| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002 |
- #include "ggml.h"
- #include "ggml-backend.h"
- #include "ggml-backend-impl.h"
- #include "ggml-kompute.h"
- // These are generated at build time by cmake custom command
- #include "shaderop_scale.h"
- #include "shaderop_scale_8.h"
- #include "shaderop_add.h"
- #include "shaderop_addrow.h"
- #include "shaderop_mul.h"
- #include "shaderop_silu.h"
- #include "shaderop_relu.h"
- #include "shaderop_gelu.h"
- #include "shaderop_softmax.h"
- #include "shaderop_norm.h"
- #include "shaderop_rmsnorm.h"
- #include "shaderop_diagmask.h"
- #include "shaderop_mul_mat_f16.h"
- #include "shaderop_mul_mat_q8_0.h"
- #include "shaderop_mul_mat_q4_0.h"
- #include "shaderop_mul_mat_q4_1.h"
- #include "shaderop_mul_mat_q6_k.h"
- #include "shaderop_mul_mat_mat_f32.h"
- #include "shaderop_getrows_f16.h"
- #include "shaderop_getrows_q4_0.h"
- #include "shaderop_getrows_q4_1.h"
- #include "shaderop_getrows_q6_k.h"
- #include "shaderop_rope_f16.h"
- #include "shaderop_rope_f32.h"
- #include "shaderop_cpy_f16_f16.h"
- #include "shaderop_cpy_f16_f32.h"
- #include "shaderop_cpy_f32_f16.h"
- #include "shaderop_cpy_f32_f32.h"
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <memory>
- #include <stdexcept>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #include <kompute/Kompute.hpp>
- #include <vulkan/vulkan.hpp>
- #ifdef __linux__
- #include <cstdlib> // for setenv
- #endif
- #define QK4_0 32
- #define QR4_0 2
- #define QK4_1 32
- #define QK_NL 16
- typedef ggml_fp16_t half;
- static std::string ggml_kompute_format_name(int device) {
- return "Kompute" + std::to_string(device);
- }
- struct ggml_kompute_context {
- int device;
- std::string name;
- std::shared_ptr<vk::DescriptorPool> pool;
- ggml_kompute_context(int device)
- : device(device), name(ggml_kompute_format_name(device)) {}
- };
- // FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
- // and consolidate the init functions and simplify object lifetime management. As it currently stands,
- // we *have* to have the kompute manager no matter what for device discovery, but the kompute context
- // is only created when a device is set and vulkan is explicitly turned on.
- static ggml_kompute_context *s_kompute_context = nullptr;
- class kompute_manager {
- kp::Manager *s_mgr = nullptr;
- public:
- kp::Manager *operator()() {
- if (s_mgr && !s_mgr->hasInstance()) {
- destroy();
- }
- if (!s_mgr) {
- s_mgr = new kp::Manager;
- }
- return s_mgr;
- }
- void destroy() {
- delete s_mgr;
- s_mgr = nullptr;
- }
- };
- static kompute_manager komputeManager;
- struct ggml_vk_memory {
- void *data = nullptr;
- size_t size = 0;
- vk::DeviceMemory *primaryMemory = nullptr;
- vk::Buffer *primaryBuffer = nullptr;
- vk::DeviceMemory *stagingMemory = nullptr;
- vk::Buffer *stagingBuffer = nullptr;
- };
- #ifdef __linux__
- __attribute__((constructor))
- static void enable_sam() {
- setenv("RADV_PERFTEST", "sam", false);
- }
- #endif
- static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
- vk::PhysicalDeviceFeatures availableFeatures;
- physical_device.getFeatures(&availableFeatures);
- if (!availableFeatures.shaderInt16)
- return false;
- vk::PhysicalDeviceVulkan11Features availableFeatures11;
- vk::PhysicalDeviceVulkan12Features availableFeatures12;
- availableFeatures11.pNext = &availableFeatures12;
- availableFeatures12.pNext = nullptr;
- vk::PhysicalDeviceFeatures2 features2;
- features2.pNext = &availableFeatures11;
- physical_device.getFeatures2(&features2);
- if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
- !availableFeatures11.storageBuffer16BitAccess) {
- return false;
- }
- if (!availableFeatures12.storageBuffer8BitAccess ||
- !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
- !availableFeatures12.shaderFloat16 ||
- !availableFeatures12.shaderInt8) {
- return false;
- }
- return true;
- }
- static const char * ggml_vk_getVendorName(uint32_t vendorID) {
- switch (vendorID) {
- case 0x10DE:
- return "nvidia";
- case 0x1002:
- return "amd";
- case 0x8086:
- return "intel";
- default:
- return "unknown";
- }
- }
- static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
- std::vector<ggml_vk_device> results;
- if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
- return results;
- std::vector<vk::PhysicalDevice> physical_devices;
- try {
- physical_devices = komputeManager()->listDevices();
- } catch (vk::SystemError & err) {
- std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
- return results;
- }
- uint32_t deviceCount = physical_devices.size();
- if (deviceCount == 0)
- return results;
- std::unordered_map<std::string, size_t> count_by_name;
- for (uint32_t i = 0; i < deviceCount; i++) {
- const auto & physical_device = physical_devices[i];
- VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
- VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
- const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
- const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
- if (major < 1 || minor < 2)
- continue;
- if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
- continue;
- size_t heapSize = 0;
- for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
- VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
- if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
- heapSize = heap.size;
- break;
- }
- }
- if (heapSize < memoryRequired)
- continue;
- auto ext_props = physical_device.enumerateDeviceExtensionProperties();
- bool has_maintenance4 = false;
- // Check if maintenance4 is supported
- for (const auto & properties : ext_props) {
- if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
- has_maintenance4 = true;
- }
- }
- vk::PhysicalDeviceSubgroupProperties subgroup_props;
- vk::PhysicalDeviceProperties2 dev_props2;
- vk::PhysicalDeviceMaintenance3Properties dev_props3;
- vk::PhysicalDeviceMaintenance4Properties dev_props4;
- dev_props2.pNext = &dev_props3;
- dev_props3.pNext = &subgroup_props;
- if (has_maintenance4) {
- subgroup_props.pNext = &dev_props4;
- }
- physical_device.getProperties2(&dev_props2);
- if (subgroup_props.subgroupSize < 32)
- continue;
- ggml_vk_device d;
- d.index = i;
- d.type = dev_props.deviceType;
- d.heapSize = heapSize;
- d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
- d.subgroupSize = subgroup_props.subgroupSize;
- d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
- if (has_maintenance4) {
- d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
- } else {
- d.maxAlloc = dev_props3.maxMemoryAllocationSize;
- }
- std::string name(dev_props.deviceName);
- size_t n_idx = ++count_by_name[name];
- if (n_idx > 1) {
- name += " (" + std::to_string(n_idx) + ")";
- }
- d.name = strdup(name.c_str());
- results.push_back(d);
- }
- std::stable_sort(results.begin(), results.end(),
- [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
- if (lhs.type != rhs.type) {
- if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
- if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
- if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
- if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
- }
- return lhs.heapSize < rhs.heapSize;
- }
- );
- return results;
- }
- // public API returns a C-style array
- ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
- auto devices = ggml_vk_available_devices_internal(memoryRequired);
- *count = devices.size();
- if (devices.empty()) {
- return nullptr;
- }
- size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
- auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
- memcpy(arr, devices.data(), nbytes);
- return arr;
- }
- static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
- devices.erase(
- std::remove_if(devices.begin(), devices.end(),
- [&targetVendor](const ggml_vk_device& device) {
- return device.vendor != targetVendor;
- }),
- devices.end()
- );
- }
- static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
- devices.erase(
- std::remove_if(devices.begin(), devices.end(),
- [&targetName](const ggml_vk_device& device) {
- return device.name != targetName;
- }),
- devices.end()
- );
- }
- static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
- if (name.empty())
- return false;
- auto devices = ggml_vk_available_devices_internal(memoryRequired);
- if (name == "amd" || name == "nvidia" || name == "intel") {
- ggml_vk_filterByVendor(devices, name);
- } else if (name != "gpu") {
- ggml_vk_filterByName(devices, name);
- }
- if (devices.empty())
- return false;
- *device = devices.front();
- return true;
- }
- bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
- return ggml_vk_get_device(device, memoryRequired, std::string(name));
- }
- bool ggml_vk_has_vulkan() {
- return komputeManager()->hasVulkan();
- }
- bool ggml_vk_has_device() {
- return komputeManager()->hasDevice();
- }
- ggml_vk_device ggml_vk_current_device() {
- if (!komputeManager()->hasDevice())
- return ggml_vk_device();
- auto devices = ggml_vk_available_devices_internal(0);
- ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
- GGML_ASSERT(!devices.empty());
- return devices.front();
- }
- static
- void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
- std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
- vk::DescriptorPoolSize(
- vk::DescriptorType::eStorageBuffer,
- 3 * size // Descriptor count is number of possible tensors to pass into an algorithm
- )
- };
- vk::DescriptorPoolCreateInfo descriptorPoolInfo(
- vk::DescriptorPoolCreateFlags(),
- size, // Max sets
- static_cast<uint32_t>(descriptorPoolSizes.size()),
- descriptorPoolSizes.data());
- ctx->pool = std::make_shared<vk::DescriptorPool>();
- vk::Result r = komputeManager()->device()->createDescriptorPool(
- &descriptorPoolInfo, nullptr, ctx->pool.get());
- if (r != vk::Result::eSuccess)
- std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
- }
- static
- void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
- if (ctx->pool) {
- komputeManager()->device()->destroy(
- *ctx->pool,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- ctx->pool = nullptr;
- }
- }
- static
- vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
- vk::BufferCreateInfo bufferCreateInfo;
- bufferCreateInfo.size = size;
- bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
- vk::BufferUsageFlagBits::eTransferSrc |
- vk::BufferUsageFlagBits::eTransferDst;
- bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
- vk::Buffer *vkBuffer = new vk::Buffer;
- vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
- return vkBuffer;
- }
- static
- vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
- uint32_t memoryTypeIndex = -1;
- bool memoryTypeIndexFound = false;
- vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
- for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
- const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
- const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
- if (memoryHeap.size < size) {
- continue;
- }
- if (requirements.memoryTypeBits & (1 << i)) {
- if (((memoryProperties.memoryTypes[i]).propertyFlags &
- flags) == flags) {
- memoryTypeIndex = i;
- memoryTypeIndexFound = true;
- if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
- *isHostVisible = true;
- }
- break;
- }
- }
- }
- if (!memoryTypeIndexFound) {
- throw std::runtime_error(
- "Memory type index for buffer creation not found");
- }
- vk::MemoryAllocateInfo allocInfo;
- allocInfo.allocationSize = size;
- allocInfo.memoryTypeIndex = memoryTypeIndex;
- vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
- vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
- if (r != vk::Result::eSuccess) {
- std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
- throw std::runtime_error("Error allocating vulkan memory.");
- }
- return vkDeviceMemory;
- }
- static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
- size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
- // If offset is already aligned, return it directly
- if (offset % minStorageBufferOffsetAlignment == 0) {
- return offset;
- }
- // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
- return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
- }
- static ggml_vk_memory ggml_vk_allocate(size_t size) {
- ggml_vk_memory memory;
- bool isHostVisible = false;
- {
- memory.primaryBuffer = ggml_vk_allocate_buffer(size);
- vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
- vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
- memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
- komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
- if (isHostVisible) {
- vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error mapping memory" << vk::to_string(r);
- }
- }
- if (!isHostVisible) {
- memory.stagingBuffer = ggml_vk_allocate_buffer(size);
- vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
- vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
- vk::MemoryPropertyFlagBits::eHostCoherent |
- vk::MemoryPropertyFlagBits::eHostCached;
- memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
- komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
- vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error mapping memory" << vk::to_string(r);
- }
- memory.size = size;
- return memory;
- }
- static void ggml_vk_free_memory(ggml_vk_memory &memory)
- {
- komputeManager()->device()->destroy(
- *memory.primaryBuffer,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- if (memory.stagingBuffer) {
- komputeManager()->device()->destroy(
- *memory.stagingBuffer,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- }
- komputeManager()->device()->freeMemory(
- *memory.primaryMemory,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- if (memory.stagingMemory) {
- komputeManager()->device()->freeMemory(
- *memory.stagingMemory,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- }
- }
- static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
- static
- ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
- ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
- // compatibility with ggml-backend
- GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
- ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
- const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
- GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
- offset = uint64_t(ioffs);
- return buf_ctx;
- }
- static
- const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
- uint64_t originalOffset = 0;
- auto * res = ggml_vk_find_tensor(t, originalOffset);
- if (!res) {
- static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
- return nullTensor;
- }
- // Create a tensor whose memory will be composed of our buffers at the correct offset
- const size_t nelements = ggml_nelements(t);
- size_t nbytes = ggml_nbytes(t);
- size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
- if (alignedOffset) {
- *alignedOffset = originalOffset - vulkanOffset;
- nbytes += *alignedOffset;
- }
- return komputeManager()->tensor(
- t->data,
- nelements,
- nbytes, kp::Tensor::TensorDataTypes::eFloat,
- res->primaryMemory, res->primaryBuffer,
- res->stagingMemory, res->stagingBuffer,
- vulkanOffset);
- }
- static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
- if (size % sizeof(uint32_t) != 0) {
- throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
- }
- const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
- size_t count = size / sizeof(uint32_t);
- return std::vector<uint32_t>(data_ptr, data_ptr + count);
- }
- inline static
