8_free(refine_image);
  1873. }
  1874. return images;
  1875. }
  1876. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1877. const int max_slice_nums=9;
  1878. const int scale_resolution=448;
  1879. const int original_width = ctx_clip->load_image_size->width;
  1880. const int original_height = ctx_clip->load_image_size->height;
  1881. const float log_ratio = log(1.0*original_width/original_height);
  1882. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1883. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1884. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1885. return best_grid.first;
  1886. }
  1887. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1888. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1889. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1890. if(clip_is_minicpmv(ctx)){
  1891. int max_slice_nums = 9;
  1892. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1893. res_imgs->size = 0;
  1894. for (size_t i = 0; i < imgs.size(); ++i){
  1895. res_imgs->size += imgs[i].size();
  1896. }
  1897. res_imgs->data = new clip_image_f32[res_imgs->size];
  1898. int idx = 0;
  1899. for (size_t i = 0; i < imgs.size(); ++i) {
  1900. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1901. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1902. clip_image_f32 * res = clip_image_f32_init();
  1903. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1904. res_imgs->data[idx++] = *res;
  1905. clip_image_f32_free(res);
  1906. }
  1907. }
  1908. for (size_t i = 0; i < imgs.size(); ++i) {
  1909. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1910. if (imgs[i][j] != nullptr) {
  1911. clip_image_u8_free(imgs[i][j]);
  1912. }
  1913. }
  1914. }
  1915. return true;
  1916. }
  1917. else if (ctx->has_qwen2vl_merger) {
  1918. clip_image_u8 * resized = clip_image_u8_init();
  1919. auto patch_size = clip_patch_size(ctx) * 2;
  1920. int nx = ceil((float)img->nx / patch_size) * patch_size;
  1921. int ny = ceil((float)img->ny / patch_size) * patch_size;
  1922. bicubic_resize(*img, *resized, nx, ny);
  1923. res_imgs->data = new clip_image_f32[1];
  1924. // clip_image_f32 * res = clip_image_f32_init();
  1925. normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
  1926. // res_imgs->data[0] = *res;
  1927. res_imgs->size = 1;
  1928. // clip_image_f32_free(res);
  1929. clip_image_u8_free(resized);
  1930. return true;
  1931. }
  1932. if (ctx->has_glm_projector) {
  1933. res_imgs->size = 1;
  1934. res_imgs->data = new clip_image_f32[res_imgs->size];
  1935. clip_image_u8 resized_image;
  1936. int32_t sz=ctx->vision_model.hparams.image_size;
  1937. bicubic_resize(*img, resized_image,sz,sz);
  1938. clip_image_f32 * res = clip_image_f32_init();
  1939. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  1940. normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
  1941. res_imgs->data[0] = *res;
  1942. clip_image_f32_free(res);
  1943. return true;
  1944. }
  1945. bool pad_to_square = true;
  1946. if (!ctx->has_vision_encoder) {
  1947. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1948. return false;
  1949. }
  1950. auto & params = ctx->vision_model.hparams;
  1951. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1952. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1953. pad_to_square = false;
  1954. }
  1955. // free the previous res_imgs if any set
  1956. if (res_imgs->size > 0) {
  1957. clip_image_f32_batch_free(res_imgs);
  1958. }
  1959. res_imgs->data = nullptr;
  1960. res_imgs->size = 0;
  1961. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1962. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1963. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1964. if (pad_to_square && img->nx != img->ny) {
  1965. int longer_side = std::max(img->nx, img->ny);
  1966. temp->nx = longer_side;
  1967. temp->ny = longer_side;
  1968. temp->buf.resize(3 * longer_side * longer_side);
  1969. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1970. // fill with background color
  1971. for (size_t i = 0; i < temp->buf.size(); i++) {
  1972. temp->buf[i] = bc[i % 3];
  1973. }
  1974. // copy from the input image
  1975. for (int y = 0; y < img->ny; y++) {
  1976. for (int x = 0; x < img->nx; x++) {
  1977. const int i = 3 * (y * img->nx + x);
  1978. const int j = 3 * (y * temp->nx + x);
  1979. temp->buf[j] = img->buf[i];
  1980. temp->buf[j+1] = img->buf[i+1];
  1981. temp->buf[j+2] = img->buf[i+2];
  1982. }
  1983. }
  1984. } else {
  1985. if (!params.image_grid_pinpoints.empty()) {
  1986. // "spatial_unpad" with "anyres" processing for llava-1.6
  1987. std::vector<std::pair<int, int>> possible_resolutions;
  1988. for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
