ggml.c 390 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. // horizontally add 4 int32_t
  393. static inline int hsum_i32_4(const __m128i a) {
  394. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  395. const __m128i sum64 = _mm_add_epi32(hi64, a);
  396. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  397. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  398. }
  399. #if __AVX2__ || __AVX512F__
  400. // Unpack 32 4-bit fields into 32 bytes
  401. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  402. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  403. {
  404. // Load 16 bytes from memory
  405. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  406. // Expand bytes into uint16_t values
  407. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  408. // Unpack values into individual bytes
  409. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  410. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  411. __m256i low = _mm256_and_si256( lowMask, bytes );
  412. high = _mm256_slli_epi16( high, 4 );
  413. bytes = _mm256_or_si256( low, high );
  414. return bytes;
  415. }
  416. // add int16_t pairwise and return as float vector
  417. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  418. const __m256i ones = _mm256_set1_epi16(1);
  419. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  420. return _mm256_cvtepi32_ps(summed_pairs);
  421. }
  422. // multiply int8_t, add results pairwise twice and return as float vector
  423. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  424. // Get absolute values of x vectors
  425. const __m256i ax = _mm256_sign_epi8(x, x);
  426. // Sign the values of the y vectors
  427. const __m256i sy = _mm256_sign_epi8(y, x);
  428. #if __AVXVNNI__
  429. const __m256i zero = _mm256_setzero_si256();
  430. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  431. return _mm256_cvtepi32_ps(summed_pairs);
  432. #else
  433. // Perform multiplication and create 16-bit values
  434. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  435. return sum_i16_pairs_float(dot);
  436. #endif
  437. }
  438. static inline __m128i packNibbles( __m256i bytes )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. #if __AVX512F__
  442. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  443. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  444. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  445. #else
  446. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  447. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  448. __m256i low = _mm256_and_si256( lowByte, bytes );
  449. high = _mm256_srli_epi16( high, 4 );
  450. bytes = _mm256_or_si256( low, high );
  451. // Compress uint16_t lanes into bytes
  452. __m128i r0 = _mm256_castsi256_si128( bytes );
  453. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  454. return _mm_packus_epi16( r0, r1 );
  455. #endif
  456. }
  457. #else
  458. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  459. {
  460. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  461. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  462. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  463. __m128i low = _mm_and_si128( lowByte, bytes1 );
  464. high = _mm_srli_epi16( high, 4 );
  465. bytes1 = _mm_or_si128( low, high );
  466. high = _mm_andnot_si128( lowByte, bytes2 );
  467. low = _mm_and_si128( lowByte, bytes2 );
  468. high = _mm_srli_epi16( high, 4 );
  469. bytes2 = _mm_or_si128( low, high );
  470. return _mm_packus_epi16( bytes1, bytes2);
  471. }
  472. #endif
  473. #endif // __AVX__ || __AVX2__ || __AVX512F__
  474. #if __ARM_NEON
  475. #if !defined(__aarch64__)
  476. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  477. return
  478. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  479. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  480. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  481. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  482. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  483. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  484. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  485. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  486. }
  487. inline static int16_t vaddvq_s8(int8x16_t v) {
  488. return
  489. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  490. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  491. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  492. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  493. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  494. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  495. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  496. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  497. }
  498. inline static int32_t vaddvq_s16(int16x8_t v) {
  499. return
  500. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  501. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  502. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  503. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  504. }
  505. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  506. return
  507. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  508. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  509. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  510. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  511. }
  512. inline static int32_t vaddvq_s32(int32x4_t v) {
  513. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  514. }
  515. inline static float vaddvq_f32(float32x4_t v) {
  516. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  517. }
  518. float vminvq_f32(float32x4_t v) {
  519. return
  520. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  521. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  522. }
  523. float vmaxvq_f32(float32x4_t v) {
  524. return
  525. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  526. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  527. }
  528. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  529. return vget_low_s8(vcombine_s8(a, b));
  530. }
  531. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  532. return vget_high_s8(vcombine_s8(a, b));
  533. }
  534. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  535. return vget_low_u8(vcombine_u8(a, b));
  536. }
  537. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  538. return vget_high_u8(vcombine_u8(a, b));
  539. }
  540. #endif
  541. #endif
  542. #define QK4_0 32
  543. typedef struct {
  544. float d; // delta
  545. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  546. } block_q4_0;
  547. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  548. #define QK4_1 32
  549. typedef struct {
  550. float d; // delta
  551. float m; // min
  552. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  553. } block_q4_1;
  554. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  555. #define QK4_2 16
  556. typedef struct {
  557. ggml_fp16_t d; // delta
  558. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  559. } block_q4_2;
  560. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  561. #define QK4_3 16
  562. typedef struct {
  563. ggml_fp16_t d; // delta
  564. ggml_fp16_t m; // min
  565. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  566. } block_q4_3;
  567. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  568. #define QK8_0 32
  569. typedef struct {
  570. float d; // delta
  571. int8_t qs[QK8_0]; // quants
  572. } block_q8_0;
  573. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  574. #define QK8_1 32
  575. typedef struct {
  576. float d; // delta
  577. float s0; // d * sum(qs[i]) low
  578. float s1; // d * sum(qs[i]) high
  579. int8_t qs[QK8_1]; // quants
  580. } block_q8_1;
  581. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  582. // reference implementation for deterministic creation of model files
  583. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  584. assert(k % QK4_0 == 0);
  585. const int nb = k / QK4_0;
  586. uint8_t pp[QK4_0/2];
  587. for (int i = 0; i < nb; i++) {
  588. float amax = 0.0f; // absolute max
  589. float max = 0.0f;
  590. for (int l = 0; l < QK4_0; l++) {
  591. const float v = x[i*QK4_0 + l];
  592. if (amax < fabsf(v)) {
  593. amax = fabsf(v);
  594. max = v;
  595. }
  596. }
  597. const float d = max / -8;
  598. const float id = d ? 1.0f/d : 0.0f;
  599. y[i].d = d;
  600. for (int l = 0; l < QK4_0; l += 2) {
  601. const float v0 = x[i*QK4_0 + l + 0]*id;
  602. const float v1 = x[i*QK4_0 + l + 1]*id;
  603. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  604. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  605. assert(vi0 < 16);
  606. assert(vi1 < 16);
  607. pp[l/2] = vi0 | (vi1 << 4);
  608. }
  609. memcpy(y[i].qs, pp, sizeof(pp));
  610. }
  611. }
  612. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  613. assert(k % QK4_0 == 0);
  614. const int nb = k / QK4_0;
  615. block_q4_0 * restrict y = vy;
  616. #if defined(__POWER9_VECTOR__)
  617. const vector float v85 = vec_splats(8.5f);
  618. const vector signed int v15 = vec_splats(15);
  619. for (int i = 0; i < nb; i++) {
  620. float max = 0.0f;
  621. float min = 0.0f;
  622. vector float srcv [8];
  623. vector float maxv[8];
  624. vector float minv[8];
  625. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  626. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  627. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  628. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  629. maxv[0] = vec_max(maxv[0], maxv[2]);
  630. maxv[4] = vec_max(maxv[4], maxv[6]);
  631. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  632. maxv[0] = vec_max(maxv[0], maxv[4]);
  633. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  634. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  635. minv[0] = vec_min(minv[0], minv[2]);
  636. minv[4] = vec_min(minv[4], minv[6]);
  637. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  638. minv[0] = vec_min(minv[0], minv[4]);
  639. max = MAX(
  640. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  641. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  642. min = MIN(
  643. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  644. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  645. const float magnitude = max >= fabsf(min) ? max : min;
  646. const float d = magnitude / -8;
  647. const float id = d ? 1.0/d : 0.0;
  648. y[i].d = d;
  649. const vector float vid = vec_splats(id);
  650. uint8_t * restrict pb = y[i].qs;
  651. for (int l = 0; l < 8; l++) {
  652. const vector float vf = vec_madd(srcv[l], vid, v85);
  653. const vector signed int vi = vec_signed(vf);
  654. const vector signed int vc = vec_min(vi, v15);
  655. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  656. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  657. }
  658. }
  659. #elif __ARM_NEON
  660. for (int i = 0; i < nb; i++) {
  661. float32x4_t srcv [8];
  662. float32x4_t maxv[8];
  663. float32x4_t minv[8];
  664. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  665. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  666. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  667. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  668. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  669. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  670. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  671. const float max = vmaxvq_f32(maxv[0]);
  672. const float min = vminvq_f32(minv[0]);
  673. const float magnitude = max >= fabsf(min) ? max : min;
  674. const float d = magnitude / -8;
  675. const float id = d ? 1.0f/d : 0.0f;
  676. y[i].d = d;
  677. for (int l = 0; l < 8; l++) {
  678. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  679. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  680. const int32x4_t vi = vcvtq_s32_f32(vf);
  681. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  682. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  683. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  684. }
  685. }
  686. #elif defined(__AVX2__)
  687. for (int i = 0; i < nb; i++) {
  688. // Load elements into 4 AVX vectors
  689. __m256 v0 = _mm256_loadu_ps( x );
  690. __m256 v1 = _mm256_loadu_ps( x + 8 );
  691. __m256 v2 = _mm256_loadu_ps( x + 16 );
  692. __m256 v3 = _mm256_loadu_ps( x + 24 );
  693. x += 32;
  694. // Compute max for the block
  695. __m256 max = _mm256_max_ps( v0, v1 );
  696. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  697. max = _mm256_max_ps( max, maxTmp );
  698. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  699. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  700. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  701. const float maxScalar = _mm_cvtss_f32( max4 );
  702. // Compute min for the block
  703. __m256 min = _mm256_min_ps( v0, v1 );
  704. __m256 minTmp = _mm256_min_ps( v2, v3 );
  705. min = _mm256_min_ps( min, minTmp );
  706. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  707. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  708. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  709. const float minScalar = _mm_cvtss_f32( min4 );
  710. // Quantize these floats
  711. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  712. const float d = magnitude / -8.0f;
  713. y[i].d = d;
  714. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  715. const __m256 mul = _mm256_set1_ps( id );
  716. // Apply the multiplier
  717. v0 = _mm256_mul_ps( v0, mul );
  718. v1 = _mm256_mul_ps( v1, mul );
  719. v2 = _mm256_mul_ps( v2, mul );
  720. v3 = _mm256_mul_ps( v3, mul );
  721. // Round to nearest integer
  722. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  723. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  724. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  725. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  726. // Convert floats to integers
  727. __m256i i0 = _mm256_cvtps_epi32( v0 );
  728. __m256i i1 = _mm256_cvtps_epi32( v1 );
  729. __m256i i2 = _mm256_cvtps_epi32( v2 );
  730. __m256i i3 = _mm256_cvtps_epi32( v3 );
  731. // Convert int32 to int16
  732. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  733. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  734. // Convert int16 to int8
  735. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  736. // We got our precious signed bytes, but the order is now wrong
  737. // These AVX2 pack instructions process 16-byte pieces independently
  738. // The following instruction is fixing the order
  739. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  740. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  741. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  742. const __m256i off = _mm256_set1_epi8( 8 );
  743. i0 = _mm256_add_epi8( i0, off );
  744. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  745. i0 = _mm256_min_epi8( i0, maxNibble );
  746. // Compress the vector into 4 bit/value, and store
  747. __m128i res = packNibbles( i0 );
  748. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  749. }
  750. #elif defined(__AVX__)
  751. for (int i = 0; i < nb; i++) {
  752. // Load elements into 4 AVX vectors
  753. __m256 v0 = _mm256_loadu_ps( x );
  754. __m256 v1 = _mm256_loadu_ps( x + 8 );
  755. __m256 v2 = _mm256_loadu_ps( x + 16 );
  756. __m256 v3 = _mm256_loadu_ps( x + 24 );
  757. x += 32;
  758. // Compute max for the block
  759. __m256 max = _mm256_max_ps( v0, v1 );
  760. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  761. max = _mm256_max_ps( max, maxTmp );
  762. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  763. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  764. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  765. const float maxScalar = _mm_cvtss_f32( max4 );
  766. // Compute min for the block
  767. __m256 min = _mm256_min_ps( v0, v1 );
  768. __m256 minTmp = _mm256_min_ps( v2, v3 );
  769. min = _mm256_min_ps( min, minTmp );
  770. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  771. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  772. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  773. const float minScalar = _mm_cvtss_f32( min4 );
  774. // Quantize these floats
  775. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  776. const float d = magnitude / -8.0f;
  777. y[i].d = d;
  778. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  779. const __m256 mul = _mm256_set1_ps( id );
  780. // Apply the multiplier
  781. v0 = _mm256_mul_ps( v0, mul );
  782. v1 = _mm256_mul_ps( v1, mul );
  783. v2 = _mm256_mul_ps( v2, mul );
  784. v3 = _mm256_mul_ps( v3, mul );
  785. // Round to nearest integer
  786. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  787. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  788. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  789. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  790. // Convert floats to integers
  791. __m256i i0 = _mm256_cvtps_epi32( v0 );
  792. __m256i i1 = _mm256_cvtps_epi32( v1 );
  793. __m256i i2 = _mm256_cvtps_epi32( v2 );
  794. __m256i i3 = _mm256_cvtps_epi32( v3 );
  795. // Since we don't have in AVX some necessary functions,
  796. // we split the registers in half and call AVX2 analogs from SSE
  797. __m128i ni0 = _mm256_castsi256_si128( i0 );
  798. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  799. __m128i ni2 = _mm256_castsi256_si128( i1 );
  800. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  801. __m128i ni4 = _mm256_castsi256_si128( i2 );
  802. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  803. __m128i ni6 = _mm256_castsi256_si128( i3 );
  804. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  805. // Convert int32 to int16
  806. ni0 = _mm_packs_epi32( ni0, ni1 );
  807. ni2 = _mm_packs_epi32( ni2, ni3 );
  808. ni4 = _mm_packs_epi32( ni4, ni5 );
  809. ni6 = _mm_packs_epi32( ni6, ni7 );
  810. // Convert int16 to int8
  811. ni0 = _mm_packs_epi16( ni0, ni2 );
  812. ni4 = _mm_packs_epi16( ni4, ni6 );
  813. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  814. const __m128i off = _mm_set1_epi8( 8 );
  815. ni0 = _mm_add_epi8( ni0, off );
  816. ni4 = _mm_add_epi8( ni4, off );
  817. const __m128i maxNibble = _mm_set1_epi8( 15 );
  818. ni0 = _mm_min_epi8( ni0, maxNibble );
  819. ni4 = _mm_min_epi8( ni4, maxNibble );
  820. // Compress the vector into 4 bit/value, and store
  821. __m128i res = packNibbles( ni0, ni4 );
  822. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  823. }
  824. #elif defined(__wasm_simd128__)
  825. for (int i = 0; i < nb; i++) {
  826. float max = 0.0f;
  827. float min = 0.0f;
  828. v128_t srcv [8];
  829. v128_t maxv[8];
  830. v128_t minv[8];
  831. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  832. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  833. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  834. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  835. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  836. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  837. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  838. max = MAX(
  839. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  840. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  841. min = MIN(
  842. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  843. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  844. const float magnitude = max >= fabsf(min) ? max : min;
  845. const float d = magnitude / -8;
  846. const float id = d ? 1.0/d : 0.0;
  847. y[i].d = d;
  848. for (int l = 0; l < 8; l++) {
  849. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  850. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  851. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  852. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  853. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  854. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  855. }
  856. }
  857. #else
  858. // scalar
  859. quantize_row_q4_0_reference(x, y, k);
  860. #endif
  861. }
  862. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  863. assert(k % QK4_1 == 0);
  864. const int nb = k / QK4_1;
  865. block_q4_1 * restrict y = vy;
  866. uint8_t pp[QK4_1/2];
  867. for (int i = 0; i < nb; i++) {
  868. float min = FLT_MAX;
  869. float max = -FLT_MAX;
  870. for (int l = 0; l < QK4_1; l++) {
  871. const float v = x[i*QK4_1 + l];
  872. if (v < min) min = v;
  873. if (v > max) max = v;
  874. }
  875. const float d = (max - min) / ((1 << 4) - 1);
  876. const float id = d ? 1.0f/d : 0.0f;
  877. y[i].d = d;
  878. y[i].m = min;
  879. for (int l = 0; l < QK4_1; l += 2) {
  880. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  881. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  882. const uint8_t vi0 = roundf(v0);
  883. const uint8_t vi1 = roundf(v1);
  884. assert(vi0 < 16);
  885. assert(vi1 < 16);
  886. pp[l/2] = vi0 | (vi1 << 4);
  887. }
  888. memcpy(y[i].qs, pp, sizeof(pp));
  889. }
  890. }
  891. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  892. assert(k % QK4_1 == 0);
  893. const int nb = k / QK4_1;
  894. block_q4_1 * restrict y = vy;
  895. #if defined(__AVX2__)
  896. for (int i = 0; i < nb; i++) {
  897. // Load elements into 4 AVX vectors
  898. __m256 v0 = _mm256_loadu_ps( x );
  899. __m256 v1 = _mm256_loadu_ps( x + 8 );
  900. __m256 v2 = _mm256_loadu_ps( x + 16 );
  901. __m256 v3 = _mm256_loadu_ps( x + 24 );
  902. x += 32;
  903. // Compute max for the block
  904. __m256 vmax;
  905. vmax = _mm256_max_ps( v0, v1 );
  906. vmax = _mm256_max_ps( vmax, v2 );
  907. vmax = _mm256_max_ps( vmax, v3 );
  908. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  909. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  910. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  911. const float maxScalar = _mm_cvtss_f32( max4 );
  912. // Compute min for the block
  913. __m256 vmin;
  914. vmin = _mm256_min_ps( v0, v1 );
  915. vmin = _mm256_min_ps( vmin, v2 );
  916. vmin = _mm256_min_ps( vmin, v3 );
  917. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  918. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  919. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  920. const float minScalar = _mm_cvtss_f32( min4 );
  921. // Quantize these floats
  922. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].m = minScalar;
  925. y[i].d = d;
  926. // x = (x-min)*id
  927. const __m256 mul = _mm256_set1_ps( id );
  928. const __m256 off = _mm256_set1_ps( minScalar );
  929. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  930. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  931. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  932. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  933. // Round to nearest integer
  934. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  935. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  936. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  937. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  938. // Convert floats to integers
  939. __m256i i0 = _mm256_cvtps_epi32( v0 );
  940. __m256i i1 = _mm256_cvtps_epi32( v1 );
  941. __m256i i2 = _mm256_cvtps_epi32( v2 );
  942. __m256i i3 = _mm256_cvtps_epi32( v3 );
  943. // Convert int32 to int16
  944. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  945. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  946. // Convert int16 to int8
  947. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  948. // We got our precious signed bytes, but the order is now wrong
  949. // These AVX2 pack instructions process 16-byte pieces independently
  950. // The following instruction is fixing the order
  951. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  952. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  953. // Compress the vector into 4 bit/value, and store
  954. __m128i res = packNibbles( i0 );
  955. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  956. }
  957. #elif __ARM_NEON
  958. for (int i = 0; i < nb; i++) {
  959. float32x4_t srcv[8];
  960. float32x4_t minv[8];
  961. float32x4_t maxv[8];
  962. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  963. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  964. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  965. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  966. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  967. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  968. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  969. const float min = vminvq_f32(minv[0]);
  970. const float max = vmaxvq_f32(maxv[0]);
  971. const float d = (max - min) / ((1 << 4) - 1);
  972. const float id = d ? 1.0f/d : 0.0f;
  973. y[i].d = d;
  974. y[i].m = min;
  975. const float32x4_t minv0 = vdupq_n_f32(min);
  976. for (int l = 0; l < 8; l++) {
  977. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  978. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  979. const int32x4_t vi = vcvtq_s32_f32(vf);
  980. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  981. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  982. }
  983. }
  984. #else
  985. // scalar
  986. quantize_row_q4_1_reference(x, vy, k);
  987. #endif
  988. }
  989. // reference implementation for deterministic creation of model files
  990. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  991. assert(k % QK4_2 == 0);
  992. const int nb = k / QK4_2;
  993. for (int i = 0; i < nb; i++) {
  994. float amax = 0.0f; // absolute max
  995. float max = 0.0f;
  996. for (int l = 0; l < QK4_2; l++) {
  997. const float v = x[i*QK4_2 + l];
  998. if (amax < fabsf(v)) {
  999. amax = fabsf(v);
  1000. max = v;
  1001. }
  1002. }
  1003. const float d = max / -8;
  1004. const float id = d ? 1.0f/d : 0.0f;
  1005. y[i].d = GGML_FP32_TO_FP16(d);
  1006. for (int l = 0; l < QK4_2; l += 2) {
  1007. const float v0 = x[i*QK4_2 + l + 0]*id;
  1008. const float v1 = x[i*QK4_2 + l + 1]*id;
  1009. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1010. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1011. assert(vi0 < 16);
  1012. assert(vi1 < 16);
  1013. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1014. }
  1015. }
  1016. }
  1017. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1018. assert(k % QK4_2 == 0);
  1019. block_q4_2 * restrict y = vy;
  1020. quantize_row_q4_2_reference(x, y, k);
  1021. }
  1022. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1023. assert(k % QK4_3 == 0);
  1024. const int nb = k / QK4_3;
  1025. for (int i = 0; i < nb; i++) {
  1026. float min = FLT_MAX;
  1027. float max = -FLT_MAX;
  1028. for (int l = 0; l < QK4_3; l++) {
  1029. const float v = x[i*QK4_3 + l];
  1030. if (v < min) min = v;
  1031. if (v > max) max = v;
  1032. }
  1033. const float d = (max - min) / ((1 << 4) - 1);
  1034. const float id = d ? 1.0f/d : 0.0f;
  1035. y[i].d = GGML_FP32_TO_FP16(d);
  1036. y[i].m = GGML_FP32_TO_FP16(min);
  1037. for (int l = 0; l < QK4_3; l += 2) {
  1038. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1039. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1040. const uint8_t vi0 = (int) (v0 + 0.5f);
  1041. const uint8_t vi1 = (int) (v1 + 0.5f);
  1042. assert(vi0 < 16);
  1043. assert(vi1 < 16);
  1044. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1045. }
  1046. }
  1047. }
  1048. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1049. assert(k % QK4_3 == 0);
  1050. block_q4_3 * restrict y = vy;
  1051. quantize_row_q4_3_reference(x, y, k);
  1052. }
  1053. // reference implementation for deterministic creation of model files
  1054. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1055. assert(k % QK8_0 == 0);
  1056. const int nb = k / QK8_0;
  1057. for (int i = 0; i < nb; i++) {
  1058. float amax = 0.0f; // absolute max
  1059. for (int l = 0; l < QK8_0; l++) {
  1060. const float v = x[i*QK8_0 + l];
  1061. amax = MAX(amax, fabsf(v));
  1062. }
  1063. const float d = amax / ((1 << 7) - 1);
  1064. const float id = d ? 1.0f/d : 0.0f;
  1065. y[i].d = d;
  1066. for (int l = 0; l < QK8_0; ++l) {
  1067. const float v0 = x[i*QK8_0 + l]*id;
  1068. y[i].qs[l] = roundf(v0);
  1069. }
  1070. }
  1071. }
  1072. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1073. assert(k % QK8_0 == 0);
  1074. block_q8_0 * restrict y = vy;
  1075. quantize_row_q8_0_reference(x, y, k);
  1076. }
  1077. // reference implementation for deterministic creation of model files
  1078. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1079. assert(k % QK8_1 == 0);
  1080. const int nb = k / QK8_1;
  1081. for (int i = 0; i < nb; i++) {
  1082. float amax = 0.0f; // absolute max
  1083. for (int l = 0; l < QK8_1; l++) {
  1084. const float v = x[i*QK8_1 + l];
  1085. amax = MAX(amax, fabsf(v));
  1086. }
  1087. const float d = amax / ((1 << 7) - 1);
  1088. const float id = d ? 1.0f/d : 0.0f;
  1089. y[i].d = d;
  1090. int sum0 = 0;
  1091. int sum1 = 0;
  1092. for (int l = 0; l < QK8_1/2; ++l) {
  1093. const float v0 = x[i*QK8_1 + l]*id;
  1094. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1095. y[i].qs[ l] = roundf(v0);
  1096. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1097. sum0 += y[i].qs[ l];
  1098. sum1 += y[i].qs[QK8_1/2 + l];
  1099. }
  1100. y[i].s0 = d * sum0;
  1101. y[i].s1 = d * sum1;
  1102. }
  1103. }
  1104. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1105. assert(k % QK8_1 == 0);
  1106. const int nb = k / QK8_1;
  1107. block_q8_1 * restrict y = vy;
  1108. #if defined(__ARM_NEON)
  1109. for (int i = 0; i < nb; i++) {
  1110. float32x4_t srcv [8];
  1111. float32x4_t asrcv[8];
  1112. float32x4_t amaxv[8];
  1113. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1114. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1115. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1116. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1117. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1118. const float amax = vmaxvq_f32(amaxv[0]);
  1119. const float d = amax / ((1 << 7) - 1);
  1120. const float id = d ? 1.0f/d : 0.0f;
  1121. y[i].d = d;
  1122. int32x4_t accv0 = vdupq_n_s32(0);
  1123. int32x4_t accv1 = vdupq_n_s32(0);
  1124. // low half
  1125. for (int l = 0; l < 4; l++) {
  1126. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1127. const int32x4_t vi = vcvtnq_s32_f32(v);
  1128. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1129. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1130. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1131. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1132. accv0 = vaddq_s32(accv0, vi);
  1133. }
  1134. // high half
  1135. for (int l = 4; l < 8; l++) {
  1136. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1137. const int32x4_t vi = vcvtnq_s32_f32(v);
  1138. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1139. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1140. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1141. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1142. accv1 = vaddq_s32(accv1, vi);
  1143. }
  1144. const int32_t sum0 = vaddvq_s32(accv0);
  1145. const int32_t sum1 = vaddvq_s32(accv1);
  1146. y[i].s0 = d * sum0;
  1147. y[i].s1 = d * sum1;
  1148. }
  1149. #elif defined(__AVX2__) || defined(__AVX__)
  1150. for (int i = 0; i < nb; i++) {
  1151. // Load elements into 4 AVX vectors
  1152. __m256 v0 = _mm256_loadu_ps( x );
  1153. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1154. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1155. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1156. x += 32;
  1157. // Compute max(abs(e)) for the block
  1158. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1159. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1161. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1162. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1163. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1164. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1165. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1166. const float maxScalar = _mm_cvtss_f32( max4 );
  1167. // Quantize these floats
  1168. const float d = maxScalar / 127.f;
  1169. y[i].d = d;
  1170. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1171. const __m256 mul = _mm256_set1_ps( id );
  1172. // Apply the multiplier
  1173. v0 = _mm256_mul_ps( v0, mul );
  1174. v1 = _mm256_mul_ps( v1, mul );
  1175. v2 = _mm256_mul_ps( v2, mul );
  1176. v3 = _mm256_mul_ps( v3, mul );
  1177. // Round to nearest integer
  1178. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1179. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1180. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1181. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1182. // Convert floats to integers
  1183. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1184. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1185. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1186. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1187. #if defined(__AVX2__)
  1188. // Compute the sum of the quants and set y[i].s
  1189. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1190. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1191. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1192. // Convert int32 to int16
  1193. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1194. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1195. // Convert int16 to int8
  1196. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1197. // We got our precious signed bytes, but the order is now wrong
  1198. // These AVX2 pack instructions process 16-byte pieces independently
  1199. // The following instruction is fixing the order
  1200. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1201. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1202. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1203. #else
  1204. // Since we don't have in AVX some necessary functions,
  1205. // we split the registers in half and call AVX2 analogs from SSE
  1206. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1207. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1208. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1209. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1210. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1211. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1212. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1213. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1214. // Compute the sum of the quants and set y[i].s
  1215. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1216. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1217. y[i].s0 = d * hsum_i32_4(s0);
  1218. y[i].s1 = d * hsum_i32_4(s1);
  1219. // Convert int32 to int16
  1220. ni0 = _mm_packs_epi32( ni0, ni1 );
  1221. ni2 = _mm_packs_epi32( ni2, ni3 );
  1222. ni4 = _mm_packs_epi32( ni4, ni5 );
  1223. ni6 = _mm_packs_epi32( ni6, ni7 );
  1224. // Convert int16 to int8
  1225. ni0 = _mm_packs_epi16( ni0, ni2 );
  1226. ni4 = _mm_packs_epi16( ni4, ni6 );
  1227. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1228. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1229. #endif
  1230. }
  1231. #else
  1232. // scalar
  1233. quantize_row_q8_1_reference(x, y, k);
  1234. #endif
  1235. }
  1236. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1237. assert(k % QK4_0 == 0);
  1238. const int nb = k / QK4_0;
  1239. const block_q4_0 * restrict x = vx;
  1240. #if defined(__AVX2__)
  1241. for (int i = 0; i < nb; i++) {
  1242. // scale factor
  1243. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1244. const uint8_t * restrict pp = x[i].qs;
  1245. for (int l = 0; l < QK4_0; l += 32) {
  1246. // Load 32x4-bit integers into 32x8-bit integers
  1247. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1248. // Subtract 8 from the integers
  1249. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1250. // Convert to 16-bit int
  1251. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1252. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1253. // Convert to 32-bit int -> float 32
  1254. const __m256 vf[4] = {
  1255. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1256. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1257. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1258. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1259. };
  1260. // Scale and store
  1261. for (int j = 0; j < 4; j++) {
  1262. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1263. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1264. }
  1265. }
  1266. }
  1267. #elif defined(__ARM_NEON)
  1268. for (int i = 0; i < nb; i++) {
  1269. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1270. const uint8_t * restrict pp = x[i].qs;
  1271. for (int l = 0; l < QK4_0; l += 16) {
  1272. // Load 16x4-bit integers into 8x8-bit integers
  1273. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1274. // Expand 4-bit qs to 8-bit bytes
  1275. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1276. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1277. // Convert to signed 8-bit integers
  1278. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1279. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1280. // Subtract 8 from each byte
  1281. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1282. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1283. // Interleave and combine
  1284. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1285. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1286. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1287. // convert to 2x int16x8_t
  1288. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1289. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1290. // convert to 4x float32x4_t
  1291. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1292. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1293. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1294. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1295. // Multiply by d
  1296. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1297. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1298. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1299. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1300. // Store
  1301. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1302. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1303. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1304. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1305. }
  1306. }
  1307. #else
  1308. // scalar
  1309. for (int i = 0; i < nb; i++) {
  1310. const float d = x[i].d;
  1311. const uint8_t * restrict pp = x[i].qs;
  1312. for (int l = 0; l < QK4_0; l += 2) {
  1313. const uint8_t vi = pp[l/2];
  1314. const int8_t vi0 = vi & 0xf;
  1315. const int8_t vi1 = vi >> 4;
  1316. const float v0 = (vi0 - 8)*d;
  1317. const float v1 = (vi1 - 8)*d;
  1318. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1319. y[i*QK4_0 + l + 0] = v0;
  1320. y[i*QK4_0 + l + 1] = v1;
  1321. assert(!isnan(y[i*QK4_0 + l + 0]));
  1322. assert(!isnan(y[i*QK4_0 + l + 1]));
  1323. }
  1324. }
  1325. #endif
  1326. }
  1327. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1328. assert(k % QK4_1 == 0);
  1329. const int nb = k / QK4_1;
  1330. const block_q4_1 * restrict x = vx;
  1331. #if defined(__AVX2__)
  1332. for (int i = 0; i < nb; i++) {
  1333. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1334. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1335. const uint8_t * restrict pp = x[i].qs;
  1336. for (int l = 0; l < QK4_1; l += 32) {
  1337. // Load 32x4-bit integers into 32x8-bit integers
  1338. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1339. // Convert to 16-bit int
  1340. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1341. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1342. // Convert to 32-bit int -> float 32
  1343. const __m256 vf[4] = {
  1344. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1345. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1346. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1347. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1348. };
  1349. // Scale, add m and store
  1350. for (int j = 0; j < 4; j++) {
  1351. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1352. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1353. }
  1354. }
  1355. }
  1356. #elif defined(__ARM_NEON)
  1357. for (int i = 0; i < nb; i++) {
  1358. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1359. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1360. const uint8_t * restrict pp = x[i].qs;
  1361. for (int l = 0; l < QK4_1; l += 16) {
  1362. // Load 16x4-bit integers into 8x8-bit integers
  1363. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1364. // Expand 4-bit qs to 8-bit bytes
  1365. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1366. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1367. // Interleave and combine
  1368. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1369. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1370. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1371. // convert to 2x uint16x8_t
  1372. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1373. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1374. // convert to 4x float32x4_t
  1375. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1376. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1377. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1378. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1379. // multiply by d and add m
  1380. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1381. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1382. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1383. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1384. // Store
  1385. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1386. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1387. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1388. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1389. }
  1390. }
  1391. #else
  1392. for (int i = 0; i < nb; i++) {
  1393. const float d = x[i].d;
  1394. const float m = x[i].m;
  1395. const uint8_t * restrict pp = x[i].qs;
  1396. for (int l = 0; l < QK4_1; l += 2) {
  1397. const uint8_t vi = pp[l/2];
  1398. const int8_t vi0 = vi & 0xf;
  1399. const int8_t vi1 = vi >> 4;
  1400. const float v0 = vi0*d + m;
  1401. const float v1 = vi1*d + m;
  1402. y[i*QK4_1 + l + 0] = v0;
  1403. y[i*QK4_1 + l + 1] = v1;
  1404. assert(!isnan(y[i*QK4_1 + l + 0]));
  1405. assert(!isnan(y[i*QK4_1 + l + 1]));
  1406. }
  1407. }
  1408. #endif
  1409. }
  1410. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1411. assert(k % QK4_2 == 0);
  1412. const int nb = k / QK4_2;
  1413. const block_q4_2 * restrict x = vx;
  1414. for (int i = 0; i < nb; i++) {
  1415. const float d = GGML_FP16_TO_FP32(x[i].d);
  1416. const uint8_t * restrict pp = x[i].qs;
  1417. for (int l = 0; l < QK4_2; l += 2) {
  1418. const uint8_t vi = pp[l/2];
  1419. const int8_t vi0 = vi & 0xf;
  1420. const int8_t vi1 = vi >> 4;
  1421. const float v0 = (vi0 - 8)*d;
  1422. const float v1 = (vi1 - 8)*d;
  1423. y[i*QK4_2 + l + 0] = v0;
  1424. y[i*QK4_2 + l + 1] = v1;
  1425. assert(!isnan(y[i*QK4_2 + l + 0]));
  1426. assert(!isnan(y[i*QK4_2 + l + 1]));
  1427. }
  1428. }
  1429. }
  1430. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1431. assert(k % QK4_3 == 0);
  1432. const int nb = k / QK4_3;
  1433. const block_q4_3 * restrict x = vx;
  1434. for (int i = 0; i < nb; i++) {
  1435. const float d = GGML_FP16_TO_FP32(x[i].d);
  1436. const float m = GGML_FP16_TO_FP32(x[i].m);
  1437. const uint8_t * restrict pp = x[i].qs;
  1438. for (int l = 0; l < QK4_3; l += 2) {
  1439. const uint8_t vi = pp[l/2];
  1440. const int8_t vi0 = vi & 0xf;
  1441. const int8_t vi1 = vi >> 4;
  1442. const float v0 = vi0*d + m;
  1443. const float v1 = vi1*d + m;
  1444. y[i*QK4_3 + l + 0] = v0;
  1445. y[i*QK4_3 + l + 1] = v1;
  1446. assert(!isnan(y[i*QK4_3 + l + 0]));
  1447. assert(!isnan(y[i*QK4_3 + l + 1]));
  1448. }
  1449. }
  1450. }
  1451. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1452. assert(k % QK8_0 == 0);
  1453. const int nb = k / QK8_0;
  1454. const block_q8_0 * restrict x = vx;
  1455. for (int i = 0; i < nb; i++) {
  1456. const float d = x[i].d;
  1457. const int8_t * restrict pp = x[i].qs;
  1458. for (int l = 0; l < QK8_0; ++l) {
  1459. y[i*QK8_0 + l] = pp[l]*d;
  1460. }
  1461. }
  1462. }
  1463. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1464. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1465. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1466. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1467. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1468. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1469. [GGML_TYPE_Q4_0] = {
  1470. .dequantize_row_q = dequantize_row_q4_0,
  1471. .quantize_row_q = quantize_row_q4_0,
  1472. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1473. .quantize_row_q_dot = quantize_row_q8_0,
  1474. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1475. .vec_dot_type = GGML_TYPE_Q8_0,
  1476. },
  1477. [GGML_TYPE_Q4_1] = {
  1478. .dequantize_row_q = dequantize_row_q4_1,
  1479. .quantize_row_q = quantize_row_q4_1,
  1480. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1481. .quantize_row_q_dot = quantize_row_q8_1,
  1482. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1483. .vec_dot_type = GGML_TYPE_Q8_1,
  1484. },
  1485. [GGML_TYPE_Q4_2] = {
  1486. .dequantize_row_q = dequantize_row_q4_2,
  1487. .quantize_row_q = quantize_row_q4_2,
  1488. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1489. .quantize_row_q_dot = quantize_row_q8_0,
  1490. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1491. .vec_dot_type = GGML_TYPE_Q8_0,
  1492. },
  1493. [GGML_TYPE_Q4_3] = {
  1494. .dequantize_row_q = dequantize_row_q4_3,
  1495. .quantize_row_q = quantize_row_q4_3,
  1496. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1497. .quantize_row_q_dot = quantize_row_q8_1,
  1498. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1499. .vec_dot_type = GGML_TYPE_Q8_1,
  1500. },
  1501. [GGML_TYPE_Q8_0] = {
  1502. .dequantize_row_q = dequantize_row_q8_0,
  1503. .quantize_row_q = quantize_row_q8_0,
  1504. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1505. .quantize_row_q_dot = quantize_row_q8_0,
  1506. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1507. .vec_dot_type = GGML_TYPE_Q8_0,
  1508. },
  1509. [GGML_TYPE_Q8_1] = {
  1510. .dequantize_row_q = NULL, // TODO
  1511. .quantize_row_q = quantize_row_q8_1,
  1512. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1513. .quantize_row_q_dot = quantize_row_q8_1,
  1514. .vec_dot_q = NULL, // TODO
  1515. .vec_dot_type = GGML_TYPE_Q8_1,
  1516. },
  1517. };
  1518. // For internal test use
  1519. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1520. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1521. return quantize_fns[i];
  1522. }
  1523. //
  1524. // simd mappings
  1525. //
  1526. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1527. // we then implement the fundamental computation operations below using only these macros
  1528. // adding support for new architectures requires to define the corresponding SIMD macros
  1529. //
  1530. // GGML_F32_STEP / GGML_F16_STEP
  1531. // number of elements to process in a single step
  1532. //
  1533. // GGML_F32_EPR / GGML_F16_EPR
  1534. // number of elements to fit in a single register
  1535. //
  1536. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1537. #define GGML_SIMD
  1538. // F32 NEON
  1539. #define GGML_F32_STEP 16
  1540. #define GGML_F32_EPR 4
  1541. #define GGML_F32x4 float32x4_t
  1542. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1543. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1544. #define GGML_F32x4_LOAD vld1q_f32
  1545. #define GGML_F32x4_STORE vst1q_f32
  1546. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1547. #define GGML_F32x4_ADD vaddq_f32
  1548. #define GGML_F32x4_MUL vmulq_f32
  1549. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1550. #define GGML_F32x4_REDUCE(res, x) \
  1551. { \
  1552. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1553. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1554. } \
  1555. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1556. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1557. } \
  1558. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1559. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1560. } \
  1561. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1562. }
  1563. #define GGML_F32_VEC GGML_F32x4
  1564. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1565. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1566. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1567. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1568. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1569. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1570. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1571. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1572. // F16 NEON
  1573. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1574. #define GGML_F16_STEP 32
  1575. #define GGML_F16_EPR 8
  1576. #define GGML_F16x8 float16x8_t
  1577. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1578. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1579. #define GGML_F16x8_LOAD vld1q_f16
  1580. #define GGML_F16x8_STORE vst1q_f16
  1581. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1582. #define GGML_F16x8_ADD vaddq_f16
  1583. #define GGML_F16x8_MUL vmulq_f16
  1584. #define GGML_F16x8_REDUCE(res, x) \
  1585. { \
  1586. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1587. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1588. } \
  1589. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1590. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1591. } \
  1592. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1593. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1594. } \
  1595. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1596. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1597. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1598. }
  1599. #define GGML_F16_VEC GGML_F16x8
  1600. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1601. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1602. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1603. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1604. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1605. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1606. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1607. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1608. #else
  1609. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1610. // and take advantage of the vcvt_ functions to convert to/from FP16
  1611. #define GGML_F16_STEP 16
  1612. #define GGML_F16_EPR 4
  1613. #define GGML_F32Cx4 float32x4_t
  1614. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1615. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1616. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1617. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1618. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1619. #define GGML_F32Cx4_ADD vaddq_f32
  1620. #define GGML_F32Cx4_MUL vmulq_f32
  1621. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1622. #define GGML_F16_VEC GGML_F32Cx4
  1623. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1624. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1625. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1626. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1627. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1628. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1629. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1630. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1631. #endif
  1632. #elif defined(__AVX__)
  1633. #define GGML_SIMD
  1634. // F32 AVX
  1635. #define GGML_F32_STEP 32
  1636. #define GGML_F32_EPR 8
  1637. #define GGML_F32x8 __m256
  1638. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1639. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1640. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1641. #define GGML_F32x8_STORE _mm256_storeu_ps
  1642. #if defined(__FMA__)
  1643. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1644. #else
  1645. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1646. #endif
  1647. #define GGML_F32x8_ADD _mm256_add_ps
  1648. #define GGML_F32x8_MUL _mm256_mul_ps
  1649. #define GGML_F32x8_REDUCE(res, x) \
  1650. { \
  1651. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1652. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1653. } \
  1654. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1655. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1656. } \
  1657. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1658. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1659. } \
  1660. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1661. _mm256_extractf128_ps(x[0], 1)); \
  1662. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1663. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1664. }
  1665. // TODO: is this optimal ?