- uint32_t safe_divide(uint32_t a, uint32_t b) {
- if (b <= 1) {
- return a;
- }
- if ((a % b) != 0) {
- fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
- GGML_ASSERT(!"safe_divide result would've had remainder");
- }
- return a / b;
- }
- static void ggml_vk_add(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
- int32_t ne0,
- int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
- kp::shader_data::op_add_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00;
- int32_t nb00, nb01, nb02, nb03;
- int32_t ne10, ne11, ne12, ne13;
- int32_t nb10, nb11, nb12, nb13;
- int32_t ne0;
- int32_t nb0, nb1, nb2, nb3;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_addrow(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- uint32_t size, uint32_t row = 0) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
- kp::shader_data::op_addrow_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- uint32_t row;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- row
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__))
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
- int32_t ne0,
- int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
- kp::shader_data::op_mul_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00;
- int32_t nb00, nb01, nb02, nb03;
- int32_t ne10, ne11, ne12, ne13;
- int32_t nb10, nb11, nb12, nb13;
- int32_t ne0;
- int32_t nb0, nb1, nb2, nb3;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_scale(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t size, float scale) {
- const static auto spirv_1 = getSpirvShader(
- kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
- );
- const static auto spirv_8 = getSpirvShader(
- kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
- );
- struct PushConstants {
- uint32_t inOff, outOff;
- float scale;
- } const pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- scale
- };
- const auto * spirv = &spirv_1;
- std::string name(__func__);
- if (size % 8 == 0) {
- size /= 8;
- name += "_8";
- spirv = &spirv_8;
- }
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_xxlu(
- const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t size
- ) {
- struct PushConstants {
- uint32_t inOff, outOff;
- } const pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_silu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
- kp::shader_data::op_silu_comp_spv_len);
- ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_relu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
- kp::shader_data::op_relu_comp_spv_len);
- ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_gelu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
- kp::shader_data::op_gelu_comp_spv_len);
- ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
- }
- static void ggml_vk_soft_max(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
- float scale
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
- kp::shader_data::op_softmax_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- float scale;
- int32_t mask;
- } pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- scale,
- bool(inB)
- };
- auto & inB_ = inB ? inB : inA;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
- const uint32_t local_x = 32;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB_, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_norm_(
- const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- int32_t ne00, int32_t nb01,
- int32_t nrows, float epsilon
- ) {
- GGML_ASSERT(nb01%sizeof(float) == 0);
- GGML_ASSERT(ne00%sizeof(float) == 0);
- struct PushConstants {
- uint32_t inOff, outOff;
- uint32_t ne00, nb01;
- float eps;
- } pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- (uint32_t)ne00, (uint32_t)nb01, epsilon
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({(uint32_t)nrows});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_norm(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
- kp::shader_data::op_norm_comp_spv_len);
- ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_rms_norm(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
- kp::shader_data::op_rmsnorm_comp_spv_len);
- ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
- }
- static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t n_past,
- int32_t ne00, int32_t ne01, int32_t ne02) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
- kp::shader_data::op_diagmask_comp_spv_len);
- struct PushConstants {
- uint32_t inOff, outOff;
- uint32_t n_past;
- int32_t ne00, ne01;
- } pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- n_past,
- ne00, ne01
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__))
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_f16(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- uint32_t nb00, uint32_t nb01, uint32_t nb02,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- uint32_t nb10, uint32_t nb11, uint32_t nb12,
- int32_t ne0, int32_t ne1,
- uint32_t r2, uint32_t r3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
- kp::shader_data::op_mul_mat_f16_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- uint32_t nb00, nb01, nb02;
- int32_t ne10, ne11, ne12;
- uint32_t nb10, nb11, nb12;
- int32_t ne0, ne1;