  1989. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1990. }
  1991. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1992. // clip_image_save_to_bmp(*img, "input.bmp");
  1993. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1994. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1995. // visually verify normalized image:
  1996. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1997. // {
  1998. // clip_image_u8 * temp2 = clip_image_u8_init();
  1999. // clip_image_convert_f32_to_u8(*res, *temp2);
  2000. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  2001. // clip_image_u8_free(temp2);
  2002. // }
  2003. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  2004. clip_image_u8 *image_original_resize = clip_image_u8_init();
  2005. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  2006. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  2007. patches.insert(patches.begin(), image_original_resize);
  2008. // clip_image_f32_batch_init(patches.size());
  2009. res_imgs->size = patches.size();
  2010. res_imgs->data = new clip_image_f32[res_imgs->size];
  2011. int num=0;
  2012. for (auto& patch : patches) {
  2013. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  2014. num++;
  2015. }
  2016. for (size_t i = 0; i < patches.size(); i++) {
  2017. // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  2018. clip_image_u8_free(patches[i]);
  2019. }
  2020. clip_image_u8_free(temp);
  2021. return true;
  2022. } else {
  2023. temp->nx = img->nx;
  2024. temp->ny = img->ny;
  2025. temp->buf.resize(img->buf.size());
  2026. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  2027. }
  2028. }
  2029. const int nx = temp->nx;
  2030. const int ny = temp->ny;
  2031. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  2032. const int nx2 = ctx->vision_model.hparams.image_size;
  2033. const int ny2 = ctx->vision_model.hparams.image_size;
  2034. clip_image_f32 * res = clip_image_f32_init();
  2035. res->nx = nx2;
  2036. res->ny = ny2;
  2037. res->buf.resize(3 * nx2 * ny2);
  2038. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  2039. const int nx3 = int(nx / scale + 0.5f);
  2040. const int ny3 = int(ny / scale + 0.5f);
  2041. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  2042. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  2043. for (int y = 0; y < ny3; y++) {
  2044. for (int x = 0; x < nx3; x++) {
  2045. for (int c = 0; c < 3; c++) {
  2046. // linear interpolation
  2047. const float sx = (x + 0.5f) * scale - 0.5f;
  2048. const float sy = (y + 0.5f) * scale - 0.5f;
  2049. const int x0 = std::max(0, (int)std::floor(sx));
  2050. const int y0 = std::max(0, (int)std::floor(sy));
  2051. const int x1 = std::min(x0 + 1, nx - 1);
  2052. const int y1 = std::min(y0 + 1, ny - 1);
  2053. const float dx = sx - x0;
  2054. const float dy = sy - y0;
  2055. const int j00 = 3 * (y0 * nx + x0) + c;
  2056. const int j01 = 3 * (y0 * nx + x1) + c;
  2057. const int j10 = 3 * (y1 * nx + x0) + c;
  2058. const int j11 = 3 * (y1 * nx + x1) + c;
  2059. const float v00 = temp->buf[j00];
  2060. const float v01 = temp->buf[j01];
  2061. const float v10 = temp->buf[j10];
  2062. const float v11 = temp->buf[j11];
  2063. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  2064. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  2065. const float v = v0 * (1.0f - dy) + v1 * dy;
  2066. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  2067. const int i = 3 * (y * nx3 + x) + c;
  2068. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  2069. }
  2070. }
  2071. }
  2072. clip_image_u8_free(temp);
  2073. // {
  2074. // clip_image_u8 * temp2 = clip_image_u8_init();
  2075. // clip_image_convert_f32_to_u8(*res, *temp2);
  2076. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  2077. // clip_image_u8_free(temp2);
  2078. // }
  2079. // res_imgs.push_back(res);
  2080. res_imgs->size = 1;
  2081. res_imgs->data = new clip_image_f32[res_imgs->size];
  2082. res_imgs->data[0] = *res;
  2083. clip_image_f32_free(res);
  2084. return true;
  2085. }
  2086. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2087. return ctx->vision_model.image_newline;
  2088. }
  2089. void clip_free(clip_ctx * ctx) {
  2090. ggml_free(ctx->ctx_data);
  2091. gguf_free(ctx->ctx_gguf);
  2092. ggml_backend_buffer_free(ctx->params_buffer);
  2093. ggml_backend_free(ctx->backend);
  2094. ggml_gallocr_free(ctx->compute_alloc);
  2095. delete ctx;
  2096. }
  2097. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2098. int extra_tokens = ctx->has_glm_projector ? 2 : 0;
  2099. return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2100. }
  2101. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
  2102. clip_image_f32 img;
  2103. img.nx = img_w;