  1666. #define GGML_F32_VEC GGML_F32x8
  1667. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1668. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1669. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1670. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1671. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1672. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1673. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1674. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1675. // F16 AVX
  1676. #define GGML_F16_STEP 32
  1677. #define GGML_F16_EPR 8
  1678. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1679. #define GGML_F32Cx8 __m256
  1680. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1681. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1682. #if defined(__F16C__)
  1683. // the _mm256_cvt intrinsics require F16C
  1684. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1685. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1686. #else
  1687. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1688. float tmp[8];
  1689. for (int i = 0; i < 8; i++)
  1690. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1691. return _mm256_loadu_ps(tmp);
  1692. }
  1693. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1694. float arr[8];
  1695. _mm256_storeu_ps(arr, y);
  1696. for (int i = 0; i < 8; i++)
  1697. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1698. }
  1699. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1700. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1701. #endif
  1702. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1703. #define GGML_F32Cx8_ADD _mm256_add_ps
  1704. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1705. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1706. #define GGML_F16_VEC GGML_F32Cx8
  1707. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1708. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1709. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1710. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1711. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1712. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1713. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1714. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1715. #elif defined(__POWER9_VECTOR__)
  1716. #define GGML_SIMD
  1717. // F32 POWER9
  1718. #define GGML_F32_STEP 32
  1719. #define GGML_F32_EPR 4
  1720. #define GGML_F32x4 vector float
  1721. #define GGML_F32x4_ZERO 0.0f
  1722. #define GGML_F32x4_SET1 vec_splats
  1723. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1724. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1725. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1726. #define GGML_F32x4_ADD vec_add
  1727. #define GGML_F32x4_MUL vec_mul
  1728. #define GGML_F32x4_REDUCE(res, x) \
  1729. { \
  1730. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1731. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1732. } \
  1733. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1734. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1735. } \
  1736. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1737. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1738. } \
  1739. res = vec_extract(x[0], 0) + \
  1740. vec_extract(x[0], 1) + \
  1741. vec_extract(x[0], 2) + \
  1742. vec_extract(x[0], 3); \
  1743. }
  1744. #define GGML_F32_VEC GGML_F32x4
  1745. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1746. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1747. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1748. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1749. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1750. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1751. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1752. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1753. // F16 POWER9
  1754. #define GGML_F16_STEP GGML_F32_STEP
  1755. #define GGML_F16_EPR GGML_F32_EPR
  1756. #define GGML_F16_VEC GGML_F32x4
  1757. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1758. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1759. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1760. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1761. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1762. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1763. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1764. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1765. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1766. #define GGML_F16_VEC_STORE(p, r, i) \
  1767. if (i & 0x1) \
  1768. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1769. r[i - GGML_ENDIAN_BYTE(0)]), \
  1770. 0, p - GGML_F16_EPR)
  1771. #elif defined(__wasm_simd128__)
  1772. #define GGML_SIMD
  1773. // F32 WASM
  1774. #define GGML_F32_STEP 16
  1775. #define GGML_F32_EPR 4
  1776. #define GGML_F32x4 v128_t
  1777. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1778. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1779. #define GGML_F32x4_LOAD wasm_v128_load
  1780. #define GGML_F32x4_STORE wasm_v128_store
  1781. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1782. #define GGML_F32x4_ADD wasm_f32x4_add
  1783. #define GGML_F32x4_MUL wasm_f32x4_mul
  1784. #define GGML_F32x4_REDUCE(res, x) \
  1785. { \
  1786. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1787. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1788. } \
  1789. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1790. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1791. } \
  1792. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1793. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1794. } \
  1795. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1796. wasm_f32x4_extract_lane(x[0], 1) + \
  1797. wasm_f32x4_extract_lane(x[0], 2) + \
  1798. wasm_f32x4_extract_lane(x[0], 3); \
  1799. }
  1800. #define GGML_F32_VEC GGML_F32x4
  1801. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1802. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1803. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1804. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1805. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1806. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1807. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1808. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1809. // F16 WASM
  1810. #define GGML_F16_STEP 16
  1811. #define GGML_F16_EPR 4
  1812. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1813. float tmp[4];
  1814. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1815. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1816. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1817. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1818. return wasm_v128_load(tmp);
  1819. }
  1820. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1821. float tmp[4];
  1822. wasm_v128_store(tmp, x);
  1823. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1824. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1825. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1826. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1827. }
  1828. #define GGML_F16x4 v128_t
  1829. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1830. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1831. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1832. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1833. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1834. #define GGML_F16x4_ADD wasm_f32x4_add
  1835. #define GGML_F16x4_MUL wasm_f32x4_mul
  1836. #define GGML_F16x4_REDUCE(res, x) \
  1837. { \
  1838. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1839. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1840. } \
  1841. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1842. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1843. } \
  1844. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1845. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1846. } \
  1847. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1848. wasm_f32x4_extract_lane(x[0], 1) + \
  1849. wasm_f32x4_extract_lane(x[0], 2) + \
  1850. wasm_f32x4_extract_lane(x[0], 3); \
  1851. }
  1852. #define GGML_F16_VEC GGML_F16x4
  1853. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1854. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1855. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1856. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1857. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1858. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1859. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1860. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1861. #elif defined(__SSE3__)
  1862. #define GGML_SIMD
  1863. // F32 SSE
  1864. #define GGML_F32_STEP 32
  1865. #define GGML_F32_EPR 4
  1866. #define GGML_F32x4 __m128
  1867. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1868. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1869. #define GGML_F32x4_LOAD _mm_loadu_ps
  1870. #define GGML_F32x4_STORE _mm_storeu_ps
  1871. #if defined(__FMA__)
  1872. // TODO: Does this work?
  1873. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1874. #else
  1875. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1876. #endif
  1877. #define GGML_F32x4_ADD _mm_add_ps
  1878. #define GGML_F32x4_MUL _mm_mul_ps
  1879. #define GGML_F32x4_REDUCE(res, x) \
  1880. { \
  1881. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1882. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1883. } \
  1884. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1885. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1886. } \
  1887. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1888. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1889. } \
  1890. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1891. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1892. }
  1893. // TODO: is this optimal ?
  1894. #define GGML_F32_VEC GGML_F32x4
  1895. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1896. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1897. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1898. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1899. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1900. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1901. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1902. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1903. // F16 SSE
  1904. #define GGML_F16_STEP 32
  1905. #define GGML_F16_EPR 4
  1906. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1907. float tmp[4];
  1908. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1909. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1910. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1911. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1912. return _mm_loadu_ps(tmp);
  1913. }
  1914. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1915. float arr[4];
  1916. _mm_storeu_ps(arr, y);
  1917. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1918. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1919. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1920. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1921. }
  1922. #define GGML_F32Cx4 __m128
  1923. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1924. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1925. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1926. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1927. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1928. #define GGML_F32Cx4_ADD _mm_add_ps
  1929. #define GGML_F32Cx4_MUL _mm_mul_ps
  1930. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1931. #define GGML_F16_VEC GGML_F32Cx4
  1932. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1933. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1934. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1935. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1936. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1937. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1938. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1939. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1940. #endif
  1941. // GGML_F32_ARR / GGML_F16_ARR
  1942. // number of registers to use per step
  1943. #ifdef GGML_SIMD
  1944. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1945. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1946. #endif
  1947. //
  1948. // fundamental operations
  1949. //
  1950. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1951. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1952. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1953. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1954. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1955. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1956. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1957. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1958. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1959. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1960. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1961. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1962. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1963. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1964. #ifdef GGML_SIMD
  1965. float sumf = 0.0f;
  1966. const int np = (n & ~(GGML_F32_STEP - 1));
  1967. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1968. GGML_F32_VEC ax[GGML_F32_ARR];
  1969. GGML_F32_VEC ay[GGML_F32_ARR];
  1970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1971. for (int j = 0; j < GGML_F32_ARR; j++) {
  1972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1974. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1975. }
  1976. }
  1977. // reduce sum0..sum3 to sum0
  1978. GGML_F32_VEC_REDUCE(sumf, sum);
  1979. // leftovers
  1980. for (int i = np; i < n; ++i) {
  1981. sumf += x[i]*y[i];
  1982. }
  1983. #else
  1984. // scalar
  1985. ggml_float sumf = 0.0;
  1986. for (int i = 0; i < n; ++i) {
  1987. sumf += (ggml_float)(x[i]*y[i]);
  1988. }
  1989. #endif
  1990. *s = sumf;
  1991. }
  1992. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1993. ggml_float sumf = 0.0;
  1994. #if defined(GGML_SIMD)
  1995. const int np = (n & ~(GGML_F16_STEP - 1));
  1996. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1997. GGML_F16_VEC ax[GGML_F16_ARR];
  1998. GGML_F16_VEC ay[GGML_F16_ARR];
  1999. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2000. for (int j = 0; j < GGML_F16_ARR; j++) {
  2001. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2002. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2003. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2004. }
  2005. }
  2006. // reduce sum0..sum3 to sum0
  2007. GGML_F16_VEC_REDUCE(sumf, sum);
  2008. // leftovers
  2009. for (int i = np; i < n; ++i) {
  2010. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2011. }
  2012. #else
  2013. for (int i = 0; i < n; ++i) {
  2014. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2015. }
  2016. #endif
  2017. *s = sumf;
  2018. }
  2019. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2020. const int nb = n / QK8_0;
  2021. assert(n % QK8_0 == 0);
  2022. assert(nb % 2 == 0);
  2023. const block_q4_0 * restrict x = vx;
  2024. const block_q8_0 * restrict y = vy;
  2025. #if defined(__ARM_NEON)
  2026. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2027. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2028. for (int i = 0; i < nb; i += 2) {
  2029. const block_q4_0 * restrict x0 = &x[i + 0];
  2030. const block_q4_0 * restrict x1 = &x[i + 1];
  2031. const block_q8_0 * restrict y0 = &y[i + 0];
  2032. const block_q8_0 * restrict y1 = &y[i + 1];
  2033. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2034. const int8x16_t s8b = vdupq_n_s8(0x8);
  2035. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2036. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2037. // 4-bit -> 8-bit
  2038. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2039. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2040. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2041. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2042. // sub 8
  2043. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2044. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2045. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2046. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2047. // load y
  2048. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2049. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2050. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2051. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2052. // interleave
  2053. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2054. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2055. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2056. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2057. #if defined(__ARM_FEATURE_DOTPROD)
  2058. // dot product into int32x4_t
  2059. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2060. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2061. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2062. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2063. #else
  2064. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2065. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2066. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2067. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2068. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2069. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2070. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2071. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2072. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2073. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2074. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2075. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2076. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2077. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2078. #endif
  2079. }
  2080. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2081. #elif defined(__AVX2__)
  2082. // Initialize accumulator with zeros
  2083. __m256 acc = _mm256_setzero_ps();
  2084. // Main loop
  2085. for (int i = 0; i < nb; ++i) {
  2086. /* Compute combined scale for the block */
  2087. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2088. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2089. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2090. const __m256i off = _mm256_set1_epi8( 8 );
  2091. bx = _mm256_sub_epi8( bx, off );
  2092. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2093. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2094. /* Multiply q with scale and accumulate */
  2095. acc = _mm256_fmadd_ps( d, q, acc );
  2096. }
  2097. *s = hsum_float_8(acc);
  2098. #elif defined(__AVX__)
  2099. // Initialize accumulator with zeros
  2100. __m256 acc = _mm256_setzero_ps();
  2101. // Main loop
  2102. for (int i = 0; i < nb; ++i) {
  2103. // Compute combined scale for the block
  2104. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2105. __m128i i32[2];
  2106. for (int j = 0; j < 2; ++j) {
  2107. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2108. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2109. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2110. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2111. const __m128i off = _mm_set1_epi8( 8 );
  2112. bx = _mm_sub_epi8( bx, off );
  2113. // Get absolute values of x vectors
  2114. const __m128i ax = _mm_sign_epi8(bx, bx);
  2115. // Sign the values of the y vectors
  2116. const __m128i sy = _mm_sign_epi8(by, bx);
  2117. // Perform multiplication and create 16-bit values
  2118. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2119. const __m128i ones = _mm_set1_epi16(1);
  2120. i32[j] = _mm_madd_epi16(ones, dot);
  2121. }
  2122. // Convert int32_t to float
  2123. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2124. // Apply the scale, and accumulate
  2125. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2126. }
  2127. *s = hsum_float_8(acc);
  2128. #else
  2129. // scalar
  2130. float sumf = 0.0;
  2131. for (int i = 0; i < nb; i++) {
  2132. const float d0 = x[i].d;
  2133. const float d1 = y[i].d;
  2134. const uint8_t * restrict p0 = x[i].qs;
  2135. const int8_t * restrict p1 = y[i].qs;
  2136. int sumi = 0;
  2137. for (int j = 0; j < QK8_0/2; j++) {
  2138. const uint8_t v0 = p0[j];
  2139. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2140. const int i1 = (int8_t) (v0 >> 4) - 8;
  2141. const int i2 = p1[2*j + 0];
  2142. const int i3 = p1[2*j + 1];
  2143. sumi += i0*i2 + i1*i3;
  2144. }
  2145. sumf += d0*d1*sumi;
  2146. }
  2147. *s = sumf;
  2148. #endif
  2149. }
  2150. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2151. const int nb = n / QK8_1;
  2152. assert(n % QK8_1 == 0);
  2153. assert(nb % 2 == 0);
  2154. const block_q4_1 * restrict x = vx;
  2155. const block_q8_1 * restrict y = vy;
  2156. // TODO: add AVX / WASM SIMD / etc
  2157. #if defined(__ARM_NEON)
  2158. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2159. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2160. float summs = 0;
  2161. for (int i = 0; i < nb; i += 2) {
  2162. const block_q4_1 * restrict x0 = &x[i + 0];
  2163. const block_q4_1 * restrict x1 = &x[i + 1];
  2164. const block_q8_1 * restrict y0 = &y[i + 0];
  2165. const block_q8_1 * restrict y1 = &y[i + 1];
  2166. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2167. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2168. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2169. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2170. // 4-bit -> 8-bit
  2171. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2172. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2173. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2174. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2175. // interleave
  2176. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2177. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2178. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2179. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2180. // load y
  2181. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2182. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2183. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2184. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2185. #if defined(__ARM_FEATURE_DOTPROD)
  2186. // dot product into int32x4_t
  2187. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2188. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2189. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2190. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2191. #else
  2192. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2193. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2194. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2195. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2196. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2197. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2198. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2199. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2200. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2201. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2202. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2203. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2204. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2205. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2206. #endif
  2207. }
  2208. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2209. #elif defined(__AVX2__)
  2210. // Initialize accumulator with zeros
  2211. __m256 acc = _mm256_setzero_ps();
  2212. float summs = 0;
  2213. // Main loop
  2214. for (int i = 0; i < nb; ++i) {
  2215. const float * d0 = &x[i].d;
  2216. const float * d1 = &y[i].d;
  2217. summs += x[i].m * (y[i].s0 + y[i].s1);
  2218. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2219. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2220. // Compute combined scales
  2221. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2222. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2223. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2224. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2225. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2226. // Accumulate d0*d1*x*y
  2227. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2228. }
  2229. *s = hsum_float_8(acc) + summs;
  2230. #else
  2231. // scalar
  2232. float sumf = 0.0;
  2233. for (int i = 0; i < nb; i++) {
  2234. const float d0 = x[i].d;
  2235. const float m0 = x[i].m;
  2236. const float d1 = y[i].d;
  2237. const uint8_t * restrict p0 = x[i].qs;
  2238. const int8_t * restrict p1 = y[i].qs;
  2239. // TODO: this is very slow ..
  2240. for (int j = 0; j < QK8_1/2; j++) {
  2241. const uint8_t v0 = p0[j];
  2242. const float f0 = d0*(v0 & 0xf) + m0;
  2243. const float f1 = d0*(v0 >> 4) + m0;
  2244. const float f2 = d1*p1[2*j + 0];
  2245. const float f3 = d1*p1[2*j + 1];
  2246. sumf += f0*f2 + f1*f3;
  2247. }
  2248. }
  2249. *s = sumf;
  2250. #endif
  2251. }
  2252. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2253. const int nb = n / QK8_0;
  2254. assert(n % QK8_0 == 0);
  2255. assert(nb % 2 == 0);
  2256. assert(QK8_0 == 2*QK4_2);
  2257. const block_q4_2 * restrict x = vx;
  2258. const block_q8_0 * restrict y = vy;
  2259. #if defined(__ARM_NEON)
  2260. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2261. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2262. for (int i = 0; i < nb; i += 2) {
  2263. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2264. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2265. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2266. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2267. const block_q8_0 * restrict y0 = &y[i + 0];
  2268. const block_q8_0 * restrict y1 = &y[i + 1];
  2269. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2270. const int8x16_t s8b = vdupq_n_s8(0x8);
  2271. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2272. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2273. // 4-bit -> 8-bit
  2274. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2275. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2276. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2277. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2278. // sub 8
  2279. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2280. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2281. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2282. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2283. // interleave
  2284. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2285. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2286. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2287. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2288. // load y
  2289. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2290. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2291. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2292. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2293. #if defined(__ARM_FEATURE_DOTPROD)
  2294. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2295. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2296. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2297. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2298. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2299. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2300. #else
  2301. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2302. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2303. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2304. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2305. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2306. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2307. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2308. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2309. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2310. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2311. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2312. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2313. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2314. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2315. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2316. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2317. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2318. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2319. #endif
  2320. }
  2321. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2322. #elif defined(__AVX2__)
  2323. // Initialize accumulator with zeros
  2324. __m256 acc = _mm256_setzero_ps();
  2325. // Main loop
  2326. for (int i = 0; i < nb; i++) {
  2327. /* Compute combined scale for the block */
  2328. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2329. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2330. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2331. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2332. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2333. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2334. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2335. const __m256i off = _mm256_set1_epi8(8);
  2336. bx = _mm256_sub_epi8(bx, off);
  2337. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2338. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2339. /* Multiply q with scale and accumulate */
  2340. acc = _mm256_fmadd_ps(d, q, acc);
  2341. }
  2342. *s = hsum_float_8(acc);
  2343. #else
  2344. // scalar
  2345. float sumf = 0.0;
  2346. for (int i = 0; i < nb; i++) {
  2347. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2348. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2349. const int8_t * restrict y0 = y[i].qs;
  2350. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2351. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2352. int sumi_0 = 0;
  2353. int sumi_1 = 0;
  2354. for (int j = 0; j < QK8_0/4; j++) {
  2355. const uint8_t v0 = x0[j];
  2356. const uint8_t v1 = x1[j];
  2357. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2358. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2359. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2360. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2361. const int i2_0 = y0[2*j + 0];
  2362. const int i3_0 = y0[2*j + 1];
  2363. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2364. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2365. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2366. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2367. }
  2368. sumf += (d0 * y[i].d) * sumi_0;
  2369. sumf += (d1 * y[i].d) * sumi_1;
  2370. }
  2371. *s = sumf;
  2372. #endif
  2373. }
  2374. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2375. const int nb = n / QK8_1;
  2376. assert(n % QK8_1 == 0);
  2377. assert(nb % 2 == 0);
  2378. assert(QK8_1 == 2*QK4_3);
  2379. const block_q4_3 * restrict x = vx;
  2380. const block_q8_1 * restrict y = vy;
  2381. #if defined(__ARM_NEON)
  2382. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2383. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2384. float summs0 = 0.0f;
  2385. float summs1 = 0.0f;
  2386. for (int i = 0; i < nb; ++i) {
  2387. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2388. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2389. const block_q8_1 * restrict y0 = &y[i + 0];
  2390. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2391. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2392. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2393. // 4-bit -> 8-bit
  2394. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0xf)));
  2395. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2396. // interleave
  2397. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2398. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2399. // load y
  2400. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2401. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2402. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2403. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2404. #if defined(__ARM_FEATURE_DOTPROD)
  2405. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2406. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2407. #else
  2408. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2409. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2410. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2411. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2412. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2413. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2414. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2415. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2416. #endif
  2417. }
  2418. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2419. #elif defined(__AVX2__)
  2420. // Initialize accumulator with zeros
  2421. __m256 acc = _mm256_setzero_ps();
  2422. float summs = 0.0f;
  2423. // Main loop
  2424. for (int i = 0; i < nb; i++) {
  2425. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2426. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2427. const __m256 dx = _mm256_set_m128(d1, d0);
  2428. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2429. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2430. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2431. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2432. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2433. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2434. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2435. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2436. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2437. }
  2438. *s = hsum_float_8(acc) + summs;
  2439. #else
  2440. // scalar
  2441. float sumf = 0.0;
  2442. for (int i = 0; i < nb; i++) {
  2443. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2444. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2445. const int8_t * restrict y0 = y[i].qs;
  2446. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2447. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2448. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2449. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2450. int sxy_0 = 0;
  2451. int sxy_1 = 0;
  2452. for (int j = 0; j < QK8_1/4; j++) {
  2453. const uint8_t v0 = x0[j];
  2454. const uint8_t v1 = x1[j];
  2455. const int x0_0 = v0 & 0xf;
  2456. const int x1_0 = v0 >> 4;
  2457. const int x0_1 = v1 & 0xf;
  2458. const int x1_1 = v1 >> 4;
  2459. const int y0_0 = y0[2*j + 0];
  2460. const int y1_0 = y0[2*j + 1];
  2461. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2462. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2463. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2464. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2465. }
  2466. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2467. }
  2468. *s = sumf;
  2469. #endif
  2470. }
  2471. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2472. const int nb = n / QK8_0;
  2473. assert(n % QK8_0 == 0);
  2474. assert(nb % 2 == 0);
  2475. assert(QK8_0 == QK8_0);
  2476. const block_q8_0 * restrict x = vx;
  2477. const block_q8_0 * restrict y = vy;
  2478. #if defined(__ARM_NEON)
  2479. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2480. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2481. for (int i = 0; i < nb; i += 2) {
  2482. const block_q8_0 * restrict x0 = &x[i + 0];
  2483. const block_q8_0 * restrict x1 = &x[i + 1];
  2484. const block_q8_0 * restrict y0 = &y[i + 0];
  2485. const block_q8_0 * restrict y1 = &y[i + 1];
  2486. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2487. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2488. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2489. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2490. // load y
  2491. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2492. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2493. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2494. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2495. #if defined(__ARM_FEATURE_DOTPROD)
  2496. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2497. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2498. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2499. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2500. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2501. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2502. #else
  2503. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2504. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2505. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2506. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2507. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2508. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2509. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2510. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2511. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2512. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2513. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2514. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2515. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2516. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2517. #endif
  2518. }
  2519. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2520. #else
  2521. // scalar
  2522. float sumf = 0.0;
  2523. for (int i = 0; i < nb; i++) {
  2524. const int8_t * restrict x0 = x[i].qs;
  2525. const int8_t * restrict y0 = y[i].qs;
  2526. int sumi = 0;
  2527. for (int j = 0; j < QK8_0; j++) {
  2528. const int v0 = x0[j];
  2529. const int v1 = y0[j];
  2530. sumi += v0*v1;
  2531. }
  2532. sumf += (x[i].d*y[i].d)*sumi;
  2533. }
  2534. *s = sumf;
  2535. #endif
  2536. }
  2537. // compute GGML_VEC_DOT_UNROLL dot products at once
  2538. // xs - x row stride in bytes
  2539. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2540. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2541. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2542. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2543. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2544. }
  2545. #if defined(GGML_SIMD)
  2546. const int np = (n & ~(GGML_F16_STEP - 1));
  2547. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2548. GGML_F16_VEC ax[GGML_F16_ARR];
  2549. GGML_F16_VEC ay[GGML_F16_ARR];
  2550. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2551. for (int j = 0; j < GGML_F16_ARR; j++) {
  2552. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2553. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2554. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2555. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2556. }
  2557. }
  2558. }
  2559. // reduce sum0..sum3 to sum0
  2560. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2561. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2562. }
  2563. // leftovers
  2564. for (int i = np; i < n; ++i) {
  2565. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2566. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2567. }
  2568. }
  2569. #else
  2570. for (int i = 0; i < n; ++i) {
  2571. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2572. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2573. }
  2574. }
  2575. #endif
  2576. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2577. s[i] = sumf[i];
  2578. }
  2579. }
  2580. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2581. #if defined(GGML_SIMD)
  2582. const int np = (n & ~(GGML_F32_STEP - 1));
  2583. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2584. GGML_F32_VEC ax[GGML_F32_ARR];
  2585. GGML_F32_VEC ay[GGML_F32_ARR];
  2586. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2587. for (int j = 0; j < GGML_F32_ARR; j++) {
  2588. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2589. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2590. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2591. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2592. }
  2593. }
  2594. // leftovers
  2595. for (int i = np; i < n; ++i) {
  2596. y[i] += x[i]*v;
  2597. }
  2598. #else
  2599. // scalar
  2600. for (int i = 0; i < n; ++i) {
  2601. y[i] += x[i]*v;
  2602. }
  2603. #endif
  2604. }
  2605. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2606. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2607. #if defined(GGML_SIMD)
  2608. const int np = (n & ~(GGML_F32_STEP - 1));
  2609. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2610. GGML_F32_VEC ay[GGML_F32_ARR];
  2611. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2612. for (int j = 0; j < GGML_F32_ARR; j++) {
  2613. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2614. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2615. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2616. }
  2617. }
  2618. // leftovers
  2619. for (int i = np; i < n; ++i) {
  2620. y[i] *= v;
  2621. }
  2622. #else
  2623. // scalar
  2624. for (int i = 0; i < n; ++i) {
  2625. y[i] *= v;
  2626. }
  2627. #endif
  2628. }
  2629. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2630. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2631. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2632. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2633. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2634. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2635. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2636. static const float GELU_COEF_A = 0.044715f;
  2637. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2638. inline static float ggml_gelu_f32(float x) {
  2639. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2640. }
  2641. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2642. const uint16_t * i16 = (const uint16_t *) x;
  2643. for (int i = 0; i < n; ++i) {
  2644. y[i] = table_gelu_f16[i16[i]];
  2645. }
  2646. }
  2647. #ifdef GGML_GELU_FP16
  2648. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2649. uint16_t t;
  2650. for (int i = 0; i < n; ++i) {
  2651. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2652. memcpy(&t, &fp16, sizeof(uint16_t));
  2653. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2654. }
  2655. }
  2656. #else
  2657. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2658. for (int i = 0; i < n; ++i) {
  2659. y[i] = ggml_gelu_f32(x[i]);
  2660. }
  2661. }
  2662. #endif
  2663. // Sigmoid Linear Unit (SiLU) function
  2664. inline static float ggml_silu_f32(float x) {
  2665. return x/(1.0f + expf(-x));
  2666. }
  2667. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2668. const uint16_t * i16 = (const uint16_t *) x;
  2669. for (int i = 0; i < n; ++i) {
  2670. y[i] = table_silu_f16[i16[i]];
  2671. }
  2672. }
  2673. #ifdef GGML_SILU_FP16
  2674. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2675. uint16_t t;
  2676. for (int i = 0; i < n; ++i) {
  2677. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2678. memcpy(&t, &fp16, sizeof(uint16_t));
  2679. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2680. }
  2681. }
  2682. #else
  2683. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2684. for (int i = 0; i < n; ++i) {
  2685. y[i] = ggml_silu_f32(x[i]);
  2686. }
  2687. }
  2688. #endif
  2689. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2690. #ifndef GGML_USE_ACCELERATE
  2691. ggml_float sum = 0.0;
  2692. for (int i = 0; i < n; ++i) {
  2693. sum += (ggml_float)x[i];
  2694. }
  2695. *s = sum;
  2696. #else
  2697. vDSP_sve(x, 1, s, n);
  2698. #endif
  2699. }
  2700. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2701. ggml_float sum = 0.0;
  2702. for (int i = 0; i < n; ++i) {
  2703. sum += (ggml_float)x[i];
  2704. }
  2705. *s = sum;
  2706. }
  2707. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2708. #ifndef GGML_USE_ACCELERATE
  2709. float max = -INFINITY;
  2710. for (int i = 0; i < n; ++i) {
  2711. max = MAX(max, x[i]);
  2712. }
  2713. *s = max;
  2714. #else
  2715. vDSP_maxv(x, 1, s, n);
  2716. #endif
  2717. }
  2718. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2719. ggml_vec_norm_f32(n, s, x);
  2720. *s = 1.f/(*s);
  2721. }
  2722. //
  2723. // logging
  2724. //
  2725. #if (GGML_DEBUG >= 1)
  2726. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2727. #else
  2728. #define GGML_PRINT_DEBUG(...)
  2729. #endif
  2730. #if (GGML_DEBUG >= 5)
  2731. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2732. #else
  2733. #define GGML_PRINT_DEBUG_5(...)
  2734. #endif
  2735. #if (GGML_DEBUG >= 10)
  2736. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2737. #else
  2738. #define GGML_PRINT_DEBUG_10(...)