- uint32_t r2, r3;
- } pushConsts {
- safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- nb00, nb01, nb02,
- ne10, ne11, ne12,
- nb10, nb11, nb12,
- ne0, ne1,
- r2, r3
- };
- const unsigned ny = unsigned((ne11 + 4 - 1)/4);
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- uint32_t nb01, uint32_t nb02,
- int32_t ne11, int32_t ne12,
- uint32_t nb11, uint32_t nb12,
- uint32_t nb1, uint32_t nb2) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
- kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02, ne11, ne12;
- uint32_t nb01, nb02;
- uint32_t nb11, nb12;
- uint32_t nb1, nb2;
- } pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02, ne11, ne12,
- nb01, nb02, nb11, nb12,
- nb1, nb2
- };
- const uint32_t local_x = ggml_vk_current_device().subgroupSize;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
- {inA, inB, out}, spirv,
- {unsigned(ne01),
- unsigned(ne11),
- unsigned(std::max(ne12, ne02))
- },
- {local_x},
- {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01),
- unsigned(ne11),
- unsigned(std::max(ne12, ne02)),
- });
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_impl(
- const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t ne0, int32_t ne1,
- uint32_t r2, uint32_t r3
- ) {
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- int32_t ne10, ne12;
- int32_t ne0, ne1;
- uint32_t r2, r3;
- } pushConsts {
- safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- ne10, ne12,
- ne0, ne1,
- r2, r3
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q4_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
- kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q4_1(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
- kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q8_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
- kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- static void ggml_vk_mul_mat_q6_k(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
- int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
- kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne10, ne0, ne1, ne01, gqa;
- } pushConsts {
- inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne10, ne0, ne1, ne01, ne12/ne02
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_get_rows(
- const std::vector<uint32_t>& spirv,
- const char * suffix,
- unsigned element_size, unsigned qk,
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t nb01, int32_t nb1,
- uint32_t size
- ) {
- GGML_ASSERT(nb01%element_size == 0);
- GGML_ASSERT(nb1%sizeof(float) == 0);
- if (qk) GGML_ASSERT(ne00%qk == 0);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, nb01, nb1;
- } pushConsts {
- safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, nb01, nb1
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
- kp::shader_data::op_getrows_f16_comp_spv_len);
- ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q4_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
- kp::shader_data::op_getrows_q4_0_comp_spv_len);
- ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q4_1(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
- kp::shader_data::op_getrows_q4_1_comp_spv_len);
- ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q6_k(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
- kp::shader_data::op_getrows_q6_k_comp_spv_len);
- ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
- }
- static void ggml_vk_rope(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
- float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
- int32_t ne01, int32_t ne02, int32_t ne03,
- uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
- int32_t ne0,
- uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
- ) {
- GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
- static const auto spirv_f16 = getSpirvShader(
- kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
- );
- static const auto spirv_f32 = getSpirvShader(
- kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
- );
- int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
- GGML_ASSERT(nb03 % type_size == 0);
- GGML_ASSERT(nb02 % type_size == 0);
- GGML_ASSERT(nb01 % type_size == 0);
- GGML_ASSERT(nb00 % type_size == 0);
- GGML_ASSERT(nb3 % type_size == 0);
- GGML_ASSERT(nb2 % type_size == 0);
- GGML_ASSERT(nb1 % type_size == 0);
- GGML_ASSERT(nb0 % type_size == 0);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t n_dims, mode, n_orig_ctx;
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- uint32_t nb00, nb01, nb02, nb03;
- int32_t ne0;
- uint32_t nb0, nb1, nb2, nb3;
- } pushConsts {
- safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
- n_dims, mode, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
- nb00, nb01, nb02, nb03,
- ne0,
- nb0, nb1, nb2, nb3
- };
- auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(
- name, s_kompute_context->pool.get(), {inA, inB, out},
- src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
- {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
- );
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_cpy(
- const std::vector<uint32_t>& spirv,
- uint32_t in_element_size, uint32_t out_element_size,