  2104. img.ny = img_h;
  2105. return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2106. }
  2107. int32_t clip_image_size(const struct clip_ctx * ctx) {
  2108. return ctx->vision_model.hparams.image_size;
  2109. }
  2110. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  2111. return ctx->vision_model.hparams.patch_size;
  2112. }
  2113. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  2114. return ctx->vision_model.hparams.hidden_size;
  2115. }
  2116. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2117. return ctx->vision_model.hparams.mm_patch_merge_type;
  2118. }
  2119. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2120. if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
  2121. return &ctx->vision_model.hparams.image_grid_pinpoints.front();
  2122. }
  2123. return nullptr;
  2124. }
  2125. size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
  2126. return ctx->vision_model.hparams.image_grid_pinpoints.size();
  2127. }
  2128. int clip_n_patches(const struct clip_ctx * ctx) {
  2129. clip_image_f32 img;
  2130. img.nx = ctx->vision_model.hparams.image_size;
  2131. img.ny = ctx->vision_model.hparams.image_size;
  2132. return clip_n_patches_by_img(ctx, &img);
  2133. }
  2134. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2135. const auto & params = ctx->vision_model.hparams;
  2136. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2137. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  2138. n_patches /= 4;
  2139. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2140. if (ctx->minicpmv_version == 2) {
  2141. n_patches = 96;
  2142. }
  2143. else if (ctx->minicpmv_version == 3) {
  2144. n_patches = 64;
  2145. }
  2146. else if (ctx->minicpmv_version == 4) {
  2147. n_patches = 64;
  2148. }
  2149. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2150. int patch_size = params.patch_size * 2;
  2151. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2152. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2153. n_patches = x_patch * y_patch;
  2154. }
  2155. return n_patches;
  2156. }
  2157. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2158. assert(embed_dim % 2 == 0);
  2159. int H = pos.size();
  2160. int W = pos[0].size();
  2161. std::vector<float> omega(embed_dim / 2);
  2162. for (int i = 0; i < embed_dim / 2; ++i) {
  2163. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2164. }
  2165. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2166. for (int h = 0; h < H; ++h) {
  2167. for (int w = 0; w < W; ++w) {
  2168. for (int d = 0; d < embed_dim / 2; ++d) {
  2169. float out_value = pos[h][w] * omega[d];
  2170. emb[h][w][d] = sin(out_value);
  2171. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2172. }
  2173. }
  2174. }
  2175. return emb;
  2176. }
  2177. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2178. assert(embed_dim % 2 == 0);
  2179. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2180. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2181. int H = emb_h.size();
  2182. int W = emb_h[0].size();
  2183. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2184. for (int h = 0; h < H; ++h) {
  2185. for (int w = 0; w < W; ++w) {
  2186. for (int d = 0; d < embed_dim / 2; ++d) {
  2187. emb[h][w][d] = emb_h[h][w][d];
  2188. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2189. }
  2190. }
  2191. }
  2192. return emb;
  2193. }
  2194. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2195. int grid_h_size = image_size.first;
  2196. int grid_w_size = image_size.second;
  2197. std::vector<float> grid_h(grid_h_size);
  2198. std::vector<float> grid_w(grid_w_size);
  2199. for (int i = 0; i < grid_h_size; ++i) {
  2200. grid_h[i] = static_cast<float>(i);
  2201. }
  2202. for (int i = 0; i < grid_w_size; ++i) {
  2203. grid_w[i] = static_cast<float>(i);
  2204. }
  2205. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2206. for (int h = 0; h < grid_h_size; ++h) {
  2207. for (int w = 0; w < grid_w_size; ++w) {
  2208. grid[h][w] = grid_w[w];
  2209. }
  2210. }
  2211. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2212. for (int h = 0; h < grid_h_size; ++h) {
  2213. for (int w = 0; w < grid_w_size; ++w) {
  2214. grid_2d[0][h][w] = grid_h[h];
  2215. grid_2d[1][h][w] = grid_w[w];
  2216. }
  2217. }
  2218. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2219. int H = image_size.first;
  2220. int W = image_size.second;
  2221. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2222. for (int h = 0; h < H; ++h) {
  2223. for (int w = 0; w < W; ++w) {
  2224. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2225. }
  2226. }
  2227. return pos_embed_2d;
  2228. }
  2229. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2230. if (!ctx->has_vision_encoder) {