  2739. #endif
  2740. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2741. //
  2742. // data types
  2743. //
  2744. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2745. [GGML_TYPE_F32] = 1,
  2746. [GGML_TYPE_F16] = 1,
  2747. [GGML_TYPE_Q4_0] = QK4_0,
  2748. [GGML_TYPE_Q4_1] = QK4_1,
  2749. [GGML_TYPE_Q4_2] = QK4_2,
  2750. [GGML_TYPE_Q4_3] = QK4_3,
  2751. [GGML_TYPE_Q8_0] = QK8_0,
  2752. [GGML_TYPE_Q8_1] = QK8_1,
  2753. [GGML_TYPE_I8] = 1,
  2754. [GGML_TYPE_I16] = 1,
  2755. [GGML_TYPE_I32] = 1,
  2756. };
  2757. static_assert(GGML_TYPE_COUNT == 11, "GGML_BLCK_SIZE is outdated");
  2758. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2759. [GGML_TYPE_F32] = sizeof(float),
  2760. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2761. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2762. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2763. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2764. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2765. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2766. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2767. [GGML_TYPE_I8] = sizeof(int8_t),
  2768. [GGML_TYPE_I16] = sizeof(int16_t),
  2769. [GGML_TYPE_I32] = sizeof(int32_t),
  2770. };
  2771. static_assert(GGML_TYPE_COUNT == 11, "GGML_TYPE_SIZE is outdated");
  2772. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2773. [GGML_TYPE_F32] = "f32",
  2774. [GGML_TYPE_F16] = "f16",
  2775. [GGML_TYPE_Q4_0] = "q4_0",
  2776. [GGML_TYPE_Q4_1] = "q4_1",
  2777. [GGML_TYPE_Q4_2] = "q4_2",
  2778. [GGML_TYPE_Q4_3] = "q4_3",
  2779. [GGML_TYPE_Q8_0] = "q8_0",
  2780. [GGML_TYPE_Q8_1] = "q8_1",
  2781. [GGML_TYPE_I8] = "i8",
  2782. [GGML_TYPE_I16] = "i16",
  2783. [GGML_TYPE_I32] = "i32",
  2784. };
  2785. static_assert(GGML_TYPE_COUNT == 11, "GGML_TYPE_NAME is outdated");
  2786. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2787. [GGML_TYPE_F32] = false,
  2788. [GGML_TYPE_F16] = false,
  2789. [GGML_TYPE_Q4_0] = true,
  2790. [GGML_TYPE_Q4_1] = true,
  2791. [GGML_TYPE_Q4_2] = true,
  2792. [GGML_TYPE_Q4_3] = true,
  2793. [GGML_TYPE_Q8_0] = true,
  2794. [GGML_TYPE_Q8_1] = true,
  2795. [GGML_TYPE_I8] = false,
  2796. [GGML_TYPE_I16] = false,
  2797. [GGML_TYPE_I32] = false,
  2798. };
  2799. static_assert(GGML_TYPE_COUNT == 11, "GGML_IS_QUANTIZED is outdated");
  2800. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2801. "NONE",
  2802. "DUP",
  2803. "ADD",
  2804. "SUB",
  2805. "MUL",
  2806. "DIV",
  2807. "SQR",
  2808. "SQRT",
  2809. "SUM",
  2810. "MEAN",
  2811. "REPEAT",
  2812. "ABS",
  2813. "SGN",
  2814. "NEG",
  2815. "STEP",
  2816. "RELU",
  2817. "GELU",
  2818. "SILU",
  2819. "NORM",
  2820. "RMS_NORM",
  2821. "MUL_MAT",
  2822. "SCALE",
  2823. "CPY",
  2824. "CONT",
  2825. "RESHAPE",
  2826. "VIEW",
  2827. "PERMUTE",
  2828. "TRANSPOSE",
  2829. "GET_ROWS",
  2830. "DIAG_MASK_INF",
  2831. "SOFT_MAX",
  2832. "ROPE",
  2833. "CONV_1D_1S",
  2834. "CONV_1D_2S",
  2835. "FLASH_ATTN",
  2836. "FLASH_FF",
  2837. "MAP_UNARY",
  2838. "MAP_BINARY",
  2839. };
  2840. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2841. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2842. "none",
  2843. "x",
  2844. "x+y",
  2845. "x-y",
  2846. "x*y",
  2847. "x/y",
  2848. "x^2",
  2849. "√x",
  2850. "Σx",
  2851. "Σx/n",
  2852. "repeat(x)",
  2853. "abs(x)",
  2854. "sgn(x)",
  2855. "-x",
  2856. "step(x)",
  2857. "relu(x)",
  2858. "gelu(x)",
  2859. "silu(x)",
  2860. "norm(x)",
  2861. "rms_norm(x)",
  2862. "X*Y",
  2863. "x*v",
  2864. "x-\\>y",
  2865. "cont(x)",
  2866. "reshape(x)",
  2867. "view(x)",
  2868. "permute(x)",
  2869. "transpose(x)",
  2870. "get_rows(x)",
  2871. "diag_mask_inf(x)",
  2872. "soft_max(x)",
  2873. "rope(x)",
  2874. "conv_1d_1s(x)",
  2875. "conv_1d_2s(x)",
  2876. "flash_attn(x)",
  2877. "flash_ff(x)",
  2878. "f(x)",
  2879. "f(x,y)",
  2880. };
  2881. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2882. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2883. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2884. //
  2885. // ggml context
  2886. //
  2887. struct ggml_context {
  2888. size_t mem_size;
  2889. void * mem_buffer;
  2890. bool mem_buffer_owned;
  2891. bool no_alloc;
  2892. int n_objects;
  2893. struct ggml_object * objects_begin;
  2894. struct ggml_object * objects_end;
  2895. struct ggml_scratch scratch;
  2896. struct ggml_scratch scratch_save;
  2897. };
  2898. struct ggml_context_container {
  2899. bool used;
  2900. struct ggml_context context;
  2901. };
  2902. //
  2903. // compute types
  2904. //
  2905. enum ggml_task_type {
  2906. GGML_TASK_INIT = 0,
  2907. GGML_TASK_COMPUTE,
  2908. GGML_TASK_FINALIZE,
  2909. };
  2910. struct ggml_compute_params {
  2911. enum ggml_task_type type;
  2912. int ith, nth;
  2913. // work buffer for all threads
  2914. size_t wsize;
  2915. void * wdata;
  2916. };
  2917. //
  2918. // ggml state
  2919. //
  2920. struct ggml_state {
  2921. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2922. };
  2923. // global state
  2924. static struct ggml_state g_state;
  2925. static atomic_int g_state_barrier = 0;
  2926. // barrier via spin lock
  2927. inline static void ggml_critical_section_start(void) {
  2928. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2929. while (processing > 0) {
  2930. // wait for other threads to finish
  2931. atomic_fetch_sub(&g_state_barrier, 1);
  2932. sched_yield(); // TODO: reconsider this
  2933. processing = atomic_fetch_add(&g_state_barrier, 1);
  2934. }
  2935. }
  2936. // TODO: make this somehow automatically executed
  2937. // some sort of "sentry" mechanism
  2938. inline static void ggml_critical_section_end(void) {
  2939. atomic_fetch_sub(&g_state_barrier, 1);
  2940. }
  2941. ////////////////////////////////////////////////////////////////////////////////
  2942. void ggml_print_object(const struct ggml_object * obj) {
  2943. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2944. obj->offs, obj->size, (const void *) obj->next);
  2945. }
  2946. void ggml_print_objects(const struct ggml_context * ctx) {
  2947. struct ggml_object * obj = ctx->objects_begin;
  2948. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2949. while (obj != NULL) {
  2950. ggml_print_object(obj);
  2951. obj = obj->next;
  2952. }
  2953. GGML_PRINT("%s: --- end ---\n", __func__);
  2954. }
  2955. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2956. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2957. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2958. }
  2959. int ggml_nrows(const struct ggml_tensor * tensor) {
  2960. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2961. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2962. }
  2963. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2965. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2966. }
  2967. int ggml_blck_size(enum ggml_type type) {
  2968. return GGML_BLCK_SIZE[type];
  2969. }
  2970. size_t ggml_type_size(enum ggml_type type) {
  2971. return GGML_TYPE_SIZE[type];
  2972. }
  2973. float ggml_type_sizef(enum ggml_type type) {
  2974. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2975. }
  2976. const char * ggml_type_name(enum ggml_type type) {
  2977. return GGML_TYPE_NAME[type];
  2978. }
  2979. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2980. return GGML_TYPE_SIZE[tensor->type];
  2981. }
  2982. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2983. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2984. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2985. }
  2986. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2987. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2988. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2989. }
  2990. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2991. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2992. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2993. }
  2994. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2995. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2996. return
  2997. (t0->ne[0] == t1->ne[0]) &&
  2998. (t0->ne[2] == t1->ne[2]) &&
  2999. (t0->ne[3] == t1->ne[3]);
  3000. }
  3001. bool ggml_is_quantized(enum ggml_type type) {
  3002. return GGML_IS_QUANTIZED[type];
  3003. }
  3004. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3005. return tensor->nb[0] > tensor->nb[1];
  3006. }
  3007. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3008. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3009. return
  3010. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3011. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3012. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3013. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3014. }
  3015. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3016. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3017. return
  3018. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3019. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3020. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3021. }
  3022. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3023. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3024. return
  3025. (t0->ne[0] == t1->ne[0] ) &&
  3026. (t0->ne[1] == t1->ne[1] ) &&
  3027. (t0->ne[2] == t1->ne[2] ) &&
  3028. (t0->ne[3] == t1->ne[3] );
  3029. }
  3030. // check if t1 can be represented as a repeatition of t0
  3031. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3032. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3033. return
  3034. (t1->ne[0]%t0->ne[0] == 0) &&
  3035. (t1->ne[1]%t0->ne[1] == 0) &&
  3036. (t1->ne[2]%t0->ne[2] == 0) &&
  3037. (t1->ne[3]%t0->ne[3] == 0);
  3038. }
  3039. static inline int ggml_up32(int n) {
  3040. return (n + 31) & ~31;
  3041. }
  3042. static inline int ggml_up64(int n) {
  3043. return (n + 63) & ~63;
  3044. }
  3045. static inline int ggml_up(int n, int m) {
  3046. // assert m is a power of 2
  3047. GGML_ASSERT((m & (m - 1)) == 0);
  3048. return (n + m - 1) & ~(m - 1);
  3049. }
  3050. // assert that pointer is aligned to GGML_MEM_ALIGN
  3051. #define ggml_assert_aligned(ptr) \
  3052. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3053. ////////////////////////////////////////////////////////////////////////////////
  3054. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3055. // make this function thread safe
  3056. ggml_critical_section_start();
  3057. static bool is_first_call = true;
  3058. if (is_first_call) {
  3059. // initialize time system (required on Windows)
  3060. ggml_time_init();
  3061. // initialize GELU, SILU and EXP F32 tables
  3062. {
  3063. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3064. ggml_fp16_t ii;
  3065. for (int i = 0; i < (1 << 16); ++i) {
  3066. uint16_t ui = i;
  3067. memcpy(&ii, &ui, sizeof(ii));
  3068. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3069. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3070. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3071. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3072. }
  3073. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3074. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3075. }
  3076. // initialize g_state
  3077. {
  3078. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3079. g_state = (struct ggml_state) {
  3080. /*.contexts =*/ { { 0 } },
  3081. };
  3082. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3083. g_state.contexts[i].used = false;
  3084. }
  3085. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3086. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3087. }
  3088. // initialize cuBLAS
  3089. #if defined(GGML_USE_CUBLAS)
  3090. ggml_init_cublas();
  3091. #endif
  3092. is_first_call = false;
  3093. }
  3094. // find non-used context in g_state
  3095. struct ggml_context * ctx = NULL;
  3096. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3097. if (!g_state.contexts[i].used) {
  3098. g_state.contexts[i].used = true;
  3099. ctx = &g_state.contexts[i].context;
  3100. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3101. break;
  3102. }
  3103. }
  3104. if (ctx == NULL) {
  3105. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3106. ggml_critical_section_end();
  3107. return NULL;
  3108. }
  3109. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3110. *ctx = (struct ggml_context) {
  3111. /*.mem_size =*/ mem_size,
  3112. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3113. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3114. /*.no_alloc =*/ params.no_alloc,
  3115. /*.n_objects =*/ 0,
  3116. /*.objects_begin =*/ NULL,
  3117. /*.objects_end =*/ NULL,
  3118. /*.scratch =*/ { 0, 0, NULL, },
  3119. /*.scratch_save =*/ { 0, 0, NULL, },
  3120. };
  3121. GGML_ASSERT(ctx->mem_buffer != NULL);
  3122. ggml_assert_aligned(ctx->mem_buffer);
  3123. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3124. ggml_critical_section_end();
  3125. return ctx;
  3126. }
  3127. void ggml_free(struct ggml_context * ctx) {
  3128. // make this function thread safe
  3129. ggml_critical_section_start();
  3130. bool found = false;
  3131. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3132. if (&g_state.contexts[i].context == ctx) {
  3133. g_state.contexts[i].used = false;
  3134. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3135. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3136. if (ctx->mem_buffer_owned) {
  3137. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3138. }
  3139. found = true;
  3140. break;
  3141. }
  3142. }
  3143. if (!found) {
  3144. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3145. }
  3146. ggml_critical_section_end();
  3147. }
  3148. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3149. return ctx->objects_end->offs + ctx->objects_end->size;
  3150. }
  3151. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3152. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3153. ctx->scratch = scratch;
  3154. return result;
  3155. }
  3156. ////////////////////////////////////////////////////////////////////////////////
  3157. struct ggml_tensor * ggml_new_tensor_impl(
  3158. struct ggml_context * ctx,
  3159. enum ggml_type type,
  3160. int n_dims,
  3161. const int64_t* ne,
  3162. void* data) {
  3163. // always insert objects at the end of the context's memory pool
  3164. struct ggml_object * obj_cur = ctx->objects_end;
  3165. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3166. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3167. const size_t cur_end = cur_offs + cur_size;
  3168. size_t size_needed = 0;
  3169. if (data == NULL && !ctx->no_alloc) {
  3170. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3171. for (int i = 1; i < n_dims; i++) {
  3172. size_needed *= ne[i];
  3173. }
  3174. // align to GGML_MEM_ALIGN
  3175. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3176. }
  3177. char * const mem_buffer = ctx->mem_buffer;
  3178. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3179. if (ctx->scratch.data == NULL || data != NULL) {
  3180. size_needed += sizeof(struct ggml_tensor);
  3181. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3182. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3183. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3184. assert(false);
  3185. return NULL;
  3186. }
  3187. *obj_new = (struct ggml_object) {
  3188. .offs = cur_end + GGML_OBJECT_SIZE,
  3189. .size = size_needed,
  3190. .next = NULL,
  3191. };
  3192. } else {
  3193. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3194. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3195. assert(false);
  3196. return NULL;
  3197. }
  3198. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3199. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3200. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3201. assert(false);
  3202. return NULL;
  3203. }
  3204. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3205. *obj_new = (struct ggml_object) {
  3206. .offs = cur_end + GGML_OBJECT_SIZE,
  3207. .size = sizeof(struct ggml_tensor),
  3208. .next = NULL,
  3209. };
  3210. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3211. ctx->scratch.offs += size_needed;
  3212. }
  3213. if (obj_cur != NULL) {
  3214. obj_cur->next = obj_new;
  3215. } else {
  3216. // this is the first object in this context
  3217. ctx->objects_begin = obj_new;
  3218. }
  3219. ctx->objects_end = obj_new;
  3220. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3221. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3222. ggml_assert_aligned(result);
  3223. *result = (struct ggml_tensor) {
  3224. /*.type =*/ type,
  3225. /*.n_dims =*/ n_dims,
  3226. /*.ne =*/ { 1, 1, 1, 1 },
  3227. /*.nb =*/ { 0, 0, 0, 0 },
  3228. /*.op =*/ GGML_OP_NONE,
  3229. /*.is_param =*/ false,
  3230. /*.grad =*/ NULL,
  3231. /*.src0 =*/ NULL,
  3232. /*.src1 =*/ NULL,
  3233. /*.opt =*/ { NULL },
  3234. /*.n_tasks =*/ 0,
  3235. /*.perf_runs =*/ 0,
  3236. /*.perf_cycles =*/ 0,
  3237. /*.perf_time_us =*/ 0,
  3238. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3239. /*.pad =*/ { 0 },
  3240. };
  3241. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3242. //ggml_assert_aligned(result->data);
  3243. for (int i = 0; i < n_dims; i++) {
  3244. result->ne[i] = ne[i];
  3245. }
  3246. result->nb[0] = GGML_TYPE_SIZE[type];
  3247. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3248. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3249. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3250. }
  3251. ctx->n_objects++;
  3252. return result;
  3253. }
  3254. struct ggml_tensor * ggml_new_tensor(
  3255. struct ggml_context * ctx,
  3256. enum ggml_type type,
  3257. int n_dims,
  3258. const int64_t * ne) {
  3259. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3260. }
  3261. struct ggml_tensor * ggml_new_tensor_1d(
  3262. struct ggml_context * ctx,
  3263. enum ggml_type type,
  3264. int64_t ne0) {
  3265. return ggml_new_tensor(ctx, type, 1, &ne0);
  3266. }
  3267. struct ggml_tensor * ggml_new_tensor_2d(
  3268. struct ggml_context * ctx,
  3269. enum ggml_type type,
  3270. int64_t ne0,
  3271. int64_t ne1) {
  3272. const int64_t ne[2] = { ne0, ne1 };
  3273. return ggml_new_tensor(ctx, type, 2, ne);
  3274. }
  3275. struct ggml_tensor * ggml_new_tensor_3d(
  3276. struct ggml_context * ctx,
  3277. enum ggml_type type,
  3278. int64_t ne0,
  3279. int64_t ne1,
  3280. int64_t ne2) {
  3281. const int64_t ne[3] = { ne0, ne1, ne2 };
  3282. return ggml_new_tensor(ctx, type, 3, ne);
  3283. }
  3284. struct ggml_tensor * ggml_new_tensor_4d(
  3285. struct ggml_context * ctx,
  3286. enum ggml_type type,
  3287. int64_t ne0,
  3288. int64_t ne1,
  3289. int64_t ne2,
  3290. int64_t ne3) {
  3291. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3292. return ggml_new_tensor(ctx, type, 4, ne);
  3293. }
  3294. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3295. ctx->scratch_save = ctx->scratch;
  3296. ctx->scratch.data = NULL;
  3297. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3298. ctx->scratch = ctx->scratch_save;
  3299. ggml_set_i32(result, value);
  3300. return result;
  3301. }
  3302. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3303. ctx->scratch_save = ctx->scratch;
  3304. ctx->scratch.data = NULL;
  3305. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3306. ctx->scratch = ctx->scratch_save;
  3307. ggml_set_f32(result, value);
  3308. return result;
  3309. }
  3310. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3311. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3312. }
  3313. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3314. memset(tensor->data, 0, ggml_nbytes(tensor));
  3315. return tensor;
  3316. }
  3317. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3318. const int n = ggml_nrows(tensor);
  3319. const int nc = tensor->ne[0];
  3320. const size_t n1 = tensor->nb[1];
  3321. char * const data = tensor->data;
  3322. switch (tensor->type) {
  3323. case GGML_TYPE_I8:
  3324. {
  3325. assert(tensor->nb[0] == sizeof(int8_t));
  3326. for (int i = 0; i < n; i++) {
  3327. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3328. }
  3329. } break;
  3330. case GGML_TYPE_I16:
  3331. {
  3332. assert(tensor->nb[0] == sizeof(int16_t));
  3333. for (int i = 0; i < n; i++) {
  3334. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3335. }
  3336. } break;
  3337. case GGML_TYPE_I32:
  3338. {
  3339. assert(tensor->nb[0] == sizeof(int32_t));
  3340. for (int i = 0; i < n; i++) {
  3341. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3342. }
  3343. } break;
  3344. case GGML_TYPE_F16:
  3345. {
  3346. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3347. for (int i = 0; i < n; i++) {
  3348. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3349. }
  3350. } break;
  3351. case GGML_TYPE_F32:
  3352. {
  3353. assert(tensor->nb[0] == sizeof(float));
  3354. for (int i = 0; i < n; i++) {
  3355. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3356. }
  3357. } break;
  3358. default:
  3359. {
  3360. GGML_ASSERT(false);
  3361. } break;
  3362. }
  3363. return tensor;
  3364. }
  3365. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3366. const int n = ggml_nrows(tensor);
  3367. const int nc = tensor->ne[0];
  3368. const size_t n1 = tensor->nb[1];
  3369. char * const data = tensor->data;
  3370. switch (tensor->type) {
  3371. case GGML_TYPE_I8:
  3372. {
  3373. assert(tensor->nb[0] == sizeof(int8_t));
  3374. for (int i = 0; i < n; i++) {
  3375. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3376. }
  3377. } break;
  3378. case GGML_TYPE_I16:
  3379. {
  3380. assert(tensor->nb[0] == sizeof(int16_t));
  3381. for (int i = 0; i < n; i++) {
  3382. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3383. }
  3384. } break;
  3385. case GGML_TYPE_I32:
  3386. {
  3387. assert(tensor->nb[0] == sizeof(int32_t));
  3388. for (int i = 0; i < n; i++) {
  3389. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3390. }
  3391. } break;
  3392. case GGML_TYPE_F16:
  3393. {
  3394. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3395. for (int i = 0; i < n; i++) {
  3396. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3397. }
  3398. } break;
  3399. case GGML_TYPE_F32:
  3400. {
  3401. assert(tensor->nb[0] == sizeof(float));
  3402. for (int i = 0; i < n; i++) {
  3403. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3404. }
  3405. } break;
  3406. default:
  3407. {
  3408. GGML_ASSERT(false);
  3409. } break;
  3410. }
  3411. return tensor;
  3412. }
  3413. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3414. switch (tensor->type) {
  3415. case GGML_TYPE_I8:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3418. return ((int8_t *)(tensor->data))[i];
  3419. } break;
  3420. case GGML_TYPE_I16:
  3421. {
  3422. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3423. return ((int16_t *)(tensor->data))[i];
  3424. } break;
  3425. case GGML_TYPE_I32:
  3426. {
  3427. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3428. return ((int32_t *)(tensor->data))[i];
  3429. } break;
  3430. case GGML_TYPE_F16:
  3431. {
  3432. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3433. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3434. } break;
  3435. case GGML_TYPE_F32:
  3436. {
  3437. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3438. return ((float *)(tensor->data))[i];
  3439. } break;
  3440. default:
  3441. {
  3442. GGML_ASSERT(false);
  3443. } break;
  3444. }
  3445. return 0.0f;
  3446. }
  3447. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3448. switch (tensor->type) {
  3449. case GGML_TYPE_I8:
  3450. {
  3451. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3452. ((int8_t *)(tensor->data))[i] = value;
  3453. } break;
  3454. case GGML_TYPE_I16:
  3455. {
  3456. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3457. ((int16_t *)(tensor->data))[i] = value;
  3458. } break;
  3459. case GGML_TYPE_I32:
  3460. {
  3461. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3462. ((int32_t *)(tensor->data))[i] = value;
  3463. } break;
  3464. case GGML_TYPE_F16:
  3465. {
  3466. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3467. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3468. } break;
  3469. case GGML_TYPE_F32:
  3470. {
  3471. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3472. ((float *)(tensor->data))[i] = value;
  3473. } break;
  3474. default:
  3475. {
  3476. GGML_ASSERT(false);
  3477. } break;
  3478. }
  3479. }
  3480. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3481. switch (tensor->type) {
  3482. case GGML_TYPE_I8:
  3483. {
  3484. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3485. return ((int8_t *)(tensor->data))[i];
  3486. } break;
  3487. case GGML_TYPE_I16:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3490. return ((int16_t *)(tensor->data))[i];
  3491. } break;
  3492. case GGML_TYPE_I32:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3495. return ((int32_t *)(tensor->data))[i];
  3496. } break;
  3497. case GGML_TYPE_F16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3500. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3501. } break;
  3502. case GGML_TYPE_F32:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3505. return ((float *)(tensor->data))[i];
  3506. } break;
  3507. default:
  3508. {
  3509. GGML_ASSERT(false);
  3510. } break;
  3511. }
  3512. return 0.0f;
  3513. }
  3514. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3515. switch (tensor->type) {
  3516. case GGML_TYPE_I8:
  3517. {
  3518. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3519. ((int8_t *)(tensor->data))[i] = value;
  3520. } break;
  3521. case GGML_TYPE_I16:
  3522. {
  3523. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3524. ((int16_t *)(tensor->data))[i] = value;
  3525. } break;
  3526. case GGML_TYPE_I32:
  3527. {
  3528. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3529. ((int32_t *)(tensor->data))[i] = value;
  3530. } break;
  3531. case GGML_TYPE_F16:
  3532. {
  3533. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3534. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3535. } break;
  3536. case GGML_TYPE_F32:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3539. ((float *)(tensor->data))[i] = value;
  3540. } break;
  3541. default:
  3542. {
  3543. GGML_ASSERT(false);
  3544. } break;
  3545. }
  3546. }
  3547. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3548. return tensor->data;
  3549. }
  3550. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3551. assert(tensor->type == GGML_TYPE_F32);
  3552. return (float *)(tensor->data);
  3553. }
  3554. struct ggml_tensor * ggml_view_tensor(
  3555. struct ggml_context * ctx,
  3556. const struct ggml_tensor * src) {
  3557. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3558. result->nb[0] = src->nb[0];
  3559. result->nb[1] = src->nb[1];
  3560. result->nb[2] = src->nb[2];
  3561. result->nb[3] = src->nb[3];
  3562. return result;
  3563. }
  3564. ////////////////////////////////////////////////////////////////////////////////
  3565. // ggml_dup
  3566. struct ggml_tensor * ggml_dup_impl(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. bool inplace) {
  3570. bool is_node = false;
  3571. if (!inplace && (a->grad)) {
  3572. is_node = true;
  3573. }
  3574. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3575. result->op = GGML_OP_DUP;
  3576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3577. result->src0 = a;
  3578. result->src1 = NULL;
  3579. return result;
  3580. }
  3581. struct ggml_tensor * ggml_dup(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a) {
  3584. return ggml_dup_impl(ctx, a, false);
  3585. }
  3586. struct ggml_tensor * ggml_dup_inplace(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a) {
  3589. return ggml_dup_impl(ctx, a, true);
  3590. }
  3591. // ggml_add
  3592. struct ggml_tensor * ggml_add_impl(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. struct ggml_tensor * b,
  3596. bool inplace) {
  3597. GGML_ASSERT(ggml_are_same_shape(a, b));
  3598. bool is_node = false;
  3599. if (!inplace && (a->grad || b->grad)) {
  3600. is_node = true;
  3601. }
  3602. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3603. result->op = GGML_OP_ADD;
  3604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3605. result->src0 = a;
  3606. result->src1 = b;
  3607. return result;
  3608. }
  3609. struct ggml_tensor * ggml_add(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. struct ggml_tensor * b) {
  3613. return ggml_add_impl(ctx, a, b, false);
  3614. }
  3615. struct ggml_tensor * ggml_add_inplace(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. struct ggml_tensor * b) {
  3619. return ggml_add_impl(ctx, a, b, true);
  3620. }
  3621. // ggml_sub
  3622. struct ggml_tensor * ggml_sub_impl(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. struct ggml_tensor * b,
  3626. bool inplace) {
  3627. GGML_ASSERT(ggml_are_same_shape(a, b));
  3628. bool is_node = false;
  3629. if (!inplace && (a->grad || b->grad)) {
  3630. is_node = true;
  3631. }
  3632. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3633. result->op = GGML_OP_SUB;
  3634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3635. result->src0 = a;
  3636. result->src1 = b;
  3637. return result;
  3638. }
  3639. struct ggml_tensor * ggml_sub(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. struct ggml_tensor * b) {
  3643. return ggml_sub_impl(ctx, a, b, false);
  3644. }
  3645. struct ggml_tensor * ggml_sub_inplace(
  3646. struct ggml_context * ctx,
  3647. struct ggml_tensor * a,
  3648. struct ggml_tensor * b) {
  3649. return ggml_sub_impl(ctx, a, b, true);
  3650. }
  3651. // ggml_mul
  3652. struct ggml_tensor * ggml_mul_impl(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b,
  3656. bool inplace) {
  3657. GGML_ASSERT(ggml_are_same_shape(a, b));
  3658. bool is_node = false;
  3659. if (!inplace && (a->grad || b->grad)) {
  3660. is_node = true;
  3661. }
  3662. if (inplace) {
  3663. GGML_ASSERT(is_node == false);
  3664. }
  3665. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3666. result->op = GGML_OP_MUL;
  3667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3668. result->src0 = a;
  3669. result->src1 = b;
  3670. return result;
  3671. }
  3672. struct ggml_tensor * ggml_mul(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. struct ggml_tensor * b) {
  3676. return ggml_mul_impl(ctx, a, b, false);
  3677. }
  3678. struct ggml_tensor * ggml_mul_inplace(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a,
  3681. struct ggml_tensor * b) {
  3682. return ggml_mul_impl(ctx, a, b, true);
  3683. }
  3684. // ggml_div
  3685. struct ggml_tensor * ggml_div_impl(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a,
  3688. struct ggml_tensor * b,
  3689. bool inplace) {
  3690. GGML_ASSERT(ggml_are_same_shape(a, b));
  3691. bool is_node = false;
  3692. if (!inplace && (a->grad || b->grad)) {
  3693. is_node = true;
  3694. }
  3695. if (inplace) {
  3696. GGML_ASSERT(is_node == false);
  3697. }
  3698. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3699. result->op = GGML_OP_DIV;
  3700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3701. result->src0 = a;
  3702. result->src1 = b;
  3703. return result;
  3704. }
  3705. struct ggml_tensor * ggml_div(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. struct ggml_tensor * b) {
  3709. return ggml_div_impl(ctx, a, b, false);
  3710. }
  3711. struct ggml_tensor * ggml_div_inplace(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. struct ggml_tensor * b) {
  3715. return ggml_div_impl(ctx, a, b, true);
  3716. }
  3717. // ggml_sqr
  3718. struct ggml_tensor * ggml_sqr_impl(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. bool inplace) {
  3722. bool is_node = false;
  3723. if (!inplace && (a->grad)) {
  3724. is_node = true;
  3725. }
  3726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3727. result->op = GGML_OP_SQR;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src0 = a;
  3730. result->src1 = NULL;
  3731. return result;
  3732. }
  3733. struct ggml_tensor * ggml_sqr(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a) {
  3736. return ggml_sqr_impl(ctx, a, false);
  3737. }
  3738. struct ggml_tensor * ggml_sqr_inplace(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a) {
  3741. return ggml_sqr_impl(ctx, a, true);
  3742. }
  3743. // ggml_sqrt
  3744. struct ggml_tensor * ggml_sqrt_impl(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. bool inplace) {
  3748. bool is_node = false;
  3749. if (!inplace && (a->grad)) {
  3750. is_node = true;
  3751. }
  3752. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3753. result->op = GGML_OP_SQRT;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src0 = a;
  3756. result->src1 = NULL;
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_sqrt(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a) {
  3762. return ggml_sqrt_impl(ctx, a, false);
  3763. }
  3764. struct ggml_tensor * ggml_sqrt_inplace(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a) {
  3767. return ggml_sqrt_impl(ctx, a, true);
  3768. }
  3769. // ggml_sum
  3770. struct ggml_tensor * ggml_sum(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a) {
  3773. bool is_node = false;
  3774. if (a->grad) {
  3775. is_node = true;
  3776. }
  3777. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3778. result->op = GGML_OP_SUM;
  3779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3780. result->src0 = a;
  3781. result->src1 = NULL;
  3782. return result;
  3783. }
  3784. // ggml_mean
  3785. struct ggml_tensor * ggml_mean(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a) {
  3788. bool is_node = false;
  3789. if (a->grad) {
  3790. GGML_ASSERT(false); // TODO: implement
  3791. is_node = true;
  3792. }
  3793. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3794. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3795. result->op = GGML_OP_MEAN;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src0 = a;
  3798. result->src1 = NULL;
  3799. return result;
  3800. }
  3801. // ggml_repeat
  3802. struct ggml_tensor * ggml_repeat(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. struct ggml_tensor * b) {
  3806. GGML_ASSERT(ggml_can_repeat(a, b));
  3807. bool is_node = false;
  3808. if (a->grad) {
  3809. is_node = true;
  3810. }
  3811. if (ggml_are_same_shape(a, b) && !is_node) {
  3812. return a;
  3813. }
  3814. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3815. result->op = GGML_OP_REPEAT;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = a;
  3818. result->src1 = b;
  3819. return result;
  3820. }
  3821. // ggml_abs
  3822. struct ggml_tensor * ggml_abs_impl(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. bool inplace) {
  3826. bool is_node = false;
  3827. if (!inplace && (a->grad)) {
  3828. is_node = true;
  3829. }
  3830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3831. result->op = GGML_OP_ABS;
  3832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3833. result->src0 = a;
  3834. result->src1 = NULL;
  3835. return result;
  3836. }
  3837. struct ggml_tensor * ggml_abs(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_abs_impl(ctx, a, false);
  3841. }
  3842. struct ggml_tensor * ggml_abs_inplace(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a) {
  3845. return ggml_abs_impl(ctx, a, true);
  3846. }
  3847. // ggml_sgn
  3848. struct ggml_tensor * ggml_sgn_impl(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. bool inplace) {
  3852. bool is_node = false;
  3853. if (!inplace && (a->grad)) {
  3854. is_node = true;
  3855. }
  3856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3857. result->op = GGML_OP_SGN;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src0 = a;
  3860. result->src1 = NULL;
  3861. return result;
  3862. }
  3863. struct ggml_tensor * ggml_sgn(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. return ggml_sgn_impl(ctx, a, false);
  3867. }
  3868. struct ggml_tensor * ggml_sgn_inplace(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a) {
  3871. return ggml_sgn_impl(ctx, a, true);
  3872. }
  3873. // ggml_neg
  3874. struct ggml_tensor * ggml_neg_impl(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. bool inplace) {
  3878. bool is_node = false;
  3879. if (!inplace && (a->grad)) {
  3880. is_node = true;
  3881. }
  3882. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3883. result->op = GGML_OP_NEG;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src0 = a;
  3886. result->src1 = NULL;
  3887. return result;
  3888. }
  3889. struct ggml_tensor * ggml_neg(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a) {
  3892. return ggml_neg_impl(ctx, a, false);
  3893. }
  3894. struct ggml_tensor * ggml_neg_inplace(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a) {
  3897. return ggml_neg_impl(ctx, a, true);
  3898. }
  3899. // ggml_step
  3900. struct ggml_tensor * ggml_step_impl(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. bool inplace) {
  3904. bool is_node = false;
  3905. if (!inplace && (a->grad)) {
  3906. is_node = true;
  3907. }
  3908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3909. result->op = GGML_OP_STEP;
  3910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3911. result->src0 = a;
  3912. result->src1 = NULL;
  3913. return result;
  3914. }
  3915. struct ggml_tensor * ggml_step(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a) {
  3918. return ggml_step_impl(ctx, a, false);
  3919. }
  3920. struct ggml_tensor * ggml_step_inplace(
  3921. struct ggml_context * ctx,
  3922. struct ggml_tensor * a) {
  3923. return ggml_step_impl(ctx, a, true);
  3924. }
  3925. // ggml_relu
  3926. struct ggml_tensor * ggml_relu_impl(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a,
  3929. bool inplace) {
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad)) {
  3932. is_node = true;
  3933. }
  3934. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3935. result->op = GGML_OP_RELU;
  3936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3937. result->src0 = a;
  3938. result->src1 = NULL;
  3939. return result;
  3940. }
  3941. struct ggml_tensor * ggml_relu(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a) {
  3944. return ggml_relu_impl(ctx, a, false);
  3945. }
  3946. struct ggml_tensor * ggml_relu_inplace(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a) {
  3949. return ggml_relu_impl(ctx, a, true);
  3950. }
  3951. // ggml_gelu
  3952. struct ggml_tensor * ggml_gelu_impl(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. bool inplace) {
  3956. bool is_node = false;
  3957. if (!inplace && (a->grad)) {
  3958. is_node = true;
  3959. }
  3960. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3961. result->op = GGML_OP_GELU;
  3962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3963. result->src0 = a;
  3964. result->src1 = NULL;
  3965. return result;
  3966. }
  3967. struct ggml_tensor * ggml_gelu(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a) {
  3970. return ggml_gelu_impl(ctx, a, false);
  3971. }
  3972. struct ggml_tensor * ggml_gelu_inplace(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a) {
  3975. return ggml_gelu_impl(ctx, a, true);
  3976. }
  3977. // ggml_silu
  3978. struct ggml_tensor * ggml_silu_impl(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. bool inplace) {
  3982. bool is_node = false;
  3983. if (!inplace && (a->grad)) {
  3984. is_node = true;
  3985. }
  3986. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3987. result->op = GGML_OP_SILU;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src0 = a;
  3990. result->src1 = NULL;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_silu(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a) {
  3996. return ggml_silu_impl(ctx, a, false);
  3997. }
  3998. struct ggml_tensor * ggml_silu_inplace(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a) {
  4001. return ggml_silu_impl(ctx, a, true);
  4002. }
  4003. // ggml_norm
  4004. struct ggml_tensor * ggml_norm_impl(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. bool inplace) {
  4008. bool is_node = false;
  4009. if (!inplace && (a->grad)) {
  4010. GGML_ASSERT(false); // TODO: implement backward
  4011. is_node = true;
  4012. }
  4013. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4014. result->op = GGML_OP_NORM;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src0 = a;
  4017. result->src1 = NULL; // TODO: maybe store epsilon here?
  4018. return result;
  4019. }
  4020. struct ggml_tensor * ggml_norm(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a) {
  4023. return ggml_norm_impl(ctx, a, false);
  4024. }
  4025. struct ggml_tensor * ggml_norm_inplace(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_norm_impl(ctx, a, true);
  4029. }
  4030. struct ggml_tensor * ggml_rms_norm_impl(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a,
  4033. bool inplace) {
  4034. bool is_node = false;
  4035. if (!inplace && (a->grad)) {
  4036. GGML_ASSERT(false); // TODO: implement backward
  4037. is_node = true;
  4038. }
  4039. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4040. result->op = GGML_OP_RMS_NORM;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src0 = a;
  4043. result->src1 = NULL; // TODO: maybe store epsilon here?
  4044. return result;
  4045. }
  4046. struct ggml_tensor * ggml_rms_norm(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. return ggml_rms_norm_impl(ctx, a, false);
  4050. }
  4051. struct ggml_tensor * ggml_rms_norm_inplace(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a) {
  4054. return ggml_rms_norm_impl(ctx, a, true);
  4055. }
  4056. // ggml_mul_mat
  4057. struct ggml_tensor * ggml_mul_mat(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. struct ggml_tensor * b) {
  4061. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4062. GGML_ASSERT(!ggml_is_transposed(a));
  4063. bool is_node = false;
  4064. if (a->grad || b->grad) {
  4065. is_node = true;
  4066. }
  4067. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4068. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4069. result->op = GGML_OP_MUL_MAT;
  4070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4071. result->src0 = a;
  4072. result->src1 = b;
  4073. return result;
  4074. }
  4075. // ggml_scale
  4076. struct ggml_tensor * ggml_scale_impl(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b,
  4080. bool inplace) {
  4081. GGML_ASSERT(ggml_is_scalar(b));
  4082. GGML_ASSERT(ggml_is_padded_1d(a));
  4083. bool is_node = false;
  4084. if (!inplace && (a->grad || b->grad)) {
  4085. GGML_ASSERT(false); // TODO: implement backward
  4086. is_node = true;
  4087. }
  4088. // TODO: when implement backward, fix this:
  4089. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4090. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4091. result->op = GGML_OP_SCALE;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src0 = a;
  4094. result->src1 = b;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_scale(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b) {
  4101. return ggml_scale_impl(ctx, a, b, false);
  4102. }
  4103. struct ggml_tensor * ggml_scale_inplace(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. struct ggml_tensor * b) {
  4107. return ggml_scale_impl(ctx, a, b, true);
  4108. }
  4109. // ggml_cpy
  4110. struct ggml_tensor * ggml_cpy_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. struct ggml_tensor * b,
  4114. bool inplace) {
  4115. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4116. bool is_node = false;
  4117. if (!inplace && (a->grad || b->grad)) {
  4118. GGML_ASSERT(false); // TODO: implement backward
  4119. is_node = true;
  4120. }
  4121. // make a view of the destination
  4122. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4123. result->op = GGML_OP_CPY;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src0 = a;
  4126. result->src1 = b;
  4127. return result;
  4128. }
  4129. struct ggml_tensor * ggml_cpy(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. struct ggml_tensor * b) {
  4133. return ggml_cpy_impl(ctx, a, b, false);
  4134. }
  4135. struct ggml_tensor * ggml_cpy_inplace(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b) {
  4139. return ggml_cpy_impl(ctx, a, b, true);
  4140. }
  4141. // ggml_cont
  4142. struct ggml_tensor * ggml_cont_impl(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. bool inplace) {
  4146. bool is_node = false;
  4147. if (!inplace && a->grad) {
  4148. GGML_ASSERT(false); // TODO: implement backward
  4149. is_node = true;
  4150. }
  4151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4152. result->op = GGML_OP_CONT;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src0 = a;
  4155. result->src1 = NULL;
  4156. return result;
  4157. }
  4158. struct ggml_tensor * ggml_cont(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_cont_impl(ctx, a, false);
  4162. }
  4163. struct ggml_tensor * ggml_cont_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_cont_impl(ctx, a, true);
  4167. }
  4168. // ggml_reshape
  4169. struct ggml_tensor * ggml_reshape(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b) {
  4173. GGML_ASSERT(ggml_is_contiguous(a));
  4174. GGML_ASSERT(ggml_is_contiguous(b));
  4175. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4176. bool is_node = false;
  4177. if (a->grad || b->grad) {
  4178. GGML_ASSERT(false); // TODO: implement backward
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4182. result->op = GGML_OP_RESHAPE;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src0 = a;
  4185. result->src1 = NULL;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_reshape_2d(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. int64_t ne0,
  4192. int64_t ne1) {
  4193. GGML_ASSERT(ggml_is_contiguous(a));
  4194. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4195. bool is_node = false;
  4196. if (a->grad) {
  4197. GGML_ASSERT(false); // TODO: implement backward
  4198. is_node = true;
  4199. }
  4200. const int64_t ne[2] = { ne0, ne1 };
  4201. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4202. result->op = GGML_OP_RESHAPE;
  4203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4204. result->src0 = a;
  4205. result->src1 = NULL;
  4206. return result;
  4207. }
  4208. struct ggml_tensor * ggml_reshape_3d(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a,
  4211. int64_t ne0,
  4212. int64_t ne1,
  4213. int64_t ne2) {
  4214. GGML_ASSERT(ggml_is_contiguous(a));
  4215. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4216. bool is_node = false;
  4217. if (a->grad) {
  4218. GGML_ASSERT(false); // TODO: implement backward
  4219. is_node = true;
  4220. }
  4221. const int64_t ne[3] = { ne0, ne1, ne2 };
  4222. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4223. result->op = GGML_OP_RESHAPE;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src0 = a;
  4226. result->src1 = NULL;
  4227. return result;
  4228. }
  4229. // ggml_view_1d
  4230. struct ggml_tensor * ggml_view_1d(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. int64_t ne0,
  4234. size_t offset) {
  4235. if (a->grad) {
  4236. GGML_ASSERT(false); // gradient propagation is not supported
  4237. }
  4238. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4239. result->op = GGML_OP_VIEW;
  4240. result->grad = NULL;
  4241. result->src0 = a;
  4242. result->src1 = NULL; // TODO: maybe store the offset here?
  4243. return result;
  4244. }
  4245. // ggml_view_2d
  4246. struct ggml_tensor * ggml_view_2d(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. int64_t ne0,
  4250. int64_t ne1,
  4251. size_t nb1,
  4252. size_t offset) {
  4253. if (a->grad) {
  4254. GGML_ASSERT(false); // gradient propagation is not supported
  4255. }
  4256. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4257. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4258. result->nb[1] = nb1;
  4259. result->nb[2] = result->nb[1]*ne1;
  4260. result->nb[3] = result->nb[2];
  4261. result->op = GGML_OP_VIEW;
  4262. result->grad = NULL;
  4263. result->src0 = a;
  4264. result->src1 = NULL; // TODO: maybe store the offset here?
  4265. return result;
  4266. }
  4267. // ggml_view_3d
  4268. struct ggml_tensor * ggml_view_3d(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a,
  4271. int64_t ne0,
  4272. int64_t ne1,
  4273. int64_t ne2,
  4274. size_t nb1,
  4275. size_t nb2,
  4276. size_t offset) {
  4277. if (a->grad) {
  4278. GGML_ASSERT(false); // gradient propagation is not supported
  4279. }
  4280. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4281. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4282. result->nb[1] = nb1;
  4283. result->nb[2] = nb2;
  4284. result->nb[3] = result->nb[2]*ne2;
  4285. result->op = GGML_OP_VIEW;
  4286. result->grad = NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL; // TODO: maybe store the offset here?
  4289. return result;
  4290. }
  4291. // ggml_permute
  4292. struct ggml_tensor * ggml_permute(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. int axis0,
  4296. int axis1,
  4297. int axis2,
  4298. int axis3) {
  4299. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4300. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4301. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4302. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4303. GGML_ASSERT(axis0 != axis1);
  4304. GGML_ASSERT(axis0 != axis2);
  4305. GGML_ASSERT(axis0 != axis3);
  4306. GGML_ASSERT(axis1 != axis2);
  4307. GGML_ASSERT(axis1 != axis3);
  4308. GGML_ASSERT(axis2 != axis3);
  4309. bool is_node = false;
  4310. if (a->grad) {
  4311. GGML_ASSERT(false); // TODO: implement backward
  4312. is_node = true;
  4313. }
  4314. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4315. int ne[GGML_MAX_DIMS];
  4316. int nb[GGML_MAX_DIMS];
  4317. ne[axis0] = a->ne[0];
  4318. ne[axis1] = a->ne[1];
  4319. ne[axis2] = a->ne[2];
  4320. ne[axis3] = a->ne[3];
  4321. nb[axis0] = a->nb[0];
  4322. nb[axis1] = a->nb[1];
  4323. nb[axis2] = a->nb[2];
  4324. nb[axis3] = a->nb[3];
  4325. result->ne[0] = ne[0];
  4326. result->ne[1] = ne[1];
  4327. result->ne[2] = ne[2];
  4328. result->ne[3] = ne[3];
  4329. result->nb[0] = nb[0];
  4330. result->nb[1] = nb[1];
  4331. result->nb[2] = nb[2];
  4332. result->nb[3] = nb[3];
  4333. result->op = GGML_OP_PERMUTE;
  4334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4335. result->src0 = a;
  4336. result->src1 = NULL; // TODO: maybe store the permutation here?