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
- int32_t ne0, int32_t ne1, int32_t ne2,
- uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
- ) {
- struct PushConstants {
- uint32_t inOff, outOff;
- int32_t ne00, ne01, ne02;
- uint32_t nb00, nb01, nb02, nb03;
- int32_t ne0, ne1, ne2;
- uint32_t nb0, nb1, nb2, nb3;
- } pushConsts {
- safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
- ne00, ne01, ne02,
- nb00, nb01, nb02, nb03,
- ne0, ne1, ne2,
- nb0, nb1, nb2, nb3
- };
- std::string name = std::string(__func__)
- + "_i_" + std::to_string(in_element_size)
- + "_o_" + std::to_string(out_element_size);
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name))
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f32_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
- kp::shader_data::op_cpy_f32_f16_comp_spv_len);
- ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f32_f32(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
- kp::shader_data::op_cpy_f32_f32_comp_spv_len);
- ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f16_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
- kp::shader_data::op_cpy_f16_f16_comp_spv_len);
- ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f16_f32(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
- kp::shader_data::op_cpy_f16_f32_comp_spv_len);
- ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
- }
- static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- break;
- default:
- return false;
- }
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- return true;
- default:
- ;
- }
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_SCALE:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_RMS_NORM:
- case GGML_OP_NORM:
- case GGML_OP_ROPE:
- return true;
- case GGML_OP_DUP:
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- break;
- default:
- return false;
- }
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- break;
- default:
- return false;
- }
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q6_K:
- return op->ne[2] == 1 && op->ne[3] == 1;
- default:
- ;
- }
- return false;
- case GGML_OP_MUL_MAT:
- if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
- return false;
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_Q6_K:
- return op->ne[3] == 1;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return true;
- default:
- ;
- }
- default:
- ;
- }
- return false;
- }
- static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
- const int n_seq = 8;
- // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
- // it to the size of the graph, but I think it can be made smaller?
- ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
- std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
- for (auto& sequence : sequences) {
- sequence = komputeManager()->sequence();
- }
- for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
- const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
- auto& seq = *sequences[seq_idx];
- const int node_start = (seq_idx + 0) * n_nodes_per_seq;
- const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
- bool any_commands_recorded = false;
- for (int i = node_start; i < node_end; ++i) {
- struct ggml_tensor * src0 = gf->nodes[i]->src[0];
- struct ggml_tensor * src1 = gf->nodes[i]->src[1];
- struct ggml_tensor * dst = gf->nodes[i];
- GGML_ASSERT(dst->data != nullptr);
- switch (dst->op) {
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- continue; // noop -> next node
- default:
- break;
- }
- any_commands_recorded = true;
- if (!ggml_vk_supports_op(dst)) {
- fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
- GGML_ASSERT(!"unsupported op");
- }
- const int32_t ne00 = src0 ? src0->ne[0] : 0;
- const int32_t ne01 = src0 ? src0->ne[1] : 0;
- const int32_t ne02 = src0 ? src0->ne[2] : 0;
- const int32_t ne03 = src0 ? src0->ne[3] : 0;
- const uint32_t nb00 = src0 ? src0->nb[0] : 0;
- const uint32_t nb01 = src0 ? src0->nb[1] : 0;
- const uint32_t nb02 = src0 ? src0->nb[2] : 0;
- const uint32_t nb03 = src0 ? src0->nb[3] : 0;
- const int32_t ne10 = src1 ? src1->ne[0] : 0;
- const int32_t ne11 = src1 ? src1->ne[1] : 0;
- const int32_t ne12 = src1 ? src1->ne[2] : 0;
- const int32_t ne13 = src1 ? src1->ne[3] : 0;
- const uint32_t nb10 = src1 ? src1->nb[0] : 0;
- const uint32_t nb11 = src1 ? src1->nb[1] : 0;
- const uint32_t nb12 = src1 ? src1->nb[2] : 0;
- const uint32_t nb13 = src1 ? src1->nb[3] : 0;
- const int32_t ne0 = dst ? dst->ne[0] : 0;
- const int32_t ne1 = dst ? dst->ne[1] : 0;
- const int32_t ne2 = dst ? dst->ne[2] : 0;
- // const int32_t ne3 = dst ? dst->ne[3] : 0;
- const uint32_t nb0 = dst ? dst->nb[0] : 0;
- const uint32_t nb1 = dst ? dst->nb[1] : 0;
- const uint32_t nb2 = dst ? dst->nb[2] : 0;
- const uint32_t nb3 = dst ? dst->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
- const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
- uint32_t off_src0 = 0;
- uint32_t off_src1 = 0;
- uint32_t off_dst = 0;
- const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
- const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
- const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
- switch (dst->op) {
- case GGML_OP_ADD:
- {
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- // src1 is a row
- ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
- } else {
- ggml_vk_add(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne03,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- );
- }
- } break;
- case GGML_OP_MUL:
- {
- ggml_vk_mul(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne03,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- );
- } break;
- case GGML_OP_SCALE:
- {
- float scale; memcpy(&scale, dst->op_params, sizeof(float));
- ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
- } break;
- case GGML_OP_UNARY:
- {
- int64_t n = ggml_nelements(dst);
- GGML_ASSERT(n % 4 == 0);
- switch (ggml_get_unary_op(gf->nodes[i])) {
- case GGML_UNARY_OP_SILU:
- {
- ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- GGML_ASSERT(n % 8 == 0);
- ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
- } break;
- default:
- {
- fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
- GGML_ASSERT(false);
- }
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- float scale;
- memcpy(&scale, dst->op_params, sizeof(float));
- ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- const int n_past = ((int32_t *)(dst->op_params))[0];
- ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
- } break;
- case GGML_OP_NORM:
- {
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
- } break;
- case GGML_OP_RMS_NORM:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
- } break;
- case GGML_OP_MUL_MAT:
- {
- GGML_ASSERT(ne00 == ne10);
- // TODO: assert that dim2 and dim3 are contiguous
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- const uint32_t r2 = ne12/ne02;
- const uint32_t r3 = ne13/ne03;
- if (src1t != GGML_TYPE_F32) {
- fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- if (ggml_is_transposed(src0) ||
- ggml_is_transposed(src1)) {
- fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- switch (src0t) {
- case GGML_TYPE_F32:
- ggml_vk_mul_mat_mat_f32(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
- );
- break;
- case GGML_TYPE_F16:
- ggml_vk_mul_mat_f16(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
- ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q8_0:
- ggml_vk_mul_mat_q8_0(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q4_0:
- ggml_vk_mul_mat_q4_0(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q4_1:
- ggml_vk_mul_mat_q4_1(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q6_K:
- ggml_vk_mul_mat_q6_k(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
- );
- break;
- default: {
- fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- if (src0t == GGML_TYPE_F16) {
- ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q4_0) {
- ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q4_1) {
- ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q6_K) {
- ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else {
- fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
- goto not_implemented;
- }
- } break;
- case GGML_OP_ROPE:
- {
- GGML_ASSERT(ne10 == ne02);
- GGML_ASSERT(src0t == dstt);
- // const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- ggml_vk_rope(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
- ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
- );
- } break;
- case GGML_OP_DUP:
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- {
- switch (src0t) {
- case GGML_TYPE_F32:
- {
- switch (dstt) {
- case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- default: goto not_implemented;
- }
- } break;
- case GGML_TYPE_F16:
- {
- switch (dstt) {
- case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- default: goto not_implemented;
- } break;
- default: goto not_implemented;
- }
- }
- } break;
- default: goto not_implemented;
- }
- continue;
- not_implemented: {}
- fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
- //GGML_ASSERT(false);
- }
- // Evaluate sequence
- if (any_commands_recorded) {
- seq.evalAsync();
- }
- }
- // Wait for all sequences to finish
- for (auto& sequence : sequences) {
- if (sequence->isRunning())
- sequence->evalAwait();
- }
- ggml_vk_free_descriptor_pool(ctx);
- }
- template<>
- kp::Tensor::TensorDataTypes
- kp::TensorT<half>::dataType()
- {
- return TensorDataTypes::eFloat;
- }
- template<>
- kp::Tensor::TensorDataTypes
- kp::TensorT<uint8_t>::dataType()
- {
- return TensorDataTypes::eUnsignedInt;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- struct ggml_backend_kompute_buffer_type_context {
- int device;
- int device_ref = 0;
- uint64_t buffer_alignment;
- uint64_t max_alloc;
- std::string name;
- ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
- : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
- };
- static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- if (!ctx->device_ref) {
- komputeManager()->initializeDevice(
- ctx->device, {}, {
- "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
- "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
- }
- );
- }
- assert(ggml_vk_has_device());
- ctx->device_ref++;
- }
- static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- assert(ctx->device_ref > 0);
- ctx->device_ref--;