  2231. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2232. return false;
  2233. }
  2234. clip_image_f32_batch imgs{};
  2235. imgs.size = 1;
  2236. imgs.data = img;
  2237. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2238. }
  2239. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  2240. if (!ctx->has_vision_encoder) {
  2241. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2242. return false;
  2243. }
  2244. int batch_size = imgs->size;
  2245. if (ctx->has_llava_projector) {
  2246. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2247. }
  2248. if (ctx->has_minicpmv_projector) {
  2249. GGML_ASSERT(batch_size == 1);
  2250. }
  2251. if (ctx->has_glm_projector) {
  2252. GGML_ASSERT(batch_size == 1);
  2253. ggml_tensor * boi = ctx->vision_model.boi_w;
  2254. ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
  2255. vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
  2256. }
  2257. // build the inference graph
  2258. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2259. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  2260. // set inputs
  2261. const auto & model = ctx->vision_model;
  2262. const auto & hparams = model.hparams;
  2263. const int image_size = hparams.image_size;
  2264. int image_size_width = image_size;
  2265. int image_size_height = image_size;
  2266. if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
  2267. image_size_width = imgs->data[0].nx;
  2268. image_size_height = imgs->data[0].ny;
  2269. }
  2270. const int patch_size = hparams.patch_size;
  2271. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2272. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2273. if(ctx->load_image_size==nullptr){
  2274. ctx->load_image_size= clip_image_size_init();
  2275. }
  2276. const int pos_w = ctx->load_image_size->width/patch_size;
  2277. const int pos_h = ctx->load_image_size->height/patch_size;
  2278. {
  2279. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2280. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2281. for (size_t i = 0; i < imgs->size; i++) {
  2282. const int nx = imgs->data[i].nx;
  2283. const int ny = imgs->data[i].ny;
  2284. if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
  2285. GGML_ASSERT(nx == image_size && ny == image_size);
  2286. }
  2287. const int n = nx * ny;
  2288. for (int b = 0; b < batch_size; b++) {
  2289. for (int k = 0; k < 3; k++) {
  2290. for (int y = 0; y < ny; y++) {
  2291. for (int x = 0; x < nx; x++) {
  2292. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2293. }
  2294. }
  2295. }
  2296. }
  2297. }
  2298. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2299. free(data);
  2300. }
  2301. if (ctx->has_minicpmv_projector) {
  2302. {
  2303. // inspired from siglip:
  2304. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2305. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2306. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2307. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2308. int bucket_coords_h[1024];
  2309. int bucket_coords_w[1024];
  2310. for (int i = 0; i < pos_h; i++){
  2311. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2312. }
  2313. for (int i = 0; i < pos_w; i++){
  2314. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2315. }
  2316. for (int i = 0, id = 0; i < pos_h; i++){
  2317. for (int j = 0; j < pos_w; j++){
  2318. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2319. }
  2320. }
  2321. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2322. free(positions_data);
  2323. }
  2324. {
  2325. // inspired from resampler of Qwen-VL:
  2326. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2327. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2328. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2329. int embed_dim = 4096;
  2330. if (ctx->minicpmv_version == 2) {
  2331. embed_dim = 4096;
  2332. }
  2333. else if (ctx->minicpmv_version == 3) {
  2334. embed_dim = 3584;
  2335. }
  2336. else if (ctx->minicpmv_version == 4) {
  2337. embed_dim = 3584;
  2338. }
  2339. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2340. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2341. for(int i=0;i < pos_w * pos_h; ++i){
  2342. for(int j=0; j < embed_dim; ++j){
  2343. pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
  2344. }
  2345. }
  2346. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2347. free(pos_embed_data);
  2348. }
  2349. }
  2350. else{
  2351. {
  2352. if (ctx->has_class_embedding) {
  2353. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2354. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2355. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2356. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2357. free(zero_mem);