  4337. return result;
  4338. }
  4339. // ggml_transpose
  4340. struct ggml_tensor * ggml_transpose(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a) {
  4343. bool is_node = false;
  4344. if (a->grad) {
  4345. GGML_ASSERT(false); // TODO: implement backward
  4346. is_node = true;
  4347. }
  4348. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4349. result->ne[0] = a->ne[1];
  4350. result->ne[1] = a->ne[0];
  4351. result->nb[0] = a->nb[1];
  4352. result->nb[1] = a->nb[0];
  4353. result->op = GGML_OP_TRANSPOSE;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src0 = a;
  4356. result->src1 = NULL;
  4357. return result;
  4358. }
  4359. // ggml_get_rows
  4360. struct ggml_tensor * ggml_get_rows(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b) {
  4364. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4365. bool is_node = false;
  4366. if (a->grad || b->grad) {
  4367. GGML_ASSERT(false); // TODO: implement backward
  4368. is_node = true;
  4369. }
  4370. // TODO: implement non F32 return
  4371. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4372. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4373. result->op = GGML_OP_GET_ROWS;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src0 = a;
  4376. result->src1 = b;
  4377. return result;
  4378. }
  4379. // ggml_diag_mask_inf
  4380. struct ggml_tensor * ggml_diag_mask_inf(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. int n_past) {
  4384. bool is_node = false;
  4385. if (a->grad) {
  4386. GGML_ASSERT(false); // TODO: implement backward
  4387. is_node = true;
  4388. }
  4389. // TODO: when implement backward, fix this:
  4390. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4391. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4392. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4393. result->op = GGML_OP_DIAG_MASK_INF;
  4394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4395. result->src0 = a;
  4396. result->src1 = b;
  4397. return result;
  4398. }
  4399. // ggml_soft_max
  4400. struct ggml_tensor * ggml_soft_max(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. bool is_node = false;
  4404. if (a->grad) {
  4405. GGML_ASSERT(false); // TODO: implement backward
  4406. is_node = true;
  4407. }
  4408. // TODO: when implement backward, fix this:
  4409. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4410. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4411. result->op = GGML_OP_SOFT_MAX;
  4412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4413. result->src0 = a;
  4414. result->src1 = NULL;
  4415. return result;
  4416. }
  4417. // ggml_rope
  4418. struct ggml_tensor * ggml_rope(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_past,
  4422. int n_dims,
  4423. int mode) {
  4424. GGML_ASSERT(n_past >= 0);
  4425. bool is_node = false;
  4426. if (a->grad) {
  4427. GGML_ASSERT(false); // TODO: implement backward
  4428. is_node = true;
  4429. }
  4430. // TODO: when implement backward, fix this:
  4431. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4432. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4433. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4434. ((int32_t *) b->data)[0] = n_past;
  4435. ((int32_t *) b->data)[1] = n_dims;
  4436. ((int32_t *) b->data)[2] = mode;
  4437. result->op = GGML_OP_ROPE;
  4438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4439. result->src0 = a;
  4440. result->src1 = b;
  4441. return result;
  4442. }
  4443. // ggml_conv_1d_1s
  4444. struct ggml_tensor * ggml_conv_1d_1s(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a,
  4447. struct ggml_tensor * b) {
  4448. GGML_ASSERT(ggml_is_matrix(b));
  4449. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4450. GGML_ASSERT(a->ne[3] == 1);
  4451. bool is_node = false;
  4452. if (a->grad || b->grad) {
  4453. GGML_ASSERT(false); // TODO: implement backward
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4458. result->op = GGML_OP_CONV_1D_1S;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src0 = a;
  4461. result->src1 = b;
  4462. return result;
  4463. }
  4464. // ggml_conv_1d_2s
  4465. struct ggml_tensor * ggml_conv_1d_2s(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. struct ggml_tensor * b) {
  4469. GGML_ASSERT(ggml_is_matrix(b));
  4470. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4471. GGML_ASSERT(a->ne[3] == 1);
  4472. bool is_node = false;
  4473. if (a->grad || b->grad) {
  4474. GGML_ASSERT(false); // TODO: implement backward
  4475. is_node = true;
  4476. }
  4477. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4479. result->op = GGML_OP_CONV_1D_2S;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src0 = a;
  4482. result->src1 = b;
  4483. return result;
  4484. }
  4485. // ggml_flash_attn
  4486. struct ggml_tensor * ggml_flash_attn(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * q,
  4489. struct ggml_tensor * k,
  4490. struct ggml_tensor * v,
  4491. bool masked) {
  4492. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4493. // TODO: check if vT can be multiplied by (k*qT)
  4494. bool is_node = false;
  4495. if (q->grad || k->grad || v->grad) {
  4496. GGML_ASSERT(false); // TODO: implement backward
  4497. is_node = true;
  4498. }
  4499. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4500. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4501. result->op = GGML_OP_FLASH_ATTN;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src0 = q;
  4504. result->src1 = k;
  4505. result->opt[0] = v;
  4506. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4507. return result;
  4508. }
  4509. // ggml_flash_ff
  4510. struct ggml_tensor * ggml_flash_ff(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b0,
  4514. struct ggml_tensor * b1,
  4515. struct ggml_tensor * c0,
  4516. struct ggml_tensor * c1) {
  4517. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4518. // TODO: more checks
  4519. bool is_node = false;
  4520. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4525. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4526. result->op = GGML_OP_FLASH_FF;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src0 = a;
  4529. result->src1 = b0;
  4530. result->opt[0] = b1;
  4531. result->opt[1] = c0;
  4532. result->opt[2] = c1;
  4533. return result;
  4534. }
  4535. // ggml_map_unary
  4536. struct ggml_tensor * ggml_map_unary_impl_f32(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. const ggml_unary_op_f32_t fun,
  4540. bool inplace) {
  4541. bool is_node = false;
  4542. if (!inplace && a->grad) {
  4543. is_node = true;
  4544. }
  4545. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4546. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4547. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4548. result->op = GGML_OP_MAP_UNARY;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src0 = a;
  4551. result->opt[0] = addr_tensor;
  4552. return result;
  4553. }
  4554. struct ggml_tensor * ggml_map_unary_f32(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. const ggml_unary_op_f32_t fun) {
  4558. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4559. }
  4560. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. const ggml_unary_op_f32_t fun) {
  4564. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4565. }
  4566. // ggml_map_binary
  4567. struct ggml_tensor * ggml_map_binary_impl_f32(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b,
  4571. const ggml_binary_op_f32_t fun,
  4572. bool inplace) {
  4573. GGML_ASSERT(ggml_are_same_shape(a, b));
  4574. bool is_node = false;
  4575. if (!inplace && (a->grad || b->grad)) {
  4576. is_node = true;
  4577. }
  4578. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4579. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4580. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4581. result->op = GGML_OP_MAP_BINARY;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src0 = a;
  4584. result->src1 = b;
  4585. result->opt[0] = addr_tensor;
  4586. return result;
  4587. }
  4588. struct ggml_tensor * ggml_map_binary_f32(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. const ggml_binary_op_f32_t fun) {
  4593. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4594. }
  4595. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. const ggml_binary_op_f32_t fun) {
  4600. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4601. }
  4602. ////////////////////////////////////////////////////////////////////////////////
  4603. void ggml_set_param(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * tensor) {
  4606. tensor->is_param = true;
  4607. GGML_ASSERT(tensor->grad == NULL);
  4608. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4609. }
  4610. // ggml_compute_forward_dup
  4611. static void ggml_compute_forward_dup_f16(
  4612. const struct ggml_compute_params * params,
  4613. const struct ggml_tensor * src0,
  4614. struct ggml_tensor * dst) {
  4615. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4617. return;
  4618. }
  4619. const int64_t ne00 = src0->ne[0];
  4620. const int64_t ne01 = src0->ne[1];
  4621. const int64_t ne02 = src0->ne[2];
  4622. const int64_t ne03 = src0->ne[3];
  4623. const int64_t ne0 = dst->ne[0];
  4624. const int64_t ne1 = dst->ne[1];
  4625. const int64_t ne2 = dst->ne[2];
  4626. const int64_t ne3 = dst->ne[3];
  4627. const size_t nb00 = src0->nb[0];
  4628. const size_t nb01 = src0->nb[1];
  4629. const size_t nb02 = src0->nb[2];
  4630. const size_t nb03 = src0->nb[3];
  4631. const size_t nb0 = dst->nb[0];
  4632. const size_t nb1 = dst->nb[1];
  4633. const size_t nb2 = dst->nb[2];
  4634. const size_t nb3 = dst->nb[3];
  4635. const int ith = params->ith; // thread index
  4636. const int nth = params->nth; // number of threads
  4637. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4638. // parallelize by elements
  4639. const int ne = ggml_nelements(dst);
  4640. const int dr = (ne + nth - 1) / nth;
  4641. const int ie0 = dr * ith;
  4642. const int ie1 = MIN(ie0 + dr, ne);
  4643. memcpy(
  4644. ((char *) dst->data + ie0*nb0),
  4645. ((char *) src0->data + ie0*nb00),
  4646. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4647. return;
  4648. }
  4649. // parallelize by rows
  4650. const int nr = ne01;
  4651. // number of rows per thread
  4652. const int dr = (nr + nth - 1) / nth;
  4653. // row range for this thread
  4654. const int ir0 = dr * ith;
  4655. const int ir1 = MIN(ir0 + dr, nr);
  4656. if (src0->type == dst->type &&
  4657. ne00 == ne0 &&
  4658. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4659. // copy by rows
  4660. const size_t rs = ne00*nb00;
  4661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4663. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4664. memcpy(
  4665. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4666. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4667. rs);
  4668. }
  4669. }
  4670. }
  4671. return;
  4672. }
  4673. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4674. if (ggml_is_contiguous(dst)) {
  4675. if (nb00 == sizeof(ggml_fp16_t)) {
  4676. if (dst->type == GGML_TYPE_F16) {
  4677. size_t id = 0;
  4678. const size_t rs = ne00 * nb00;
  4679. char * dst_ptr = (char *) dst->data;
  4680. for (int i03 = 0; i03 < ne03; i03++) {
  4681. for (int i02 = 0; i02 < ne02; i02++) {
  4682. id += rs * ir0;
  4683. for (int i01 = ir0; i01 < ir1; i01++) {
  4684. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4685. memcpy(dst_ptr + id, src0_ptr, rs);
  4686. id += rs;
  4687. }
  4688. id += rs * (ne01 - ir1);
  4689. }
  4690. }
  4691. } else if (dst->type == GGML_TYPE_F32) {
  4692. size_t id = 0;
  4693. float * dst_ptr = (float *) dst->data;
  4694. for (int i03 = 0; i03 < ne03; i03++) {
  4695. for (int i02 = 0; i02 < ne02; i02++) {
  4696. id += ne00 * ir0;
  4697. for (int i01 = ir0; i01 < ir1; i01++) {
  4698. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4699. for (int i00 = 0; i00 < ne00; i00++) {
  4700. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4701. id++;
  4702. }
  4703. }
  4704. id += ne00 * (ne01 - ir1);
  4705. }
  4706. }
  4707. } else if (ggml_is_quantized(dst->type)) {
  4708. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4709. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4710. size_t id = 0;
  4711. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4712. char * dst_ptr = (char *) dst->data;
  4713. for (int i03 = 0; i03 < ne03; i03++) {
  4714. for (int i02 = 0; i02 < ne02; i02++) {
  4715. id += rs * ir0;
  4716. for (int i01 = ir0; i01 < ir1; i01++) {
  4717. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4718. for (int i00 = 0; i00 < ne00; i00++) {
  4719. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4720. }
  4721. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4722. id += rs;
  4723. }
  4724. id += rs * (ne01 - ir1);
  4725. }
  4726. }
  4727. } else {
  4728. GGML_ASSERT(false); // TODO: implement
  4729. }
  4730. } else {
  4731. //printf("%s: this is not optimal - fix me\n", __func__);
  4732. if (dst->type == GGML_TYPE_F32) {
  4733. size_t id = 0;
  4734. float * dst_ptr = (float *) dst->data;
  4735. for (int i03 = 0; i03 < ne03; i03++) {
  4736. for (int i02 = 0; i02 < ne02; i02++) {
  4737. id += ne00 * ir0;
  4738. for (int i01 = ir0; i01 < ir1; i01++) {
  4739. for (int i00 = 0; i00 < ne00; i00++) {
  4740. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4741. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4742. id++;
  4743. }
  4744. }
  4745. id += ne00 * (ne01 - ir1);
  4746. }
  4747. }
  4748. } else if (dst->type == GGML_TYPE_F16) {
  4749. size_t id = 0;
  4750. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4751. for (int i03 = 0; i03 < ne03; i03++) {
  4752. for (int i02 = 0; i02 < ne02; i02++) {
  4753. id += ne00 * ir0;
  4754. for (int i01 = ir0; i01 < ir1; i01++) {
  4755. for (int i00 = 0; i00 < ne00; i00++) {
  4756. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4757. dst_ptr[id] = *src0_ptr;
  4758. id++;
  4759. }
  4760. }
  4761. id += ne00 * (ne01 - ir1);
  4762. }
  4763. }
  4764. } else {
  4765. GGML_ASSERT(false); // TODO: implement
  4766. }
  4767. }
  4768. return;
  4769. }
  4770. // dst counters
  4771. int64_t i10 = 0;
  4772. int64_t i11 = 0;
  4773. int64_t i12 = 0;
  4774. int64_t i13 = 0;
  4775. if (dst->type == GGML_TYPE_F16) {
  4776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4778. i10 += ne00 * ir0;
  4779. while (i10 >= ne0) {
  4780. i10 -= ne0;
  4781. if (++i11 == ne1) {
  4782. i11 = 0;
  4783. if (++i12 == ne2) {
  4784. i12 = 0;
  4785. if (++i13 == ne3) {
  4786. i13 = 0;
  4787. }
  4788. }
  4789. }
  4790. }
  4791. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4792. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4793. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4794. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4795. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4796. if (++i10 == ne00) {
  4797. i10 = 0;
  4798. if (++i11 == ne01) {
  4799. i11 = 0;
  4800. if (++i12 == ne02) {
  4801. i12 = 0;
  4802. if (++i13 == ne03) {
  4803. i13 = 0;
  4804. }
  4805. }
  4806. }
  4807. }
  4808. }
  4809. }
  4810. i10 += ne00 * (ne01 - ir1);
  4811. while (i10 >= ne0) {
  4812. i10 -= ne0;
  4813. if (++i11 == ne1) {
  4814. i11 = 0;
  4815. if (++i12 == ne2) {
  4816. i12 = 0;
  4817. if (++i13 == ne3) {
  4818. i13 = 0;
  4819. }
  4820. }
  4821. }
  4822. }
  4823. }
  4824. }
  4825. } else if (dst->type == GGML_TYPE_F32) {
  4826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4828. i10 += ne00 * ir0;
  4829. while (i10 >= ne0) {
  4830. i10 -= ne0;
  4831. if (++i11 == ne1) {
  4832. i11 = 0;
  4833. if (++i12 == ne2) {
  4834. i12 = 0;
  4835. if (++i13 == ne3) {
  4836. i13 = 0;
  4837. }
  4838. }
  4839. }
  4840. }
  4841. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4842. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4843. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4844. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4845. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4846. if (++i10 == ne0) {
  4847. i10 = 0;
  4848. if (++i11 == ne1) {
  4849. i11 = 0;
  4850. if (++i12 == ne2) {
  4851. i12 = 0;
  4852. if (++i13 == ne3) {
  4853. i13 = 0;
  4854. }
  4855. }
  4856. }
  4857. }
  4858. }
  4859. }
  4860. i10 += ne00 * (ne01 - ir1);
  4861. while (i10 >= ne0) {
  4862. i10 -= ne0;
  4863. if (++i11 == ne1) {
  4864. i11 = 0;
  4865. if (++i12 == ne2) {
  4866. i12 = 0;
  4867. if (++i13 == ne3) {
  4868. i13 = 0;
  4869. }
  4870. }
  4871. }
  4872. }
  4873. }
  4874. }
  4875. } else {
  4876. GGML_ASSERT(false); // TODO: implement
  4877. }
  4878. }
  4879. static void ggml_compute_forward_dup_f32(
  4880. const struct ggml_compute_params * params,
  4881. const struct ggml_tensor * src0,
  4882. struct ggml_tensor * dst) {
  4883. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4885. return;
  4886. }
  4887. const int64_t ne00 = src0->ne[0];
  4888. const int64_t ne01 = src0->ne[1];
  4889. const int64_t ne02 = src0->ne[2];
  4890. const int64_t ne03 = src0->ne[3];
  4891. const int64_t ne0 = dst->ne[0];
  4892. const int64_t ne1 = dst->ne[1];
  4893. const int64_t ne2 = dst->ne[2];
  4894. const int64_t ne3 = dst->ne[3];
  4895. const size_t nb00 = src0->nb[0];
  4896. const size_t nb01 = src0->nb[1];
  4897. const size_t nb02 = src0->nb[2];
  4898. const size_t nb03 = src0->nb[3];
  4899. const size_t nb0 = dst->nb[0];
  4900. const size_t nb1 = dst->nb[1];
  4901. const size_t nb2 = dst->nb[2];
  4902. const size_t nb3 = dst->nb[3];
  4903. const int ith = params->ith; // thread index
  4904. const int nth = params->nth; // number of threads
  4905. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4906. // parallelize by elements
  4907. const int ne = ggml_nelements(dst);
  4908. const int dr = (ne + nth - 1) / nth;
  4909. const int ie0 = dr * ith;
  4910. const int ie1 = MIN(ie0 + dr, ne);
  4911. memcpy(
  4912. ((char *) dst->data + ie0*nb0),
  4913. ((char *) src0->data + ie0*nb00),
  4914. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4915. return;
  4916. }
  4917. // parallelize by rows
  4918. const int nr = ne01;
  4919. // number of rows per thread
  4920. const int dr = (nr + nth - 1) / nth;
  4921. // row range for this thread
  4922. const int ir0 = dr * ith;
  4923. const int ir1 = MIN(ir0 + dr, nr);
  4924. if (src0->type == dst->type &&
  4925. ne00 == ne0 &&
  4926. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4927. // copy by rows
  4928. const size_t rs = ne00*nb00;
  4929. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4930. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4931. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4932. memcpy(
  4933. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4934. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4935. rs);
  4936. }
  4937. }
  4938. }
  4939. return;
  4940. }
  4941. if (ggml_is_contiguous(dst)) {
  4942. // TODO: simplify
  4943. if (nb00 == sizeof(float)) {
  4944. if (dst->type == GGML_TYPE_F32) {
  4945. size_t id = 0;
  4946. const size_t rs = ne00 * nb00;
  4947. char * dst_ptr = (char *) dst->data;
  4948. for (int i03 = 0; i03 < ne03; i03++) {
  4949. for (int i02 = 0; i02 < ne02; i02++) {
  4950. id += rs * ir0;
  4951. for (int i01 = ir0; i01 < ir1; i01++) {
  4952. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4953. memcpy(dst_ptr + id, src0_ptr, rs);
  4954. id += rs;
  4955. }
  4956. id += rs * (ne01 - ir1);
  4957. }
  4958. }
  4959. } else if (dst->type == GGML_TYPE_F16) {
  4960. size_t id = 0;
  4961. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4962. for (int i03 = 0; i03 < ne03; i03++) {
  4963. for (int i02 = 0; i02 < ne02; i02++) {
  4964. id += ne00 * ir0;
  4965. for (int i01 = ir0; i01 < ir1; i01++) {
  4966. for (int i00 = 0; i00 < ne00; i00++) {
  4967. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4968. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4969. id++;
  4970. }
  4971. }
  4972. id += ne00 * (ne01 - ir1);
  4973. }
  4974. }
  4975. } else if (ggml_is_quantized(dst->type)) {
  4976. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4977. size_t id = 0;
  4978. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4979. char * dst_ptr = (char *) dst->data;
  4980. for (int i03 = 0; i03 < ne03; i03++) {
  4981. for (int i02 = 0; i02 < ne02; i02++) {
  4982. id += rs * ir0;
  4983. for (int i01 = ir0; i01 < ir1; i01++) {
  4984. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4985. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4986. id += rs;
  4987. }
  4988. id += rs * (ne01 - ir1);
  4989. }
  4990. }
  4991. } else {
  4992. GGML_ASSERT(false); // TODO: implement
  4993. }
  4994. } else {
  4995. //printf("%s: this is not optimal - fix me\n", __func__);
  4996. if (dst->type == GGML_TYPE_F32) {
  4997. size_t id = 0;
  4998. float * dst_ptr = (float *) dst->data;
  4999. for (int i03 = 0; i03 < ne03; i03++) {
  5000. for (int i02 = 0; i02 < ne02; i02++) {
  5001. id += ne00 * ir0;
  5002. for (int i01 = ir0; i01 < ir1; i01++) {
  5003. for (int i00 = 0; i00 < ne00; i00++) {
  5004. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5005. dst_ptr[id] = *src0_ptr;
  5006. id++;
  5007. }
  5008. }
  5009. id += ne00 * (ne01 - ir1);
  5010. }
  5011. }
  5012. } else if (dst->type == GGML_TYPE_F16) {
  5013. size_t id = 0;
  5014. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5015. for (int i03 = 0; i03 < ne03; i03++) {
  5016. for (int i02 = 0; i02 < ne02; i02++) {
  5017. id += ne00 * ir0;
  5018. for (int i01 = ir0; i01 < ir1; i01++) {
  5019. for (int i00 = 0; i00 < ne00; i00++) {
  5020. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5021. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5022. id++;
  5023. }
  5024. }
  5025. id += ne00 * (ne01 - ir1);
  5026. }
  5027. }
  5028. } else {
  5029. GGML_ASSERT(false); // TODO: implement
  5030. }
  5031. }
  5032. return;
  5033. }
  5034. // dst counters
  5035. int64_t i10 = 0;
  5036. int64_t i11 = 0;
  5037. int64_t i12 = 0;
  5038. int64_t i13 = 0;
  5039. if (dst->type == GGML_TYPE_F32) {
  5040. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5041. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5042. i10 += ne00 * ir0;
  5043. while (i10 >= ne0) {
  5044. i10 -= ne0;
  5045. if (++i11 == ne1) {
  5046. i11 = 0;
  5047. if (++i12 == ne2) {
  5048. i12 = 0;
  5049. if (++i13 == ne3) {
  5050. i13 = 0;
  5051. }
  5052. }
  5053. }
  5054. }
  5055. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5056. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5057. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5058. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5059. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5060. if (++i10 == ne0) {
  5061. i10 = 0;
  5062. if (++i11 == ne1) {
  5063. i11 = 0;
  5064. if (++i12 == ne2) {
  5065. i12 = 0;
  5066. if (++i13 == ne3) {
  5067. i13 = 0;
  5068. }
  5069. }
  5070. }
  5071. }
  5072. }
  5073. }
  5074. i10 += ne00 * (ne01 - ir1);
  5075. while (i10 >= ne0) {
  5076. i10 -= ne0;
  5077. if (++i11 == ne1) {
  5078. i11 = 0;
  5079. if (++i12 == ne2) {
  5080. i12 = 0;
  5081. if (++i13 == ne3) {
  5082. i13 = 0;
  5083. }
  5084. }
  5085. }
  5086. }
  5087. }
  5088. }
  5089. } else if (dst->type == GGML_TYPE_F16) {
  5090. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5092. i10 += ne00 * ir0;
  5093. while (i10 >= ne0) {
  5094. i10 -= ne0;
  5095. if (++i11 == ne1) {
  5096. i11 = 0;
  5097. if (++i12 == ne2) {
  5098. i12 = 0;
  5099. if (++i13 == ne3) {
  5100. i13 = 0;
  5101. }
  5102. }
  5103. }
  5104. }
  5105. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5106. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5107. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5108. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5109. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5110. if (++i10 == ne0) {
  5111. i10 = 0;
  5112. if (++i11 == ne1) {
  5113. i11 = 0;
  5114. if (++i12 == ne2) {
  5115. i12 = 0;
  5116. if (++i13 == ne3) {
  5117. i13 = 0;
  5118. }
  5119. }
  5120. }
  5121. }
  5122. }
  5123. }
  5124. i10 += ne00 * (ne01 - ir1);
  5125. while (i10 >= ne0) {
  5126. i10 -= ne0;
  5127. if (++i11 == ne1) {
  5128. i11 = 0;
  5129. if (++i12 == ne2) {
  5130. i12 = 0;
  5131. if (++i13 == ne3) {
  5132. i13 = 0;
  5133. }
  5134. }
  5135. }
  5136. }
  5137. }
  5138. }
  5139. } else {
  5140. GGML_ASSERT(false); // TODO: implement
  5141. }
  5142. }
  5143. static void ggml_compute_forward_dup(
  5144. const struct ggml_compute_params * params,
  5145. const struct ggml_tensor * src0,
  5146. struct ggml_tensor * dst) {
  5147. switch (src0->type) {
  5148. case GGML_TYPE_F16:
  5149. {
  5150. ggml_compute_forward_dup_f16(params, src0, dst);
  5151. } break;
  5152. case GGML_TYPE_F32:
  5153. {
  5154. ggml_compute_forward_dup_f32(params, src0, dst);
  5155. } break;
  5156. default:
  5157. {
  5158. GGML_ASSERT(false);
  5159. } break;
  5160. }
  5161. }
  5162. // ggml_compute_forward_add
  5163. static void ggml_compute_forward_add_f32(
  5164. const struct ggml_compute_params * params,
  5165. const struct ggml_tensor * src0,
  5166. const struct ggml_tensor * src1,
  5167. struct ggml_tensor * dst) {
  5168. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5170. return;
  5171. }
  5172. const int ith = params->ith;
  5173. const int nth = params->nth;
  5174. const int n = ggml_nrows(src0);
  5175. const int nc = src0->ne[0];
  5176. const size_t nb00 = src0->nb[0];
  5177. const size_t nb01 = src0->nb[1];
  5178. const size_t nb10 = src1->nb[0];
  5179. const size_t nb11 = src1->nb[1];
  5180. const size_t nb0 = dst->nb[0];
  5181. const size_t nb1 = dst->nb[1];
  5182. GGML_ASSERT( nb0 == sizeof(float));
  5183. GGML_ASSERT(nb00 == sizeof(float));
  5184. if (nb10 == sizeof(float)) {
  5185. for (int j = ith; j < n; j += nth) {
  5186. #ifdef GGML_USE_ACCELERATE
  5187. vDSP_vadd(
  5188. (float *) ((char *) src0->data + j*nb01), 1,
  5189. (float *) ((char *) src1->data + j*nb11), 1,
  5190. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5191. #else
  5192. ggml_vec_add_f32(nc,
  5193. (float *) ((char *) dst->data + j*nb1),
  5194. (float *) ((char *) src0->data + j*nb01),
  5195. (float *) ((char *) src1->data + j*nb11));
  5196. #endif
  5197. }
  5198. } else {
  5199. // src1 is not contiguous
  5200. for (int j = ith; j < n; j += nth) {
  5201. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5202. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5203. for (int i = 0; i < nc; i++) {
  5204. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5205. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5206. }
  5207. }
  5208. }
  5209. }
  5210. static void ggml_compute_forward_add_f16_f32(
  5211. const struct ggml_compute_params * params,
  5212. const struct ggml_tensor * src0,
  5213. const struct ggml_tensor * src1,
  5214. struct ggml_tensor * dst) {
  5215. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5217. return;
  5218. }
  5219. const int ith = params->ith;
  5220. const int nth = params->nth;
  5221. const int n = ggml_nrows(src0);
  5222. const int nc = src0->ne[0];
  5223. const size_t nb00 = src0->nb[0];
  5224. const size_t nb01 = src0->nb[1];
  5225. const size_t nb10 = src1->nb[0];
  5226. const size_t nb11 = src1->nb[1];
  5227. const size_t nb0 = dst->nb[0];
  5228. const size_t nb1 = dst->nb[1];
  5229. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5230. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5231. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5232. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5233. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5234. if (nb10 == sizeof(float)) {
  5235. for (int j = ith; j < n; j += nth) {
  5236. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5237. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5238. for (int i = 0; i < nc; i++) {
  5239. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5240. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5241. }
  5242. }
  5243. }
  5244. else {
  5245. // src1 is not contiguous
  5246. GGML_ASSERT(false);
  5247. }
  5248. }
  5249. static void ggml_compute_forward_add_f16_f16(
  5250. const struct ggml_compute_params * params,
  5251. const struct ggml_tensor * src0,
  5252. const struct ggml_tensor * src1,
  5253. struct ggml_tensor * dst) {
  5254. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5256. return;
  5257. }
  5258. const int ith = params->ith;
  5259. const int nth = params->nth;
  5260. const int n = ggml_nrows(src0);
  5261. const int nc = src0->ne[0];
  5262. const size_t nb00 = src0->nb[0];
  5263. const size_t nb01 = src0->nb[1];
  5264. const size_t nb10 = src1->nb[0];
  5265. const size_t nb11 = src1->nb[1];
  5266. const size_t nb0 = dst->nb[0];
  5267. const size_t nb1 = dst->nb[1];
  5268. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5269. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5270. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5271. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5272. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5273. if (nb10 == sizeof(ggml_fp16_t)) {
  5274. for (int j = ith; j < n; j += nth) {
  5275. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5276. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5277. for (int i = 0; i < nc; i++) {
  5278. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5279. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5280. }
  5281. }
  5282. }
  5283. else {
  5284. // src1 is not contiguous
  5285. GGML_ASSERT(false);
  5286. }
  5287. }
  5288. static void ggml_compute_forward_add_q_f32(
  5289. const struct ggml_compute_params * params,
  5290. const struct ggml_tensor * src0,
  5291. const struct ggml_tensor * src1,
  5292. struct ggml_tensor * dst) {
  5293. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5295. return;
  5296. }
  5297. const int64_t ne00 = src0->ne[0];
  5298. const int64_t ne01 = src0->ne[1];
  5299. const int64_t ne02 = src0->ne[2];
  5300. const int64_t ne03 = src0->ne[3];
  5301. //const int64_t ne10 = src1->ne[0];
  5302. //const int64_t ne11 = src1->ne[1];
  5303. const int64_t ne12 = src1->ne[2];
  5304. const int64_t ne13 = src1->ne[3];
  5305. //const int64_t ne0 = dst->ne[0];
  5306. //const int64_t ne1 = dst->ne[1];
  5307. const int64_t ne2 = dst->ne[2];
  5308. const int64_t ne3 = dst->ne[3];
  5309. const int nb00 = src0->nb[0];
  5310. const int nb01 = src0->nb[1];
  5311. const int nb02 = src0->nb[2];
  5312. const int nb03 = src0->nb[3];
  5313. const int nb10 = src1->nb[0];
  5314. const int nb11 = src1->nb[1];
  5315. const int nb12 = src1->nb[2];
  5316. const int nb13 = src1->nb[3];
  5317. const int nb0 = dst->nb[0];
  5318. const int nb1 = dst->nb[1];
  5319. const int nb2 = dst->nb[2];
  5320. const int nb3 = dst->nb[3];
  5321. const int ith = params->ith;
  5322. const int nth = params->nth;
  5323. GGML_ASSERT(ne02 == ne12);
  5324. GGML_ASSERT(ne03 == ne13);
  5325. GGML_ASSERT(ne2 == ne12);
  5326. GGML_ASSERT(ne3 == ne13);
  5327. const enum ggml_type type = src0->type;
  5328. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5329. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5330. // we don't support permuted src0 or src1
  5331. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5332. GGML_ASSERT(nb10 == sizeof(float));
  5333. // dst cannot be transposed or permuted
  5334. GGML_ASSERT(nb0 <= nb1);
  5335. GGML_ASSERT(nb1 <= nb2);
  5336. GGML_ASSERT(nb2 <= nb3);
  5337. GGML_ASSERT(ggml_is_quantized(src0->type));
  5338. GGML_ASSERT(dst->type == src0->type);
  5339. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5340. // total rows in src0
  5341. const int nr = ne01*ne02*ne03;
  5342. // rows per thread
  5343. const int dr = (nr + nth - 1)/nth;
  5344. // row range for this thread
  5345. const int ir0 = dr*ith;
  5346. const int ir1 = MIN(ir0 + dr, nr);
  5347. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5348. for (int ir = ir0; ir < ir1; ++ir) {
  5349. // src0 indices
  5350. const int i03 = ir/(ne02*ne01);
  5351. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5352. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5353. // src1 and dst are same shape as src0 => same indices
  5354. const int i13 = i03;
  5355. const int i12 = i02;
  5356. const int i11 = i01;
  5357. const int i3 = i03;
  5358. const int i2 = i02;
  5359. const int i1 = i01;
  5360. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5361. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5362. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5363. assert(ne00 % 32 == 0);
  5364. // unquantize row from src0 to temp buffer
  5365. dequantize_row_q(src0_row, wdata, ne00);
  5366. // add src1
  5367. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5368. // quantize row to dst
  5369. quantize_row_q(wdata, dst_row, ne00);
  5370. }
  5371. }
  5372. static void ggml_compute_forward_add(
  5373. const struct ggml_compute_params * params,
  5374. const struct ggml_tensor * src0,
  5375. const struct ggml_tensor * src1,
  5376. struct ggml_tensor * dst) {
  5377. switch (src0->type) {
  5378. case GGML_TYPE_F32:
  5379. {
  5380. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5381. } break;
  5382. case GGML_TYPE_F16:
  5383. {
  5384. if (src1->type == GGML_TYPE_F16) {
  5385. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5386. }
  5387. else if (src1->type == GGML_TYPE_F32) {
  5388. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5389. }
  5390. else {
  5391. GGML_ASSERT(false);
  5392. }
  5393. } break;
  5394. case GGML_TYPE_Q4_0:
  5395. case GGML_TYPE_Q4_1:
  5396. case GGML_TYPE_Q4_2:
  5397. case GGML_TYPE_Q4_3:
  5398. case GGML_TYPE_Q8_0:
  5399. {
  5400. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5401. } break;
  5402. default:
  5403. {
  5404. GGML_ASSERT(false);
  5405. } break;
  5406. }
  5407. }
  5408. // ggml_compute_forward_sub
  5409. static void ggml_compute_forward_sub_f32(
  5410. const struct ggml_compute_params * params,
  5411. const struct ggml_tensor * src0,
  5412. const struct ggml_tensor * src1,
  5413. struct ggml_tensor * dst) {
  5414. assert(params->ith == 0);
  5415. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5417. return;
  5418. }
  5419. const int n = ggml_nrows(src0);
  5420. const int nc = src0->ne[0];
  5421. assert( dst->nb[0] == sizeof(float));
  5422. assert(src0->nb[0] == sizeof(float));
  5423. assert(src1->nb[0] == sizeof(float));
  5424. for (int i = 0; i < n; i++) {
  5425. ggml_vec_sub_f32(nc,
  5426. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5427. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5428. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5429. }
  5430. }
  5431. static void ggml_compute_forward_sub(
  5432. const struct ggml_compute_params * params,
  5433. const struct ggml_tensor * src0,
  5434. const struct ggml_tensor * src1,
  5435. struct ggml_tensor * dst) {
  5436. switch (src0->type) {
  5437. case GGML_TYPE_F32:
  5438. {
  5439. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5440. } break;
  5441. default:
  5442. {
  5443. GGML_ASSERT(false);
  5444. } break;
  5445. }
  5446. }
  5447. // ggml_compute_forward_mul
  5448. static void ggml_compute_forward_mul_f32(
  5449. const struct ggml_compute_params * params,
  5450. const struct ggml_tensor * src0,
  5451. const struct ggml_tensor * src1,
  5452. struct ggml_tensor * dst) {
  5453. assert(params->ith == 0);
  5454. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5456. return;
  5457. }
  5458. const int n = ggml_nrows(src0);
  5459. const int nc = src0->ne[0];
  5460. assert( dst->nb[0] == sizeof(float));
  5461. assert(src0->nb[0] == sizeof(float));
  5462. assert(src1->nb[0] == sizeof(float));
  5463. for (int i = 0; i < n; i++) {
  5464. ggml_vec_mul_f32(nc,
  5465. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5466. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5467. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5468. }
  5469. }
  5470. static void ggml_compute_forward_mul(
  5471. const struct ggml_compute_params * params,
  5472. const struct ggml_tensor * src0,
  5473. const struct ggml_tensor * src1,
  5474. struct ggml_tensor * dst) {
  5475. switch (src0->type) {
  5476. case GGML_TYPE_F32:
  5477. {
  5478. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5479. } break;
  5480. default:
  5481. {
  5482. GGML_ASSERT(false);
  5483. } break;
  5484. }
  5485. }
  5486. // ggml_compute_forward_div
  5487. static void ggml_compute_forward_div_f32(
  5488. const struct ggml_compute_params * params,
  5489. const struct ggml_tensor * src0,
  5490. const struct ggml_tensor * src1,
  5491. struct ggml_tensor * dst) {
  5492. assert(params->ith == 0);
  5493. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5495. return;
  5496. }
  5497. const int n = ggml_nrows(src0);
  5498. const int nc = src0->ne[0];
  5499. assert( dst->nb[0] == sizeof(float));
  5500. assert(src0->nb[0] == sizeof(float));
  5501. assert(src1->nb[0] == sizeof(float));
  5502. for (int i = 0; i < n; i++) {
  5503. ggml_vec_div_f32(nc,
  5504. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5505. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5506. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5507. }
  5508. }
  5509. static void ggml_compute_forward_div(
  5510. const struct ggml_compute_params * params,
  5511. const struct ggml_tensor * src0,
  5512. const struct ggml_tensor * src1,
  5513. struct ggml_tensor * dst) {
  5514. switch (src0->type) {
  5515. case GGML_TYPE_F32:
  5516. {
  5517. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5518. } break;
  5519. default:
  5520. {
  5521. GGML_ASSERT(false);
  5522. } break;
  5523. }
  5524. }
  5525. // ggml_compute_forward_sqr
  5526. static void ggml_compute_forward_sqr_f32(
  5527. const struct ggml_compute_params * params,
  5528. const struct ggml_tensor * src0,
  5529. struct ggml_tensor * dst) {
  5530. assert(params->ith == 0);
  5531. assert(ggml_are_same_shape(src0, dst));
  5532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5533. return;
  5534. }
  5535. const int n = ggml_nrows(src0);
  5536. const int nc = src0->ne[0];
  5537. assert( dst->nb[0] == sizeof(float));
  5538. assert(src0->nb[0] == sizeof(float));
  5539. for (int i = 0; i < n; i++) {
  5540. ggml_vec_sqr_f32(nc,
  5541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5542. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5543. }
  5544. }
  5545. static void ggml_compute_forward_sqr(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. struct ggml_tensor * dst) {
  5549. switch (src0->type) {
  5550. case GGML_TYPE_F32:
  5551. {
  5552. ggml_compute_forward_sqr_f32(params, src0, dst);
  5553. } break;
  5554. default:
  5555. {
  5556. GGML_ASSERT(false);
  5557. } break;
  5558. }
  5559. }
  5560. // ggml_compute_forward_sqrt
  5561. static void ggml_compute_forward_sqrt_f32(
  5562. const struct ggml_compute_params * params,
  5563. const struct ggml_tensor * src0,
  5564. struct ggml_tensor * dst) {
  5565. assert(params->ith == 0);
  5566. assert(ggml_are_same_shape(src0, dst));
  5567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5568. return;
  5569. }
  5570. const int n = ggml_nrows(src0);
  5571. const int nc = src0->ne[0];
  5572. assert( dst->nb[0] == sizeof(float));
  5573. assert(src0->nb[0] == sizeof(float));
  5574. for (int i = 0; i < n; i++) {
  5575. ggml_vec_sqrt_f32(nc,
  5576. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5577. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5578. }
  5579. }
  5580. static void ggml_compute_forward_sqrt(
  5581. const struct ggml_compute_params * params,
  5582. const struct ggml_tensor * src0,
  5583. struct ggml_tensor * dst) {
  5584. switch (src0->type) {
  5585. case GGML_TYPE_F32:
  5586. {
  5587. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5588. } break;
  5589. default:
  5590. {
  5591. GGML_ASSERT(false);
  5592. } break;
  5593. }
  5594. }
  5595. // ggml_compute_forward_sum
  5596. static void ggml_compute_forward_sum_f32(
  5597. const struct ggml_compute_params * params,
  5598. const struct ggml_tensor * src0,
  5599. struct ggml_tensor * dst) {
  5600. assert(params->ith == 0);
  5601. assert(ggml_is_scalar(dst));
  5602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5603. return;
  5604. }
  5605. assert(ggml_is_scalar(dst));
  5606. assert(src0->nb[0] == sizeof(float));
  5607. const int64_t ne00 = src0->ne[0];
  5608. const int64_t ne01 = src0->ne[1];
  5609. const int64_t ne02 = src0->ne[2];
  5610. const int64_t ne03 = src0->ne[3];
  5611. const size_t nb01 = src0->nb[1];
  5612. const size_t nb02 = src0->nb[2];
  5613. const size_t nb03 = src0->nb[3];
  5614. ggml_float sum = 0;
  5615. ggml_float row_sum = 0;
  5616. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5617. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5618. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5619. ggml_vec_sum_ggf(ne00,
  5620. &row_sum,
  5621. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5622. sum += row_sum;
  5623. }
  5624. }
  5625. }
  5626. ((float *) dst->data)[0] = sum;
  5627. }
  5628. static void ggml_compute_forward_sum(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. struct ggml_tensor * dst) {
  5632. switch (src0->type) {
  5633. case GGML_TYPE_F32:
  5634. {
  5635. ggml_compute_forward_sum_f32(params, src0, dst);
  5636. } break;
  5637. default:
  5638. {
  5639. GGML_ASSERT(false);
  5640. } break;
  5641. }
  5642. }
  5643. // ggml_compute_forward_mean
  5644. static void ggml_compute_forward_mean_f32(
  5645. const struct ggml_compute_params * params,
  5646. const struct ggml_tensor * src0,
  5647. struct ggml_tensor * dst) {
  5648. assert(params->ith == 0);
  5649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5650. return;
  5651. }
  5652. assert(src0->nb[0] == sizeof(float));
  5653. const int64_t ne00 = src0->ne[0];
  5654. const int64_t ne01 = src0->ne[1];
  5655. const int64_t ne02 = src0->ne[2];
  5656. const int64_t ne03 = src0->ne[3];
  5657. const size_t nb01 = src0->nb[1];
  5658. const size_t nb02 = src0->nb[2];
  5659. const size_t nb03 = src0->nb[3];
  5660. const int64_t ne0 = dst->ne[0];
  5661. const int64_t ne1 = dst->ne[1];
  5662. const int64_t ne2 = dst->ne[2];
  5663. const int64_t ne3 = dst->ne[3];
  5664. assert(ne0 == 1);
  5665. assert(ne1 == ne01);
  5666. assert(ne2 == ne02);
  5667. assert(ne3 == ne03);
  5668. UNUSED(ne0);
  5669. UNUSED(ne1);
  5670. UNUSED(ne2);
  5671. UNUSED(ne3);
  5672. const size_t nb1 = dst->nb[1];
  5673. const size_t nb2 = dst->nb[2];
  5674. const size_t nb3 = dst->nb[3];
  5675. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5676. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5677. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5678. ggml_vec_sum_f32(ne00,
  5679. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5680. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5681. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5682. }
  5683. }
  5684. }
  5685. }
  5686. static void ggml_compute_forward_mean(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. struct ggml_tensor * dst) {
  5690. switch (src0->type) {
  5691. case GGML_TYPE_F32:
  5692. {
  5693. ggml_compute_forward_mean_f32(params, src0, dst);
  5694. } break;
  5695. default:
  5696. {
  5697. GGML_ASSERT(false);
  5698. } break;
  5699. }
  5700. }
  5701. // ggml_compute_forward_repeat
  5702. static void ggml_compute_forward_repeat_f32(
  5703. const struct ggml_compute_params * params,
  5704. const struct ggml_tensor * src0,
  5705. struct ggml_tensor * dst) {
  5706. assert(params->ith == 0);
  5707. assert(ggml_can_repeat(src0, dst));
  5708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5709. return;
  5710. }
  5711. // TODO: implement support for rank > 2 tensors
  5712. assert(src0->ne[2] == 1);
  5713. assert(src0->ne[3] == 1);
  5714. assert( dst->ne[2] == 1);
  5715. assert( dst->ne[3] == 1);
  5716. const int nc = dst->ne[0];
  5717. const int nr = dst->ne[1];
  5718. const int nc0 = src0->ne[0];
  5719. const int nr0 = src0->ne[1];
  5720. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5721. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5722. // TODO: support for transposed / permuted tensors
  5723. assert( dst->nb[0] == sizeof(float));
  5724. assert(src0->nb[0] == sizeof(float));
  5725. // TODO: maybe this is not optimal?