- if (!ctx->device_ref) {
- komputeManager.destroy();
- }
- }
- static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
- return ctx->name.c_str();
- }
- static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- auto * memory = (ggml_vk_memory *)buffer->context;
- if (ggml_vk_has_device()) {
- ggml_vk_free_memory(*memory);
- }
- delete memory;
- }
- static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
- return ((ggml_vk_memory *)buffer->context)->data;
- }
- static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(buffer);
- const auto res = ggml_vk_get_tensor(tensor);
- GGML_ASSERT(res);
- memcpy((char *)tensor->data + offset, data, size);
- komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
- }
- static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(buffer);
- const auto res = ggml_vk_get_tensor(tensor);
- GGML_ASSERT(res);
- komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
- memcpy(data, (const char *)tensor->data + offset, size);
- }
- static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- auto * memory = (ggml_vk_memory *)buffer->context;
- memset(memory->data, value, buffer->size);
- if (memory->stagingBuffer)
- komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
- }
- static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
- /* .get_name = */ ggml_backend_kompute_buffer_get_name,
- /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
- /* .get_base = */ ggml_backend_kompute_buffer_get_base,
- /* .init_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_kompute_buffer_clear,
- /* .reset = */ NULL,
- };
- // default buffer type
- static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->name.c_str();
- }
- static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_kompute_device_ref(buft);
- auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
- return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
- }
- static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->buffer_alignment;
- }
- static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->max_alloc;
- }
- static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- GGML_UNUSED(buft);
- return ggml_backend_is_kompute(backend);
- }
- static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
- /* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
- /* .is_host = */ NULL,
- };
- ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
- static std::vector<ggml_backend_buffer_type> bufts = []() {
- std::vector<ggml_backend_buffer_type> vec;
- auto devices = ggml_vk_available_devices_internal(0);
- vec.reserve(devices.size());
- for (const auto & dev : devices) {
- vec.push_back({
- /* .iface = */ ggml_backend_kompute_buffer_type_interface,
- /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
- });
- }
- return vec;
- }();
- auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
- return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
- });
- return it < bufts.end() ? &*it : nullptr;
- }
- // backend
- static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- return ctx->name.c_str();
- }
- static void ggml_backend_kompute_free(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- assert(ctx == s_kompute_context);
- s_kompute_context = nullptr;
- if (ctx != nullptr) {
- delete ctx;
- }
- delete backend;
- }
- static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- return ggml_backend_kompute_buffer_type(ctx->device);
- }
- static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- ggml_vk_graph_compute(ctx, cgraph);
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- GGML_UNUSED(backend);
- return ggml_vk_supports_op(op);
- }
- static struct ggml_backend_i kompute_backend_i = {
- /* .get_name = */ ggml_backend_kompute_name,
- /* .free = */ ggml_backend_kompute_free,
- /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_kompute_graph_compute,
- /* .supports_op = */ ggml_backend_kompute_supports_op,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- static ggml_guid_t ggml_backend_kompute_guid() {
- static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
- return &guid;
- }
- ggml_backend_t ggml_backend_kompute_init(int device) {
- GGML_ASSERT(s_kompute_context == nullptr);
- s_kompute_context = new ggml_kompute_context(device);
- ggml_backend_t kompute_backend = new ggml_backend {
- /* .guid = */ ggml_backend_kompute_guid(),
- /* .interface = */ kompute_backend_i,
- /* .context = */ s_kompute_context,
- };
- return kompute_backend;
- }
- bool ggml_backend_is_kompute(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
- }
- static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
- GGML_UNUSED(params);
- return ggml_backend_kompute_init(intptr_t(user_data));
- }
- extern "C" int ggml_backend_kompute_reg_devices();
- int ggml_backend_kompute_reg_devices() {
- auto devices = ggml_vk_available_devices_internal(0);
- for (const auto & device : devices) {
- ggml_backend_register(
- ggml_kompute_format_name(device.index).c_str(),
- ggml_backend_reg_kompute_init,
- ggml_backend_kompute_buffer_type(device.index),
- reinterpret_cast<void *>(intptr_t(device.index))
- );
- }
- return devices.size();
- }
|