  2358. }
  2359. }
  2360. if (ctx->has_qwen2vl_merger) {
  2361. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2362. const int pw = image_size_width / patch_size;
  2363. const int ph = image_size_height / patch_size;
  2364. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2365. int ptr = 0;
  2366. for (int y = 0; y < ph; y+=2)
  2367. {
  2368. for (int x = 0; x < pw; x+=2)
  2369. {
  2370. for (int dy = 0; dy < 2; dy++) {
  2371. for (int dx = 0; dx < 2; dx++) {
  2372. positions_data[ptr] = y + dy;
  2373. positions_data[num_patches + ptr] = x + dx;
  2374. positions_data[num_patches * 2 + ptr] = y + dy;
  2375. positions_data[num_patches * 3 + ptr] = x + dx;
  2376. ptr++;
  2377. }
  2378. }
  2379. }
  2380. }
  2381. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2382. free(positions_data);
  2383. }
  2384. else {
  2385. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2386. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2387. for (int i = 0; i < num_positions; i++) {
  2388. positions_data[i] = i;
  2389. }
  2390. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2391. free(positions_data);
  2392. if (!ctx->has_glm_projector) {
  2393. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2394. // The patches vector is used to get rows to index into the embeds with;
  2395. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  2396. // when retrieving the rows.
  2397. int patch_offset = ctx->has_class_embedding ? 1 : 0;
  2398. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2399. for (int i = 0; i < num_patches; i++) {
  2400. patches_data[i] = i + patch_offset;
  2401. }
  2402. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2403. free(patches_data);
  2404. }
  2405. }
  2406. }
  2407. if (ggml_backend_is_cpu(ctx->backend)) {
  2408. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2409. }
  2410. ggml_backend_graph_compute(ctx->backend, gf);
  2411. // the last node is the embedding tensor
  2412. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2413. // copy the embeddings to the location passed by the user
  2414. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2415. if (ctx->has_glm_projector) {
  2416. //eoi
  2417. ggml_tensor * eoi = ctx->vision_model.eoi_w;
  2418. int offset = ggml_nelements(embeddings);
  2419. ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
  2420. }
  2421. return true;
  2422. }
  2423. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2424. assert(itype < GGML_TYPE_COUNT);
  2425. ggml_type type = static_cast<ggml_type>(itype);
  2426. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2427. const auto & ctx_src = ctx_clip->ctx_gguf;
  2428. const auto & ctx_data = ctx_clip->ctx_data;
  2429. auto * ctx_out = gguf_init_empty();
  2430. gguf_set_kv(ctx_out, ctx_src);
  2431. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2432. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2433. auto fout = std::ofstream(fname_out, std::ios::binary);
  2434. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2435. for (int i = 0; i < n_tensors; ++i) {
  2436. const char * name = gguf_get_tensor_name(ctx_src, i);
  2437. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2438. gguf_add_tensor(ctx_out, cur);
  2439. }
  2440. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2441. for (size_t i = 0; i < meta_size; ++i) {
  2442. fout.put(0);
  2443. }
  2444. // regexes of tensor names to be quantized
  2445. const std::vector<std::string> k_names = {
  2446. ".*weight",
  2447. };
  2448. std::vector<uint8_t> work(512);
  2449. std::vector<float> conv_buf(512);
  2450. size_t total_size_org = 0;
  2451. size_t total_size_new = 0;
  2452. for (int i = 0; i < n_tensors; ++i) {
  2453. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2454. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2455. enum ggml_type new_type;
  2456. void * new_data;
  2457. size_t new_size;
  2458. bool quantize = false;
  2459. for (const auto & s : k_names) {
  2460. if (std::regex_match(name, std::regex(s))) {
  2461. quantize = true;
  2462. break;
  2463. }
  2464. }
  2465. // quantize only 2D tensors and bigger than block size
  2466. quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
  2467. if (quantize) {
  2468. new_type = type;
  2469. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2470. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2471. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2472. }
  2473. const size_t n_elms = ggml_nelements(cur);
  2474. float * f32_data;
  2475. switch (cur->type) {
  2476. case GGML_TYPE_F32:
  2477. f32_data = (float *)cur->data;
  2478. break;
  2479. case GGML_TYPE_F16:
  2480. if (conv_buf.size() < n_elms) {
  2481. conv_buf.resize(n_elms);
  2482. }
  2483. for (size_t j = 0; j < n_elms; ++j) {
  2484. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2485. }
  2486. f32_data = (float *)conv_buf.data();
  2487. break;
  2488. default:
  2489. LOG_ERR("Please use an input file in f32 or f16\n");
  2490. gguf_free(ctx_out);
  2491. return false;
  2492. }
  2493. if (work.size() < n_elms * 4) {
  2494. work.resize(n_elms * 4);
  2495. }
  2496. new_data = work.data();
  2497. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2498. } else {
  2499. new_type = cur->type;
  2500. new_data = cur->data;
  2501. new_size = ggml_nbytes(cur);
  2502. }
  2503. const size_t orig_size = ggml_nbytes(cur);
  2504. total_size_org += orig_size;
  2505. total_size_new += new_size;
  2506. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2507. GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
  2508. gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
  2509. fout.write((const char *)new_data, new_size);
  2510. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2511. for (size_t j = 0; j < pad; ++j) {
  2512. fout.put(0);
  2513. }
  2514. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2515. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2516. }
  2517. // go back to beginning of file and write the updated metadata
  2518. fout.seekp(0, std::ios::beg);
  2519. std::vector<uint8_t> meta(meta_size);
  2520. gguf_get_meta_data(ctx_out, meta.data());
  2521. fout.write((const char *)meta.data(), meta_size);
  2522. fout.close();
  2523. clip_free(ctx_clip);
  2524. gguf_free(ctx_out);
  2525. {
  2526. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2527. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2528. }
  2529. return true;
  2530. }
  2531. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2532. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2533. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2534. }
  2535. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2536. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2537. }
  2538. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2539. return ctx->vision_model.mm_2_b->ne[0];
  2540. }
  2541. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2542. return ctx->vision_model.mm_3_b->ne[0];
  2543. }
  2544. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2545. if (ctx->minicpmv_version == 2) {
  2546. return 4096;
  2547. }
  2548. else if (ctx->minicpmv_version == 3) {
  2549. return 3584;
  2550. }
  2551. else if (ctx->minicpmv_version == 4) {
  2552. return 3584;
  2553. }
  2554. }
  2555. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
  2556. return ctx->vision_model.mm_model_mlp_3_w->ne[1];
  2557. }
  2558. if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2559. return ctx->vision_model.mm_1_b->ne[0];
  2560. }
  2561. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2562. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2563. }
  2564. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2565. if (ctx->has_minicpmv_projector) {
  2566. return ctx->minicpmv_version;
  2567. }
  2568. return 0;
  2569. }
  2570. bool clip_is_glm(const struct clip_ctx * ctx) {
  2571. return ctx->has_glm_projector;
  2572. }
  2573. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2574. return ctx->has_qwen2vl_merger;
  2575. }
  2576. // Determine the number of encoder layers to iterate over
  2577. int get_deepest_feature_layer(const struct clip_ctx * ctx) {
  2578. // Get the index of the second to last layer; this is the
  2579. // default for models that have a llava projector
  2580. const auto & hparams = ctx->vision_model.hparams;
  2581. int n_layer = hparams.n_layer - 1;
  2582. int deepest_feature_layer = -1;
  2583. // Handle other projectors; incrementing here indicates that we
  2584. // should use the last encoder layer for the vision features.
  2585. if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
  2586. n_layer += 1;
  2587. }
  2588. // If we set explicit vision feature layers, only go up to the deepest one
  2589. for (const auto & feature_layer : hparams.vision_feature_layer) {
  2590. if (feature_layer > deepest_feature_layer) {
  2591. deepest_feature_layer = feature_layer;
  2592. }
  2593. }
  2594. return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
  2595. }
  2596. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2597. clip_image_f32 clip_img;
  2598. clip_img.buf.resize(h * w * 3);
  2599. for (int i = 0; i < h*w*3; i++)
  2600. {
  2601. clip_img.buf[i] = img[i];
  2602. }
  2603. clip_img.nx = w;
  2604. clip_img.ny = h;
  2605. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2606. return true;
  2607. }