  5726. for (int i = 0; i < nrr; i++) {
  5727. for (int j = 0; j < ncr; j++) {
  5728. for (int k = 0; k < nr0; k++) {
  5729. ggml_vec_cpy_f32(nc0,
  5730. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5731. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5732. }
  5733. }
  5734. }
  5735. }
  5736. static void ggml_compute_forward_repeat(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. struct ggml_tensor * dst) {
  5740. switch (src0->type) {
  5741. case GGML_TYPE_F32:
  5742. {
  5743. ggml_compute_forward_repeat_f32(params, src0, dst);
  5744. } break;
  5745. default:
  5746. {
  5747. GGML_ASSERT(false);
  5748. } break;
  5749. }
  5750. }
  5751. // ggml_compute_forward_abs
  5752. static void ggml_compute_forward_abs_f32(
  5753. const struct ggml_compute_params * params,
  5754. const struct ggml_tensor * src0,
  5755. struct ggml_tensor * dst) {
  5756. assert(params->ith == 0);
  5757. assert(ggml_are_same_shape(src0, dst));
  5758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5759. return;
  5760. }
  5761. const int n = ggml_nrows(src0);
  5762. const int nc = src0->ne[0];
  5763. assert(dst->nb[0] == sizeof(float));
  5764. assert(src0->nb[0] == sizeof(float));
  5765. for (int i = 0; i < n; i++) {
  5766. ggml_vec_abs_f32(nc,
  5767. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5768. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5769. }
  5770. }
  5771. static void ggml_compute_forward_abs(
  5772. const struct ggml_compute_params * params,
  5773. const struct ggml_tensor * src0,
  5774. struct ggml_tensor * dst) {
  5775. switch (src0->type) {
  5776. case GGML_TYPE_F32:
  5777. {
  5778. ggml_compute_forward_abs_f32(params, src0, dst);
  5779. } break;
  5780. default:
  5781. {
  5782. GGML_ASSERT(false);
  5783. } break;
  5784. }
  5785. }
  5786. // ggml_compute_forward_sgn
  5787. static void ggml_compute_forward_sgn_f32(
  5788. const struct ggml_compute_params * params,
  5789. const struct ggml_tensor * src0,
  5790. struct ggml_tensor * dst) {
  5791. assert(params->ith == 0);
  5792. assert(ggml_are_same_shape(src0, dst));
  5793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5794. return;
  5795. }
  5796. const int n = ggml_nrows(src0);
  5797. const int nc = src0->ne[0];
  5798. assert(dst->nb[0] == sizeof(float));
  5799. assert(src0->nb[0] == sizeof(float));
  5800. for (int i = 0; i < n; i++) {
  5801. ggml_vec_sgn_f32(nc,
  5802. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5803. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5804. }
  5805. }
  5806. static void ggml_compute_forward_sgn(
  5807. const struct ggml_compute_params * params,
  5808. const struct ggml_tensor * src0,
  5809. struct ggml_tensor * dst) {
  5810. switch (src0->type) {
  5811. case GGML_TYPE_F32:
  5812. {
  5813. ggml_compute_forward_sgn_f32(params, src0, dst);
  5814. } break;
  5815. default:
  5816. {
  5817. GGML_ASSERT(false);
  5818. } break;
  5819. }
  5820. }
  5821. // ggml_compute_forward_neg
  5822. static void ggml_compute_forward_neg_f32(
  5823. const struct ggml_compute_params * params,
  5824. const struct ggml_tensor * src0,
  5825. struct ggml_tensor * dst) {
  5826. assert(params->ith == 0);
  5827. assert(ggml_are_same_shape(src0, dst));
  5828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5829. return;
  5830. }
  5831. const int n = ggml_nrows(src0);
  5832. const int nc = src0->ne[0];
  5833. assert(dst->nb[0] == sizeof(float));
  5834. assert(src0->nb[0] == sizeof(float));
  5835. for (int i = 0; i < n; i++) {
  5836. ggml_vec_neg_f32(nc,
  5837. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5838. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5839. }
  5840. }
  5841. static void ggml_compute_forward_neg(
  5842. const struct ggml_compute_params * params,
  5843. const struct ggml_tensor * src0,
  5844. struct ggml_tensor * dst) {
  5845. switch (src0->type) {
  5846. case GGML_TYPE_F32:
  5847. {
  5848. ggml_compute_forward_neg_f32(params, src0, dst);
  5849. } break;
  5850. default:
  5851. {
  5852. GGML_ASSERT(false);
  5853. } break;
  5854. }
  5855. }
  5856. // ggml_compute_forward_step
  5857. static void ggml_compute_forward_step_f32(
  5858. const struct ggml_compute_params * params,
  5859. const struct ggml_tensor * src0,
  5860. struct ggml_tensor * dst) {
  5861. assert(params->ith == 0);
  5862. assert(ggml_are_same_shape(src0, dst));
  5863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5864. return;
  5865. }
  5866. const int n = ggml_nrows(src0);
  5867. const int nc = src0->ne[0];
  5868. assert(dst->nb[0] == sizeof(float));
  5869. assert(src0->nb[0] == sizeof(float));
  5870. for (int i = 0; i < n; i++) {
  5871. ggml_vec_step_f32(nc,
  5872. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5873. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5874. }
  5875. }
  5876. static void ggml_compute_forward_step(
  5877. const struct ggml_compute_params * params,
  5878. const struct ggml_tensor * src0,
  5879. struct ggml_tensor * dst) {
  5880. switch (src0->type) {
  5881. case GGML_TYPE_F32:
  5882. {
  5883. ggml_compute_forward_step_f32(params, src0, dst);
  5884. } break;
  5885. default:
  5886. {
  5887. GGML_ASSERT(false);
  5888. } break;
  5889. }
  5890. }
  5891. // ggml_compute_forward_relu
  5892. static void ggml_compute_forward_relu_f32(
  5893. const struct ggml_compute_params * params,
  5894. const struct ggml_tensor * src0,
  5895. struct ggml_tensor * dst) {
  5896. assert(params->ith == 0);
  5897. assert(ggml_are_same_shape(src0, dst));
  5898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5899. return;
  5900. }
  5901. const int n = ggml_nrows(src0);
  5902. const int nc = src0->ne[0];
  5903. assert(dst->nb[0] == sizeof(float));
  5904. assert(src0->nb[0] == sizeof(float));
  5905. for (int i = 0; i < n; i++) {
  5906. ggml_vec_relu_f32(nc,
  5907. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5908. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5909. }
  5910. }
  5911. static void ggml_compute_forward_relu(
  5912. const struct ggml_compute_params * params,
  5913. const struct ggml_tensor * src0,
  5914. struct ggml_tensor * dst) {
  5915. switch (src0->type) {
  5916. case GGML_TYPE_F32:
  5917. {
  5918. ggml_compute_forward_relu_f32(params, src0, dst);
  5919. } break;
  5920. default:
  5921. {
  5922. GGML_ASSERT(false);
  5923. } break;
  5924. }
  5925. }
  5926. // ggml_compute_forward_gelu
  5927. static void ggml_compute_forward_gelu_f32(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. struct ggml_tensor * dst) {
  5931. GGML_ASSERT(ggml_is_contiguous(src0));
  5932. GGML_ASSERT(ggml_is_contiguous(dst));
  5933. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5934. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5935. return;
  5936. }
  5937. const int ith = params->ith;
  5938. const int nth = params->nth;
  5939. const int nc = src0->ne[0];
  5940. const int nr = ggml_nrows(src0);
  5941. // rows per thread
  5942. const int dr = (nr + nth - 1)/nth;
  5943. // row range for this thread
  5944. const int ir0 = dr*ith;
  5945. const int ir1 = MIN(ir0 + dr, nr);
  5946. for (int i1 = ir0; i1 < ir1; i1++) {
  5947. ggml_vec_gelu_f32(nc,
  5948. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5949. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5950. #ifndef NDEBUG
  5951. for (int k = 0; k < nc; k++) {
  5952. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5953. UNUSED(x);
  5954. assert(!isnan(x));
  5955. assert(!isinf(x));
  5956. }
  5957. #endif
  5958. }
  5959. }
  5960. static void ggml_compute_forward_gelu(
  5961. const struct ggml_compute_params * params,
  5962. const struct ggml_tensor * src0,
  5963. struct ggml_tensor * dst) {
  5964. switch (src0->type) {
  5965. case GGML_TYPE_F32:
  5966. {
  5967. ggml_compute_forward_gelu_f32(params, src0, dst);
  5968. } break;
  5969. default:
  5970. {
  5971. GGML_ASSERT(false);
  5972. } break;
  5973. }
  5974. //printf("XXXXXXXX gelu\n");
  5975. }
  5976. // ggml_compute_forward_silu
  5977. static void ggml_compute_forward_silu_f32(
  5978. const struct ggml_compute_params * params,
  5979. const struct ggml_tensor * src0,
  5980. struct ggml_tensor * dst) {
  5981. GGML_ASSERT(ggml_is_contiguous(src0));
  5982. GGML_ASSERT(ggml_is_contiguous(dst));
  5983. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5985. return;
  5986. }
  5987. const int ith = params->ith;
  5988. const int nth = params->nth;
  5989. const int nc = src0->ne[0];
  5990. const int nr = ggml_nrows(src0);
  5991. // rows per thread
  5992. const int dr = (nr + nth - 1)/nth;
  5993. // row range for this thread
  5994. const int ir0 = dr*ith;
  5995. const int ir1 = MIN(ir0 + dr, nr);
  5996. for (int i1 = ir0; i1 < ir1; i1++) {
  5997. ggml_vec_silu_f32(nc,
  5998. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5999. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6000. #ifndef NDEBUG
  6001. for (int k = 0; k < nc; k++) {
  6002. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6003. UNUSED(x);
  6004. assert(!isnan(x));
  6005. assert(!isinf(x));
  6006. }
  6007. #endif
  6008. }
  6009. }
  6010. static void ggml_compute_forward_silu(
  6011. const struct ggml_compute_params * params,
  6012. const struct ggml_tensor * src0,
  6013. struct ggml_tensor * dst) {
  6014. switch (src0->type) {
  6015. case GGML_TYPE_F32:
  6016. {
  6017. ggml_compute_forward_silu_f32(params, src0, dst);
  6018. } break;
  6019. default:
  6020. {
  6021. GGML_ASSERT(false);
  6022. } break;
  6023. }
  6024. }
  6025. // ggml_compute_forward_norm
  6026. static void ggml_compute_forward_norm_f32(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. struct ggml_tensor * dst) {
  6030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6032. return;
  6033. }
  6034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6035. const int ith = params->ith;
  6036. const int nth = params->nth;
  6037. const int64_t ne00 = src0->ne[0];
  6038. const int64_t ne01 = src0->ne[1];
  6039. const int64_t ne02 = src0->ne[2];
  6040. const int64_t ne03 = src0->ne[3];
  6041. const size_t nb01 = src0->nb[1];
  6042. const size_t nb02 = src0->nb[2];
  6043. const size_t nb03 = src0->nb[3];
  6044. const size_t nb1 = dst->nb[1];
  6045. const size_t nb2 = dst->nb[2];
  6046. const size_t nb3 = dst->nb[3];
  6047. const float eps = 1e-5f; // TODO: make this a parameter
  6048. // TODO: optimize
  6049. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6050. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6051. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6052. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6053. ggml_float sum = 0.0;
  6054. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6055. sum += (ggml_float)x[i00];
  6056. }
  6057. float mean = sum/ne00;
  6058. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6059. ggml_float sum2 = 0.0;
  6060. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6061. float v = x[i00] - mean;
  6062. y[i00] = v;
  6063. sum2 += (ggml_float)(v*v);
  6064. }
  6065. float variance = sum2/ne00;
  6066. const float scale = 1.0f/sqrtf(variance + eps);
  6067. ggml_vec_scale_f32(ne00, y, scale);
  6068. }
  6069. }
  6070. }
  6071. }
  6072. static void ggml_compute_forward_norm(
  6073. const struct ggml_compute_params * params,
  6074. const struct ggml_tensor * src0,
  6075. struct ggml_tensor * dst) {
  6076. switch (src0->type) {
  6077. case GGML_TYPE_F32:
  6078. {
  6079. ggml_compute_forward_norm_f32(params, src0, dst);
  6080. } break;
  6081. default:
  6082. {
  6083. GGML_ASSERT(false);
  6084. } break;
  6085. }
  6086. }
  6087. static void ggml_compute_forward_rms_norm_f32(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. struct ggml_tensor * dst) {
  6091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6092. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6093. return;
  6094. }
  6095. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6096. const int ith = params->ith;
  6097. const int nth = params->nth;
  6098. const int64_t ne00 = src0->ne[0];
  6099. const int64_t ne01 = src0->ne[1];
  6100. const int64_t ne02 = src0->ne[2];
  6101. const int64_t ne03 = src0->ne[3];
  6102. const size_t nb01 = src0->nb[1];
  6103. const size_t nb02 = src0->nb[2];
  6104. const size_t nb03 = src0->nb[3];
  6105. const size_t nb1 = dst->nb[1];
  6106. const size_t nb2 = dst->nb[2];
  6107. const size_t nb3 = dst->nb[3];
  6108. const float eps = 1e-6f; // TODO: make this a parameter
  6109. // TODO: optimize
  6110. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6112. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6113. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6114. ggml_float sum = 0.0;
  6115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6116. sum += (ggml_float)(x[i00] * x[i00]);
  6117. }
  6118. float mean = sum/ne00;
  6119. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6120. memcpy(y, x, ne00 * sizeof(float));
  6121. // for (int i00 = 0; i00 < ne00; i00++) {
  6122. // y[i00] = x[i00];
  6123. // }
  6124. const float scale = 1.0f/sqrtf(mean + eps);
  6125. ggml_vec_scale_f32(ne00, y, scale);
  6126. }
  6127. }
  6128. }
  6129. }
  6130. static void ggml_compute_forward_rms_norm(
  6131. const struct ggml_compute_params * params,
  6132. const struct ggml_tensor * src0,
  6133. struct ggml_tensor * dst) {
  6134. switch (src0->type) {
  6135. case GGML_TYPE_F32:
  6136. {
  6137. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6138. } break;
  6139. default:
  6140. {
  6141. GGML_ASSERT(false);
  6142. } break;
  6143. }
  6144. }
  6145. // ggml_compute_forward_mul_mat
  6146. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6147. // helper function to determine if it is better to use BLAS or not
  6148. // for large matrices, BLAS is faster
  6149. static bool ggml_compute_forward_mul_mat_use_blas(
  6150. const struct ggml_tensor * src0,
  6151. const struct ggml_tensor * src1,
  6152. struct ggml_tensor * dst) {
  6153. //const int64_t ne00 = src0->ne[0];
  6154. //const int64_t ne01 = src0->ne[1];
  6155. const int64_t ne10 = src1->ne[0];
  6156. const int64_t ne0 = dst->ne[0];
  6157. const int64_t ne1 = dst->ne[1];
  6158. // TODO: find the optimal values for these
  6159. if (ggml_is_contiguous(src0) &&
  6160. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6161. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6162. return true;
  6163. }
  6164. return false;
  6165. }
  6166. #endif
  6167. static void ggml_compute_forward_mul_mat_f32(
  6168. const struct ggml_compute_params * params,
  6169. const struct ggml_tensor * src0,
  6170. const struct ggml_tensor * src1,
  6171. struct ggml_tensor * dst) {
  6172. int64_t t0 = ggml_perf_time_us();
  6173. UNUSED(t0);
  6174. const int64_t ne00 = src0->ne[0];
  6175. const int64_t ne01 = src0->ne[1];
  6176. const int64_t ne02 = src0->ne[2];
  6177. const int64_t ne03 = src0->ne[3];
  6178. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6179. const int64_t ne10 = src1->ne[0];
  6180. #endif
  6181. const int64_t ne11 = src1->ne[1];
  6182. #ifndef NDEBUG
  6183. const int64_t ne12 = src1->ne[2];
  6184. const int64_t ne13 = src1->ne[3];
  6185. const int64_t ne0 = dst->ne[0];
  6186. const int64_t ne1 = dst->ne[1];
  6187. const int64_t ne2 = dst->ne[2];
  6188. const int64_t ne3 = dst->ne[3];
  6189. const int nb00 = src0->nb[0];
  6190. #endif
  6191. const int nb01 = src0->nb[1];
  6192. const int nb02 = src0->nb[2];
  6193. const int nb03 = src0->nb[3];
  6194. #ifndef NDEBUG
  6195. const int nb10 = src1->nb[0];
  6196. #endif
  6197. const int nb11 = src1->nb[1];
  6198. const int nb12 = src1->nb[2];
  6199. const int nb13 = src1->nb[3];
  6200. const int nb0 = dst->nb[0];
  6201. const int nb1 = dst->nb[1];
  6202. const int nb2 = dst->nb[2];
  6203. const int nb3 = dst->nb[3];
  6204. const int ith = params->ith;
  6205. const int nth = params->nth;
  6206. assert(ne02 == ne12);
  6207. assert(ne03 == ne13);
  6208. assert(ne2 == ne12);
  6209. assert(ne3 == ne13);
  6210. // we don't support permuted src0 or src1
  6211. assert(nb00 == sizeof(float));
  6212. assert(nb10 == sizeof(float));
  6213. // dst cannot be transposed or permuted
  6214. assert(nb0 == sizeof(float));
  6215. assert(nb0 <= nb1);
  6216. assert(nb1 <= nb2);
  6217. assert(nb2 <= nb3);
  6218. assert(ne0 == ne01);
  6219. assert(ne1 == ne11);
  6220. assert(ne2 == ne02);
  6221. assert(ne3 == ne03);
  6222. // nb01 >= nb00 - src0 is not transposed
  6223. // compute by src0 rows
  6224. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6225. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6226. if (params->ith != 0) {
  6227. return;
  6228. }
  6229. if (params->type == GGML_TASK_INIT) {
  6230. return;
  6231. }
  6232. if (params->type == GGML_TASK_FINALIZE) {
  6233. return;
  6234. }
  6235. #if defined(GGML_USE_CUBLAS)
  6236. const float alpha = 1.0f;
  6237. const float beta = 0.0f;
  6238. const int x_ne = ne01 * ne10;
  6239. const int y_ne = ne11 * ne10;
  6240. const int d_ne = ne11 * ne01;
  6241. size_t x_size, y_size, d_size;
  6242. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6243. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6244. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6245. #endif
  6246. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6247. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6248. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6249. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6250. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6251. #if defined(GGML_USE_CUBLAS)
  6252. // copy data to device
  6253. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6254. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6255. // compute
  6256. CUBLAS_CHECK(
  6257. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6258. ne01, ne11, ne10,
  6259. &alpha, d_X, ne00,
  6260. d_Y, ne10,
  6261. &beta, d_D, ne01));
  6262. // copy data to host
  6263. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6264. #else
  6265. // zT = y * xT
  6266. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6267. ne11, ne01, ne10,
  6268. 1.0f, y, ne10,
  6269. x, ne00,
  6270. 0.0f, d, ne01);
  6271. #endif
  6272. }
  6273. }
  6274. #if defined(GGML_USE_CUBLAS)
  6275. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6276. ggml_cuda_pool_free(d_X, x_size);
  6277. ggml_cuda_pool_free(d_Y, y_size);
  6278. ggml_cuda_pool_free(d_D, d_size);
  6279. #endif
  6280. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6281. return;
  6282. }
  6283. #endif
  6284. if (params->type == GGML_TASK_INIT) {
  6285. return;
  6286. }
  6287. if (params->type == GGML_TASK_FINALIZE) {
  6288. return;
  6289. }
  6290. // parallelize by src0 rows using ggml_vec_dot_f32
  6291. // total rows in src0
  6292. const int nr = ne01*ne02*ne03;
  6293. // rows per thread
  6294. const int dr = (nr + nth - 1)/nth;
  6295. // row range for this thread
  6296. const int ir0 = dr*ith;
  6297. const int ir1 = MIN(ir0 + dr, nr);
  6298. for (int ir = ir0; ir < ir1; ++ir) {
  6299. // src0 indices
  6300. const int i03 = ir/(ne02*ne01);
  6301. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6302. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6303. for (int64_t ic = 0; ic < ne11; ++ic) {
  6304. // src1 indices
  6305. const int i13 = i03;
  6306. const int i12 = i02;
  6307. const int i11 = ic;
  6308. // dst indices
  6309. const int i0 = i01;
  6310. const int i1 = i11;
  6311. const int i2 = i02;
  6312. const int i3 = i03;
  6313. ggml_vec_dot_f32(ne00,
  6314. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6315. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6316. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6317. }
  6318. }
  6319. //int64_t t1 = ggml_perf_time_us();
  6320. //static int64_t acc = 0;
  6321. //acc += t1 - t0;
  6322. //if (t1 - t0 > 10) {
  6323. // printf("\n");
  6324. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6325. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6326. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6327. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6328. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6329. //}
  6330. }
  6331. static void ggml_compute_forward_mul_mat_f16_f32(
  6332. const struct ggml_compute_params * params,
  6333. const struct ggml_tensor * src0,
  6334. const struct ggml_tensor * src1,
  6335. struct ggml_tensor * dst) {
  6336. int64_t t0 = ggml_perf_time_us();
  6337. UNUSED(t0);
  6338. const int64_t ne00 = src0->ne[0];
  6339. const int64_t ne01 = src0->ne[1];
  6340. const int64_t ne02 = src0->ne[2];
  6341. const int64_t ne03 = src0->ne[3];
  6342. const int64_t ne10 = src1->ne[0];
  6343. const int64_t ne11 = src1->ne[1];
  6344. const int64_t ne12 = src1->ne[2];
  6345. const int64_t ne13 = src1->ne[3];
  6346. const int64_t ne0 = dst->ne[0];
  6347. const int64_t ne1 = dst->ne[1];
  6348. const int64_t ne2 = dst->ne[2];
  6349. const int64_t ne3 = dst->ne[3];
  6350. //const int64_t ne = ne0*ne1*ne2*ne3;
  6351. const int nb00 = src0->nb[0];
  6352. const int nb01 = src0->nb[1];
  6353. const int nb02 = src0->nb[2];
  6354. const int nb03 = src0->nb[3];
  6355. const int nb10 = src1->nb[0];
  6356. const int nb11 = src1->nb[1];
  6357. const int nb12 = src1->nb[2];
  6358. const int nb13 = src1->nb[3];
  6359. const int nb0 = dst->nb[0];
  6360. const int nb1 = dst->nb[1];
  6361. const int nb2 = dst->nb[2];
  6362. const int nb3 = dst->nb[3];
  6363. const int ith = params->ith;
  6364. const int nth = params->nth;
  6365. GGML_ASSERT(ne02 == ne12);
  6366. GGML_ASSERT(ne03 == ne13);
  6367. GGML_ASSERT(ne2 == ne12);
  6368. GGML_ASSERT(ne3 == ne13);
  6369. // TODO: we don't support permuted src0
  6370. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6371. // dst cannot be transposed or permuted
  6372. GGML_ASSERT(nb0 == sizeof(float));
  6373. GGML_ASSERT(nb0 <= nb1);
  6374. GGML_ASSERT(nb1 <= nb2);
  6375. GGML_ASSERT(nb2 <= nb3);
  6376. GGML_ASSERT(ne0 == ne01);
  6377. GGML_ASSERT(ne1 == ne11);
  6378. GGML_ASSERT(ne2 == ne02);
  6379. GGML_ASSERT(ne3 == ne03);
  6380. // nb01 >= nb00 - src0 is not transposed
  6381. // compute by src0 rows
  6382. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6383. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6384. GGML_ASSERT(nb10 == sizeof(float));
  6385. if (params->ith != 0) {
  6386. return;
  6387. }
  6388. if (params->type == GGML_TASK_INIT) {
  6389. return;
  6390. }
  6391. if (params->type == GGML_TASK_FINALIZE) {
  6392. return;
  6393. }
  6394. #if defined(GGML_USE_CUBLAS)
  6395. ggml_fp16_t * const wdata = params->wdata;
  6396. const float alpha = 1.0f;
  6397. const float beta = 0.0f;
  6398. const int x_ne = ne01 * ne10;
  6399. const int y_ne = ne11 * ne10;
  6400. const int d_ne = ne11 * ne01;
  6401. size_t x_size, y_size, d_size;
  6402. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6403. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6404. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6405. #else
  6406. float * const wdata = params->wdata;
  6407. #endif
  6408. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6409. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6410. #if defined(GGML_USE_CUBLAS)
  6411. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6412. {
  6413. size_t id = 0;
  6414. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6415. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6416. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6417. }
  6418. }
  6419. }
  6420. #else
  6421. {
  6422. size_t id = 0;
  6423. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6424. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6425. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6426. }
  6427. }
  6428. }
  6429. #endif
  6430. #if defined(GGML_USE_CUBLAS)
  6431. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6432. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6433. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6434. // copy data to device
  6435. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6436. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6437. // compute
  6438. CUBLAS_CHECK(
  6439. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6440. ne01, ne11, ne10,
  6441. &alpha, d_X, CUDA_R_16F, ne00,
  6442. d_Y, CUDA_R_16F, ne10,
  6443. &beta, d_D, CUDA_R_32F, ne01,
  6444. CUBLAS_COMPUTE_32F,
  6445. CUBLAS_GEMM_DEFAULT));
  6446. // copy data to host
  6447. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6448. #else
  6449. const float * x = wdata;
  6450. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6451. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6452. // zT = y * xT
  6453. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6454. ne11, ne01, ne10,
  6455. 1.0f, y, ne10,
  6456. x, ne00,
  6457. 0.0f, d, ne01);
  6458. #endif
  6459. }
  6460. }
  6461. #if defined(GGML_USE_CUBLAS)
  6462. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6463. ggml_cuda_pool_free(d_X, x_size);
  6464. ggml_cuda_pool_free(d_Y, y_size);
  6465. ggml_cuda_pool_free(d_D, d_size);
  6466. #endif
  6467. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6468. return;
  6469. }
  6470. #endif
  6471. if (params->type == GGML_TASK_INIT) {
  6472. ggml_fp16_t * const wdata = params->wdata;
  6473. size_t id = 0;
  6474. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6475. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6476. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6477. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6478. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6479. }
  6480. }
  6481. }
  6482. }
  6483. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6484. return;
  6485. }
  6486. if (params->type == GGML_TASK_FINALIZE) {
  6487. return;
  6488. }
  6489. // fp16 -> half the size, so divide by 2
  6490. // TODO: do not support transposed src1
  6491. assert(nb10/2 == sizeof(ggml_fp16_t));
  6492. // parallelize by src0 rows using ggml_vec_dot_f16
  6493. // total rows in src0
  6494. const int nr = ne01*ne02*ne03;
  6495. // rows per thread
  6496. const int dr = (nr + nth - 1)/nth;
  6497. // row range for this thread
  6498. const int ir0 = dr*ith;
  6499. const int ir1 = MIN(ir0 + dr, nr);
  6500. ggml_fp16_t * wdata = params->wdata;
  6501. for (int ir = ir0; ir < ir1; ++ir) {
  6502. // src0 indices
  6503. const int i03 = ir/(ne02*ne01);
  6504. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6505. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6506. const int i13 = i03;
  6507. const int i12 = i02;
  6508. const int i0 = i01;
  6509. const int i2 = i02;
  6510. const int i3 = i03;
  6511. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6512. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6513. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6514. for (int64_t ic = 0; ic < ne11; ++ic) {
  6515. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6516. }
  6517. }
  6518. //int64_t t1 = ggml_time_us();
  6519. //static int64_t acc = 0;
  6520. //acc += t1 - t0;
  6521. //if (t1 - t0 > 10) {
  6522. // printf("\n");
  6523. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6524. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6525. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6526. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6527. //}
  6528. }
  6529. static void ggml_compute_forward_mul_mat_q_f32(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. const struct ggml_tensor * src1,
  6533. struct ggml_tensor * dst) {
  6534. int64_t t0 = ggml_perf_time_us();
  6535. UNUSED(t0);
  6536. const int64_t ne00 = src0->ne[0];
  6537. const int64_t ne01 = src0->ne[1];
  6538. const int64_t ne02 = src0->ne[2];
  6539. const int64_t ne03 = src0->ne[3];
  6540. const int64_t ne10 = src1->ne[0];
  6541. const int64_t ne11 = src1->ne[1];
  6542. const int64_t ne12 = src1->ne[2];
  6543. const int64_t ne13 = src1->ne[3];
  6544. const int64_t ne0 = dst->ne[0];
  6545. const int64_t ne1 = dst->ne[1];
  6546. const int64_t ne2 = dst->ne[2];
  6547. const int64_t ne3 = dst->ne[3];
  6548. const int nb00 = src0->nb[0];
  6549. const int nb01 = src0->nb[1];
  6550. const int nb02 = src0->nb[2];
  6551. const int nb03 = src0->nb[3];
  6552. const int nb10 = src1->nb[0];
  6553. const int nb11 = src1->nb[1];
  6554. const int nb12 = src1->nb[2];
  6555. const int nb13 = src1->nb[3];
  6556. const int nb0 = dst->nb[0];
  6557. const int nb1 = dst->nb[1];
  6558. const int nb2 = dst->nb[2];
  6559. const int nb3 = dst->nb[3];
  6560. const int ith = params->ith;
  6561. const int nth = params->nth;
  6562. GGML_ASSERT(ne02 == ne12);
  6563. GGML_ASSERT(ne03 == ne13);
  6564. GGML_ASSERT(ne2 == ne12);
  6565. GGML_ASSERT(ne3 == ne13);
  6566. const enum ggml_type type = src0->type;
  6567. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6568. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6569. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6570. // we don't support permuted src0 or src1
  6571. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6572. GGML_ASSERT(nb10 == sizeof(float));
  6573. // dst cannot be transposed or permuted
  6574. GGML_ASSERT(nb0 == sizeof(float));
  6575. GGML_ASSERT(nb0 <= nb1);
  6576. GGML_ASSERT(nb1 <= nb2);
  6577. GGML_ASSERT(nb2 <= nb3);
  6578. GGML_ASSERT(ne0 == ne01);
  6579. GGML_ASSERT(ne1 == ne11);
  6580. GGML_ASSERT(ne2 == ne02);
  6581. GGML_ASSERT(ne3 == ne03);
  6582. // nb01 >= nb00 - src0 is not transposed
  6583. // compute by src0 rows
  6584. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6585. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6586. if (params->ith != 0) {
  6587. return;
  6588. }
  6589. if (params->type == GGML_TASK_INIT) {
  6590. return;
  6591. }
  6592. if (params->type == GGML_TASK_FINALIZE) {
  6593. return;
  6594. }
  6595. #if defined(GGML_USE_CUBLAS)
  6596. const float alpha = 1.0f;
  6597. const float beta = 0.0f;
  6598. const int x_ne = ne01 * ne10;
  6599. const int y_ne = ne11 * ne10;
  6600. const int d_ne = ne11 * ne01;
  6601. size_t x_size, y_size, d_size, q_size;
  6602. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6603. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6604. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6605. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6606. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6607. if (type == GGML_TYPE_Q4_0) {
  6608. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6609. }
  6610. else if (type == GGML_TYPE_Q4_1) {
  6611. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6612. }
  6613. else if (type == GGML_TYPE_Q4_2) {
  6614. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6615. }
  6616. else if (type == GGML_TYPE_Q4_3) {
  6617. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6618. }
  6619. else if (type == GGML_TYPE_Q8_0) {
  6620. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  6621. }
  6622. else {
  6623. GGML_ASSERT(false);
  6624. }
  6625. #else
  6626. float * const wdata = params->wdata;
  6627. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6628. #endif
  6629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6631. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6632. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6633. #if defined(GGML_USE_CUBLAS)
  6634. // copy and dequantize on device
  6635. CUDA_CHECK(
  6636. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6637. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6638. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6639. CUDA_CHECK(cudaGetLastError());
  6640. #else
  6641. {
  6642. size_t id = 0;
  6643. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6644. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6645. id += ne00;
  6646. }
  6647. }
  6648. const float * x = wdata;
  6649. #endif
  6650. #if defined(GGML_USE_CUBLAS)
  6651. // copy data to device
  6652. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6653. // compute
  6654. CUBLAS_CHECK(
  6655. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6656. ne01, ne11, ne10,
  6657. &alpha, d_X, ne00,
  6658. d_Y, ne10,
  6659. &beta, d_D, ne01));
  6660. // copy data to host
  6661. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6662. #else
  6663. // zT = y * xT
  6664. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6665. ne11, ne01, ne10,
  6666. 1.0f, y, ne10,
  6667. x, ne00,
  6668. 0.0f, d, ne01);
  6669. #endif
  6670. }
  6671. }
  6672. #if defined(GGML_USE_CUBLAS)
  6673. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6674. ggml_cuda_pool_free(d_X, x_size);
  6675. ggml_cuda_pool_free(d_Y, y_size);
  6676. ggml_cuda_pool_free(d_D, d_size);
  6677. ggml_cuda_pool_free(d_Q, q_size);
  6678. #endif
  6679. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6680. return;
  6681. }
  6682. #endif
  6683. if (params->type == GGML_TASK_INIT) {
  6684. char * wdata = params->wdata;
  6685. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6686. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6687. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6688. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6689. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6690. wdata += row_size;
  6691. }
  6692. }
  6693. }
  6694. return;
  6695. }
  6696. if (params->type == GGML_TASK_FINALIZE) {
  6697. return;
  6698. }
  6699. // parallelize by src0 rows using ggml_vec_dot_q
  6700. // total rows in src0
  6701. const int nr = ne01*ne02*ne03;
  6702. // rows per thread
  6703. const int dr = (nr + nth - 1)/nth;
  6704. // row range for this thread
  6705. const int ir0 = dr*ith;
  6706. const int ir1 = MIN(ir0 + dr, nr);
  6707. void * wdata = params->wdata;
  6708. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6709. for (int ir = ir0; ir < ir1; ++ir) {
  6710. // src0 indices
  6711. const int i03 = ir/(ne02*ne01);
  6712. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6713. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6714. const int i13 = i03;
  6715. const int i12 = i02;
  6716. const int i0 = i01;
  6717. const int i2 = i02;
  6718. const int i3 = i03;
  6719. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6720. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6721. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6722. assert(ne00 % 32 == 0);
  6723. for (int64_t ic = 0; ic < ne11; ++ic) {
  6724. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6725. }
  6726. }
  6727. //int64_t t1 = ggml_time_us();
  6728. //static int64_t acc = 0;
  6729. //acc += t1 - t0;
  6730. //if (t1 - t0 > 10) {
  6731. // printf("\n");
  6732. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6733. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6734. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6735. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6736. //}
  6737. }
  6738. static void ggml_compute_forward_mul_mat(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. const struct ggml_tensor * src1,
  6742. struct ggml_tensor * dst) {
  6743. switch (src0->type) {
  6744. case GGML_TYPE_Q4_0:
  6745. case GGML_TYPE_Q4_1:
  6746. case GGML_TYPE_Q4_2:
  6747. case GGML_TYPE_Q4_3:
  6748. case GGML_TYPE_Q8_0:
  6749. case GGML_TYPE_Q8_1:
  6750. {
  6751. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6752. } break;
  6753. case GGML_TYPE_F16:
  6754. {
  6755. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6756. } break;
  6757. case GGML_TYPE_F32:
  6758. {
  6759. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6760. } break;
  6761. default:
  6762. {
  6763. GGML_ASSERT(false);
  6764. } break;
  6765. }
  6766. }
  6767. // ggml_compute_forward_scale
  6768. static void ggml_compute_forward_scale_f32(
  6769. const struct ggml_compute_params * params,
  6770. const struct ggml_tensor * src0,
  6771. const struct ggml_tensor * src1,
  6772. struct ggml_tensor * dst) {
  6773. GGML_ASSERT(ggml_is_contiguous(src0));
  6774. GGML_ASSERT(ggml_is_contiguous(dst));
  6775. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6776. GGML_ASSERT(ggml_is_scalar(src1));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. // scale factor
  6781. const float v = *(float *) src1->data;
  6782. const int ith = params->ith;
  6783. const int nth = params->nth;
  6784. const int nc = src0->ne[0];
  6785. const int nr = ggml_nrows(src0);
  6786. // rows per thread
  6787. const int dr = (nr + nth - 1)/nth;
  6788. // row range for this thread
  6789. const int ir0 = dr*ith;
  6790. const int ir1 = MIN(ir0 + dr, nr);
  6791. for (int i1 = ir0; i1 < ir1; i1++) {
  6792. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6793. }
  6794. }
  6795. static void ggml_compute_forward_scale(
  6796. const struct ggml_compute_params * params,
  6797. const struct ggml_tensor * src0,
  6798. const struct ggml_tensor * src1,
  6799. struct ggml_tensor * dst) {
  6800. switch (src0->type) {
  6801. case GGML_TYPE_F32:
  6802. {
  6803. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6804. } break;
  6805. default:
  6806. {
  6807. GGML_ASSERT(false);
  6808. } break;
  6809. }
  6810. }
  6811. // ggml_compute_forward_cpy
  6812. static void ggml_compute_forward_cpy(
  6813. const struct ggml_compute_params * params,
  6814. const struct ggml_tensor * src0,
  6815. struct ggml_tensor * dst) {
  6816. ggml_compute_forward_dup(params, src0, dst);
  6817. }
  6818. // ggml_compute_forward_cont
  6819. static void ggml_compute_forward_cont(
  6820. const struct ggml_compute_params * params,
  6821. const struct ggml_tensor * src0,
  6822. struct ggml_tensor * dst) {
  6823. ggml_compute_forward_dup(params, src0, dst);
  6824. }
  6825. // ggml_compute_forward_reshape
  6826. static void ggml_compute_forward_reshape(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. struct ggml_tensor * dst) {
  6830. // NOP
  6831. UNUSED(params);
  6832. UNUSED(src0);
  6833. UNUSED(dst);
  6834. }
  6835. // ggml_compute_forward_view
  6836. static void ggml_compute_forward_view(
  6837. const struct ggml_compute_params * params,
  6838. const struct ggml_tensor * src0) {
  6839. // NOP
  6840. UNUSED(params);
  6841. UNUSED(src0);
  6842. }
  6843. // ggml_compute_forward_permute
  6844. static void ggml_compute_forward_permute(
  6845. const struct ggml_compute_params * params,
  6846. const struct ggml_tensor * src0) {
  6847. // NOP
  6848. UNUSED(params);
  6849. UNUSED(src0);
  6850. }
  6851. // ggml_compute_forward_transpose
  6852. static void ggml_compute_forward_transpose(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0) {
  6855. // NOP
  6856. UNUSED(params);
  6857. UNUSED(src0);
  6858. }
  6859. // ggml_compute_forward_get_rows
  6860. static void ggml_compute_forward_get_rows_q(
  6861. const struct ggml_compute_params * params,
  6862. const struct ggml_tensor * src0,
  6863. const struct ggml_tensor * src1,
  6864. struct ggml_tensor * dst) {
  6865. assert(params->ith == 0);
  6866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6867. return;
  6868. }
  6869. const int nc = src0->ne[0];
  6870. const int nr = ggml_nelements(src1);
  6871. const enum ggml_type type = src0->type;
  6872. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6873. assert( dst->ne[0] == nc);
  6874. assert( dst->ne[1] == nr);
  6875. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6876. for (int i = 0; i < nr; ++i) {
  6877. const int r = ((int32_t *) src1->data)[i];
  6878. dequantize_row_q(
  6879. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6880. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6881. }
  6882. }
  6883. static void ggml_compute_forward_get_rows_f16(
  6884. const struct ggml_compute_params * params,
  6885. const struct ggml_tensor * src0,
  6886. const struct ggml_tensor * src1,
  6887. struct ggml_tensor * dst) {
  6888. assert(params->ith == 0);
  6889. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6890. return;
  6891. }
  6892. const int nc = src0->ne[0];
  6893. const int nr = ggml_nelements(src1);
  6894. assert( dst->ne[0] == nc);
  6895. assert( dst->ne[1] == nr);
  6896. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6897. for (int i = 0; i < nr; ++i) {
  6898. const int r = ((int32_t *) src1->data)[i];
  6899. for (int j = 0; j < nc; ++j) {
  6900. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6901. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6902. }
  6903. }
  6904. }
  6905. static void ggml_compute_forward_get_rows_f32(
  6906. const struct ggml_compute_params * params,
  6907. const struct ggml_tensor * src0,
  6908. const struct ggml_tensor * src1,
  6909. struct ggml_tensor * dst) {
  6910. assert(params->ith == 0);
  6911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6912. return;
  6913. }
  6914. const int nc = src0->ne[0];
  6915. const int nr = ggml_nelements(src1);
  6916. assert( dst->ne[0] == nc);
  6917. assert( dst->ne[1] == nr);
  6918. assert(src0->nb[0] == sizeof(float));
  6919. for (int i = 0; i < nr; ++i) {
  6920. const int r = ((int32_t *) src1->data)[i];
  6921. ggml_vec_cpy_f32(nc,
  6922. (float *) ((char *) dst->data + i*dst->nb[1]),
  6923. (float *) ((char *) src0->data + r*src0->nb[1]));
  6924. }
  6925. }
  6926. static void ggml_compute_forward_get_rows(
  6927. const struct ggml_compute_params * params,
  6928. const struct ggml_tensor * src0,
  6929. const struct ggml_tensor * src1,
  6930. struct ggml_tensor * dst) {
  6931. switch (src0->type) {
  6932. case GGML_TYPE_Q4_0:
  6933. case GGML_TYPE_Q4_1:
  6934. case GGML_TYPE_Q4_2:
  6935. case GGML_TYPE_Q4_3:
  6936. case GGML_TYPE_Q8_0:
  6937. case GGML_TYPE_Q8_1:
  6938. {
  6939. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6940. } break;
  6941. case GGML_TYPE_F16:
  6942. {
  6943. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6944. } break;
  6945. case GGML_TYPE_F32:
  6946. {
  6947. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6948. } break;
  6949. default:
  6950. {
  6951. GGML_ASSERT(false);
  6952. } break;
  6953. }
  6954. //static bool first = true;
  6955. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6956. //if (first) {
  6957. // first = false;
  6958. //} else {
  6959. // for (int k = 0; k < dst->ne[1]; ++k) {
  6960. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6961. // for (int i = 0; i < 16; ++i) {
  6962. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6963. // }
  6964. // printf("\n");
  6965. // }
  6966. // printf("\n");
  6967. // }
  6968. // printf("\n");
  6969. // exit(0);
  6970. //}
  6971. }
  6972. // ggml_compute_forward_diag_mask_inf
  6973. static void ggml_compute_forward_diag_mask_inf_f32(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. const struct ggml_tensor * src1,
  6977. struct ggml_tensor * dst) {
  6978. assert(params->ith == 0);
  6979. assert(src1->type == GGML_TYPE_I32);
  6980. assert(ggml_nelements(src1) == 1);
  6981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6982. return;
  6983. }
  6984. const int n_past = ((int32_t *) src1->data)[0];
  6985. // TODO: handle transposed/permuted matrices
  6986. const int n = ggml_nrows(src0);
  6987. const int nc = src0->ne[0];
  6988. const int nr = src0->ne[1];
  6989. const int nz = n/nr;
  6990. assert( dst->nb[0] == sizeof(float));
  6991. assert(src0->nb[0] == sizeof(float));
  6992. for (int k = 0; k < nz; k++) {
  6993. for (int j = 0; j < nr; j++) {
  6994. for (int i = n_past; i < nc; i++) {
  6995. if (i > n_past + j) {
  6996. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6997. }
  6998. }
  6999. }
  7000. }
  7001. }
  7002. static void ggml_compute_forward_diag_mask_inf(
  7003. const struct ggml_compute_params * params,
  7004. const struct ggml_tensor * src0,
  7005. const struct ggml_tensor * src1,
  7006. struct ggml_tensor * dst) {
  7007. switch (src0->type) {
  7008. case GGML_TYPE_F32:
  7009. {
  7010. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7011. } break;
  7012. default:
  7013. {
  7014. GGML_ASSERT(false);
  7015. } break;
  7016. }
  7017. }
  7018. // ggml_compute_forward_soft_max
  7019. static void ggml_compute_forward_soft_max_f32(
  7020. const struct ggml_compute_params * params,
  7021. const struct ggml_tensor * src0,
  7022. struct ggml_tensor * dst) {
  7023. GGML_ASSERT(ggml_is_contiguous(src0));
  7024. GGML_ASSERT(ggml_is_contiguous(dst));
  7025. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7027. return;
  7028. }
  7029. // TODO: handle transposed/permuted matrices
  7030. const int ith = params->ith;
  7031. const int nth = params->nth;
  7032. const int nc = src0->ne[0];
  7033. const int nr = ggml_nrows(src0);
  7034. // rows per thread
  7035. const int dr = (nr + nth - 1)/nth;
  7036. // row range for this thread
  7037. const int ir0 = dr*ith;
  7038. const int ir1 = MIN(ir0 + dr, nr);
  7039. for (int i1 = ir0; i1 < ir1; i1++) {
  7040. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7041. #ifndef NDEBUG
  7042. for (int i = 0; i < nc; ++i) {
  7043. //printf("p[%d] = %f\n", i, p[i]);
  7044. assert(!isnan(p[i]));
  7045. }
  7046. #endif
  7047. float max = -INFINITY;
  7048. ggml_vec_max_f32(nc, &max, p);
  7049. ggml_float sum = 0.0;
  7050. uint16_t scvt;
  7051. for (int i = 0; i < nc; i++) {
  7052. if (p[i] == -INFINITY) {
  7053. p[i] = 0.0f;
  7054. } else {
  7055. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7056. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7057. memcpy(&scvt, &s, sizeof(scvt));
  7058. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7059. sum += (ggml_float)val;
  7060. p[i] = val;
  7061. }
  7062. }
  7063. assert(sum > 0.0);
  7064. sum = 1.0/sum;
  7065. ggml_vec_scale_f32(nc, p, sum);
  7066. #ifndef NDEBUG
  7067. for (int i = 0; i < nc; ++i) {
  7068. assert(!isnan(p[i]));
  7069. assert(!isinf(p[i]));
  7070. }
  7071. #endif
  7072. }
  7073. }
  7074. static void ggml_compute_forward_soft_max(
  7075. const struct ggml_compute_params * params,
  7076. const struct ggml_tensor * src0,
  7077. struct ggml_tensor * dst) {
  7078. switch (src0->type) {
  7079. case GGML_TYPE_F32:
  7080. {
  7081. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7082. } break;
  7083. default:
  7084. {
  7085. GGML_ASSERT(false);
  7086. } break;
  7087. }
  7088. }
  7089. // ggml_compute_forward_rope
  7090. static void ggml_compute_forward_rope_f32(
  7091. const struct ggml_compute_params * params,
  7092. const struct ggml_tensor * src0,
  7093. const struct ggml_tensor * src1,
  7094. struct ggml_tensor * dst) {
  7095. assert(src1->type == GGML_TYPE_I32);
  7096. assert(ggml_nelements(src1) == 3);
  7097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7098. return;
  7099. }
  7100. const int n_past = ((int32_t *) src1->data)[0];
  7101. const int n_dims = ((int32_t *) src1->data)[1];
  7102. const int mode = ((int32_t *) src1->data)[2];
  7103. //const int64_t ne0 = src0->ne[0];
  7104. const int64_t ne1 = src0->ne[1];
  7105. const int64_t ne2 = src0->ne[2];
  7106. const int64_t ne3 = src0->ne[3];
  7107. const int nb0 = src0->nb[0];
  7108. const int nb1 = src0->nb[1];
  7109. const int nb2 = src0->nb[2];
  7110. const int nb3 = src0->nb[3];
  7111. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7112. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7113. assert(nb0 == sizeof(float));
  7114. const int ith = params->ith;
  7115. const int nth = params->nth;
  7116. const int nr = ggml_nrows(src0);
  7117. // rows per thread
  7118. const int dr = (nr + nth - 1)/nth;
  7119. // row range for this thread
  7120. const int ir0 = dr*ith;
  7121. const int ir1 = MIN(ir0 + dr, nr);
  7122. // row index used to determine which thread to use
  7123. int ir = 0;
  7124. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7125. const bool is_neox = mode & 2;
  7126. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7127. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7128. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7129. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7130. if (ir++ < ir0) continue;
  7131. if (ir > ir1) break;
  7132. float theta = (float)p;
  7133. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7134. const float cos_theta = cosf(theta);
  7135. const float sin_theta = sinf(theta);
  7136. theta *= theta_scale;
  7137. if (!is_neox) {
  7138. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7139. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7140. const float x0 = src[0];
  7141. const float x1 = src[1];
  7142. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7143. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7144. } else {
  7145. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7146. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7147. const float x0 = src[0];
  7148. const float x1 = src[n_dims/2];
  7149. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7150. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7151. }
  7152. }
  7153. }
  7154. }
  7155. }
  7156. }
  7157. static void ggml_compute_forward_rope_f16(
  7158. const struct ggml_compute_params * params,
  7159. const struct ggml_tensor * src0,
  7160. const struct ggml_tensor * src1,
  7161. struct ggml_tensor * dst) {
  7162. assert(src1->type == GGML_TYPE_I32);
  7163. assert(ggml_nelements(src1) == 3);
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. const int n_past = ((int32_t *) src1->data)[0];
  7168. const int n_dims = ((int32_t *) src1->data)[1];
  7169. const int mode = ((int32_t *) src1->data)[2];
  7170. //const int64_t ne0 = src0->ne[0];
  7171. const int64_t ne1 = src0->ne[1];
  7172. const int64_t ne2 = src0->ne[2];
  7173. const int64_t ne3 = src0->ne[3];
  7174. const int nb0 = src0->nb[0];
  7175. const int nb1 = src0->nb[1];
  7176. const int nb2 = src0->nb[2];
  7177. const int nb3 = src0->nb[3];
  7178. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7179. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7180. assert(nb0 == sizeof(ggml_fp16_t));
  7181. const int ith = params->ith;
  7182. const int nth = params->nth;
  7183. const int nr = ggml_nrows(src0);
  7184. // rows per thread
  7185. const int dr = (nr + nth - 1)/nth;
  7186. // row range for this thread
  7187. const int ir0 = dr*ith;
  7188. const int ir1 = MIN(ir0 + dr, nr);
  7189. // row index used to determine which thread to use
  7190. int ir = 0;
  7191. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7192. const bool is_neox = mode & 2;
  7193. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7194. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7195. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7196. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7197. if (ir++ < ir0) continue;
  7198. if (ir > ir1) break;
  7199. float theta = (float)p;
  7200. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7201. const float cos_theta = cosf(theta);
  7202. const float sin_theta = sinf(theta);
  7203. theta *= theta_scale;
  7204. if (!is_neox) {
  7205. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7206. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7207. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7208. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7209. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7210. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7211. } else {
  7212. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7213. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7214. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7215. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7216. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7217. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7218. }
  7219. }
  7220. }
  7221. }
  7222. }
  7223. }
  7224. static void ggml_compute_forward_rope(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. const struct ggml_tensor * src1,
  7228. struct ggml_tensor * dst) {
  7229. switch (src0->type) {
  7230. case GGML_TYPE_F16:
  7231. {
  7232. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7233. } break;
  7234. case GGML_TYPE_F32:
  7235. {
  7236. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7237. } break;
  7238. default:
  7239. {
  7240. GGML_ASSERT(false);
  7241. } break;
  7242. }
  7243. }
  7244. // ggml_compute_forward_conv_1d_1s
  7245. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. const struct ggml_tensor * src1,
  7249. struct ggml_tensor * dst) {
  7250. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7251. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7252. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7253. int64_t t0 = ggml_perf_time_us();
  7254. UNUSED(t0);
  7255. const int64_t ne00 = src0->ne[0];
  7256. const int64_t ne01 = src0->ne[1];
  7257. const int64_t ne02 = src0->ne[2];
  7258. //const int64_t ne03 = src0->ne[3];
  7259. const int64_t ne10 = src1->ne[0];
  7260. const int64_t ne11 = src1->ne[1];
  7261. //const int64_t ne12 = src1->ne[2];
  7262. //const int64_t ne13 = src1->ne[3];
  7263. //const int64_t ne0 = dst->ne[0];
  7264. //const int64_t ne1 = dst->ne[1];
  7265. //const int64_t ne2 = dst->ne[2];
  7266. //const int64_t ne3 = dst->ne[3];
  7267. //const int64_t ne = ne0*ne1*ne2*ne3;
  7268. const int nb00 = src0->nb[0];
  7269. const int nb01 = src0->nb[1];
  7270. const int nb02 = src0->nb[2];
  7271. //const int nb03 = src0->nb[3];
  7272. const int nb10 = src1->nb[0];
  7273. const int nb11 = src1->nb[1];
  7274. //const int nb12 = src1->nb[2];
  7275. //const int nb13 = src1->nb[3];
  7276. //const int nb0 = dst->nb[0];
  7277. const int nb1 = dst->nb[1];
  7278. //const int nb2 = dst->nb[2];
  7279. //const int nb3 = dst->nb[3];
  7280. const int ith = params->ith;
  7281. const int nth = params->nth;
  7282. const int nk = ne00;
  7283. const int nh = nk/2;
  7284. const int ew0 = ggml_up32(ne01);
  7285. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7286. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7287. GGML_ASSERT(nb10 == sizeof(float));
  7288. if (params->type == GGML_TASK_INIT) {
  7289. // TODO: fix this memset (wsize is overestimated)
  7290. memset(params->wdata, 0, params->wsize);
  7291. // prepare kernel data (src0)
  7292. {
  7293. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7294. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7295. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7296. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7297. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7298. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7299. dst_data[i00*ew0 + i01] = src[i00];
  7300. }
  7301. }
  7302. }
  7303. }
  7304. // prepare source data (src1)
  7305. {
  7306. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7307. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7308. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7309. ggml_fp16_t * dst_data = wdata;
  7310. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7311. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7312. }
  7313. }
  7314. }
  7315. return;
  7316. }
  7317. if (params->type == GGML_TASK_FINALIZE) {
  7318. return;
  7319. }
  7320. // total rows in dst
  7321. const int nr = ne02;
  7322. // rows per thread
  7323. const int dr = (nr + nth - 1)/nth;
  7324. // row range for this thread
  7325. const int ir0 = dr*ith;
  7326. const int ir1 = MIN(ir0 + dr, nr);
  7327. for (int i1 = ir0; i1 < ir1; i1++) {
  7328. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7329. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7330. dst_data[i0] = 0;
  7331. for (int k = -nh; k <= nh; k++) {
  7332. float v = 0.0f;
  7333. ggml_vec_dot_f16(ew0, &v,
  7334. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7335. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7336. dst_data[i0] += v;
  7337. }
  7338. }
  7339. }
  7340. }
  7341. static void ggml_compute_forward_conv_1d_1s_f32(
  7342. const struct ggml_compute_params * params,
  7343. const struct ggml_tensor * src0,
  7344. const struct ggml_tensor * src1,
  7345. struct ggml_tensor * dst) {
  7346. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7347. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7348. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7349. int64_t t0 = ggml_perf_time_us();
  7350. UNUSED(t0);
  7351. const int64_t ne00 = src0->ne[0];
  7352. const int64_t ne01 = src0->ne[1];
  7353. const int64_t ne02 = src0->ne[2];
  7354. //const int64_t ne03 = src0->ne[3];
  7355. const int64_t ne10 = src1->ne[0];
  7356. const int64_t ne11 = src1->ne[1];
  7357. //const int64_t ne12 = src1->ne[2];
  7358. //const int64_t ne13 = src1->ne[3];
  7359. //const int64_t ne0 = dst->ne[0];
  7360. //const int64_t ne1 = dst->ne[1];
  7361. //const int64_t ne2 = dst->ne[2];
  7362. //const int64_t ne3 = dst->ne[3];
  7363. //const int64_t ne = ne0*ne1*ne2*ne3;
  7364. const int nb00 = src0->nb[0];
  7365. const int nb01 = src0->nb[1];
  7366. const int nb02 = src0->nb[2];
  7367. //const int nb03 = src0->nb[3];
  7368. const int nb10 = src1->nb[0];
  7369. const int nb11 = src1->nb[1];
  7370. //const int nb12 = src1->nb[2];
  7371. //const int nb13 = src1->nb[3];
  7372. //const int nb0 = dst->nb[0];
  7373. const int nb1 = dst->nb[1];
  7374. //const int nb2 = dst->nb[2];
  7375. //const int nb3 = dst->nb[3];
  7376. const int ith = params->ith;
  7377. const int nth = params->nth;
  7378. const int nk = ne00;
  7379. const int nh = nk/2;
  7380. const int ew0 = ggml_up32(ne01);
  7381. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7382. GGML_ASSERT(nb00 == sizeof(float));
  7383. GGML_ASSERT(nb10 == sizeof(float));
  7384. if (params->type == GGML_TASK_INIT) {
  7385. // TODO: fix this memset (wsize is overestimated)
  7386. memset(params->wdata, 0, params->wsize);
  7387. // prepare kernel data (src0)
  7388. {
  7389. float * const wdata = (float *) params->wdata + 0;
  7390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7391. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7392. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7393. float * dst_data = wdata + i02*ew0*ne00;
  7394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7395. dst_data[i00*ew0 + i01] = src[i00];
  7396. }
  7397. }
  7398. }
  7399. }
  7400. // prepare source data (src1)
  7401. {
  7402. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7403. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7404. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7405. float * dst_data = wdata;
  7406. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7407. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7408. }
  7409. }
  7410. }
  7411. return;
  7412. }
  7413. if (params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. // total rows in dst
  7417. const int nr = ne02;
  7418. // rows per thread
  7419. const int dr = (nr + nth - 1)/nth;
  7420. // row range for this thread
  7421. const int ir0 = dr*ith;
  7422. const int ir1 = MIN(ir0 + dr, nr);
  7423. for (int i1 = ir0; i1 < ir1; i1++) {
  7424. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7425. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7426. dst_data[i0] = 0;
  7427. for (int k = -nh; k <= nh; k++) {
  7428. float v = 0.0f;
  7429. ggml_vec_dot_f32(ew0, &v,
  7430. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7431. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7432. dst_data[i0] += v;
  7433. }
  7434. }
  7435. }
  7436. }
  7437. static void ggml_compute_forward_conv_1d_1s(
  7438. const struct ggml_compute_params * params,
  7439. const struct ggml_tensor * src0,
  7440. const struct ggml_tensor * src1,
  7441. struct ggml_tensor * dst) {
  7442. switch (src0->type) {
  7443. case GGML_TYPE_F16:
  7444. {
  7445. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7446. } break;
  7447. case GGML_TYPE_F32:
  7448. {
  7449. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7450. } break;
  7451. default:
  7452. {
  7453. GGML_ASSERT(false);
  7454. } break;
  7455. }
  7456. }
  7457. // ggml_compute_forward_conv_1d_2s
  7458. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7464. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7465. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7466. int64_t t0 = ggml_perf_time_us();
  7467. UNUSED(t0);
  7468. const int64_t ne00 = src0->ne[0];
  7469. const int64_t ne01 = src0->ne[1];
  7470. const int64_t ne02 = src0->ne[2];
  7471. //const int64_t ne03 = src0->ne[3];
  7472. const int64_t ne10 = src1->ne[0];
  7473. const int64_t ne11 = src1->ne[1];
  7474. //const int64_t ne12 = src1->ne[2];
  7475. //const int64_t ne13 = src1->ne[3];
  7476. //const int64_t ne0 = dst->ne[0];
  7477. //const int64_t ne1 = dst->ne[1];
  7478. //const int64_t ne2 = dst->ne[2];
  7479. //const int64_t ne3 = dst->ne[3];
  7480. //const int64_t ne = ne0*ne1*ne2*ne3;
  7481. const int nb00 = src0->nb[0];
  7482. const int nb01 = src0->nb[1];
  7483. const int nb02 = src0->nb[2];
  7484. //const int nb03 = src0->nb[3];
  7485. const int nb10 = src1->nb[0];
  7486. const int nb11 = src1->nb[1];
  7487. //const int nb12 = src1->nb[2];
  7488. //const int nb13 = src1->nb[3];
  7489. //const int nb0 = dst->nb[0];
  7490. const int nb1 = dst->nb[1];
  7491. //const int nb2 = dst->nb[2];
  7492. //const int nb3 = dst->nb[3];
  7493. const int ith = params->ith;
  7494. const int nth = params->nth;
  7495. const int nk = ne00;
  7496. const int nh = nk/2;
  7497. const int ew0 = ggml_up32(ne01);
  7498. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7499. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7500. GGML_ASSERT(nb10 == sizeof(float));
  7501. if (params->type == GGML_TASK_INIT) {
  7502. // TODO: fix this memset (wsize is overestimated)
  7503. memset(params->wdata, 0, params->wsize);
  7504. // prepare kernel data (src0)
  7505. {
  7506. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7508. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7509. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7510. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7512. dst_data[i00*ew0 + i01] = src[i00];
  7513. }
  7514. }
  7515. }
  7516. }
  7517. // prepare source data (src1)
  7518. {
  7519. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7520. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7521. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7522. ggml_fp16_t * dst_data = wdata;
  7523. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7524. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7525. }
  7526. }
  7527. }
  7528. return;
  7529. }
  7530. if (params->type == GGML_TASK_FINALIZE) {
  7531. return;
  7532. }
  7533. // total rows in dst
  7534. const int nr = ne02;
  7535. // rows per thread
  7536. const int dr = (nr + nth - 1)/nth;
  7537. // row range for this thread
  7538. const int ir0 = dr*ith;
  7539. const int ir1 = MIN(ir0 + dr, nr);
  7540. for (int i1 = ir0; i1 < ir1; i1++) {
  7541. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7542. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7543. dst_data[i0/2] = 0;
  7544. for (int k = -nh; k <= nh; k++) {
  7545. float v = 0.0f;
  7546. ggml_vec_dot_f16(ew0, &v,
  7547. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7548. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7549. dst_data[i0/2] += v;
  7550. }
  7551. }
  7552. }
  7553. }
  7554. static void ggml_compute_forward_conv_1d_2s_f32(
  7555. const struct ggml_compute_params * params,
  7556. const struct ggml_tensor * src0,
  7557. const struct ggml_tensor * src1,
  7558. struct ggml_tensor * dst) {
  7559. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7560. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7561. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7562. int64_t t0 = ggml_perf_time_us();
  7563. UNUSED(t0);
  7564. const int64_t ne00 = src0->ne[0];
  7565. const int64_t ne01 = src0->ne[1];
  7566. const int64_t ne02 = src0->ne[2];
  7567. //const int64_t ne03 = src0->ne[3];
  7568. const int64_t ne10 = src1->ne[0];
  7569. const int64_t ne11 = src1->ne[1];
  7570. //const int64_t ne12 = src1->ne[2];
  7571. //const int64_t ne13 = src1->ne[3];
  7572. //const int64_t ne0 = dst->ne[0];
  7573. //const int64_t ne1 = dst->ne[1];
  7574. //const int64_t ne2 = dst->ne[2];
  7575. //const int64_t ne3 = dst->ne[3];
  7576. //const int64_t ne = ne0*ne1*ne2*ne3;
  7577. const int nb00 = src0->nb[0];
  7578. const int nb01 = src0->nb[1];
  7579. const int nb02 = src0->nb[2];
  7580. //const int nb03 = src0->nb[3];
  7581. const int nb10 = src1->nb[0];
  7582. const int nb11 = src1->nb[1];
  7583. //const int nb12 = src1->nb[2];
  7584. //const int nb13 = src1->nb[3];
  7585. //const int nb0 = dst->nb[0];
  7586. const int nb1 = dst->nb[1];
  7587. //const int nb2 = dst->nb[2];
  7588. //const int nb3 = dst->nb[3];
  7589. const int ith = params->ith;
  7590. const int nth = params->nth;
  7591. const int nk = ne00;
  7592. const int nh = nk/2;
  7593. const int ew0 = ggml_up32(ne01);
  7594. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7595. GGML_ASSERT(nb00 == sizeof(float));
  7596. GGML_ASSERT(nb10 == sizeof(float));
  7597. if (params->type == GGML_TASK_INIT) {
  7598. // TODO: fix this memset (wsize is overestimated)
  7599. memset(params->wdata, 0, params->wsize);
  7600. // prepare kernel data (src0)
  7601. {
  7602. float * const wdata = (float *) params->wdata + 0;
  7603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7604. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7605. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7606. float * dst_data = wdata + i02*ew0*ne00;
  7607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7608. dst_data[i00*ew0 + i01] = src[i00];
  7609. }
  7610. }
  7611. }
  7612. }
  7613. // prepare source data (src1)
  7614. {
  7615. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7616. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7617. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7618. float * dst_data = wdata;
  7619. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7620. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7621. }
  7622. }
  7623. }
  7624. return;
  7625. }
  7626. if (params->type == GGML_TASK_FINALIZE) {
  7627. return;
  7628. }
  7629. // total rows in dst
  7630. const int nr = ne02;
  7631. // rows per thread
  7632. const int dr = (nr + nth - 1)/nth;
  7633. // row range for this thread
  7634. const int ir0 = dr*ith;
  7635. const int ir1 = MIN(ir0 + dr, nr);
  7636. for (int i1 = ir0; i1 < ir1; i1++) {
  7637. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7638. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7639. dst_data[i0/2] = 0;
  7640. for (int k = -nh; k <= nh; k++) {
  7641. float v = 0.0f;
  7642. ggml_vec_dot_f32(ew0, &v,
  7643. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7644. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7645. dst_data[i0/2] += v;
  7646. }
  7647. }
  7648. }
  7649. }
  7650. static void ggml_compute_forward_conv_1d_2s(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. const struct ggml_tensor * src1,
  7654. struct ggml_tensor * dst) {
  7655. switch (src0->type) {
  7656. case GGML_TYPE_F16:
  7657. {
  7658. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7659. } break;
  7660. case GGML_TYPE_F32:
  7661. {
  7662. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7663. } break;
  7664. default:
  7665. {
  7666. GGML_ASSERT(false);
  7667. } break;
  7668. }
  7669. }
  7670. // ggml_compute_forward_flash_attn
  7671. static void ggml_compute_forward_flash_attn_f32(
  7672. const struct ggml_compute_params * params,
  7673. const struct ggml_tensor * q,
  7674. const struct ggml_tensor * k,
  7675. const struct ggml_tensor * v,
  7676. const bool masked,
  7677. struct ggml_tensor * dst) {
  7678. int64_t t0 = ggml_perf_time_us();
  7679. UNUSED(t0);
  7680. const int64_t neq0 = q->ne[0];
  7681. const int64_t neq1 = q->ne[1];
  7682. const int64_t neq2 = q->ne[2];
  7683. const int64_t neq3 = q->ne[3];
  7684. const int64_t nek0 = k->ne[0];
  7685. const int64_t nek1 = k->ne[1];
  7686. //const int64_t nek2 = k->ne[2];
  7687. //const int64_t nek3 = k->ne[3];
  7688. //const int64_t nev0 = v->ne[0];
  7689. const int64_t nev1 = v->ne[1];
  7690. //const int64_t nev2 = v->ne[2];
  7691. //const int64_t nev3 = v->ne[3];
  7692. const int64_t ne0 = dst->ne[0];
  7693. const int64_t ne1 = dst->ne[1];
  7694. //const int64_t ne2 = dst->ne[2];
  7695. //const int64_t ne3 = dst->ne[3];
  7696. const int nbk0 = k->nb[0];
  7697. const int nbk1 = k->nb[1];
  7698. const int nbk2 = k->nb[2];
  7699. const int nbk3 = k->nb[3];
  7700. const int nbq0 = q->nb[0];
  7701. const int nbq1 = q->nb[1];
  7702. const int nbq2 = q->nb[2];
  7703. const int nbq3 = q->nb[3];
  7704. const int nbv0 = v->nb[0];
  7705. const int nbv1 = v->nb[1];
  7706. const int nbv2 = v->nb[2];
  7707. const int nbv3 = v->nb[3];
  7708. const int nb0 = dst->nb[0];
  7709. const int nb1 = dst->nb[1];
  7710. const int nb2 = dst->nb[2];
  7711. const int nb3 = dst->nb[3];
  7712. const int ith = params->ith;
  7713. const int nth = params->nth;
  7714. const int64_t D = neq0;
  7715. const int64_t N = neq1;
  7716. const int64_t P = nek1 - N;
  7717. const int64_t M = P + N;
  7718. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7719. GGML_ASSERT(ne0 == D);
  7720. GGML_ASSERT(ne1 == N);
  7721. GGML_ASSERT(P >= 0);
  7722. GGML_ASSERT(nbq0 == sizeof(float));
  7723. GGML_ASSERT(nbk0 == sizeof(float));
  7724. GGML_ASSERT(nbv0 == sizeof(float));
  7725. GGML_ASSERT(neq0 == D);
  7726. GGML_ASSERT(nek0 == D);
  7727. GGML_ASSERT(nev1 == D);
  7728. GGML_ASSERT(neq1 == N);
  7729. GGML_ASSERT(nek1 == N + P);
  7730. GGML_ASSERT(nev1 == D);
  7731. // dst cannot be transposed or permuted
  7732. GGML_ASSERT(nb0 == sizeof(float));
  7733. GGML_ASSERT(nb0 <= nb1);
  7734. GGML_ASSERT(nb1 <= nb2);
  7735. GGML_ASSERT(nb2 <= nb3);
  7736. if (params->type == GGML_TASK_INIT) {
  7737. return;
  7738. }
  7739. if (params->type == GGML_TASK_FINALIZE) {
  7740. return;
  7741. }
  7742. // parallelize by q rows using ggml_vec_dot_f32
  7743. // total rows in q
  7744. const int nr = neq1*neq2*neq3;
  7745. // rows per thread
  7746. const int dr = (nr + nth - 1)/nth;
  7747. // row range for this thread
  7748. const int ir0 = dr*ith;
  7749. const int ir1 = MIN(ir0 + dr, nr);
  7750. const float scale = 1.0f/sqrtf(D);
  7751. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7752. for (int ir = ir0; ir < ir1; ++ir) {
  7753. // q indices
  7754. const int iq3 = ir/(neq2*neq1);
  7755. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7756. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7757. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7758. for (int i = M; i < Mup; ++i) {
  7759. S[i] = -INFINITY;
  7760. }
  7761. for (int64_t ic = 0; ic < nek1; ++ic) {
  7762. // k indices
  7763. const int ik3 = iq3;
  7764. const int ik2 = iq2;
  7765. const int ik1 = ic;
  7766. // S indices
  7767. const int i1 = ik1;
  7768. ggml_vec_dot_f32(neq0,
  7769. S + i1,
  7770. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7771. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7772. }
  7773. // scale
  7774. ggml_vec_scale_f32(nek1, S, scale);
  7775. if (masked) {
  7776. for (int64_t i = P; i < M; i++) {
  7777. if (i > P + iq1) {
  7778. S[i] = -INFINITY;
  7779. }
  7780. }
  7781. }
  7782. // softmax
  7783. {
  7784. float max = -INFINITY;
  7785. ggml_vec_max_f32(M, &max, S);
  7786. ggml_float sum = 0.0;
  7787. {
  7788. #ifdef GGML_SOFT_MAX_ACCELERATE
  7789. max = -max;
  7790. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7791. vvexpf(S, S, &Mup);
  7792. ggml_vec_sum_f32(Mup, &sum, S);
  7793. #else
  7794. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7795. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7796. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7797. float * SS = S + i;
  7798. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7799. if (SS[j] == -INFINITY) {
  7800. SS[j] = 0.0f;
  7801. } else {
  7802. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7803. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7804. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7805. sump[j] += (ggml_float)val;
  7806. SS[j] = val;
  7807. }
  7808. }
  7809. }
  7810. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7811. sum += sump[i];
  7812. }
  7813. #endif
  7814. }
  7815. assert(sum > 0.0);
  7816. sum = 1.0/sum;
  7817. ggml_vec_scale_f32(M, S, sum);
  7818. #ifndef NDEBUG
  7819. for (int i = 0; i < M; ++i) {
  7820. assert(!isnan(S[i]));
  7821. assert(!isinf(S[i]));
  7822. }
  7823. #endif
  7824. }
  7825. for (int64_t ic = 0; ic < nev1; ++ic) {
  7826. // dst indices
  7827. const int i1 = iq1;
  7828. const int i2 = iq2;
  7829. const int i3 = iq3;
  7830. ggml_vec_dot_f32(nek1,
  7831. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7832. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7833. S);
  7834. }
  7835. }
  7836. }
  7837. static void ggml_compute_forward_flash_attn_f16(
  7838. const struct ggml_compute_params * params,
  7839. const struct ggml_tensor * q,
  7840. const struct ggml_tensor * k,
  7841. const struct ggml_tensor * v,
  7842. const bool masked,
  7843. struct ggml_tensor * dst) {
  7844. int64_t t0 = ggml_perf_time_us();
  7845. UNUSED(t0);
  7846. const int64_t neq0 = q->ne[0];
  7847. const int64_t neq1 = q->ne[1];
  7848. const int64_t neq2 = q->ne[2];
  7849. const int64_t neq3 = q->ne[3];
  7850. const int64_t nek0 = k->ne[0];
  7851. const int64_t nek1 = k->ne[1];
  7852. //const int64_t nek2 = k->ne[2];
  7853. //const int64_t nek3 = k->ne[3];
  7854. //const int64_t nev0 = v->ne[0];
  7855. const int64_t nev1 = v->ne[1];
  7856. //const int64_t nev2 = v->ne[2];
  7857. //const int64_t nev3 = v->ne[3];
  7858. const int64_t ne0 = dst->ne[0];
  7859. const int64_t ne1 = dst->ne[1];
  7860. //const int64_t ne2 = dst->ne[2];
  7861. //const int64_t ne3 = dst->ne[3];
  7862. const int nbk0 = k->nb[0];
  7863. const int nbk1 = k->nb[1];
  7864. const int nbk2 = k->nb[2];
  7865. const int nbk3 = k->nb[3];
  7866. const int nbq0 = q->nb[0];
  7867. const int nbq1 = q->nb[1];
  7868. const int nbq2 = q->nb[2];
  7869. const int nbq3 = q->nb[3];
  7870. const int nbv0 = v->nb[0];
  7871. const int nbv1 = v->nb[1];
  7872. const int nbv2 = v->nb[2];
  7873. const int nbv3 = v->nb[3];
  7874. const int nb0 = dst->nb[0];
  7875. const int nb1 = dst->nb[1];
  7876. const int nb2 = dst->nb[2];
  7877. const int nb3 = dst->nb[3];
  7878. const int ith = params->ith;
  7879. const int nth = params->nth;
  7880. const int64_t D = neq0;
  7881. const int64_t N = neq1;
  7882. const int64_t P = nek1 - N;
  7883. const int64_t M = P + N;
  7884. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7885. GGML_ASSERT(ne0 == D);
  7886. GGML_ASSERT(ne1 == N);
  7887. GGML_ASSERT(P >= 0);
  7888. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7889. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7890. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7891. GGML_ASSERT(neq0 == D);
  7892. GGML_ASSERT(nek0 == D);
  7893. GGML_ASSERT(nev1 == D);
  7894. GGML_ASSERT(neq1 == N);
  7895. GGML_ASSERT(nek1 == N + P);
  7896. GGML_ASSERT(nev1 == D);
  7897. // dst cannot be transposed or permuted
  7898. GGML_ASSERT(nb0 == sizeof(float));
  7899. GGML_ASSERT(nb0 <= nb1);
  7900. GGML_ASSERT(nb1 <= nb2);
  7901. GGML_ASSERT(nb2 <= nb3);
  7902. if (params->type == GGML_TASK_INIT) {
  7903. return;
  7904. }
  7905. if (params->type == GGML_TASK_FINALIZE) {
  7906. return;
  7907. }
  7908. // parallelize by q rows using ggml_vec_dot_f32
  7909. // total rows in q
  7910. const int nr = neq1*neq2*neq3;
  7911. // rows per thread
  7912. const int dr = (nr + nth - 1)/nth;
  7913. // row range for this thread
  7914. const int ir0 = dr*ith;
  7915. const int ir1 = MIN(ir0 + dr, nr);
  7916. const float scale = 1.0f/sqrtf(D);
  7917. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7918. for (int ir = ir0; ir < ir1; ++ir) {
  7919. // q indices
  7920. const int iq3 = ir/(neq2*neq1);
  7921. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7922. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7923. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7924. for (int i = M; i < Mup; ++i) {
  7925. S[i] = -INFINITY;
  7926. }
  7927. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7928. for (int64_t ic = 0; ic < nek1; ++ic) {
  7929. // k indices
  7930. const int ik3 = iq3;
  7931. const int ik2 = iq2;
  7932. const int ik1 = ic;
  7933. // S indices
  7934. const int i1 = ik1;
  7935. ggml_vec_dot_f16(neq0,
  7936. S + i1,
  7937. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7938. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7939. }
  7940. } else {
  7941. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7942. // k indices
  7943. const int ik3 = iq3;
  7944. const int ik2 = iq2;
  7945. const int ik1 = ic;
  7946. // S indices
  7947. const int i1 = ik1;
  7948. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7949. S + i1,
  7950. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7951. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7952. }
  7953. }
  7954. // scale
  7955. ggml_vec_scale_f32(nek1, S, scale);
  7956. if (masked) {
  7957. for (int64_t i = P; i < M; i++) {
  7958. if (i > P + iq1) {
  7959. S[i] = -INFINITY;
  7960. }
  7961. }
  7962. }
  7963. // softmax
  7964. {
  7965. float max = -INFINITY;
  7966. ggml_vec_max_f32(M, &max, S);
  7967. ggml_float sum = 0.0;
  7968. {
  7969. #ifdef GGML_SOFT_MAX_ACCELERATE
  7970. max = -max;
  7971. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7972. vvexpf(S, S, &Mup);
  7973. ggml_vec_sum_f32(Mup, &sum, S);
  7974. #else
  7975. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7976. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7977. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7978. float * SS = S + i;
  7979. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7980. if (SS[j] == -INFINITY) {
  7981. SS[j] = 0.0f;
  7982. } else {
  7983. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7984. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7985. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7986. sump[j] += (ggml_float)val;
  7987. SS[j] = val;
  7988. }
  7989. }
  7990. }
  7991. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7992. sum += sump[i];
  7993. }
  7994. #endif
  7995. }
  7996. assert(sum > 0.0);
  7997. sum = 1.0/sum;
  7998. ggml_vec_scale_f32(M, S, sum);
  7999. #ifndef NDEBUG
  8000. for (int i = 0; i < M; ++i) {
  8001. assert(!isnan(S[i]));
  8002. assert(!isinf(S[i]));
  8003. }
  8004. #endif
  8005. }
  8006. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8007. for (int64_t i = 0; i < M; i++) {
  8008. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8009. }
  8010. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8011. for (int64_t ic = 0; ic < nev1; ++ic) {
  8012. // dst indices
  8013. const int i1 = iq1;
  8014. const int i2 = iq2;
  8015. const int i3 = iq3;
  8016. ggml_vec_dot_f16(nek1,
  8017. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8018. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8019. S16);
  8020. }
  8021. } else {
  8022. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8023. // dst indices
  8024. const int i1 = iq1;
  8025. const int i2 = iq2;
  8026. const int i3 = iq3;
  8027. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8028. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8029. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8030. S16);
  8031. }
  8032. }
  8033. }
  8034. }
  8035. static void ggml_compute_forward_flash_attn(
  8036. const struct ggml_compute_params * params,
  8037. const struct ggml_tensor * q,
  8038. const struct ggml_tensor * k,
  8039. const struct ggml_tensor * v,
  8040. const bool masked,
  8041. struct ggml_tensor * dst) {
  8042. switch (q->type) {
  8043. case GGML_TYPE_F16:
  8044. {
  8045. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8046. } break;
  8047. case GGML_TYPE_F32:
  8048. {
  8049. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8050. } break;
  8051. default:
  8052. {
  8053. GGML_ASSERT(false);
  8054. } break;
  8055. }
  8056. }
  8057. // ggml_compute_forward_flash_ff
  8058. static void ggml_compute_forward_flash_ff_f16(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * a, // F16
  8061. const struct ggml_tensor * b0, // F16 fc_w
  8062. const struct ggml_tensor * b1, // F32 fc_b
  8063. const struct ggml_tensor * c0, // F16 proj_w
  8064. const struct ggml_tensor * c1, // F32 proj_b
  8065. struct ggml_tensor * dst) {
  8066. int64_t t0 = ggml_perf_time_us();
  8067. UNUSED(t0);
  8068. const int64_t nea0 = a->ne[0];
  8069. const int64_t nea1 = a->ne[1];
  8070. const int64_t nea2 = a->ne[2];
  8071. const int64_t nea3 = a->ne[3];
  8072. const int64_t neb00 = b0->ne[0];
  8073. const int64_t neb01 = b0->ne[1];
  8074. //const int64_t neb02 = b0->ne[2];
  8075. //const int64_t neb03 = b0->ne[3];
  8076. const int64_t neb10 = b1->ne[0];
  8077. const int64_t neb11 = b1->ne[1];
  8078. //const int64_t neb12 = b1->ne[2];
  8079. //const int64_t neb13 = b1->ne[3];
  8080. const int64_t nec00 = c0->ne[0];
  8081. const int64_t nec01 = c0->ne[1];
  8082. //const int64_t nec02 = c0->ne[2];
  8083. //const int64_t nec03 = c0->ne[3];
  8084. const int64_t nec10 = c1->ne[0];
  8085. const int64_t nec11 = c1->ne[1];
  8086. //const int64_t nec12 = c1->ne[2];
  8087. //const int64_t nec13 = c1->ne[3];
  8088. const int64_t ne0 = dst->ne[0];
  8089. const int64_t ne1 = dst->ne[1];
  8090. const int64_t ne2 = dst->ne[2];
  8091. //const int64_t ne3 = dst->ne[3];
  8092. const int nba0 = a->nb[0];
  8093. const int nba1 = a->nb[1];
  8094. const int nba2 = a->nb[2];
  8095. const int nba3 = a->nb[3];
  8096. const int nbb00 = b0->nb[0];
  8097. const int nbb01 = b0->nb[1];
  8098. const int nbb02 = b0->nb[2];
  8099. const int nbb03 = b0->nb[3];
  8100. const int nbb10 = b1->nb[0];
  8101. //const int nbb11 = b1->nb[1];
  8102. //const int nbb12 = b1->nb[2];
  8103. //const int nbb13 = b1->nb[3];
  8104. const int nbc00 = c0->nb[0];
  8105. const int nbc01 = c0->nb[1];
  8106. const int nbc02 = c0->nb[2];
  8107. const int nbc03 = c0->nb[3];
  8108. const int nbc10 = c1->nb[0];
  8109. //const int nbc11 = c1->nb[1];
  8110. //const int nbc12 = c1->nb[2];
  8111. //const int nbc13 = c1->nb[3];
  8112. const int nb0 = dst->nb[0];
  8113. const int nb1 = dst->nb[1];
  8114. const int nb2 = dst->nb[2];
  8115. const int nb3 = dst->nb[3];
  8116. const int ith = params->ith;
  8117. const int nth = params->nth;
  8118. const int64_t D = nea0;
  8119. //const int64_t N = nea1;
  8120. const int64_t M = neb01;
  8121. GGML_ASSERT(ne0 == nea0);
  8122. GGML_ASSERT(ne1 == nea1);
  8123. GGML_ASSERT(ne2 == nea2);
  8124. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8125. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8126. GGML_ASSERT(nbb10 == sizeof(float));
  8127. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8128. GGML_ASSERT(nbc10 == sizeof(float));
  8129. GGML_ASSERT(neb00 == D);
  8130. GGML_ASSERT(neb01 == M);
  8131. GGML_ASSERT(neb10 == M);
  8132. GGML_ASSERT(neb11 == 1);
  8133. GGML_ASSERT(nec00 == M);
  8134. GGML_ASSERT(nec01 == D);
  8135. GGML_ASSERT(nec10 == D);
  8136. GGML_ASSERT(nec11 == 1);
  8137. // dst cannot be transposed or permuted
  8138. GGML_ASSERT(nb0 == sizeof(float));
  8139. GGML_ASSERT(nb0 <= nb1);
  8140. GGML_ASSERT(nb1 <= nb2);
  8141. GGML_ASSERT(nb2 <= nb3);
  8142. if (params->type == GGML_TASK_INIT) {
  8143. return;
  8144. }
  8145. if (params->type == GGML_TASK_FINALIZE) {
  8146. return;
  8147. }
  8148. // parallelize by a rows using ggml_vec_dot_f32
  8149. // total rows in a
  8150. const int nr = nea1*nea2*nea3;
  8151. // rows per thread
  8152. const int dr = (nr + nth - 1)/nth;
  8153. // row range for this thread
  8154. const int ir0 = dr*ith;
  8155. const int ir1 = MIN(ir0 + dr, nr);
  8156. for (int ir = ir0; ir < ir1; ++ir) {
  8157. // a indices
  8158. const int ia3 = ir/(nea2*nea1);
  8159. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8160. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8161. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8162. for (int64_t ic = 0; ic < neb01; ++ic) {
  8163. // b0 indices
  8164. const int ib03 = ia3;
  8165. const int ib02 = ia2;
  8166. const int ib01 = ic;
  8167. // S indices
  8168. const int i1 = ib01;
  8169. ggml_vec_dot_f16(nea0,
  8170. S + i1,
  8171. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8172. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8173. }
  8174. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8175. //ggml_vec_gelu_f32(neb01, S, S);
  8176. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8177. for (int64_t i = 0; i < M; i++) {
  8178. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8179. }
  8180. ggml_vec_gelu_f16(neb01, S16, S16);
  8181. {
  8182. // dst indices
  8183. const int i1 = ia1;
  8184. const int i2 = ia2;
  8185. const int i3 = ia3;
  8186. for (int64_t ic = 0; ic < nec01; ++ic) {
  8187. ggml_vec_dot_f16(neb01,
  8188. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8189. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8190. S16);
  8191. }
  8192. ggml_vec_add_f32(nec01,
  8193. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8194. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8195. (float *) c1->data);
  8196. }
  8197. }
  8198. }
  8199. static void ggml_compute_forward_flash_ff(
  8200. const struct ggml_compute_params * params,
  8201. const struct ggml_tensor * a,
  8202. const struct ggml_tensor * b0,
  8203. const struct ggml_tensor * b1,
  8204. const struct ggml_tensor * c0,
  8205. const struct ggml_tensor * c1,
  8206. struct ggml_tensor * dst) {
  8207. switch (b0->type) {
  8208. case GGML_TYPE_F16:
  8209. {
  8210. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8211. } break;
  8212. case GGML_TYPE_F32:
  8213. {
  8214. GGML_ASSERT(false); // TODO
  8215. } break;
  8216. default:
  8217. {
  8218. GGML_ASSERT(false);
  8219. } break;
  8220. }
  8221. }
  8222. // ggml_compute_forward_map_unary
  8223. static void ggml_compute_forward_map_unary_f32(
  8224. const struct ggml_compute_params * params,
  8225. const struct ggml_tensor * src0,
  8226. struct ggml_tensor * dst,
  8227. const ggml_unary_op_f32_t fun) {
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. const int n = ggml_nrows(src0);
  8233. const int nc = src0->ne[0];
  8234. assert( dst->nb[0] == sizeof(float));
  8235. assert(src0->nb[0] == sizeof(float));
  8236. for (int i = 0; i < n; i++) {
  8237. fun(nc,
  8238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8239. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8240. }
  8241. }
  8242. static void ggml_compute_forward_map_unary(
  8243. const struct ggml_compute_params * params,
  8244. const struct ggml_tensor * src0,
  8245. struct ggml_tensor * dst,
  8246. const ggml_unary_op_f32_t fun) {
  8247. switch (src0->type) {
  8248. case GGML_TYPE_F32:
  8249. {
  8250. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8251. } break;
  8252. default:
  8253. {
  8254. GGML_ASSERT(false);
  8255. } break;
  8256. }
  8257. }
  8258. // ggml_compute_forward_map_binary
  8259. static void ggml_compute_forward_map_binary_f32(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. const struct ggml_tensor * src1,
  8263. struct ggml_tensor * dst,
  8264. const ggml_binary_op_f32_t fun) {
  8265. assert(params->ith == 0);
  8266. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8268. return;
  8269. }
  8270. const int n = ggml_nrows(src0);
  8271. const int nc = src0->ne[0];
  8272. assert( dst->nb[0] == sizeof(float));
  8273. assert(src0->nb[0] == sizeof(float));
  8274. assert(src1->nb[0] == sizeof(float));
  8275. for (int i = 0; i < n; i++) {
  8276. fun(nc,
  8277. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8278. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8279. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8280. }
  8281. }
  8282. static void ggml_compute_forward_map_binary(
  8283. const struct ggml_compute_params * params,
  8284. const struct ggml_tensor * src0,
  8285. const struct ggml_tensor * src1,
  8286. struct ggml_tensor * dst,
  8287. const ggml_binary_op_f32_t fun) {
  8288. switch (src0->type) {
  8289. case GGML_TYPE_F32:
  8290. {
  8291. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8292. } break;
  8293. default:
  8294. {
  8295. GGML_ASSERT(false);
  8296. } break;
  8297. }
  8298. }
  8299. /////////////////////////////////
  8300. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8301. GGML_ASSERT(params);
  8302. switch (tensor->op) {
  8303. case GGML_OP_DUP:
  8304. {
  8305. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8306. } break;
  8307. case GGML_OP_ADD:
  8308. {
  8309. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8310. } break;
  8311. case GGML_OP_SUB:
  8312. {
  8313. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8314. } break;
  8315. case GGML_OP_MUL:
  8316. {
  8317. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8318. } break;
  8319. case GGML_OP_DIV:
  8320. {
  8321. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8322. } break;
  8323. case GGML_OP_SQR:
  8324. {
  8325. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8326. } break;
  8327. case GGML_OP_SQRT:
  8328. {
  8329. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8330. } break;
  8331. case GGML_OP_SUM:
  8332. {
  8333. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8334. } break;
  8335. case GGML_OP_MEAN:
  8336. {
  8337. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8338. } break;
  8339. case GGML_OP_REPEAT:
  8340. {
  8341. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8342. } break;
  8343. case GGML_OP_ABS:
  8344. {
  8345. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8346. } break;
  8347. case GGML_OP_SGN:
  8348. {
  8349. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8350. } break;
  8351. case GGML_OP_NEG:
  8352. {
  8353. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8354. } break;
  8355. case GGML_OP_STEP:
  8356. {
  8357. ggml_compute_forward_step(params, tensor->src0, tensor);
  8358. } break;
  8359. case GGML_OP_RELU:
  8360. {
  8361. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8362. } break;
  8363. case GGML_OP_GELU:
  8364. {
  8365. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8366. } break;
  8367. case GGML_OP_SILU:
  8368. {
  8369. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8370. } break;
  8371. case GGML_OP_NORM:
  8372. {
  8373. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8374. } break;
  8375. case GGML_OP_RMS_NORM:
  8376. {
  8377. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8378. } break;
  8379. case GGML_OP_MUL_MAT:
  8380. {
  8381. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8382. } break;
  8383. case GGML_OP_SCALE:
  8384. {
  8385. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8386. } break;
  8387. case GGML_OP_CPY:
  8388. {
  8389. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8390. } break;
  8391. case GGML_OP_CONT:
  8392. {
  8393. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8394. } break;
  8395. case GGML_OP_RESHAPE:
  8396. {
  8397. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8398. } break;
  8399. case GGML_OP_VIEW:
  8400. {
  8401. ggml_compute_forward_view(params, tensor->src0);
  8402. } break;
  8403. case GGML_OP_PERMUTE:
  8404. {
  8405. ggml_compute_forward_permute(params, tensor->src0);
  8406. } break;
  8407. case GGML_OP_TRANSPOSE:
  8408. {
  8409. ggml_compute_forward_transpose(params, tensor->src0);
  8410. } break;
  8411. case GGML_OP_GET_ROWS:
  8412. {
  8413. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8414. } break;
  8415. case GGML_OP_DIAG_MASK_INF:
  8416. {
  8417. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8418. } break;
  8419. case GGML_OP_SOFT_MAX:
  8420. {
  8421. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8422. } break;
  8423. case GGML_OP_ROPE:
  8424. {
  8425. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8426. } break;
  8427. case GGML_OP_CONV_1D_1S:
  8428. {
  8429. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8430. } break;
  8431. case GGML_OP_CONV_1D_2S:
  8432. {
  8433. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8434. } break;
  8435. case GGML_OP_FLASH_ATTN:
  8436. {
  8437. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8438. GGML_ASSERT(t == 0 || t == 1);
  8439. bool masked = t != 0;
  8440. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8441. } break;
  8442. case GGML_OP_FLASH_FF:
  8443. {
  8444. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8445. } break;
  8446. case GGML_OP_MAP_UNARY:
  8447. {
  8448. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8449. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8450. }
  8451. break;
  8452. case GGML_OP_MAP_BINARY:
  8453. {
  8454. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8455. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8456. }
  8457. break;
  8458. case GGML_OP_NONE:
  8459. {
  8460. // nop
  8461. } break;
  8462. case GGML_OP_COUNT:
  8463. {
  8464. GGML_ASSERT(false);
  8465. } break;
  8466. }
  8467. }
  8468. ////////////////////////////////////////////////////////////////////////////////
  8469. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8470. struct ggml_tensor * src0 = tensor->src0;
  8471. struct ggml_tensor * src1 = tensor->src1;
  8472. switch (tensor->op) {
  8473. case GGML_OP_DUP:
  8474. {
  8475. if (src0->grad) {
  8476. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8477. }
  8478. } break;
  8479. case GGML_OP_ADD:
  8480. {
  8481. if (src0->grad) {
  8482. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8483. }
  8484. if (src1->grad) {
  8485. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8486. }
  8487. } break;
  8488. case GGML_OP_SUB:
  8489. {
  8490. if (src0->grad) {
  8491. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8492. }
  8493. if (src1->grad) {
  8494. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8495. }
  8496. } break;
  8497. case GGML_OP_MUL:
  8498. {
  8499. if (src0->grad) {
  8500. src0->grad =
  8501. ggml_add_impl(ctx,
  8502. src0->grad,
  8503. ggml_mul(ctx, src1, tensor->grad),
  8504. inplace);
  8505. }
  8506. if (src1->grad) {
  8507. src1->grad =
  8508. ggml_add_impl(ctx,
  8509. src1->grad,
  8510. ggml_mul(ctx, src0, tensor->grad),
  8511. inplace);
  8512. }
  8513. } break;
  8514. case GGML_OP_DIV:
  8515. {
  8516. if (src0->grad) {
  8517. src0->grad =
  8518. ggml_add_impl(ctx,
  8519. src0->grad,
  8520. ggml_div(ctx, tensor->grad, src1),
  8521. inplace);
  8522. }
  8523. if (src1->grad) {
  8524. src1->grad =
  8525. ggml_sub_impl(ctx,
  8526. src1->grad,
  8527. ggml_mul(ctx,
  8528. tensor->grad,
  8529. ggml_div(ctx, tensor, src1)),
  8530. inplace);
  8531. }
  8532. } break;
  8533. case GGML_OP_SQR:
  8534. {
  8535. if (src0->grad) {
  8536. src0->grad =
  8537. ggml_add_impl(ctx,
  8538. src0->grad,
  8539. ggml_mul(ctx,
  8540. ggml_mul(ctx, src0, tensor->grad),
  8541. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8542. inplace);
  8543. }
  8544. } break;
  8545. case GGML_OP_SQRT:
  8546. {
  8547. if (src0->grad) {
  8548. src0->grad =
  8549. ggml_add_impl(ctx,
  8550. src0->grad,
  8551. ggml_div(ctx,
  8552. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8553. tensor),
  8554. inplace);
  8555. }
  8556. } break;
  8557. case GGML_OP_SUM:
  8558. {
  8559. if (src0->grad) {
  8560. src0->grad =
  8561. ggml_add_impl(ctx,
  8562. src0->grad,
  8563. ggml_repeat(ctx, tensor->grad, src0->grad),
  8564. inplace);
  8565. }
  8566. } break;
  8567. case GGML_OP_MEAN:
  8568. {
  8569. GGML_ASSERT(false); // TODO: implement
  8570. } break;
  8571. case GGML_OP_REPEAT:
  8572. {
  8573. if (src0->grad) {
  8574. src0->grad =
  8575. ggml_add_impl(ctx,
  8576. src0->grad,
  8577. ggml_sum(ctx, tensor->grad),
  8578. inplace);
  8579. }
  8580. } break;
  8581. case GGML_OP_ABS:
  8582. {
  8583. if (src0->grad) {
  8584. src0->grad =
  8585. ggml_add_impl(ctx,
  8586. src0->grad,
  8587. ggml_mul(ctx,
  8588. ggml_sgn(ctx, src0),
  8589. tensor->grad),
  8590. inplace);
  8591. }
  8592. } break;
  8593. case GGML_OP_SGN:
  8594. {
  8595. if (src0->grad) {
  8596. // noop
  8597. }
  8598. } break;
  8599. case GGML_OP_NEG:
  8600. {
  8601. if (src0->grad) {
  8602. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8603. }
  8604. } break;
  8605. case GGML_OP_STEP:
  8606. {
  8607. if (src0->grad) {
  8608. // noop
  8609. }
  8610. } break;
  8611. case GGML_OP_RELU:
  8612. {
  8613. if (src0->grad) {
  8614. src0->grad = ggml_sub_impl(ctx,
  8615. src0->grad,
  8616. ggml_mul(ctx,
  8617. ggml_step(ctx, src0),
  8618. tensor->grad),
  8619. inplace);
  8620. }
  8621. } break;
  8622. case GGML_OP_GELU:
  8623. {
  8624. GGML_ASSERT(false); // TODO: not implemented
  8625. } break;
  8626. case GGML_OP_SILU:
  8627. {
  8628. GGML_ASSERT(false); // TODO: not implemented
  8629. } break;
  8630. case GGML_OP_NORM:
  8631. {
  8632. GGML_ASSERT(false); // TODO: not implemented
  8633. } break;
  8634. case GGML_OP_RMS_NORM:
  8635. {
  8636. GGML_ASSERT(false); // TODO: not implemented
  8637. } break;
  8638. case GGML_OP_MUL_MAT:
  8639. {
  8640. if (src0->grad) {
  8641. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8642. GGML_ASSERT(false);
  8643. }
  8644. if (src1->grad) {
  8645. src1->grad =
  8646. ggml_add_impl(ctx,
  8647. src1->grad,
  8648. ggml_mul_mat(ctx,
  8649. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8650. tensor->grad),
  8651. inplace);
  8652. }
  8653. } break;
  8654. case GGML_OP_SCALE:
  8655. {
  8656. GGML_ASSERT(false); // TODO: not implemented
  8657. } break;
  8658. case GGML_OP_CPY:
  8659. {
  8660. GGML_ASSERT(false); // TODO: not implemented
  8661. } break;
  8662. case GGML_OP_CONT:
  8663. {
  8664. GGML_ASSERT(false); // TODO: not implemented
  8665. } break;
  8666. case GGML_OP_RESHAPE:
  8667. {
  8668. GGML_ASSERT(false); // TODO: not implemented
  8669. } break;
  8670. case GGML_OP_VIEW:
  8671. {
  8672. GGML_ASSERT(false); // not supported
  8673. } break;
  8674. case GGML_OP_PERMUTE:
  8675. {
  8676. GGML_ASSERT(false); // TODO: not implemented
  8677. } break;
  8678. case GGML_OP_TRANSPOSE:
  8679. {
  8680. GGML_ASSERT(false); // TODO: not implemented
  8681. } break;
  8682. case GGML_OP_GET_ROWS:
  8683. {
  8684. GGML_ASSERT(false); // TODO: not implemented
  8685. } break;
  8686. case GGML_OP_DIAG_MASK_INF:
  8687. {
  8688. GGML_ASSERT(false); // TODO: not implemented
  8689. } break;
  8690. case GGML_OP_SOFT_MAX:
  8691. {
  8692. GGML_ASSERT(false); // TODO: not implemented
  8693. } break;
  8694. case GGML_OP_ROPE:
  8695. {
  8696. GGML_ASSERT(false); // TODO: not implemented
  8697. } break;
  8698. case GGML_OP_CONV_1D_1S:
  8699. {
  8700. GGML_ASSERT(false); // TODO: not implemented
  8701. } break;
  8702. case GGML_OP_CONV_1D_2S:
  8703. {
  8704. GGML_ASSERT(false); // TODO: not implemented
  8705. } break;
  8706. case GGML_OP_FLASH_ATTN:
  8707. {
  8708. GGML_ASSERT(false); // not supported
  8709. } break;
  8710. case GGML_OP_FLASH_FF:
  8711. {
  8712. GGML_ASSERT(false); // not supported
  8713. } break;
  8714. case GGML_OP_MAP_UNARY:
  8715. case GGML_OP_MAP_BINARY:
  8716. {
  8717. GGML_ASSERT(false); // not supported
  8718. } break;
  8719. case GGML_OP_NONE:
  8720. {
  8721. // nop
  8722. } break;
  8723. case GGML_OP_COUNT:
  8724. {
  8725. GGML_ASSERT(false);
  8726. } break;
  8727. }
  8728. }
  8729. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8730. if (node->grad == NULL) {
  8731. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8732. // it can also happen during forward pass, if the user performs computations with constants
  8733. if (node->op != GGML_OP_NONE) {
  8734. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8735. }
  8736. }
  8737. // check if already visited
  8738. for (int i = 0; i < cgraph->n_nodes; i++) {
  8739. if (cgraph->nodes[i] == node) {
  8740. return;
  8741. }
  8742. }
  8743. for (int i = 0; i < cgraph->n_leafs; i++) {
  8744. if (cgraph->leafs[i] == node) {
  8745. return;
  8746. }
  8747. }
  8748. if (node->src0) {
  8749. ggml_visit_parents(cgraph, node->src0);
  8750. }
  8751. if (node->src1) {
  8752. ggml_visit_parents(cgraph, node->src1);
  8753. }
  8754. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8755. if (node->opt[i]) {
  8756. ggml_visit_parents(cgraph, node->opt[i]);
  8757. }
  8758. }
  8759. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8760. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8761. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8762. cgraph->leafs[cgraph->n_leafs] = node;
  8763. cgraph->n_leafs++;
  8764. } else {
  8765. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8766. cgraph->nodes[cgraph->n_nodes] = node;
  8767. cgraph->grads[cgraph->n_nodes] = node->grad;
  8768. cgraph->n_nodes++;
  8769. }
  8770. }
  8771. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8772. if (!expand) {
  8773. cgraph->n_nodes = 0;
  8774. cgraph->n_leafs = 0;
  8775. }
  8776. const int n0 = cgraph->n_nodes;
  8777. UNUSED(n0);
  8778. ggml_visit_parents(cgraph, tensor);
  8779. const int n_new = cgraph->n_nodes - n0;
  8780. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8781. if (n_new > 0) {
  8782. // the last added node should always be starting point
  8783. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8784. }
  8785. }
  8786. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8787. ggml_build_forward_impl(cgraph, tensor, true);
  8788. }
  8789. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8790. struct ggml_cgraph result = {
  8791. /*.n_nodes =*/ 0,
  8792. /*.n_leafs =*/ 0,
  8793. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8794. /*.work_size =*/ 0,
  8795. /*.work =*/ NULL,
  8796. /*.nodes =*/ { NULL },
  8797. /*.grads =*/ { NULL },
  8798. /*.leafs =*/ { NULL },
  8799. /*.perf_runs =*/ 0,
  8800. /*.perf_cycles =*/ 0,
  8801. /*.perf_time_us =*/ 0,
  8802. };
  8803. ggml_build_forward_impl(&result, tensor, false);
  8804. return result;
  8805. }
  8806. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8807. struct ggml_cgraph result = *gf;
  8808. GGML_ASSERT(gf->n_nodes > 0);
  8809. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8810. if (keep) {
  8811. for (int i = 0; i < gf->n_nodes; i++) {
  8812. struct ggml_tensor * node = gf->nodes[i];
  8813. if (node->grad) {
  8814. node->grad = ggml_dup_tensor(ctx, node);
  8815. gf->grads[i] = node->grad;
  8816. }
  8817. }
  8818. }
  8819. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8820. struct ggml_tensor * node = gf->nodes[i];
  8821. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8822. if (node->grad) {
  8823. ggml_compute_backward(ctx, node, keep);
  8824. }
  8825. }
  8826. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8827. struct ggml_tensor * node = gf->nodes[i];
  8828. if (node->is_param) {
  8829. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8830. ggml_build_forward_impl(&result, node->grad, true);
  8831. }
  8832. }
  8833. return result;
  8834. }
  8835. //
  8836. // thread data
  8837. //
  8838. // synchronization is done via busy loops
  8839. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8840. //
  8841. #ifdef __APPLE__
  8842. //#include <os/lock.h>
  8843. //
  8844. //typedef os_unfair_lock ggml_lock_t;
  8845. //
  8846. //#define ggml_lock_init(x) UNUSED(x)
  8847. //#define ggml_lock_destroy(x) UNUSED(x)
  8848. //#define ggml_lock_lock os_unfair_lock_lock
  8849. //#define ggml_lock_unlock os_unfair_lock_unlock
  8850. //
  8851. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8852. typedef int ggml_lock_t;
  8853. #define ggml_lock_init(x) UNUSED(x)
  8854. #define ggml_lock_destroy(x) UNUSED(x)
  8855. #define ggml_lock_lock(x) UNUSED(x)
  8856. #define ggml_lock_unlock(x) UNUSED(x)
  8857. #define GGML_LOCK_INITIALIZER 0
  8858. typedef pthread_t ggml_thread_t;
  8859. #define ggml_thread_create pthread_create
  8860. #define ggml_thread_join pthread_join
  8861. #else
  8862. //typedef pthread_spinlock_t ggml_lock_t;
  8863. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8864. //#define ggml_lock_destroy pthread_spin_destroy
  8865. //#define ggml_lock_lock pthread_spin_lock
  8866. //#define ggml_lock_unlock pthread_spin_unlock
  8867. typedef int ggml_lock_t;
  8868. #define ggml_lock_init(x) UNUSED(x)
  8869. #define ggml_lock_destroy(x) UNUSED(x)
  8870. #define ggml_lock_lock(x) UNUSED(x)
  8871. #define ggml_lock_unlock(x) UNUSED(x)
  8872. #define GGML_LOCK_INITIALIZER 0
  8873. typedef pthread_t ggml_thread_t;
  8874. #define ggml_thread_create pthread_create
  8875. #define ggml_thread_join pthread_join
  8876. #endif
  8877. struct ggml_compute_state_shared {
  8878. ggml_lock_t spin;
  8879. int n_threads;
  8880. // synchronization primitives
  8881. atomic_int n_ready;
  8882. atomic_bool has_work;
  8883. atomic_bool stop; // stop all threads
  8884. };
  8885. struct ggml_compute_state {
  8886. ggml_thread_t thrd;
  8887. struct ggml_compute_params params;
  8888. struct ggml_tensor * node;
  8889. struct ggml_compute_state_shared * shared;
  8890. };
  8891. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8892. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8893. const int n_threads = state->shared->n_threads;
  8894. while (true) {
  8895. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8896. atomic_store(&state->shared->has_work, false);
  8897. } else {
  8898. while (atomic_load(&state->shared->has_work)) {
  8899. if (atomic_load(&state->shared->stop)) {
  8900. return 0;
  8901. }
  8902. ggml_lock_lock (&state->shared->spin);
  8903. ggml_lock_unlock(&state->shared->spin);
  8904. }
  8905. }
  8906. atomic_fetch_sub(&state->shared->n_ready, 1);
  8907. // wait for work
  8908. while (!atomic_load(&state->shared->has_work)) {
  8909. if (atomic_load(&state->shared->stop)) {
  8910. return 0;
  8911. }
  8912. ggml_lock_lock (&state->shared->spin);
  8913. ggml_lock_unlock(&state->shared->spin);
  8914. }
  8915. // check if we should stop
  8916. if (atomic_load(&state->shared->stop)) {
  8917. break;
  8918. }
  8919. if (state->node) {
  8920. if (state->params.ith < state->params.nth) {
  8921. ggml_compute_forward(&state->params, state->node);
  8922. }
  8923. state->node = NULL;
  8924. } else {
  8925. break;
  8926. }
  8927. }
  8928. return 0;
  8929. }
  8930. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8931. const int n_threads = cgraph->n_threads;
  8932. struct ggml_compute_state_shared state_shared = {
  8933. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8934. /*.n_threads =*/ n_threads,
  8935. /*.n_ready =*/ 0,
  8936. /*.has_work =*/ false,
  8937. /*.stop =*/ false,
  8938. };
  8939. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8940. // create thread pool
  8941. if (n_threads > 1) {
  8942. ggml_lock_init(&state_shared.spin);
  8943. atomic_store(&state_shared.has_work, true);
  8944. for (int j = 0; j < n_threads - 1; j++) {
  8945. workers[j] = (struct ggml_compute_state) {
  8946. .thrd = 0,
  8947. .params = {
  8948. .type = GGML_TASK_COMPUTE,
  8949. .ith = j + 1,
  8950. .nth = n_threads,
  8951. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8952. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8953. },
  8954. .node = NULL,
  8955. .shared = &state_shared,
  8956. };
  8957. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8958. GGML_ASSERT(rc == 0);
  8959. UNUSED(rc);
  8960. }
  8961. }
  8962. // initialize tasks + work buffer
  8963. {
  8964. size_t work_size = 0;
  8965. // thread scheduling for the different operations
  8966. for (int i = 0; i < cgraph->n_nodes; i++) {
  8967. struct ggml_tensor * node = cgraph->nodes[i];
  8968. switch (node->op) {
  8969. case GGML_OP_CPY:
  8970. case GGML_OP_DUP:
  8971. {
  8972. node->n_tasks = n_threads;
  8973. size_t cur = 0;
  8974. if (ggml_is_quantized(node->type)) {
  8975. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8976. }
  8977. work_size = MAX(work_size, cur);
  8978. } break;
  8979. case GGML_OP_ADD:
  8980. {
  8981. node->n_tasks = n_threads;
  8982. size_t cur = 0;
  8983. if (ggml_is_quantized(node->src0->type)) {
  8984. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8985. }
  8986. work_size = MAX(work_size, cur);
  8987. } break;
  8988. case GGML_OP_SUB:
  8989. case GGML_OP_MUL:
  8990. case GGML_OP_DIV:
  8991. case GGML_OP_SQR:
  8992. case GGML_OP_SQRT:
  8993. case GGML_OP_SUM:
  8994. case GGML_OP_MEAN:
  8995. case GGML_OP_REPEAT:
  8996. case GGML_OP_ABS:
  8997. case GGML_OP_SGN:
  8998. case GGML_OP_NEG:
  8999. case GGML_OP_STEP:
  9000. case GGML_OP_RELU:
  9001. {
  9002. node->n_tasks = 1;
  9003. } break;
  9004. case GGML_OP_GELU:
  9005. {
  9006. node->n_tasks = n_threads;
  9007. } break;
  9008. case GGML_OP_SILU:
  9009. {
  9010. node->n_tasks = n_threads;
  9011. } break;
  9012. case GGML_OP_NORM:
  9013. case GGML_OP_RMS_NORM:
  9014. {
  9015. node->n_tasks = n_threads;
  9016. } break;
  9017. case GGML_OP_MUL_MAT:
  9018. {
  9019. node->n_tasks = n_threads;
  9020. // TODO: use different scheduling for different matrix sizes
  9021. //const int nr0 = ggml_nrows(node->src0);
  9022. //const int nr1 = ggml_nrows(node->src1);
  9023. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9024. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9025. size_t cur = 0;
  9026. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9027. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9028. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9029. node->n_tasks = 1; // TODO: this actually is doing nothing
  9030. // the threads are still spinning
  9031. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9032. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9033. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9034. //printf("cur = %zu\n", cur);
  9035. } else {
  9036. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9037. }
  9038. #else
  9039. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9040. #endif
  9041. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9042. cur = 0;
  9043. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9044. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9045. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9046. node->n_tasks = 1;
  9047. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9048. } else
  9049. #endif
  9050. {
  9051. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9052. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9053. }
  9054. } else {
  9055. GGML_ASSERT(false);
  9056. }
  9057. work_size = MAX(work_size, cur);
  9058. } break;
  9059. case GGML_OP_SCALE:
  9060. {
  9061. node->n_tasks = n_threads;
  9062. } break;
  9063. case GGML_OP_CONT:
  9064. case GGML_OP_RESHAPE:
  9065. case GGML_OP_VIEW:
  9066. case GGML_OP_PERMUTE:
  9067. case GGML_OP_TRANSPOSE:
  9068. case GGML_OP_GET_ROWS:
  9069. case GGML_OP_DIAG_MASK_INF:
  9070. {
  9071. node->n_tasks = 1;
  9072. } break;
  9073. case GGML_OP_SOFT_MAX:
  9074. {
  9075. node->n_tasks = n_threads;
  9076. } break;
  9077. case GGML_OP_ROPE:
  9078. {
  9079. node->n_tasks = n_threads;
  9080. } break;
  9081. case GGML_OP_CONV_1D_1S:
  9082. case GGML_OP_CONV_1D_2S:
  9083. {
  9084. node->n_tasks = n_threads;
  9085. GGML_ASSERT(node->src0->ne[3] == 1);
  9086. GGML_ASSERT(node->src1->ne[2] == 1);
  9087. GGML_ASSERT(node->src1->ne[3] == 1);
  9088. size_t cur = 0;
  9089. const int nk = node->src0->ne[0];
  9090. if (node->src0->type == GGML_TYPE_F16 &&
  9091. node->src1->type == GGML_TYPE_F32) {
  9092. cur = sizeof(ggml_fp16_t)*(
  9093. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9094. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9095. );
  9096. } else if (node->src0->type == GGML_TYPE_F32 &&
  9097. node->src1->type == GGML_TYPE_F32) {
  9098. cur = sizeof(float)*(
  9099. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9100. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9101. );
  9102. } else {
  9103. GGML_ASSERT(false);
  9104. }
  9105. work_size = MAX(work_size, cur);
  9106. } break;
  9107. case GGML_OP_FLASH_ATTN:
  9108. {
  9109. node->n_tasks = n_threads;
  9110. size_t cur = 0;
  9111. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9112. if (node->src1->type == GGML_TYPE_F32) {
  9113. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9114. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9115. }
  9116. if (node->src1->type == GGML_TYPE_F16) {
  9117. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9118. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9119. }
  9120. work_size = MAX(work_size, cur);
  9121. } break;
  9122. case GGML_OP_FLASH_FF:
  9123. {
  9124. node->n_tasks = n_threads;
  9125. size_t cur = 0;
  9126. if (node->src1->type == GGML_TYPE_F32) {
  9127. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9128. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9129. }
  9130. if (node->src1->type == GGML_TYPE_F16) {
  9131. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9132. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9133. }
  9134. work_size = MAX(work_size, cur);
  9135. } break;
  9136. case GGML_OP_MAP_UNARY:
  9137. case GGML_OP_MAP_BINARY:
  9138. {
  9139. node->n_tasks = 1;
  9140. } break;
  9141. case GGML_OP_NONE:
  9142. {
  9143. node->n_tasks = 1;
  9144. } break;
  9145. case GGML_OP_COUNT:
  9146. {
  9147. GGML_ASSERT(false);
  9148. } break;
  9149. }
  9150. }
  9151. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9152. GGML_ASSERT(false); // TODO: better handling
  9153. }
  9154. if (work_size > 0 && cgraph->work == NULL) {
  9155. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9156. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9157. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9158. }
  9159. }
  9160. const int64_t perf_start_cycles = ggml_perf_cycles();
  9161. const int64_t perf_start_time_us = ggml_perf_time_us();
  9162. for (int i = 0; i < cgraph->n_nodes; i++) {
  9163. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9164. struct ggml_tensor * node = cgraph->nodes[i];
  9165. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9166. //if (node->grad == NULL && node->perf_runs > 0) {
  9167. // continue;
  9168. //}
  9169. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9170. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9171. // INIT
  9172. struct ggml_compute_params params = {
  9173. /*.type =*/ GGML_TASK_INIT,
  9174. /*.ith =*/ 0,
  9175. /*.nth =*/ node->n_tasks,
  9176. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9177. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9178. };
  9179. ggml_compute_forward(&params, node);
  9180. // COMPUTE
  9181. if (node->n_tasks > 1) {
  9182. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9183. atomic_store(&state_shared.has_work, false);
  9184. }
  9185. while (atomic_load(&state_shared.has_work)) {
  9186. ggml_lock_lock (&state_shared.spin);
  9187. ggml_lock_unlock(&state_shared.spin);
  9188. }
  9189. // launch thread pool
  9190. for (int j = 0; j < n_threads - 1; j++) {
  9191. workers[j].params = (struct ggml_compute_params) {
  9192. .type = GGML_TASK_COMPUTE,
  9193. .ith = j + 1,
  9194. .nth = node->n_tasks,
  9195. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9196. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9197. };
  9198. workers[j].node = node;
  9199. }
  9200. atomic_fetch_sub(&state_shared.n_ready, 1);
  9201. while (atomic_load(&state_shared.n_ready) > 0) {
  9202. ggml_lock_lock (&state_shared.spin);
  9203. ggml_lock_unlock(&state_shared.spin);
  9204. }
  9205. atomic_store(&state_shared.has_work, true);
  9206. }
  9207. params.type = GGML_TASK_COMPUTE;
  9208. ggml_compute_forward(&params, node);
  9209. // wait for thread pool
  9210. if (node->n_tasks > 1) {
  9211. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9212. atomic_store(&state_shared.has_work, false);
  9213. }
  9214. while (atomic_load(&state_shared.has_work)) {
  9215. ggml_lock_lock (&state_shared.spin);
  9216. ggml_lock_unlock(&state_shared.spin);
  9217. }
  9218. atomic_fetch_sub(&state_shared.n_ready, 1);
  9219. while (atomic_load(&state_shared.n_ready) != 0) {
  9220. ggml_lock_lock (&state_shared.spin);
  9221. ggml_lock_unlock(&state_shared.spin);
  9222. }
  9223. }
  9224. // FINALIZE
  9225. if (node->n_tasks > 1) {
  9226. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9227. atomic_store(&state_shared.has_work, false);
  9228. }
  9229. while (atomic_load(&state_shared.has_work)) {
  9230. ggml_lock_lock (&state_shared.spin);
  9231. ggml_lock_unlock(&state_shared.spin);
  9232. }
  9233. // launch thread pool
  9234. for (int j = 0; j < n_threads - 1; j++) {
  9235. workers[j].params = (struct ggml_compute_params) {
  9236. .type = GGML_TASK_FINALIZE,
  9237. .ith = j + 1,
  9238. .nth = node->n_tasks,
  9239. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9240. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9241. };
  9242. workers[j].node = node;
  9243. }
  9244. atomic_fetch_sub(&state_shared.n_ready, 1);
  9245. while (atomic_load(&state_shared.n_ready) > 0) {
  9246. ggml_lock_lock (&state_shared.spin);
  9247. ggml_lock_unlock(&state_shared.spin);
  9248. }
  9249. atomic_store(&state_shared.has_work, true);
  9250. }
  9251. params.type = GGML_TASK_FINALIZE;
  9252. ggml_compute_forward(&params, node);
  9253. // wait for thread pool
  9254. if (node->n_tasks > 1) {
  9255. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9256. atomic_store(&state_shared.has_work, false);
  9257. }
  9258. while (atomic_load(&state_shared.has_work)) {
  9259. ggml_lock_lock (&state_shared.spin);
  9260. ggml_lock_unlock(&state_shared.spin);
  9261. }
  9262. atomic_fetch_sub(&state_shared.n_ready, 1);
  9263. while (atomic_load(&state_shared.n_ready) != 0) {
  9264. ggml_lock_lock (&state_shared.spin);
  9265. ggml_lock_unlock(&state_shared.spin);
  9266. }
  9267. }
  9268. // performance stats (node)
  9269. {
  9270. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9271. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9272. node->perf_runs++;
  9273. node->perf_cycles += perf_cycles_cur;
  9274. node->perf_time_us += perf_time_us_cur;
  9275. }
  9276. }
  9277. // join thread pool
  9278. if (n_threads > 1) {
  9279. atomic_store(&state_shared.stop, true);
  9280. atomic_store(&state_shared.has_work, true);
  9281. for (int j = 0; j < n_threads - 1; j++) {
  9282. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9283. GGML_ASSERT(rc == 0);
  9284. UNUSED(rc);
  9285. }
  9286. ggml_lock_destroy(&state_shared.spin);
  9287. }
  9288. // performance stats (graph)
  9289. {
  9290. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9291. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9292. cgraph->perf_runs++;
  9293. cgraph->perf_cycles += perf_cycles_cur;
  9294. cgraph->perf_time_us += perf_time_us_cur;
  9295. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9296. __func__, cgraph->perf_runs,
  9297. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9298. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9299. (double) perf_time_us_cur / 1000.0,
  9300. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9301. }
  9302. }
  9303. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9304. for (int i = 0; i < cgraph->n_nodes; i++) {
  9305. struct ggml_tensor * grad = cgraph->grads[i];
  9306. if (grad) {
  9307. ggml_set_zero(grad);
  9308. }
  9309. }
  9310. }
  9311. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9312. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9313. GGML_PRINT("=== GRAPH ===\n");
  9314. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9315. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9316. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9317. for (int i = 0; i < cgraph->n_nodes; i++) {
  9318. struct ggml_tensor * node = cgraph->nodes[i];
  9319. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9320. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9321. i,
  9322. node->ne[0], node->ne[1], node->ne[2],
  9323. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9324. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9325. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9326. (double) node->perf_time_us / 1000.0,
  9327. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9328. }
  9329. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9330. for (int i = 0; i < cgraph->n_leafs; i++) {
  9331. struct ggml_tensor * node = cgraph->leafs[i];
  9332. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9333. i,
  9334. node->ne[0], node->ne[1],
  9335. GGML_OP_LABEL[node->op]);
  9336. }
  9337. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9338. if (perf_total_per_op_us[i] == 0) {
  9339. continue;
  9340. }
  9341. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9342. }
  9343. GGML_PRINT("========================================\n");
  9344. }
  9345. // check if node is part of the graph
  9346. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9347. if (cgraph == NULL) {
  9348. return true;
  9349. }
  9350. for (int i = 0; i < cgraph->n_nodes; i++) {
  9351. if (cgraph->nodes[i] == node) {
  9352. return true;
  9353. }
  9354. }
  9355. return false;
  9356. }
  9357. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9358. for (int i = 0; i < cgraph->n_nodes; i++) {
  9359. struct ggml_tensor * parent = cgraph->nodes[i];
  9360. if (parent->grad == node) {
  9361. return parent;
  9362. }
  9363. }
  9364. return NULL;
  9365. }
  9366. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9367. char color[16];
  9368. FILE * fp = fopen(filename, "w");
  9369. GGML_ASSERT(fp);
  9370. fprintf(fp, "digraph G {\n");
  9371. fprintf(fp, " newrank = true;\n");
  9372. fprintf(fp, " rankdir = LR;\n");
  9373. for (int i = 0; i < gb->n_nodes; i++) {
  9374. struct ggml_tensor * node = gb->nodes[i];
  9375. if (ggml_graph_get_parent(gb, node) != NULL) {
  9376. continue;
  9377. }
  9378. if (node->is_param) {
  9379. snprintf(color, sizeof(color), "yellow");
  9380. } else if (node->grad) {
  9381. if (ggml_graph_find(gf, node)) {
  9382. snprintf(color, sizeof(color), "green");
  9383. } else {
  9384. snprintf(color, sizeof(color), "lightblue");
  9385. }
  9386. } else {
  9387. snprintf(color, sizeof(color), "white");
  9388. }
  9389. fprintf(fp, " \"%p\" [ \
  9390. style = filled; fillcolor = %s; shape = record; \
  9391. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9392. (void *) node, color,
  9393. i, node->ne[0], node->ne[1],
  9394. GGML_OP_SYMBOL[node->op]);
  9395. if (node->grad) {
  9396. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9397. } else {
  9398. fprintf(fp, "\"; ]\n");
  9399. }
  9400. }
  9401. for (int i = 0; i < gb->n_leafs; i++) {
  9402. struct ggml_tensor * node = gb->leafs[i];
  9403. snprintf(color, sizeof(color), "pink");
  9404. if (ggml_nelements(node) == 1) {
  9405. fprintf(fp, " \"%p\" [ \
  9406. style = filled; fillcolor = %s; shape = record; \
  9407. label=\"<x>%.1e\"; ]\n",
  9408. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9409. } else {
  9410. fprintf(fp, " \"%p\" [ \
  9411. style = filled; fillcolor = %s; shape = record; \
  9412. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9413. (void *) node, color,
  9414. i, node->ne[0], node->ne[1]);
  9415. }
  9416. }
  9417. for (int i = 0; i < gb->n_nodes; i++) {
  9418. struct ggml_tensor * node = gb->nodes[i];
  9419. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9420. if (node->src0) {
  9421. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9422. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9423. parent0 ? (void *) parent0 : (void *) node->src0,
  9424. parent0 ? "g" : "x",
  9425. parent ? (void *) parent : (void *) node,
  9426. parent ? "g" : "x",
  9427. parent ? "empty" : "vee",
  9428. parent ? "dashed" : "solid");
  9429. }
  9430. if (node->src1) {
  9431. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9432. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9433. parent1 ? (void *) parent1 : (void *) node->src1,
  9434. parent1 ? "g" : "x",
  9435. parent ? (void *) parent : (void *) node,
  9436. parent ? "g" : "x",
  9437. parent ? "empty" : "vee",
  9438. parent ? "dashed" : "solid");
  9439. }
  9440. }
  9441. for (int i = 0; i < gb->n_leafs; i++) {
  9442. struct ggml_tensor * node = gb->leafs[i];
  9443. if (node->src0) {
  9444. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9445. (void *) node->src0, "x",
  9446. (void *) node, "x");
  9447. }
  9448. if (node->src1) {
  9449. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9450. (void *) node->src1, "x",
  9451. (void *) node, "x");
  9452. }
  9453. }
  9454. fprintf(fp, "}\n");
  9455. fclose(fp);
  9456. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9457. }
  9458. ////////////////////////////////////////////////////////////////////////////////
  9459. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9460. int i = 0;
  9461. for (int p = 0; p < np; ++p) {
  9462. const int64_t ne = ggml_nelements(ps[p]) ;
  9463. // TODO: add function to set tensor from array
  9464. for (int64_t j = 0; j < ne; ++j) {
  9465. ggml_set_f32_1d(ps[p], j, x[i++]);
  9466. }
  9467. }
  9468. }
  9469. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9470. int i = 0;
  9471. for (int p = 0; p < np; ++p) {
  9472. const int64_t ne = ggml_nelements(ps[p]) ;
  9473. // TODO: add function to get all elements at once
  9474. for (int64_t j = 0; j < ne; ++j) {
  9475. x[i++] = ggml_get_f32_1d(ps[p], j);
  9476. }
  9477. }
  9478. }
  9479. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9480. int i = 0;
  9481. for (int p = 0; p < np; ++p) {
  9482. const int64_t ne = ggml_nelements(ps[p]) ;
  9483. // TODO: add function to get all elements at once
  9484. for (int64_t j = 0; j < ne; ++j) {
  9485. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9486. }
  9487. }
  9488. }
  9489. //
  9490. // ADAM
  9491. //
  9492. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9493. //
  9494. static enum ggml_opt_result ggml_opt_adam(
  9495. struct ggml_context * ctx,
  9496. struct ggml_opt_params params,
  9497. struct ggml_tensor * f,
  9498. struct ggml_cgraph * gf,
  9499. struct ggml_cgraph * gb) {
  9500. GGML_ASSERT(ggml_is_scalar(f));
  9501. gf->n_threads = params.n_threads;
  9502. gb->n_threads = params.n_threads;
  9503. // these will store the parameters we want to optimize
  9504. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9505. int np = 0;
  9506. int nx = 0;
  9507. for (int i = 0; i < gf->n_nodes; ++i) {
  9508. if (gf->nodes[i]->is_param) {
  9509. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9510. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9511. ps[np++] = gf->nodes[i];
  9512. nx += ggml_nelements(gf->nodes[i]);
  9513. }
  9514. }
  9515. // constants
  9516. const float alpha = params.adam.alpha;
  9517. const float beta1 = params.adam.beta1;
  9518. const float beta2 = params.adam.beta2;
  9519. const float eps = params.adam.eps;
  9520. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9521. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9522. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9523. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9524. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9525. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9526. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9527. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9528. // initialize
  9529. ggml_vec_set_f32(nx, m, 0.0f);
  9530. ggml_vec_set_f32(nx, v, 0.0f);
  9531. // update view
  9532. ggml_opt_get_params(np, ps, x);
  9533. // compute the function value
  9534. ggml_graph_reset (gf);
  9535. ggml_set_f32 (f->grad, 1.0f);
  9536. ggml_graph_compute(ctx, gb);
  9537. float fx_prev = ggml_get_f32_1d(f, 0);
  9538. if (pf) {
  9539. pf[0] = fx_prev;
  9540. }
  9541. int n_no_improvement = 0;
  9542. float fx_best = fx_prev;
  9543. // run the optimizer
  9544. for (int t = 0; t < params.adam.n_iter; ++t) {
  9545. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9546. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9547. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9548. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9549. for (int i = 0; i < np; ++i) {
  9550. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9551. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9552. }
  9553. const int64_t t_start_wall = ggml_time_us();
  9554. const int64_t t_start_cpu = ggml_cycles();
  9555. UNUSED(t_start_wall);
  9556. UNUSED(t_start_cpu);
  9557. {
  9558. // update the gradient
  9559. ggml_opt_get_grad(np, ps, g1);
  9560. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9561. ggml_vec_scale_f32(nx, m, beta1);
  9562. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9563. // g2 = g1^2
  9564. ggml_vec_sqr_f32 (nx, g2, g1);
  9565. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9566. ggml_vec_scale_f32(nx, v, beta2);
  9567. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9568. // m^hat = m_t / (1 - beta1^t)
  9569. // v^hat = v_t / (1 - beta2^t)
  9570. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9571. ggml_vec_cpy_f32 (nx, mh, m);
  9572. ggml_vec_cpy_f32 (nx, vh, v);
  9573. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9574. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9575. ggml_vec_sqrt_f32 (nx, vh, vh);
  9576. ggml_vec_acc1_f32 (nx, vh, eps);
  9577. ggml_vec_div_f32 (nx, mh, mh, vh);
  9578. ggml_vec_sub_f32 (nx, x, x, mh);
  9579. // update the parameters
  9580. ggml_opt_set_params(np, ps, x);
  9581. }
  9582. ggml_graph_reset (gf);
  9583. ggml_set_f32 (f->grad, 1.0f);
  9584. ggml_graph_compute(ctx, gb);
  9585. const float fx = ggml_get_f32_1d(f, 0);
  9586. // check convergence
  9587. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9588. GGML_PRINT_DEBUG("converged\n");
  9589. return GGML_OPT_OK;
  9590. }
  9591. // delta-based convergence test
  9592. if (pf != NULL) {
  9593. // need at least params.past iterations to start checking for convergence
  9594. if (params.past <= t) {
  9595. const float rate = (pf[t%params.past] - fx)/fx;
  9596. if (fabsf(rate) < params.delta) {
  9597. return GGML_OPT_OK;
  9598. }
  9599. }
  9600. pf[t%params.past] = fx;
  9601. }
  9602. // check for improvement
  9603. if (params.max_no_improvement > 0) {
  9604. if (fx_best > fx) {
  9605. fx_best = fx;
  9606. n_no_improvement = 0;
  9607. } else {
  9608. ++n_no_improvement;
  9609. if (n_no_improvement >= params.max_no_improvement) {
  9610. return GGML_OPT_OK;
  9611. }
  9612. }
  9613. }
  9614. fx_prev = fx;
  9615. {
  9616. const int64_t t_end_cpu = ggml_cycles();
  9617. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9618. UNUSED(t_end_cpu);
  9619. const int64_t t_end_wall = ggml_time_us();
  9620. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9621. UNUSED(t_end_wall);
  9622. }
  9623. }
  9624. return GGML_OPT_DID_NOT_CONVERGE;
  9625. }
  9626. //
  9627. // L-BFGS
  9628. //
  9629. // the L-BFGS implementation below is based on the following implementation:
  9630. //
  9631. // https://github.com/chokkan/liblbfgs
  9632. //
  9633. struct ggml_lbfgs_iteration_data {
  9634. float alpha;
  9635. float ys;
  9636. float * s;
  9637. float * y;
  9638. };
  9639. static enum ggml_opt_result linesearch_backtracking(
  9640. struct ggml_context * ctx,
  9641. const struct ggml_opt_params * params,
  9642. int nx,
  9643. float * x,
  9644. float * fx,
  9645. float * g,
  9646. float * d,
  9647. float * step,
  9648. const float * xp,
  9649. struct ggml_tensor * f,
  9650. struct ggml_cgraph * gf,
  9651. struct ggml_cgraph * gb,
  9652. const int np,
  9653. struct ggml_tensor * ps[]) {
  9654. int count = 0;
  9655. float width = 0.0f;
  9656. float dg = 0.0f;
  9657. float finit = 0.0f;
  9658. float dginit = 0.0f;
  9659. float dgtest = 0.0f;
  9660. const float dec = 0.5f;
  9661. const float inc = 2.1f;
  9662. if (*step <= 0.f) {
  9663. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9664. }
  9665. // compute the initial gradient in the search direction
  9666. ggml_vec_dot_f32(nx, &dginit, g, d);
  9667. // make sure that d points to a descent direction
  9668. if (0 < dginit) {
  9669. return GGML_LINESEARCH_FAIL;
  9670. }
  9671. // initialize local variables
  9672. finit = *fx;
  9673. dgtest = params->lbfgs.ftol*dginit;
  9674. while (true) {
  9675. ggml_vec_cpy_f32(nx, x, xp);
  9676. ggml_vec_mad_f32(nx, x, d, *step);
  9677. // evaluate the function and gradient values
  9678. {
  9679. ggml_opt_set_params(np, ps, x);
  9680. ggml_graph_reset (gf);
  9681. ggml_set_f32 (f->grad, 1.0f);
  9682. ggml_graph_compute(ctx, gb);
  9683. ggml_opt_get_grad(np, ps, g);
  9684. *fx = ggml_get_f32_1d(f, 0);
  9685. }
  9686. ++count;
  9687. if (*fx > finit + (*step)*dgtest) {
  9688. width = dec;
  9689. } else {
  9690. // Armijo condition is satisfied
  9691. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9692. return count;
  9693. }
  9694. ggml_vec_dot_f32(nx, &dg, g, d);
  9695. // check the Wolfe condition
  9696. if (dg < params->lbfgs.wolfe * dginit) {
  9697. width = inc;
  9698. } else {
  9699. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9700. // regular Wolfe conditions
  9701. return count;
  9702. }
  9703. if(dg > -params->lbfgs.wolfe*dginit) {
  9704. width = dec;
  9705. } else {
  9706. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9707. return count;
  9708. }
  9709. return count;
  9710. }
  9711. }
  9712. if (*step < params->lbfgs.min_step) {
  9713. return GGML_LINESEARCH_MINIMUM_STEP;
  9714. }
  9715. if (*step > params->lbfgs.max_step) {
  9716. return GGML_LINESEARCH_MAXIMUM_STEP;
  9717. }
  9718. if (params->lbfgs.max_linesearch <= count) {
  9719. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9720. }
  9721. (*step) *= width;
  9722. }
  9723. return GGML_LINESEARCH_FAIL;
  9724. }
  9725. static enum ggml_opt_result ggml_opt_lbfgs(
  9726. struct ggml_context * ctx,
  9727. struct ggml_opt_params params,
  9728. struct ggml_tensor * f,
  9729. struct ggml_cgraph * gf,
  9730. struct ggml_cgraph * gb) {
  9731. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9732. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9733. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9734. return GGML_OPT_INVALID_WOLFE;
  9735. }
  9736. }
  9737. gf->n_threads = params.n_threads;
  9738. gb->n_threads = params.n_threads;
  9739. const int m = params.lbfgs.m;
  9740. // these will store the parameters we want to optimize
  9741. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9742. int np = 0;
  9743. int nx = 0;
  9744. for (int i = 0; i < gf->n_nodes; ++i) {
  9745. if (gf->nodes[i]->is_param) {
  9746. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9747. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9748. ps[np++] = gf->nodes[i];
  9749. nx += ggml_nelements(gf->nodes[i]);
  9750. }
  9751. }
  9752. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9753. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9754. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9755. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9756. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9757. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9758. float fx = 0.0f; // cost function value
  9759. float xnorm = 0.0f; // ||x||
  9760. float gnorm = 0.0f; // ||g||
  9761. float step = 0.0f;
  9762. // initialize x from the graph nodes
  9763. ggml_opt_get_params(np, ps, x);
  9764. // the L-BFGS memory
  9765. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9766. for (int i = 0; i < m; ++i) {
  9767. lm[i].alpha = 0.0f;
  9768. lm[i].ys = 0.0f;
  9769. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9770. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9771. }
  9772. // evaluate the function value and its gradient
  9773. {
  9774. ggml_opt_set_params(np, ps, x);
  9775. ggml_graph_reset (gf);
  9776. ggml_set_f32 (f->grad, 1.0f);
  9777. ggml_graph_compute(ctx, gb);
  9778. ggml_opt_get_grad(np, ps, g);
  9779. fx = ggml_get_f32_1d(f, 0);
  9780. }
  9781. if (pf) {
  9782. pf[0] = fx;
  9783. }
  9784. float fx_best = fx;
  9785. // search direction = -gradient
  9786. ggml_vec_neg_f32(nx, d, g);
  9787. // ||x||, ||g||
  9788. ggml_vec_norm_f32(nx, &xnorm, x);
  9789. ggml_vec_norm_f32(nx, &gnorm, g);
  9790. if (xnorm < 1.0f) {
  9791. xnorm = 1.0f;
  9792. }
  9793. // already optimized
  9794. if (gnorm/xnorm <= params.lbfgs.eps) {
  9795. return GGML_OPT_OK;
  9796. }
  9797. // initial step
  9798. ggml_vec_norm_inv_f32(nx, &step, d);
  9799. int j = 0;
  9800. int k = 1;
  9801. int ls = 0;
  9802. int end = 0;
  9803. int bound = 0;
  9804. int n_no_improvement = 0;
  9805. float ys = 0.0f;
  9806. float yy = 0.0f;
  9807. float beta = 0.0f;
  9808. while (true) {
  9809. // store the current position and gradient vectors
  9810. ggml_vec_cpy_f32(nx, xp, x);
  9811. ggml_vec_cpy_f32(nx, gp, g);
  9812. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9813. if (ls < 0) {
  9814. // linesearch failed - go back to the previous point and return
  9815. ggml_vec_cpy_f32(nx, x, xp);
  9816. ggml_vec_cpy_f32(nx, g, gp);
  9817. return ls;
  9818. }
  9819. ggml_vec_norm_f32(nx, &xnorm, x);
  9820. ggml_vec_norm_f32(nx, &gnorm, g);
  9821. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9822. if (xnorm < 1.0f) {
  9823. xnorm = 1.0f;
  9824. }
  9825. if (gnorm/xnorm <= params.lbfgs.eps) {
  9826. // converged
  9827. return GGML_OPT_OK;
  9828. }
  9829. // delta-based convergence test
  9830. if (pf != NULL) {
  9831. // need at least params.past iterations to start checking for convergence
  9832. if (params.past <= k) {
  9833. const float rate = (pf[k%params.past] - fx)/fx;
  9834. if (fabsf(rate) < params.delta) {
  9835. return GGML_OPT_OK;
  9836. }
  9837. }
  9838. pf[k%params.past] = fx;
  9839. }
  9840. // check for improvement
  9841. if (params.max_no_improvement > 0) {
  9842. if (fx < fx_best) {
  9843. fx_best = fx;
  9844. n_no_improvement = 0;
  9845. } else {
  9846. n_no_improvement++;
  9847. if (n_no_improvement >= params.max_no_improvement) {
  9848. return GGML_OPT_OK;
  9849. }
  9850. }
  9851. }
  9852. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9853. // reached the maximum number of iterations
  9854. return GGML_OPT_DID_NOT_CONVERGE;
  9855. }
  9856. // update vectors s and y:
  9857. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9858. // y_{k+1} = g_{k+1} - g_{k}.
  9859. //
  9860. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9861. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9862. // compute scalars ys and yy:
  9863. // ys = y^t \cdot s -> 1 / \rho.
  9864. // yy = y^t \cdot y.
  9865. //
  9866. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9867. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9868. lm[end].ys = ys;
  9869. // find new search direction
  9870. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9871. bound = (m <= k) ? m : k;
  9872. k++;
  9873. end = (end + 1)%m;
  9874. // initialize search direction with -g
  9875. ggml_vec_neg_f32(nx, d, g);
  9876. j = end;
  9877. for (int i = 0; i < bound; ++i) {
  9878. j = (j + m - 1) % m;
  9879. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9880. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9881. lm[j].alpha /= lm[j].ys;
  9882. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9883. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9884. }
  9885. ggml_vec_scale_f32(nx, d, ys/yy);
  9886. for (int i = 0; i < bound; ++i) {
  9887. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9888. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9889. beta /= lm[j].ys;
  9890. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9891. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9892. j = (j + 1)%m;
  9893. }
  9894. step = 1.0;
  9895. }
  9896. return GGML_OPT_DID_NOT_CONVERGE;
  9897. }
  9898. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9899. struct ggml_opt_params result;
  9900. switch (type) {
  9901. case GGML_OPT_ADAM:
  9902. {
  9903. result = (struct ggml_opt_params) {
  9904. .type = GGML_OPT_ADAM,
  9905. .n_threads = 1,
  9906. .past = 0,
  9907. .delta = 1e-5f,
  9908. .max_no_improvement = 100,
  9909. .print_forward_graph = true,
  9910. .print_backward_graph = true,
  9911. .adam = {
  9912. .n_iter = 10000,
  9913. .alpha = 0.001f,
  9914. .beta1 = 0.9f,
  9915. .beta2 = 0.999f,
  9916. .eps = 1e-8f,
  9917. .eps_f = 1e-5f,
  9918. .eps_g = 1e-3f,
  9919. },
  9920. };
  9921. } break;
  9922. case GGML_OPT_LBFGS:
  9923. {
  9924. result = (struct ggml_opt_params) {
  9925. .type = GGML_OPT_LBFGS,
  9926. .n_threads = 1,
  9927. .past = 0,
  9928. .delta = 1e-5f,
  9929. .max_no_improvement = 0,
  9930. .print_forward_graph = true,
  9931. .print_backward_graph = true,
  9932. .lbfgs = {
  9933. .m = 6,
  9934. .n_iter = 100,
  9935. .max_linesearch = 20,
  9936. .eps = 1e-5f,
  9937. .ftol = 1e-4f,
  9938. .wolfe = 0.9f,
  9939. .min_step = 1e-20f,
  9940. .max_step = 1e+20f,
  9941. .linesearch = GGML_LINESEARCH_DEFAULT,
  9942. },
  9943. };
  9944. } break;
  9945. }
  9946. return result;
  9947. }
  9948. enum ggml_opt_result ggml_opt(
  9949. struct ggml_context * ctx,
  9950. struct ggml_opt_params params,
  9951. struct ggml_tensor * f) {
  9952. bool free_ctx = false;
  9953. if (ctx == NULL) {
  9954. struct ggml_init_params params_ctx = {
  9955. .mem_size = 16*1024*1024,
  9956. .mem_buffer = NULL,
  9957. .no_alloc = false,
  9958. };
  9959. ctx = ggml_init(params_ctx);
  9960. if (ctx == NULL) {
  9961. return GGML_OPT_NO_CONTEXT;
  9962. }
  9963. free_ctx = true;
  9964. }
  9965. enum ggml_opt_result result = GGML_OPT_OK;
  9966. // build forward + backward compute graphs
  9967. struct ggml_cgraph gf = ggml_build_forward (f);
  9968. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9969. switch (params.type) {
  9970. case GGML_OPT_ADAM:
  9971. {
  9972. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9973. } break;
  9974. case GGML_OPT_LBFGS:
  9975. {
  9976. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9977. } break;
  9978. }
  9979. if (params.print_forward_graph) {
  9980. ggml_graph_print (&gf);
  9981. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9982. }
  9983. if (params.print_backward_graph) {
  9984. ggml_graph_print (&gb);
  9985. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9986. }
  9987. if (free_ctx) {
  9988. ggml_free(ctx);
  9989. }
  9990. return result;
  9991. }
  9992. ////////////////////////////////////////////////////////////////////////////////
  9993. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9994. assert(k % QK4_0 == 0);
  9995. const int nb = k / QK4_0;
  9996. for (int j = 0; j < n; j += k) {
  9997. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9998. quantize_row_q4_0_reference(src + j, y, k);
  9999. for (int i = 0; i < nb; i++) {
  10000. for (int l = 0; l < QK4_0; l += 2) {
  10001. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10002. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10003. hist[vi0]++;
  10004. hist[vi1]++;
  10005. }
  10006. }
  10007. }
  10008. return (n/QK4_0*sizeof(block_q4_0));
  10009. }
  10010. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10011. assert(k % QK4_1 == 0);
  10012. const int nb = k / QK4_1;
  10013. for (int j = 0; j < n; j += k) {
  10014. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10015. quantize_row_q4_1_reference(src + j, y, k);
  10016. for (int i = 0; i < nb; i++) {
  10017. for (int l = 0; l < QK4_1; l += 2) {
  10018. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10019. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10020. hist[vi0]++;
  10021. hist[vi1]++;
  10022. }
  10023. }
  10024. }
  10025. return (n/QK4_1*sizeof(block_q4_1));
  10026. }
  10027. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10028. assert(k % QK4_2 == 0);
  10029. const int nb = k / QK4_2;
  10030. for (int j = 0; j < n; j += k) {
  10031. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10032. quantize_row_q4_2_reference(src + j, y, k);
  10033. for (int i = 0; i < nb; i++) {
  10034. for (int l = 0; l < QK4_2; l += 2) {
  10035. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10036. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10037. hist[vi0]++;
  10038. hist[vi1]++;
  10039. }
  10040. }
  10041. }
  10042. return (n/QK4_2*sizeof(block_q4_2));
  10043. }
  10044. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10045. assert(k % QK4_3 == 0);
  10046. const int nb = k / QK4_3;
  10047. for (int j = 0; j < n; j += k) {
  10048. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10049. quantize_row_q4_3_reference(src + j, y, k);
  10050. for (int i = 0; i < nb; i++) {
  10051. for (int l = 0; l < QK4_3; l += 2) {
  10052. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10053. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10054. hist[vi0]++;
  10055. hist[vi1]++;
  10056. }
  10057. }
  10058. }
  10059. return (n/QK4_3*sizeof(block_q4_3));
  10060. }
  10061. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10062. assert(k % QK8_0 == 0);
  10063. const int nb = k / QK8_0;
  10064. for (int j = 0; j < n; j += k) {
  10065. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10066. quantize_row_q8_0_reference(src + j, y, k);
  10067. for (int i = 0; i < nb; i++) {
  10068. for (int l = 0; l < QK8_0; ++l) {
  10069. const int8_t vi = y[i].qs[l];
  10070. hist[vi/16 + 8]++;
  10071. }
  10072. }
  10073. }
  10074. return (n/QK8_0*sizeof(block_q8_0));
  10075. }
  10076. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10077. size_t result = 0;
  10078. switch (type) {
  10079. case GGML_TYPE_Q4_0:
  10080. {
  10081. GGML_ASSERT(start % QK4_0 == 0);
  10082. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10083. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10084. } break;
  10085. case GGML_TYPE_Q4_1:
  10086. {
  10087. GGML_ASSERT(start % QK4_1 == 0);
  10088. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10089. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10090. } break;
  10091. case GGML_TYPE_Q4_2:
  10092. {
  10093. GGML_ASSERT(start % QK4_2 == 0);
  10094. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10095. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10096. } break;
  10097. case GGML_TYPE_Q4_3:
  10098. {
  10099. GGML_ASSERT(start % QK4_3 == 0);
  10100. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10101. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10102. } break;
  10103. case GGML_TYPE_Q8_0:
  10104. {
  10105. GGML_ASSERT(start % QK8_0 == 0);
  10106. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10107. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10108. } break;
  10109. default:
  10110. assert(false);
  10111. }
  10112. return result;
  10113. }
  10114. ////////////////////////////////////////////////////////////////////////////////
  10115. int ggml_cpu_has_avx(void) {
  10116. #if defined(__AVX__)
  10117. return 1;
  10118. #else
  10119. return 0;
  10120. #endif
  10121. }
  10122. int ggml_cpu_has_avx2(void) {
  10123. #if defined(__AVX2__)
  10124. return 1;
  10125. #else
  10126. return 0;
  10127. #endif
  10128. }
  10129. int ggml_cpu_has_avx512(void) {
  10130. #if defined(__AVX512F__)
  10131. return 1;
  10132. #else
  10133. return 0;
  10134. #endif
  10135. }
  10136. int ggml_cpu_has_avx512_vbmi(void) {
  10137. #if defined(__AVX512VBMI__)
  10138. return 1;
  10139. #else
  10140. return 0;
  10141. #endif
  10142. }
  10143. int ggml_cpu_has_avx512_vnni(void) {
  10144. #if defined(__AVX512VNNI__)
  10145. return 1;
  10146. #else
  10147. return 0;
  10148. #endif
  10149. }
  10150. int ggml_cpu_has_fma(void) {
  10151. #if defined(__FMA__)
  10152. return 1;
  10153. #else
  10154. return 0;
  10155. #endif
  10156. }
  10157. int ggml_cpu_has_neon(void) {
  10158. #if defined(__ARM_NEON)
  10159. return 1;
  10160. #else
  10161. return 0;
  10162. #endif
  10163. }
  10164. int ggml_cpu_has_arm_fma(void) {
  10165. #if defined(__ARM_FEATURE_FMA)
  10166. return 1;
  10167. #else
  10168. return 0;
  10169. #endif
  10170. }
  10171. int ggml_cpu_has_f16c(void) {
  10172. #if defined(__F16C__)
  10173. return 1;
  10174. #else
  10175. return 0;
  10176. #endif
  10177. }
  10178. int ggml_cpu_has_fp16_va(void) {
  10179. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10180. return 1;
  10181. #else
  10182. return 0;
  10183. #endif
  10184. }
  10185. int ggml_cpu_has_wasm_simd(void) {
  10186. #if defined(__wasm_simd128__)
  10187. return 1;
  10188. #else
  10189. return 0;
  10190. #endif
  10191. }
  10192. int ggml_cpu_has_blas(void) {
  10193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10194. return 1;
  10195. #else
  10196. return 0;
  10197. #endif
  10198. }
  10199. int ggml_cpu_has_cublas(void) {
  10200. #if defined(GGML_USE_CUBLAS)
  10201. return 1;
  10202. #else
  10203. return 0;
  10204. #endif
  10205. }
  10206. int ggml_cpu_has_sse3(void) {
  10207. #if defined(__SSE3__)
  10208. return 1;
  10209. #else
  10210. return 0;
  10211. #endif
  10212. }
  10213. int ggml_cpu_has_vsx(void) {
  10214. #if defined(__POWER9_VECTOR__)
  10215. return 1;
  10216. #else
  10217. return 0;
  10218. #endif
  10219. }
  10220. ////////////////////////////////////////////////////////////////////////////////